TUDelft

Why3 and Proving A* Automatically

A Case Study of Why3 as a Tool for Automated Software Verification

Kajetan Neumann'
Supervisor(s): Benedikt Ahrens', Kobe Wullaert!

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering

22nd June 2025

An electronic version of this thesis is available at https://repository.tudelft.nl/.

Acknowledgements

Special thanks to Dr. Benedikt Ahrens and Kobe Wullaert for their feedback during the project. We also wish to thank Jeroen
Koelewijn, Mohammed Balfakeih, Dinu Blanovschi, and Tejas Kochar, for their help and input. Finally, many thanks to Jean-
Christophe Filliatre for their proof of Dijkstra’s algorithm and for assistance with questions regarding Why?3.

Keywords: Why3, WhyML, automated formal verification, software verification, A-Star algorithm

Name of the student: Kajetan Neumann
Final project course: CSE3000 Research Project
Thesis committee: Benedikt Ahrens, Kobe Wullaert, Maliheh Izadi

Contents

1 Introduction 1
1.1 An Introduction to Automated Verification 1
2 The Why3 Platform 1
2.1 Introductionto Why3 e 1
2.2 Interfacing with External Provers L e 1
2.3 The WhyML Language e e 2
24 Applications of Why3 L 3
3 Formal Specification of A* 3
3.1 GraphandPaths e 3
3.2 Heuristic and Distance Functions e 3
33 OPENand CLOSED Sets o o e e e e e e e e e e e s e 3
34 The A* Algorithm e 3
3.5 Properties to Prove e e e e e e 4
4 Implementation of A* in WhyML 4
4.1 GraphandPaths e e 4
4.2 Heuristic and Distance Functions e e e e e 5
43 OPENand CLOSED Sets i s e e e e e s 5
44 The A* Algorithm L e 5
4.5 Propertiesto Prove L 6
5 Results and Observations 6
5.1 Statistics on Generated Proof L 6
5.2 Usability o e e e e 7
5.3 AUtOMAtiON e e e e e e e e e e e e e e 7
5.4 Program Verification e e 8
6 Considerations for Responsible Research 8
6.1 Reproducibility e e e e e e e e 8
6.2 Useof Alin This Project e 8
7 Conclusion 9
7.1 Main Conclusions o e e e e 9
7.2 Future Work L 9
A Implementation of a Mutable Map in WhyML 10
Verification of Dijkstra’s Algorithm in WhyML 11
C Verification of The A* Algorithm in WhyML 14

ii

Abstract

Formal verification of software can provide a more
rigorous guarantee of correctness compared to con-
ventional software testing methods. However, do-
ing this by hand requires substantial effort and is
often impractical. To combat this, various verific-
ation tools have been developed in recent decades
to at least partially automate this process. In this
paper we explore Why3, a tool for deductive pro-
gram verification, by implementing and verifying
the A* algorithm. We find that Why3’s expressive
language allows for easy implementation and veri-
fication of A*. However, we also find that it has a
significant learning curve and requires some know-
ledge on formal verification to use. In spite of this,
we find it is a useful tool for automated verification.

1 Introduction

As Edsger W. Dijkstra said, “Program testing can be used
to show the presence of bugs, but never to show their ab-
sence!” [1, pg.7]. For this reason, formal software verifica-
tion is often the preferred approach for ensuring correctness
of software in fields like security, aerospace, and low-level
software engineering. Formal verification, is the process of
mathematically checking that a program’s behaviour adheres
to some predefined properties, via a formal model of the pro-
gram [2]. This process can be partially automated using
automated theorem provers (ATPs) or satisfiability solvers,
collectively referred to in this paper as automated provers.
These automated provers operate on a subset of first-order
logic (FOL), and try to prove a proposition by refuting its
negation without human intervention [3]. One such tool that
utilises this approach is Why3, a platform for deductive pro-
gram verification [4-6].

As part of a larger project on automated formal verification
tools, this paper provides an overview of the utility of Why3 in
automated software verification. We present a case study of
Why3, by verifying the correctness of the A star algorithm
(A*), a heuristic-based shortest-path-finding algorithm [7].
In the process, we seek to outline the capabilities and lim-
itations of Why3 as an automated software verification tool.
The primary motivation for choosing A* stems from its close
relation to Dijkstra’s shortest-path-finding algorithm, which
has been previously verified in Why3 by Jean-Christophe
Filliatre [8, 9]. Additionally, we believe the complexity of
A* provides a good test of the capabilities of Why?3.

