
Delft Center for Systems and Control

Deep Learning for Pixelwise
Classification of Hyperspectral
Images
A generalizing model for a fixed scene subject to tempo-
rally changing weather, lighting and seasonal conditions

I.A.F. Snuverink

M
as

te
ro

fS
cie

nc
e

Th
es

is

Deep Learning for Pixelwise
Classification of Hyperspectral

Images
A generalizing model for a fixed scene subject to temporally

changing weather, lighting and seasonal conditions

Master of Science Thesis

For the degree of Master of Science in Systems and Control at Delft
University of Technology

I.A.F. Snuverink

November 23, 2017

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

The work in this thesis was supported by TNO. Their cooperation is hereby gratefully ac-
knowledged

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Abstract

In hyperspectral (HS) imaging, for every pixel a spectrum of wavelengths is captured. These
spectra represent material properties, i.e. the spectral signatures. So, classification of HS
imagery is based on material properties. This thesis describes a framework to perform pixel-
wise classification of HS images of a fixed scene subject to varying ambient conditions. TNO
has recorded HS images over the course of one year, every hour between sunrise and sunset.
Therefore, this data set is subject to a range of lighting, weather and seasonal conditions,
degrading the recorded data. Traditionally, atmospheric models are used to correct for these
effects, recovering spectral information. In this work an Fully Convolutional Network (FCN) is
trained to perform the segmentation task which also learns to correct for ambient conditions,
eliminating the need of implementing an atmospheric model or applying image normalization.
A single FCN (U-Net) is implemented to solve a five-class segmentation problem, distin-
guishing broad leaf trees, grass, sand, asphalt and artificial grass. To start training a neural
network, the training data set requires a corresponding ground truth. A sparsely annotated
mask is designed which fits images covering the entire recording period. In single-scene seg-
mentation, annotating using a sparse mask is a quick method which allows for moving object
borders. Furthermore, it avoids inclusion of mixed pixels. In order to reduce computational
load, the training data set is formed by many small patches taken from the original HS im-
ages. Consequently, the network is trained with local spectral-spatial information. Training
the standard U-Net proves to be limited to training data sets under relatively constant ambi-
ent conditions. In order to further enhance generalization over seasons, the network weights
are rearranged so that a similar number of weights is maintained. This network is essential
for training a complex training data set, as it is able to extract more informative features.
The standard U-Net trained with a simple training data set (i.e. relatively constant ambient
conditions) achieves an accuracy A > 94% for both sunny and rainy test images irrespective
of time of the day. However, this model is valid for a limited period of time. The customized
U-Net trained with a complex training data set (i.e. highly varying ambient conditions) yields
segmentations with an accuracy ranging between 86 and 93%. This model is valid for a longer
period of time, covering multiple seasons. So the experiments show that there is a trade-off
between segmentation accuracy and duration of model validity, which is controlled by network
weight arrangement.

Master of Science Thesis I.A.F. Snuverink

ii Abstract

I.A.F. Snuverink Master of Science Thesis

Table of Contents

Abstract i

Preface xiii

1 Introduction 1
1-1 Problem Statement . 2
1-2 Research Approach . 3
1-3 Outline . 4

2 Background and Related Work 5
2-1 Introduction to Artificial Neural Networks . 5

2-1-1 Neuron Model . 6
2-1-2 From Neurons to Neural Networks . 6
2-1-3 Introducing Convolutional Neural Networks 7
2-1-4 Image Classification; A Brief Timeline 7

2-2 Convolutional Neural Networks . 8
2-2-1 Convolutional Layer . 9
2-2-2 Pooling Layer . 9
2-2-3 Overfitting . 10
2-2-4 Backpropagation . 11
2-2-5 Loss Function . 13
2-2-6 Stochastic Gradient Descent Variants 13
2-2-7 Learning Rate Scheduling in Gradient Descent Optimization 14
2-2-8 Hyperparameter Tuning . 15
2-2-9 Patch-wise Training . 16

2-3 Fully Convolutional Networks . 16
2-3-1 Introducing Fully Convolutional Networks 16
2-3-2 Deconvolutional Layer . 18
2-3-3 Types of Fully Convolutional Networks 18
2-3-4 Encoder-Decoder Architecture: U-Net 20

Master of Science Thesis I.A.F. Snuverink

iv Table of Contents

3 Neural Network Setup 23
3-1 Overview of Design Steps . 23
3-2 Data Set . 23
3-3 Model Architecture . 25

3-3-1 Batch Normalization Layer . 25
3-3-2 Convolutional Layer . 26
3-3-3 Softmax Final Activation Function . 27
3-3-4 Feature Map Sizes . 28
3-3-5 Hyperparameters . 28

3-4 Loss Function . 28
3-5 Evaluation Metrics . 31

3-5-1 Overall Accuracy . 31
3-5-2 F-Score . 32

3-6 Data Set Partitioning . 32
3-6-1 Training, Validation and Test Data Sets 32
3-6-2 Annotation Mask . 33
3-6-3 Patch Selection Method . 33
3-6-4 Prepare Data for Network Input . 34

3-7 Network Training and Inference . 35

4 Experimental Setup 37
4-1 Experiments for Optimal Training Data Set Selection 37

4-1-1 Annotation Mask . 38
4-1-2 Patch Selection . 39

4-2 Experiments for Temporally Changing Conditions 40
4-2-1 Interpolating Between Days in One Week 40
4-2-2 Interpolating Between Days in Four Weeks 41
4-2-3 Interpolating Over a Longer Period of Time 41

5 Training Data Set Optimization 43
5-1 Guidelines for Annotation Mask Design . 43

5-1-1 Level of Detail of Small Objects . 44
5-1-2 Level of Detail at Class Borders . 45
5-1-3 Annotation of Distant and Close Examples 45
5-1-4 Additional Class . 46

5-2 Guidelines for Patch Selection . 48
5-2-1 Number of Training Patches . 48
5-2-2 Selection of Training Patches . 49

5-3 Development of Segmentation Map during Training 52

I.A.F. Snuverink Master of Science Thesis

Table of Contents v

6 Experimental Results 55
6-1 Interpolating Between Days in One Week . 55

6-1-1 A Single Week in June . 55
6-1-2 A Single Week in July . 59
6-1-3 Remaining results . 60

6-2 Interpolating Between Days in Four Weeks . 61
6-2-1 May-June . 61
6-2-2 July-August . 62

6-3 Interpolation Over a Longer Period of Time . 62
6-3-1 Multiple Weather Type Training . 62
6-3-2 Multiple Season Training . 63

7 Conclusions and Recommendations 67

A Annotation Mask 69

B Python Code 71
B-1 U-Net Architecture . 71
B-2 Loss Function . 73
B-3 Accuracy Metrics . 73
B-4 Patch lists . 74

C Experiment Details 77
C-1 Experiments Train Set Optimization . 77

C-1-1 Number of training patches . 77
C-1-2 Oversampling . 77
C-1-3 Undersampling . 78
C-1-4 Combined Over- and Undersampling . 78

C-2 Experiments for temporally changing conditions 79
C-2-1 Interpolation over a week . 79
C-2-2 Interpolation over four weeks . 80
C-2-3 Interpolation over a longer period of time 81

D Experimental Results Train Set Optimisation 83
D-1 Oversampling . 83
D-2 Undersampling . 85

E Experimental Results Temporally Changing Conditions 87
E-1 Interpolating between one week in April-May . 87
E-2 Interpolating between one week in June . 88
E-3 Interpolating between one week in July . 89
E-4 Interpolating between one week in August . 92
E-5 Interpolating between days in four weeks in May and June 92
E-6 Interpolating between days in four weeks in July and August 92
E-7 Interpolating between days in five months . 97

Master of Science Thesis I.A.F. Snuverink

vi Table of Contents

F Increasing Generalizability 99
F-1 Normalizing Hyperspectral Data . 99

F-1-1 Pixel sum to unity . 99
F-1-2 Z-score normalization for every band . 99

F-2 Customized Architecture . 100
F-2-1 Customized U-Net . 100
F-2-2 Hyperparameters . 101

Bibliography 103

Glossary 107
List of Acronyms . 107

I.A.F. Snuverink Master of Science Thesis

List of Figures

1-1 In hyperspectral (HS) imaging, the (h × w × d) data cube contains information
regarding d spectral bands for each pixel. The data set available for research
contains images of size (1280× 3033× 25). 1

1-2 In the HS data cube, for every pixel a spectral signature is available. [1] 2
1-3 The scene displayed in the TNO data set under sunny and rainy weather conditions.

These are Red-Green-Blue (RGB) images used for visualization only. 3

2-1 An example of a biological neuron. [2]. 6
2-2 A network with two hidden layers. [3]. 7
2-3 Hyperbolic tangent, range [-1, 1] . 8
2-4 The sigmoid function, range [0,1]. 8
2-5 The activation threshold at zero. 8
2-6 Convolution of image I with kernelK and stride 1, the weights in the kernel are the

parameters to be trained. This is an explanatory example with one color channel. [4] 10
2-7 Maxpooling with a (2 × 2) kernel and stride s = 2. Maxpooling layers reduce

spatial dimension the input [2]. 10
2-8 A neural network structure before and after applying dropout. [5] 11
2-9 A simple multilayer network. 12
2-10 Transforming a classification network into a fully convolutional (segmentation)

network shows that classification networks contain information about location. [6] 17
2-11 Feature map of the second layer, showing low level features [7] 18
2-12 Feature map of the third layer, showing more complex features [7] 18
2-13 Schematic representation of pooling, unpooling, convolution and deconvolution [8]. 19
2-14 Image pyramid [9]. 19
2-15 Encoder-decoder [9]. 19
2-16 Spatial pyramid Pooling [9]. 19

Master of Science Thesis I.A.F. Snuverink

viii List of Figures

2-17 Atrous convo- lutions [9]. 19
2-18 The U-Net architecture [10]. 20

3-1 Overview of framework to perform pixelwise classification on HSI data. 24
3-2 U-Net architecture; the skip connection merges two activation maps by an con-

catenating operation. 26
3-3 Exponential Linear Unit function, an illustrative example with α = 0.5. 27
3-4 The rectified Linear Unit function is prone to dying gradients. 27
3-5 Example of a (4× 4) Ground Truth patch yt. 30
3-6 Example of a (4× 4) prediction patch yp. 30
3-7 An example of a masked prediction matrix yp,m. 30
3-8 Method used for generating the test, train and validation set. 32
3-9 Visualization of the annotation mask; every color corresponds to another class.

Zoomed in on the rare artificial grass class. White pixels do not correspond to a
class. 33

3-10 RGB images of the artificial sports field from May to August. 34
3-11 An example of an image with all patch locations in red (RGB image for visualization

purposes only). Patch size is (64 × 80) and number of initial patches per image
np = 1500. 35

4-1 Image from the test data set, recorded on 09-06-2016 at 13 p.m. Note that RGB
images are not used for training, they are used for visualization purposes only. . . 38

5-1 Benchmark annotation mask. 43
5-2 Annotation mask; the small details of the sand class within the red boxes are

removed in order to assess its influence on the final segmentation. 44
5-3 The red box contains detail of sand pixels only, the blue box contains a detail

including grass and sand pixels. 44
5-4 Annotation mask with a lower level of detail near the edge of asphalt in the lower

right corner. 45
5-5 Differences in using a detailed or less detailed annotation mask for training. . . . 45
5-6 Annotation mask without annotations for distant broad leaf trees. 46
5-7 Segmented maps in case of distant trees in annotation mask and in case of no

distant trees in annotation mask. 46
5-8 Annotation mask with an additional pine tree class. 47
5-9 Segmented test image including the pine tree class (blue). F-scores represent pine

trees, broad leaf trees, grass, sand, asphalt and artificial grass respectively. 47
5-10 Distinguishing pines trees from the RGB image visually is not straightforward.

However, the neural network is able to predict pine tree pixels with an F-score of
0.83. 48

5-11 Training and validation accuracy per epoch for a train set containing 10805 patches. 49
5-12 Training and validation accuracy per epoch for a train set containing 16189 patches. 49

5-13 Segmentation of test image (June 9th at 13 p.m.) obtained by a network trained
with a set of 10805 patches. 49

I.A.F. Snuverink Master of Science Thesis

List of Figures ix

5-14 Segmentation of test image (June 9th at 13 p.m.) obtained by a network trained
with a set of 16189 patches. 49

5-15 Segmented map with corresponding evaluation metrics, for a training data set
without balancing and np = 1500. The red box indicates the correct location of
artificial grass. F-scores represent pine trees, broad leaf trees, grass, sand, asphalt
and artificial grass respectively. RGB image for comparison in figure 4-1. 50

5-16 Networks trained with training data sets under sunny weather conditions, for np =
1500 and several values of fo. Test images are subject to both sunny (09-06-2016)
and foggy (03-06-2016) conditions. 51

5-17 Typical segmentation development of an image from the test data set. Segmenta-
tions are generated at several moments during training the network. 54

6-1 A single model yields > 95% accuracy on both sunny (97% accuracy, 0.96 mean
F-score) and rainy (96% accuracy, 0.86 mean F-score) test images. Both test
images are recorded at 13 p.m. 56

6-2 Accuracy and F-score of test images over time (model trained trained with a single
-sunny - weather type in June). 56

6-3 Typical shapes of spectral signatures, mean of annotated pixels per class. 57
6-4 Extrapolation beyond the training data set; generated using U-Net trained on data

from a single week in June (sunny weather conditions). Accuracy ranges between
36 − 97%. Mean F-scores range between 0.29 − 0.96. All values for accuracy A,
F-score per class and mean F-score F̄ in appendix E-2, table E-1. 58

6-5 Mean spectral signatures of annotated pixels for two different masks (image from
07-07-2016 at 15 p.m.). 59

6-6 Networks trained on multiple weather conditions. The original U-Net yields > 70%
accuracy on both sunny (77% accuracy, 0.45 mean F-score) and rainy (70% ac-
curacy, 0.38 mean F-score) test images. The customized U-Net yields > 93%
accuracy on both sunny (94% accuracy, 0.79 mean F-score) and rainy (93% accu-
racy, 0.75 mean F-score) test images. 63

6-7 The customized U-Net is able to generalize over a longer period of time, i.e. April
to August. The segmented test images (all recorded at 13 p.m.) are subject to
multiple weather conditions. Accuracies range between 87 and 93%. Mean F-
scores range between 0.55 and 0.69. All values for accuracy A, F-score per class
and mean F-score F̄ in appendix E-7, table E-2. 65

A-1 RGB image taken in May (01-05) covered by the annotation mask. 69
A-2 RGB image taken in June (05-06) covered by the annotation mask. 70
A-3 RGB image taken in July (06-07) covered by the annotation mask. 70
A-4 RGB image taken in August (14-08) covered by the annotation mask. 70

D-1 Segmented test images; oversampled train sets with several values for np and fo. 84
D-2 Segmented test images; undersampled train sets with several values for np and fu. 86

E-1 Segmentations for a sunny and cloudy test image; obtained with (1) a training data
set comprising sunny images only and (2) a training data set comprising multiple
weather conditions. 88

Master of Science Thesis I.A.F. Snuverink

x List of Figures

E-2 Segmentations for a sunny and cloudy test set image; obtained with (1) a training
data set comprising sunny images only and (2) a training data set comprising
multiple weather conditions. 88

E-3 Segmentations for a sunny and cloudy test image; obtained with (1) a training data
set comprising sunny images only and (2) a training data set comprising multiple
weather conditions. 89

E-4 Segmentations in case annotation mask does not fit artificial grass class (1), seg-
mentations for adapted annotation mask (2). 90

E-5 Accuracy and F-score of test data set images over time (model trained with a single
-sunny- weather type in July). 90

E-6 Extrapolation beyond training data set; generated using a network trained on data
from a single week in July (sunny weather conditions). 91

E-7 Segmented test data set images from August, obtained with two differently trained
networks. 92

E-8 U-Net trained with training data set under sunny weather conditions in May and
June. Test data set images recorded at 06-05-2016, 03-05-2016, 09-06-2016 and
03-06-2016 (top to bottom, left to right). 93

E-9 Accuracy and mean F-score per test data set image for U-Net trained on a test
data set under sunny weather conditions in May and June, scores correspond to
images in figure E-8. 93

E-10 U-Net trained with training data set under multiple weather conditions in May and
June. Test data set images recorded at 06-05-2016, 03-05-2016, 09-06-2016 and
03-06-2016 (top to bottom, left to right). 94

E-11 Accuracy and mean F-score per test data set image for U-Net trained on a training
data set under multiple weather conditions in May and June, scores correspond to
images in figure E-10. 94

E-12 U-Net trained with training data set under sunny weather conditions in July and
August. Test images recorded at 03-07-2016, 05-07-2016, 15-08-2016 and 13-08-
2016 (top to bottom, left to right). 95

E-13 Accuracy and mean F-score per test data set image for U-Net trained on a training
data set under sunny weather conditions in July and August, scores correspond to
images in figure E-12. 95

E-14 U-Net trained with training data set under multiple weather conditions in July and
August. Test data set images recorded at 03-07-2016, 05-07-2016, 15-08-2016
and 13-08-2016 (top to bottom, left to right). 96

E-15 Accuracy and mean F-score per test data set image for U-Net trained on a training
data set under multiple weather conditions in July and August, scores correspond
to images in figure E-14. 96

E-16 Evaluating extrapolative properties. October (accuracy 65%) and December (ac-
curacy 54%) segmented test data set images, yielded with a network trained on
data from April to August. 97

F-1 Segmented test images for networks trained using raw (unnormalized) and normal-
ized HS data. 100

F-2 Customized U-Net architecture. 102

I.A.F. Snuverink Master of Science Thesis

List of Tables

3-1 Feature map (tensor) sizes through the network, the input has size (nb×25×64×
80), with batch size nb and patches of size (25× 64× 80). 29

3-2 Hyperparameter settings . 29
3-3 Example of a confusion matrix, NA refers to pixels without annotations. 31

4-1 HS images for test, training and validation data sets. 37

5-1 Composition of training data set without balancing for np = 1500 (fo = 0, fu = 0) 50

6-1 Mean µ and standard deviation σ for training data sets subject to a single and
multiple weather conditions (experiments for a single week in June). 57

6-2 Mean µ and standard deviation σ for several HS channels of pixels annotated as
artificial grass (image 07-07-2016 at 15 p.m.) for two different annotation masks.
Band 25 for comparison. 60

6-3 Mean µ and standard deviation σ for training data sets from a single week in May
and June (single -sunny - weather type). 60

6-4 Mean µ and standard deviation σ of several HS bands of pixels annotated as
artificial grass. Values generated from training data sets using the initial mask, a
masked adapted to fit images from July and August respectively. 61

C-1 Number of training patches is 10805 (np = 1000, fo = 0, fu = 0) 77
C-2 Number of training patches is 16189 (np = 1500, fo = 0, fu = 0) 77
C-3 Number of training patches is 11735 (fo = 10 and np = 1000) 78
C-4 Number of training patches is 16399 (fo = 70 and np = 1000) 78
C-5 Number of training patches is 17328 (fo = 10 and np = 1500) 78
C-6 Number of training patches is 24410 (fo = 70 and np = 1500) 78
C-7 Number of training patches is 7815 (fu = 0.6 and np = 1000) 78
C-8 Number of training patches is 6880 (fu = 0.8 and np = 1000) 78

Master of Science Thesis I.A.F. Snuverink

xii List of Tables

C-9 Number of training patches is 11840 (fu = 0.6 and np = 1500) 78
C-10 Number of training patches is 10388 (fu = 0.8 and np = 1500) 78
C-11 Combined over- and undersampling; np = 1000, fo = 70 and fu = 0.7. 79
C-12 Combined over- and undersampling; np = 1000, fo = 10 and fu = 0.7. 79
C-13 Interpolating one week in April and May, similar weather conditions. 79
C-14 Interpolating one week April and May, multiple weather conditions. 79
C-15 Interpolating one week June, similar weather conditions. 79
C-16 Interpolating one week June, multiple weather conditions. 79
C-17 Interpolating one week July, similar weather conditions. 80
C-18 Interpolating one week July, multiple weather conditions. 80
C-19 Interpolating one week August, similar weather conditions. 80
C-20 Interpolating one week August, multiple weather conditions. 80
C-21 Interpolating May-June, similar weather conditions. 80
C-22 Interpolating May-June, multiple weather conditions. 80
C-23 Interpolating July-August, similar weather conditions. 81
C-24 Interpolating July-August, multiple weather conditions. 81
C-25 Interpolating April-August, similar weather conditions. 81
C-26 Interpolating April-August, multiple weather conditions. 81

D-1 Accuracy and F-score per experiment for different values of np and fo for a test
image under similar weather conditions compared to the train set. 83

D-2 Accuracy and F-score per experiment for different values of np and fu. 85

E-1 Accuracy A, F-score per class and mean F-score F̄ of images from the test data
set. Evaluation metrics correspond to segmentations in figure 6-4 (left to right,
top to bottom). 89

E-2 Accuracy A, F-score per class and mean F-score F̄ of images from the test data
set. Evaluation metrics correspond to segmentations in figure 6-7 (left to right,
top to bottom). 97

F-1 Redistribution of the trainable weights in U-Net. 101
F-2 Redefined hyperparameters, the remaining parameters have remained the same. . 101

I.A.F. Snuverink Master of Science Thesis

Preface

My graduation process started approximately a year ago when I applied for a project at the
Intelligent Imaging department of TNO. I felt intrigued by the possibilities of artificial neural
networks, therefore I chose a project in which I could develop some experience and knowledge
about the applications of such networks. A whole new world of opened up to me. I would
like to thank everyone from the Intelligent Imaging department for giving me the possibility
to expand my knowledge on convolutional neural networks and image processing. I have felt
welcomed by the team, it was an enriching year for me.

I would like to thank Dr. Klamer Schutte for supervising and supporting my graduation
process. He provided me with many opportunities to learn and ask critical questions, which
have contributed to a successful conclusion of the project. Furthermore, I would like to
thank Laurens Bliek for his help as a daily supervisor from the DCSC team. I appreciate his
participation in our fortnightly discussions and his useful feedback on my work. Finally, I
would like to thank Prof. Dr. Ir. Michel Verhaegen, Dr. Maarten Kruithof and Dr. Nanda
van der Stap for the assistance during the process.

For remarks or questions concerning the research, please contact me via the following e-mail
address: irissnuverink@gmail.com.

