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ABSTRACT

The soil wetness condition is a useful indicator of inundation hazard in floodplains, such as the Poyang Lake

floodplain. Special Sensor Microwave Imager (SSM/I) passive microwave data were used to monitor water-

saturated soil and openwater areas of the PoyangLake floodplain from 2001 to 2008, capturing the inundation

patterns of this area in space and time. The polarization difference brightness temperature (PDBT) at 37GHz

is sensitive to the water extension even under dense vegetation. The zero-order radiative transfer model was

simplified to retrieve the vertical–horizontal (V–H)-polarized effective emissivity difference from the PDBT

at 37GHz. Vegetation fractional area and vegetation transmission function were derived from NDVI to

represent the vegetation attenuation. This effective emissivity difference has a quasi-linear relationship with the

fractional area of water-saturated soil and standing water, no matter the frequency. Using the multifrequency-

polarization surface emission (Qp) model and the Dobson model of the soil–water mixture, the two segments

of this relationship were combined into a quasi-linear model. Comparing the retrieved water-saturated soil

and standing water area of Poyang Lake with the lake area obtained from theMODIS and synthetic aperture

radar (SAR) image at higher spatial resolution, the calculations show a good fit with the MODIS and SAR

data, with R2 5 0.7664 and relative RMSE 5 17.74%. The cross-correlation analysis shows that the Poyang

Lake extension fluctuates with a 5-day time lag with the upstream land area of water-saturated soil and standing

water. Since the closure of the Three Gorges Dam, this relationship is more evident.

1. Introduction

The soil wetness condition is a very important factor

to describe the regional soil water-storage capacity,

which determines the relative magnitude of surface

runoff from precipitation. Thus, for hydrological appli-

cations, especially flood simulation and early warning,

the soil wetness condition is a very critical variable.

However, it is difficult to measure the regional soil

wetness condition by field measurements. A passive

microwave radiometer at C or L band can provide soil

moisture over large regions, but only from the topsoil

down to a certain depth, which is determined by the

wavelength. Because of the shallow soil layer sensed at

37GHz (detected soil depth is around 0.8mm), when

this layer is water saturated, additional water will be-

come vertical and horizontal water flow, or standing

water after the deep soil layers are saturated. We could

then consider the fractional area of water-saturated

topsoil and standing water as an indicator of the re-

sidual water-storage capacity of the whole region. The
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surface runoff could be estimated based on that. In this

paper, we retrieved the fractional area of water-

saturated soil (WSS) and standing water from the po-

larization difference brightness temperature (PDBT) at

37GHz in order to study the inundation pattern of large

floodplains by satellite microwave observations.

The PDBT at 37GHz is determined by the land sur-

face temperature, the soil’s polarized effective emissiv-

ity difference (PEED), and vegetation transmission.

The open water fractional area for a densely vegetated

floodplain in SouthAmerica has been retrieved from the

PDBT (Choudhury 1989; Hamilton et al. 1996; Sippel

et al. 1994, 1998), under the assumption that the PDBT

of dry soil and open water is constant in forest regions.

This approach is only applicable for year-round green

areas in South America, because of the relatively small

temporal variability of land surface temperature and

large and consistent attenuation by the vegetation can-

opy. To obtain the fractional area of WSS and standing

water for seasonal vegetation–covered areas in tem-

perate zones, we simplified the zero-order radiative

transfer model (Kirdiashev et al. 1979; Wigneron et al.

1993) to retrieve the polarized effective emissivity dif-

ference from PDBT. The soil water saturation has

a quasi-linear relationship with its PEED.We found that

the fractional area of WSS and standing water can be

represented by the soil water saturation, taking the

spatial heterogeneity into account. Thus, this fractional

area can be estimated from the PDBT at 37GHz.

The dominant parameter of the zero-order radiative

transfer model is the vegetation optical thickness. A lot

of work has been done to parameterize it from different

satellite observations, such as microwave vegetation

index (Shi et al. 2008), leaf area index (Wen et al. 2003),

and normalized difference vegetation index (NDVI)

(Gao et al. 2004). Previous work assumed that the area is

fully covered by vegetation. However, the vegetation

fractional cover is also variable. For example, a wetland

near a lake is highly influenced by the water extension

and shows seasonal changes in the dry and wet seasons.

The vegetation fractional area can be estimated from

NDVI using a linear function, which we add into the

radiative transfer model. The relationship between

NDVI and PDBT at the monthly scale has been studied

extensively for semiarid vegetation, forest, and grass-

lands (Choudhury 1989, 1991; Choudhury and Tucker

1987; Choudhury et al. 1990). In semiarid areas, the time

series of PDBT is synchronous with NDVI at opposite

trends. This suggests that when soil moisture is rather

stable, attenuation by vegetation can be obtained from

NDVI. We will develop this concept later.

The relationship between the soil PEED and the de-

gree of soil water saturation is the bridge connecting the

satellite observations with the WSS and standing water

area. This PEED is determined by the dielectric con-

stant of the soil–water mixture. Both physical and em-

pirical models have been proposed to model this, such as

the Dobson model (Dobson et al. 1985) and the Wang–

Schmugge model (Wang and Schmugge 1980). The

quasi-linear relationship between the degree of soil

water saturation and the PEEDwas first observed byDe

Ridder (2000) at 19GHz by simulating the smooth sur-

face soil emissivity with the Wang–Schmugge model.

But, the dielectric constant of a soil–water mixture is

frequency dependent. Simulated soil emissivity will also

be different between models. Thus, we need to validate

the quasi-linear relationship at 37GHz and the consis-

tency of this relationship across models.

Because of the revisit frequency and swath width of

microwave radiometers on polar-orbiting satellites, time

series of passive microwave data have gaps of 3–5 days.

