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Abstract
Modern High Level Synthesis (HLS) tools succeed well in their engineering productivity goal, but still require tool-
set and target technology specific modifications to the source code to guide the process towards an efficient imple-
mentation. Furthermore, their end result is a fixed function accelerator with limited field and runtime flexibility. In 
this paper we describe the status of AEx, a novel work-in-progress HLS tool developed in the FitOptiVis ECSEL JU 
project. AEx is based on automated exploration of architectures using a flexible and lightweight parallel co-processor 
template. We compare its current performance in CHStone C-language benchmarks to the state of the art FPGA HLS 
tool Vitis, provide ASIC implementation numbers, and identify the main remaining toolset features that are expected to 
dramatically further improve the performance. The potential is explored with a hand-optimized case study that shows 
only 1.64x performance slowdown with the programmable co-processor in comparison to the fixed function Vitis  
HLS result.

Keywords Programmable accelerator overlay · Design space exploration · High-level synthesis · ASIP · Transport triggered 
architecture

1 Introduction

The usage of FPGA devices as accelerators has increased 
in the last decade, thanks to their flexibility. Although 
diversity of options has a positive impact in the computing 
domain, a key problem still remains: the complexity and 
platform-specificity of the tools required to develop useful 
FPGA-based designs [1, 2]. FPGAs provide a high degree 
of flexibility which comes with costs that need to be sur-
passed by means of datapath specialization, enhanced on-
chip communication or additional parallelization, requiring 
more effort on the implementation.

Customized soft-core based overlay architectures intro-
duce an additional software programmable layer to the 
FPGA-based implementation. Using the instruction-set 

architecture (ISA) layer, the same application description 
can be retargeted to different FPGA platforms implementing 
the overlay simply by recompiling the software. However, all 
overlays incur overheads. When compared to a fixed func-
tion implementation, the additional overhead of an ISA-
based overlay eventually results from the instruction stream 
support resources required.

Further benefits of customization can be reached with new 
ASIC chip designs where processors and accelerators can be 
integrated to a System-on-a-Chip (SoC) each with desired 
degree of reprogrammability. However, to motivate new SoC 
designs, the fundamental requirement is to reach enough ben-
efits via specialization or ownership of a new SoC IP. The 
benefits must overcome the high costs of new chip runs, where 
non-recurring engineering (NRE) costs required to design and 
validate the new SoC design play a significant role.

Application-Specific Instruction-Set (ASIP) proces-
sors aim to reduce the NRE costs by means of a software 
programmable template from which the accelerators are 
defined. The end result can be field-programmed by switch-
ing the software, enhancing design reuse and reducing 
design time validation risks thanks to the post-manufacture 
bug fixing capabilities.
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High level synthesis tools allow [2, 3] developers to auto-
mate the generation of the low-level hardware descriptions 
from the application code written in high level language. 
Using higher levels of abstractions removes the entrance 
barrier for software engineers allowing them to describe 
the algorithms written in high-level language (HLL) with-
out concerning themselves about the underlying hardware 
specifications. Ideally, such development paradigm should 
increase the productivity, decrease NRE costs and shorten 
final product’s time to-market. But, compared to the hand-
written register transfer level (RTL) designs, there is still a 
performance gap in various identified application domains 
[4]. In addition, many HLS tools still require developer to 
make modifications to the original HLL code providing 
pragmas or hints about the resulting target hardware, mak-
ing HLL code target tool or device specific. As the developer 
has to still know the additional information about the target 
hardware platforms, the learning curve and productivity suf-
fers despite of the automation benefits of HLS.

In this paper we describe a new HLS tool which pro-
duces an ASIP as its output, which means it is suitable both 
as an FPGA overlay architecture as well as for integrating 
into new chip designs. The tool called AEx utilizes trans-
port triggered architecture (TTA) as its processor template, 
forming the basis for modular automated co-processor 
architecture exploration.

In our previous work we showed that specialization of 
the co-processors can be automated using TTAs to generate 
efficient end results when compared to hand-made general 
purpose designs [5]. This paper describes the current sta-
tus of AEx in the end of the FitOptiVis project [6]. It is an 
extension of our previous work [5] providing these new 
main contributions:

– Simplified user input requirements by automated selec-
tion of resource unit amounts and threshold parameters

– Advanced heuristics for wider design space exploration 
and pruning

– Option to input a starting exploration architecture skel-
eton for predefined memories and custom operations

– Comparison to the modern HLS tool Vitis HLS by Xilinx

This paper has the following structure: Section 2 introduces 
the TTA template which is used in this paper. Section 3 
describes the design exploration problems and introduces 
the proposed design space exploration heuristics. Section 4 
presents the results obtained with the current status of the 
tool. Section 5 investigates the bottlenecks in comparison 
to a modern HLS tool Vitis by Xilinx via a hand-optimized 
case study. Section 6 walks through the most relevant 
related work. Finally, Section 7 concludes the paper.

2  Transport‑Triggered Architectures

Transport-triggered architectures is a class of exposed 
datapath processors. TTAs differ from the traditional 
“operation-triggered processors” by having more low-
level control of data transfers between processor functional 
units. The interconnection network of TTAs, containing 
function units (FU) and register files (RF) of different 
widths connected with buses, is exposed to the program-
mer. This allows it to have a simple hardware circuit with a 
cost of increased compiler complexity to explicitly express 
the instruction-level parallelism. Simpler hardware allows 
higher operating frequencies and lower energy consump-
tion, which is a very important design goal for the modern 
mobile world  [7]. Architecture resources are visible to the 
compiler allowing it to schedule the code efficiently uti-
lizing all the available parallel units and the connectivity 
between them.