Delft, University of Technology I.A.F. Snuverink
November 23, 2017

Master of Science Thesis I.A.F. Snuverink

xiv Preface

I.A.F. Snuverink Master of Science Thesis

“Kop d’r veur!”
— Marlies Snuverink

Chapter 1

Introduction

The Extended Image Sensing Technologies (EXIST) program aims to research technologies
for newly developed Complementary Metal Oxide Semiconductor (CMOS) image sensors.
Those technologies are needed in the next generation of applications in digital lifestyle, food
sorting, security and medical health care. The program is organized and funded by the
European Commission [11]. Pixels in the newly developed sensor will have increased func-
tionality, as number of pixels per chip keeps increasing and sensitivity is extended to infra-red.
TNO focuses at developing technologies in high-end security and medical applications using
hyperspectral (HS) images. This thesis is part of research on security applications.

Figure 1-1: In HS imaging, the (h×w× d) data cube contains information regarding d spectral
bands for each pixel. The data set available for research contains images of size (1280×3033×25).

In HS imaging, a spectrum of wavelengths is captured for every pixel. Regular Red-Green-
Blue (RGB) cameras capture information in three bands in the visual wavelengths only,
whereas HS cameras capture information in a larger number of smaller bands. An HS image
can been considered as a (h× w × d) data cube, in which d is the number of spectral bands
(figure 1-1). The EXIST sensor is still under development. The sensor will capture HS
information in 25 spectral bands, including the infra-red spectrum. TNO has recorded a
data set containing HS images which are converted to simulate the EXIST sensor. Every
image has size (1200 × 3033 × 25). The use of HS data enables distinguishing objects using

Master of Science Thesis I.A.F. Snuverink

2 Introduction

reflectance information, as the data contains reflectance spectra for every pixel (figure 1-
2). Each object has its characteristic spectrum, which is material dependent. This material
dependent spectrum is called the spectral signature. The spectral signatures are used to
classify the pixel content.

Figure 1-2: In the HS data cube, for every pixel a spectral signature is available. [1]

Pixelwise classification of HS images is based on information which is not limited to visual
differentiation, as objects of similar color but different materials can be recognized. For
security applications, it is essential to identify and localize objects within an image in order to
recognize possible threats. Especially, distinguishing between man-made and natural objects
is of great importance. For a computer to automatically recognize and identify content of all
pixels in HS images, an algorithm to perform pixelwise classification is required. Pixelwise
classification is also known as image segmentation or semantic segmentation.

The HS data set was intermittently recorded over the course of a year. The images within
the data set display a fixed scene, showing vegetation, sand, asphalt and artificial grass. For
at least one week in every season, every hour between sunrise and sunset an HS image was
taken. Not only the range of lighting conditions cause segmentation to be challenging task,
as the images are also subject to seasonal change and a range of weather conditions (figure
1-3). Consequently, the spectra of recorded HS data set are affected by atmospheric effects
and illumination conditions. The atmospheric effects are caused by absorption of gases and
water and scattering of molecules [12]. The spectral signatures are degraded by ambient
conditions. HS data analysis traditionally aims at compensating for atmospheric effects and
solar illumination by modeling atmospheric characteristics. Additional to the large internal
variability of the data set, the dimensionality of the HS data is a challenge for segmentation.

1-1 Problem Statement

The goal of this research is to build a framework to perform pixelwise classification on HS
images from the TNO data set, irrespective of recording date. This data set contains images
subject to a wide range of ambient conditions:

1. Illumination Illumination conditions in this scene will vary over a day and throughout
the entire year, affecting the reflectance spectra of all pixels. The goal is to achieve
robustness to illumination variance.

I.A.F. Snuverink Master of Science Thesis

1-2 Research Approach 3

2. Weather Atmospheric effects such as rain, sun, clouds and fog highly affect the re-
flectance spectra, complicating accurate classification.

3. Seasonal appearance Physical characteristics of the objects within the scene change
over the seasons, such as color of grass and size of trees. Seasonal change affects material
properties of vegetation, hence influences the spectral signature.

Figure 1-3: The scene displayed in the TNO data set under sunny and rainy weather conditions.
These are RGB images used for visualization only.

In order to perform segmentation, a ground truth of the HS images is required. Making an
adequate ground truth will be a preparatory, but essential step in HS image segmentation.

1-2 Research Approach

Large differences between the images from the data set are evident. Initial tests using tra-
ditional machine learning mechanisms, such as Support Vector Machines show that they are
unable to cope with such a variability within the data set. Deep learning techniques are
proposed to perform the segmentation task, as neural networks have proven to be an effec-
tive mechanism in complex image classification and segmentation problems [13] [6]. Neural
network are known for its generalizing abilities. From training a network using pairs of unla-
beled and labeled data, the network will eventually learn how to predict outcomes for new,
unlabeled data.

Segmentation networks learn characteristic features which describe the classes present in the
data, those features are abstract and not necessarily interpretable for human beings. The
features will be based on both spectral and spatial data. A model should map spectral
information of each spatial pixel to a single class. This mapping is not based on the spectral
information only, it takes into account neighboring pixels as well. Deep learning techniques,
such as Convolutional Neural Networks, are a promising method to perform segmentation on
a HS data set exposed to varying ambient conditions. Classification is not based on spectral
signatures only, spatial information about neighboring pixels is also incorporated to enhance
performance.

This work will describe the implementation of a Fully Convolutional Neural network to per-
form pixelwise classification of HS images. Furthermore, a framework to form the required
training data set using many small patches taken from the original images is proposed. This
framework will also include a method to design a sparsely annotated ground truth for this
data set. The neural network will predict pixel labels accurately, irrespective of the illumina-
tion and weather conditions of the image to be segmented. Furthermore the network should

Master of Science Thesis I.A.F. Snuverink

4 Introduction

be able to cope with changes in seasonal appearance of the scene. The goal of the thesis is
expressed in two research questions and additional sub questions:

1. What is the best method for ground truth design and sample (pixel) selection to create
a training data set which is representative of the HS images and yields high segmentation
accuracy?

1. Is it possible to segment five classes (broad leaf tree, grass, sand, asphalt and artificial
grass) using a single network?

2. Does a sparse mask as ground truth for multiple days yield accurate segmentation
results?

3. In what way does the ground truth (e.g. level of detail) affect segmentation results?
4. Can patch-wise training be used in order to deal with the large HS image size?
5. Does balancing of classes in the training data set influence segmentation accuracy?

2. Can one use a convolutional neural network for HS image segmentation for a fixed scene
with varying lighting, weather and seasonal conditions without correcting atmospheric
effects in the recorded HS data?

1. What accuracy is achieved in training a network with simple training data set; data
recorded over the course of one week under similar weather conditions. What are the
generalizing properties of such a network, is it representative for data recorded beyond
the training data set or under different weather conditions?

2. Does training a network with a more complex training data set (data recorded over the
course of a couple of weeks under multiple weather conditions) increase generalizing
properties regarding weather conditions?

3. Does training a network with a more complex training data set (data recorded over
the course of a couple of weeks under similar weather conditions) increase generalizing
properties regarding seasonal change?

1-3 Outline

Chapter 2 will focus on the working principle of neural networks and will discuss neural
networks for image processing. Chapter 3 will explain the neural network setup used in
the experiments associated with this thesis. Furthermore 4 will discuss what experiments
were carried out in order to answer the research questions. In chapter 5 the results of the
experiments belonging to the first research question are presented. It is aimed at giving general
guidelines for composing a training data set. Chapter 6 shows the results concerning the
second research question, it discusses image segmentation under varying ambient conditions.
Consequently, the research questions are answered in chapter 7.

For readability, please read this thesis in a color version.

I.A.F. Snuverink Master of Science Thesis

Chapter 2

Background and Related Work

This chapter is aimed at introducing the topic of fully convolutional neural networks, networks
devoted to the pixelwise classification of images. Firstly, a brief introduction to artificial
neural networks is given in section 2-1. Subsequently, the Convolutional Neural Network
(CNN) will be discussed more thoroughly in section 2-2. This type of networks are designed for
image processing specifically. Finally, the Fully Convolutional Network (FCN) is introduced
in section 2-3.

2-1 Introduction to Artificial Neural Networks

Artificial neural networks (or neural networks) are inspired by the biological neural system.
Neural networks consist of an input layer, hidden layers and an output layer. Cybenko [14]
proved that in a neural network a single hidden layer containing a finite number of neurons
is capable of approximating any continuous function to any desired precision.

Cybenkos Theorem Let σ be any continuous discriminatory function (e.g. sigmoidal). Then
finite sums of the form:

G(x) =
N∑
j=1

αjσ(yTj x+ θj) (2-1)

are dense in C(In). In other words, given any f ∈ C(In) and ε > 0, there is a sum G(x), of
the above form, for which:

|G(x)− f(x)| < ε ∀x ∈ In (2-2)

Therefore given a desired function f(x), which is to be computed with certain accuracy ε > 0,
Cybenkos theorem states that when using enough hidden neurons, there is always a network
with output G(x) which satisfies |G(x)− f(x)| < ε.

Master of Science Thesis I.A.F. Snuverink

6 Background and Related Work

2-1-1 Neuron Model

In order to model a neural network, a mathematical neuron model is required. Originally the
development of neural networks have been based on works that try to model the biological
neural system. Neurons are the basic computational units in the brain. A neuron input
is received from their dendrites, the produced output is sent from their axons (figure 2-
1). A synapse is the transition between the axon of one neuron and dendrite of another.

Figure 2-1: An example of a biological neuron. [2].

The synaptic strength determines the level of interaction between them. In the mathematical
model these synaptic strengths are learnable, modeled with the so-called weights wi. Dendrites
transport the input signals xi to the cell body, here the inputs are summed. When the total
sum reaches a certain threshold, the neuron is able to produce an output using its axons.
The output production rate of a neuron is modeled by an non-linear activation function
f(x). The activation of a neuron is modeled as shown in equation 2-3. This equation models
decision-making, by varying the weights and activation function the output is affected.

ai = f(Σi(wixi) + bi) (2-3)

Here ai represents activation of a neuron, f(x) is the non-linear activation function, wi is the
synaptic strength weight, xi is the neuron input and b is the neuron bias. Neural networks were
originally modeled using sigmoidal and hyperbolic tangent functions, but Rectified Linear
Unit (ReLU) functions have proven to be computationally more efficient.

2-1-2 From Neurons to Neural Networks

Neural networks are modeled as a structure of neurons connected in layers. The outputs of
neurons of a certain layer become input of neurons of the next layer, these networks are called
feed-forward neural networks. The input is always passed forward, there are no loops present.
Therefore, neurons within a layer cannot be connected. Layers between the input and output
layer are called hidden layers (figure 2-2). In the first layer simple decisions are made based on
the input. However, already in the second layer complex decision are made based on decisions
made in the first layer. Going deeper into the network more complex and abstract decisions
appear. The word deep in the term deep neural networks refers to a network having multiple
hidden layers.
In order to train the network to learn a general rule from the given examples (or training
data), the weights wi from equation 2-3 need to be adjusted. This process of adjusting and
updating the weights for training data is called backpropagation. In section 2-2-4 the working
principle of this process in explained.

I.A.F. Snuverink Master of Science Thesis

2-1 Introduction to Artificial Neural Networks 7

Figure 2-2: A network with two hidden layers. [3].

2-1-3 Introducing Convolutional Neural Networks

A CNN is a type of neural network which is able of extracting information out of images;
data containing spatial information. This thesis will focus on the use of CNNs to solve the
image segmentation problem. The image size of the recorded hyperspectral (HS) data is
1280× 3033× 25. When using a neural network, a single fully connected neuron in the first
hidden layer would have to optimize 1280 ·3033 ·25 = 9.7 ·107 weights. The full connectivity of
each neuron results in a vast amount of weights to be optimized and will increase the chance
of overfitting the training data.

A CNN constrains the image input by its architecture, as will be explained in section 2-2. The
neurons in CNNs are arranged in three dimensions; width w, height h and depth d. Depth
usually refers to the depth of the input; in case of the first network layer for HS images it
is the number of spectral bands. Deeper into the network it refers to the number of feature
maps of the convolutional layer input. Neurons in a layer will only be connected to a small
region of the neurons in the layer before, instead of a fully connectivity to all neurons. This
property decreases the number of weights compared to a regular neural network.

2-1-4 Image Classification; A Brief Timeline

The goal of this thesis is to identify predefined classes in every pixel of a spectral image of a
fixed scene. For segmentation, an image is fed into a neural network after which the network
outputs a segmented map consisting of coherent class regions. First Image classification is
explored, which is a more mature field of study. Classification aims labeling entire images,
rather than labeling pixels within an image.

LeCun et al. successfully applied CNNs in 1998 [15], it was the first step towards developing
CNNs for complex tasks. Krizhevsky et al. improved the CNN architecture in 2012, it caused
CNNs to regain attention. Consequently, deep learning for computer vision tasks has gained
interest and popularity.

LeNet The first successful neural network that was build is LeNet-5 [15]. This network was
capable of reading handwritten zip codes and digits.

AlexNet The architecture of AlexNet [13] is relatively simple. It is very similar to LeNet, but
deeper and bigger. The network was trained on data from the ImageNet database in order to

Master of Science Thesis I.A.F. Snuverink

8 Background and Related Work

participate in the 2012 ImageNet Large-Scale Visual Recognition Challenge (ILSVRC), which
they won by a large margin. The non-linear activation functions f(x) that were used are ReLU
instead of the hyperbolic tangent or sigmoid function (equations 2-4 and 2-5 respectively).

f(x) = tanh(x) (2-4)

f(x) = 1
1 + e−x

(2-5)

Using ReLU significantly speeds up the convergence of the stochastic gradient descent, as it
does not require computation of for example exponentials. The ReLU nonlinear activation
function is given in equation 2-6 and displayed in figure 2-5.

f(x) = max(0, x) (2-6)

Furthermore data augmentation techniques were used and drop-out layers were introduced to
reduce overfitting of the data.

Figure 2-3: Hyperbolic
tangent, range [-1, 1]

Figure 2-4: The sigmoid
function, range [0,1].

Figure 2-5: The activa-
tion threshold at zero.

GoogLeNet Google presented the inception module in 2015, introducing a complex network
called GoogLeNet [16]. This network won the ILSVRC in 2014 and used a new approach to
designing CNN architectures.
VGGNet This network is build by the Visual Geometry Group of the University of Oxford
[17]. The network achieved the second place in the ILSVRC 2014 challenge. Simonyan and
Zisserman showed the importance of choosing a suitable depth of a network.
Microsoft ResNet The ILSVRC 2015 was won by Microsoft Research Asia, participating
with their ResNet architecture [18]. They achieved an error rate of 3.6%, performing better
than humans, as human performance have an error rate around 5−10%. The network contains
152 layers.
Image classification was the first step toward more complex tasks, such as image segmentation
and instance-aware image segmentation. Section 2-3 describes Fully Convolutional Networks
which are used to perform image segmentation.

2-2 Convolutional Neural Networks

A CNN is a type of deep neural network. As already mentioned in section 2-1-2, neural
networks consist of many artificial neurons, which are the core of the algorithm intelligence.

I.A.F. Snuverink Master of Science Thesis

2-2 Convolutional Neural Networks 9

The development of CNNs has grown rapidly over the past five years. Companies such as
Facebook use them for photo tagging algorithms and Google applies it in image search engines.

2-2-1 Convolutional Layer

Images are represented by matrices containing color information in the form of Red-Green-
Blue (RGB) color codes. An image therefore has size h × w × d, where color channel depth
d = 3. Convolutional layers are essential layers in CNNs, producing feature maps from input
images or lower level feature maps.

Convolutional layers includes a kernel (or filter). Let K be a kernel with x rows, y columns
and depth d. Then the kernel with size (Kx ×Ky × d) works on a receptive field (Kx ×Ky)
on the image. The kernel height and width are smaller than the input image height and
width. The kernel slides over (convolves with) the image, producing an feature map (figure
2-6). Convolution is the sum of the element-wise multiplication of the kernel and the original
image. Note that the depth d of the kernel is equal to the depth of its input. Therefore, it
varies within the network. Usually the depth of an image is the number of color channels,
the three RGB channels. However, in HS images the depth is the number of spectral bands.

The kernel stride is a free parameter in convolutional layers which has to be defined before
training. The stride is the number of pixels by which the kernel shifts at a time. A drawback
of using convolutional layers is that it decreases the output map size. A larger stride will
result in a smaller sized output. Equations 2-7 show the relationship between output size O
and input size of an image I after convolution with stride s and kernel K. Furthermore, the
feature map size decreases as the number of convolutional layers increases. Row output size
Ox and column output size Oy of convolutional layers are determined as follows:

Ox = Ix −Kx

s
+ 1,

Oy = Iy −Ky

s
+ 1

(2-7)

As an example, an image of size (32× 32× 3), a kernel of size (3× 3× 3) and a stride s = 1
result in an activation map of size (30 × 30 × 1). Using additional n kernels, the activation
map becomes (30×30×n). So, additional kernels will increase the depth of the convolutional
layer output.

After each convolutional layer, the ReLU non-linearity is introduced. This step is an ele-
mentwise operation, so every pixel from the activation map will be exposed to this nonlinear
operation. Every negative value will be replaced with zero (figure 2-5). After this nonlinear
layer, the network proceeds with another layer, for example a new convolutional layer or a
pooling layer.

2-2-2 Pooling Layer

Pooling layers are also known as downsampling layers. A commonly used pooling method
is maxpooling (figure 2-7). The downsampled output is produced by taking the maximum
input value within the kernel, resulting in an output of decreased size. There are several

Master of Science Thesis I.A.F. Snuverink

10 Background and Related Work

Figure 2-6: Convolution of image I with kernel K and stride 1, the weights in the kernel are the
parameters to be trained. This is an explanatory example with one color channel. [4]

other methods which are commonly used in neural networks, such as average pooling and
L2-norm pooling. A pooling layer has a kernel and a stride of similar length. Two important
arguments of implementing pooling layers are decreasing the number of weights and decreasing
the chance of overfitting the training data.

Figure 2-7: Maxpooling with a (2×2) kernel and stride s = 2. Maxpooling layers reduce spatial
dimension the input [2].

2-2-3 Overfitting

Overfitting is a problem that arises in neural network training. When a model is overfitted
to the training data, it loses its capability of generalization. The model has learned the
training data, including noise, in such a great extend that it has failed to capture underlying
general information. CNNs have a large number of weights to be trained, therefore overfitting
can occur due to training too few training examples. Dropout layers are a tool to prevent
overfitting (figure 2-8). In dropout, nodes and its connections are randomly dropped from
the network. Dropout constrains the network adaptation to the training set, consequently it
prevents that the weights are not too much fitted this data. The difference in performance
between training data and validation data will decrease. Dropout layers are used during
training only, not during validation or testing.

I.A.F. Snuverink Master of Science Thesis

2-2 Convolutional Neural Networks 11

Figure 2-8: A neural network structure before and after applying dropout. [5]

2-2-4 Backpropagation

The CNN requires to adjust and update its kernel parameters, or weights, for the given
training data. Backpropagation is an efficient method for computing gradients required to
perform gradient-based optimization of the weights in neural networks [19]. The specific
combination of weights which minimize the loss function (or error function) is the solution
of the optimization problem. The method requires the computation of the gradient of the
error function at each iteration, therefore the loss function should be both continue and
differentiable at all iteration steps.
The initial weights of an untrained CNN are randomly chosen. Consequently before training,
the neural network cannot make meaningful predictions for network input, as there is no
relation between an image and the its labeled output yet. By exposing the network to a
training data set, comprising images and their labeled outputs with correct classes, the weights
are adjusted. Training is the adaptation of the weights in such way that the difference between
desired output and network output is minimized, which means that the network is trained to
find the right features required for classification. There are two computational phases in a
neural network, the forward pass and the backward pass in which the weights are adapted.
Forward pass An image is fed into a network. The first network layer outputs an activation
map. Then, this activation map is the input to the first hidden layer, which computes another
activation map. Using the values of this activation map as inputs to the second hidden layer,
again another activation map is computed. Carrying out this process for every layer will
eventually yield the network output.
Backward pass In this phase the weights are updated by backpropagation. One epoch
of backpropagation consists of multiple parts, usually multiple epochs are carried out for a
training image:
1. Loss function In forward pass, the inputs and desired outputs are presented. A pre-
defined loss function L is used to minimize the difference between the input and desired
output. The goal is to adjust the weights so that the loss function value decreases, this is
achieved by calculating the derivative with respect to the weights of the loss function.
2. Backward pass During the backward pass, the weights that have contributed the most
to the loss are determined in order to adjust them so that the total loss decreases.
3. Weight update In the final part all weights are updated in the negative direction of the
loss function gradient.
Therefore the core of the backpropagation problem is to compute the gradient of the loss
function with respect to the network weights. Computing the partial derivative ∂L

∂w is essential

Master of Science Thesis I.A.F. Snuverink

12 Background and Related Work

(carried out in the backward pass) to minimize the loss function value. Stochastic Gradient
Descent (SGD) is the most common way to optimize neural networks.

Backpropagation Example for a Multi-Layer Network
A simple example of computation of weight updates in backpropagation will be given using
the network shown in figure 2-9. The cost function L is given below, el is the error between

Figure 2-9: A simple multilayer network.

the desired output dl and network output yl. The network output yl is computed in the
forward pass and depends on outputs of the previous layer vj and the output layer weights
woj .

L = 1
2

∑
l

(el)2

el = dl − yl
yl =

∑
j

wojvj

(2-8)

The Jacobian is given by:
∂L

∂wojl
= ∂L

∂el

∂el
∂yl

∂yl
∂wojl

(2-9)

Calculating the partial derivatives yields the following Jacobian for the output layer:

∂L

∂wojl
= −vjel (2-10)

Using the SGD update rule, which will be explained in section 2-2-6, the output weights are
updated using:

wojl(n+ 1) = wojl(n) + α(n)vjel (2-11)

After having updated the output weights, the weights in the hidden layers can be updated.
As it is a backward pass, first gradients of the output layers are computed, then the gradients
of the hidden layers. The Jacobian is given by:

∂L

∂whij
= ∂L

∂vj

∂vj
∂yl

∂zj

∂whij
(2-12)

I.A.F. Snuverink Master of Science Thesis

2-2 Convolutional Neural Networks 13

Calculating the partial derivatives yields:

∂L

∂whij
= −xiσ′j(zj)

∑
l

elw
o
jl (2-13)

Which yields the update rule for the hidden layers:

whij(n+ 1) = whij(n) + α(n)xiσ′j(zj)
∑
l

elw
o
jl (2-14)

Finally the network is tested using a test dataset, this dataset contains images that differ
from the ones in the training dataset. By increasing the amount of training data, the more
training iterations are carried out, the better the weights are tuned.

