

Delft University of Technology

AEx
Automated High-Level Synthesis of Compiler Programmable Co-Processors
Hirvonen, Alex; Leppänen, Topi; Hepola, Kari; Multanen, Joonas; Hoozemans, Joost; Jääskeläinen, Pekka

DOI
10.1007/s11265-023-01841-3
Publication date
2023
Document Version
Final published version
Published in
Journal of Signal Processing Systems

Citation (APA)
Hirvonen, A., Leppänen, T., Hepola, K., Multanen, J., Hoozemans, J., & Jääskeläinen, P. (2023). AEx:
Automated High-Level Synthesis of Compiler Programmable Co-Processors. Journal of Signal Processing
Systems, 95(9), 1051-1065. https://doi.org/10.1007/s11265-023-01841-3

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s11265-023-01841-3
https://doi.org/10.1007/s11265-023-01841-3

Vol.:(0123456789)1 3

Journal of Signal Processing Systems
https://doi.org/10.1007/s11265-023-01841-3

AEx: Automated High‑Level Synthesis of Compiler Programmable
Co‑Processors

Alex Hirvonen1 · Topi Leppänen1 · Kari Hepola1 · Joonas Multanen1 · Joost Hoozemans2 · Pekka Jääskeläinen1

Received: 1 April 2021 / Revised: 5 April 2022 / Accepted: 16 January 2023
© The Author(s) 2023

Abstract
Modern High Level Synthesis (HLS) tools succeed well in their engineering productivity goal, but still require tool-
set and target technology specific modifications to the source code to guide the process towards an efficient imple-
mentation. Furthermore, their end result is a fixed function accelerator with limited field and runtime flexibility. In
this paper we describe the status of AEx, a novel work-in-progress HLS tool developed in the FitOptiVis ECSEL JU
project. AEx is based on automated exploration of architectures using a flexible and lightweight parallel co-processor
template. We compare its current performance in CHStone C-language benchmarks to the state of the art FPGA HLS
tool Vitis, provide ASIC implementation numbers, and identify the main remaining toolset features that are expected to
dramatically further improve the performance. The potential is explored with a hand-optimized case study that shows
only 1.64x performance slowdown with the programmable co-processor in comparison to the fixed function Vitis
HLS result.

Keywords Programmable accelerator overlay · Design space exploration · High-level synthesis · ASIP · Transport triggered
architecture

1 Introduction

The usage of FPGA devices as accelerators has increased
in the last decade, thanks to their flexibility. Although
diversity of options has a positive impact in the computing
domain, a key problem still remains: the complexity and
platform-specificity of the tools required to develop useful
FPGA-based designs [1, 2]. FPGAs provide a high degree
of flexibility which comes with costs that need to be sur-
passed by means of datapath specialization, enhanced on-
chip communication or additional parallelization, requiring
more effort on the implementation.

Customized soft-core based overlay architectures intro-
duce an additional software programmable layer to the
FPGA-based implementation. Using the instruction-set

architecture (ISA) layer, the same application description
can be retargeted to different FPGA platforms implementing
the overlay simply by recompiling the software. However, all
overlays incur overheads. When compared to a fixed func-
tion implementation, the additional overhead of an ISA-
based overlay eventually results from the instruction stream
support resources required.

Further benefits of customization can be reached with new
ASIC chip designs where processors and accelerators can be
integrated to a System-on-a-Chip (SoC) each with desired
degree of reprogrammability. However, to motivate new SoC
designs, the fundamental requirement is to reach enough ben-
efits via specialization or ownership of a new SoC IP. The
benefits must overcome the high costs of new chip runs, where
non-recurring engineering (NRE) costs required to design and
validate the new SoC design play a significant role.

Application-Specific Instruction-Set (ASIP) proces-
sors aim to reduce the NRE costs by means of a software
programmable template from which the accelerators are
defined. The end result can be field-programmed by switch-
ing the software, enhancing design reuse and reducing
design time validation risks thanks to the post-manufacture
bug fixing capabilities.

 * Topi Leppänen
 topi.leppanen@tuni.fi

1 Faculty of Information Technology and Communication
Sciences, Tampere University, Tampere, Finland

2 Faculty of Electrical Engineering, Mathematics
and Computer Science, Delft University of Technology,
Delft, The Netherlands

http://orcid.org/0000-0001-8795-7435
http://crossmark.crossref.org/dialog/?doi=10.1007/s11265-023-01841-3&domain=pdf

 Journal of Signal Processing Systems

1 3

High level synthesis tools allow [2, 3] developers to auto-
mate the generation of the low-level hardware descriptions
from the application code written in high level language.
Using higher levels of abstractions removes the entrance
barrier for software engineers allowing them to describe
the algorithms written in high-level language (HLL) with-
out concerning themselves about the underlying hardware
specifications. Ideally, such development paradigm should
increase the productivity, decrease NRE costs and shorten
final product’s time to-market. But, compared to the hand-
written register transfer level (RTL) designs, there is still a
performance gap in various identified application domains
[4]. In addition, many HLS tools still require developer to
make modifications to the original HLL code providing
pragmas or hints about the resulting target hardware, mak-
ing HLL code target tool or device specific. As the developer
has to still know the additional information about the target
hardware platforms, the learning curve and productivity suf-
fers despite of the automation benefits of HLS.

In this paper we describe a new HLS tool which pro-
duces an ASIP as its output, which means it is suitable both
as an FPGA overlay architecture as well as for integrating
into new chip designs. The tool called AEx utilizes trans-
port triggered architecture (TTA) as its processor template,
forming the basis for modular automated co-processor
architecture exploration.

In our previous work we showed that specialization of
the co-processors can be automated using TTAs to generate
efficient end results when compared to hand-made general
purpose designs [5]. This paper describes the current sta-
tus of AEx in the end of the FitOptiVis project [6]. It is an
extension of our previous work [5] providing these new
main contributions:

– Simplified user input requirements by automated selec-
tion of resource unit amounts and threshold parameters

– Advanced heuristics for wider design space exploration
and pruning

– Option to input a starting exploration architecture skel-
eton for predefined memories and custom operations

– Comparison to the modern HLS tool Vitis HLS by Xilinx

This paper has the following structure: Section 2 introduces
the TTA template which is used in this paper. Section 3
describes the design exploration problems and introduces
the proposed design space exploration heuristics. Section 4
presents the results obtained with the current status of the
tool. Section 5 investigates the bottlenecks in comparison
to a modern HLS tool Vitis by Xilinx via a hand-optimized
case study. Section 6 walks through the most relevant
related work. Finally, Section 7 concludes the paper.

2 Transport‑Triggered Architectures

Transport-triggered architectures is a class of exposed
datapath processors. TTAs differ from the traditional
“operation-triggered processors” by having more low-
level control of data transfers between processor functional
units. The interconnection network of TTAs, containing
function units (FU) and register files (RF) of different
widths connected with buses, is exposed to the program-
mer. This allows it to have a simple hardware circuit with a
cost of increased compiler complexity to explicitly express
the instruction-level parallelism. Simpler hardware allows
higher operating frequencies and lower energy consump-
tion, which is a very important design goal for the modern
mobile world [7]. Architecture resources are visible to the
compiler allowing it to schedule the code efficiently uti-
lizing all the available parallel units and the connectivity
between them.