The outline of this paper is as follows. In Section 2, we
introduce the Why3 tool and explain how it works. Section 3
formalises the specification of A* and correctness criteria we
endeavoured to implement. Section 4 outlines the implement-
ation of the specification from Section 3 in WhyML, Why3’s
native language. Section 5 documents observations we made
on Why3, as well as the results collected from our imple-
mentation. In Section 6 we outline our considerations towards
maintaining responsible research practices, such as the repro-
ducibility of our results and how one might go about doing so.
Finally, Section 7 discusses our conclusions and suggestions
for future work.

1.1 An Introduction to Automated Verification

Formal verification is a method of verifying correctness of
a program through formal mathematical reasoning. In 1998,
Tony Hoare proposed a way to formally define programming
languages, allowing for formal reasoning about the results of
programs [10]. A major practical limitation of this approach
was that these proofs needed to be done by hand. As such,
various systems have been developed to partially automate
this approach. The three major categories of these systems,
collectively referred to as provers, are:

e Interactive Theorem Provers — These include systems
like Rocq [11], and Isabelle [12]. These systems provide
an expressive language, which is used by the user to
write proofs. These proofs are then verified by a com-
puter.

* ATPs — These include systems like Vampire [13], E The-
orem Prover [14], and SPASS [15]. These systems oper-
ate on a subset of FOL. Through logical reasoning, they
attempt to prove a proposition by deriving a contradic-
tion from its negation.

e SMT Solvers — This family of solvers includes Alt-
Ergo [16], CVCS5 [17], and Z3 [18]. Similarly to ATPs,
they operate on FOL with some extensions and operate
on a negation of the given premise. They search for a
model satisfying a set of clauses.

Although interactive theorem provers usually provide a
more expressive language, they still require the user to write a
proof almost entirely by hand. On the other hand, automated
provers like ATPs and SMT solvers, although requiring much
less manual proving, lack in their expressivity. Why3 utilises
multiple provers, a notion we elaborate on in Section 2.

2 The Why3 Platform

Why?3 is a modular proof system developed for deductive pro-
gram verification using a high degree of automation [3-6]. It
was introduced in 2010 as a replacement for an earlier Why
version, providing a more expressive language and an API to
allow for easier extension [3]. Why3 is under active develop-
ment by INRIA in the Toccata project [4].

2.1 Introduction to Why3

Why3 provides an expressive language (WhyML) for spe-
cification and programming. To verify programs, Why3 of-
floads the proofs to external theorem provers, which can be
interactive or automated (ATPs and SMT Solvers) [19]. It
does so by translating WhyML programs into a purely lo-
gical language (called Why) [3]. Since provers don’t neces-
sarily support the same logical constructs as Why3, Why code
is converted into a subset logic, interpretable by the given
prover, through logical transformations. Of particular interest
for this paper is Why3’s ability to prove things almost entirely
automatically.

2.2 Interfacing with External Provers

Why3’s proving process revolves around proving verification
conditions (VCs), sometimes referred to as proof tasks [19].
These are generated from various parts of the code through

specific keywords, which we discuss in more detail in Sec-
tion 2.3. A task has a context, consisting of the predicates,
functions, and lemmas that were specified before, and a goal
that must be proven. To interface with a given prover, Why3
uses a driver file [20]. This is a text file that contains in-
formation, such as how to pretty-print the prover’s output,
or which axioms and theories are built-in to the prover [19].
Most importantly a driver specifies how to translate Why lo-
gic into a subset which can be understood by the prover. This
is done through sequentially applying Why3’s logical trans-
formations. For example, unfold is used to unfold a predic-
ate/function definition within a goal or premise. These trans-
formations can also be used by the user to guide the proving
process. In fact, this is often necessary to help the automated
provers succeed [3]. A commonly occurring example is the
induction pr transformation, which attempts to split the task
into base and inductive cases based on some premise.

2.3 The WhyML Language

Why3 is based on a custom extension of first-order logic
(FOL), by introducing constructs like polymorphism, induct-
ive predicates, algebraic data types, and recursive defini-
tions [19]. These constructs can be grouped into three main
categories:

Logical Expressions In Table 1 we describe some of the
logical constructs WhyML provides for expressing logic. Be-
sides basic logical operators, WhyML also provides more ad-
vanced constructs. One notable example is function, which
is used to define logical functions. These functions can be
defined recursively, like path weight in Why3’s standard lib-
rary in the graph module [21]. Another notable construct
supported by WhyML is inductive predicates, defined by a
base and inductive case via the inductive keyword. An ex-
ample of this is the definition of path in Listing 2.

