Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Measuring the blocking of AN.ON users by popular websites through web
scraping

Jurgen Mulder!, Stefanie Roos'
ITU Delft

Abstract

Users of anonymity networks face differential treat-
ment and sometimes get blocked by websites, it
is currently unclear how common this blocking is.
This research aims to provide an overview of how
common this blocking is while utilizing the AN.ON
anonymity network. The analysis is accomplished
by utilizing automated web scraping and process-
ing to recognise and classify blocks by comparing
them to a control connection. This process and soft-
ware can be used and extended to analyze and com-
pare any two connections. The scope is limited to
the one thousand most popular websites according
to the Alexa rating.

Different kinds of blocks were identified and au-
tomatically recognised in processing, though man-
ual verification is still required. Evidence is found
and presented that there is a significant amount of
blocking, occurring on approximately 23% of the
analyzed domains. There is also a significant differ-
ence in blocking between using different cascades.

1 Introduction

When using the internet, one leaves identifiable data that gets
collected by various instances and services [1]1[2]. Some in-
ternet users feel the need to prevent their data from being col-
lected [3], and one component which can be used to protect
this data and online identity is the use of an anonymity net-
work, such as AN.ON'. AN.ON routes traffic from the user
through a service to assist in preventing professional data col-
lectors from collecting your data [4]. These anonymity net-
works can be used by legitimate users for various reasons, but
also by criminals to facilitate protection for online crimes [5].
Due to these different potentially malicious users some web-
sites may impose restrictions on users of such anonymity net-
works. Some content might be blocked, some content might
be hidden behind CAPTCHASs, and some websites might
even completely lock out such a user [6][7]. There has been
some research in a related field about censorship and how to
measure it via various methods [8]1[91[10]1[111[12][13], and
it is clear that there are instances of discrimination against

"https://anon.inf.tu-dresden.de/index_en.html

requests originating from anonymity networks [11]. There
are also two studies on website blocking while using TOR
specifically that acknowledge the fact that knowledge about
this issue is sparse [6][7], but there is no known research into
the blocking of users of AN.ON. Blocking can be performed
by various parties, mainly the ones giving the internet access
(E.G. ISPs and governments) and the ones receiving the traf-
fic (E.G. websites). There is some research into the block-
ing of accessing AN.ON and how to circumvent those blocks
[14], but that is not the type of blocking this research is con-
cerned with. It is currently unclear how extensive this block-
ing by websites is for most anonymity networks, the explo-
ration of the severity and commonality of this blocking while
using AN.ON is the goal of this research. This research set
out to explicitly answer the question of how frequent blocking
of AN.ON users is while visiting popular websites.

This research shows that there is a significant amount of
blocking faced by AN.ON users imposed by websites. There
are still some unknown factors and uncertainties, but an
AN.ON user can expect to see some kind of blocking on ap-
proximately 12-23% of popular websites visited.

1.1 AN.ON

Project AN.ON, Anonymity.Online, was created around
2004. The goal of the project is to offer a protection layer
between the user and data collectors. This layer is provided
by routing all internet traffic through multiple servers, called
mixes, in encrypted one kilobyte packets that get interlaced
with traffic of other users and dummy packets [15]. The
servers that handle AN.ON traffic are all operated by inde-
pendent entities committed to protecting the data of the users.
The main difference between Tor? and AN.ON is this inher-
ent trust of routing through independent organisations [16],
rather than unknown volunteers with no legal limitations or
obligations [17]. AN.ON also consistently sends all traffic
through the same route while in use, which is accomplished
by having the user choose from a limited number of statically
defined routes. These possible routes through mixes are re-
ferred to as cascades.

The AN.ON project first took shape in JAP, Java Anon
Proxy [2], the most recently released version of which is what
this research uses for its experiments. The commercial ver-

*https://www.torproject.org/

sion of JAP was renamed JonDo/JonDonym, and is managed
by JonDos GmbH. JonDonym has announced to be shutting
down, with an unknown future for JAP, more details in sec-
tion 6.1. The terms AN.ON, ANON, JonDo, JAP, and even
anonymous-proxy-servers are used by the creators and users
to denote the same thing, the anonymity service and the soft-
ware to access it. The rest of this document will use ANON
to denote the AN.ON project and the use of JAP software for
the sake of consistency and clarity.

2 Methodology

The core principle used for detecting blocks caused by
ANON consists of requesting pages with and without ANON
enabled, and then comparing the results. The request made
without ANON enabled is referred to as the control or base-
line, details about the used baseline network can be found in
section 3.5. These requests are made in parallel and always
get started at the same time per URL, more information about
the used process of which can be found in section 3.1. Multi-
ple web pages are requested per domain, to get an impression
of the overall availability of the website. All data received
from each request is stored independently in a database. This
data is then later processed and compared against their coun-
terparts to reach a final verdict per request, and then summa-
rized together with other pages of the same domain to reach a
conclusion. More details about this database, the processing,
and the classification of pages and domains that was used can
be found in section 3.7.

2.1 Popular websites

This research aims to measure the prevalence of blocks while
accessing popular websites using ANON. For this task a
list of representative popular websites is needed to perform
tests on. Various lists of popular websites exist, with dif-
ferent methods used for the compiling these lists, such as
Alexa?, Majestic4, Cisco Umbrella’, Tranco®, and Quant-
cast’”. Many papers use the Amazon Alexa top sites on the
web list [18][19]1[20]1(21][22][23], being by far the most pop-
ular list used in security research according to Le Pochat et
al [24], and will therefore be used in this research. Although
popular, there are some issues with the Alexa list that allows
a malicious actor with few resources to maintain a rank in
the top 100k domains [25]. However, only utilizing the top
10k or less should be representative of the most popular web-
sites, as long as no value is bound to the individual rankings
[26]. The Alexa list also appears to not take traffic from the
EU into account [24], though this does not strictly matter for
the popular website criterion. Due to practical limitations in
available bandwidth and time, further explored in section 3.3,
this research will only use the top one thousand domains that
pass the filter described below.

3https://www.alexa.com/topsites
*https://majestic.com/reports/majestic-million
Shttps://umbrella.cisco.com/blog/cisco-umbrella-1-million
Shttps://tranco-list.eu/
https://www.quantcast.com/top-sites/

Domain Filters

Some websites were filtered out of this list and ignored for
practical reasons. These domains took longer than 120 sec-
onds to load the main page on the control connection (see
section 3.5), did not load at all, or are categorized as Asian
according to the definition below. The slow or not loading
domains were removed as they are likely blocking traffic of
bots, the geographical area, or are just broken. Examples of
this can be found in section 4.5. Predominantly Asian web-
sites were removed mainly due to them being generally ex-
tremely slow to load, and often changing a lot of content
between requests, making them relatively difficult to com-
pare. Furthermore Chinese users might not even be able to
use ANON due to the great firewall attempting to restrict ac-
cess to anonymity networks [27][28][29]. With ANON being
located mainly in the EU with no endpoints near Asia [30]
at the time of writing, it would be even slower and less us-
able for that audience. This filtering out of Asian websites is
performed by counting the amount of characters Java marks
as Chinese, Japanese, Korean, or Vietnamese (CJKV), us-
ing Character#isIdeographic [31]. Sites are excluded if
more than 300 of these characters are visible on the home-
page, or more than three in the title. The limit for CJKV
characters on the homepage was set to this high amount to
avoid false-positives due to language selectors.