The datapath of TTA is programmed as data transports or
moves between the resources, e.g. function units and register
files [8]. The program consists of instruction moves between
input and output ports of architecture units. The operands of
the operations are transported to the specific function units
and the actual operation execution is performed as a side-
effect when the data is written to the triggering input port
of the FU. The compiler’s task is to schedule the data move-
ment in and out of the FUs and RFs. Multiple moves can be
bundled into one instruction allowing multiple parallel data
transports in a single instruction. Figure 1 shows an exam-
ple TTA processor containing five transport buses, which
means five moves can be made in parallel. This is similar to
the very large instruction word (VLIW) architectures, but
the TTA does not have the RF complexity bottleneck, as its
RFs can have less ports due to the exposed datapath, while
providing the same level of efficiency [9].

In contrast to typical operation-triggered format, the
move structure in TTAs is more flexible and its operands
do not have to reside in registers. Output values from func-
tion units can be bypassed directly from function unit out-
put ports and routed to the required port, without access-
ing RFs. This reduces the RF accesses which helps to
minimize the RF port count, thus providing better energy
efficiency and shortening the possible critical path caused
by the RF with large number of ports. On top of that, the
compiler has the additional freedom to control the timing
of the function unit operand and result data transports.
Residing registers in FU ports can also store operands and
results, giving the compiler more freedom while schedul-
ing operations. One disadvantage of increased compiler
responsibility in TTAs is the additional control bits in
instruction word, inflating the program image size. The

Journal of Signal Processing Systems

1 3

effect of this can be reduced with application-specific tai-
loring of the instruction set and instruction compression.

The modularity of TTAs makes it possible to easily cus-
tomize a processor by adding any hardware resources to the
architecture, including FUs, RFs, transport buses and arbi-
trary connections between these. For example, frequently
used operations can be duplicated or custom operations for
heavy parts of the application can be added to provide addi-
tional performance. The units can be connected together in
arbitrary ways and it is the compiler’s task to route the data
transports efficiently. Unless the connections are carefully
considered, routing difficulties can lead to the increased
critical path length.

With these aspects in mind, TTAs are interesting for auto-
mated FPGA overlay and ASIP generation use due to their
simplified register files, modularity and fine-grained com-
piler targetable structure [10].

3 TTA Design Space Exploration

Designing a processor starts with the specification of
the requirements. Such requirements usually set restric-
tions on the available resources and execution time of the
application algorithm, limiting the size, performance or
energy consumption. Processor design is typically an itera-
tive process of continuous architecture modification and
evaluation, until the requirements are satisfied. A typical
evaluation process consists of compiling and simulating

the architecture and making appropriate changes based
on the simulated behaviour of the processor. The TTA-
specific architecture description language (ADL) is used to
express the structure and resources of the processor as an
architecture description file (ADF). This file can be used
as an input to both the retargetable compiler and to the
generation of the processor’s HDL-description. Manually
designing a processor this way is error-prone and time-
consuming, and should be automated by the toolset to sup-
port faster development.

The flexibility of TTAs gives a plethora of different ways
of customizing the processor for specific needs of appli-
cations. Multiple function units (FU) can be added and
connected together, with each having different operations,
parameters and memory structure. Widths, depths and port
counts of register files can be adjusted. The connectivity
between the FUs and RFs can be edited to support certain
bypasses and eliminate others. The amount of parallel-
ism in transport buses can be adjusted to find the balance
between sharing of the bus and parallel data transfers. Short
immediate values of different bit widths can be embedded
into the instruction word. A collection of these different
design parameters is called a processor configuration. All
possible combinations of these parameters create a huge
design space and exploring it would take a long time if
each reasonable architecture configuration was to be evalu-
ated individually. Typically, the Pareto configuration points
are the most interesting design configuration points, which
provide optimal results within given requirements. Finding

Figure 1 Example of a TTA processor. In TTA, data transports
between components are explicitly programmed. Multiple function
units are connected to the designated register files via input and out-
put ports. Five transport buses make it possible to execute 5 paral-
lel moves in a single instruction. The example instruction defines an

instruction with three moves controlling data transports in three buses
out of the five. The instruction performs an integer summation of a
value loaded from a data memory with a constant while simultane-
ously storing a previously computed value to memory.

 Journal of Signal Processing Systems

1 3

those points is considered to be a multi-objective optimiza-
tion problem [11, 12].

As the design space is too large, a proper heuristics to
shrink it must be used. Some works rely on the usage of
evolutionary genetic algorithms, where configuration candi-
dates evolve in next iteration cycles based on specific fitness
score, but they do not always guarantee that the found solu-
tion is the best possible [11, 13]. In our work we explore the
design space as a tree, which is pruned using specific input
parameters described later in the paper.

A good exploration starting point for TTA is to create
a complex VLIW-like connected architecture, where each
FU port has a separate corresponding RF port, and start
pruning the underutilized components, transforming it into
a simpler architecture [14]. In our work the design space is
gradually narrowed by transforming the huge architecture
through multiple optimization passes, where the same types
of resources are pruned or merged into one. This continues
until the (lower boundary) performance threshold is reached.

In our proposed HLS flow the exploration starts from 1)
an input application written in C, OpenCL C or LLVM inter-
mediate representation and 2) a set of design space limiting
parameters. The main parameters are the following: a) clock
cycle and frequency thresholds b) desired number of feasible
output architectures. There are also multiple other optimiza-
tion pass specific parameters and they are used mostly for
fine-tuning the end result. These include number of parallel
memory function units, starting skeleton architecture with
predefined components and size of the immediates. The out-
put of the flow is the architecture description files of con-
forming configurations.

3.1 Exploration Pipeline

The automated exploration pipeline consists of several archi-
tecture processing passes which refine the architecture for
the next optimization pass. The general idea is to perform
each optimization pass in a cyclic manner starting from the
compilation of an input application against a given archi-
tecture, simulating and refining it until certain limitations
are reached as depicted in Fig. 2. In our work we use the
expand and prune approach. In the initial stages we start
from a massive architecture having maximum resources and
connectivity. At each step, based on the profiling results,
we start pruning the least utilized resources and merging
components based on their parallel activity. Each optimi-
zation pass can produce from one to multiple architecture
configurations in order of best performance in terms of cycle
counts. The passes that create multiple output configurations
need to be carefully joined together. New possible configu-
rations expand as a tree structure, starting from the large
starting point architecture and expanding every time there’s
a pass with multiple output configurations. The heuristics

handle the selection of these architecture options and walk
forward and back through the exploration tree, trying differ-
ent feasible resource combinations. The overall structure of
the exploration pipeline passes is shown in Fig. 3.

The large initial architecture containing the maximum
set of resources is not meant to be a synthesizable proces-
sor, but is used as a starting point of the next optimization
pass for the profiling and pruning of the resources. For each
operation with known behavior from the operation database,
an individual function unit is added with the register file
of corresponding bit width. For the arithmetical and logic
operations, ALUs are created, as well as load-store units
(LSU) for the memory operations connected to the default
address space. If a special skeleton parameter is given, the
starting architecture can contain predefined ALUs and LSUs
with designer defined custom latencies and address spaces.
The initial size of the RFs is set high enough to store the
most variables of the application to avoid spilling content
to the main memory.