The datapath of TTA is programmed as data transports or 
moves between the resources, e.g. function units and register 
files [8]. The program consists of instruction moves between 
input and output ports of architecture units. The operands of 
the operations are transported to the specific function units 
and the actual operation execution is performed as a side-
effect when the data is written to the triggering input port 
of the FU. The compiler’s task is to schedule the data move-
ment in and out of the FUs and RFs. Multiple moves can be 
bundled into one instruction allowing multiple parallel data 
transports in a single instruction. Figure 1 shows an exam-
ple TTA processor containing five transport buses, which 
means five moves can be made in parallel. This is similar to 
the very large instruction word (VLIW) architectures, but 
the TTA does not have the RF complexity bottleneck, as its 
RFs can have less ports due to the exposed datapath, while 
providing the same level of efficiency [9].

In contrast to typical operation-triggered format, the 
move structure in TTAs is more flexible and its operands 
do not have to reside in registers. Output values from func-
tion units can be bypassed directly from function unit out-
put ports and routed to the required port, without access-
ing RFs. This reduces the RF accesses which helps to 
minimize the RF port count, thus providing better energy 
efficiency and shortening the possible critical path caused 
by the RF with large number of ports. On top of that, the 
compiler has the additional freedom to control the timing 
of the function unit operand and result data transports. 
Residing registers in FU ports can also store operands and 
results, giving the compiler more freedom while schedul-
ing operations. One disadvantage of increased compiler 
responsibility in TTAs is the additional control bits in 
instruction word, inflating the program image size. The 
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effect of this can be reduced with application-specific tai-
loring of the instruction set and instruction compression.

The modularity of TTAs makes it possible to easily cus-
tomize a processor by adding any hardware resources to the 
architecture, including FUs, RFs, transport buses and arbi-
trary connections between these. For example, frequently 
used operations can be duplicated or custom operations for 
heavy parts of the application can be added to provide addi-
tional performance. The units can be connected together in 
arbitrary ways and it is the compiler’s task to route the data 
transports efficiently. Unless the connections are carefully 
considered, routing difficulties can lead to the increased 
critical path length.

With these aspects in mind, TTAs are interesting for auto-
mated FPGA overlay and ASIP generation use due to their 
simplified register files, modularity and fine-grained com-
piler targetable structure [10].

3  TTA Design Space Exploration

Designing a processor starts with the specification of 
the requirements. Such requirements usually set restric-
tions on the available resources and execution time of the 
application algorithm, limiting the size, performance or 
energy consumption. Processor design is typically an itera-
tive process of continuous architecture modification and 
evaluation, until the requirements are satisfied. A typical 
evaluation process consists of compiling and simulating 

the architecture and making appropriate changes based 
on the simulated behaviour of the processor. The TTA-
specific architecture description language (ADL) is used to 
express the structure and resources of the processor as an 
architecture description file (ADF). This file can be used 
as an input to both the retargetable compiler and to the 
generation of the processor’s HDL-description. Manually 
designing a processor this way is error-prone and time-
consuming, and should be automated by the toolset to sup-
port faster development.

The flexibility of TTAs gives a plethora of different ways 
of customizing the processor for specific needs of appli-
cations. Multiple function units (FU) can be added and 
connected together, with each having different operations, 
parameters and memory structure. Widths, depths and port 
counts of register files can be adjusted. The connectivity 
between the FUs and RFs can be edited to support certain 
bypasses and eliminate others. The amount of parallel-
ism in transport buses can be adjusted to find the balance 
between sharing of the bus and parallel data transfers. Short 
immediate values of different bit widths can be embedded 
into the instruction word. A collection of these different 
design parameters is called a processor configuration. All 
possible combinations of these parameters create a huge 
design space and exploring it would take a long time if 
each reasonable architecture configuration was to be evalu-
ated individually. Typically, the Pareto configuration points 
are the most interesting design configuration points, which 
provide optimal results within given requirements. Finding 

Figure  1  Example of a TTA processor. In TTA, data transports 
between components are explicitly programmed. Multiple function 
units are connected to the designated register files via input and out-
put ports. Five transport buses make it possible to execute 5 paral-
lel moves in a single instruction. The example instruction defines an 

instruction with three moves controlling data transports in three buses 
out of the five. The instruction performs an integer summation of a 
value loaded from a data memory with a constant while simultane-
ously storing a previously computed value to memory.
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those points is considered to be a multi-objective optimiza-
tion problem [11, 12].

As the design space is too large, a proper heuristics to 
shrink it must be used. Some works rely on the usage of 
evolutionary genetic algorithms, where configuration candi-
dates evolve in next iteration cycles based on specific fitness 
score, but they do not always guarantee that the found solu-
tion is the best possible [11, 13]. In our work we explore the 
design space as a tree, which is pruned using specific input 
parameters described later in the paper.

A good exploration starting point for TTA is to create 
a complex VLIW-like connected architecture, where each 
FU port has a separate corresponding RF port, and start 
pruning the underutilized components, transforming it into 
a simpler architecture [14]. In our work the design space is 
gradually narrowed by transforming the huge architecture 
through multiple optimization passes, where the same types 
of resources are pruned or merged into one. This continues 
until the (lower boundary) performance threshold is reached.

In our proposed HLS flow the exploration starts from 1) 
an input application written in C, OpenCL C or LLVM inter-
mediate representation and 2) a set of design space limiting 
parameters. The main parameters are the following: a) clock 
cycle and frequency thresholds b) desired number of feasible 
output architectures. There are also multiple other optimiza-
tion pass specific parameters and they are used mostly for 
fine-tuning the end result. These include number of parallel 
memory function units, starting skeleton architecture with 
predefined components and size of the immediates. The out-
put of the flow is the architecture description files of con-
forming configurations.