3 Scraping and Processing

As described in the previous section, data from website re-
quests gets collected, stored, and processed. This chapter
aims to clarify and explain the exact workings and decisions
made in these steps.

3.1 Library

There are several ways of requesting information from a web-
site, but not all are as realistic as a normal user requesting a
web page in a browser, and as such may add biases to the ex-
periment. The simplest method is a simple GET request, this
can be done in most languages with relative ease. However
due to its simplicity this method does not run any JavaScript
code of the website, and can therefore theoretically get treated
differently, not load certain content, or get blocked by simple
checks and bot prevention systems, such as those of Cloud-
flare® [32]. More sophisticated options such as Selenium’
automate entire browsers, and libraries such as Puppeteer'”
provide APIs to full headless browsers. Headless browsers
work similar to normal browsers, only without the GUI be-
ing launched. Options such as hiring real people to manually
gather data exist [33], but are both out of budget and can intro-
duce further biases [34]. The OpenWPM!'! framework, built
upon Selenium, is an often used choice to simulate browsers
and extract data from websites, being used in over 76 crawl-
based studies as of October 2020 [35]. As there should be
no difference for websites between OpenWPM and Selenium,
and as OpenWPM uses Python whereas Selenium can be used

8https://cloudflare.com/
*https://www.selenium.dev/
Onttps://pptr.dev/
"https://github.com/mozilla/OpenWPM

with Java, the scraping and crawling in this research is per-
formed utilizing Selenium. It should be noted that all of these
options, including Selenium and OpenWPM, do differ from
human web browsing [34], and their use can be detected by
websites [36].

3.2 Cookies

Most sophisticated scraping libraries support cookie storage,
and using them to have a more stateful crawler may be desired
by some to better emulate users [34]. Cookies were cleared to
keep measurements independent, as having old cookies stored
could allow websites to present different behaviour on subse-
quent requests. Cookies were not cleared between pages of
the same domain, to behave more like a normal first time user
of a site.

3.3 Rates of querying

The bottleneck in this setup is the ANON connection, as out-
lined below in the practical limitations. Due to this slow con-
nection, doing multiple requests at the same time in parallel
is not an option. Therefore the fastest crawling possible is to
load every page sequentially back to back. This assumes that
no website is slower than the ANON connection, which, as
long as no website is having issues and timing out due to tech-
nical issues, should be the case with any large website. This is
performed in parallel with the requests done without ANON
to get the most up to date comparisons between content. This
simultaneously paces both crawlers to behave somewhat like
a realistic user, only going to visit another page after the pre-
vious one has finished loading. This speed would be possible
for a normal user pressing links on a web page, though it is
still faster than a user that reads every page in its entirety be-
fore loading another.

Practical page load speed limitation

The main limiting factor in how fast pages can be collected is
the latency and bandwidth of ANON. From some preliminary
testing it was clear that loading basic pages with some images
and light JavaScript can take over a minute, see table A for
some initial small scale page load time test results. An ad-
blocker sped up the loading of pages significantly, especially
with JAP enabled, and is therefore used. This makes sense
as ads can use up a lot of bandwidth while browsing websites
[37]. Websites can block users for using adblockers, but since
this is relatively uncommon [21], and since it is the same in
both the base and the experiment, this should not introduce
additional bias. The biggest page load time improvement ap-
pears to be possible using uBlock Origin [38], and is therefore
the adblocker of choice for this experiment, with default con-
figuration settings. An upper limit of two minutes per page
is given with uBlock Origin, and as a result only thirty pages
can be loaded per hour in a worst-case scenario. Due to this
extremely slow connection, pages are given time to load until
they fire a document readyState of complete, or time out
after a maximum of 120 seconds. After the readyState is
set correctly an extra two seconds is provided to the browser
to properly render everything and make final adjustments if
needed, to allow pages with loading symbols to properly dis-
play the main content. With this sped up strategy the six sites

tested in table A would allow for well over a hundred pages
being loaded per hour. A speed of roughly a hundred pages
per hour was reached in real world scraping with all further
optimizations listed below.

Caching

For a significant speed improvement in subsequent crawls, a
decision was made to enable caching between scraping ses-
sions. These caches are created and handled completely sep-
arately per experiment, as to avoid an ANON scrape from
using data retrieved by a regular control scrape. The cache
serves already downloaded content to the browser if present,
avoiding a slower request to the original web server [39].
With these separated caches per browser, any content shown
or used on an ANON scrape will have been retrieved by a
request utilizing ANON. This adds a small bias against tem-
porary resource-specific outages and blocks, as theoretically
a cached result could (temporarily) be getting blocked in the
present, but show not to be blocked as it is received from
cache. However any intermittent blocking of partial content
on only a month worth of scraping data would be hard to
distinguish from connection issues or temporary website out-
ages, thus they would likely have gotten discredited either
way.

Caching on ANON

ANON likely makes use of caching on the exit node side. In
old designs of JAP and the theory behind it, the principle of
the cache-proxy is discussed, explaining how it should pre-
cache requested web pages and their content [40]. As caching
is also named in further work, with them labeled as separate
proxies [15], it is presumed that this caching is present in
ANON. Mentions of this Cache-Proxy is also still present in
the source code of Mixes, though the exact implementation
was not found, and JonDos could not provide clarification
or confirmation about the cache-proxy implementations on
cascades. This caching could, in theory, trigger bot protection
mechanisms on websites, and this could explain some ANON
blocks. This caching could also make temporal blocking hard
or impossible to detect, as the cache-proxy could serve old
content. However, as mentioned earlier, such temporal block-
ing would have likely not been recognised either way.

Lazy-Loading

Lazy loading defers the loading of images until they are ei-
ther in the viewpoint or near it [41]. With this enabled fewer
unnecessary images outside of the observed part of the page
are downloaded, saving on bandwidth. As the images below
the fold are never compared in this experiment this should not
have any impacts on checking blocks. To force lazy loading
to work on all pages an extension named LazyLoadify'? was
used, created by Gildas. This ensures that even pages that
have not manually set the 1oading attribute to 1lazy will still
be lazy loaded. Enabling lazy loading and LazyLoadify sped
up the scrape time by about 9-14% and reduced timeouts by
26% in a small scale test of 430 links, repeated twice. Al-
though there are some other variables that could explain this
difference, such as the varying speed of ANON and caching,

Phttps://github.com/gildas-lormeau/LazyLoadify

it makes it worthwhile to enable. There were no visual dis-
advantages found to using this approach during manual ver-
ification, with the overall amount of missing images visible
being less common than in earlier tests.

3.4 Pages and functionality to test

To get a proper view of the blocking of content on a site,
one should ideally exhaustively test every single page and ev-
ery single functionality that can be used. Unfortunately, this
would require a relatively large amount of traffic and engi-
neering work per website, and would simply not be feasible
within a reasonable amount of time without overloading all
ANON mixes. To attempt to get a proper overview of a site,
an initial crawl has selected a small set of three randomly
picked URLs linked from the homepage, the amount of pages
was chosen arbitrarily. These pages along with the homepage
then served as the test set for that website for the remainder
of the experiment. Websites also often have different func-
tionalities outside of static content, such as logins, registers,
comments, and other such interactions. Due to every web-
site having implemented this in different ways, and automat-
ically entering content could easily get flagged as being a bot
and further impose biases, this research will not attempt to
interact with any of this sort of functionality. Furthermore
automatically inputting and sending data to servers takes up
ANON bandwidth and could be seen as malicious bot use by
the websites, and is therefore ethically questionable. Only
web-content retrieved from a directly linked URL presented
without external user-input is compared.