2-2-5 Loss Function

The value of the loss function L represents the difference between the training image after it
has propagated through the network and desired annotated output image.

Two assumptions are made about this loss function. First it should be able to define the loss
function as the average over the loss functions for individual training images, as the training
often is carried out in batches. The loss function is evaluated and average at the end of each
batch, then the weights are updated. Secondly, the loss function should be able to be defined
as a function of the network outputs. Below a brief overview is given of some widely used
loss functions, where xi are the neuron outputs and x̂i are the desired outputs.

Quadratic Cost Function The Mean Squared Error (MSE) cost function is one of the
simplest cost functions.

L = 1
N

N∑
i=1

(xi − x̂i)2 (2-15)

Cross Entropy Cost Function The cross entropy cost function is commonly used in
convolutional network applications.

L = 1
N

N∑
i=1

(x̂i ln(xi) + (1− x̂i) ln(1− xi)) (2-16)

Exponential Cost Function The exponential cost function requires an additional param-
eter τ .

L = 1
N
τ exp 1

τ

N∑
i=1

(xi − x̂i)2. (2-17)

2-2-6 Stochastic Gradient Descent Variants

In both Gradient Descent (GD) and Stochastic Gradient Descent (SGD) parameters are
updated according to an update rule to minimize a loss function in an iterative manner.
Computing the exact gradient using GD in large datasets is expensive (GD is deterministic),

Master of Science Thesis I.A.F. Snuverink

14 Background and Related Work

as this method runs through all training samples to perform a single update for one iteration
step. In Stochastic Gradient Descent (or on-line Gradient Descent) an approximation of the
true gradient is computed. This is done by using only one or a subset of training samples for a
parameter update. When using a subset of training samples, this method is called mini-batch
SGD.

SGD is a method to minimize the loss function L(θ) parametrized by θ. This is achieved by
updating the parameters θ in the negative gradient direction of the loss function ∇θL(θ) with
respect to the parameters, in order to decrease the loss function value. The learning rate η
determines the step size to get to the local or global minimum. The update rule is given in
equation 2-18.

θ = θ − η∇θL(θ) (2-18)

Mini-batch Stochastic Gradient Descent This method performs an update for every
mini-batch of n training samples. Mini-batch SGD reduces the variance of the parameter
updates. Larger mini-batches reduce the variance of SGD updates by taking the average of
the gradients in the mini batch. This allows taking bigger step sizes. In the limit, if each
batch contains one training sample, it is the same as regular SGD.

2-2-7 Learning Rate Scheduling in Gradient Descent Optimization

There are several variants of SGD available. Determining the appropriate learning rate, or
step size, often is a complex problem. Applying too high learning rates causes suboptimal
performance, too low learning rates causes slow convergence. Learning rate scheduling is used
as an extension of the SGD algorithm to improve performance. In learning rate scheduling,
the learning rate is a decreasing function of the iteration number. Therefore, first iterations
have larger learning rates and consequently cause bigger parameter changes. Later iterations
have smaller learning rates, responsible for fine-tuning. Below an overview of some gradient
descent optimization algorithms is given.

Momentum Momentum is a method to speed up the SGD is the relevant direction. A
fraction γ of the previous update is added to the current update. The Momentum update
rule is give in equation 2-19.

vt = γvt−1 + η∇θL(θ)
θ = θ − vt

(2-19)

Nesterov Accelerated Gradient The Momentum method does not take into account di-
rection it is going in, the Nesterov Accelerated Gradient method computes an approximation
of the next position of the parameters. The update rule is given in 2-20.

vt = γvt−1 + η∇θL(θ − γvt−1)
θ = θ − vt

(2-20)

Adagrad The Adagrad [20] method adapts the updates to the slope of the error function.
The algorithm adapts the learning rate to the parameters, so that size of the updates for
each parameter depends on its importance. The Adagrad algorithm gives larger updates for
infrequent parameters and smaller updates for frequent parameters, the update rule in given
in equation 2-21. Here Gt is a diagonal matrix containing the sum of squares of past gradients

I.A.F. Snuverink Master of Science Thesis

2-2 Convolutional Neural Networks 15

with respect to θ. The main advantage of Adagrad is that one does not need to manually
tune the learning rate. However Adagrad faces problems due to the accumulation of squared
gradients in the denominator, since every additional term is positive, the accumulated sum
keeps growing. Therefore the learning rate becomes smaller as training progresses.

gt,i = ∇θL(θi)

θt+1,i = θt,i −
η√

Gt,ii + ε
· gt,i

(2-21)

Adadelta Adadelta [21] is an extended version of Adagrad which reduces the problem of the
decreasing learning rate. It restricts the range of accumulated squared gradients to a certain
fixed size.

RMSprop RMSprop [22] is also an adaptive learning rate method that tackles the problem
of the accumulation of squared gradients in Adagrad. RMSprop divides the learning rate by
an exponentially decaying average of squared gradients. It is an unpublished algorithm by G.
Hinton.

Adam The Adaptive Moment Estimation (Adam) optimizer [23] also determines an adaptive
learning rate for each parameter. Adadelta and RMSprop store an exponentially decaying
average of past squared gradients vt, but Adam also keeps an exponentially decaying average
of past gradientsmt. Vectors vt andmt are estimates of the mean and the uncentered variance
of the gradients respectively which are biased towards zero. Bias-corrected estimates v̂t and
m̂t are computed for the update rule (equation 2-22).

θt+1 = θt −
η√
v̂t + ε

· m̂t (2-22)

2-2-8 Hyperparameter Tuning

Training a network is done by a process called backpropagation, as explained in section 2-2-4.
Within the process of training, there are many choices regarding learning rate, optimizer,
dropout and batch size. Batch size is number of training examples that is used in one
epoch, the higher the batch size, the more memory space is required. These are examples
of hyperparameters, network settings which have to be defined before training. Furthermore,
there are hyperparameters regarding network architecture, such as convolutional kernel size,
non-linear activation functions, loss function and number of network layers. Hyperparameter
choice is highly dependent on the size and type of the training dataset. There are no strict
rules on how to choose the parameters, only general guidelines.
In deep learning the loss function value is tracked per epoch. One epoch is one forward plus
backward pass during training. By monitoring loss during training, one is able to observe
if an appropriate learning rate is chosen. High learning rates will initially decrease the loss
faster, but will eventually yield at a suboptimal place in the energy landscape. Furthermore
the degree of overfitting can be seen from the difference in accuracy between training and
validation.
Hyperparameter tuning is an important but complex part of neural network training. Choos-
ing correct settings is essential in obtaining desired results, however hyperparameter tuning is

Master of Science Thesis I.A.F. Snuverink

16 Background and Related Work

often based on experience rather than theoretical knowledge. Especially choosing such a large
number of different settings which are mutually connected causes it to be a non-transparent
process. Moreover, trade-offs are inherent in the parameter selection process, for instance
computer memory is restricted.

2-2-9 Patch-wise Training

Image size for training is limited by computer memory and Graphics Processing Unit (GPU).
The images in the TNO data set have extremely large dimensions, so that the full images
cannot be used for training. Training a neural network in a patch-wise manner is a way
to deal with the large amount of data, in this method many small patches taken from the
original HS images form the training data set. After training the network, an original sized
test image is fed into the network to yield a segmentation.

In remote sensing applications, aerial and satellite images have large dimensions, comparable
to the image size from the TNO dataset. In case of segmentation using neural networks,
training is also done using patches of the original image. Marmanis et al [24] have randomly
sampled patches from a training subset for training the network weights. Maggiori et al [25]
have also used an FCN network for segmentation of satellite images. Volpi and Tuia [26] have
trained a CNN patch-wise, they selected patches large enough to include spatial context and
small enough to meet computer memory requirements.

In patch-wise training the global scene context is not used. The scene composition remains
the same over all images, for example the parking area, sandy tracks and tree locations will
not move over time. As this information will not be presented during training, these global
spatial features are not learned. Therefore, pixelwise predictions will only be based on features
about spatial structure covering an area as large as the patches. Patch-wise trained networks
have larger generalizing properties in the sense they can be applied on scenes with slightly
different spatial structure.

2-3 Fully Convolutional Networks

Classification of an image is just the first step towards more complex tasks, such as the
detection of objects within an image and assigning captions to images describing the scene.
Image segmentation is the pixel-wise classification of an image, thus labeling every single pixel
with a class. First, the FCN is introduced in section 2-3-1. Next, the deconvolutional layer
is discussed in section 2-3-2. In section 2-3-3 several types of FCNs are explained. Finally,
section 2-3-4 discusses the network architecture which is used throughout all experiments
of this thesis. Image segmentation is also referred to as semantic segmentation, pixelwise
segmentation or pixelwise classification.

2-3-1 Introducing Fully Convolutional Networks

Long et al [6] introduced the FCN for image segmentation in 2015. This network was designed
and trained for pixel-wise segmentation. FCN are modified classification CNNs. In order to
make a network suitable for pixel-wise segmentation, certain layers have been modified which

I.A.F. Snuverink Master of Science Thesis

2-3 Fully Convolutional Networks 17

enable the generation of segmented output maps. The idea of using a modified CNN to
use for pixel-wise segmentation is not new. Matan et al [27] modified the LeNet network
for the purpose of recognizing strings of digits. More recent publications show results on
segmentation using CNN for making dense predictions, however these methods are limited by
e.g. post-processing.

In order to build FCNs, the fully connected layers in the CNNs are replaced by a convolutional
layers. Therefore an FCN is a classification network without any fully connected layers. The
goal of an FCN is to capture image context; what objects are located where. Architectures of
neural networks for image segmentation inherently includes the trade-off on how to process
both coarse, global information and detailed, local information.

Regular pre-trained classification networks actually do contain information about location
of classes, however it is hidden by the fully connected final layer for the single classification
output (figure 2-10). When a pre-trained classification network has been transformed into a
fully convolutional network, it is able of predicting locations per class.

Figure 2-10: Transforming a classification network into a fully convolutional (segmentation)
network shows that classification networks contain information about location. [6]

Zeiler and Fergus [7] propose a visualization method to give insight into the CNN performance.
This visualization technique was introduced to show the contribution of each layer to the
final classification of an image. Each layer provides a feature map that shows what the layer
responds to. This work clearly shows the hierarchical nature of convolutional networks. The
first layer responds to low level features, such as color, lines and edges, the intermediate levels
react to more complex features, such as textures, and the final layers react to class specific
information. The lower level layers converge relatively quickly compared to the final layers,
just after a few epochs. The final layers require time to develop, which shows the importance
of convergence of the model to obtain high performance.

Figure 2-11 and 2-12 show feature maps after being processed by the second and third network
layer respectively. The figures show the top nine activations for a given feature map and
corresponding image patches. This example shows the evolution of the features through the
network, from general and simple to complex and class-specific features. Figure 2-11 clearly
shows low level features, such as colors, lines and edges. Figure 2-12 displays more complex
features such as texture and shape.

Master of Science Thesis I.A.F. Snuverink

18 Background and Related Work

Figure 2-11: Feature map of the second layer, showing low level features [7]

Figure 2-12: Feature map of the third layer, showing more complex features [7]

2-3-2 Deconvolutional Layer

A deconvolutional layer in a neural network is a layer which is able to obtain a dense map from
downsampled and course input [6]. A more appropriate name is the transposed convolutional
layer, as the term deconvolution may be misleading as deconvolutional layers also perform
convolutions.

Pooling layers in convolutional networks are required in order to decrease the number of
network parameters. Unpooling layers perform the reverse of pooling layers (figure 2-13).
The location of the maximum activation in the pooling layer is recorded in switch variables
[8], in the unpooling layer it is placed back. The output of such an unpooling layer is sparse,
as it is an enlarged version of the input map. The deconvolution layer then produces a dense
output map from the unpooling layer output. In summary, convolutional layers map multiple
activations in a receptive field to a single activation, deconvolutional layers map one single
activation to a field or window of multiple activations. Convolutional layers learn a filter
which map a Kx ×Ky receptive field to one value, consequently deconvolutional layers learn
filters that perform the opposite.

2-3-3 Types of Fully Convolutional Networks

The FCN-type networks have dominated online image segmentation challenges since the re-
lease of the paper by Long et al. The original FCNs have a drawback of generating lower
resolution output predictions, due to pooling layers and striding in convolutional layers. New

I.A.F. Snuverink Master of Science Thesis

2-3 Fully Convolutional Networks 19

Figure 2-13: Schematic representation of pooling, unpooling, convolution and deconvolution [8].

network architectures have been developed that tackle the output resolution problem. Four
types of FCN are discussed (figures 2-14 to 2-17), these types all have a different approach to
collecting both global and contextual features.

• Image pyramid
• Encoder-decoder
• Spatial pyramid pooling
• Atrous convolutions

These network types are aimed at collecting global features or contextual information in order
to increase segmentation performance. Furthermore, these methods try to recover objects at
multiple scales in the final segmented output. Methods combining a neural network and
Conditional Random Field (CRF) have not been taken into account.

Figure 2-14:
Image pyramid
[9].

Figure 2-15:
Encoder-decoder
[9].

Figure 2-16:
Spatial pyramid
Pooling [9].

Figure 2-17:
Atrous convo-
lutions [9].

Image pyramid
This network combines multi-scale inputs (figure 2-14). Small scale inputs account for con-
textual information while large scale inputs provides details. The approach is as follows; an

Master of Science Thesis I.A.F. Snuverink

20 Background and Related Work

image at multiple scales is fed trough a network in order to merge feature maps of all scales.
A major drawback is that this network is not suitable for deeper and larger architectures, due
to GPU memory.
Encoder-decoder
This type of network consists of two parts, the encoder and the decoder (figure 2-15). The
encoder part reduces spatial dimensions of features maps. The decoder part recovers details
and spatial dimensions. Examples of encoder-decoder networks are SegNet [28], U-Net [10]
and RefineNet [29]. In order to increase resolution, SegNet uses pooling indices from the
encoder layers to learn upsampling in the decoder layer. U-Net makes uses of skip connections
between encoder and decoder feature maps to increase resolution.
Spatial pyramid pooling
This type of networks use spatial pyramid pooling to capture context at multiple levels of
detail (figure 2-16). Examples of such networks are ParseNet [30] and PSPNet [31].
Atrous convolutions
This method a new approach to image segmentation. It contains no deconvolution layers,
instead it uses atrous convolutions to recover spatial resolution [9].

2-3-4 Encoder-Decoder Architecture: U-Net

For biomedical image segmentation purposes, Ronneberger et al [10] have designed a network
called U-Net. This network won the ISBI cell tracking challenge in 2015. The network does
not include the usual stacking of layers. A different approach is taken, the network consists of
an encoder path followed by a symmetric decoder path (figure 2-18). The name U-net refers to
the U-shape in which the layers are sequenced. The idea behind this architecture is to combine
lower and higher level feature maps through skip connections, which will improve localization
of high resolution features. This network is build upon the FCN architecture proposed by

Figure 2-18: The U-Net architecture [10].

Long et al. The network is designed so that it is able to obtain accurate segmentation using
only a few training images. Deconvolutional layers increase the final resolution of the output
map. In the decoder path, a large number of feature maps per convolutional layer is applied.
This will propagate contextual information to higher resolution layers.

I.A.F. Snuverink Master of Science Thesis

2-3 Fully Convolutional Networks 21

In this thesis, all experiments are carried out with a network based on U-Net (section 3-
3). The U-Net architecture is chosen to perform pixel-wise classification on the HS images,
as it has proven to be an effective network for segmenting a single class in multi-spectral
satellite data [32]. Furthermore, this network can be trained from scratch, as it does not
rely on pre-trained networks. U-Net was trained used biomedical images of neuronal struc-
tures only. Other encoder-decoder architectures depend on the use of pre-trained networks,
these are trained with training data sets comprising RGB images. SegNet uses a pre-trained
VGG16-network [17] in the encoder part. RefineNet makes use of pre-trained ResNet [18].
Therefore, these networks have learned to extract features based on color information. For a
network to effectively perform HS image segmentation, features should be able to extract HS
information. Due to the clear network structure, it is possible to quickly alter existing layers
and design custom-made layers to fit segmentation goals. For example batch normalization
layers, convolutional layers or entirely new layers can be added. Also the non-linear activation
function in the final layer can be adapted, as well as the network depth and width. Moreover,
no fixed input size required for training this network.

Master of Science Thesis I.A.F. Snuverink

22 Background and Related Work

I.A.F. Snuverink Master of Science Thesis

Chapter 3

Neural Network Setup

Obtaining segmented images requires several steps regarding the training data set selection
framework and network architecture design. This chapter starts with a detailed overview of
design steps required to start training a neural network (section 3-1). Thereupon each step
is discussed in greater detail in the subsequent sections. All choices regarding architecture
and training data set parameters will be clarified, as well as details about recording the
hyperspectral (HS) data set.

3-1 Overview of Design Steps

An overview of all design steps is displayed in figure 3-1. This overview shows that the process
can be divided into four parts:

• Recording and preprocessing of the HS data set
• Setting up the network and the training, validation and test data set
• Network training and inferencing
• Converting network output to segmented images

This chapter will mainly focus on discussing the steps taken in setting up the network.

3-2 Data Set

The TNO dataset was recorded using a line scanning camera. Data recording took place
over the course of several months in 2016. The images show a fixed scene, a dune area with
natural (vegetation) and man-made objects particularly. The 2D scanning camera (consists
of a light distributing prism-grating-prism and a grayscale CCD camera without NIR filter)
rotates horizontally with fixed angle step. At each step a line-image was recorded, resulting in
a field of view of 90 degrees. Every line-image contains HS information in wavelength ranging
from 432 to 902nm. This spectrum is divided into 1024 spectral bins, yielding an image of

Master of Science Thesis I.A.F. Snuverink

24 Neural Network Setup

Data Recording and Preprocessing

• Record HS data using a line scanning
camera

• Record RGB images for comparison
• Convert HS data to simulate EXIST

sensor
Section 3-2

Setup: Training and Validation Data Set

• Define training, validation and test
images. Section 3-6-1

• Annotation mask. Section 3-6-2
• Patch selection method. Section 3-6-3

Setup: Network parameters

• Stack (Keras) layers. Section 3-3
• Set hyperparameters. Section 3-3-5
• Define loss function. Section 3-4
• Define accuracy metrics. Section 3-5

Setup: Network Input

• Create lists for patch information
• Create batches of training data
• Create file for validation data
Section 3-6-4

Network: Training

Jupyter Notebook on GeForce GTX
980M Graphics Processing Unit (GPU)
is used
• Input: training + validation data set
• Save network weights after meeting

the stopping criterion
Section 3-7

Network: Inferencing

Jupyter Notebook on GPU is used
• Input: HS images of test data set
• Output: prediction matrix per image
Section 3-7

Segmented Image

• Convert prediction matrix to
segmented image

• Assess result using evaluation metrics

Figure 3-1: Overview of framework to perform pixelwise classification on HSI data.

size 1024 × 1280, in which 1280 represents a fixed height of the image. For every HS image
3033 line-images were recorded, covering the total field of view. This results in a HS cube of
3033× 1280× 1024.

The EXIST sensor is still under development [33]. The EXIST sensor data output will differ
from the sensor used for recording. Therefore the recorded data was converted to simulate
the EXIST sensor. The EXIST sensor will only capture wavelengths in a range from 600
to 900nm, divided in 25 HS bands. Data outside this range was not used. The remaining
data was re-binned into 25 bands, by taking the sum (due to summation of photons) of all
bands from the original data within the new bin. Furthermore, the EXIST sensor will have

I.A.F. Snuverink Master of Science Thesis

3-3 Model Architecture 25

a different sensitivity for each HS band, therefore each band was multiplied with a sensor
specific response curve delivered by the manufacturer. Finally, the resulting simulated data
was used for training a neural network.

The data set was recorded during multiple recording weeks, covering all seasons. Scans were
made in April, May, June, July, August, October and December 2016. The HS images were
recorded at least during one week per month. Scans were made every hour between sunrise
and sunset to capture all lighting conditions depending on the sun’s position and weather
conditions. Consequently the data set contains scans with a large range of weather types,
such as sunny, rainy and foggy conditions.

3-3 Model Architecture

The neural network was designed using Keras [34]. Keras is a neural networks Application
Programming Interface (API) written in Python, it runs on top of either TensorFlow, Theano
or Microsoft Cognitive Toolkit (CNTK), which are software libraries for machine learning.
The network was designed by stacking network layers on top of each other, as each layer type
has its own function in Keras.

Figure 3-2 shows the U-Net architecture which was used for training (code in appendix B-1),
this network is based on the U-Net by Ronneberger [10]. The network shows five contracting
stacks of layers, the first block includes an input layer with a depth 25 channels, corresponding
to 25 HS bands. This input layer is followed by a batch normalization layer, normalizing im-
ages within a batch, which is discussed in section 3-3-1. This architecture includes 7, 853, 142
weights for an input size of (25× 64× 80).

Five contracting stacks of layers are followed by stacks of expansive layers. These stacks start
by merging an activation map from the contracting path with an activation map from the
expansive path, by skip connections. Merging is followed by a dropout layer, two convolutional
layers and an upsampling layer. The maxpooling and upsampling layers have (2× 2) kernels,
with a stride of one. All convolutional layers have kernels of size (3×3×d), except for the final
convolutional layer, this kernel is (1 × 1). Furthermore are all convolutional layers followed
by a ELU nonlinear activation function, except for the final convolutional layer. This layer is
followed by a Softmax activation function, as discussed in section 3-3-3.