3.1  Exploration Pipeline

The automated exploration pipeline consists of several archi-
tecture processing passes which refine the architecture for 
the next optimization pass. The general idea is to perform 
each optimization pass in a cyclic manner starting from the 
compilation of an input application against a given archi-
tecture, simulating and refining it until certain limitations 
are reached as depicted in Fig. 2. In our work we use the 
expand and prune approach. In the initial stages we start 
from a massive architecture having maximum resources and 
connectivity. At each step, based on the profiling results, 
we start pruning the least utilized resources and merging 
components based on their parallel activity. Each optimi-
zation pass can produce from one to multiple architecture 
configurations in order of best performance in terms of cycle 
counts. The passes that create multiple output configurations 
need to be carefully joined together. New possible configu-
rations expand as a tree structure, starting from the large 
starting point architecture and expanding every time there’s 
a pass with multiple output configurations. The heuristics 

handle the selection of these architecture options and walk 
forward and back through the exploration tree, trying differ-
ent feasible resource combinations. The overall structure of 
the exploration pipeline passes is shown in Fig. 3.

The large initial architecture containing the maximum 
set of resources is not meant to be a synthesizable proces-
sor, but is used as a starting point of the next optimization 
pass for the profiling and pruning of the resources. For each 
operation with known behavior from the operation database, 
an individual function unit is added with the register file 
of corresponding bit width. For the arithmetical and logic 
operations, ALUs are created, as well as load-store units 
(LSU) for the memory operations connected to the default 
address space. If a special skeleton parameter is given, the 
starting architecture can contain predefined ALUs and LSUs 
with designer defined custom latencies and address spaces. 
The initial size of the RFs is set high enough to store the 
most variables of the application to avoid spilling content 
to the main memory.

A starting skeleton architecture can be used to specify dif-
ferent external interfaces (e.g. memory). The exploration can 
be run using a custom starting architecture containing some 
function units with special operations, predefined delays and 
address spaces. While creating the initial huge architecture, 
other function units for operations are simply added to this 
predefined architecture, without re-adding the operations 
found in predefined units. Predefined function units are also 
kept untouched during the following optimization passes.

Figure 2  Iterative process of a typical exploration stage. The architecture 
is refined by modifying the architecture resources. The application HLL 
code for the produced architecture is compiled and simulated. After that, 
the decision is made against requirements specified by designer, to either 
continue modifications or finish refining and pass it to the next optimiza-
tion pass. Usually the iteration continues until a certain performance or 
resource utilization goal is reached.
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The next optimization pass objective is to get rid of the FUs 
with operations that are not utilized enough. The program is is 
compiled for the gigantic architecture from the previous step 
and from the scheduled code the operation usage is gathered. 
The FUs for the operations not found in the scheduled code 
are pruned off from the architecture. Using simulation data 
the architecture can be reduced even further by removing some 
operations which are utilized very little and can be emulated in 
software (e.g. division, if it’s rarely used). Remaining function 
units are duplicated as a crude way to get more instruction level 
parallelism. To retain the successful compilation in the next 
passes, a certain set of operations is never pruned. Such opera-
tions include addition, subtraction, shift and basic memory 
operations. Pruning FUs might also result in removing RFs, 
buses and sockets which are no longer used.

After pruning the operation set, the VLIW-like connectiv-
ity is created. In the resulting architecture every FU operand 

port has an individual bus connection to a dedicated RF port. 
This interconnection network is unnecessarily complex for 
the TTA programming model, but it will be simplified in 
the next optimization passes. A typical VLIW-connected 
architecture at this point has around 20 function units and 
60-80 individual buses connecting FU ports to the RF ports.

Then the exploration moves on to the branching explo-
ration passes. Two resources can be merged together based 
on their simultaneous usage. Such resources are FUs, 
buses and register files. The utilization data from simula-
tion can be used to build the co-variance matrix of parallel 
usage of each component. Two components with minimal 
co-variance indicate that they can be successfully merged 
together without a significant impact on the performance. 
The idea behind the co-variance matrix is explained in 
more detail in [15]. Minimizing the number of function 
units also simplifies the interconnection network, as the 
arbitration between the operations is moved inside the 
function units. As the final branching exploration pass, the 
sizes of the large RFs are shrunk until it starts affecting the 
cycle count. This happens when the size of the registers 
is not enough to hold the most-used application variables 
and they are spilled to the main memory.

As the final optimizations, two immediate passes are 
performed that only produce a single output configuration 
each. The widths of the short immediate on each bus were 
set to 32 bits at the beginning of the exploration. At this 
point they can be reduced based on the profiling data from 
simulation, while still ensuring that the maximum number of 
the immediate moves can be done using short immediates. 
Long immediates are optimized by creating a long immedi-
ate instruction template split across several buses. Again, the 
simulation data is used to discover the least used buses and 
use them to pass long immediates. The current immediate 
optimizations are assumed to be good enough to not neces-
sitate the use of branching passes.

3.2  Exploration Heuristics

At the beginning of the exploration the designer doesn’t 
know how much resources the resulting architecture needs 
for the input application. For the efficient automated explo-
ration tools, a certain limiting requirements goals for area, 
performance or energy consumption must be specified. In 
the final outcome designer could have a variety of different 
design configuration options to choose from, e.g. architec-
tures with small resource usage and low-power usage or per-
formance-oriented architecture with more resources. Using 
constant threshold limits to pick the single specific Pareto 
point configuration is fast in terms of exploration time, but 
not an optimal solution, as the more promising and even 
faster configurations could be found around such Pareto 
points. Using greedy algorithm could be very time effective 

Figure 3  Automated exploration and its passes. The automated explo-
ration of our approach starts from the input application code written in 
high level language, creating an oversized initial architecture, pruning 
the operation set, creating oversized VLIW-connectivity, pruning and 
merging resources based on their parallel utilization and optimizing 
other component features until crossing a certain lower boundary for 
performance. Snapshots on the right visualize the architecture’s state 
in some of the stages; starting point, huge VLIW-connected architec-
ture and the final optimized architecture.
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in limiting the large exploration space and producing bet-
ter results. However, the problem with greedy algorithms is 
that they select the first best result ending up in local optima 
point as found in [15].