A starting skeleton architecture can be used to specify dif-
ferent external interfaces (e.g. memory). The exploration can
be run using a custom starting architecture containing some
function units with special operations, predefined delays and
address spaces. While creating the initial huge architecture,
other function units for operations are simply added to this
predefined architecture, without re-adding the operations
found in predefined units. Predefined function units are also
kept untouched during the following optimization passes.

Figure 2 Iterative process of a typical exploration stage. The architecture
is refined by modifying the architecture resources. The application HLL
code for the produced architecture is compiled and simulated. After that,
the decision is made against requirements specified by designer, to either
continue modifications or finish refining and pass it to the next optimiza-
tion pass. Usually the iteration continues until a certain performance or
resource utilization goal is reached.

Journal of Signal Processing Systems

1 3

The next optimization pass objective is to get rid of the FUs
with operations that are not utilized enough. The program is is
compiled for the gigantic architecture from the previous step
and from the scheduled code the operation usage is gathered.
The FUs for the operations not found in the scheduled code
are pruned off from the architecture. Using simulation data
the architecture can be reduced even further by removing some
operations which are utilized very little and can be emulated in
software (e.g. division, if it’s rarely used). Remaining function
units are duplicated as a crude way to get more instruction level
parallelism. To retain the successful compilation in the next
passes, a certain set of operations is never pruned. Such opera-
tions include addition, subtraction, shift and basic memory
operations. Pruning FUs might also result in removing RFs,
buses and sockets which are no longer used.

After pruning the operation set, the VLIW-like connectiv-
ity is created. In the resulting architecture every FU operand

port has an individual bus connection to a dedicated RF port.
This interconnection network is unnecessarily complex for
the TTA programming model, but it will be simplified in
the next optimization passes. A typical VLIW-connected
architecture at this point has around 20 function units and
60-80 individual buses connecting FU ports to the RF ports.

Then the exploration moves on to the branching explo-
ration passes. Two resources can be merged together based
on their simultaneous usage. Such resources are FUs,
buses and register files. The utilization data from simula-
tion can be used to build the co-variance matrix of parallel
usage of each component. Two components with minimal
co-variance indicate that they can be successfully merged
together without a significant impact on the performance.
The idea behind the co-variance matrix is explained in
more detail in [15]. Minimizing the number of function
units also simplifies the interconnection network, as the
arbitration between the operations is moved inside the
function units. As the final branching exploration pass, the
sizes of the large RFs are shrunk until it starts affecting the
cycle count. This happens when the size of the registers
is not enough to hold the most-used application variables
and they are spilled to the main memory.

As the final optimizations, two immediate passes are
performed that only produce a single output configuration
each. The widths of the short immediate on each bus were
set to 32 bits at the beginning of the exploration. At this
point they can be reduced based on the profiling data from
simulation, while still ensuring that the maximum number of
the immediate moves can be done using short immediates.
Long immediates are optimized by creating a long immedi-
ate instruction template split across several buses. Again, the
simulation data is used to discover the least used buses and
use them to pass long immediates. The current immediate
optimizations are assumed to be good enough to not neces-
sitate the use of branching passes.

3.2 Exploration Heuristics

At the beginning of the exploration the designer doesn’t
know how much resources the resulting architecture needs
for the input application. For the efficient automated explo-
ration tools, a certain limiting requirements goals for area,
performance or energy consumption must be specified. In
the final outcome designer could have a variety of different
design configuration options to choose from, e.g. architec-
tures with small resource usage and low-power usage or per-
formance-oriented architecture with more resources. Using
constant threshold limits to pick the single specific Pareto
point configuration is fast in terms of exploration time, but
not an optimal solution, as the more promising and even
faster configurations could be found around such Pareto
points. Using greedy algorithm could be very time effective

Figure 3 Automated exploration and its passes. The automated explo-
ration of our approach starts from the input application code written in
high level language, creating an oversized initial architecture, pruning
the operation set, creating oversized VLIW-connectivity, pruning and
merging resources based on their parallel utilization and optimizing
other component features until crossing a certain lower boundary for
performance. Snapshots on the right visualize the architecture’s state
in some of the stages; starting point, huge VLIW-connected architec-
ture and the final optimized architecture.

 Journal of Signal Processing Systems

1 3

in limiting the large exploration space and producing bet-
ter results. However, the problem with greedy algorithms is
that they select the first best result ending up in local optima
point as found in [15].

Heading towards fully automated exploration tool, the
user-defined resource unit amounts and threshold parameters
are no longer required, as opposed to our previous explo-
ration implementation [5]. To define the desired resulting
architecture the designer now has to input just two limit-
ing real-time execution performance parameters (Pareto
points): clock cycle count and operation frequency. Clock
cycle count can be used to successfully prune the architec-
tures which reach it and a synthesis tool is run to check if
the frequency requirement is satisfied. The value of these
parameters can be manually decided by the designer, but can
also be found out by sweeping different values to find the
optimal starting Pareto points, where the performance of the
output configurations no longer increase. The new algorithm
explores much wider exploration design space, especially
around those Pareto points and it can now produce multiple
suitable architectures. As a result, the designer has several
choices to select either architectures with minimal hardware
resources or slightly larger ones but with extra performance
still satisfying the input parameters.

The exploration pipeline is depicted in Fig. 4 and its sim-
plified heuristics are described in the Algorithm 1. It contains
multiple resource pruning and optimization passes, which pro-
duce lists of different architecture configurations in the order
of increasing resources. Configurations which do not fulfill
the clock-cycle count requirements specified by the designer
are pruned and only the promising ones are considered as can-
didates and passed forward the pipeline. Only single configu-
ration with minimal resources is passed at a time to the next
pass. The architectures are picked starting from the smallest

in terms of resources (FUs, RFs, buses, RF ports). When the
end of the pipeline is reached, the configuration is tested for
conforming to both input parameters and marked as promis-
ing. After that, the exploration continues going backwards in
the pipeline to the previous pass. If the previous pass has some
configurations left in the produced set, the algorithm picks the
next with more resources and continues the exploration by
passing that configuration to the next pass.

Figure 4 AEx exploration pipeline. Each architecture optimization
pass produces multiple design choices aka configuration sets in the
growing order of resources. Some of the configurations are pruned
based on designer performance restrictions and others are passed to
the next optimization pass as an input one by one producing subsets

of their own. At the end of the pipeline configurations are synthesized
and pruned if the design goals are not met. This might lead to more
pruning in the preceding sets, as picking configurations with more
resources would also fail.