3.5 Compared against

All scrapes are compared against a standard connection to
produce results, this standard connection is referred to as
the control or baseline connection throughout this docu-
ment. Furthermore to make sure that blocks identified by the
crawler are actually due to ANON, and not due to faults in the
crawler or due to the behaviour of the crawler, all block data
is compared against this control. As this research aims to ex-
plore the blocking of ANON users compared to normal users,
all comparisons of blocking are made against a residential
connection, and not that of a cloud provider, VPN provider,
or other anonymity network. Due to availability, this baseline
will therefore be a single Dutch Ziggo'® provided residential
connection.

3.6 Types of blocks

Websites can choose to block or restrict access in various
ways, this section functions as a glossary for the types dis-
cussed further used. This list is not exhaustive and does not
list every single possible block on the internet.

* Errored: No response, blocking all contact and not re-
sponding at all (likely via a firewall). Or responding with
a HTTP code other than 2xx or 3xx.

* Block page: Returns a valid HTTP 200 response, but
with clearly other content including keywords often
found on block pages.

Bhttps://www.ziggo.nl/

e CAPTCHA: Anti-Bot, a Captcha or Test page, the same
as a block page, but with an option to pass it after manual
input.

* Action block: Allowing access to static content but
blocking actions such as logging in, registering, com-
menting, or otherwise interacting with content.

* Content block: Allowing access to some content, but not
all. For example getting everything but heavy to load
content such as videos.

As mentioned in section 3.4, not all functionality is tested.
Due to the limited amount of available data from this, the
action blocks can not be analyzed or recognised in any mean-
ingful way. Due to the low bandwidth of ANON, as seen
in section 3.3, some pages simply take too long to load im-
ages or videos and time out on them due to this slow speed,
rather than potential blocking. Furthermore ANON imposes a
maximum download of 2MByte per file [42] which can block
further large assets. As it is unclear whether this missing con-
tent is from websites performing content blocking, or simply
ANON being too slow, no meaningful analysis can be per-
formed on content blocking, aside from entire pages not load-

ing.
3.7 Recognising blocks

Data gets stored as-is during scraping, this section explains
how this data is later retrieved and processed. All data of
scrapes gets stored in a MariaDB (SQL) database, and the
screenshots get saved in png format in a directory. The
specifics of the database schema and the specifics of the types
of stored data can be found in appendix B. This stored data
is then processed, and reprocessed in case of an algorithm
change, to produce the final verdicts. This processing is done
by first determining characteristics and setting flags based on
limits. A summary of the important flags and their design
can be found in appendix D. After these flags are set, a final
verdict for the scrape is determined by comparing the flags
according to the flow scheme provided in appendix C. In this
flow scheme, green verdicts signify a confirmed non-blocked
page, red verdicts signify confirmed block pages, and yellow
verdicts should be manually checked to find unknown block
pages. Confirmed blocks always get manually verified to re-
duce the amount of false positives, as the limits are purpose-
fully skewed to produce these more rather than false negatives
for blocking. These final verdicts of scrapes are then grouped
together to form a final verdict for the entire website, this final
verdict can be one of the following:

e FULL_BLOCK, blocks all ANON traffic, or always
presents CAPTCHAs. Requires at least 95% of the com-
parisons to be blocks or CAPTCHAs. The 5% is a mar-
gin of error for the comparisons, these sites are deemed
unusable.

e SOME_BLOCKING, sometimes blocks traffic, sometimes
shows CAPTCHAs, sometimes allows users with no is-
sues. Requires at least one comparison to be classified
as a block of CAPTCHA.

¢ NO_BLOCKING, always allows ANON users and does not
treat them measurably differently.

Limits

All limits for setting flags based on characteristics were ini-
tially set by an educated guess, and were then refined to have
as few false negatives for blocking as possible through man-
ual verification. The focus was set on reducing the false neg-
atives, as there were relatively few block pages detected. This
does have a negative consequence that there are a signifi-
cant amount of false positives in the block categories, that
all have to be manually verified before making conclusions.
The manual verification was performed by manually looking
at the screenshots, flags, and underlying statistics of groups of
scrape results. Half of the scrapes of randomly chosen recent
scrape time slots were verified on their accuracy. This was
done until at the end manual verification sessions of over 300
comparisons did not result in any false negatives being iden-
tified. The exact final parameters and limits can be found in
the source code provided, with no specific descriptions about
what limits do what. This source code also includes an easy
to use GUI to speed up manual verification, and a command
based system to help verifying and adjusting parameters.

3.8 Avoiding biases

To get a perfect comparison, all variables other than the use
of ANON should be equalized for both the control and exper-
iment. Obvious variables such as the browser used, the user
agent, the operating system, and the resolution of the moni-
tor were of course identical over all the requests. However,
it is impossible to get rid of all possible external variables.
A few more complicated external variables are highlighted in
this section.

Availability/timing/outages

To avoid biases related to timing, such as temporary website
availability issues, local internet issues, or changing content,
all scraping of the control and the experiments are started at
the same time. This way if a website is offline at a certain
moment, both should likely have the same failed result. In
the case of a local internet issue anywhere along the line an
anomaly in the frequency of timeouts should be noticeable.
Multiple crawls at different times with comparisons in be-
tween were also used to further mitigate this issue. Further-
more after a series of outages on the JAP side and recognising
that these blocks always seem to come with multiple in a row,
a small system was created to automatically recognise these
outages. This system checks all scrapes in order of execution,
and if two or more different domains had timeouts in a row
they get flagged as having NETWORK_ISSUES, this flag will
ensure the comparison will always get the NETWORK_ISSUES
verdict. Results with the NETWORK_ISSUES verdict get ig-
nored and discarded from the results, and are not counted to-
wards any final domain verdict.

Net bias

Users from different countries tend to get treated differently,
either by their ISP or the website that receives the traffic
[43][44]. This is unfortunately not something that can be
completely removed without risking further biases as ex-
plained in section 3.5.

Country blocking/GDPR

Websites can decide to restrict access from certain countries
[20], sometimes for legal compliance [45]. The compar-
isons are made between different European countries, and can
therefore encounter different restrictions. The impact of this
should be minimal due to the proximity of the countries being
compared, all being in the EU (so receiving the same GDPR
treatment), as well as manual verification of block pages.

Bandwidth

As the ANON connection has a relatively high latency and
low bandwidth compared to the control connection it can time
out on requests more easily. This external variable could be
mitigated by somehow limiting the bandwidth and artificially
increasing the latency of the control connection. However,
as the scraping already takes a long time, and as this slow
connection would introduce an extra source of randomness
in the data due to more timeouts and unloaded data, it was
chosen not to throttle the control connection in this manner.
Instead, it is simply seen as a consequence of using ANON
and part of the experience, and most false positives due to
congestion or timeouts are filtered out manually.