To make a consistent daily time series, we need some

statistical methods, such as amoving window filter, to fill

these observation gaps. In addition, the effects of rain-

drops on microwave observations at 37GHz are not

negligible. Geolocation and resampling introduce errors

in the conversion from swath brightness temperature

(BT) to the gridded data. Erroneous observations

therefore need to be identified and removed. In this

case, we applied the Harmonic Analysis of Time Series

(HANTS) algorithm (Menenti et al. 1993; Roerink et al.

2000; Verhoef 1996) to fill gaps and remove noisy sam-

ples. The fast Fourier transform (FFT) and HANTS

have been developed and applied to time series of sat-

ellite observations, for example, NDVI and land surface

temperature, to study vegetation phenology and land

surface climate (Alfieri et al. 2013; Jia et al. 2011; Julien

et al. 2006; Menenti et al. 1993, 2010; Moody and

Johnson 2001; Roerink et al. 2000, 2003; Verhoef 1996).

Different from the FFT by using all observations re-

gardless of quality, the HANTS identifies and removes

outliers in data samples. We aimed at evaluating its

applicability to satellite microwave radiometric data.

The objective of this paper is to study the inundation

pattern in the up- and downstream area of the Poyang

Lake floodplain in relation with the WSS and standing

water area retrieved from passive microwave observa-

tions. Poyang Lake is the largest lake in the Yangtze

River basin. As the major natural water reservoir of the

Yangtze River basin, the inundation pattern of this

floodplain has a significant influence on both local and

downstream water resource management.

There are five sections in this paper: introduction,

study area and dataset, methods, results, and conclu-

sions. In the methods, the algorithm for retrieving the

WSS and standing water area from the PDBT at 37GHz
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is developed. Then, we demonstrate the details of the

algorithm from data procession to parameter derivation

step by step. In the results, the preprocessed data are

compared with the original data to show the improve-

ment after gap filling and noise removal. After solving

the parameter-derivation problems, the retrieved frac-

tional area of the WSS and standing water of Poyang

Lake area is compared with the lake area obtained from

the Moderate Resolution Imaging Spectroradiometer

(MODIS) and advanced synthetic aperture radar

(ASAR) data.

2. Study area and dataset

The study area is the floodplain including Poyang

Lake [see the squares in Fig. 1, which are the Equal-

Area Scalable Earth Grid (EASE-Grid) with a spatial

resolution of 25 km (Brodzik and Knowles 2002)]. It is

the largest lake in the Yangtze River basin, located be-

tween 28.0488 and 29.3848N and 115.4448 and 117.0078E.
There is a clear dry season from October to March, and

the flooding season is fromApril to September. The low

residual water-storage capacity of this floodplain was

one of the major causes of the extreme flooding over the

Yangtze River basin in 1998. Thus, it is chosen as our

study area.

Currently, there are two sensors providing dual po-

larization measurements around 37GHz: the Special

Sensor Microwave Imager (SSM/I) and the Advanced

Microwave Scanning Radiometer for EOS (AMSR-E).

In this case, the SSM/I on board the Defense Meteoro-

logical Satellite Program (DMSP)F13 satellite is used. It

is a seven-channel, four-frequency radiometric system

that has provided global observations at a constant angle

of incidence of 51.28 since July 1987 (Hollinger et al.

1990). No data were acquired from 2 December 1987 to

12 January 1988 because of overheating of the sensor.

The period of our study is from 2001 to 2008, to ensure

that the observations by MODIS overlap with the en-

closure of the Three Gorges Dam (in November 2002).

The footprint of the 37-GHz observations is about

28km 3 37km, with geolocation uncertainty of about

8 km. We used the data acquired at 0558:00 local time

(LT). The AMSR-E on board the Aqua satellite mea-

sures radiation since May 2001 at six frequencies in the

range of 6.9–89GHz, all at dual polarization, with

a constant angle of incidence of 558. The 36.5-GHz data

have a footprint of 14 km 3 8 km and are acquired at

0130:00 LT. The SSM/I brightness temperature has been

intercalibrated with that of AMSR-E, and both are

registered into the EASE-Grid system. Thus, for the

same pixel area, the time series of PDBT at similar

frequencies (37GHz for SSM/I and 36.5GHz for

AMSR-E) should have similar fluctuations. The PDBT

time series of these two sensors are compared to vali-

date the consistency, observation bias, and possible

noise. The daily SSM/I and AMSR-E data gridded into

the EASE-Grid (Brodzik and Knowles 2002) were

FIG. 1. The study area of Poyang Lake and its upstream area.
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downloaded from the National Snow and Ice Data

Center (NSIDC) (Armstrong et al. 1998). The Poyang

Lake area covers 10 pixels of EASE-Grid data, as in-

dicated in Fig. 1 by the white-numbered squares. The

upstream area of the Poyang Lake covers the four major

tributary river systems coming from the west, southwest,

southeast, and east, and indicated in Fig. 1 by the gray-

shaded squares with black numbers.

This study uses two MODIS data products: the

MOD09A1 8-day composite surface reflectance data of

MODIS bands 1–7, which are used in the calculation of

vegetation fractional area and vegetation optical thick-

ness; and the MOD13A2 16-day composite NDVI data,

which are used to derive the relationship betweenNDVI

and vegetation optical thickness. The spatial resolution

of the reflectance dataset is 500m, while the NDVI data-

set is 1 km. Because of the nonlinear dependence of

NDVI on red and near-infrared reflectance, these two

bands will be averaged first over each EASE-Grid and

then used to calculate its NDVI. MOD13A2 is used in

the parameter derivation, mainly because of its high

quality data. MOD09A1 is chosen from the best quality

atmosphere condition during each 8-day measurement.

MOD13A2 corrects the viewing angle difference based

on MOD09A1; thus, large off-nadir and forward-

scattering view angles and large solar zenith angles are

avoided in MOD13A2.