Journal of Signal Processing Systems

1 3

The exploration pipeline deals with the branching passes
by performing a depth-first search to the tree, where the
nodes at each pass are ordered by their resource count from
smaller to larger. An example run of this algorithm is shown
in Fig. 5. During the exploration process the back and forth
movement through the exploration tree produces tens or
even hundreds of promising configurations. Since each
branching pass can create tens of configurations, the full
exploration of the tree can take a very long time. To limit
this, the designer can set the desired number of promising
configurations using an input parameter. After reaching that
number of promising configurations, the exploration can
stop. Since the configurations are evaluated in the order of
growing resources, the chosen configurations at that point
are the ones with minimal resources. While evaluating the
clock frequency of a configuration, the synthesis might fail
because of over-utilization of resources or too long of a
critical path. At that point, it can be assumed that we don’t
have to go backwards to the previous branching pass to pick
the architecture with increased resource amount, because
increasing the resources would increase the critical path
and the operating frequency will also fail with this new sub-
set. Based on our observations, this measure has a positive
effect in dropping out more possible design space points and
minimizing the overall exploration time.

The described exploration algorithm is not strictly spe-
cific to TTAs. However, many of the optimization passes
are TTA-specific. Therefore it could be possible to use
the same algorithm for different types of instruction set
architectures by removing and adding new passes to it.

4 Evaluation

The described HLS flow was implemented to a retargeta-
ble tool flow called TCE [16]. It has a design space explo-
ration framework which allows defining new automated
modification algorithms to perform the iterative search of
the design space [17].

4.1 Setup

To benchmark the efficiency of our new exploration heuristics
we run the same benchmarks as in our previous work [5]. We
used maximum operating frequency and clock-cycle counts
from the previous work’s performance-oriented architectures
as input parameters for the new architecture generation. To
compare the results we use execution time, FPGA resource
usage in LUTs, maximum operating frequency, instruction
width and instruction memory size. The comparison is made
against our previous work, MicroBlaze soft-core processor,
ARM Cortex-A9 processor and fixed-function accelerators
generated by HLS tool Vitis by Xilinx [18].

The exploration was run on CHStone [19] benchmark
suite, which is a set of various applications of different
domain, such as multimedia, signal processing and cryptog-
raphy. We generated 8 application specific architectures, one
for each benchmark, picking the ones with best execution
time performance. The synthesis runs were performed with
Vivado using Zynq 7020 FPGA device as a target. Latencies
for the most arithmetic operations and constant shift were
set to 2 cycles, dynamic shift 3, memory load operations 4
and same for complex operations like multiply and division.

4.2 Exploration Results

The increased exploration design space and additional
synthesis runs to check operating frequency resulted in
increased total exploration time, but thanks to the successful
pruning heuristics we managed to keep them at the reason-
able level. Overall average exploration time has increased
around 1.5-2 times from our previous work. The number
of desired promising architectures significantly affects the
exploration time, since the exploration can be stopped once
that number of configurations has been found.

Estimating the operating frequency of an architecture
description without performing the actual synthesis could
improve the exploration time greatly, as synthesis times for
each configuration are an order of magnitude slower than
the compilation and simulation times. This type of estima-
tor could be created by collecting the timing information of
operations and other configuration parameters into a data-
base, and intelligently combining them together. Alterna-
tively, creating a data-driven estimator would be possible,

Figure 5 A simplified example of an exploration run with 2 branching
passes and clock frequency check using synthesis. At the end, only the
configuration number 5 is returned as a promising configuration.

 Journal of Signal Processing Systems

1 3

but would require thousands of synthesized configurations
as training data.

Now, with our improved exploration heuristics we are
able to explore a wider design space around given Pareto
points. This results in 5 completely new benchmark archi-
tectures, while the architectures for adpcm, blowfish and
gsm stayed the same compared to our previous work.
Table 1 summarizes the synthesis results for the generated
architectures. The overall look-up-table (LUT) utilization
is improved around 11%. This is because the algorithm
picked slightly smaller architecture having 1 function unit,
bus or register file port less, while having around the same
or better performance. The maximum operating frequen-
cies stayed around the same level with 1-3% improvement.
Table 2 presents the instruction widths in the produced
architectures. The instruction width has decreased in the
most new generated architectures. This is natural, since the
core with less resources also has a shorter instruction word.
As a result, the total instruction memory usage decreased
on average by 16%.

Figure 6 shows overall execution performance of AEx
against MicroBlaze soft-core processor, ARM Cortex-A9
processor and Vitis. MicroBlaze performance is worse by
a magnitude of 2 to 5, but it’s understandable as it is a sim-
ple scalar processor and not oriented for performance. The
discussion on Vitis results is continued in the next section.

The dual-issue superscalar ARM Cortex-A9 [20] is cho-
sen as one of the comparisons because it’s available as a hard
processor on the used Zynq 7020 SoC. Additionally, as the
proposed method is a processor-based approach, it makes
sense to evaluate the differences to a hard processor core. In
these benchmarks, ARM outperforms AEx by 60% to 80%,
which is mainly explained by the higher clock frequency
of 650 MHz [21]. The difference in the clock frequencies
seems to match quite closely with the difference in perfor-
mance. Since the limitations of scaling the performance of
a multi-issue processor by increasing the available ILP are
well known [22, 23], there simply aren’t that many avail-
able operations that can be scheduled in parallel, thus ILP
is very limited. Compared to the ARM processor with much
higher clock frequency, the proposed method should sus-
tain 3x more operations in parallel than ARM. This leads to
an impossible situation, where there simply isn’t any more
available ILP in the program to exploit.

Total instruction memory size relative to AEx is depicted
in Fig. 7. AEx has lower instruction memory usage than
MicroBlaze and ARM in blowfish and sha benchmarks. Rea-
son for this is the significantly lower number of instructions,
even though the instruction word is much wider. Thanks
to the application specific tailoring of the architectures, the
well-known TTA’s problem of inflated instruction memory
size is kept here at reasonable levels.

Figure 6 Overall runtime com-
parison between MicroBlaze,
AEx, Arm and Vitis HLS tool.
MicroBlaze runtime values are
truncated and the actual value
is given at the top of the bar.
Hand-optimization was only
performed for aes benchmark.

Figure 7 A comparison of
instruction memory sizes.
Hand-optimization was only
performed for aes benchmark.

Journal of Signal Processing Systems

1 3

Instruction compression feature of the tool set was not uti-
lized in this research. It could be applied as a post-processing
step for the final configurations to bring the instruction mem-
ory usage even lower. In the future it could be interesting to
couple the instruction compression to be a part of the explo-
ration algorithm, so that the effect of it would be reflected in
the exploration results.

4.3 SoC Implementation Assessment

In order to assess the potential for automatically generated
co-processors as ASIPs for new SoC designs, we synthesized
one of the produced configurations using a modern ASIC
technology. In order to put the numbers to a perspective, we

compared the proposed method to a well-known general-
purpose RISC-V [24] ISA implementation called zero-riscy
[25]. The designs are synthesized with Synopsys Design
Compiler [26] using a 28 nm process. Zero-riscy is a small
energy optimized core, thus its numbers should be taken as
a coarse grained design point in terms of small consumption
general purpose core. The results of the ASIC synthesis are
presented in Table 3.

The core generated with the proposed method is able to
reach 3.3 GHz clock frequency while not demanding signifi-
cantly larger area than the comparison target. This is because
the specialization of the processor architecture allows it to
have a simpler hardware than the general purpose core.
Since the core generated by the proposed method is able
to issue multiple operation moves in parallel, it’s able to
launch 2 arithmetic operations in one cycle. This gives it an
estimated 5x advantage in peak arithmetic ops compared to
the single-issue zero-riscy.