3-3-1 Batch Normalization Layer

Network convergence is improved by whitening the inputs, which means the input data is
linearly transformed to have zero mean, unit variances and decorrelated properties [35]. Nor-
malization by the batch normalization layer is carried out in the first layer of the network.
This layer contains trainable weights, so that normalization becomes part of the model ar-
chitecture [36]. Normalization is performed on each mini-batch during training. Per batch of
input x, normalization is performed as shown in equation 3-1.

x̂ = x− E[x]√
Var[x] + ε

(3-1)

Master of Science Thesis I.A.F. Snuverink

26 Neural Network Setup

Input 25 × x × y

Batch Normalisation
Convolution (32) + ELU

Convolution (32) + ELU

Maxpooling
Convolution (64) + ELU

Convolution (64) + ELU

Dropout

Maxpooling
Convolution (128) + ELU

Convolution (128) + ELU

Dropout

Maxpooling
Convolution (256) + ELU

Convolution (256) + ELU

Dropout

Maxpooling
Convolution (512) + ELU

Convolution (512) + ELU

Dropout Upsampling

Dropout
Convolution (256) + ELU

Convolution (256) + ELU

Upsampling

Merge

Dropout
Convolution (128) + ELU

Convolution (128) + ELU

Upsampling

Merge

Dropout
Convolution (64) + ELU

Convolution (64) + ELU

Upsampling

Merge

Dropout
Convolution (32) + ELU

Convolution (32) + ELU

1 × 1 Convolution (nclasses)
Softmax

Merge

Skip connection

Skip connection

Skip connection

Skip connection

Figure 3-2: U-Net architecture; the skip connection merges two activation maps by an concate-
nating operation.

An additional small number ε is added to the variance in order to prevent division by zero.
The normalized input x̂ is then scaled by γ and shifted with β (equation 3-2). Therefore, per
HS band trainable weights γ and β are learned.

x̂BN = γ · x̂+ β (3-2)

3-3-2 Convolutional Layer

Convolutional layers in the network (figure 3-2) have kernels of size (3× 3× d), consequently
the receptive field size is (3 × 3) and d is the input depth. The Keras convolutional layer
function includes a same border mode parameter, which adds (zero) padding around the
input to produce a same sized feature map as layer output.
A single kernel produces a two-dimensional feature map; the result of a (25× 64× 80) patch
convolved with (element-wise multiplication) a zero padded single (3 × 3 × 25) kernel is a
(64 × 80) feature map. Multiple kernels are used in a convolutional layer, producing multi-
dimensional feature maps. The number of kernels per convolutional layer are displayed in

I.A.F. Snuverink Master of Science Thesis

3-3 Model Architecture 27

figure 3-2, the number between brackets in each convolutional layer. For every layer deeper
into the network, a larger kernel is used. Deeper layers extract more complex and class specific
information, which require a larger number of trainable parameters.

A kernel is a matrix of trainable weights, hence the total number of weights depends on its
size. A single kernel of size (3× 3× 25) in the first convolutional layer contains 225 weights.
In this convolutional layer, 32 kernels therefore contain 225×32 = 7200 weights. Hence every
kernel adds additional trainable weights to the neural network.

Non-linear Activation Function

All convolutional layers are followed by a nonlinear activation function φ. The nonlinear acti-
vation function used in the network is the Exponential Linear Unit (ELU) function (equation
3-3) [37]. This function has been chosen as it prevents the network performance degrading
due to so-called Dying Gradients. A dead Rectified Linear Unit (ReLU) always outputs a
zero value, for example caused by a large gradient update. For ReLUs this is an irreversible
process. Recovering a dead weight is very unlikely, since weights are not updated for a zero
gradient. As the ReLU gradient at zero is zero, weights remain unchanged. Dead weights do
not contribute to the learning process [38].

Figures 3-3 and 3-4 display the ELU and ReLU activation function respectively. Using the
ReLU function, negative input values will be set to zero, while for the ELU function, negative
values will be set to a small number close to zero.

φELU (α, x) =
{
α(ex − 1) for x < 0
x for x ≥ 0

(3-3)

Figure 3-3: Exponential Linear Unit func-
tion, an illustrative example with α = 0.5.

Figure 3-4: The rectified Linear Unit func-
tion is prone to dying gradients.

3-3-3 Softmax Final Activation Function

The final activation function differs from all other activation functions within the network. In
the pixel-wise classification problem, classes are mutually exclusive. A softmax final activation
function (equation 3-4) incorporates a mechanism in the neural network to benefit from this.
The softmax activation function ensures a diffuse network output, so that the class with a high
probability score is highlighted and classes with lower scores are suppressed. Furthermore,
all outputs add up to one.

Master of Science Thesis I.A.F. Snuverink

28 Neural Network Setup

Equation 3-4 displays the softmax function and the function input z. In this equation the
trainable weights are described by w.

φsoftmax(z(i)) = ez
(i)

Σk
j=0e

z
(i)
k

z = w0x0 + w1x1 + ...+ wmxm

(3-4)

Let I be an image with x rows and y columns. The segmentation task targets distinguishing a
certain amount of classes nc. Therefore, a network input of (25× Ix× Iy) results in a network
output of (nc×Ix×Iy). In the network output, for every pixel (Ix, Iy) a vector of probabilities
is computed. This vector has size (nc × 1). The class corresponding to the highest vector
value, which can be interpreted as highest probability, is used to produce the final segmented
image.

3-3-4 Feature Map Sizes

Every network layer has a corresponding feature maps size, starting with an input of (nb ×
25 × 64 × 80) (table 3-1). Batch size nb is a hyperparameter which has to be set before
training. Also patch size is a free parameter. Let P be a patch with x rows and y columns,
then a patch containing 25 HS bands has size (25×Px×Py). In the example patch size is set
to (25× 64× 80). The table shows all transformation steps taken to go from the input to an
output with correct size (nb×nc×64×80), which is the patch size with a depth corresponding
to the amount of classes.

From table 3-1 it becomes clear that the patch size becomes smaller going deeper into the
network, reaching (4 × 5) pixels at the smallest point. Furthermore the amount of feature
maps within the tensors grows with the depth of the network, with the maximum reached
after merging two tensors at the ’deepest’ point. Hence the input patch is transformed into
stacks of feature maps, resulting in tensors with smaller size and larger depth.

3-3-5 Hyperparameters

There are a large number of hyperparameters which have to be defined before training a
network. Apart from all parameters which circumscribe the training data set, there are certain
parameters required for setting up a network and training it. Table 3-2 shows hyperparameter
settings which have been used throughout all experiments.

The parameters have mainly been found by looking at typical segmentation networks, for
example kernel size of (3 × 3) and stride of 1 are widely used in pixel-wise classification
networks. Furthermore most parameters have been tuned by trial and error.

3-4 Loss Function

During training the goal is to adjust the neural network weights so that the predictions match
the ground truth by adjusting the weights according to a decreasing loss value. The ground

I.A.F. Snuverink Master of Science Thesis

3-4 Loss Function 29

Layer Output Size
Input (nb × 25× 64× 80)
Batch Normalization (nb × 25× 64× 80)
Convolution (32) (nb × 32× 64× 80)
Convolution (32) (nb × 32× 64× 80)
Maxpooling (nb × 32× 32× 40)
Convolution (64) (nb × 64× 32× 40)
Convolution (64) (nb × 64× 32× 40)
Dropout (nb × 64× 32× 40)
Maxpooling (nb × 64× 16× 20)
Convolution (128) (nb × 128× 16× 20)
Convolution (128) (nb × 128× 16× 20)
Dropout (nb × 128× 16× 20)
Maxpooling (nb × 128× 8× 10)
Convolution (256) (nb × 256× 8× 10)
Convolution (256) (nb × 256× 8× 10)
Dropout (nb × 256× 8× 10)
Maxpooling (nb × 256× 4× 5)
Convolution (512) (nb × 512× 4× 5)
Convolution (512) (nb × 512× 4× 5)
Dropout (nb × 512× 4× 5)

Layer Output Size
Upsampling (nb × 512× 8× 10)
Merge (nb × 768× 8× 10)
Dropout (nb × 768× 8× 10)
Convolution (256) (nb × 256× 8× 10)
Convolution (256) (nb × 256× 8× 10)
Upsampling (nb × 256× 16× 20)
Merge (nb × 384× 16× 20)
Dropout (nb × 384× 16× 20)
Convolution (128) (nb × 128× 16× 20)
Convolution (128) (nb × 128× 16× 20)
Upsampling (nb × 128× 32× 40)
Merge (nb × 192× 32× 40)
Dropout (nb × 192× 32× 40)
Convolution (64) (nb × 64× 32× 40)
Convolution (64) (nb × 64× 32× 40)
Upsampling (nb × 64× 64× 80)
Merge (nb × 96× 64× 80)
Dropout (nb × 96× 64× 80)
Convolution (32) (nb × 32× 64× 80)
Convolution (32) (nb × 32× 64× 80)
Convolution (nc) (nb × nc × 64× 80)

Table 3-1: Feature map (tensor) sizes through the network, the input has size (nb×25×64×80),
with batch size nb and patches of size (25× 64× 80).

Hyperparameter Setting
Activation function ELU
Weight initialization Glorot normal

[39]
Convolution border mode Same
Stride 1
Kernel size (3× 3)

Hyperparameter Setting
Dropout rate 10%
Optimizer RMSprop
Initial learning rate 1e-5
Batch size 100
Gradient clipnorm 1.0
Weight regularizer None

Table 3-2: Hyperparameter settings

truth yt and predictions patches yp are matrices of the same size (Px×Py ×nc). The ground
truth patches have zeros on pixels without annotation, annotated pixels have ones on the
specific class dimension in the matrix. The ground truth matrix (figure 3-5) shows three
different types of pixels; not annotated (black), annotated in Class 1 (blue), annotated in
Class 3 (red). After training a network, a prediction matrix is obtained (figure 3-6). Note
that the sum of the predictions per pixel is one, due to the final softmax activation function.
If the network is trained well, it should output high predictions at the annotated locations
and low predictions at zero locations.

Loss value L (equation 3-6) is determined using the difference between the ground truth yt
and the masked predictions yp,m (figure 3-7). In the masked predictions yp,m not only pixels
without corresponding annotation are masked, also entries which correspond to incorrect
classes in annotated pixels are set to zero. Using the difference between ground truth yt and
(unmasked) prediction yp in determining loss L impedes convergence of training. Updating
weights is carried out in the direction of reducing loss L. As the final softmax function

Master of Science Thesis I.A.F. Snuverink

30 Neural Network Setup

outputs values for all classes in yp, the difference yt − yp will never reach zero and loss L will
not converge. Thus, the difference yt − yp,m will reach zero, hence training converges.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1
1

1
1

0

0

0

0

0

0

0

0

0

0

0

01
1

1
1

0

0

0

0

0

0

0

0

0

0

0

0

Column

Row

Class 4

Class 3

Class 2

Class 1

Figure 3-5: Example of a (4 × 4)
Ground Truth patch yt.

.1 .1 .1 .1.1 .0 .0 .0.2 .2 .1 .1.2 .3 .1 .1

.9 .9 .0 .0.8 .9 .0 .1.2 .3 .1 .2.1 .1 .1 .1

.0 .0 .1 .1.1 .1 .1 .1.2 .3 .1 .2.1 .1 .1 .1

.0 .0 .8 .8.0 .0 .9 .8.4 .2 .7 .5.6 .5 .7 .7

Column

Row

Class 4

Class 3

Class 2

Class 1

Figure 3-6: Example of a (4× 4) pre-
diction patch yp.

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0.9 .9
.8 .9

.8 .8

.9 .8

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Column

Row

Class 4

Class 3

Class 2

Class 1

Figure 3-7: An example of a masked
prediction matrix yp,m.

So, the loss function uses the ground truth patches yt and network prediction patches yp to
define a single loss value. The loss function is defined by the user. However, the best choice
depends on the network architecture and type of data it is used for. The network weights
are updated in the direction of decreasing loss function value. The loss value in the neural
network is determined as follows:

1. Define loss function. For all experiments described here, a quadratic loss function has
been used (equation 3-6).

2. Set predictions without complementary annotations to zero by masking them using the
ground truth. This is done by taking the Hadamard product of yt and yp:

yp,m = yp ◦ yt (3-5)

3. Determine the loss value L per patch; mean of the squared element-wise difference of yt

I.A.F. Snuverink Master of Science Thesis

3-5 Evaluation Metrics 31

and yp,m. Here N is the number of pixels per patch:

L = 1
N

N∑
i=1

(yt − yp,m)2 (3-6)

4. Usually loss values are plotted per epoch. For each batch within an epoch, the average
loss of that batch is computed. Then the average loss per epoch is calculated.

Note that all elements in ground truth patches yt are either one or zero. The prediction matrix
yp is masked before calculating the loss, expressed by yp,m. Thus pixels without annotations
were omitted in determining the loss value. The code for the loss function used throughout
this research is displayed in appendix B-2.
Furthermore yt and yp are used to determine overall accuracy and F-score during training.
Sections 3-5-1 and 3-5-2 discuss calculation of these evaluation metrics (code in appendix
B-3).

3-5 Evaluation Metrics

Evaluation metrics used to assess performance of the network are based on the confusion
matrix, which displays the difference between predictions and ground truth per class. The
confusion matrix has two dimensions, the predicted values yp and the true values yt. An
example of a confusion matrix is given in table 3-3. In case that all pixels have been pre-
dicted correctly, numbers will only appear at the diagonal. Using the confusion matrix, the
overall accuracy and F-scores per class are calculated as discussed in sections 3-5-1 and 3-5-2
respectively.

Predicted

N
A

B
ro
ad

Le
af

G
ra
ss

Sa
nd

A
sp
ha

lt

A
rt
.
G
ra
ss

A
ct
ua

l

NA 2435189 0 0 0 0 0
Broad Leaf 0 528442 641 0 0 0

Grass 0 9943 112582 5243 202 66
Sand 0 1 448 26285 1931 0

Asphalt 0 376 393 31181 163265 933
Art. Grass 0 3 0 0 0 636

Table 3-3: Example of a confusion matrix, NA refers to pixels without annotations.

3-5-1 Overall Accuracy

The overall accuracy of a prediction for an image segmentation is defined as the fraction of
all correctly predicted pixels among the total amount of predicted pixels (equation 3-7). Note
that pixels without annotations are not taken into account. Consequently these are all values
from the diagonal of the confusion matrix, except for the first entry which is ignored:

overall accuracy = correctly predicted pixels
all predicted pixels (3-7)

Master of Science Thesis I.A.F. Snuverink

32 Neural Network Setup

3-5-2 F-Score

The F-score is a metric to evaluate the accuracy of the predictions (equation 3-8). For every
class, an F-score will be determined. The F-score combines precision (equation 3-9) and recall
(equation 3-10) featuring a score of 1 as the perfect score:

F-score = 2 · precision · recall
precision + recall (3-8)

For every segmented image from the test data set, precision and recall of every class has been
determined. Precision is the fraction of true positives (TP) among the true and false positives
(TP + FP):

precision = TP

TP + FP
(3-9)

Recall is the fraction of true positives (TP) among the true positives and false negatives (TP
+ FN):

recall = TP

TP + FN
(3-10)

3-6 Data Set Partitioning

3-6-1 Training, Validation and Test Data Sets

The available HS images are divided into two sets. The first set contains the test images.
The second set is used for patch selection, the patches are randomly allocated in either the
training data set or the validation data set. The method used for generating the data sets
is depicted in figure 3-8. It is essential to keep training and test data separate in predictive
modeling, as it prevents too optimistic results or data leakage.

Recorded
HS images

Matching
Ground Truth

Total of avail-
able data Test Data Set

Take patches from HS images and cor-
responding ground truth and place
into a random order

Training Data Set

Validation
Data Set

Pair

80 %

20 %

Figure 3-8: Method used for generating the test, train and validation set.

The ground truth is a mask valid for all HS images, which is discussed in detail in section
3-6-2. Furthermore a method of patch selection is required, as the full HS images are too large
to be used for training the network. The method of patch selection is discussed in section
3-6-3.

I.A.F. Snuverink Master of Science Thesis

3-6 Data Set Partitioning 33

3-6-2 Annotation Mask

The recorded HS images from the TNO dataset require a corresponding ground truth in
order to train a neural network. A mask was sparsely annotated by assigning fixed pixels to a
specific class. A single mask is used for multiple images, covering the whole recording period
(appendix A). The annotation mask contains several classes which can be chosen freely (an
example in figure 3-9). All pixels in white are not annotated. Arguments for using a sparse
annotation mask are listed below:

• Quick method; annotating every single pixel is a time-consuming task
• Inclusion of mixed pixels in the training data set are avoided, i.e. pixels containing
spectral information of multiple classes
• Not all object borders, or borders between classes, require dense annotations in order
to yield accurate predictions
• Moving object borders due to the temporal characteristics of the data set do not require
annotations
• The mask allows for fast alteration of the mask, e.g. addition of a class

Figure 3-9: Visualization of the annotation mask; every color corresponds to another class.
Zoomed in on the rare artificial grass class. White pixels do not correspond to a class.

Consequently the pixels which are not annotated cannot be regarded as a separate class for
background as those pixels may contain any class. Instead, they are simply not considered
during the training of the network by not having them contribute to loss function (equation
3-6). Furthermore the annotation mask can only be applied for images with similar physical
appearance. Training is carried out under the assumption that the annotation mask is valid for
all HS images within the training data set. However, object borders change due to vegetation
growth (figure 3-10). This might cause pixels with incorrect annotations to be present in
the training data set. Especially for the very small and oversampled artificial grass class,
incorrectly annotated pixels have large effect on the final segmentations. Thus, in case the
annotations start to diverge from the image content, another mask has to be used.

3-6-3 Patch Selection Method

The training and validation data set consist of pairs of patches from the original HS images
and ground truth. So, a method of patch selection is defined. The patches are selected in a
random fashion (figure 3-11). Every x- and y-coordinate of the top left corner of each patch
is selected randomly. First patch size (Px × Py) and amount of patches per image np have
to be selected. After selecting patches from every HS image, all patches without annotated

Master of Science Thesis I.A.F. Snuverink

34 Neural Network Setup

Figure 3-10: RGB images of the artificial sports field from May to August.

pixels are removed. This results in a list of patches, which is then reordered randomly and
divided into a train and validation data set.

As an example; 10 HS images with a setting of taking 1000 patches per image (np = 1000)
results in a list of 10.000 patches. After removing the patches with no corresponding annotated
pixels, this list reduces depending on Px, Py, np and annotation mask design.

3-6-4 Prepare Data for Network Input

After setting up the neural network, the data sets have to be prepared to meet the network
requirements. For training, the network requires validation data and batches of training data
as input. Firstly, information about image directory, patch coordinates within the images and
patch size are saved in patch lists. The patch lists are then used to generate files comprising
training and validation data in correct format in order to meet network requirements. Thus,
files are created which contain:

• patch information for training patch_list_train.p and validation patch_list_val.p
(using random patch selection, code in appendix B-4)
• information for test images patch_list_test.p
• for training: pairs of HS patches X and corresponding ground truth Y in batches

X_Y_train.h5
• for validation: pairs of HS patches X and corresponding ground truth Y in X_Y_val.h5

I.A.F. Snuverink Master of Science Thesis

3-7 Network Training and Inference 35

Figure 3-11: An example of an image with all patch locations in red (RGB image for visualization
purposes only). Patch size is (64× 80) and number of initial patches per image np = 1500.

• for testing: HS images in X_test.npz

The neural network is trained using train data in X_Y_train.h5 and validation data in
X_Y_val.h5. Inference is carried out using test data in X_test.npz, as explained in sec-
tion 3-7.

3-7 Network Training and Inference

Batches of training data and validation data are the network input. Training is carried out
as long as the stopping criterion has not been met. Examples of stopping criteria are: a set
number of epochs, a fixed number for training loss and fixed number of epochs for which the
loss may increase before stopping the process. After training, the network weights are saved.
The combined weights and network architecture describe the model, which is then used to
predict a class per pixel for the test dataset.

Inference is carried out in order to yield the pixelwise predictions for the test data. Inference
is the process of using a trained neural network to simulate predictions for the test data
set. Firstly, the weights determined in training are loaded into network. Secondly inference
is applied. Finally the output prediction matrices are converted into images, which can be
evaluated using the overall accuracy or F-score.

Master of Science Thesis I.A.F. Snuverink

36 Neural Network Setup

I.A.F. Snuverink Master of Science Thesis

Chapter 4

Experimental Setup

This thesis is aimed at answering two separate research questions. The first question concerns
selecting the optimal training data set so that the segmentations meet user requirements.
The experiments corresponding to this question are discussed in section 4-1. The first part of
this research is mainly aimed at preparing training data and supporting decisions in order to
answer the second research question. Subsequently, the second question is aimed at evaluating
neural network performance under temporally changing conditions. Section 4-2 discusses the
experiments regarding the second research question.

4-1 Experiments for Optimal Training Data Set Selection

For this set of experiments all results are obtained with a test, training and validation data
set composed of hyperspectral (HS) images as shown in table 4-1. In total, 28 images are used
for training and validation. The selection of images are taken over a short period of time,
hence vegetation shows very little seasonal change. Furthermore the weather conditions in
this training data set are very similar. Two test HS images are used to assess segmentation
results, the test images are subject to similar and different weather conditions compared to
the training data set. The RGB visualization the scene of one of the test images is displayed
in figure 4-1.

Date Hours Data Set Weather
03-06-2016 13 Test Foggy
04-06-2016 11-17 Training + Validation Sunny
05-06-2016 11-17 Training + Validation Sunny
06-06-2016 11-17 Training + Validation Sunny
09-06-2016 13 Test Sunny
10-06-2016 11-17 Training + Validation Sunny

Table 4-1: HS images for test, training and validation data sets.

Master of Science Thesis I.A.F. Snuverink

38 Experimental Setup

For all experiments applies that training is stopped at the epoch which has the lowest vali-
dation loss and highest overall accuracy. Therefore, not all experiments are subjected to the
same amount of epochs for training.

Figure 4-1: Image from the test data set, recorded on 09-06-2016 at 13 p.m. Note that RGB
images are not used for training, they are used for visualization purposes only.

The results of the experiments for optimal training data set selection are presented in chapter
5. Guidelines for annotation mask design are discussed in section 5-1, and guidelines for patch
selection clarified in section 5-2.

4-1-1 Annotation Mask

Annotation mask design is subject to variation, as it is a manual task depending on the
design goals. For example, differences appear in the level of detail of annotated pixel regions,
number of annotated pixels per class and number of annotated classes. As the mask design
has countless different options, some general guidelines help obtain insight on its effects on
final segmentation results.