To confirm that this limited bandwidth is not the lead-
ing factor in getting blocked, a slow control connection was
created. This slow control connection was created by rout-
ing the traffic through a local limited proxy, created with
the BrowserUp Proxy library'#. To create a roughly similar
speed to ANON, the bandwidht of the BrowserUp proxy was
limited to 100Kbit/s and 600ms ping, roughly in line with
the speeds claimed by ANON [46]. Then, an experiment
was ran comparing the two control connections, the results
of this experiment can be found in section 4.4, and are re-
lated to ANON in section 4.1. The average scraping speed of
this slow connection was roughly in line with that of ANON
scrapes based on the average scrape times. It is approximately
17% slower than the Dresden cascade, and approximately 9%
faster than the SpeedPartner-Cyrax cascade. A statistical T-
Test was attempted for the load times between cascades, but
showed that these times could not even be compared for the
same cascade at different times. The distributions of the load
times were significantly different even at a mere 90% con-
fidence interval. This might be due to jitter in the ANON
connection, which was not verified, quantified, or tested.

Software versions

Theoretically any update to software can make the behaviour
change, therefore the versions of any software and libraries
used during scraping was kept the same between runs on the
client side. This was ensured by running everything on a
Ubuntu'® 20.04 LTS virtual machine, and refusing to install
any updates after the first scrape was started. Libraries were
kept the same using Maven'® dependency management and
not updating any versions of libraries used during scraping.

“https://github.com/browserup/browserup-proxy
Bhttps://ubuntu.com/download/desktop
"®https://maven.apache.org/

4 Results

This section will discuss the results obtained from scraping
and categorizing the results of 1000 domains. These are
categorized and simplified according to the specification de-
scribed in section 3.7. The experiment was performed on the
two freely available ANON cascades [46] in great detail, the
results of which are discussed both separately and combined
in this section. The results are comparing data gathered dur-
ing different time frames, this could have caused variances
in the data that were not further investigated due to practical
limitations.

4.1 Cascade: Dresden

This cascade goes through a single mix, and is marked as a
test or experimental service [46]. This would not be a good
cascade to use with the goal of anonymization, as the single
mix could theoretically de-anonymize the user with ease, al-
though the signed clauses of mix operators prohibit the stor-
age of de-anonymized data or doing anything with it [42].
The endpoint of this cascade is an IP on the network of the
TU-Dresden. Scrapes were significantly faster when running
on this cascade than on the SpeedPartner-Cyrax cascade, and
as such it was ran more, resulting in it providing more data
points on the same domains as the other cascade. This cas-
cade saw blocking on approximately 12% of the Alexa top
1000 as defined in section 2.1. According to the Chi-Square
test of independence, this is a significantly different higher
result than the results from the slow control connection in
section 4.4. X?2(2, N = 2000) = 58.3,p < 0.0001. There-
fore it can be concluded that there is a significant amount of
blocking of ANON users on the Dresden cascade, as com-
pared to regular users with an equally slow connection. From
this it can be concluded that the blocking is an actual result of
the usage of ANON, and not of the limited bandwidth. The
composition of the results and the amount of blocking can be
found in figure 1(a).

4.2 Cascade: SpeedPartner-Cyrax

This cascade goes through two mixes, one in Germany and
one in France, and is the only cascade marked as free while
not being experimental [46]. This would be the better free
to use cascade for anonymity, as the dual mix system en-
sures no single party can de-anonymize the user [4]. The
endpoint of this cascade is 178.33.255.188 [47], an IP reg-
istered to OVH SAS'7 according to the RIPE database [48].
OVH is a large and easily accessible hosting provider, and as
such it could make sense for some websites weary of attack-
ers and scrapers to block OVH IP addresses by default. Due
to this datacenter IP on the exit mix, it is expected that this
cascade sees more blocking than the Dresden cascade men-
tioned earlier. As can be seen in figure 1(b), around 18%
of the Alexa top 1000 saw some sort of blocking on this
cascade. This relatively high amount of blocking is likely
due to the endpoint IP being that of a commercial datacenter
rather than that of a university. According to the Chi-Square
test of independence, this is a significantly different higher
result than the results from the Dresden cascade in section

"https://ovh.com

4.1. X2(2, N = 2000) = 40.1,p < 0.0001, thus it can be
concluded that blocking is more likely on the SpeedPartner-
Cyrax cascade than on the Dresden cascade.

4.3 ANON Combined

This data is composed of all scraped data while using ANON,
where some cascades had more data points than others.
Scrapes were performed over a long time period, with almost
30,000 data points. As defined earlier, if a single instance
of blocking on either cascade in all of these spread out data
points got categorized as blocking, the entire domain is cate-
gorized as SOME_BLOCKING. As such, these results might be
blown out of proportion and unrealistic for real world usage,
and should not be compared with the other statistics men-
tioned in this section. However, what the results in figure
1(c) do show is that around 23% of the analyzed websites
exhibited some form of blocking of ANON users.

4.4 Slow control

To verify these results are not just anomalies or due to the low
bandwidth of ANON, an experiment was ran with a slowed
down control network instead of an ANON cascade. This
experiment was performed on the same list of web pages as
the experiments on cascades, with all the same parameters,
as often as the SpeedPartner-Cyrax cascade. The workings of
this connection were designed to be similar to the specifica-
tions of an ANON cascade, and is further described in section
3.8. The results from this experiment are presented in figure
1(d). Notably there is an amount of websites that somehow
get classified as being blocked, these were all manually ver-
ified, and were mainly websites that presented CAPTCHAs
to the slowed down connection. It is not clear why sites pre-
sented different pages to these connections, it could perhaps
be due to plain random checking, or due to the low bandwidth
and slow speed also seen while using ANON, or due to dif-
ferences in requests while they go through proxies.

® NO_BLOCKING @ FULL_BLOCKING ©® NO_BLOCKING @ FULL_BLOCKING
©® SOME_BLOCKING © SOME_BLOCKING

(a) Dresden Cascade (b) SpeedPartner-Cyrax Cascade

® NO_BLOCKING @ FULL_BLOCKING ©® NO_BLOCKING @ FULL_BLOCKING
©® SOME_BLOCKING ©® SOME_BLOCKING

(c) All Cascades (d) Slow Control Connection

Figure 1: The categorized results of 1000 domains

4.5 Exceptions

Some websites had some idiosyncrasies limited to few do-
mains, such as not accepting https, timing out randomly,
crashing selenium with JavaScript, or blocking selenium alto-
gether. These sites, of which there were only 19 in total, were
handled slightly differently than the rest or excluded from the
list of websites where applicable. A complete list of domains
that got different treatment from the others and the exact dif-
ferent treatment is provided in appendix E.

5 Responsible Research
5.1 Reproducibility

Any competent developer with enough time, a stable network
connection, and a normal computer to dedicate to this should
be able to reproduce any and all experiments performed dur-
ing this research. However, it would have to be on a different
anonymity network, as ANON is about to be closed down as
described in section 6.1. Following section 3 should make it
possible to create a program that resembles the same func-
tionality as the one produced for this research. The exact
source code produced for and used by this research can be
found on https://gitlab.com/simgar98/rpcrawler,
such that anyone can verify the functionality and run it
for themselves if desired. The exact list of links used
during experimentation is also on this repository under
libs/links-used.txt. With this source code and enough
time even larger tests could be conducted. However, this code
has next to no comments in it, little instructions on how to use
it, and comes with no warranties whatsoever.