In the aes benchmark, the proposed specialized co-processor
is able to reach over three times higher performance, while still
remaining software programmable. It is important to note that
the proposed method uses only a set of quite standard basic
operations, which means that it remains highly software pro-
grammable for other similar applications.

Table 1 Synthesis results: LUT utilization, maximum operating
frequency and energy estimation. Comparison is made with our
previous work against updated AEx. The LUT utilization is further
broken down to the LUTs used by the processor interconnection
(IC) and register files (RF).

Benchmark Core IC RF FMax
(MHz)

Energy (µJ)

adpcm 1756 562 89 198 8.57
aes 2226

(1.01x)
632

(0.86x)
312 186 3.62

blowfish 1625 469 49 202 74.9
gsm 2565 630 500 180 1.80
jpeg 1551

(0.75x)
392

(0.70x)
49 205 307

mips 1269
(0.85x)

276
(0.60x)

25 199 4.57

motion 1359
(0.92x)

390
(0.85x)

49 192 0.745

sha 1884
(0.89x)

649
(1.05x)

49 188 49.8

Table 2 Instruction widths and their relative sizes in comparison to
previous work.

Instruction width (bits)

benchmark Previous work Current work

adpcm 80 80
aes 115 91 (0.79x)
blowfish 63 63
gsm 101 101
jpeg 83 64 (0.77x)
mips 59 44 (0.75x)
motion 59 58 (0.98x)
sha 82 83 (1.01x)

Table 3 Comparison of the machine AEx generated for aes bench-
mark. A small general purpose RISC-V implementation Zero-riscy
given as a reference point.

Zero-riscy AEx-generated core

FMax (GHz) 1.33 3.33 (2.5x)
Peak arithmetic ops (Gops/s) 1.33 6.67 (5.02x)
Cycle count (aes) 31 873 23 246 (0.73x)
Estimated runtime (ns) 23 904 6 973 (0.29x)
Area (μm2) 11 731 17 865 (1.52x)

Table 4 Runtime, utilization and power results from Vitis HLS com-
pared to the AEx results. Vitis HLS isn’t able to synthesize jpeg and
motion benchmarks.

Kernel Fmax Runtime (ns) LUT Energy (µJ)

adpcm 131 47107 (0.14x) 12378 (7.0x) 11.4 (1.3x)
aes 235 8809 (0.070x) 955 (0.43x) 0.132 (0.036x)
blowfish 145 3009503 (0.80x) 2591 (1.6x) 126 (1.7x)
gsm 140 13786 (0.22x) 4723 (1.8x) 1.67 (0.93x)
jpeg - - - -
mips 159 19975 (0.079x) 1634 (1.3x) 0.539 (0.12x)
motion - - - -
sha 168 260821 (0.12x) 13372 (7.1x) 121 (2.4x)

 Journal of Signal Processing Systems

1 3

5 Comparison to Vitis HLS

In order to estimate the quality of the results, a comparison
to a state of the art HLS-method should be included. The
CHStone benchmarks are synthesized using Xilinx Vitis HLS
tool [18] (version 2020.2) targeting the Zynq 7020 FPGA
device. The benchmarks are synthesized using the default
C synthesis settings with no significant source code modi-
fications. The results are presented in Table 4. Even though
the adpcm benchmark is valid C code, it produces the wrong
result in Vitis’s C/RTL-cosimulation. This is probably because
it’s using some feature of C unsupported by Vitis HLS. The
numbers for it are presented anyway for comparison.

It’s important to note that since the CHStone benchmarks
contain both the input data and the output checking function-
ality as part of their source code, there are no external data
interfaces coming out of the kernels. If the kernels were to
be used with dynamic input data, the data interfaces would
need to be explicitly defined by the user. Another limitation
of the HLS tool is the missing support for pointer-to-pointer
structures, which causes two of the benchmarks (jpeg and
motion) to be non-synthesizable without source code modi-
fications. In the proposed method, the external interfaces
are easily understandable regular memory interfaces, and
the pointer-to-pointer-structures are supported naturally as
part of the C language.

However, on the other benchmarks that it manages to syn-
thesize, the Vitis HLS is able to reach significantly better
runtime performance than the proposed runtime program-
mable co-processor-approach. Some amount of performance
overhead is to be expected, since the proposed approach is a
complete software programmable processor. The LUT uti-
lization seems to vary between the benchmarks more than
it did for the generated TTA processor. This is probably due
to the different amounts of automatic unrolling the HLS tool
performs, duplicating hardware to execute multiple loop
iterations in parallel.

Energy estimates seem to correlate naturally to the runt-
ime and the area utilization values. Since the Vitis HLS gen-
erated designs can finish the application faster, they use a
smaller total amount of energy. On the other hand, if the LUT
utilization is larger, it increases the power usage. On three of
the benchmarks (adpcm, blowfish and sha), this causes the
energy usage be larger than with the proposed AEx-generated
cores, even though they execute the application faster. At the
other end of the spectrum, the aes benchmark executes signif-
icantly faster while using less area and power which leads to
it having just 3.6% energy usage of the AEx generated core.

Comparing against the Vitis HLS-approach can give
insight on how to improve the proposed method further.
The relatively worst performing benchmark aes is chosen
for further analysis (around 14.2x slower than Vitis). In the

following subsections we analyze a few of the features that
have the potential to significantly increase the performance
of the co-processor-approach. This manual optimization
shows that the TTA-based co-processor approach is able to
almost reach the performance of a commercial HLS tool.
The results of the manual optimization are summarized in
Table 5. None of the implemented manual optimizations
would be impossible to perform automatically within AEx.
Therefore, this level of performance increase can be esti-
mated to be a realistic target for further AEx improvements.

5.1 Loop Pipelining

Loops are a very common structure in data processing pro-
grams. For example, in Vitis HLS tool, a lot of attention is
given to the loop initiation intervals and lengths of loops,
as the effects of those get multiplied by the iteration count
of the loop. Exploiting the parallelism between independent
iterations of a loop is also one way to gain more instruction-
level parallelism (ILP) to the program. Since TTA is an
exposed datapath architecture where the ILP must be utilized
at compile-time, the compiler must perform the interleaving
of the loop iterations using e.g. software pipelining [27].
Improvements in the compiler will automatically propagate
to the exploration of better architectures.

However, as the TCE compiler’s current ability to per-
form software pipelining is still rather limited, aggressive
loop unrolling can be used as an alternative way to exploit
loop-level parallelism at the cost of instruction memory
size. After applying more aggressive loop unrolling, the
runtime was brought down to only be 8.96x slower than the
Vitis runtime. Naturally, this comes at the cost of increased
instruction memory usage, which is brought up by 39%.

5.2 Automated Generation of Custom Operations

Since aes is a very bit manipulation-oriented algorithm, it
would benefit from special operations that perform multiple
basic operation chains within a single cycle. This increases
the amount of operations executed per cycle by pushing more
of the operations inside a single cycle at critical points of the

Table 5 The improvement in the runtime of aes benchmark with
manual optimizations.