3. Methods

The remote sensing data, that is, the MOD09A1 and

SSM/I 37-GHz brightness temperature data, are used

to retrieve the water-saturated soil and open water

area. These data are first preprocessed to remove

noise and daily gaps. The zero-order radiative transfer

model is simplified, in order to use these processed

remote sensing data to retrieve the surface PEED. A

linear model is then developed to calculate the WSS

and open water area from the PEED. The overview

of the theory of our method is explained in section 3a,

and the detailed explanation of each step is given in

sections 3b–d.

a. Theory and flowchart of retrieving fractional area
of WSS and standing water from passive
microwave measurements

1) SIMPLIFIED RADIATIVE TRANSFER MODEL

Satellite microwave radiometers measure the radi-

ance emitted by the land surface, such as soil, standing

water, and snow. This radiance is determined by the

surface temperature, surface emissivity, and surface

roughness, and it is attenuated by the vegetation canopy

and atmosphere. The zero-order radiative transfer model

is often used to describe the energy transfer from the land

surface to the radiometer. We simplified this model to re-

trieve the PEED from the PDBT DT at 37GHz as follows:

DT5TsD�[(12 fveg)1 fveg exp(22t0/m)] , (1)

where Ts is the surface brightness temperature; D� is

PEED; fveg is the vegetation fractional area; m5 cos(u),

where u is zenith view angle; and t0 is the optical

thickness of vegetation.

The single scatter albedo of the vegetation canopy at

two polarizations is assumed to be the same. The ap-

parent brightness temperature of the sky is negligible

compared with the land surface temperature. Under the

above two assumptions, we get Eq. (1) from the zero-

order radiative transfer model.

2) LINEAR MODEL TO RETRIEVE FRACTIONAL

AREA OF WSS AND STANDING WATER

Since the PEED is obtained from Eq. (1), the frac-

tional area ofWSS and standing water fws can be derived

from the following linear equation:

fws 5 (D�2D�dry)/(D�sat2D�dry) , (2)

where D�dry and D�sat are the PEED of completely dry

soil and water-saturated soil, respectively. Their deri-

vation method will be discussed in section 3d. The var-

iable D�sat has the same value with that of water; thus,

the fractional area in Eq. (2) represents the sum of the

WSS and standing water.

Equation (2) is established based on the definition

transform from the water saturation condition to the

fractional area of WSS and standing water as follows:

fws5 �
n

i51

(fiWi/Wsat,i)5Wr, s/Wsat , (3)

where fi is the fractional area of the ith subpixel area

with the volumetric soil moistureWi (cm
3 cm23) and the

field capacity of this subpixel areaWsat,i (cm
3 cm23); n is

the number of the subpixel areas;Wr,s (cm
3 cm23) is the

volumetric soil moisture of the whole pixel region; and

Wsat (cm
3 cm23) is the regional field capacity.

In Eq. (3), the spatial heterogeneity of the soil mois-

ture in one pixel region is formulated by the field ca-

pacity of the subpixel area, which is determined by its

soil texture. The regional water saturation condition is

represented by the sum of its subregion conditions. The

fractional area fi and the water saturation condition of

each subpixel Wi/Wsat,i in Eq. (3) are transformable to

each other, because both can be taken as the weight
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factor of the other. Thus, in Eq. (3), the fractional area of

WSS and standing water has the same definition as the

regional water saturation condition Wr,s/Wsat. Accord-

ing to De Ridder (2000), the regional water saturation

condition could be derived from the PEED by a linear

relationship, which we will discuss in section 3d.

3) OVERVIEW OF THE RETRIEVAL METHOD

The processing steps to retrieve the fractional area of

the WSS and standing water are as follows:

1) Gap filling and noise removal. Preprocess the passive

microwave data by moving filter and HANTS to

obtain a daily noise-free estimation of the PDBT and

vertical BT data at 37GHz. Aggregate theMOD09A1

and preprocess the NDVI by HANTS to obtain daily

noise-free NDVI data (see section 3b).

2) Retrieve the PEED. The parameters of the simplified

radiative transfer model in Eq. (1) need to be derived

from the satellite observations in order to retrieve the

PEED. The land surface temperature can be derived

from the vertical BT at 37GHz, and the vegetation

fractional area can be obtained fromNDVI data. The

derivation of the vegetation optical thickness from

NDVI is discussed in detail in section 3c.

3) Retrieve the fractional area of theWSS and standing

water. The parameters of the linear model in Eq. (2)

need to be determined through the model simulation

of soil–water mixture and surface roughness, because

there are no field measurements for this area. Then,

the fractional area of the WSS and standing water

can be retrieved using Eq. (2) (see section 3d).

Besides the steps listed above, the FFT method is used

to determine the major parameters used in HANTS (see

section 3b). To validate the frequency and model de-

pendence of the parameters’ derivation of Eq. (2), we used

two soil–water mixture models, the Wang–Schmugge

model and the Dobson model, to simulate the PEED at

frequencies of 1.4, 19, and 37GHz (see section 3c).

b. Gap filling and noise removal

To create a consistent time series of microwave data,

erroneous observations need to be identified and re-

moved and the gaps in the time series need to be filled.

First, we used a 10-day moving window filter to pre-

process the time series of PDBT and vertically polarized

BT. In each window, the maximum and minimum non-

zero values were removed, and the average of the

remaining values was the estimation of the central day.

The window size was chosen according to the gap size in

the time series (the gap size caused by the revisiting

schedule is 3–5 days) and the need to retain a sufficient

number of samples. The upper and lower envelopes of

the time series are potential erroneous observations

(larger scatter of the upper and lower envelope samples

is shown in Fig. 2). Extremely low values are probably

caused by the raindrops and wind. Besides those, the in-

tegration method used in the SSM/I EASE-Grid product

introduces extremely high and extremely low values. That

is because a weighted sum of the brightness temperature

in each 4 3 4 array is used to represent the brightness

temperature at its central location in the EASE-Grid

products (Poe 1990). These weight factors are the de-

scription of the antenna pattern. Thus, nearby pixels will

significantly influence the gridded data, with possible

under- and overestimations of PDBT, so we removed the

maximum and minimum value in the moving window.