Licensing

To ensure anyone can use this software freely, any code cre-
ated for this research is licensed under the GNU General Pub-
lic License v3.0. This licensing provides anyone the freedom
to use, change, share, and share changes made to the software
however they seem fit [49].

5.2 Congestion

This project uses up some bandwidth of the ANON project.
Theoretically, this could use up bandwidth that other users
could have made use of, and could slow their connection
down by using too much. However, the free usage of ANON
is limited to 100 kbit/s [46], with about one or two hundred
users per cascade, with the highest seen during this exper-
iment being at most 250. Even if there were 300 concur-
rent users on the same cascade, and if they would all use
their maximum bandwidth, that would be around 30 Mbit/s of
bandwidth. Bandwidth is not infinite or free, but even this ex-
treme usage is likely to be fraction of the available bandwidth
to the mix operators used. The three owning parties of the
mixes present in the two used cascades, SpeedPartner, Cyrax,
and TU-Dresden, either use datacenter space or have their
own uplinks that can be assumed to be over a gigabit judg-
ing by their ASNs'8. Uplinks have to have over 100Mbit/s
available to become a mix operator [50], thus the maximum
sustained load of this project would be a thousandth of their

Bhttp://infoservice.inf.tu-dresden.de/cascades

minimum resources. The load produced by this research on
the ANON network seems insignificant, and should therefore
not be an issue.

5.3 Reputation

The behaviour of the software used in this experiment is that
of a robot, which websites could detect and link to the IP ad-
dresses used. This could result in the IP addresses of ANON
getting a worse reputation because of the actions performed
in this research. However, as ANON is shutting down its ser-
vice, this should not be an issue for the long term. This could
also have had short term impact for current users of ANON,
which there are not a lot of, who may possibly have experi-
enced a heightened frequency of differential treatment while
this experiment was running. The results of this are hard or
impossible to quantify.

5.4 Legality

There are three main parties involved in this experiment, out-
side of the web sites, that could have issues with this crawling
and scraping. These three parties are JonDos, Ziggo, and the
government of The Netherlands. Firstly JonDos could take
issue in abuse of their services, however their terms of ser-
vice agreement does not prohibit this use case [51]. Secondly
Ziggo, the ISP that provided the connection for the control
queries, could also take issue in abuse of their services. How-
ever Ziggo does not explicitly prohibit, condemn, or even
mention this usage of their services in their terms and con-
ditions [52]. So JonDos and Ziggo do not seem to have any
issues with this scraping, but the Dutch Government theoret-
ically could. There does not seem to be any law prohibiting
scraping directly, it is a rather gray area in the Netherlands
with certain instances being forbidden by other laws. For ex-
ample, in the Netherlands a website can legally prohibit this
scraping via their privacy policy, as Ryanair did in 2015, win-
ning a court battle over it [53]. There are more instances of
such lawsuits against scrapers in the United States, that rely
on various laws that have similar counterparts in EU member
states [32]. Due to this being a legally gray area, and there
being no significant costs or damage incurred by any parties
involved, this should not be an issue, however it should defi-
nitely be considered by anyone that wants to do a lot of scrap-
ing.

5.5 Robot exclusion protocol

The robot exclusion protocol, REP, was designed back in
1994 [54], to keep out unwanted automated traffic. Currently
it is not an official internet standard backed by a standards
body, however a draft to formalize the REP as such is now
being worked on [55]. Still, at the time of writing, it is sim-
ply an unofficial widely used guideline. It was designed to
automatically tell robots, including scrapers, to ignore cer-
tain pages or entire websites via the robots. txt document.
There can be various valid reasons to not want robots on a
website, and a well-mannered scraper should probably take
the REP into account while requesting data, but this project
does not. Very few requests are made to very large, as defined
in section 2.1, websites. These few requests to pages linked
to from the main pages likely do not represent any form of

significant load on such websites, and as such should not be
seen as problematic for ignoring the REP. In a larger scale
study with more requests for longer periods of time, or with
more end points, it would be courteous to honor the REP of
websites.

6 Conclusions and Future Work

It is clear that ANON users face significant amounts of block-
ing while browsing popular websites. The exact amount is
unclear, and varies on the cascade used and the definition of
facing blocking, but the proportion was found to be between
12% and 18% of the most popular 1k websites per cascade.
However, this number might be skewed towards the high side,
as a control connection with similarly limited bandwidth also
faced blocking on about 5% of websites. Furthermore this
number may also be too low due to the limited functionali-
ties and web pages tested per website. This research set out
to quantitatively measure the prevalence of blocking, but due
to there being many untested variables and interpretations or
definitions, no single percentage can be concluded upon. This
section aims to highlight some limitations that were identified
while this experiment was running. If these limitations were
to be solved, much more meaningful statistics could be gen-
erated with a similar experimental setup.

6.1 AN.ON Defunct

The current JonDonym website!® now reads that ”Unfortu-
nately, we have to close our service until 2021-08-31. Un-
til then, our operators will ensure you that you can consume
your existing plans. Purchasing new plans is not possible any
more.” on a small banner at the top of the screen. The German
version clarifies that it will close on instead of until 2021-08-
31. From this it is clear that ANON will cease operations. Af-
ter inquiry it was clarified that the free Dresden cascade will
remain online, with all others scheduled to shut down. The
creators even use www. jondonym.net in promotional mate-
rial [56] while it is not even registered at the time of writing,
having been used by the JonDos company for displaying their
portfolio between 2015 and 2019 [57]. However, while this
research was performed and this paper was written specifi-
cally for use with ANON, the methods used should still apply
to any other anonymity network.

6.2 Limitations

There are some shortcomings to the methods and software
used, this section aims to list the ones currently known of.
These could be improved in further work and should be taken
into account when using the presented results for anything.

* Time frame: Measurements were not performed at the
same time, several samples exist from different dates,
with no distinctions made in the results.

 Tested functionality: As mentioned before, only limited
functionality is tested.

* Webdriver detection: Selenium sets a webdriver prop-
erty, websites can easily use this to detect they are get-
ting visited by an automated program.

"“https://anonymous-proxy-servers.net/

* Amount of websites analyzed: The subset of 1000 tested
domains should give a decent overview of popular web-
sites, but analyzing more would be better.

¢ Amount of pages tested per website: As mentioned pre-
viously, ideally all pages of a site should be checked, but
this exhaustive testing is impossible.

* Use of caching: Cache could have masked some tempo-
ral blocking of some resources.

* One time measurement: As this is a short experiment,
it only captures a one time measurement over a short
period of time.

¢ Inconsistent manual verification: Manual verification
was done at different times, with likely some different
ideas as to what constitutes as a block or simply a time-
out, which possibly caused some inconsistencies.

* Selenium issue with switching: Sometimes upon switch-
ing queries the page content would not change. This
resulted in some discarded data points upon manual ver-
ification, these were marked as having network issues as
to not be included in the results.

* Loading pages: Some pages load a small document with
a loading symbol quickly, and then begin loading the
actual content. With the current setup, this does not get
detected, no extra time gets allotted, and the decisions
have to be made on a loading page.

* Viewport: Nothing was compared beyond the fold,
while theoretically a page could block content lower
down.