Questions arise when designing an annotation mask. Does the level of detail in the annotation
mask influence segmentation output? Do small objects from the annotation mask appear in
the segmentation? Is it required to annotate every example available within a class (e.g.
distant and close trees)? Does addition of a class, which is very similar to an already existing
class, influence segmentation quality? These questions are answered in several experiments,
which focus on the following aspects of annotation mask design:

• Level of detail of small objects (results in section 5-1-1)
• Level of detail at class borders (results in section 5-1-2)
• Close and distant examples within a class (results in section 5-1-3)
• Introducing an additional class (results in section 5-1-4)

A benchmark annotation mask has been made to compare results with (figure 5-1). Four ad-
ditional masks have been made by adding or removing pixels from the benchmark annotation
mask.

The following parameters for train set selection have been used: np = 1000, Px = 64, Py = 80,
fo = 70 and fu = 0 (the definition of factors fo and fu is explained in section 4-1-2). Note

I.A.F. Snuverink Master of Science Thesis

4-1 Experiments for Optimal Training Data Set Selection 39

that the annotation mask contains only few artificial grass pixels. For this class only a small
number of pixels was available for annotation, due to its small relative size compared to the
total image and due to trees partly covering the area.

4-1-2 Patch Selection

Not only the annotation mask influences the final segmentation results, also the method
of selecting patches for train and validation sets is of importance. The initial number of
patches taken per HS image np is a variable which largely influences the number of training
samples (section 3-6-3). Furthermore, the annotation mask (as well as the original HS image)
contains a lot of broad leaf tree pixels and only few artificial grass pixels, the training data
set is subject to a large imbalance. By applying an oversampling method on the rare class
and an undersampling method on the most common class, the training data set will become
more balanced and the network will convergence to a point of lower loss value.

Subsequently, questions arise regarding the patch selection method. How many patches per
image np are required to make sure the network converges? What is the optimal training
data set composition regarding segmentation accuracy? Does segmentation accuracy improve
by undersampling the most common class or oversampling the rarest class? Is it necessary to
keep the relative size of pixels per class similar to the annotation mask? Is there a threshold
value for the amount of annotated pixels in order to segment a class, or is the ratio of pixels
per class more essential? In order to answer these questions, the experiments focus on the
following aspects of patch selection:

• Initial amount of patches per image np (results in section 5-2-1)
• Factor fo oversampling on rarest class (results in section 5-2-2)
• Factor fu undersampling on most common class (idem)
• Combined over- and undersampling (idem)

All experiments are carried out using the same annotation mask (figure 5-1). The following
parameters for training data set selection have been used Px = 64 and Py = 80.

Oversampling with Factor fo

The experiments include oversampling the rarest class by factor fo. Oversampling is carried
out by including additional patches containing the rare class to the training and validation
data set. These additional patches are selected close to the location of the initial patches,
only a few pixels up, down, right and left from the original patch. The factor fo stands for
the factor by which the initial training and validation data set is increased. So, if the initial
train set consist of 50 patches of a rare class, an oversampled training data set with factor
fo = 10 contains 500 patches of this rare class.

Undersampling with Factor fu

The experiments include undersampling the most common class by factor fu. Undersampling
is carried out by randomly removing patches containing this common class. Only patches
containing a single class are removed. So, if a train set consists of 1000 patches of a common

Master of Science Thesis I.A.F. Snuverink

40 Experimental Setup

class, undersampling with factor fu = 0.7 will result in a undersampled train set of 300
patches containing this class.

4-2 Experiments for Temporally Changing Conditions

For this set of experiments the extend to which the neural network can be used to compensate
for temporally changing ambient conditions is evaluated. Networks are trained using data
from several periods of time and multiple weather conditions. Questions arise: Are neural
networks capable of compensating for differing lighting and weather conditions without an at-
mospheric model? Are neural networks capable of generalizing over seasons? Are results only
valid at days close to the recording days of the training data? The results of the experiments
are presented in chapter 6.

Neural networks are known for its generalizing properties. In case of a scene subject to
temporally changing ambient conditions, there are two options for assessing its generalizing
capabilities:

• Interpolating between training data set images
• Extrapolating beyond training data set images

For all experiments, testing neural network performance is based on interpolation. Using
interpolation, the test images are selected in such way that they fall within the period of
time the training data set was taken. In extrapolating, the test images go beyond this period
of time. All experiments were carried out using the same annotation mask (figure 5-1) and
the following training data set parameters np = 1500, fo = 70 Px = 64 and Py = 80.
Furthermore, the number of samples in the training data set is kept approximately the same
for all experiments.

4-2-1 Interpolating Between Days in One Week

Experiments start by evaluating results from a relatively simple training data set formed
using images taken over the course of a week under similar weather conditions. This is done
for a week in May, June, July and August. Subsequently, similar experiments are carried out,
but then replacing some of the images with an image for a different weather type to assess
the generalizability of weather. The HS images for the training, validation and test data sets
are listed in appendix C-2-1. Results are presented in section 6-1.

• Interpolating between days in one week (Four periods; May, June, July and August)
– Similar weather conditions
– Different weather conditions

• Extrapolating

The HS images recorded in the beginning of May are subject to large seasonal change, as
growing season is at its highest point. Images from June, July and August are more similar.
For all training data sets in this series of experiments, a total of 28 HS images taken from 4
separate days were used.

The HS images from April and May were recorded with different camera settings, subsequently
no annotated artificial grass pixels are present in the images. Hence oversampling is not

I.A.F. Snuverink Master of Science Thesis

4-2 Experiments for Temporally Changing Conditions 41

possible, which results in a small training data set size. To avoid overfitting of this training
data set, a larger number of patches per image were used (np = 2000).

4-2-2 Interpolating Between Days in Four Weeks

The period of time in which the training data set is selected, is expanded to a period of four
weeks. The four-week experiment is carried out twice, as images taken in May and June
are subject to larger vegetation changes than images from July and August due to growing
season. The HS images for the training, validation and test data sets are listed in appendix
C-2-2. Results are presented in section 6-2.

• Interpolating between days in four weeks (Two periods; May and June, July and August)
– Similar weather conditions
– Different weather conditions

• Extrapolating

For all training data sets in this series of experiments, a total of 32 HS images taken from 8
separate days were used.

4-2-3 Interpolating Over a Longer Period of Time

In these experiments the training data set comprises images from April to August, aiming at
training a network which generalizes input data irrespective of time of the day, season and
weather. As this training data set will cover a long period of time, the training data set is
subject to a large range of variation. The HS images for the training, validation and test data
sets are listed in appendix C-2-3. Results are presented in section 6-3.

• Interpolating between days in five months (April to August)
– Similar weather conditions
– Different weather conditions

• Extrapolating

For all training data sets in this series of experiments, a total of 32 HS images taken from 8
separate days were used.

Master of Science Thesis I.A.F. Snuverink

42 Experimental Setup

I.A.F. Snuverink Master of Science Thesis

Chapter 5

Training Data Set Optimization

The weights learned in the training process of neural networks largely depend on the content
of the training data set. Successfully accomplishing the segmentation task depends on the
information that the network is exposed to. Therefore, training data set selection is an
essential step in the framework. This chapter discusses the effect of annotation mask design
and patch selection on training results. First the mask design is discussed (section 5-1).
Secondly, the number of patches required for training is discussed, as well as class balancing
by over- and undersampling the training data set (section 5-2). Finally, typical development
of segmented test images during training is evaluated (section 5-3)

5-1 Guidelines for Annotation Mask Design

The benchmark annotation mask (figure 5-1) has been used as a reference for all experiments
in this section. First the influence of a changed level of detail in the annotation mask has
been investigated. Then effects of the inclusion of distant and close examples of broad leaf
trees are discussed. Finally, the introduction of an additional class has been examined.

Figure 5-1: Benchmark annotation mask.

Master of Science Thesis I.A.F. Snuverink

44 Training Data Set Optimization

5-1-1 Level of Detail of Small Objects

The benchmark annotation mask has been changed by removing the details demarcated with
the red boxes (figure 5-2). Those details represent narrow sand paths. The removed details
represent two individual regions of sand pixels, and a region of pixels containing both grass
and sand. After training (np = 1500, fo = 70) the results are evaluated.

Figure 5-2: Annotation mask; the small details of the sand class within the red boxes are removed
in order to assess its influence on the final segmentation.

From figure 5-3 it becomes clear that removing the detail containing sand pixels only (red box)
does not significantly reduce the level of detail in the segmentation at that specific location.
Due to the use of small patches and the sparsity of the annotation mask, the network is not
able of learning the context, and therefore location of those details. Removing the detail
containing both sand and grass pixels (blue box) actually does reduce the level of detail in
the segmented map. The segmentation based on training a network with a detailed mask,
shows a distinguished sand path (figure 5-3, top row). The segmented map obtained with a
less detailed mask does not show this. U-Net learns relative class locations. Increased level
of segmentation detail can be achieved by increasing the density of the annotations at class
borders, i.e. training patches should contain multiple classes.

Figure 5-3: The red box contains detail of sand pixels only, the blue box contains a detail
including grass and sand pixels.

I.A.F. Snuverink Master of Science Thesis

5-1 Guidelines for Annotation Mask Design 45

5-1-2 Level of Detail at Class Borders

Section 5-1-1 discusses increasing level of detail in the final segmentation maps by introducing
small details in the annotation mask. In this section increasing details in the final segmenta-
tion map by increasing density of annotation at class borders will be investigated. In order
to examine the result, the benchmark mask has changed by removing the grass strip near the
asphalt parking area (figure 5-4).

Figure 5-4: Annotation mask with a lower level of detail near the edge of asphalt in the lower
right corner.

The network has been trained using an annotation mask with lower level of detail. The
segmentation maps from both the detailed mask (benchmark) and less detailed mask have
been compared (figure 5-5). All test images show that the class borders are less tight in the
case of a less detailed annotation mask.

Figure 5-5: Differences in using a detailed or less detailed annotation mask for training.

5-1-3 Annotation of Distant and Close Examples

Generally, exposing a network to many different examples increases performance. Adding
examples of both distant and close trees seems useful, as both examples appear dissimilar.
The benchmark annotation mask has been altered by removing annotations for distant broad
leaf trees (figure 5-6).

Master of Science Thesis I.A.F. Snuverink

46 Training Data Set Optimization

Figure 5-6: Annotation mask without annotations for distant broad leaf trees.

Visual observation shows that distant and close trees indeed have a different appearance
(figure 5-7), possibly caused by the atmospheric conditions. Training with an annotation
mask without distant trees results in a slightly different segmented image. For both masks,
classification of the distant and close trees are correct. The difference between these images
emerge in the other classes, especially in distinguishing artificial grass, grass and broad leaf
trees. A trained network based on an annotation mask including distant trees tends to predict
too many artificial grass pixels. However, for the annotation mask without distant trees,
artificial grass is predicted as grass. Therefore, including distant trees in the mask does not
necessarily improve predictions of trees in general. However, it does influence classification
of other classes. Note that the annotation mask includes a smaller amount of broad leaf tree
pixels, which influences the training data set balancing.

Figure 5-7: Segmented maps in case of distant trees in annotation mask and in case of no distant
trees in annotation mask.

5-1-4 Additional Class

The number of classes defined in the training data set affect final segmentation results. It is
beneficial to choose classes which are easily separable and which have a lot of data readily

I.A.F. Snuverink Master of Science Thesis

5-1 Guidelines for Annotation Mask Design 47

available. The benchmark annotation mask has been changed by adding annotated pixels of
pine trees (figure 5-8).

Figure 5-8: Annotation mask with an additional pine tree class.

Adding a class in training, degrades segmentation performance under similar training settings
(np = 1500, fo = 70 for artificial grass). Pine trees are distinguished, however the F-score
of other classes drop (figure 5-9). Differentiating between six classes in a sparse annotation
mask becomes very complex.

Figure 5-9: Segmented test image including the pine tree class (blue). F-scores represent pine
trees, broad leaf trees, grass, sand, asphalt and artificial grass respectively.

Close observations of the segmented images and the original scene show that visually distin-
guishing pines from broad leaf trees is not straightforward (figure 5-10). The network might
require more information about location, which is not given by the sparse annotation mask.
Segmenting the additional class results in lower overall performance, especially performance
of the sand class has dropped significantly to a value of 0.02.

In further research, pine trees are not used for segmentation as it decreases overall perfor-
mance. Furthermore, segmenting this class has no added value for the application.

Master of Science Thesis I.A.F. Snuverink

48 Training Data Set Optimization

Figure 5-10: Distinguishing pines trees from the RGB image visually is not straightforward.
However, the neural network is able to predict pine tree pixels with an F-score of 0.83.

5-2 Guidelines for Patch Selection

Using the patch selecting method described in section 3-6-3, the training data set does not
only depend on the annotation mask, but also on the number of patches per image np (section
5-2-1). Initially selected training patches are not corrected for classes with higher chance to
be present in the training data set due to the number of annotated pixels per class, size of
annotated regions or the number of annotated regions. The training data set is balanced to
increase performance of all classes (section 5-2-2).

5-2-1 Number of Training Patches

Increasing the training data set size improves neural network performance, however limita-
tions are imposed by computer memory and computing time. Therefore choosing the correct
number of patches per image is essential in obtaining the optimal result. The following results
are obtained training two networks with different training data set sizes, using np = 1000 and
np = 1500. Both sets are created using the same 28 hyperspectral (HS) images. The first
data set contains 10805 patches, the second data set has 16189 patches, effectively using 385
and 578 patches per image respectively (details in section 3-6-3). Both training data sets have
similar compositions regarding percentage of pixels per class (appendix C-1-1). No over- or
undersampling is applied in this experiment, therefore fo = 0 and fu = 0.

Using more patches, training is more stable and convergence is faster (figures 5-11 and 5-
12). Furthermore, when training a small training data set, the difference between training
and validation accuracy grows per epoch, which is an indication for overfitting the training
data. However, the downside of using more patches is slower training and larger memory
usage. Furthermore, for both settings of patches per image np, the segmented images are not
predicted perfectly (figures 5-13 and 5-14). Both segmentation maps show misclassification.
Moreover, artificial grass has not been distinguished in both cases. However, training data set
selection using np = 1500 significantly improves results, especially due to less sand-asphalt
confusion.

I.A.F. Snuverink Master of Science Thesis

5-2 Guidelines for Patch Selection 49

Figure 5-11: Training and validation ac-
curacy per epoch for a train set containing
10805 patches.

Figure 5-12: Training and validation ac-
curacy per epoch for a train set containing
16189 patches.

Figure 5-13: Segmentation of test image
(June 9th at 13 p.m.) obtained by a net-
work trained with a set of 10805 patches.

Figure 5-14: Segmentation of test image
(June 9th at 13 p.m.) obtained by a net-
work trained with a set of 16189 patches.

5-2-2 Selection of Training Patches

In order to classify all classes perfectly, both training and validation loss is required to converge
approaching zero. Furthermore the accuracy should converge to one. Balancing classes in the
training data improves network performance. In experiments oversampling on rare classes is
applied, as well as undersampling on frequent classes.

No Class Balance Applied

Figures 5-13 and 5-14 clearly show that not all classes are predicted correctly. In the ex-
periments no oversampling or undersampling has been applied to the training data set. The
training data set class composition for np = 1500 is displayed in table 5-1, the training data
set for np = 1000 is very similar (appendix C-1-1). The network is trained to segment five
different classes, however the segmentation maps show four classes only. One class has not
been distinguished at all.

Figure 5-15 shows is an enlarged version of figure 5-14, but printed with corresponding eval-
uation metrics. It is a segmentation obtained from an unbalanced training data set using
np = 1500. The F-score supports the qualitative findings done using the visual appearance of

Master of Science Thesis I.A.F. Snuverink

50 Training Data Set Optimization

Class Pixels in training
data set [%]

Broad leaf tree 57,85
Grass 15,31
Sand 3,46
Asphalt 23,30
Artificial grass 0,08

Table 5-1: Composition of training data set without balancing for np = 1500 (fo = 0, fu = 0)

the map only. The F-score for artificial grass is zero, which sorts with the absence of this class
in the map. Artificial grass has mainly been classified as broad leaf tree (red box in figure
5-15). Furthermore, there is some confusion between asphalt and grass. As artificial grass
accounts for a very small amount of all pixels in the test images, the improvements regarding
the segmentation map come down to two main aspects:

• Increase overall accuracy
• Increase F-score for artificial grass

Figure 5-15: Segmented map with corresponding evaluation metrics, for a training data set
without balancing and np = 1500. The red box indicates the correct location of artificial grass.
F-scores represent pine trees, broad leaf trees, grass, sand, asphalt and artificial grass respectively.
RGB image for comparison in figure 4-1.

The network requires to converge to a smaller loss value in order to increase segmentation
accuracy. Furthermore, to increase the amount of examples of artificial grass, the relative
amount of annotated pixels for artificial grass has to be increased. Both aspects are dealt
with in balancing the training data set. Balancing is done by decreasing the dominant class,
by enlarging the rare class or by a combination of these two methods.

Effect of Oversampling

The artificial grass class has been oversampled with a factor fo, using the method explained
in section 4-1-2. The number of patches has been increased by a factor fo = 10 and a
factor fo = 70, the composition of both training data sets are shown in section C-1-2. For

I.A.F. Snuverink Master of Science Thesis

5-2 Guidelines for Patch Selection 51

oversampling the rare class with fo = 10, this class remains the smallest in size. Oversampling
with factor fo = 70 causes the artificial grass class to approximately equal the sand class in
size.

The networks are trained with several training data sets, varying values for np and fo (results
in appendix D-1). Figure 5-16 shows the segmentation maps for a test image under similar
and different weather conditions compared to the training data set. The experiments show
there is variation in the final result, both in overall accuracy and in F-score. Settings of np
and fo have a different effect on segmented test images in case weather conditions deviate
from training data set. A training data set generated with a higher factor fo is more robust
for varying weather conditions. Concluding, oversampling on the rare class does increase
the F-score for that class. All experiments show that artificial grass has been distinguished.
Summarizing, oversampling on artificial grass has the following effects on the segmented test
images:

• Oversampling increases F-score artificial grass
• Oversampling with fo = 70 increases overall accuracy

Figure 5-16: Networks trained with training data sets under sunny weather conditions, for
np = 1500 and several values of fo. Test images are subject to both sunny (09-06-2016) and
foggy (03-06-2016) conditions.

It is important to note that the number of training patches is a lot higher in case of fo = 70
compared to fo = 10. For both data sets applies that np = 1500; the training data set
oversampled with fo = 10 contains 17328 patches, the training data set oversampled with
fo = 70 contains 24410 patches.

Master of Science Thesis I.A.F. Snuverink

52 Training Data Set Optimization

Effect of Undersampling

Approximately 60 per cent of all pixels in the training data set are annotated as broad leaf
tree, all other classes are significantly smaller. By undersampling this dominating class, the
amount of pixels per class is more balanced (training data set composition in appendix C-1-
3). Undersampling is applied by removing a certain percentage of all patches containing the
dominating class in a random fashion.

The broad leaf tree class remains the largest after undersampling with factor fu = 0.6. In
undersampling with factor fu = 0.8 the broad leaf trees becomes the third largest class. These
factors fu have been chosen in order to find out if the ordering of class sizes in the training
data set should be according to ordering of class sizes is the test images. Experiments have
been carried out for different values of np and fu (results in appendix D-2). Experimental
results show that undersampling the broad leaf tree class has the following effects on the
segmented test images:

• Undersampling broad leaf tree does not increase F-score artificial grass
• Undersampling broad leaf tree does not increase overall accuracy
• No indications that same ordering should be kept

Combined Oversampling and Undersampling

In order to increase the extend to which the training data set is balanced, both oversampling
and undersampling is applied. The rare class has been oversampled by factor fo. Furthermore
the most frequent class has been undersampled by factor fu. However, the network did not
yield stable and robust results training such a training data set. In all further experiment
training data sets will be generated with np = 1500, fo = 70 and fu = 0, as distinguishing
artificial grass is a research objective.

5-3 Development of Segmentation Map during Training

In this experiment the training data set consists of 27600 patches (np = 1500, fo = 70)
with a batch size nb = 100. Typical development of a segmented test image during training
is evaluated after training several batches or epochs (figure 5-17). One epoch consists of
training data set size

batch size = 27600
100 = 276 batches. Thus after 138 batches, the network has processed

half of the first epoch. After each epoch the network used all patches in the training data set
for updating the weights. Consequently, after the second epoch all patches have been used
twice.

I.A.F. Snuverink Master of Science Thesis

5-3 Development of Segmentation Map during Training 53

10 batches Low level features appear, e.g. edges
Half epoch Low level start to disappear, contours of objects start to develop
Epoch 1 Network distinguishes asphalt, grass and broad leaf tree
Epoch 5 Idem
Epoch 10 Network distinguishes asphalt, grass, broad leaf tree and sand
Epoch 15 Idem
Epoch 20 Idem
Epoch 30 All classes distinguished, higher level of detail in classification

First, weights in shallow layers are updated, as the test image mainly shows edges after train-
ing 10 batches. Next, weights in deeper layers are trained, enlarging the degree of complexity
of decisions for classification. Classes which can be differentiated using less complex features
are classified first. These classes are broad leaf tree, grass and asphalt. After training deeper
layers, the final two classes are segmented. Evidently, sand and artificial grass require more
complex decision boundaries. Possibly, training less classes in a single model significantly
increases overall accuracy and F-score of the final result.

Master of Science Thesis I.A.F. Snuverink

54 Training Data Set Optimization

Figure 5-17: Typical segmentation development of an image from the test data set. Segmenta-
tions are generated at several moments during training the network.

I.A.F. Snuverink Master of Science Thesis

Chapter 6

Experimental Results

The scene displayed in the hyperspectral (HS) images is subject to temporally changing ambi-
ent conditions. Throughout the year, illumination conditions as well as physical appearances
change. Vegetation is subject to its growth cycle, subsequently scene appearance keeps chang-
ing over time. Furthermore weather conditions have impact on HS data. In order to answer
the second research question, experiments on this temporally changing scene have been car-
ried out. Test images will be segmented by a network trained with data taken over the course
of a week (section 6-1), four weeks (section 6-2) and five months (section 6-3).

6-1 Interpolating Between Days in One Week

In this set of experiments training and testing have been carried out using data taken over
a period of approximately one week. Training, validation and test data sets used in the
following experiments are listed in appendix C-2-1. All results are shown in appendix E, the
most important and revealing results are displayed below. Experiments are carried out with
images from a single week in May, June, July and August.