FIG. 2. Time series of raw PDBT (i.e.,DT) data at one pixel of PoyangLake for different days of
the year (DOY) in 2002.
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However, when durative measurements are taken

under precipitation, for example, during the rainy sea-

son, the filtered time series will be underestimated. To

remove such noise in filtered time series, we applied the

HANTS algorithm (Menenti et al. 1993; Roerink et al.

2000; Verhoef 1996). The main user-selectable param-

eters of the HANTS algorithm are the number of har-

monics and their period, high/low outlier direction, valid

data range, fit error tolerance, and degree of over-

determinedness [see Jia et al. (2011) and Roerink et al.

(2000) for detailed information].

To determine the number and periods of the frequen-

cies used in the HANTS algorithm, we have applied the

FFT algorithm to 1-yr time series of both 37-GHz PDBT

and vertical BT data. The components with the first three

largest amplitudes were chosen for the threemain land use

types in the Poyang Lake floodplain—wetland, open wa-

ter, and cropland. These components are enough to re-

gress the upper envelope of the original time series (called

a reconstruction). The precipitation-contaminated obser-

vations have lower values and thus are removed as outliers

during the reconstruction. TheHANTSalgorithmwas also

applied to NDVI time series to obtain cloud-free daily

NDVI. The number and periods of the dominant fre-

quencies are determined in a similar way as above.

c. Parameter derivation of the simplified radiative
transfer model

To calculate the fractional area of WSS and standing

water using Eq. (1), land surface temperature, fractional

vegetation area, and vegetation optical thickness need

to be derived from satellite observations. The variable

Ts can be obtained from the vertical BT TB,37V at

37GHz (Holmes et al. 2009):

Ts 5 1:11(TB,37V)2 15. 2 . (4)

The green vegetation fractional area fveg can be esti-

mated from NDVI as

fveg 5 (NDVI2NDVIsoil)/(NDVIveg2NDVIsoil) , (5)

whereNDVIsoil is that of bare soil andNDVIveg is that at

full vegetation cover. In this case, NDVIsoil is set as

0 because of water-saturated soil. The NDVIveg of rice is

set as 0.60, the same as that of shrubland.

The vegetation optical thickness is approximately a lin-

ear function of NDVI (van deGriend andOwe 1993). The

opposite fluctuations of the time series of NDVI and

PDBT in arid areas suggest that when the surface tem-

perature and water saturation are constant, the DT
changes because of vegetation transmission. To derive the

vegetation optical thickness, we modified Eq. (1) as

DT5DTsf(12 fveg)1 fveg exp[2A(NDVI)]g , (6)

where DTs 5 Ts(D�), which is the PDBT emitted from

the land surface. In Eq. (6), the vegetation optical

thickness is linearly determined by NDVI with a co-

efficient A. The angle of incidence is also contained in

this coefficient. To simplify our process, we defined this

exponential function in Eq. (6) as the vegetation trans-

mission function (denoted as d):

d5 exp[2A(NDVI)] . (7)

So, in fact, we derive the vegetation transmission func-

tion of Eq. (7), instead of the vegetation optical thick-

ness, from NDVI.

TodetermineAusingEq. (6), a set of observationswhere

DTs is constant and DT only changes with NDVI is neces-

sary. Because fveg can be obtained from NDVI using Eq.

(5), the only undetermined parameters in Eq. (6) are two

constants: DTs and A. Thus, by regressing NDVI with its

dependent variable DT using Eq. (6), we can deriveA (see

the equation in Fig. 6, described in greater detail below).

Flooded paddy fields fit this assumption very well.

Paddy fields are flooded in specific periods of the

growing season (as shown in Table 1). Normally,

between two adjacent flooding periods, there is a long

dry period. Thus, the irrigated paddy fields can be taken

as flooded or water-saturated area and the unirrigated

paddy fields can be taken as dry soil. The fractional area

of paddy fields does not change year by year according

to local statistical records, and rice growth demands

a strict irrigation plan. This guarantees consistent PEED

during the flooding periods. The land surface tem-

perature is also constant in the early morning of the

TABLE 1. Duration of different stages (days) of rice growth cycle and their flooding condition.

Periods

Period of seeding

establishment

Early period

of tillering

Late period

of tillering

Booting

stage

Heading

stage

Milk

stage

Yellow ripening

stage

Early rice 18 18 13 15 12 9 15

Late rice 6 18 14 21 11 12 26

Flooding condition Flooded or early

period is flooded,

later period is drying

Flooded Flooded

or drying

Flooded Flooded Wet Drying
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flooding periods (SSM/I measures in the early morning)

because of the relative high thermal capacity of water.

Thus,DTs (i.e., underneath the rice canopy) of the paddy

fields can be taken as a constant during the flooding

periods. Then, we can apply Eq. (6) on the coupled DT
and NDVI observation to regress A.

d. Parameter derivation of the linear model

The linearmodel of Eq. (2) comes from the hypothesis

that the regional water saturation condition is linearly

related with the retrieved PEED as follows:

Wr,s/Wsat5 (D�2D�dry)/(D�sat2D�dry) . (8)

This has been proven at 19GHz by De Ridder (2000)

using theWang–Schmuggemodel (Wang and Schmugge

1980) to simulate the dielectric constant of soil–water

mixture for a smooth surface. However, the dielectric con-

stant of a soil–water mixture �y is frequency y dependent,

and there are some other models available, such as the

Dobson model (Dobson et al. 1985). In this case, both the

Wang–Schmugge and the Dobson models are used to esti-

mate the dielectric constant of soil–water mixture at fre-

quencies of 1.4, 19, and 37GHz. Then, the PEED of rough

soil surface is calculated by the multifrequency-polarization

surface emission (Qp) model (Shi et al. 2005) as follows:

D�5 [12 (QH1QV)][Gs,s(H, u, y)2Gs,s(V, u, y)] , (9)

whereQH andQV are the surface roughness parameters

for horizontal H and vertical V polarizations, respectively,

at the angle of incidence u. They can be obtained from the

roughness property of the surface, named s/l, which is the

ratio of RMS height s to correlation length l. Variables

Gs,s(H, u, y) and Gs,s(V, u, y) are the reflectivity of

a smooth surface for horizontal and vertical polarization,

respectively, which is determined by theFresnel equations:

Gs,s(H, u, y)

5
���
�
cosu2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�y 2 sin2u

q �.�
cosu1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�y 2 sin2u

q ����
2

(10)

and

Gs,s(V,u,y)

5
���
�
�y cosu2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�y2 sin2u

q �.�
�y cosu1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�y2 sin2u

q ����
2

.

(11)

The Dobson (Dobson et al. 1985) and the Wang–

Schmugge (Wang and Schmugge 1980) models are used

to calculate the dielectric constant of soil–water mixture

at frequencies of 1.4, 19, and 37GHz. The dominant

parameter of these two models is soil texture. A silt-loam

soil was used in this numerical analysis with 13.5% clay and

30.6% sand, since it is the major soil type in the Poyang

Lake area. Because of the calibration difficulty, the pa-

rameters of the Dobson model were not recalibrated while

the parameters of the Wang–Schmugge model at 37GHz

were recalibrated by Calvet et al. (1995).

4. Results

a. Gap filling and noise removal on time series of
PDBT

Our FFT analysis of the PDBT time series showed

that there were eight dominant frequencies and that

their corresponding periods were 365, 183, 122, 91, 73,

61, 46, and 30 days. The vertically polarized BT time

series had exactly the same frequencies, according to

their own FFT analysis. We set the other parameters

required to apply the HANTS algorithm to the PDBT

and vertical BT time series as follows:

d the direction of outliers was lower,
d the fit error tolerance was 1.5K,
d the degree of overdeterminedness was 80, and
d the valid data ranges were 3–100K for PDBT and 200–

400K for vertical BT.

The FFT analysis of NDVI time series showed that

there were six frequencies and their corresponding pe-

riods were 365, 184, 123, 91, 74, and 61 days. The other

parameters were set as follows:

d the direction of outliers was lower,
d the fit error tolerance was 0.05,
d the degree of overdeterminedness was 20, and
d the valid data range was 0–1.

The moving window–filtered brightness temperature

data are the daily estimation. They follow the overall

trend of the raw data in Fig. 3. The raw data time series in

Fig. 3 show much scattering, while the moving window–

filtered data give a much clearer trend of the time series.

The sharp sags of raw and filtered PDBT during the

continuous rainfall is probably caused by the attenua-

tion of raindrops as they occur at the same duration as

the precipitation in Fig. 3. The HANTS algorithm

throws out these relatively lower-valued samples as

outliers. The upper envelope of the filtered time series is

followed by the reconstruction time series. HANTS can

work because the spatial heterogeneity slows the re-

sponse of the regional soil moisture to precipitation. The

time series of daily region-averaged soil moisture ob-

served in Tibet is much smoother than that at hourly

resolution, according to the field observations by Zhao

et al. (2013).
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b. Parameterization of the vegetation transmission
function

To compare with the PDBT data, MOD13A2 NDVI

data were aggregated to a 25km 3 25km EASE-Grid,

because the aggregation from NDVI and reflectance

(MOD09A1) does not show large differences for the paddy

fields (shown in Fig. 4), and the data quality of MOD13A2

is much better thanMOD09A1 without sudden low values

(cloud-contaminated samples) in the aggregated NDVI

time series of MOD13A2. This consistency is only found

for cropland area. For other land types with large spatial

heterogeneity, NDVI data are calculated from the spatially

aggregated reflectance data (MOD09A1).

During each rice cropping season in 2002 (one from

April to July and the other from July to October,

according to the NDVI time series of Fig. 5), there is

a significant peak occurring in PDBT time series at its

start time. This indicates the sowing time and the start of

irrigation of the paddy fields, since the PDBT increases

withWSS and standing water area. The flood duration is

about 50 days, as shown in Table 1. It covers several

stages of rice phenology and includes three or four ob-

servations of the 16-day composite NDVI data. Since

the irrigation schedule is similar among fields, the sur-

face emittance and PDBT can be taken as constants

during these 50 days at the observation time (early

morning). Thus, the radiometer-measured PDBT is only

affected by the vegetation fractional area and optical

thickness. The vegetation fractional area can be calculated

from NDVI using Eq. (5). The vegetation optical thick-

ness, which describes the scattering and absorption of the

surface emittance by vegetation, can be parameterized by

NDVI using the vegetation transmission function of Eq.

(7). The simplified radiative transfer model appears in

Eq. (6) to clarify this.

To get sufficient observations to estimate the coefficients

inEq. (6), we choseNDVI data and corresponding average

FIG. 3. Time series of raw PDBT (i.e., DT) data in 2003 averaged over the Poyang Lake area, after a 10-day moving

filter and reconstructed with HANTS and daily precipitation.

FIG. 4. Time series of spatially aggregatedNDVI of paddy fields fromMOD09A1,MOD09GA,

and MOD13A2.
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PDBT data of one EASE-Grid pixel area (25 km 3
25 km; centrally located at 28.38078N, 115.83518E) dur-
ing the rice flooding periods from 2001 to 2003 (as shown

in Fig. 6), since this area is almost entirely covered by

paddy fields and the rice area in this region shows little

variability during these 3 years according to local sta-

tistical records. By fitting the data points with Eq. (6), we

get the regression equation as shown in Fig. 6:DTs in Eq.