Cumulative optimizations Runtime (ns) Compared to
Vitis runtime

AEx 124 978 14.19
Unroll 78 930 8.96
Custom operations 19 179 2.18
Larger machine 14 454 1.64

Journal of Signal Processing Systems

1 3

program. At the moment, the proposed exploration method is
only able to automatically use a set of commonly used opera-
tions that roughly match C language’s operators (add, sub,
shifts, xor, etc.). Thus, even simple constant shifts and chains
of subword logic operations that could fit inside a single clock
cycle now consume at least a single clock cycle each.

In order to assess the performance potential of custom
operations, two custom operations were created manually
based on the insides of the most critical loops. The cus-
tom operations can be described as directed acyclic graphs
(DAG) recursively consisting of simpler sub-operations [28].
The hardware for these operations can then be generated
automatically based on the DAG. After adding the custom
operations to the machine generated by AEx and calling
them manually from the source code, the runtime of aes
benchmark is brought down to only be 2.18x slower than the
Vitis runtime. As a final optimization step, a slightly larger
machine is manually created to better take advantage of the
ILP exposed up by the loop unrolling, the runtime is further
brought down to only be 1.64x slower than Vitis.

Currently, the custom operations need to be defined by the
designer manually. This optimization example demonstrates
the performance gains available from custom operations. It
shows that adding support for automatic discovery of the
custom operations to the exploration pipeline seems to be
an important next step. This is required to make the method
scalable to new unknown applications, without requiring the
designer input in defining the custom operations.

At the time of writing, the source code of the program has
to be manually edited to use the custom operations due to the
ineffectiveness of the instruction selector in choosing more
complex operations [28]. In the future, the compiler should
be improved to automatically utilize these custom opera-
tions. This is required so that the custom operations created
to improve the performance of a single application would be
automatically usable in other applications. Specialization level
of the custom operations is an important parameter to keep in
mind when tailoring for certain application while remaining
software programmable for other similar applications.

5.3 Parallel Memories

So far in the proposed approach, only a single load-store
unit is used to access the data memory, which resides in a
single on-chip block RAM. This can easily create conges-
tion as there are often a lot of memory operations at the
critical parts of the program that could be performed in par-
allel. Memory components often support multiple parallel
ports, so utilizing all of them seems obvious to maximize
the parallel data transfers to memory. Adding a second LSU
to the architecture that connects to the second port of the
single data memory block RAM would be the easiest way
to accomplish this.

In Vitis HLS tool, different variables in the input code
can be allocated to separate memory components. Even fur-
ther, array partitioning is a well-known optimization in HLS
to split a large array into multiple memory components to
get parallel access to the array. This is combined with the
memory access pattern analysis to ensure that there are no
conflicting accesses to the same memory component. This
can help e.g. in loop pipelining to help parallelize the loop
iterations by removing the conflicting memory accesses.

Adding multiple separate memory components to the pro-
posed method would require a lot of automatic analysis to split
the variables between the memory components. Additionally,
interfacing with the outside world becomes more difficult the
more fragmented the memory system is. One of the advantages
of a software programmable accelerator is the ability to sup-
port multiple different applications. Therefore, the memory
hierarchy tailoring should be done carefully to not overfit the
memory hierarchy to certain application’s access pattern and
lose the benefits of a software programmable processor. How-
ever, it’s possible that there would be some generic access pat-
terns that the processor could still be tailored to (e.g. stencil).

Alternatively, the compiler already supports OpenCL C,
so changing the input language to OpenCL could provide
more tools to the handling of different memory components.
In OpenCL, the buffers could be allocated to different mem-
ory components at runtime.

5.4 Data‑level Parallelism

As described above, there often isn’t enough ILP to exploit in
common C programs, including the CHStone benchmarks. To
get around this, more data-level parallel programs can be used.
Therefore, a change to more parallel input language such as
OpenCL might be necessary to fully realize the benefits of cus-
tomizable architectures. Manually designed TTA-cores have
already been shown to perform better than the ARM Cortex-
A9 in certain OpenCL benchmarks [29], so adding OpenCL
support to AEx seems like natural progression.

One simple way to support the data-level parallelism of
OpenCL would be to support the vector datatypes of OpenCL
using SIMD operations. These SIMD operations could be
highly specialized for the given application to reduce the
resource requirements coming from the wide datapaths. There
would only be minimal changes needed to the exploration
pipeline to accommodate the automatic exploration of archi-
tectures with both SIMD and scalar operations.

5.5 Discussion

Based on these findings, the lowest hanging fruits to get on
par with the commercial state of the art is to automate the
discovery and use of custom operations as well as improve
the software pipelining support of the compiler. Another

 Journal of Signal Processing Systems

1 3

alternative would be to add a more intelligent heuristics for
controlling the software pipelining/loop unrolling aggres-
siveness based on the available instruction memory.

Based on our analysis of an example benchmark, these
improvements would likely heavily improve most, if not all
of the other benchmarks as well, bringing the performance
close to the fixed function implementations generated by the
Vitis HLS tool without suffering from its limitations placed
on the supported programming language constructs.

6 Related Work

In a similar work, the authors apply same shrinking technique
to the large VLIW architecture and explore architectures based
on the number of issue-slots, number of parallel FUs, RF and
memory sizes [14]. Underutilized units are merged into other
and oversized register files are resized to minimize the instruc-
tion width. To prune the large exploration space the additional
genetic algorithm framework is applied. This brings several
obstacles, as it requires additional configuration settings to
be applied for achieving optimal results. Also authors expe-
rienced same prolonged evaluation time difficulties for larger
algorithms and applied result caching for it.

In another work the authors experience the same issues
with the large design space using CGRA architectures where
they apply statistical approach to solve the operating frequency
estimation issues [30]. They created a large database of dif-
ferent CGRA architectures and generated Verilog code for it.
A part of initial designs might be inefficient and are pruned
using LUT estimator. After that, they synthesize the remaining
results in the database, which took several months to complete
on the multiple Vivado instances. Using the results they cre-
ated the statistical estimator for architecture parameters affect-
ing the clock frequency with an accuracy between 2-5%.

There has been a lot of activity in the HLS research field
lately, involving both academic and commercial HLS tools.
Most tools fall into two language categories, general purpose
programming languages (GPL) such as C or C++ or target
specific languages like SystemC, which are derived from GPLs
with specific structures to describe hardware information to
the tools. Inserting additional hardware hints to the tools usu-
ally squeezes more performance improvement, but requires
additional hardware knowledge from the developer and has
multi-platform portability issues. A more sensible way is to
generate hardware descriptions from the code written in high-
level language without any original application code modifica-
tions using HLS tools. The code is handled using intermediate
representation (IR) and optimized using several common soft-
ware code optimizations before final hardware RTL descrip-
tion generation for specific target platform.

Commercial tools like Xilinx’s Vitis HLS and Catapult C
by Mentor Graphics offer hardware code generation from the

HLL applications written in languages like C, C++, Python or
SystemC. Where Catapult empowers developers with full con-
trol over HLS synthesis, generating bug free and power efficient
RTL with additional verifications, Vitis provides even richer
ecosystem. Vitis compiler is based on the LLVM [31], which
is an open source compiler toolchain providing powerful code
optimizations via multiple HLL code transformation passes.
Open source application acceleration libraries offer out-of-
the-box acceleration with minimal to zero-code changes to the
existing applications. To leverage the learning curve of feature
rich tools the vendors provide good support and online tutorials.