Heading towards fully automated exploration tool, the 
user-defined resource unit amounts and threshold parameters 
are no longer required, as opposed to our previous explo-
ration implementation [5]. To define the desired resulting 
architecture the designer now has to input just two limit-
ing real-time execution performance parameters (Pareto 
points): clock cycle count and operation frequency. Clock 
cycle count can be used to successfully prune the architec-
tures which reach it and a synthesis tool is run to check if 
the frequency requirement is satisfied. The value of these 
parameters can be manually decided by the designer, but can 
also be found out by sweeping different values to find the 
optimal starting Pareto points, where the performance of the 
output configurations no longer increase. The new algorithm 
explores much wider exploration design space, especially 
around those Pareto points and it can now produce multiple 
suitable architectures. As a result, the designer has several 
choices to select either architectures with minimal hardware 
resources or slightly larger ones but with extra performance 
still satisfying the input parameters.

The exploration pipeline is depicted in Fig. 4 and its sim-
plified heuristics are described in the Algorithm 1. It contains 
multiple resource pruning and optimization passes, which pro-
duce lists of different architecture configurations in the order 
of increasing resources. Configurations which do not fulfill 
the clock-cycle count requirements specified by the designer 
are pruned and only the promising ones are considered as can-
didates and passed forward the pipeline. Only single configu-
ration with minimal resources is passed at a time to the next 
pass. The architectures are picked starting from the smallest 

in terms of resources (FUs, RFs, buses, RF ports). When the 
end of the pipeline is reached, the configuration is tested for 
conforming to both input parameters and marked as promis-
ing. After that, the exploration continues going backwards in 
the pipeline to the previous pass. If the previous pass has some 
configurations left in the produced set, the algorithm picks the 
next with more resources and continues the exploration by 
passing that configuration to the next pass.

Figure  4  AEx exploration pipeline. Each architecture optimization 
pass produces multiple design choices aka configuration sets in the 
growing order of resources. Some of the configurations are pruned 
based on designer performance restrictions and others are passed to 
the next optimization pass as an input one by one producing subsets 

of their own. At the end of the pipeline configurations are synthesized 
and pruned if the design goals are not met. This might lead to more 
pruning in the preceding sets, as picking configurations with more 
resources would also fail.



Journal of Signal Processing Systems 

1 3

The exploration pipeline deals with the branching passes 
by performing a depth-first search to the tree, where the 
nodes at each pass are ordered by their resource count from 
smaller to larger. An example run of this algorithm is shown 
in Fig. 5. During the exploration process the back and forth 
movement through the exploration tree produces tens or 
even hundreds of promising configurations. Since each 
branching pass can create tens of configurations, the full 
exploration of the tree can take a very long time. To limit 
this, the designer can set the desired number of promising 
configurations using an input parameter. After reaching that 
number of promising configurations, the exploration can 
stop. Since the configurations are evaluated in the order of 
growing resources, the chosen configurations at that point 
are the ones with minimal resources. While evaluating the 
clock frequency of a configuration, the synthesis might fail 
because of over-utilization of resources or too long of a 
critical path. At that point, it can be assumed that we don’t 
have to go backwards to the previous branching pass to pick 
the architecture with increased resource amount, because 
increasing the resources would increase the critical path 
and the operating frequency will also fail with this new sub-
set. Based on our observations, this measure has a positive 
effect in dropping out more possible design space points and 
minimizing the overall exploration time.

The described exploration algorithm is not strictly spe-
cific to TTAs. However, many of the optimization passes 
are TTA-specific. Therefore it could be possible to use 
the same algorithm for different types of instruction set 
architectures by removing and adding new passes to it.

4  Evaluation

The described HLS flow was implemented to a retargeta-
ble tool flow called TCE [16]. It has a design space explo-
ration framework which allows defining new automated 
modification algorithms to perform the iterative search of 
the design space [17].

4.1  Setup

To benchmark the efficiency of our new exploration heuristics 
we run the same benchmarks as in our previous work [5]. We 
used maximum operating frequency and clock-cycle counts 
from the previous work’s performance-oriented architectures 
as input parameters for the new architecture generation. To 
compare the results we use execution time, FPGA resource 
usage in LUTs, maximum operating frequency, instruction 
width and instruction memory size. The comparison is made 
against our previous work, MicroBlaze soft-core processor, 
ARM Cortex-A9 processor and fixed-function accelerators 
generated by HLS tool Vitis by Xilinx [18].

The exploration was run on CHStone [19] benchmark 
suite, which is a set of various applications of different 
domain, such as multimedia, signal processing and cryptog-
raphy. We generated 8 application specific architectures, one 
for each benchmark, picking the ones with best execution 
time performance. The synthesis runs were performed with 
Vivado using Zynq 7020 FPGA device as a target. Latencies 
for the most arithmetic operations and constant shift were 
set to 2 cycles, dynamic shift 3, memory load operations 4 
and same for complex operations like multiply and division.