6-1-1 A Single Week in June

The HS data for this experiment was taken between 02-06-2016 and 11-06-2016. This week
falls right after growing season, therefore the images within the training data set are very
similar. A network trained using data under a single weather condition yields results with an
overall accuracy ranging between 95−97% for a sunny test image. For rainy test images results
range between 94− 95% (both in figure 6-2). So, two segmented test images generated by a
model trained with data under a single -sunny- weather condition (figure 6-1) are assessed.
Interestingly, this model is accurate in segmenting both sunny and cloudy test images.

As lighting conditions change over the day, generalization should work irrespective of time of
the day. The training data set includes images recorded at all hours between 11 a.m. and 17

Master of Science Thesis I.A.F. Snuverink

56 Experimental Results

Figure 6-1: A single model yields > 95% accuracy on both sunny (97% accuracy, 0.96 mean
F-score) and rainy (96% accuracy, 0.86 mean F-score) test images. Both test images are recorded
at 13 p.m.

Figure 6-2: Accuracy and F-score of test images over time (model trained trained with a single
-sunny - weather type in June).

p.m. Observation of the segmented test images show that the network yields an accuracy of
> 94% (figure 6-2) for all times of the day.

Results for a network trained using data under multiple weather conditions are significantly
worse (appendix E-2, figure E-2). Overall accuracy for a rainy test image ranges between
70 − 74%, for sunny test images results between 75 − 77% are obtained. Both training and
validation loss do not converge to a low value. Comparing the spectral signatures of the classes

I.A.F. Snuverink Master of Science Thesis

6-1 Interpolating Between Days in One Week 57

at rainy and sunny days (figure 6-3) show large differences, as signatures from sunny days
have a higher intensity. Therefore, training data sets including multiple weather conditions
are more complex, as the range of spectral signature values per class is larger.

Figure 6-3: Typical shapes of spectral signatures, mean of annotated pixels per class.

When comparing training data sets under a single and multiple weather conditions, differ-
ences in mean µ and standard deviation σ between both sets become clear (table 6-1). Due
to multiple weather conditions, the spectral signatures have a large range of variation, as
indicated by σ. Furthermore, the mean value µ for the training data set comprising multiple
weather types is lower (due to lower spectral intensities from cloudy days).

Training data set Class
Weather type Broad leaf Tree Grass Sand Asphalt Artificial Grass

Single Sunny µ 1100 1419 2081 1002 1232
σ 172 211 306 148 288

Multiple µ 891 1136 1603 813 1002
σ 404 526 808 371 497

Table 6-1: Mean µ and standard deviation σ for training data sets subject to a single and multiple
weather conditions (experiments for a single week in June).

In order to gain insight about the generalizing abilities of a network trained on a single week
in June (subject to a single weather condition), test images recorded in April, May, June,
July and August are segmented (figure 6-4). Accuracy ranges between 36 − 97% (appendix
E-2, table E-1). It becomes clear that a network trained with data from June, also performs
well in July and August. However, performance in May is low and degrades even more in
April. Degradation of results in extrapolation can partly be explained by a lower level of
chlorophyll in vegetation, which has large effect on the spectral signature shape. Vegetation
(leafs) in June contain high levels of chlorophyll, which is what the network has been subject
to during training. Observation of test images from April and May reveals that performance
on non-vegetation classes (asphalt and sand) remains similar to a test image from June
(present F-scores). Therefore, in order to increase the period in which a single model is valid,
additional training data is required from this period of time.

Master of Science Thesis I.A.F. Snuverink

58 Experimental Results

Fi
gu

re
6-
4:

Ex
tr
ap

ol
at
io
n
be
yo
nd

th
e
tr
ai
ni
ng

da
ta

se
t;

ge
ne
ra
te
d
us
in
g
U-

N
et

tr
ai
ne
d
on

da
ta

fro
m

a
sin

gl
e
we

ek
in

Ju
ne

(s
un

ny
we

at
he
r

co
nd

iti
on

s)
.
Ac

cu
ra
cy

ra
ng

es
be
tw
ee
n

36
−

97
%
.
M
ea
n
F-
sc
or
es

ra
ng

e
be
tw
ee
n

0.
29
−

0.
96

.
Al
lv

al
ue
s
fo
r
ac
cu
ra
cy
A
,F

-s
co
re

pe
r
cla

ss
an
d

m
ea
n
F-
sc
or
e
F̄

in
ap
pe
nd

ix
E-
2,

ta
bl
e
E-
1.

I.A.F. Snuverink Master of Science Thesis

6-1 Interpolating Between Days in One Week 59

6-1-2 A Single Week in July

The HS data for this experiment was taken between 01-07-2016 and 07-07-2016. Furthermore
the annotation mask which was also used in experiments for May and June data, was used
in the July-experiments. However, it became clear that a new annotation mask (July new) is
required for artificial grass, as broad leaf trees have grown to pixels which have been annotated
as artificial grass. Subsequently, the training data set includes a large number of pixels of
broad leaf tree which are annotated as artificial grass, which is clearly visible in segmented
test images (appendix E-3, figure E-4). Test images show there is artificial grass - broad
leaf tree confusion especially. Since artificial grass is a rare class and the training data set is
strongly oversampled on this class, it has large effect on the segmentation results.

This effect is observed in the mean spectral signature of all pixels annotated as artificial grass
(figure 6-5). Note that the broad leaf tree class is not affected by using the new mask, as
it has been adapted for artificial grass pixels only. For artificial grass, not all HS bands are
equally affected. For example band numbers 16, 19 and 25 appear not to be influenced by the
new mask. However band numbers 7, 8, 22 and 23 are very sensitive to incorrect annotation.
Mean µ and standard deviation σ of these bands of artificial grass indicate the new mask
contains less incorrectly annotated pixels (table 6-2).

Figure 6-5: Mean spectral signatures of annotated pixels for two different masks (image from
07-07-2016 at 15 p.m.).

Applying the new mask, a network trained with data under similar weather conditions yields
results with an overall accuracy ranging between 87−96% for a sunny test image. For a rainy
test images results range between 93− 96% (both in appendix E-3, figure E-5).

Furthermore, a network trained with data under multiple weather conditions did not yield
accurate results (appendix E-3, figure E-3). Effects due to weather are similar to experiments

Master of Science Thesis I.A.F. Snuverink

60 Experimental Results

Mask µ and σ of selected band numbers of
artificial grass spectral signature

7 8 22 23 25

Initial µ 1336 1113 971 1067 591
σ 230 186 165 192 95

New July µ 1395 1156 1018 1129 609
σ 205 172 151 172 95

Table 6-2: Mean µ and standard deviation σ for several HS channels of pixels annotated as
artificial grass (image 07-07-2016 at 15 p.m.) for two different annotation masks. Band 25 for
comparison.

carried out using June data. Test results regarding extrapolating capabilities are very similar
to experiments from June data as well (appendix E-3, figure E-6).

6-1-3 Remaining results

A Single Week in May

The HS data for this experiment was taken between 27-04-2016 and 04-05-2016. This week
falls just before the start of growing season. Visually, there is a large variation in of colors
(buds on the trees turn green at different times, grass color is pale) and structures (tree
trunks, branches are visible etc.) compared to data recorded in summer months. Comparing
the mean µ and standard deviation σ from training data set from May and June support this
(table 6-3)

Training data set Class
Single weather type Broad leaf Tree Grass Sand Asphalt Artificial Grass

May µ 723 1028 1404 643 NA
σ 328 455 668 277 NA

June µ 1100 1419 2081 1002 1232
σ 172 211 306 148 288

Table 6-3: Mean µ and standard deviation σ for training data sets from a single week in May
and June (single -sunny - weather type).

A network trained using data under a single weather condition yields results with an overall
accuracy ranging between 75 − 78% for a sunny test image. For a rainy test images results
range between 66 − 79% (both in appendix E-1, figure E-1). These are low accuracy scores,
which translate to many misclassified pixels of certain classes. Especially sand - asphalt
confusion results in performance degradation. Results for a network trained under multiple
weather conditions are similar. Segmentation accuracy of test images obtained with this
training data set are clearly lower than segmentations obtained with networks trained on
data from summer months (section 6-1-1 to 6-1-3).

A Single Week in August

The HS data for this experiment was taken between 10-08-2016 and 16-08-2016. Results
deviate from previous experiments concerning a week in June and a week in July, as there are

I.A.F. Snuverink Master of Science Thesis

6-2 Interpolating Between Days in Four Weeks 61

many pixels misclassified as artificial grass for distant objects. An adapted annotation mask
(August New) was used to fit the training data, as broad leaf trees might have grown to pixels
annotated as artificial grass. However, it did not fully solve the problem. Also mean µ and
standard deviation σ of the HS bands of artificial grass in the training data set (table 6-4)
do not show clear improvement, as standard deviation σ does not significantly decrease for
every band. Possibly, the misclassification error has another cause, for example the spectral
signatures might be affected by humidity due to high August temperatures (especially distant
objects will be affected).

Mask µ and σ of selected band numbers of
artificial grass spectral signature

7 8 22 23 25

Initial µ 1336 1113 971 1067 591
σ 230 186 165 192 95

July New µ 1395 1156 1018 1129 609
σ 205 172 151 172 95

August New µ 1309 1078 976 1091 560
σ 193 155 150 173 81

Table 6-4: Mean µ and standard deviation σ of several HS bands of pixels annotated as artificial
grass. Values generated from training data sets using the initial mask, a masked adapted to fit
images from July and August respectively.

A network trained using data under similar weather conditions yields results with an overall
accuracy ranging between 88 − 92% for a sunny test image. For a rainy test images results
range between 77− 86% (appendix E-4, figure E-7).

6-2 Interpolating Between Days in Four Weeks

In this set of experiments training and testing have been carried out from data taken over
a period of approximately four weeks. Training, validation and test data sets used in the
following experiments are listed in appendix C-2-2. Experiments are carried out for May to
June and July to August, segmented test images are displayed in appendices E-5 and E-6
respectively.

6-2-1 May-June

The HS data for this experiment was taken between 03-05-2016 and 10-06-2016. This period
falls right into growing season, hence there is large variation in appearance of the scene.
The test set image with the highest accuracy is 87% with an F-score of 0.55, obtained with a
training data set subject to sunny weather conditions (appendix E-5, figure E-9). Test images
generated with a test set under multiple weather conditions achieve a lower maximum score,
namely 72% accuracy with an F-score of 0.38 (appendix E-5, figure E-11).

Master of Science Thesis I.A.F. Snuverink

62 Experimental Results

6-2-2 July-August

The HS data for this experiment was taken between 01-07-2016 and 16-08-2016. This period in
summer has no large changes regarding vegetation, hence images are similar. The maximum
score for the training data set under sunny weather conditions is 86% with an F-score of 0.58
(appendix E-6, figure E-13). The maximum score for the training data set under multiple
weather conditions is 81% with an F-score of 0.38 (appendix E-6, figure E-15).

Hence these experiments support the findings that the standard U-Net architecture is unable
to generalize highly varying data, as the network does not converge for training data sets
under multiple weather or seasonal conditions. However, in order to extend the period in
which U-Net yields accurate results, the network should be able to process diverse training
data.

6-3 Interpolation Over a Longer Period of Time

To increasing the period in which the trained network is valid, a training data set is taken
from a longer period of time. However, training a network using data from a longer period
of time is not straightforward (sections 6-2-1 and 6-2-2). Also, experiments using multiple
weather types for training (section 6-1) show inaccurate results. Training data sets with a
large variation of spectral signatures show low performance, great variation within a training
data set contributes to the increasing complexity of the features to be learned. Therefore,
features should have incorporated information regarding weather or season. Then the network
will be able to generalize over a longer period of time. Increasing generalizability has been
researched according to two different approaches; normalizing the raw input data (appendix
F-1) and rearranging U-Net weights (appendix F-2).

Finally, rearranging the U-Net weights (appendix F-2, figure F-2) and altering its hyperpa-
rameters proved to be an effective way to increase generalizability. The customized U-Net
has a different number of feature maps per convolutional layer, keeping the total number of
weights roughly the same (appendix F-2, table F-1). The general U-Net architecture remains
the same, only the number of weights per network layer has been adapted. The new weights
are structured in such a way that it extracts more informative lower-level features from the HS
data. Subsequently, these features are used as a basis for higher-level feature-maps, creating
a bottom-up effect.

Using the customized U-Net architecture, experiments are done using training data including
several types of weather (section 6-3-1). Moreover, the altered network is able to handle a
training data set taken over a larger period of time including several seasons (section 6-3-2).

6-3-1 Multiple Weather Type Training

Experiments presented in section 6-1 show accurate results are achieved only when using a
single weather type, i.e. sunny weather. Therefore, the goal is to adjust the architecture so
that it is able to handle patches with larger variability. The customized U-net architecture
is altered to extract more informative features from all HS bands in order to increase gen-
eralizability of classes under large variability caused by a range of ambient conditions. The

I.A.F. Snuverink Master of Science Thesis

6-3 Interpolation Over a Longer Period of Time 63

customized U-Net is capable of yielding accurate results for a training data set subject to
multiple weather types (figure 6-6). The original U-Net achieves 70% accuracy on a rainy
test image, whereas the customized U-Net yields 93%. The difference for sunny test images
is slightly smaller.

Figure 6-6: Networks trained on multiple weather conditions. The original U-Net yields > 70%
accuracy on both sunny (77% accuracy, 0.45 mean F-score) and rainy (70% accuracy, 0.38 mean
F-score) test images. The customized U-Net yields > 93% accuracy on both sunny (94% accuracy,
0.79 mean F-score) and rainy (93% accuracy, 0.75 mean F-score) test images.

Thus, the customized network performs better on a training data set under large variability
(due to multiple weather conditions) than the original U-Net. However, the results show
slightly lower performance than training the original U-Net with a training data set comprising
sunny images only. Both accuracy and F-score are lower, as the pixelwise classified test images
show some sand-asphalt confusion. This type of confusion specifically occurs in the parking
area at locations with parked cars. These results obtained with this complex training data
set gives rise to training a network with a training data set subject to multiple seasons.

6-3-2 Multiple Season Training

The following experiment is carried out under a single weather condition (sunny) using the
customized network. The training and test data set comprise patches from days in April to
August. Segmented test images show that the network is able to generalize over this period
of time (figure 6-7), yielding a maximum accuracy of 93%. Irrespective of weather conditions

Master of Science Thesis I.A.F. Snuverink

64 Experimental Results

the network yields robust segmentations over time, as the accuracies range between 87 and
93% (appendix E-7, table E-2).

Segmented test images under cloudy or rainy conditions are less accurate, especially due to
sand-asphalt and grass-asphalt confusion. This can be explained by the content of the training
data set, as it does not include images subject to rainy conditions. None of the segmented
images show classification of artificial grass, also indicated by a relatively low F-score.

In order to assess generalizing properties beyond the training data set, the customized U-Net
is used to yield segmentations for test images taken in October and December (appendix
E-7, figure E-16). Note that the scene is slightly different as the camera angle has changed
and painted markings have been added to the parking area. Accuracy of both test images
have dropped significantly to 65% in October and 54% in December. The training data set
did not include patches subject to the specific atmospheric conditions of these months. In
both images non-natural material (asphalt, sand and artificial grass) is classified as asphalt.
Natural materials are classified as broad leaf tree.

I.A.F. Snuverink Master of Science Thesis

6-3 Interpolation Over a Longer Period of Time 65

Fi
gu

re
6-
7:

Th
e
cu
st
om

ize
d
U-

N
et

is
ab
le

to
ge
ne
ra
liz
e
ov
er

a
lo
ng

er
pe
rio

d
of

tim
e,

i.e
.
Ap

ril
to

Au
gu

st
.
Th

e
se
gm

en
te
d
te
st

im
ag
es

(a
ll

re
co
rd
ed

at
13

p.
m
.)

ar
e
su
bj
ec
t
to

m
ul
tip

le
we

at
he
r
co
nd

iti
on

s.
Ac

cu
ra
cie

s
ra
ng

e
be
tw
ee
n

87
an
d

93
%
.
M
ea
n
F-
sc
or
es

ra
ng

e
be
tw
ee
n

0.
55

an
d

0.
69

.
Al
lv

al
ue
s
fo
ra

cc
ur
ac
y
A
,F

-s
co
re

pe
rc

la
ss

an
d
m
ea
n
F-
sc
or
e
F̄

in
ap
pe
nd

ix
E-
7,

ta
bl
e
E-
2.

Master of Science Thesis I.A.F. Snuverink

66 Experimental Results

I.A.F. Snuverink Master of Science Thesis

Chapter 7

Conclusions and Recommendations

The TNO hyperspectral (HS) data set comprises images of a fixed scene recorded over the
course of a year. So, the images are subject to a range of lighting, weather and seasonal
conditions. Atmospheric effects, such as illumination and humidity, disturb the spectral in-
formation. This thesis addresses accurate pixelwise segmentation of HS images irrespective
of recording date, using a Fully Convolutional Network (FCN) (U-Net [10]). These networks
are known for their generalizing properties regarding image segmentation problems. Limi-
tations of training U-Net to generalize for the temporally changing ambient conditions are
explored. The network has learned to define features based on both local spectral and spatial
information to yield accurate classifications for every pixel. No restoring atmospheric model
is defined explicitly, the model learns to correct for lighting, weather and seasonal conditions
implicitly.

Conclusions

For the ground truth required for training a neural network, a sparse annotation mask has
been developed. This mask fits images over the entire recording period. Using such a mask is
time-saving, allows for changing object borders (due to growing season) and avoids inclusion
of mixed pixels.

Besides the annotation mask, a patch-wise training method has been used. In this method,
many small patches are taken from the original images to form the training data set, instead
of taking the full (1200 × 3033 × 25) image dimensions. It reduces the computational load.
Patch-wise training in combination with a sparse mask results in a network that is able to
generalize beyond local information given by the training patches. Network performance is
assessed with accuracy metrics based on the annotated pixels only. Unmasked pixels show
correct classification, as the segmented test images suit with the Red-Green-Blue (RGB)
images which were made for comparison.

The sparse annotation mask has been investigated qualitatively, as it influences the level of
detail attained in the segmented test images. Increasing the level of detail is achieved by

Master of Science Thesis I.A.F. Snuverink

68 Conclusions and Recommendations

annotating at least two neighboring classes densely, however this is at odds with avoiding
inclusion of mixed pixels. Furthermore, the problem of classifying extremely rare classes
has been solved by using an oversampling technique. The choice of the oversampling factor
and the sensitivity of the annotation mask have been investigated, as well as the effects of
undersampling the most common class.

The U-net architecture has been adapted in order to extend the period of time for which
the network yields accurate results. This customized U-Net architecture contains slightly less
network weights compared to the original architecture. The original U-Net can be trained
on a simple training data set only, so that it yields accuracies of > 95% for a limited period
of time. The customized U-Net is able to handle more complex training data sets, as it
extracts more informative features from the HS training patches. This network is able to
yield accurate segmentations over a period of April to August. However, accuracy is lower
compared to the original U-Net, as the network yields accuracies of > 87% for all test images
within this period of time.

Concluding, convolutional neural networks are capable of generalizing HS images under vary-
ing lighting, weather and seasonal conditions. Pre-processing techniques such as image nor-
malization or atmospheric correction have not been used. Training a network with local
spectral-spatial information only, yields a model which is able to segment images over a
longer period of time irrespective of season or weather. In this application, neural network
design is a trade-off between segmentation accuracy and duration of model validity, which
is controlled by network weight arrangement. The design is dependent on the goal of the
segmentation task.

Recommendations

In future work, a cross entropy loss function could be implemented instead of a quadratic
loss function, minimizing the error between the ground truth yt and masked predictions yp,m.
For this loss function, only the predictions yp of unlabeled pixels should be masked. The
cross entropy loss function fits the goal of estimating a single class per pixel better, as the
final softmax activation function minimizes the cross-entropy between the estimated class
probabilities and the true distribution.

Furthermore, network performance can be increased by adding information to training data
set. This additional information makes uses of physical characteristics of objects. Specific
spectral bands are combined to form a discriminative index. For example, the normalized
difference vegetation index discriminates vegetation from non-vegetation.

Further research could also address the effects of increasing the number of training samples
subject a wider range of weather conditions. This possibly enhances segmentation perfor-
mance when training a network using a training data set subject to multiple weather condi-
tions.

I.A.F. Snuverink Master of Science Thesis

Appendix A

Annotation Mask

The annotation mask used for hyperspectral (HS) images over a period of a several months.
Figures A-1 to A-4 show the mask covering RGB images of the scene in May, June, July and
August. The same mask is used for all months, except for the artificial grass class in July
and August. Annotated pixels for this class have been modified in order to compensate for
growing vegetation. Note that parked cars are annotated as asphalt.

Figure A-1: RGB image taken in May (01-05) covered by the annotation mask.

Master of Science Thesis I.A.F. Snuverink

70 Annotation Mask

Figure A-2: RGB image taken in June (05-06) covered by the annotation mask.

Figure A-3: RGB image taken in July (06-07) covered by the annotation mask.

Figure A-4: RGB image taken in August (14-08) covered by the annotation mask.