Academic tools LegUp, Bambu and DWARV deliver pow-
erful functionality, but are lacking commercial tools features
and their target platforms support is limited [32–34]. LegUp,
once an open-source HLS tool, but now acquired by Microchip,
translates application C, C++ code into intermediate represen-
tation for easier handling to perform multiple compiler opti-
mizations. One of its powerful features is pthread, OpenMP
parallel code support and it can generate multiple hardware
cores without any annotations to the original code, so the appli-
cation can be run concurrently. Bambu utilizes GCC compiler
to perform code optimisations and can support several target
platforms. DWARV is based on CoSy compiler and can per-
form over two hundred different compiler optimizations.

A number of surveys show that the performance gap
between the commercial and academic HLS tools is not that
significant and the differences fall mostly in usability and
feature availability [3, 4]. Commercial tools usually provide
more pleasant usability, optimization features and support
several platforms or languages. Results also indicate that
there is still no single ultimate HLS tool that would perform
equally well in every possible application domain. Develop-
ers still need to know hardware specific tricks and describe
them to the HLS tools, to realize them efficiently in the tar-
get platforms, by either modifying the original application
code or specifying tool specific parameters.

7 Conclusions

In this paper we introduced AEx, an automated high-level
synthesis tool for programmable co-processors. We gener-
ated application specific architectures using new exploration
heuristics and compared the results to our previous work,
MicroBlaze soft-core processor, ARM processor and Vitis
HLS tool. We synthesized one of the architectures on ASIC
technology to demonstrate the potential for SoC use case by
showing 71% runtime reduction with 52% area increase. New
heuristics operate on a wider design space, but still stay in
reasonable time limits, generating sensible architectures in
terms of performance. Comparison to modern HLS tool high-
lighted the key spots to improve in the AEx tool, which we will
focus on in the future work. With added manual fine-tuning

Journal of Signal Processing Systems

1 3

the performance slowdown was brought down to only 1.64x
compared to the fixed-function accelerator generated by the
HLS tool.

In the future, the tool run time can be improved with ear-
lier resource and performance estimation which reduces the
amount of synthesis runs required. Additionally, feeding back
the resource constraint information from the compiler to the
exploration pipeline could help to speed up the search times
and to find even more optimal architectures. Discovery and
automated generation of custom operations could significantly
improve the performance of the generated configurations. Mov-
ing to more data parallel programs defined using the OpenCL
standard could help to improve performance by exposing more
of the parallelism to the exploration algorithm and the compiler.

Acknowledgements The work for this publication was funded by ECSEL
Joint Undertaking (JU) under grant agreement No 783162 (FitOptiVis [6]).
The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Netherlands, Czech Republic, Finland,
Spain, Italy. It was also supported by European Union’s Horizon 2020
research and innovation programme under Grant Agreement No 871738
(CPSoSaware) and Academy of Finland (decision #331344).

Funding Open access funding provided by Tampere University includ-
ing Tampere University Hospital, Tampere University of Applied Sci-
ences (TUNI).

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Fahmy, S. A., Vipin, K., & Shreejith, S. (2015). Virtualized FPGA
accelerators for efficient cloud computing. In 2015 IEEE 7th Inter-
national Conference on Cloud Computing Technology and Science
(CloudCom), pp. 430–435.

 2. Ren, H. (2014) A brief introduction on contemporary high-level
synthesis. In Proceedings of the 2014 IEEE International Confer-
ence on IC Design & Technology (ICICDT).

 3. Lahti, S., Sjövall, P., Vanne, J., & Hämäläinen, T. D. (2018). Are we there
yet? IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems: A study on the state of high-level synthesis.

 4. Nane, R., et al. (2016). A survey and evaluation of FPGA high-
level synthesis tools. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 35(10).

 5. Hirvonen, A., Tervo, K., Kultala, H., & Jääskeläïnen, P. (2019).
AEx: Automated customization of exposed datapath soft-cores.
In 2019 22nd Euromicro Conference on Digital System Design
(DSD), pp. 35–42.

 6. Al-Ars, Z., et al. (2019). The FitOptiVis ECSEL project: Highly
efficient distributed embedded image/video processing in

cyber-physical systems. In Proceedings of the 16th ACM Interna-
tional Conference on Computing Frontiers, CF ’19, pp. 333–338,
New York, NY, USA. Association for Computing Machinery.

 7. Hoogerbrugge, J., & Corporaal, H. (1994). Register file port
requirements of Transport Triggered Architectures. In IPro-
ceedings of the 27th Annual International Symposium on
Microarchitecture.

 8. Corporaal, H., & Hoogerbrugge, J. (2002). Code Generation for Trans-
port Triggered Architectures, pp. 240–259. Springer US, Boston, MA.

 9. Jääskeläinen, P., Kultala, H., Viitanen, T., & Takala, J. (2014).
Code density and energy efficiency of exposed datapath archi-
tectures. Journal of Signal Processing Systems, 80(1), 49–64.

 10. Jääskeläinen, P., Tervo, A., Vayá, G. P., Viitanen, T., Behmann, N.,
Takala, J., & Blume, H. (2018). Transport-triggered soft cores.
In 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW).

 11. Palesi, M., & Givargis, T. (2002). Multi-objective design space
exploration using genetic algorithms. In Proceedings of the
Tenth International Symposium on Hardware/Software Code-
sign, CODES ’02, pp. 67–72, New York, NY, USA, 2002. Asso-
ciation for Computing Machinery.

 12. Kumar, A., & Chakarverty, S. (2011). Design optimization using
genetic algorithm and cuckoo search. In 2011 IEEE International
Conference on Electro/Information Technology, pp. 1–5.

 13. Ferrandi, F., Lanzi, P. L., Loiacono, D., Pilato, C., & Sciuto, D.
(2008). A multi-objective genetic algorithm for design space
exploration in high-level synthesis. In 2008 IEEE Computer Soci-
ety Annual Symposium on VLSI, pp. 417–422.

 14. Jordans, R., Jóźwiak, L., & Corporaal, H. (2014). Instruction-set
architecture exploration of VLIW ASIPs using a genetic algo-
rithm. In 2014 3rd Mediterranean Conference on Embedded Com-
puting (MECO), pp. 32–35.

 15. Viitanen, T., Kultala, H., Jääskeläinen, P., & Takala, J. (2014).
Heuristics for greedy transport triggered architecture intercon-
nect exploration. In Proceedings of the International Conference
on Compilers, Architecture and Synthesis for Embedded Systems
(CASES). ACM.

 16. Jääskeläinen, P., Viitanen, T., Takala, J., & Berg, H. (2017). HW/
SW co-design toolset for customization of exposed datapath
processors. Computing Platforms for Software-Defined Radio,
147–164.

 17. Esko, O., Jääskeläinen, P., Huerta, P., dela Lama, C. S., Takala, J.,
& Martinez, J. I. (2010). Customized exposed datapath soft-core
design flow with compiler support. In Proceedings of the Interna-
tional Conference on Field Programmable Logic and Applications.