6.3 Further work

Further work could attempt to improve upon the limitations
listed in the previous section, and could also work on expand-
ing the scope, some options for which include:

 Categorizing the websites and seeing if there are corre-
lations in blocking amounts between categories.

* Exploring whether analyzing more pages of websites
even matters at all.

* Exploring whether other anonymity networks have sim-
ilar blocking characteristics. This could easily be per-
formed for any service provided in HTTP proxy form
with little modification to code.

6.4 Acknowledgements

Special thanks goes to Anant Pingle, Paula Iacoban, Francine
Biazin do Nascimento, and Willemijn Tutuarima, who were
all working on similar projects as the one in this report. Re-
sources were shared, ideas were discussed, and problems
were discussed by all members of this group.

References

[1] N. Thompson, A. Ahmad, and S. Maynard, “Do privacy
concerns determine online information disclosure? the
case of internet addiction,” Information & Computer Se-
curity, 2021.

[2]

[71

[10]

[11]

[12]

[13]

[14]

[15]

O. Berthold, H. Federrath, and S. Kopsell, “Web mixes:
A system for anonymous and unobservable internet ac-
cess,” in Designing privacy enhancing technologies,
pp. 115-129, Springer, 2001.

A. I Standlee, “Under the watchful eye:
Users’perceptions of online privacy and surveil-

lance,” AoIR Selected Papers of Internet Research,
2020.

ANON, “Technischer hintergrund von jap,” Technische
Universitdit Dresden, 2001.

B. Li, E. Erdin, M. H. Gunes, G. Bebis, and T. Shipley,
“An overview of anonymity technology usage,” Com-
puter Communications, vol. 36, no. 12, pp. 1269-1283,
2013.

S. Khattak, D. Fifield, S. Afroz, M. Javed, S. Sundare-
san, V. Paxson, S. J. Murdoch, and D. McCoy, “Do you
see what i see? differential treatment of anonymous
users,” in NDSS Symposium’16, Internet Society, 2016.

R. Singh, R. Nithyanand, S. Afroz, P. Pearce, M. C.
Tschantz, P. Gill, and V. Paxson, “Characterizing the
nature and dynamics of tor exit blocking,” in 26th
{USENIX} Security Symposium ({USENIX} Security
17), pp. 325-341, 2017.

S. Burnett and N. Feamster, “Encore: Lightweight mea-
surement of web censorship with cross-origin requests,”
in Proceedings of the 2015 ACM conference on special
interest group on data communication, pp. 653-667,
2015.

R. Sundara Raman, P. Shenoy, K. Kohls, and R. Ensafi,
“Censored planet: An internet-wide, longitudinal cen-
sorship observatory,” in Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications
Security, pp. 49—66, 2020.

G. Aceto, A. Botta, A. Pescape, N. Feamster, M. F.
Awan, T. Ahmad, and S. Qaisar, “Monitoring internet
censorship with ubica,” in International Workshop on
Traffic Monitoring and Analysis, pp. 143-157, Springer,
2015.

A. A. Niaki, S. Cho, Z. Weinberg, N. P. Hoang, A. Raza-
ghpanah, N. Christin, and P. Gill, “Iclab: a global, lon-
gitudinal internet censorship measurement platform,” in
2020 IEEE Symposium on Security and Privacy (SP),
pp- 135-151, IEEE, 2020.

A. Filasto and J. Appelbaum, “Ooni: Open observatory
of network interference.,” in FOCI, 2012.

A. Sfakianakis, E. Athanasopoulos, and S. Ioannidis,
“Censmon: A web censorship monitor,” in USENIX
Workshop on Free and Open Communication on the In-
ternet (FOCI), p. 2, 2011.

S. Kopsell and U. Hillig, “How to achieve blocking re-
sistance for existing systems enabling anonymous web
surfing,” in Proceedings of the 2004 ACM workshop on
Privacy in the electronic society, pp. 47-58, 2004.

S. kopsell, “Anondienst - design and implementierung,”
Documentation for the anonymity protocol, 2004.

[16] J. GmbH, “Benefits of jondonym.” Retrieved from
https://anonymous-proxy-servers.net/en/benefits.html.

[17]1 i. Tor Project, “Tor project — re-
lay requirements.” Retrieved from
https://community.torproject.org/relay/relays-
requirements/.

[18] Q. Jacquemart, C. Pigout, and G. Urvoy-Keller, “Infer-
ring the deployment of top domains over public clouds
using dns data,” in TMA 2019 - Proceedings of the 3rd
Network Traffic Measurement and Analysis Conference,
pp- 57-64, 2019.

A. Kaizer and M. Gupta, “Characterizing website be-
haviors across logged-in and not-logged-in users,” in
Proceedings of the ACM SIGCOMM Internet Mea-
surement Conference, IMC, vol. 14-16-November-2016,
pp. 111-117, 2016.

A. McDonald, B. VanderSloot, M. Bernhard, W. Scott,
L. Valenta, N. Sullivan, J. Alex Halderman, and R. En-
safi, “403 forbidden: A global view of cdn geoblock-
ing,” in Proceedings of the ACM SIGCOMM Internet
Measurement Conference, IMC, pp. 218-230, 2018.

M. H. Mughees and Z. Qian, “Detecting anti ad-
blockers in the wild,” in Privacy Enhancing Technolo-
gies Symposium (PETS), 2017.

[22] N. Samarasinghe and M. Mannan, “Towards a global
perspective on web tracking,” Computers and Security,
vol. 87, 2019.

S. Van Acker, D. Hausknecht, and A. Sabelfeld, “Data
exfiltration in the face of csp,” in ASIA CCS 2016 - Pro-
ceedings of the 11th ACM Asia Conference on Com-
puter and Communications security, pp. 853-864, 2016.

V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob,
M. Korczynski, and W. Joosen, “Tranco: A research-
oriented top sites ranking hardened against manipula-
tion,” Proceedings 2019 Network and Distributed Sys-
tem Security Symposium, 2019.

[19]

[20]

[21]

[23]

[24]

[25] W. Rweyemamu, T. Lauinger, C. Wilson, W. Robert-
son, and E. Kirda, Getting Under Alexa’s Umbrella:
Infiltration Attacks Against Internet Top Domain Lists,
vol. 11723 LNCS of Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelli-
gence and Lecture Notes in Bioinformatics). Springer

Nature, 2019.

W. Rweyemamu, T. Lauinger, C. Wilson, W. Robertson,
and E. Kirda, Clustering and the Weekend Effect: Rec-
ommendations for the Use of Top Domain Lists in Se-
curity Research, vol. 11419 LNCS of Lecture Notes in
Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformat-
ics). Springer Nature, 2019.

[26]

[27] S. Chandel, Z. Jingji, Y. Yunnan, S. Jingyao, and
Z. Zhipeng, “The golden shield project of china: A
decade later—an in-depth study of the great firewall,”
in 2019 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery (Cy-

berC), pp. 111-119, IEEE Computer Society, 2019.

[28] R. Ensafi, P. Winter, A. Mueen, and J. R. Crandall,
“Analyzing the great firewall of china over space and
time,” Proceedings on privacy enhancing technologies,
vol. 2015, no. 1, pp. 61-76, 2015.

[29] D. Normile, “Science suffers as china plugs holes in
great firewall,” 2017.