I.A.F. Snuverink Master of Science Thesis

Appendix B

Python Code

B-1 U-Net Architecture

1 def make_unet_model (optimizer , img_rows , img_cols , classes , dropoutrate ,
weights=None) :

2 win = ’glorot_normal’
3 ac = ’elu’
4
5 inputs = Input ((25 , img_rows , img_cols))
6 conv1 = BatchNormalization (axis=1, epsilon=0.001) (inputs)
7 conv1 = Convolution2D (32 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv1)
8 conv1 = Convolution2D (32 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv1)
9 conv1 = Dropout (dropoutrate) (conv1)

10
11 conv2 = MaxPooling2D (pool_size=(2 ,2)) (conv1)
12 conv2 = Convolution2D (64 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv2)
13 conv2 = Convolution2D (64 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv2)
14 conv2 = Dropout (dropoutrate) (conv2)
15
16 conv3 = MaxPooling2D (pool_size=(2 ,2)) (conv2)
17 conv3 = Convolution2D (128 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv3)
18 conv3 = Convolution2D (128 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv3)
19 conv3 = Dropout (dropoutrate) (conv3)
20
21 conv4 = MaxPooling2D (pool_size=(2 ,2)) (conv3)
22 conv4 = Convolution2D (256 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv4)

Master of Science Thesis I.A.F. Snuverink

72 Python Code

23 conv4 = Convolution2D (256 , 3 , 3 , activation=ac , border_mode=’same’ , init=
win) (conv4)

24 conv4 = Dropout (dropoutrate) (conv4)
25
26 conv5 = MaxPooling2D (pool_size=(2 ,2)) (conv4)
27 conv5 = Convolution2D (512 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv5)
28 conv5 = Convolution2D (512 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv5)
29 conv5 = Dropout (dropoutrate) (conv5)
30
31 up6 = UpSampling2D (size=(2 ,2)) (conv5)
32 conv6 = merge ([up6 , conv4] , mode=’concat’ , concat_axis=1)
33 conv6 = Dropout (dropoutrate) (conv6)
34 conv6 = Convolution2D (256 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv6)
35 conv6 = Convolution2D (256 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv6)
36
37 up7 = UpSampling2D (size=(2 ,2)) (conv6)
38 conv7 = merge ([up7 , conv3] , mode=’concat’ , concat_axis=1)
39 conv7 = Dropout (dropoutrate) (conv7)
40 conv7 = Convolution2D (128 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv7)
41 conv7 = Convolution2D (128 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv7)
42
43 up8 = UpSampling2D (size=(2 ,2)) (conv7)
44 conv8 = merge ([up8 , conv2] , mode=’concat’ , concat_axis=1)
45 conv8 = Dropout (dropoutrate) (conv8)
46 conv8 = Convolution2D (64 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv8)
47 conv8 = Convolution2D (64 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv8)
48
49 up9 = UpSampling2D (size=(2 ,2)) (conv8)
50 conv9 = merge ([up9 , conv1] , mode=’concat’ , concat_axis=1)
51 conv9 = Dropout (dropoutrate) (conv9)
52 conv9 = Convolution2D (32 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv9)
53 conv9 = Convolution2D (32 , 3 , 3 , activation=ac , border_mode=’same’ , init=

win) (conv9)
54
55 conv11 = Convolution2D (len (classes) , 1 , 1 , activation=ac , border_mode=’

same’ , init=win) (conv9)
56 conv11 = core . Reshape ((len (classes) , img_rows∗img_cols)) (conv11)
57 conv11 = core . Permute ((2 , 1)) (conv11)
58
59 conv12 = core . Activation (’softmax’) (conv11)
60
61 conv13 = core . Permute ((2 , 1)) (conv12)
62 conv13 = core . Reshape ((len (classes) , img_rows , img_cols)) (conv13)
63

I.A.F. Snuverink Master of Science Thesis

B-2 Loss Function 73

64 model = Model (input=inputs , output=conv13)
65
66 model . compile (optimizer=optimizer , loss=custom_loss (weights) , metrics = [

fscore , overall_acc])
67
68 return model

B-2 Loss Function

1 from keras import backend as K
2
3 def custom_loss (weights=None) :
4 def custom_loss_value (y_true , y_pred) :
5 if weights is not None :
6 weights_tensor = np . array (weights) [: , np . newaxis , np . newaxis]
7 w_tensor = weights_tensor ∗ K . ones_like (y_true)
8 cover_pred = y_true ∗ y_pred
9 minimize = (y_true − cover_pred) ∗w_tensor

10 else :
11 cover_pred = y_true ∗ y_pred
12 minimize = y_true − cover_pred
13
14 loss = K . mean (K . square (minimize))
15 return loss
16
17 return custom_loss_value

B-3 Accuracy Metrics

1 from keras import backend as K
2
3 def fscore (y_true , y_pred) :
4 y_true_2D = K . max (y_true , axis=1, keepdims=False)
5 y_pred_2D = K . max (y_true∗y_pred , axis=1, keepdims=False)
6
7 smooth = 1 .
8 y_true_f = K . flatten (y_true_2D)
9 y_pred_f = K . flatten (y_pred_2D)

10 intersection = K . sum (y_true_f ∗ y_pred_f)
11 f = (2 . ∗ intersection + smooth) / (K . sum (y_true_f) + K . sum (y_pred_f) +

smooth)
12
13 return f

Master of Science Thesis I.A.F. Snuverink

74 Python Code

1 from keras import backend as K
2
3 def overall_acc (y_true , y_pred) :
4 y_true_2D = K . max (y_true , axis=1, keepdims=False)
5 y_pred_2D = K . max (y_true∗y_pred , axis=1, keepdims=False)
6
7 y_true_f = K . sum (K . flatten (y_true_2D))
8 y_pred_f = K . sum (K . flatten (y_pred_2D))
9

10 acc = y_pred_f / (y_true_f + 0.0001)
11
12 return acc

B-4 Patch lists

1 def load_data_description (img_rows , img_cols , nr_of_patches , video_days ,
video_names , ann_orig , data_dir , classes , dir_exp , data_name , splitratio
=0.2) :

2
3 patch_list = []
4 camera = ’VIS’
5 for video_day in video_days :
6 for video_name in video_names :
7 video = ’hsi_rc_{}_{}.h5’ . format (video_day , video_name) #Name video
8 img_path = os . path . join (data_dir , video) #Path to video
9 f = h5py . File (img_path)

10 dataset_name = [key for key in f . keys ()] [0]
11 [x_hsi , y_hsi , channels_hsi] = f [dataset_name] . shape
12 f . close ()
13
14 # random selection of coordinates top left point of patch
15 [row_max , col_max] = ann_orig . shape
16 row_max_sub = row_max − img_rows
17 col_max_sub = col_max − img_cols
18
19 for nr in range (0 , nr_of_patches) :
20 row_rand = random . randrange (0 , row_max_sub , 1)
21 col_rand = random . randrange (0 , col_max_sub , 1)
22 row = row_rand
23 col = col_rand
24 # only select patches if at least one class is present
25 if len (set (classes) . intersection (set (np . unique (ann_orig [row : row +

img_rows , col : col + img_cols])))) > 0 :
26
27 classx = [int (x) for x in set (np . unique (ann_orig [row : row + img_rows , col :

col + img_cols])) if x !=0]
28 patch_list += [{
29 ’col_left’ : col ,
30 ’row_top’ : row ,

I.A.F. Snuverink Master of Science Thesis

B-4 Patch lists 75

31 ’width’ : img_cols ,
32 ’height’ : img_rows ,
33 ’video_day’ : video_day ,
34 ’video_hour’ : video_name ,
35 ’class’ : classx
36 }]
37
38 # shuffle list and make list dataframe
39 random . seed (1000)
40 patch_list = random . sample (patch_list , len (patch_list))
41 patch_list_df = pd . DataFrame (patch_list)
42
43 # split list in train and validation set
44 split = int (splitratio∗len (patch_list))
45 patch_list_val = patch_list_df [: split]
46 patch_list_train = patch_list_df [split :]
47
48 return patch_list_train , patch_list_val , patch_list_df

Master of Science Thesis I.A.F. Snuverink

76 Python Code

I.A.F. Snuverink Master of Science Thesis

Appendix C

Experiment Details

C-1 Experiments Train Set Optimization

C-1-1 Number of training patches

Composition of the training data sets used:

Class Pixels in training
data set [%]

Broad leaf Tree 59,52
Grass 14,92
Sand 3,20
Asphalt 22,29
Artificial Grass 0,07

Table C-1: Number of training patches is
10805 (np = 1000, fo = 0, fu = 0)

Class Pixels in training
data set [%]

Broad leaf Tree 57,85
Grass 15,31
Sand 3,46
Asphalt 23,30
Artificial Grass 0,08

Table C-2: Number of training patches is
16189 (np = 1500, fo = 0, fu = 0)

C-1-2 Oversampling

Composition of the training data sets used, oversampled on artificial grass:

Master of Science Thesis I.A.F. Snuverink

78 Experiment Details

Class Pixels in training
data set [%]

Broad leaf tree 58,55
Grass 14,99
Sand 3,44
Asphalt 22,37
Artificial grass 0,66

Table C-3: Number of training patches is
11735 (fo = 10 and np = 1000)

Class Pixels in training
data set [%]

Broad leaf tree 56,65
Grass 14,14
Sand 3,15
Asphalt 22,47
Artificial grass 3,59

Table C-4: Number of training patches is
16399 (fo = 70 and np = 1000)

Class Pixels in training
data set [%]

Broad leaf tree 58,22
Grass 15,30
Sand 3,26
Asphalt 22,53
Artificial grass 0,69

Table C-5: Number of training patches is
17328 (fo = 10 and np = 1500)

Class Pixels in training
data set [%]

Broad leaf tree 57,04
Grass 14,43
Sand 3,13
Asphalt 21,97
Artificial grass 3,43

Table C-6: Number of training patches is
24410 (fo = 70 and np = 1500)

C-1-3 Undersampling

Composition of the training data sets used, undersampling applied on broad leaf tree:

Class Pixels in training
data set [%]

Broad leaf tree 40,53
Grass 20,79
Sand 4,95
Asphalt 33,62
Artificial grass 0,11

Table C-7: Number of training patches is
7815 (fu = 0.6 and np = 1000)

Class Pixels in training
data set [%]

Broad leaf tree 27,34
Grass 27,13
Sand 5,57
Asphalt 39,81
Artificial grass 0,15

Table C-8: Number of training patches is
6880 (fu = 0.8 and np = 1000)

Class Pixels in training
data set [%]

Broad leaf tree 38,85
Grass 22,32
Sand 4,77
Asphalt 33,94
Artificial grass 0,12

Table C-9: Number of training patches is
11840 (fu = 0.6 and np = 1500)

Class Pixels in training
data set [%]

Broad leaf tree 27,23
Grass 26,45
Sand 5,51
Asphalt 40,68
Artificial grass 0,13

Table C-10: Number of training patches
is 10388 (fu = 0.8 and np = 1500)

C-1-4 Combined Over- and Undersampling

Composition of the training data sets used:

I.A.F. Snuverink Master of Science Thesis

C-2 Experiments for temporally changing conditions 79

Class Pixels in training
data set [%]

Broad leaf tree 36,64
Grass 21,33
Sand 4,46
Asphalt 32,53
Artificial grass 5,04

Table C-11: Combined over- and under-
sampling; np = 1000, fo = 70 and fu =
0.7.

Class Pixels in training
data set [%]

Broad leaf tree 38,48
Grass 22.29
Sand 4,70
Asphalt 33,66
Artificial grass 0,88

Table C-12: Combined over- and under-
sampling; np = 1000, fo = 10 and fu =
0.7.

C-2 Experiments for temporally changing conditions

C-2-1 Interpolation over a week

Images in training (T), validation (V) and test data set end of April, beginning of May 2016
(tables C-13 and C-14).

Date Hours Data Set Weather
28-04 11-17 T+V Partly Cloudy
29-04 13 Test Cloudy
01-05 13 Test Sunny
02-05 11-17 T+V Sunny
03-05 11-17 T+V Sunny
04-05 11-17 T+V Sunny

Table C-13: Interpolating one week in
April and May, similar weather conditions.

Date Hours Data Set Weather
27-04 11-17 T+V Mostly Cloudy
28-04 11-17 T+V Partly Cloudy
29-04 13 Test Cloudy
01-05 13 Test Sunny
02-05 11-17 T+V Sunny
04-05 11-17 T+V Sunny

Table C-14: Interpolating one week April
and May, multiple weather conditions.

Images in training (T), validation (V) and test data set June 2016 (tables C-15 and C-16).

Date Hours Data Set Weather
03-06 13 Test Foggy
04-06 11-17 T+V Sunny
05-06 11-17 T+V Sunny
06-06 11-17 T+V Sunny
09-06 13 Test Sunny
10-06 11-17 T+V Sunny

Table C-15: Interpolating one week June,
similar weather conditions.

Date Hours Data Set Weather
02-06 11-17 T+V Rainy
03-06 13 Test Foggy
04-06 11-17 T+V Sunny
05-06 11-17 T+V Sunny
09-06 13 Test Sunny
10-06 11-17 T+V Sunny

Table C-16: Interpolating one week June,
multiple weather conditions.

Master of Science Thesis I.A.F. Snuverink

80 Experiment Details

Images in training (T), validation (V) and test data set July 2016 (tables C-17 and C-18).

Date Hours Data Set Weather
02-07 11-17 T+V Mostly sunny
03-07 13 Test Mostly sunny
04-07 11-17 T+V Mostly sunny
05-07 13 Test Cloudy (dark)
06-07 11-17 T+V Sunny
07-07 11-17 T+V Sunny

Table C-17: Interpolating one week July,
similar weather conditions.

Date Hours Data Set Weather
01-07 11-17 T+V Foggy (dark)
02-07 11-17 T+V Mostly sunny
03-07 13 Test Mostly sunny
04-07 11-17 T+V Mostly sunny
05-07 13 Test Cloudy (dark)
07-07 11-17 T+V Sunny

Table C-18: Interpolating one week July,
multiple weather conditions.

Images in training (T), validation (V) and test data set August 2016 (tables C-19 and C-20).

Date Hours Data Set Weather
10-08 11-17 T+V Mostly sunny
12-08 11-17 T+V Cloudy
13-08 13 Test Cloudy
14-08 11-17 T+V Sunny
15-08 13 Test Sunny
16-08 11-17 T+V Sunny

Table C-19: Interpolating one week Au-
gust, similar weather conditions.

Date Hours Data Set Weather
10-08 11-17 T+V Mostly sunny
11-08 11-17 T+V Rainy
12-08 11-17 T+V Cloudy
13-08 13 Test Cloudy
15-08 13 Test Sunny
16-08 11-17 T+V Sunny

Table C-20: Interpolating one week Au-
gust, multiple weather conditions.

C-2-2 Interpolation over four weeks

Images in training (T), validation (V) and test data set May-June 2016 (tables C-21 and
C-22).

Date Hours Data Set Weather
03-05 13 Test Partly Cloudy
04-05 11,13,15,17 T+V Sunny
05-05 11,13,15,17 T+V Sunny
06-05 13 Test Sunny
08-05 11,13,15,17 T+V Sunny
09-05 11,13,15,17 T+V Sunny
03-06 13 Test Foggy
04-06 11,13,15,17 T+V Sunny
05-06 11,13,15,17 T+V Sunny
06-06 11,13,15,17 T+V Sunny
09-06 13 Test Sunny
10-06 11,13,15,17 T+V Sunny

Table C-21: Interpolating May-June, sim-
ilar weather conditions.

Date Hours Data Set Weather
03-05 13 Test Partly Cloudy
04-05 11,13,15,17 T+V Sunny
05-05 11,13,15,17 T+V Sunny
06-05 13 Test Sunny
09-05 11,13,15,17 T+V Sunny
10-05 11,13,15,17 T+V Foggy (dark)
02-06 11,13,15,17 T+V Rainy
03-06 13 Test Foggy
04-06 11,13,15,17 T+V Sunny
05-06 11,13,15,17 T+V Sunny
09-06 13 Test Sunny
10-06 11,13,15,17 T+V Sunny

Table C-22: Interpolating May-June, mul-
tiple weather conditions.

I.A.F. Snuverink Master of Science Thesis

C-2 Experiments for temporally changing conditions 81

Images in training (T), validation (V) and test data set July-August 2016 (tables C-23 and
C-24).

Date Hours Data Set Weather
02-07 11,13,15,17 T+V Mostly sunny
03-07 13 Test Mostly sunny
04-07 11,13,15,17 T+V Mostly sunny
05-07 13 Test Cloudy (dark)
06-07 11,13,15,17 T+V Sunny
07-07 11,13,15,17 T+V Sunny
10-08 11,13,15,17 T+V Mostly sunny
12-08 11,13,15,17 T+V Cloudy
13-08 13 Test Cloudy
14-08 11,13,15,17 T+V Sunny
15-08 13 Test Sunny
16-08 11,13,15,17 T+V Sunny

Table C-23: Interpolating July-August,
similar weather conditions.

Date Hours Data Set Weather
01-07 11,13,15,17 T+V Foggy (dark)
02-07 11,13,15,17 T+V Mostly sunny
03-07 13 Test Mostly sunny
04-07 11,13,15,17 T+V Mostly sunny
05-07 13 Test Cloudy (dark)
07-07 11,13,15,17 T+V Sunny
10-08 11,13,15,17 T+V Mostly sunny
11-08 11,13,15,17 T+V Rainy
12-08 11,13,15,17 T+V Cloudy
13-08 13 Test Cloudy
15-08 13 Test Sunny
16-08 11,13,15,17 T+V Sunny

Table C-24: Interpolating July-August,
multiple weather conditions.

C-2-3 Interpolation over a longer period of time

Images in training (T), validation (V) and test data set April-August 2016 (tables C-25 and
C-26).

Date Hours Data Set Weather
29-04 13 Test Cloudy
30-04 13 Test Sunny
05-05 11,13,15,17 T+V Sunny
04-05 13 Test Sunny
09-05 11,13,15,17 T+V Sunny
10-05 13 Test Cloudy (dark)
03-06 13 Test Foggy
04-06 11,13,15,17 T+V Sunny
05-06 11,13,15,17 T+V Sunny
06-06 11,13,15,17 T+V Sunny
09-06 13 Test Sunny
10-06 11,13,15,17 T+V Sunny
02-07 11,13,15,17 T+V Sunny
03-07 11,13,15,17 T+V Sunny
05-07 13 Test Cloudy (dark)
06-07 13 Test Sunny
13-08 13 Test Cloudy
16-08 13 Test Sunny
29-10 * 13 Test Cloudy
02-12 * 13 Test Sunny

Table C-25: Interpolating April-August,
similar weather conditions.

Date Hours Data Set Weather
29-04 13 Test Cloudy
30-04 13 Test Sunny
04-05 13 Test Sunny
05-05 11,13,15,17 T+V Sunny
09-05 11,13,15,17 T+V Sunny
10-05 13 Test Cloudy (dark)
03-06 13 Test Foggy
02-06 11,13,15,17 T+V Rainy
04-06 11,13,15,17 T+V Sunny
06-06 11,13,15,17 T+V Sunny
09-06 13 Test Sunny
10-06 11,13,15,17 T+V Sunny
01-07 11,13,15,17 T+V Foggy(dark)
02-07 11,13,15,17 T+V Sunny
05-07 13 Test Cloudy (dark)
06-07 13 Test Sunny
13-08 13 Test Cloudy
16-08 13 Test Sunny
29-10 * 13 Test Cloudy
02-12 * 13 Test Sunny

Table C-26: Interpolating April-August,
multiple weather conditions.

* Extrapolating test data set images; the recorded scene is slightly different. The camera angle
has changed and painted markings on the parking area have been added.

Master of Science Thesis I.A.F. Snuverink

82 Experiment Details

I.A.F. Snuverink Master of Science Thesis

Appendix D

Experimental Results Train Set
Optimisation

Evaluating test images on number of patches per image np, oversampling factor fo and un-
dersampling factor fu. Experiments are carried out on oversampling the artificial grass class
(section D-1) and undersampling this class (section D-2).

D-1 Oversampling

Accuracy and F-score for test image recorded at 09-06-2016 , 13:00 hrs (table D-1). Networks
trained with train sets for several patches per images np and oversampling factor fo.

Experiment Test image Accuracy F-score
Similar to
train set

Broadleaf
Tree

Grass Sand Asphalt Artificial
Grass

np = 1000
fo = 0

09-06-2016
Hour 13

82.14% 0.98 0.91 0.27 0.47 0

np = 1000
fo = 10

09-06-2016
Hour 13

88.21% 0.99 0.72 0.86 0.67 0.88

np = 1000
fo = 70

09-06-2016
Hour 13

96.35% 0.99 0.88 0.94 0.94 0.86

np = 1500
fo = 0

09-06-2016
Hour 13

96.7% 0.99 0.93 0.82 0.95 0

np = 1500
fo = 10

09-06-2016
Hour 13

80.26% 0.98 0.68 0.54 0.35 0.16

np = 1500
fo = 70

09-06-2016
Hour 13

97.25% 1.00 0.91 0.98 0.94 0.97

Table D-1: Accuracy and F-score per experiment for different values of np and fo for a test
image under similar weather conditions compared to the train set.

Master of Science Thesis I.A.F. Snuverink

84 Experimental Results Train Set Optimisation

Segmented test images show that number of patches per image np and oversampling factor
fo affect the final segmented result (figure D-1).

Figure D-1: Segmented test images; oversampled train sets with several values for np and fo.

I.A.F. Snuverink Master of Science Thesis

D-2 Undersampling 85

D-2 Undersampling

Accuracy and F-score for test image recorded at 09-06-2016, 13:00 hrs (table D-2). Networks
trained with train sets for several patches per images np and undersampling factor fu.

Experiment Test image Accuracy F-score
Broadleaf
Tree

Grass Sand Asphalt Artificial
Grass

np = 1000
fu = 0

09-06-2016
Hour 13

82.14% 0.98 0.91 0.27 0.47 0

np = 1000
fu = 0.6

09-06-2016
Hour 13

94.79% 0.98 0.89 0.73 0.93 0

np = 1000
fu = 0.8

09-06-2016
Hour 13

78.05% 0.96 0.72 0.27 0.40 0

np = 1500
fu = 0

09-06-2016
Hour 13

96.7% 0.99 0.93 0.82 0.95 0

np = 1500
fu = 0.6

09-06-2016
Hour 13

89.55% 0.95 0.7 0.64 0.91 0.04

np = 1500
fu = 0.8

09-06-2016
Hour 13

92.64% 0.95 0.70 0.95 0.97 0

Table D-2: Accuracy and F-score per experiment for different values of np and fu.

Segmented test images show that number of patches per image np and undersampling factor
fu affect the final segmented result (figure D-2).

Master of Science Thesis I.A.F. Snuverink

86 Experimental Results Train Set Optimisation

Figure D-2: Segmented test images; undersampled train sets with several values for np and fu.

I.A.F. Snuverink Master of Science Thesis

Appendix E

Experimental Results Temporally
Changing Conditions

In order to research the network limitations regarding generalizability for weather and seasonal
conditions, experiments have been carried out over the course of a week (section E-1 to E-4),
four weeks (section E-5 to E-6) and five months (section E-7).

E-1 Interpolating between one week in April-May

Segmented test data set images, networks trained with data from a week in April-May (figure
E-1).

Master of Science Thesis I.A.F. Snuverink

88 Experimental Results Temporally Changing Conditions

Figure E-1: Segmentations for a sunny and cloudy test image; obtained with (1) a training
data set comprising sunny images only and (2) a training data set comprising multiple weather
conditions.

E-2 Interpolating between one week in June

Segmented test data set images, networks trained with data from a week in June (figure E-2).