 18. Xilinx. Vitis High-Level Synthesis User Guide (UG1399).
Retrieved February 14, 2023, from https:// docs. xilinx. com/r/ en-
US/ ug1399- vitis- hls

 19. Hara, Y., Tomiyama, H., Honda, S., & Takada, H. (2009). Pro-
posal and quantitative analysis of the CHStone benchmark pro-
gram suite for practical C-based high-level synthesis. Journal of
Information Processing, 17, 242–254.

 20. ARM. Cortex-A9. Retrieved February 14, 2023, from https://
devel oper. arm. com/ ip- produ cts/ proce ssors/ cortex- a/ cortex- a9

 21. Digilent. (2017). PYNQ-Z1 Board Reference Manual.
 22. Jouppi, N., & Wall, D. (1989). Available instruction-level parallel-

ism for superscalar and superpipelined machines. In Proceedings
of the third international conference on architectural support for
programming languages and operating systems, ASPLOS III, pp.
272–282. ACM.

 23. Wall, D. W. (1991). Limits of instruction-level parallelism. SIG-
PLAN Notices, 26(4), 176–188.

 24. Waterman, A., Lee, Y., Patterson, D. A., & Asanovic, K. (2011).
The RISC-V instruction set manual, volume I: Base user-level
ISA. EECS Department, UC Berkeley, Technical Report UCB/
EECS-2011-62.

http://creativecommons.org/licenses/by/4.0/
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://docs.xilinx.com/r/en-US/ug1399-vitis-hls
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a9
https://developer.arm.com/ip-products/processors/cortex-a/cortex-a9

 Journal of Signal Processing Systems

1 3

 25. Schiavone, P. D., Conti, F., Rossi, D., Gautschi, M., Pullini, A.,
Flamand, E., & Benini, L. (2017). Slow and steady wins the race? A
comparison of ultra-low-power RISC-V cores for internet-of-things
applications. In Proceedings of International Symposium on Power
and Timing Modeling, Optimization and Simulation (PATMOS).

 26. Synopsys. Design Compiler Graphical. Retrieved February 14,
2023, from https:// www. synop sys. com/ imple menta tion- and-
 signo ff/ rtl- synth esis- test/ design- compi ler- graph ical. html

 27. Lam, M. (1988). Software pipelining: an effective scheduling
technique for VLIW machines. In Proceedings of the ACM SIG-
PLAN 1988 conference on programming language design and
implementation, PLDI ’88, pp. 318–328. ACM.

 28. Kultala, H., Jaaskelainen, P., & Takala, J. (2011). Operation set
customization in retargetable compilers. In 2011 Conference
Record of the Forty Fifth Asilomar Conference on Signals, Sys-
tems and Computers (ASILOMAR), pp. 761–765. IEEE.

 29. Tervo, K., Malik, S., Leppanen, T., & Jääskeläinen, P. (2020).
TTA-SIMD soft core processors. In 2020 30th International
Conference on Field-Programmable Logic and Applications
(FPL), pp. 79–84.

 30. Wolf, D. L., Spang, C., & Hochberger, C. (2020). Towards pur-
poseful design space exploration of heterogeneous CGRAs: Clock
frequency estimation. In 2020 57th ACM/IEEE Design Automa-
tion Conference (DAC), pp. 1–6.

 31. Lattner, C., & Adve, V. (2004). LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceedings of
the International Symposium on Code Generation and Optimiza-
tion, pp. 20–24. Palo Alto, CA.

 32. Nane, R., Sima, V., Olivier, B., Meeuws, R., Yankova, Y., & Bertels, K.
(2012). DWARV 2.0: A CoSy-based C-to-VHDL hardware compiler.
In 22nd International Conference on Field Programmable Logic and
Applications (FPL).

 33. Canis, A., Choi, J., Aldham, M., Zhang, V., Kammoona, A.,
Anderson, J. H., Brown, S., & Czajkowski, T. (2011). LegUp:
High-level synthesis for FPGA-based processor/accelerator sys-
tems. In Proceedings of the 19th ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays, FPGA ’11, New
York, NY, USA. ACM.

 34. Pilato, C., & Ferrandi, F. (2013). Bambu: A modular framework for the
high level synthesis of memory-intensive applications. In 23rd Inter-
national Conference on Field Programmable Logic and Applications.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Alex Hirvonen received the MSc
degree in Electrical Engineering
from Tampere University, Tam-
pere, Finland in 2021. He works
currently as a Software Engineer
at M-Files, Finland on topics
related to efficient data storage
management.

Topi Leppänen received the MSc
degree in Electrical Engineering in
2021 from Tampere University,
Finland, where he is currently pur-
suing a PhD degree. His research
interests include heterogeneous
platforms and hardware accelera-
tion. His current research focuses
on easier development and pro-
gramming of diverse systems with
specialized programmable and
nonprogrammable accelerators.

Kari Hepola received the MSc
degree in Electrical Engineering
from Tampere University, Tam-
pere, Finland in 2022, where he is
currently working towards the PhD
degree. His current research inter-
ests include multiple instruction set
architectures and application-
specific instruction set processors
with the goal of increasing energy
efficiency and flexibility of pro-
grammable processors.

Joonas Multanen received his MSc
degree in Electrical Engineering in
2015 from Tampere University of
Technology and his PhD degree in
2021 from Tampere University
(TAU), Finland. He is currently a
postdoctoral researcher at the Fac-
ulty of Information Technology and
Communication Sciences in TAU.
His research interests include energy
efficient computer architectures.

Joost Hoozemans received his
BSc in Computer Science from
Utrecht University in 2011 and
his MSc and PhD in Computer
Engineering from Delft Univer-
sity of Technology in 2014 and
2018, respectively. His research
interests include VLIW and TTA
processors, reconfigurable com-
puting, FPGA programmability
and dataflow computing.

https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html
https://www.synopsys.com/implementation-and-signoff/rtl-synthesis-test/design-compiler-graphical.html

Journal of Signal Processing Systems

1 3

Pekka Jääskeläinen (Associate
Professor) leads the Customized
Parallel Computing group of Tam-
pere University. He has worked on
heterogeneous platform customiza-
tion and programming topics since
the early 2000s. In addition to his
academic publication activities, he
is responsible for two heterogene-
ous computing related open-source
projects; OpenASIP and Portable
Computing Language (PoCL). His
current research interests include

methods and tools to reduce the engineering effort involved in design and
programming of diverse heterogeneous platforms and hardware, and com-
piler techniques to reduce the energy consumption of programmable
processors.

	AEx: Automated High-Level Synthesis of Compiler Programmable Co-Processors
	Abstract
	1 Introduction
	2 Transport-Triggered Architectures
	3 TTA Design Space Exploration
	3.1 Exploration Pipeline
	3.2 Exploration Heuristics

	4 Evaluation
	4.1 Setup
	4.2 Exploration Results
	4.3 SoC Implementation Assessment

	5 Comparison to Vitis HLS
	5.1 Loop Pipelining
	5.2 Automated Generation of Custom Operations
	5.3 Parallel Memories
	5.4 Data-level Parallelism
	5.5 Discussion

	6 Related Work
	7 Conclusions
	Acknowledgements
	References