(6) is 26.9K and A is 1.231 79. Thus, the vegetation

transmission function of Eq. (7) is

d5 exp[21. 23179(NDVI)]. (12)

In this regression, we did not use Eq. (4) to calculate the

land surface temperature, because the model uncertainty

of Eq. (4) might be introduced into the derivation of the

vegetation transmission function. The uncertainty of this

regression is highly dependent on the vegetation fractional

area. We compared the linear and quadratic model for

deriving vegetation fractional area from NDVI. When the

same setting of NDVIveg and NDVIsoil as described in

section 3b is used, the RMSE of our regression with the

quadratic model is 3.2K, higher than that in Fig. 6.

The parameter definition of vegetation fractional area

model in Eq. (5) has little influence on this regression.

We evaluated different settings of NDVIsoil (20.05, 0,

and 0.05), which is the major model uncertainty in Eq.

(5). The RMSE of our regression only varies from 2.7 to

2.8K. Because there is no field measurement of NDVI

for flooded soil, which could have negative values close

to water, we simply set NDVIsoil 5 0.

c. Evaluation of the relationship between the
emissivity difference and soil wetness

Wemodeled the smooth surface emissivity difference

at 1.4, 19, and 37GHz with both the Wang–Schmugge

and the Dobson models, as shown in Fig. 7. Both model

FIG. 5. Time series of original PDBT (i.e.,DT) data, moving window–filtered PDBT, andNDVI

at the paddy field in 2001.

FIG. 6. Scatterplots of PDBT (i.e., DT) data and corresponding NDVI observations and the

result of curve fitting.
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simulations show (Fig. 7) that a quasi-linear relationship

exists at all frequencies, but with different slopes and

interceptions. The Wang–Schmugge model gives a very

similar slope at different frequencies: the emissivity

difference increases from 0.17 with volumetric soil

moisture, reaching a plateau at D� 5 0.3, when the vol-

umetric soil moisture is close to 0.255 cm3 cm23 (Fig. 7a),

which is the field capacity of the silt-loam soil (De

Ridder 2000). The Dobson model simulation shows that

the slope of the quasi-linear relationship is dependent on

frequencies, while the plateau of D� has very similar

values at all three frequencies (Fig. 7b). At 1.4GHz, D�
increases from 0.16 and reaches the plateau at D� 5 0.3

for a soil volumetric moisture close to 0.14 cm3 cm23. At

19GHz, D� starts to increase at 0.15 and reaches the

same plateau when the soil gets wetter than for 1.4GHz,

at a soil volumetric moisture around 0.26 cm3 cm23. At

37GHz, it increases from an even lower D� around 0.14

and reaches the plateau when the soil moisture is close

to 0.5 cm3 cm23.

The Dobson model suggests that at the higher fre-

quency the relationship is much closer to linear, while

the Wang–Schmugge model gives similar quasi-linear

relationships at all frequencies. The interesting thing is

that linear or quasi-linear relationships occurred at all

frequencies in bothmodel simulations and the plateau of

D� is almost constant for different frequencies. The

Dobson model gives a frequency-dependent slope and

interception of D�.
The difference between the Wang–Schmugge and the

Dobson models lies in their theoretical basis. The

Wang–Schmugge model is a linear mixture of the soil

components’ dielectric constants. It used the welting

point to describe maximum bound water fraction, while

the Dobson model used the double-layer model

(Dobson et al. 1985) to describe the Debye-type re-

laxation of soil–water mixture. The Dobson model,

however, is a linear mixture of the components’

dielectric constants to the power a. The power a is ob-

tained from field measurements. From a theoretical

point of view, the Dobson model better describes the

dielectric constant at higher frequencies, for example,

37GHz, because it accounts for the imaginary loss of

microwave.

We used the Dobson model to calculate the dielectric

constant at 37GHz in Eqs. (10) and (11). Then, the

PEED was simulated by theQp roughness model in Eq.

(9). The linear relationships between PEED and soil

moisture still occur, as shown in Fig. 8, though the in-

terception and the plateau of D� are roughness de-

pendent. The s/l is the RMS height divided by the

correlation length, which represents the surface rough-

ness: a smaller s/l value means a smoother surface. The

slope of the relationships calculated for three different

roughnesses slightly decreases with increasing rough-

ness. This suggests that the fractional area of WSS and

standing water as a linear function of the PEED [Eq. (2)]

should depend on surface roughness. Because the ter-

rain around the lake area is relatively smooth, we set the

same roughness condition for all pixels (the white-

numbered squares in Fig. 1).

The wind’s influence on surface roughness is not sig-

nificant, since 58% of the wind speed measured at the

Boyang weather station near Poyang Lake is less than

2.0m s21 and 97% is less than 4.0m s21. That is because

Poyang Lake and its floodplain are surrounded by moun-

tains. The shape of the Poyang Lake floodplain looks like

a quadrangle, with its northern edge facing to the north-

west and its southern edge facing to the southeast. The

eastern and western edges are almost parallel. The mean

north–south distance is about 140km, and the mean east–

west distance is about 120km. The lake has an irregular

shape; it is located in the central floodplain and its eastern

boundary is elongated in the same way as the eastern edge

of the floodplain, with a north–south distance of about

100 km and an east–west distance of about 80 km. The

FIG. 7. Emissivity difference for silt-loam soil: (a) Wang–Schmugge and (b) Dobson models.
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lake connects to the Yangtze River to the north through

a funnel-shaped area, with a wide mouth to the south

and narrow head to the north. Thus, in the lake area,

a north–south wind blows onmost days. Only in July and

August does the monsoon from the Indian Ocean force

a south–north wind. The connecting funnel area yields

a higher wind speed in the narrow head to the north and

the wind speed decreases from north to south over the

floodplain, after passing through this connecting area.