Figure E-2: Segmentations for a sunny and cloudy test set image; obtained with (1) a training
data set comprising sunny images only and (2) a training data set comprising multiple weather
conditions.

Extrapolation beyond the training data set. Accuracy, F-score per class and mean F-score

I.A.F. Snuverink Master of Science Thesis

E-3 Interpolating between one week in July 89

for test images in table E-1.

Test Image Br
d.
lea

f

Gr
as
s

Sa
nd

As
ph
alt

Ar
t.
G

Date Hour A[%] F1 F2 F3 F4 F5 F̄
30-04 13 38 0.00 0.37 0.48 0.95 0.00 0.36
29-04 13 36 0.00 0.43 0.10 0.92 0.00 0.29
04-05 13 40 0.06 0.36 0.84 0.94 0.00 0.44
10-05 13 79 0.84 0.62 0.40 0.94 0.00 0.56
09-06 13 97 1.00 0.91 0.98 0.94 0.97 0.96
03-06 13 96 0.99 0.86 0.73 0.96 0.76 0.86
06-07 13 96 0.99 0.87 0.90 0.92 0.81 0.90
05-07 13 96 0.99 0.83 0.69 0.94 0.73 0.84
16-08 13 97 0.99 0.90 0.96 0.94 0.33 0.82
13-08 13 96 0.98 0.87 0.76 0.96 0.31 0.78

Table E-1: Accuracy A, F-score per class and mean F-score F̄ of images from the test data set.
Evaluation metrics correspond to segmentations in figure 6-4 (left to right, top to bottom).

E-3 Interpolating between one week in July

Segmented test data set images, network trained with data from a week in July (figure E-3).

Figure E-3: Segmentations for a sunny and cloudy test image; obtained with (1) a training
data set comprising sunny images only and (2) a training data set comprising multiple weather
conditions.

Misclassification error increases in case the annotation mask does not fit the training data set
due to vegetation growth, especially for the artificial grass class (figure E-4).

Master of Science Thesis I.A.F. Snuverink

90 Experimental Results Temporally Changing Conditions

Figure E-4: Segmentations in case annotation mask does not fit artificial grass class (1), seg-
mentations for adapted annotation mask (2).

Accuracy and F-Score for interpolating test data set images over time of the day (figure 6-2).

Figure E-5: Accuracy and F-score of test data set images over time (model trained with a single
-sunny- weather type in July).

Extrapolating beyond the July train set to evaluate generalizing characteristics over seasons
(figure E-6).

I.A.F. Snuverink Master of Science Thesis

E-3 Interpolating between one week in July 91

Fi
gu

re
E-
6:

Ex
tr
ap

ol
at
io
n
be
yo
nd

tr
ai
ni
ng

da
ta

se
t;

ge
ne
ra
te
d
us
in
g
a
ne
tw
or
k
tr
ai
ne
d
on

da
ta

fro
m

a
sin

gl
e
we

ek
in

Ju
ly

(s
un

ny
we

at
he
r

co
nd

iti
on

s)
.

Master of Science Thesis I.A.F. Snuverink

92 Experimental Results Temporally Changing Conditions

E-4 Interpolating between one week in August

Segmented test data set images, network trained with data from a week in August (figure
E-7).

Figure E-7: Segmented test data set images from August, obtained with two differently trained
networks.

E-5 Interpolating between days in four weeks in May and June

Segmented test images, by training a network over the course of four weeks in May and June
(figure E-8 and E-10). Accuracy and mean F-score of test data set images are summarized in
figures E-9 and E-11.

E-6 Interpolating between days in four weeks in July and August

Segmented test data set images, by training a network over the course of four weeks in July-
August (figure E-12 and E-14). Accuracy and mean F-score of test data set images are
summarized in figures E-13 and E-15.

I.A.F. Snuverink Master of Science Thesis

E-6 Interpolating between days in four weeks in July and August 93

Figure E-8: U-Net trained with training data set under sunny weather conditions in May and
June. Test data set images recorded at 06-05-2016, 03-05-2016, 09-06-2016 and 03-06-2016 (top
to bottom, left to right).

Figure E-9: Accuracy and mean F-score per test data set image for U-Net trained on a test data
set under sunny weather conditions in May and June, scores correspond to images in figure E-8.

Master of Science Thesis I.A.F. Snuverink

94 Experimental Results Temporally Changing Conditions

Figure E-10: U-Net trained with training data set under multiple weather conditions in May and
June. Test data set images recorded at 06-05-2016, 03-05-2016, 09-06-2016 and 03-06-2016 (top
to bottom, left to right).

Figure E-11: Accuracy and mean F-score per test data set image for U-Net trained on a training
data set under multiple weather conditions in May and June, scores correspond to images in figure
E-10.

I.A.F. Snuverink Master of Science Thesis

E-6 Interpolating between days in four weeks in July and August 95

Figure E-12: U-Net trained with training data set under sunny weather conditions in July and
August. Test images recorded at 03-07-2016, 05-07-2016, 15-08-2016 and 13-08-2016 (top to
bottom, left to right).

Figure E-13: Accuracy and mean F-score per test data set image for U-Net trained on a training
data set under sunny weather conditions in July and August, scores correspond to images in figure
E-12.

Master of Science Thesis I.A.F. Snuverink

96 Experimental Results Temporally Changing Conditions

Figure E-14: U-Net trained with training data set under multiple weather conditions in July and
August. Test data set images recorded at 03-07-2016, 05-07-2016, 15-08-2016 and 13-08-2016
(top to bottom, left to right).

Figure E-15: Accuracy and mean F-score per test data set image for U-Net trained on a training
data set under multiple weather conditions in July and August, scores correspond to images in
figure E-14.

I.A.F. Snuverink Master of Science Thesis

E-7 Interpolating between days in five months 97

E-7 Interpolating between days in five months

Segmentations of the test data set images are obtained by training a network over a period
of five months (April to August). Accuracy A, F-score per class and mean F-score F̄ of the
test set in displayed in table E-2.

Test Image Br
d.
lea

f

Gr
as
s

Sa
nd

As
ph
alt

Ar
t.
G

Date Hour A[%] F1 F2 F3 F4 F5 F̄
30-04 13 90 0.94 0.82 0.76 0.92 0 0.69
29-04 13 90 0.94 0.84 0.56 0.90 0 0.65
04-05 13 92 0.96 0.86 0.71 0.89 0 0.68
10-05 13 93 0.98 0.91 0.22 0.87 0 0.60
09-06 13 89 0.96 0.79 0.59 0.80 0 0.63
03-06 13 89 0.94 0.62 0.40 0.94 0 0.58
06-07 13 87 0.95 0.66 0.57 0.83 0 0.60
05-07 13 87 0.93 0.51 0.39 0.93 0 0.55
16-08 13 90 0.96 0.79 0.64 0.86 0 0.65
13-08 13 91 0.95 0.70 0.43 0.94 0 0.61

Table E-2: Accuracy A, F-score per class and mean F-score F̄ of images from the test data set.
Evaluation metrics correspond to segmentations in figure 6-7 (left to right, top to bottom).

Segmentations of test images from October and November (figure E-16) are obtained with the
same network (trained with images from April to August). It shows extrapolation capacity
beyond the training data set.

Figure E-16: Evaluating extrapolative properties. October (accuracy 65%) and December (ac-
curacy 54%) segmented test data set images, yielded with a network trained on data from April
to August.

Master of Science Thesis I.A.F. Snuverink

98 Experimental Results Temporally Changing Conditions

I.A.F. Snuverink Master of Science Thesis

Appendix F

Increasing Generalizability

Increasing neural network generalizability is carried out considering two different approaches;
normalizing the hyperspectral (HS) input data (section F-1) and altering the number of
feature maps in the standard U-Net architecture (section F-2).

F-1 Normalizing Hyperspectral Data

The training data set is subject to large variation, in a pre-processing step this is reduced
by normalizing the raw HS data. First, experiments using per pixel normalized images are
carried out (section F-1-1). The normalization step transforms all 25 bands per pixel so that
they sum to unity. Secondly, Z-score normalization per band is used (section F-1-2).

F-1-1 Pixel sum to unity

Normalization has been carried out as an additional computational step; all pixels sum to
unity. Experiments for a train set under both a single and multiple weather conditions have
been carried out. On the most simple train set (single week in June, sunny weather conditions)
the normalized train data (figure F-1) did not prove to be as accurate as training with raw
train data. Furthermore, training with more complex train sets (single week in June, multiple
weather conditions) showed no further use of this normalization method.

F-1-2 Z-score normalization for every band

As a pre-processing step, Z-score normalization has been carried out. The normalized image
x̂ is created using the mean µi and standard deviation σi of every band i from the raw image
x (equation F-1).

x̂i = xi − µi
σi

for i = 1, 2...25 (F-1)

Also this normalization method has not improved segmentation accuracy, results are similar
to the method used in section F-1-1.

Master of Science Thesis I.A.F. Snuverink

100 Increasing Generalizability

Figure F-1: Segmented test images for networks trained using raw (unnormalized) and normalized
HS data.

F-2 Customized Architecture

In order to improve generalizing capabilities of the network, the trainable parameters in
the convolutional layers are redistributed (table F-1). Parameters have been added to the
shallow layers of the network, whilst parameters have been removed from the deepest layers.
The total number of weights have roughly remained the same. The shallow layers generate
features focused on edges and lines. In deeper network layers complex features are trained,
aimed at high level concepts.

The network does not necessarily need a larger capacity or higher number of trainable pa-
rameters to enlarge generalization properties. The total number of parameters is kept ap-
proximately the same (i.e. in the same order of magnitude) while the number of feature maps
per convolutional layers are changed. This customization targets the features to be formed,
focusing more on the available spectral signatures.

F-2-1 Customized U-Net

The network which corresponds to the redistributed weights has a customized number of
feature maps in each convolutional layer (figure F-2). The original U-Net architecture includes
an exponentially increasing number of feature maps, starting with 32 feature maps in the first
stack of layers. The customized U-net includes exponentially growing steps between layers,
starting with a step of adding 20 feature maps. The following kernels grow with 40, 80 and
160 feature maps respectively.

I.A.F. Snuverink Master of Science Thesis

F-2 Customized Architecture 101

Trainable parameters
Stack Layer U-Net Customized U-Net

Decoder 1 Batch normalization 50 50
Convolution (3× 3) 7232 22.600
Convolution (3× 3) 9248 90.100

Decoder 2 Convolution (3× 3) 18.496 108.120
Convolution (3× 3) 36.928 129.720

Decoder 3 Convolution (3× 3) 73.856 172.960
Convolution (3× 3) 147.584 230.560

Decoder 4 Convolution (3× 3) 295.168 345.840
Convolution (3× 3) 590.080 518.640

Decoder 5 Convolution (3× 3) 1.180.160 864.400
Convolution (3× 3) 2.359.808 1.440.400

Encoder 6 Convolution (3× 3) 1.769.728 1.382.640
Convolution (3× 3) 590.080 518.640

Encoder 7 Convolution (3× 3) 442.496 576.160
Convolution (3× 3) 147.584 230.560

Encoder 8 Convolution (3× 3) 110.656 302.520
Convolution (3× 3) 36.928 129.720

Encoder 9 Convolution (3× 3) 27.680 198.100
Convolution (3× 3) 9248 90.100
Convolution (1× 1) 165 505

Total 7.853.175 7.352.335

Table F-1: Redistribution of the trainable weights in U-Net.

F-2-2 Hyperparameters

The customized network requires the hyperparameters to be redefined (table F-2).

Hyperparameter Setting
Optimizer Adam
Learning rate 1 · 10−6

Dropout 20%

Table F-2: Redefined hyperparameters, the remaining parameters have remained the same.

Master of Science Thesis I.A.F. Snuverink

102 Increasing Generalizability

Input 25 × x × y

Batch Normalisation
Convolution (100) + ELU

Convolution (100) + ELU

Maxpooling
Convolution (120) + ELU

Convolution (120) + ELU

Dropout

Maxpooling
Convolution (160) + ELU

Convolution (160) + ELU

Dropout

Maxpooling
Convolution (240) + ELU

Convolution (240) + ELU

Dropout

Maxpooling
Convolution (400) + ELU

Convolution (400) + ELU

Dropout Upsampling

Dropout
Convolution (240) + ELU

Convolution (240) + ELU

Upsampling

Merge

Dropout
Convolution (160) + ELU

Convolution (160) + ELU

Upsampling

Merge

Dropout
Convolution (120) + ELU

Convolution (120) + ELU

Upsampling

Merge

Dropout
Convolution (100) + ELU

Convolution (100) + ELU

1× 1 Convolution (nclasses)
Softmax

Merge

Skip connection

Skip connection

Skip connection

Skip connection

Figure F-2: Customized U-Net architecture.

I.A.F. Snuverink Master of Science Thesis

Bibliography

[1] Y. Tarabalka, Classification of Hyperspectral Data Using Spectral-Spatial Approaches.
PhD thesis, University of Iceland, Universite de Grenoble, 2010.

[2] F.-F. Li, “Stanford university computer science class cs231n: Convolutional neural net-
works for visual recognition.” http://cs231n.github.io/convolutional-networks/,
2017. Accessed: 09-02-2017.

[3] M. Nielsen, “Neural networks and deep learning online book.” http:
//neuralnetworksanddeeplearning.com, 2017. Accessed: 09-02-2017.

[4] P. Velickovic, “Cambride coding academy, deep learning for complete beginners:
using convolutional nets to recognise images.” http://online.cambridgecoding.
com/notebooks/cca_admin/convolutional-neural-networks-with-keras, 2017. Ac-
cessed: 09-02-2017.

[5] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
A simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research 15, 2014.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic seg-
mentation,” in The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

[7] M. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in
European Conference on Computer Vision, 2013.

[8] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for segmantic segmen-
tation,” in IEEE International Conference on Computer Vision (ICCV), 2015.

[9] L.-C. Chen, G. Papandeou, F. Schroff, and H. Adam, “Rethinking atrous convolution for
semantic image segmentation.” 2017.

Master of Science Thesis I.A.F. Snuverink

http://cs231n.github.io/convolutional-networks/
http://neuralnetworksanddeeplearning.com
http://neuralnetworksanddeeplearning.com
http://online.cambridgecoding.com/notebooks/cca_admin/convolutional-neural-networks-with-keras
http://online.cambridgecoding.com/notebooks/cca_admin/convolutional-neural-networks-with-keras

104 Bibliography

[10] U. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” Medical Image Computing and Computer-Assisted Intervention
(MICCAI), 2015.

[11] CORDIS, “European commission; extended image sensing technologies project details.”
http://cordis.europa.eu/project/rcn/198017_en.html, 2015.

[12] M. K. Griffin and H. hua K. Burke, “Compensation of hyperspectral data for atmospheric
effects,” Lincoln Laboratory Journal, 2003.

[13] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolu-
tional neural networks,” Advances in Neural Information Processing Systems, 2012.

[14] G. Cybenko, “Approximation by superposition of a sigmoidal function,” Math. Control
Signals Systems, 1989.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, 1998.

[16] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going deeper with convolutions,” IEEE Conference on Computer
Vision and Pattern Recognition, 2015.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image
recognition,” in International Conference on Learning Representations (ICLR), 2015.

[18] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
IEEE Conference on Computer Vision and Pattern Recognition, 2015.

[19] D. Rumelhart, G. Hinton, and R. Williams, “Learning representations by back-
propagating errors,” Nature, 1986.

[20] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, 2011.

[21] M. D. Zeiler, “Adadelta: An adaptive learning rate method.” 2012.

[22] G. Hinton, N. Srivastava, and K. Swersky, “Overview of mini-batch gradient descent.”
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” International
Conference for Learning Representations, San Diego, 2015.

[24] D. Marmanis, J. Wegner, S. Galliani, K. Schindler, M. Datcu, and U. Stilla, “Semantic
segmentation of aerial image with ensemble of cnns,” ISPRS Annals of Photogrammetry,
Remote Sensing and Spatial Information Sciences, 2016.

[25] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Convolutional neural networks
for large-scale remote-sensing image classification,” IEEE Transactions on Geoscience
and Remote Sensing, 2016.

I.A.F. Snuverink Master of Science Thesis

http://cordis.europa.eu/project/rcn/198017_en.html
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

105

[26] M. Volpi and D. Tuia, “Dense semantic labeling of sub-decimeter resolution image with
convolutional neural networks,” IEEE Transactions on Geoscience and Remote Sensing,
2016.

[27] O. Matan, C. Burges, Y. LeCun, and J. Denker, “Multi-digit recognition using a space
displacement neural network,” Neural Information Processing Systems, volume 4, 1992.

[28] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-
decoder architecture for image segmentation,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 2017.

[29] G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path refinement network for
high-resolution semantic segmentation,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[30] W. Liu, A. Rabinovich, and A. C. Berg, “Parsenet: Looking wider to see better,” in
International Conference on Learning Representations Workshop, 2016.

[31] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[32] Kaggle, “Dstl satellite imagery competition.” http://blog.kaggle.com/2017/04/26/
dstl-satellite-imagery-competition-1st-place-winners-interview-kyle-lee/,
2017. Details of strategy.

[33] IMEC, “Specialty cmos image sensors.” https://www.imec-int.com/nl/expertise/
image-sensors-and-vision-systems/specialty-cmos-image-sensors, 2017.

[34] F. Chollet, “keras.” https://github.com/fchollet/keras, 2015. GitHub repository.

[35] Y. LeCun, L. Bottou, G. B. Orr, and K.-R. Mï£¡ller, Efficient BackProp. Springer, 1998.

[36] S. Ioffe and C. Szegedy, “Batch normalisation: Accelerating deep network training by
reducing internal covariate shift,” in Proceedings of the 32nd International Conference
on Machine Learning, 2015.

[37] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep network learn-
ing by exponential linear units (elus),” in International Conference on Learning Repre-
sentations (ICLR), 2016.

[38] A. Karpathy, “Convolutional neural networks for visual recognition.” Course notes of
Standford CS class CS231n.

[39] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, 2010.

Master of Science Thesis I.A.F. Snuverink

http://blog.kaggle.com/2017/04/26/dstl-satellite-imagery-competition-1st-place-winners-interview-kyle-lee/
http://blog.kaggle.com/2017/04/26/dstl-satellite-imagery-competition-1st-place-winners-interview-kyle-lee/
https://www.imec-int.com/nl/expertise/image-sensors-and-vision-systems/specialty-cmos-image-sensors
https://www.imec-int.com/nl/expertise/image-sensors-and-vision-systems/specialty-cmos-image-sensors
https://github.com/fchollet/keras

106 Bibliography

I.A.F. Snuverink Master of Science Thesis

Glossary

List of Acronyms

API Application Programming Interface

CMOS Complementary Metal Oxide Semiconductor

CNN Convolutional Neural Network

CNTK Microsoft Cognitive Toolkit

CRF Conditional Random Field

ELU Exponential Linear Unit

EXIST Extended Image Sensing Technologies

FCN Fully Convolutional Network

GD Gradient Descent

GPU Graphics Processing Unit

HS hyperspectral

ILSVRC ImageNet Large-Scale Visual Recognition Challenge

ReLU Rectified Linear Unit

RGB Red-Green-Blue

SGD Stochastic Gradient Descent

Master of Science Thesis I.A.F. Snuverink

108 Glossary

I.A.F. Snuverink Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Preface

	Main Matter
	Introduction
	Problem Statement
	Research Approach
	Outline

	Background and Related Work
	Introduction to Artificial Neural Networks
	Neuron Model
	From Neurons to Neural Networks
	Introducing Convolutional Neural Networks
	Image Classification; A Brief Timeline

	Convolutional Neural Networks
	Convolutional Layer
	Pooling Layer
	Overfitting
	Backpropagation
	Loss Function
	Stochastic Gradient Descent Variants
	Learning Rate Scheduling in Gradient Descent Optimization
	Hyperparameter Tuning
	Patch-wise Training

	Fully Convolutional Networks
	Introducing Fully Convolutional Networks
	Deconvolutional Layer
	Types of Fully Convolutional Networks
	Encoder-Decoder Architecture: U-Net

	Neural Network Setup
	Overview of Design Steps
	Data Set
	Model Architecture
	Batch Normalization Layer
	Convolutional Layer
	Softmax Final Activation Function
	Feature Map Sizes
	Hyperparameters

	Loss Function
	Evaluation Metrics
	Overall Accuracy
	F-Score

	Data Set Partitioning
	Training, Validation and Test Data Sets
	Annotation Mask
	Patch Selection Method
	Prepare Data for Network Input

	Network Training and Inference

	Experimental Setup
	Experiments for Optimal Training Data Set Selection
	Annotation Mask
	Patch Selection

	Experiments for Temporally Changing Conditions
	Interpolating Between Days in One Week
	Interpolating Between Days in Four Weeks
	Interpolating Over a Longer Period of Time

	Training Data Set Optimization
	Guidelines for Annotation Mask Design
	Level of Detail of Small Objects
	Level of Detail at Class Borders
	Annotation of Distant and Close Examples
	Additional Class

	Guidelines for Patch Selection
	Number of Training Patches
	Selection of Training Patches

	Development of Segmentation Map during Training

	Experimental Results
	Interpolating Between Days in One Week
	A Single Week in June
	A Single Week in July
	Remaining results

	Interpolating Between Days in Four Weeks
	May-June
	July-August

	Interpolation Over a Longer Period of Time
	Multiple Weather Type Training
	Multiple Season Training

	Conclusions and Recommendations

	Appendices
	Annotation Mask
	Python Code
	U-Net Architecture
	Loss Function
	Accuracy Metrics
	Patch lists

	Experiment Details
	Experiments Train Set Optimization
	Number of training patches
	Oversampling
	Undersampling
	Combined Over- and Undersampling

	Experiments for temporally changing conditions
	Interpolation over a week
	Interpolation over four weeks
	Interpolation over a longer period of time

	Experimental Results Train Set Optimisation
	Oversampling
	Undersampling

	Experimental Results Temporally Changing Conditions
	Interpolating between one week in April-May
	Interpolating between one week in June
	Interpolating between one week in July
	Interpolating between one week in August
	Interpolating between days in four weeks in May and June
	Interpolating between days in four weeks in July and August
	Interpolating between days in five months

	Increasing Generalizability
	Normalizing Hyperspectral Data
	Pixel sum to unity
	Z-score normalization for every band

	Customized Architecture
	Customized U-Net
	Hyperparameters

	Back Matter
	Bibliography
	Glossary
	List of Acronyms