[30] J. GmbH, “Jondonym mix operators.” Retrieved from
https://anonymous-proxy-servers.net/en/operators.html.

[31] Oracle, “Character javadoc,” Jun 2020. Retrieved from

https://docs.oracle.com/javase/7/docs/api/java/lang/CharacteMbt]miz S. Foundation

[32] S. Vanden Broucke and B. Baesens, Practical Web
scraping for data science. Springer, 2018.

[33] W. Meng, R. Ding, S. P. Chung, S. Han, and W. Lee,
“The price of free: Privacy leakage in personalized mo-
bile in-apps ads.,” in NDSS, 2016.

[34] D. Zeber, S. Bird, C. Oliveira, W. Rudametkin, I. Segall,
F. Wollsén, and M. Lopatka, “The representativeness of
automated web crawls as a surrogate for human brows-
ing,” in The Web Conference 2020 - Proceedings of the
World Wide Web Conference, WWW 2020, pp. 167-178,
2020. Cited By :2.

[35] P. U. W. research group, “Studies using openwpm,” Oct
2020.

[36] Sesamestrong, “Live fingerprinting methods to evade
- issue 239 - berstend/puppeteer-extra,” Jul 2020.
Retrieved from https://github.com/berstend/puppeteer-
extra/issues/239.

[371 A. A. Albasir and K. Naik, “Smow: An energy-
bandwidth aware web browsing technique for smart-
phones,” IEEE Access, vol. 2, pp. 1427-1441, 2014.

[38] J. M. Pearce, “Energy conservation with open source ad
blockers,” Technologies, vol. 8, no. 2, p. 18, 2020.

[39]1 M. Contributors, “Http caching - mozilla
mdn web docs,”’ May 2021. Re-
trieved from https://developer.mozilla.org/en-

US/docs/Web/HTTP/Caching.

[40] O. Berthold, H. Federrath, and S. Kopsell, “Web mixes:
A system for anonymous and unobservable internet ac-
cess,” in Designing privacy enhancing technologies,
pp- 115-129, Springer, 2001.

[41] M. Contributors, “The image embed el-
ement - html: Mdn,” Apr 2021. Re-
trieved from https://developer.mozilla.org/en-
US/docs/Web/HTML/Element/img.

[42] J. GmbH, “Jondonym - operational agree-
ment.” Retrieved from https://anonymous-proxy-
servers.net/en/downloads/01Operational Agreement.pdf.

[43] T. Karr, “Net neutrality violations: A brief history,” Jan
2018.

[44] M. C. Tschantz, S. Afroz, S. Sajid, S. A. Qazi, M. Javed,
and V. Paxson, “A bestiary of blocking: The motiva-
tions and modes behind website unavailability,” in 8th
{USENIX} Workshop on Free and Open Communica-
tions on the Internet ({FOCI} 18), 2018.

[45] M. Trimble, “Geoblocking, technical standards and the
law,” Scholarly Works, 2016.

[46] J. GmbH, “Jondonym - state of the anonymization
services.” Retrieved from https://anonymous-proxy-
servers.net/en/status/index.php.

[47] J. GmbH, “Infoservice - cascades.” Retrieved from
http://infoservice.inf.tu-dresden.de/cascades.

[48] RIPE-NCC, “Ripe database query.” Retrieved from
https://apps.db.ripe.net/db-web-ui/query.

“Gnu general public license.”

[50] J. GmbH, “Jondonym - steps to become a mix op-
erator.” Retrieved from https://anonymous-proxy-
servers.net/wiki/index.php/Become_a_Mix_Operator.

[51] J. GmbH, “Standard terms and conditions for billing the
jondonym service.” Retrieved from https://anonymous-
proxy-servers.net/en/downloads/TaC.pdf.

[52] VodafoneZiggo, “Algemene
den ziggo,” Dec 2019.
https://www.ziggo.nl/voorwaarden.

voorwaar-
Retrieved from

[53] J. Kraan, “Vergelijkingssite mag geen gegevens van
ryanair verzamelen,” Jan 2015. Retrieved from
https://www.nu.nl/internet/3973127/.

[54] “A standard for robot exclusion,” Jun 1994. Retrieved
from http://www.robotstxt.org/orig.html.

[55] M. Koster, G. Illyes, H. Zeller, and L. Harvey, “Robots
Exclusion Protocol,” Internet-Draft draft-koster-rep-04,
Internet Engineering Task Force, Dec. 2020. Work in
Progress.

[56] J. GmbH, “Support for jondonym.” Retrieved from
https://anonymous-proxy-servers.net/en/support.html.

[571 J. GmbH, Aug 2015. Retrieved from

http://web.archive.org/web/20150801175022/http://jondonym.net/.

A Preliminary speed test

Preliminary speed tests done manually, with likely biases due to caching, even though “disable cache” was checked and page
was refreshed with ctrl+f5 if visited earlier. Time taken from FireFox network timings, last item to load on a page. JAP was

set to use a two hop mix, going through SpeedPartner in Germany and exiting through Cyrax in France. There are major biases
and likely errors in this data.

Page Regular (s) | Regular + Adblock (s) | JAP (s) | JAP + Adblock (s)
google.com 2.01 0.89 34.98 18.73
ipchicken.com 6.29 1.10 31.86 4.19
youtube.com (cookie consent page) 3.64 3.86 16.33 18.11
tmall.com (excl rotating banners) 19.02 15.29 124 84
yahoo.com (cookie consent page) 0.69 0.88 4.11 3.70
en.wikipedia.org 0.94 1.10 19.05 14.39

Table 1: Preliminary speed test

B Database design

Webpages
ID URL Domain
Int VarChar 256 VarChar 128
Auto increment

1

Scrapes
Scrape 1D Webpage ID | Timestamp Config Title Content Visible Text | Screenshot Time Taken
Int) - .)
Auto_increment Int Timestamp Int VarChar 256 | MediumText | MediumText | VarChar 128 Int
FK b= "_""’“' Title, or the type | HTML source, or The visibl Screenshot Query time in ms, -1 for timeout,
(Webpages ID) vz llﬁnt_:::::l:';\('nt of error 'ERRORED" @ visible text File Nama -2 for network issues
[
Results
Scrape_ID A Scrape_ID B Verdict Block Types Compared Image
Int Int VarChar 128 VarChar 2048 VarChar 128
FK FK Final verdict/confirmed Comma separated list of Mull, or filename of compared
(Scrapes Scrape ID) | (Scrapes Scrape D) blocktype block types detected imge f ald compartson usad
Manual
Scrape_ID_A Scrape_ID B Verdict Timestamp
Int Int VarChar 128 Timestamp
FK FK Final verdict/confirmed Comma separated list of
(Scrapes Scrape_ID) | (Scrapes Scrape ID) blocktype block types detected

-

Figure 2: Crawling database schema

C Block flag final verdict flow

Verdict:
NETWORK _ISSUES

Verdict: Yes
BLOCE_PAGE

Verdict: Y

TIMEOUT o5

Verdict:

BLOCK _PAGE EMPTY

Verdict:
UNKNOWN DIFFERENT PAGE

Flag:
Network
Issues?

Flag:
AdBlocker
block?