4.2  Exploration Results

The increased exploration design space and additional 
synthesis runs to check operating frequency resulted in 
increased total exploration time, but thanks to the successful 
pruning heuristics we managed to keep them at the reason-
able level. Overall average exploration time has increased 
around 1.5-2 times from our previous work. The number 
of desired promising architectures significantly affects the 
exploration time, since the exploration can be stopped once 
that number of configurations has been found.

Estimating the operating frequency of an architecture 
description without performing the actual synthesis could 
improve the exploration time greatly, as synthesis times for 
each configuration are an order of magnitude slower than 
the compilation and simulation times. This type of estima-
tor could be created by collecting the timing information of 
operations and other configuration parameters into a data-
base, and intelligently combining them together. Alterna-
tively, creating a data-driven estimator would be possible, 

Figure 5  A simplified example of an exploration run with 2 branching 
passes and clock frequency check using synthesis. At the end, only the 
configuration number 5 is returned as a promising configuration.
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but would require thousands of synthesized configurations 
as training data.

Now, with our improved exploration heuristics we are 
able to explore a wider design space around given Pareto 
points. This results in 5 completely new benchmark archi-
tectures, while the architectures for adpcm, blowfish and 
gsm stayed the same compared to our previous work. 
Table 1 summarizes the synthesis results for the generated 
architectures. The overall look-up-table (LUT) utilization 
is improved around 11%. This is because the algorithm 
picked slightly smaller architecture having 1 function unit, 
bus or register file port less, while having around the same 
or better performance. The maximum operating frequen-
cies stayed around the same level with 1-3% improvement. 
Table 2 presents the instruction widths in the produced 
architectures. The instruction width has decreased in the 
most new generated architectures. This is natural, since the 
core with less resources also has a shorter instruction word. 
As a result, the total instruction memory usage decreased 
on average by 16%.

Figure 6 shows overall execution performance of AEx 
against MicroBlaze soft-core processor, ARM Cortex-A9 
processor and Vitis. MicroBlaze performance is worse by 
a magnitude of 2 to 5, but it’s understandable as it is a sim-
ple scalar processor and not oriented for performance. The 
discussion on Vitis results is continued in the next section.

The dual-issue superscalar ARM Cortex-A9 [20] is cho-
sen as one of the comparisons because it’s available as a hard 
processor on the used Zynq 7020 SoC. Additionally, as the 
proposed method is a processor-based approach, it makes 
sense to evaluate the differences to a hard processor core. In 
these benchmarks, ARM outperforms AEx by 60% to 80%, 
which is mainly explained by the higher clock frequency 
of 650 MHz [21]. The difference in the clock frequencies 
seems to match quite closely with the difference in perfor-
mance. Since the limitations of scaling the performance of 
a multi-issue processor by increasing the available ILP are 
well known [22, 23], there simply aren’t that many avail-
able operations that can be scheduled in parallel, thus ILP 
is very limited. Compared to the ARM processor with much 
higher clock frequency, the proposed method should sus-
tain 3x more operations in parallel than ARM. This leads to 
an impossible situation, where there simply isn’t any more 
available ILP in the program to exploit.

Total instruction memory size relative to AEx is depicted 
in Fig. 7. AEx has lower instruction memory usage than 
MicroBlaze and ARM in blowfish and sha benchmarks. Rea-
son for this is the significantly lower number of instructions, 
even though the instruction word is much wider. Thanks 
to the application specific tailoring of the architectures, the 
well-known TTA’s problem of inflated instruction memory 
size is kept here at reasonable levels.

Figure 6  Overall runtime com-
parison between MicroBlaze, 
AEx, Arm and Vitis HLS tool. 
MicroBlaze runtime values are 
truncated and the actual value 
is given at the top of the bar. 
Hand-optimization was only 
performed for aes benchmark.

Figure 7  A comparison of 
instruction memory sizes. 
Hand-optimization was only 
performed for aes benchmark.
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Instruction compression feature of the tool set was not uti-
lized in this research. It could be applied as a post-processing 
step for the final configurations to bring the instruction mem-
ory usage even lower. In the future it could be interesting to 
couple the instruction compression to be a part of the explo-
ration algorithm, so that the effect of it would be reflected in 
the exploration results.

4.3  SoC Implementation Assessment

In order to assess the potential for automatically generated 
co-processors as ASIPs for new SoC designs, we synthesized 
one of the produced configurations using a modern ASIC 
technology. In order to put the numbers to a perspective, we 

compared the proposed method to a well-known general-
purpose RISC-V [24] ISA implementation called zero-riscy 
[25]. The designs are synthesized with Synopsys Design 
Compiler [26] using a 28 nm process. Zero-riscy is a small 
energy optimized core, thus its numbers should be taken as 
a coarse grained design point in terms of small consumption 
general purpose core. The results of the ASIC synthesis are 
presented in Table 3.

The core generated with the proposed method is able to 
reach 3.3 GHz clock frequency while not demanding signifi-
cantly larger area than the comparison target. This is because 
the specialization of the processor architecture allows it to 
have a simpler hardware than the general purpose core. 
Since the core generated by the proposed method is able 
to issue multiple operation moves in parallel, it’s able to 
launch 2 arithmetic operations in one cycle. This gives it an 
estimated 5x advantage in peak arithmetic ops compared to 
the single-issue zero-riscy.

In the aes benchmark, the proposed specialized co-processor 
is able to reach over three times higher performance, while still 
remaining software programmable. It is important to note that 
the proposed method uses only a set of quite standard basic 
operations, which means that it remains highly software pro-
grammable for other similar applications.

Table 1  Synthesis results: LUT utilization, maximum operating 
frequency and energy estimation. Comparison is made with our 
previous work against updated AEx. The LUT utilization is further 
broken down to the LUTs used by the processor interconnection 
(IC) and register files (RF).