Thus, the largest mean wind speed occurs north of

Poyang Lake, with an annual mean wind speed between

3 and 4m s21 from 1998 to 2007. In the center of the lake

area, the mean wind speed is reduced to 2–3ms21, while

at the Nanchang meteorology station south of the lake,

the mean wind speed is only 1.7m s21.

To derive the model expressed by Eq. (2), the PEED

of dry and water-saturated soil needs to be determined.

According to Choudhury (1989), the PEED of dry soil is

0.091. Its surface roughness was calculated for an open

water area by Choudhury with a corresponding s/l 5
0.175. The PEED of the paddy fields in Fig. 6, however,

is close to 0.1 (the land surface temperature is assumed

to be 270K). This suggests that the land surface is much

rougher than open water; thus, s/l is set as 0.25, with

a corresponding D�dry 5 0.068. For completely water-

saturated soil, we can assume that its PEED is the same

as standing water, 0.21, given by Choudhury (1989).

Equation (2) is then expressed as

fws 5 (D�2 0. 068)/(0. 212 0. 068). (13)

d. Retrieved WSS and standing water area of
Poyang Lake

Since we derive the vegetation transmission function

using Eq. (12), PEED can be retrieved from noise-free

PDBT using Eq. (1), where Ts is obtained from noise-

free vertical brightness temperature at 37GHz [Eq. (4)]

and the vegetation fractional area from noise-free

NDVI [Eq. (5)]. The fractional area of WSS and

standing water can then be calculated from the PEED

using Eq. (13).

The WSS and standing water area enclosing Poyang

Lake (white-numbered squares in Fig. 1) is calculated

from 2001 to 2003 and compared with the Poyang Lake

area from MODIS (with a spatial resolution of 250m)

and ASAR (with a spatial resolution of 30m) data

(Yésou et al. 2011, 2013), as shown in Table 2 (Yésou
et al. 2011). The trend of our retrieved WSS and

standing water area is close to the Poyang Lake area,

as shown in Fig. 9. The RMSE of the retrieved WSS

and standing water area is 361.22 km2 or 17.74% of

mean area during the same period of time. A wet and

dry case of the pixel region centered at 29.04858N,

116.09548E is shown in Fig. 10. In the wet case of 4 July

FIG. 8. Effective emissivity difference vs volumetric moisture at 37GHz simulated from Qp

model and Dobson model of the soil dielectric constant.

TABLE 2. Comparison between lake area according to Yésou
et al. (2011) and WSS and standing water area calculated from

SSM/I 37GHz.

Date

Water extension

from Yésou et al.
(2011) (km2)

Retrieved WSS and

standing water area

from SSM/I (km2)

17 Jan 2001 1071.13 1308.71

12 Apr 2001 2186.69 1617.73

3 Jul 2001 2771.81 3072.36

16 Nov 2001 1669.44 947.683

9 Jan 2002 1174.31 1188.72

12 Apr 2002 1495 2173.18

21 Aug 2002 3212.81 3761.77

10 Nov 2002 2007 1287.61

25 Jan 2003 1751.09 1978.5

20 Jun 2003 2285.62 2319.19

25 Jul 2003 3305.69 3307.12

7 Nov 2003 1507.89 698.439
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2002, the fractional area of WSS and standing water,

which is calculated from SSM/I (65.28%), is close to

the fractional area of open water (58.81%) observed

from MODIS NDVI images. However, in the dry

case of 24 October 2002, the fractional area of WSS

and standing water area (46.24%) is much larger

than that of open water (21.85%) from NDVI. That

is because the degraded lake area becomes wet land

and is occupied by aquatic vegetation, mainly

Phragmites. An optical sensor, like MODIS, cannot

observe the standing water beneath the vegetation

canopy, while a microwave radiometer can penetrate

FIG. 9. Scatterplot of lake area estimated with MODIS and ASAR data by Yésou et al. (2011)
and WSS and standing water area calculated from SSM/I 37GHz.

FIG. 10. The (left) wet and (right) dry case of the five numbered pixels at Poyang Lake with corresponding NDVI images. The white

rectangle inside theNDVI images is the area of the five numbered pixels of SSM/I 25-kmEASE-Grid in the PoyangLake area (Fig. 1) on 4

Jul and 24 Oct 2002. The upper part of the white rectangle represents the percentage (the numbers outside the parentheses) of the WSS

and standing water area, which is calculated from SSM/I. The NDVI image is obtained fromMOD09A1with a spatial resolution of 500m.

The fractional open water area calculated from NDVI is shown in the parentheses.
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it. Thus, the WSS and standing water area is close to

the total area of open water and the wetland vege-

tation.

The difference between our retrieved WSS and

standing water area and the lake area fromMODIS and

ASAR data is mainly caused by three factors:

1) The study area is different. Yésou et al. (2011)
focus on the Poyang Lake area, while our study

area is 6250 km2 and covers not only Poyang Lake,

but also the wetland and cropland adjacent to

Poyang Lake.

2) The observed features are different. The MODIS

and ASAR capture the open water, while we ob-

served the WSS and standing water. That means we

cannot discriminate open water, flooded vegetation,

and water-saturated soil using our model.

3) The temporal resolution is different. SSM/I data

supply daily brightness temperature data, while the

MODIS data used by Yésou et al. (2011) are 8-day

composites and ASAR has a 35-day repeat orbit.

Thus, near-daily monitoring is one of the advantages

of using 37-GHz microwave radiometer data.

Another very important factor is the different impacts

of vegetation on the three types of observation. The

MODIS observations cannot penetrate under vegeta-

tion. In principle, ASAR can capture the backscatter

from the water surface underneath the vegetation, but

the scattering by vegetation is very strong. Our model

takes the emittance of the WSS and standing water un-

der vegetation cover into account.