Verdict:

Yes—){

BLOCK PAGE ADBLOCK

Mo
Flag: i Verdict:
Captcha? s CAPTCHA
Comparison
Flags Mo
Flag: B
Flag: Verdict:
Yes Errored Yes
5
Errored? Conmection ERRORED_CONNECTION
Mo
No
Flag: ict:
Errored Yes—» Verdict:

ERRORED NSS

NES

Flag:
Block Page?

Flag:
Screenshot?

Flag:
Errored
DNS

Verdict:

—>
Yes ERRORED DNS

Flag:
Timeout?

<
&

Mo

Verdict:
TIMEOUT
Flag:
Flag:
Yes Block Page
Screenshot? Empty? No
P 2
Verdict:
ERRORED
No
Verdict:

NOT BLOCKED

Count(Dom Diff,
Content Len Diff,

Flag: —
Yes—» Verdict:

Impressively
Identical?

Sereenshot)

=1

IMPRESSIVELY IDENTICAL

Figure 3: Final verdict determination flow

D Block flags
D.1 Flag: SCREENSHOT DIFFERENCE

Perhaps the most important check is the one that compares how the page looks. The scraper takes a screenshot of everything
that is visible when the page has loaded, this step compares these screenshots between the crawl with and without JAP. This
comparison is done using the JImageHash? library created by Kilian Brachtendorf. The screenshots of the control and the
experiment get hashed using the same 64-bit perceptual hashing hashing algorithm, and the hashes then get compared. Visually
similar images get hashes which differ less from each other than non-similar images. When the normalized hamming distance
of the hashes is over a threshold, the comparison gets marked as having a SCREENSHOT_DIFFERENCE flag. For reference, a
completely identical web page with a big banner picture swapped out will have a normalized hamming distance of over 0.5.
Web pages which differ by a small banner on the top being present or missing will have a normalized hamming distance in the
0.2-0.4 region.

D.2 Flag: CONTENT_LENGTH_DIFFERENCE
A simple check to verify and check if a page is not completely different. This flag compares the length of the entire HTML
document of the pages through the following formula, where a is the length of one document, and b is the length of another:
la — |
max(a, b)
This flag gets set rather often, as websites often include different amounts of hidden HTML items and differently obfuscated or
compressed scripts, or simply due to rotating content for different countries or visitors.

D.3 Flag: DOM_DIFFERENCE

A simple check to see how similar the DOM structure of pages is. The HTML saved is parsed using JSOUP 2!, the occurrences
of each tag are counted, and compared. The difference between the different tags are added up and divided by the total amount
of tags, and the flag is set when a threshold is passed. This flag gets set rather quickly, even with visually identical pages, and
is therefore always used in conjunction with other flags.

D.4 Flag: BLOCK PAGE

This scans the text of the two scrapes for different terms which can often be found on blocking pages. This flag gets raised if
the experiment has one or more extra occurrences of a term more than the control. Any time a block page was found while
browsing normally or during manual verification, as many distinct words or numbers were added to the terms as possible. The
current selection of terms can be found in the source code in the BlockKeyWord enum.

D.5 Flag: BLOCK_PAGE_EMPTY

This flag is raised if the pages did not time out, but the experiment result was significantly shorter in length and domain structure,
to the point where it is likely a next to completely blank page. This was added to flag websites which serve an empty page
instead of a page with words explaining why they do not get the regular web page. This flag can, quite often, provide false
positives due to loading pages which set the document readyState to complete before loading the actual content of the page.
These false positives are filtered out manually, but some might be misidentified even by humans.

D.6 Flag: CAPTCHA

This flags when the experiment has a CAPTCHA on the page, while the control does not. This is done by scanning through the
document parsed with JSOUP and checking for known CAPTCHA patterns. Further flags exist for detecting CAPTCHAS on
the control instead of the experiment, or on both, which do not classify as blocks.

D.7 Flag: ERRORED

There are a few different ERRORED flags, which flag when the scrape raises different types of errors. This includes flags like
ERRORED_DNS which flags in case the experiment results in a DNS error, and ERRORED_CONNECTION which flags in case no
connection could be made, which is usually if a websites revokes all traffic of the IP. These are all considered to be blocking.

D.8 Flag: TIMEOUT

Set when loading the page took so long that it went over the maximum allotted time of 120 seconds.

D.9 Flag: NETWORK_ISSUES

Set on sraped data that was identified to have been performed during prolonged connectivity issues. See section 3.8 for more
details on how these are recognised.

Dhttps://github.com/KilianB/JTmageHash
'https://jsoup.org/

D.10 Flag: IMPRESSIVELY INDENTICAL

This flag and final verdict is a simple extra category for results that would normally get a final verdict of not being blocked.
It only gets set if the screenshots are visually indistinguishable, or if the screenshots have a normalized hamming distance of
less than 0.001 with 99.9% similar HTML and text length. This category is purely used to avoid manually checking the most

obviously not-blocked web pages.

E Domains treated differently

Domain(s) Reason Treatment | Used
bet365.com Crashes selenium with an infinite | Blacklisted No
JavaScript loop while loading.
| ikea.com T T T T ¢ Was incredibly unstable. Sometimes timed | Blacklisted | No |
out in regular browser without ANON.
| geeksforgeeks.org, tencent.com | Specifically wants https://www. at the start | Blacklisted | No |
or does not work.
| myworkdayjobs.com, twimg.com, cloudfront.net, bbcol- | Need some specific subdomain to work, do | Blacklisted | No |
lab.com, banvenez.com, akamaized.net, 9384.com not respond to requests on the domain di-
rectly at all.
amazonaws.com skype.com " 7	Blocks selenium requests.	Blacklisted	No
go.com royalbank.com addthis.com cambridge.org =~	. Requires http instead of https	http	Yes
thepiratebay.org ~ T T T 77	Dutch ISPs have to biock the PirateBay ~	Blacklisted	No
larozanet T T T T T T T Redirects to port 2053, which is not sup-	Blacklisted	No	
ported by ANON

Table 2: Domains treated differently

	Introduction
	AN.ON

	Methodology
	Popular websites
	Domain Filters

	Scraping and Processing
	Library
	Cookies
	Rates of querying
	Practical page load speed limitation
	Caching
	Caching on ANON
	Lazy-Loading

	Pages and functionality to test
	Compared against
	Types of blocks
	Recognising blocks
	Limits

	Avoiding biases
	Availability/timing/outages
	Net bias
	Country blocking/GDPR
	Bandwidth
	Software versions

	Results
	Cascade: Dresden
	Cascade: SpeedPartner-Cyrax
	ANON Combined
	Slow control
	Exceptions

	Responsible Research
	Reproducibility
	Licensing

	Congestion
	Reputation
	Legality
	Robot exclusion protocol

	Conclusions and Future Work
	AN.ON Defunct
	Limitations
	Further work
	Acknowledgements

	Preliminary speed test
	Database design
	Block flag final verdict flow
	Block flags
	Flag: SCREENSHOT_DIFFERENCE
	Flag: CONTENT_LENGTH_DIFFERENCE
	Flag: DOM_DIFFERENCE
	Flag: BLOCK_PAGE
	Flag: BLOCK_PAGE_EMPTY
	Flag: CAPTCHA
	Flag: ERRORED
	Flag: TIMEOUT
	Flag: NETWORK_ISSUES
	Flag: IMPRESSIVELY_INDENTICAL

	Domains treated differently