Benchmark Core IC RF FMax 
(MHz)

Energy (µJ)

adpcm 1756 562 89 198 8.57
aes 2226 

(1.01x)
632 

(0.86x)
312 186 3.62

blowfish 1625 469 49 202 74.9
gsm 2565 630 500 180 1.80
jpeg 1551 

(0.75x)
392 

(0.70x)
49 205 307

mips 1269 
(0.85x)

276 
(0.60x)

25 199 4.57

motion 1359 
(0.92x)

390 
(0.85x)

49 192 0.745

sha 1884 
(0.89x)

649 
(1.05x)

49 188 49.8

Table 2  Instruction widths and their relative sizes in comparison to 
previous work.

Instruction width (bits)

benchmark Previous work Current work

adpcm 80 80
aes 115 91 (0.79x)
blowfish 63 63
gsm 101 101
jpeg 83 64 (0.77x)
mips 59 44 (0.75x)
motion 59 58 (0.98x)
sha 82 83 (1.01x)

Table 3  Comparison of the machine AEx generated for aes bench-
mark. A small general purpose RISC-V implementation Zero-riscy 
given as a reference point.

Zero-riscy AEx-generated core

FMax (GHz) 1.33 3.33 (2.5x)
Peak arithmetic ops (Gops/s) 1.33 6.67 (5.02x)
Cycle count (aes) 31 873 23 246 (0.73x)
Estimated runtime (ns) 23 904 6 973 (0.29x)
Area ( μm2) 11 731 17 865 (1.52x)

Table 4  Runtime, utilization and power results from Vitis HLS com-
pared to the AEx results. Vitis HLS isn’t able to synthesize jpeg and 
motion benchmarks.

Kernel Fmax Runtime (ns) LUT Energy (µJ)

adpcm 131 47107 (0.14x) 12378 (7.0x) 11.4 (1.3x)
aes 235 8809 (0.070x) 955 (0.43x) 0.132 (0.036x)
blowfish 145 3009503 (0.80x) 2591 (1.6x) 126 (1.7x)
gsm 140 13786 (0.22x) 4723 (1.8x) 1.67 (0.93x)
jpeg - - - -
mips 159 19975 (0.079x) 1634 (1.3x) 0.539 (0.12x)
motion - - - -
sha 168 260821 (0.12x) 13372 (7.1x) 121 (2.4x)
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5  Comparison to Vitis HLS

In order to estimate the quality of the results, a comparison 
to a state of the art HLS-method should be included. The 
CHStone benchmarks are synthesized using Xilinx Vitis HLS 
tool [18] (version 2020.2) targeting the Zynq 7020 FPGA 
device. The benchmarks are synthesized using the default 
C synthesis settings with no significant source code modi-
fications. The results are presented in Table 4. Even though 
the adpcm benchmark is valid C code, it produces the wrong 
result in Vitis’s C/RTL-cosimulation. This is probably because 
it’s using some feature of C unsupported by Vitis HLS. The 
numbers for it are presented anyway for comparison.

It’s important to note that since the CHStone benchmarks 
contain both the input data and the output checking function-
ality as part of their source code, there are no external data 
interfaces coming out of the kernels. If the kernels were to 
be used with dynamic input data, the data interfaces would 
need to be explicitly defined by the user. Another limitation 
of the HLS tool is the missing support for pointer-to-pointer 
structures, which causes two of the benchmarks (jpeg and 
motion) to be non-synthesizable without source code modi-
fications. In the proposed method, the external interfaces 
are easily understandable regular memory interfaces, and 
the pointer-to-pointer-structures are supported naturally as 
part of the C language.

However, on the other benchmarks that it manages to syn-
thesize, the Vitis HLS is able to reach significantly better 
runtime performance than the proposed runtime program-
mable co-processor-approach. Some amount of performance 
overhead is to be expected, since the proposed approach is a 
complete software programmable processor. The LUT uti-
lization seems to vary between the benchmarks more than 
it did for the generated TTA processor. This is probably due 
to the different amounts of automatic unrolling the HLS tool 
performs, duplicating hardware to execute multiple loop 
iterations in parallel.

Energy estimates seem to correlate naturally to the runt-
ime and the area utilization values. Since the Vitis HLS gen-
erated designs can finish the application faster, they use a 
smaller total amount of energy. On the other hand, if the LUT 
utilization is larger, it increases the power usage. On three of 
the benchmarks (adpcm, blowfish and sha), this causes the 
energy usage be larger than with the proposed AEx-generated 
cores, even though they execute the application faster. At the 
other end of the spectrum, the aes benchmark executes signif-
icantly faster while using less area and power which leads to 
it having just 3.6% energy usage of the AEx generated core.

Comparing against the Vitis HLS-approach can give 
insight on how to improve the proposed method further. 
The relatively worst performing benchmark aes is chosen 
for further analysis (around 14.2x slower than Vitis). In the 

following subsections we analyze a few of the features that 
have the potential to significantly increase the performance 
of the co-processor-approach. This manual optimization 
shows that the TTA-based co-processor approach is able to 
almost reach the performance of a commercial HLS tool. 
The results of the manual optimization are summarized in 
Table 5. None of the implemented manual optimizations 
would be impossible to perform automatically within AEx. 
Therefore, this level of performance increase can be esti-
mated to be a realistic target for further AEx improvements.

5.1  Loop Pipelining

Loops are a very common structure in data processing pro-
grams. For example, in Vitis HLS tool, a lot of attention is 
given to the loop initiation intervals and lengths of loops, 
as the effects of those get multiplied by the iteration count 
of the loop. Exploiting the parallelism between independent 
iterations of a loop is also one way to gain more instruction-
level parallelism (ILP) to the program. Since TTA is an 
exposed datapath architecture where the ILP must be utilized 
at compile-time, the compiler must perform the interleaving 
of the loop iterations using e.g. software pipelining [27]. 
Improvements in the compiler will automatically propagate 
to the exploration of better architectures.