After intersensor calibration, the retrieved sea surface

temperature from these two datasets has a difference of

less than 0.5K. Though the brightness temperature data

of the two radiometers have both been registered into

the EASE-Grid system, the instantaneous field of view

(IFOV) of original data is rather different: 37 km 3
28km for SSM/I and 14km 3 8 km for AMSR-E. Thus,

AMSR-E observes detailed changes in the lake area,

especially during the dry season. The PDBT of SSM/I

seems to be saturated earlier than AMSR-E, as shown

by, for example, the peaks during May–October, since

the AMSR-E observes a higher fractional WSS and

standing water area in its IFOV than SSM/I. Taking the

peaks in March and November in Fig. 11 as an example,

the PDBT of SSM/I does not increase simultaneously

with the AMSR-E, but 10 days later. In the period of 4–

24 November 2003 (rectangle in Fig. 11), the SSM/I

PDBT is about 5K lower than AMSR-E, with the re-

trievedWSS and standing water area 345 km2 lower than

that from AMSR-E. The time series trend should be

almost the same since two sensors both measure before

sunrise. Over all comparison samples, our retrieved

WSS and standing water area from SSM/I is closer to the

Poyang Lake area from MODIS and SAR than that

from AMSR-E, except for the samples in November

2003. Thus, there is a need for future work on the

analysis of these two datasets.

To study the relationship between the soil water sat-

uration conditions in the upstream catchment and the

inundation pattern downstream, we retrieved the WSS

and standing water area in the upper catchment. The

upstream area of the Poyang Lake is indicated in Fig. 1

by the black-numbered EASE-Grid cells, and it includes

the major tributary river systems from the western,

southwestern, southeastern, and eastern directions. The

downstream area is the lake area indicated by the white-

numbered EASE-Grid cells.

The time series of the Poyang Lake area from 2001 to

2008 have similar fluctuations with the upstream WSS

and standing water area (Fig. 12). For most periods, the

Poyang Lake area increases with the upstreamWSS and

FIG. 11.Movingwindow–filtered PDBT (i.e.,DT) data time series: comparison ofAMSR-E and

SSM/I measurements.
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standing water area. This is proven by the cross-

correlation analysis between these two time series

(Fig. 13): the maximum cross-correlation values from

2001 to 2008 are all higher than 0.5 and the time lag is no

more than 5 days. The time lag indicates that the two

time series are better correlated if shifted by this time lag

relative to the other. In this case, it means that the in-

crease of WSS and standing water area upstream will

come earlier than that of the Poyang Lake area.

There are some peaks of the upstream WSS and

standing water area that do not lead to the simultaneous

increasing of lake area in Fig. 12. The reason is that the

water source changes for the lake area. According to the

long-term hydrological data in Poyang Lake, before July

of each year, the water from upstream of the Poyang

Lake floodplain (it is the subbasin of the Yangtze River

basin) is the major source of lake. During this time, the

lake area fluctuation is closely related with theWSS and

standing water upstream in most years. There are some

spikes in the upstream not leading to the same response

in Poyang Lake, for example, at the end of April 2002

and 2003. That is because the surface runoff and

streamflow is consumed by irrigation and other human

activities before reaching the lake. FromAugust of each

year, the Poyang Lake area is supplied from both the

upstream Poyang Lake floodplain and the Yangtze

River. Thus, the asynchronism between upstream WSS

and standing water area and the lake area becomes

larger. For example, the spikes in the lake area in Sep-

tember 2001 and 2008 are probably caused by the water

from the Yangtze River.

It is also interesting to observe that since 2003, the

maximum cross-correlation value increased signifi-

cantly. The major reason why the correlation coefficient

changed after 2002 is that the water supplied by the

Yangtze River changed since building the Three Gorges

Dam. The Three Gorges Dam was closed to store water

from November 2002 to 2006. The water flow from the

Yangtze River to Poyang Lake is limited to the period

from August to September, that is, the flooding season

of the Yangtze River. Thus, the water source of Poyang

Lake is mainly from the upstream catchment, and the

correlation coefficients increase from 2003 to 2006.

Since 2007, the dam stopped storing water and released

the streamflow as usual. An obvious decrease then oc-

curs in the coefficients of Fig. 13. This again proves that

the water supplement from the Yangtze River will sig-

nificantly influence the lake changes since August.

5. Conclusions

We used a simplified radiative transfer model and

linear model to retrieve the fractional area of water-

saturated soil (WSS) and standing water from the po-

larization difference brightness temperature (PDBT) at

37GHz. The moving filter is first used to fill the obser-

vation gaps of the PDBT time series. Noise-free daily

PDBT, vertical brightness temperature (BT), andNDVI

FIG. 12. Comparison between the upstream WSS and standing water area and that of the

Poyang Lake area.

FIG. 13. Max cross-correlation values between time series of

upstream WSS and standing water area and that of the Poyang

Lake area from 2001 to 2008 and the days that max time lag occurs.
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are derived from the Harmonic Analysis of Time Series

(HANTS) algorithm of their raw data time series. The

vegetation transmission function is obtained from the

regression between NDVI and its dependent variable

PDBT for flooded paddy fields, under the assumption

that the land surface temperature and PEED of the

flooded rice is constant during its growing season. The

quasi-linear relationship between the PEED and frac-

tional area of WSS and standing water exists no matter

what the frequencies are. This indicates that the regional

water-storage capacity can be derived from PDBT ob-

servations of other frequencies. The retrieved WSS and

standing water area in the Poyang Lake region shows

a good fit with the lake area from the MODIS and SAR

data. Our method seems to provide satisfactory esti-

mates of the water-storage capacity of the upper catch-

ment of the Poyang Lake, and as such, it is a useful early

indicator of flooding events in the lake area.
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