However, as the TCE compiler’s current ability to per-
form software pipelining is still rather limited, aggressive 
loop unrolling can be used as an alternative way to exploit 
loop-level parallelism at the cost of instruction memory 
size. After applying more aggressive loop unrolling, the 
runtime was brought down to only be 8.96x slower than the 
Vitis runtime. Naturally, this comes at the cost of increased 
instruction memory usage, which is brought up by 39%.

5.2  Automated Generation of Custom Operations

Since aes is a very bit manipulation-oriented algorithm, it 
would benefit from special operations that perform multiple 
basic operation chains within a single cycle. This increases 
the amount of operations executed per cycle by pushing more 
of the operations inside a single cycle at critical points of the 

Table 5  The improvement in the runtime of aes benchmark with 
manual optimizations.

Cumulative optimizations Runtime (ns) Compared to 
Vitis runtime

AEx 124 978 14.19
Unroll 78 930 8.96
Custom operations 19 179 2.18
Larger machine 14 454 1.64



Journal of Signal Processing Systems 

1 3

program. At the moment, the proposed exploration method is 
only able to automatically use a set of commonly used opera-
tions that roughly match C language’s operators (add, sub, 
shifts, xor, etc.). Thus, even simple constant shifts and chains 
of subword logic operations that could fit inside a single clock 
cycle now consume at least a single clock cycle each.

In order to assess the performance potential of custom 
operations, two custom operations were created manually 
based on the insides of the most critical loops. The cus-
tom operations can be described as directed acyclic graphs 
(DAG) recursively consisting of simpler sub-operations [28]. 
The hardware for these operations can then be generated 
automatically based on the DAG. After adding the custom 
operations to the machine generated by AEx and calling 
them manually from the source code, the runtime of aes 
benchmark is brought down to only be 2.18x slower than the 
Vitis runtime. As a final optimization step, a slightly larger 
machine is manually created to better take advantage of the 
ILP exposed up by the loop unrolling, the runtime is further 
brought down to only be 1.64x slower than Vitis.

Currently, the custom operations need to be defined by the 
designer manually. This optimization example demonstrates 
the performance gains available from custom operations. It 
shows that adding support for automatic discovery of the 
custom operations to the exploration pipeline seems to be 
an important next step. This is required to make the method 
scalable to new unknown applications, without requiring the 
designer input in defining the custom operations.

At the time of writing, the source code of the program has 
to be manually edited to use the custom operations due to the 
ineffectiveness of the instruction selector in choosing more 
complex operations [28]. In the future, the compiler should 
be improved to automatically utilize these custom opera-
tions. This is required so that the custom operations created 
to improve the performance of a single application would be 
automatically usable in other applications. Specialization level 
of the custom operations is an important parameter to keep in 
mind when tailoring for certain application while remaining 
software programmable for other similar applications.

5.3  Parallel Memories

So far in the proposed approach, only a single load-store 
unit is used to access the data memory, which resides in a 
single on-chip block RAM. This can easily create conges-
tion as there are often a lot of memory operations at the 
critical parts of the program that could be performed in par-
allel. Memory components often support multiple parallel 
ports, so utilizing all of them seems obvious to maximize 
the parallel data transfers to memory. Adding a second LSU 
to the architecture that connects to the second port of the 
single data memory block RAM would be the easiest way 
to accomplish this.

In Vitis HLS tool, different variables in the input code 
can be allocated to separate memory components. Even fur-
ther, array partitioning is a well-known optimization in HLS 
to split a large array into multiple memory components to 
get parallel access to the array. This is combined with the 
memory access pattern analysis to ensure that there are no 
conflicting accesses to the same memory component. This 
can help e.g. in loop pipelining to help parallelize the loop 
iterations by removing the conflicting memory accesses.

Adding multiple separate memory components to the pro-
posed method would require a lot of automatic analysis to split 
the variables between the memory components. Additionally, 
interfacing with the outside world becomes more difficult the 
more fragmented the memory system is. One of the advantages 
of a software programmable accelerator is the ability to sup-
port multiple different applications. Therefore, the memory 
hierarchy tailoring should be done carefully to not overfit the 
memory hierarchy to certain application’s access pattern and 
lose the benefits of a software programmable processor. How-
ever, it’s possible that there would be some generic access pat-
terns that the processor could still be tailored to (e.g. stencil).

Alternatively, the compiler already supports OpenCL C, 
so changing the input language to OpenCL could provide 
more tools to the handling of different memory components. 
In OpenCL, the buffers could be allocated to different mem-
ory components at runtime.

5.4  Data‑level Parallelism

As described above, there often isn’t enough ILP to exploit in 
common C programs, including the CHStone benchmarks. To 
get around this, more data-level parallel programs can be used. 
Therefore, a change to more parallel input language such as 
OpenCL might be necessary to fully realize the benefits of cus-
tomizable architectures. Manually designed TTA-cores have 
already been shown to perform better than the ARM Cortex-
A9 in certain OpenCL benchmarks [29], so adding OpenCL 
support to AEx seems like natural progression.

One simple way to support the data-level parallelism of 
OpenCL would be to support the vector datatypes of OpenCL 
using SIMD operations. These SIMD operations could be 
highly specialized for the given application to reduce the 
resource requirements coming from the wide datapaths. There 
would only be minimal changes needed to the exploration 
pipeline to accommodate the automatic exploration of archi-
tectures with both SIMD and scalar operations.

5.5  Discussion

Based on these findings, the lowest hanging fruits to get on 
par with the commercial state of the art is to automate the 
discovery and use of custom operations as well as improve 
the software pipelining support of the compiler. Another 
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alternative would be to add a more intelligent heuristics for 
controlling the software pipelining/loop unrolling aggres-
siveness based on the available instruction memory.

Based on our analysis of an example benchmark, these 
improvements would likely heavily improve most, if not all 
of the other benchmarks as well, bringing the performance 
close to the fixed function implementations generated by the 
Vitis HLS tool without suffering from its limitations placed 
on the supported programming language constructs.

6  Related Work

In a similar work, the authors apply same shrinking technique 
to the large VLIW architecture and explore architectures based 
on the number of issue-slots, number of parallel FUs, RF and 
memory sizes [14]. Underutilized units are merged into other 
and oversized register files are resized to minimize the instruc-
tion width. To prune the large exploration space the additional 
genetic algorithm framework is applied. This brings several 
obstacles, as it requires additional configuration settings to 
be applied for achieving optimal results. Also authors expe-
rienced same prolonged evaluation time difficulties for larger 
algorithms and applied result caching for it.

In another work the authors experience the same issues 
with the large design space using CGRA architectures where 
they apply statistical approach to solve the operating frequency 
estimation issues [30]. They created a large database of dif-
ferent CGRA architectures and generated Verilog code for it. 
A part of initial designs might be inefficient and are pruned 
using LUT estimator. After that, they synthesize the remaining 
results in the database, which took several months to complete 
on the multiple Vivado instances. Using the results they cre-
ated the statistical estimator for architecture parameters affect-
ing the clock frequency with an accuracy between 2-5%.

There has been a lot of activity in the HLS research field 
lately, involving both academic and commercial HLS tools. 
Most tools fall into two language categories, general purpose 
programming languages (GPL) such as C or C++ or target 
specific languages like SystemC, which are derived from GPLs 
with specific structures to describe hardware information to 
the tools. Inserting additional hardware hints to the tools usu-
ally squeezes more performance improvement, but requires 
additional hardware knowledge from the developer and has 
multi-platform portability issues. A more sensible way is to 
generate hardware descriptions from the code written in high-
level language without any original application code modifica-
tions using HLS tools. The code is handled using intermediate 
representation (IR) and optimized using several common soft-
ware code optimizations before final hardware RTL descrip-
tion generation for specific target platform.

Commercial tools like Xilinx’s Vitis HLS and Catapult C 
by Mentor Graphics offer hardware code generation from the 

HLL applications written in languages like C, C++, Python or 
SystemC. Where Catapult empowers developers with full con-
trol over HLS synthesis, generating bug free and power efficient 
RTL with additional verifications, Vitis provides even richer 
ecosystem. Vitis compiler is based on the LLVM [31], which 
is an open source compiler toolchain providing powerful code 
optimizations via multiple HLL code transformation passes. 
Open source application acceleration libraries offer out-of-
the-box acceleration with minimal to zero-code changes to the 
existing applications. To leverage the learning curve of feature 
rich tools the vendors provide good support and online tutorials.

Academic tools LegUp, Bambu and DWARV deliver pow-
erful functionality, but are lacking commercial tools features 
and their target platforms support is limited [32–34]. LegUp, 
once an open-source HLS tool, but now acquired by Microchip, 
translates application C, C++ code into intermediate represen-
tation for easier handling to perform multiple compiler opti-
mizations. One of its powerful features is pthread, OpenMP 
parallel code support and it can generate multiple hardware 
cores without any annotations to the original code, so the appli-
cation can be run concurrently. Bambu utilizes GCC compiler 
to perform code optimisations and can support several target 
platforms. DWARV is based on CoSy compiler and can per-
form over two hundred different compiler optimizations.

A number of surveys show that the performance gap 
between the commercial and academic HLS tools is not that 
significant and the differences fall mostly in usability and 
feature availability [3, 4]. Commercial tools usually provide 
more pleasant usability, optimization features and support 
several platforms or languages. Results also indicate that 
there is still no single ultimate HLS tool that would perform 
equally well in every possible application domain. Develop-
ers still need to know hardware specific tricks and describe 
them to the HLS tools, to realize them efficiently in the tar-
get platforms, by either modifying the original application 
code or specifying tool specific parameters.

7  Conclusions

In this paper we introduced AEx, an automated high-level 
synthesis tool for programmable co-processors. We gener-
ated application specific architectures using new exploration 
heuristics and compared the results to our previous work, 
MicroBlaze soft-core processor, ARM processor and Vitis 
HLS tool. We synthesized one of the architectures on ASIC 
technology to demonstrate the potential for SoC use case by 
showing 71% runtime reduction with 52% area increase. New 
heuristics operate on a wider design space, but still stay in 
reasonable time limits, generating sensible architectures in 
terms of performance. Comparison to modern HLS tool high-
lighted the key spots to improve in the AEx tool, which we will 
focus on in the future work. With added manual fine-tuning 
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the performance slowdown was brought down to only 1.64x 
compared to the fixed-function accelerator generated by the 
HLS tool.

In the future, the tool run time can be improved with ear-
lier resource and performance estimation which reduces the 
amount of synthesis runs required. Additionally, feeding back 
the resource constraint information from the compiler to the 
exploration pipeline could help to speed up the search times 
and to find even more optimal architectures. Discovery and 
automated generation of custom operations could significantly 
improve the performance of the generated configurations. Mov-
ing to more data parallel programs defined using the OpenCL 
standard could help to improve performance by exposing more 
of the parallelism to the exploration algorithm and the compiler.
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