Keyword(s) Description
/\, \/, not Conjunction, disjunction, negation.
->, <> Implication and bi-implication.

forall, exists | Universal and existential quantifiers.

function Used to define logical functions.
predicate Used to define simple predicates.
inductive Used to define inductive predicates.
constant Introduces some arbitrary constant.
axiom Introduces a logical axiom.

Table 1: Common WhyML keywords used in logic.

Program and Type Expressions WhyML provides various
programming constructs, some of which are listed in Table 2.
This includes if statements, loops, and pattern matching. A
notable construct is let..in.., which can be used to in-
troduce program methods, like the astar_code in Listing 7
on line 1. WhyML also supports the definition of data types
using the type keyword. This includes simple constructor-
based definitions, but also record types with mutable fields.

Keyword(s) Description

&&, ||, not AND, OR, and NOT operators.
for..to..do..done For loop.

while..do..done While loop.
if..then..else..end | If statement.

begin..end Code block.

let..in.. Let binding.

match..with. .end Used for pattern matching.

ghost Marks code as “ghost code”,
which is only added for verifica-
tion purposes.

type Introduces a new data type.

abstract Makes all fields in a record ac-
cessible only in ghost code.

mutable Makes a record field mutable.

Table 2: Common WhyML keywords used in programs.

Verification Expressions As mentioned in Section 2.2,
Why3 works on the basis of proving individual verification
conditions (VCs). These are generated when using specific
keywords in WhyML, listed in Table 3. The simplest of these
is the goal keyword, which declares a VC. For example,
goal: forall n: int. n * n >= 0 generates a VC with the
goal Vn € Z. n? > 0. Similarly, lemma specifies a goal
which can be used as a premise in later proofs. Other inter-
esting keyword are variant (used to prove the termination of
loops) and invariant (generates a proof that the a premise
hold initially and is preserved after an arbitrary iteration of
the loop).

A key feature of verification expressions in Why3 is the
ability for users to define specifications of logic or programs
without providing an implementation. This is often done via
the val keyword along with the requires and ensures
keywords. In this paper, we refer to this feature as the
specification-only approach.

Keyword(s) | Description

assert Asserts that a statement holds on this line.

requires Introduces a function pre-condition.

ensures Introduces a function post-condition.

diverges Marks a function as nonterminating.

writes Lists variables mutated by this function.

invariant Introduces a loop invariant.

variant Introduces a decreasing variant which
proves loop termination.

old Used in condition to reference the initial
state of a mutable variable.

Table 3: Common WhyML keywords used for verification.

2.4 Applications of Why3

The Toccata project has a large repository of various proofs in
Why3, including data structures, puzzles, and algorithms [9].
It also contains a proof of Dijkstra’s algorithm, which was
the inspiration for proving A* in this paper. Outside of this,
there are also various other programs verified using Why3,
like a subset of the Go concurrent programming language [3].
Why3 is also used for the verification of Ada programs by the
SPARK language [22, 23].

3 Formal Specification of A*

In the following section, we specify the formal definition and
properties of A* which we attempted to prove using Why?3.

3.1 Graph and Paths

A finite weighted directed graph is defined as a tuple G =
(V, E), where V is the finite set of vertices, and E is the set
of directed edges. We also define a successors function, such
that,

Va,b € V. b € successors(a) <> (a,b) € E (1)

A Path(a,l,b) through the graph G from vertex a to ver-
tex b is defined by,

l = (n07 n17 MRS nM717 nm)7
(Vi € [0,m]. n; € V), ng=a, ny =29, 2)
(V’L S [1,m] (ni,l,ni) € E)
The path weight of [is given by the following function,
w(l) =Y w(ni1,n:) 3
i=1
where the edge weights are w(n;—1,mn;) > 0. By extension,
we can define ShortestPath(a,l,b) via the condition,

Path(a,1,b) A (V. Path(a,l',b) — w(l) < w(l')) (4)

3.2 Heuristic and Distance Functions
A* uses a function f(n), which gives the estimated distance

from the source vertex s to the destination vertex d, through
the vertex n. It is defined as:

f(n) = g(n) + h(n)
Jls. g(n) = w(ls) A Path(s,ls,n) 5)

Alg. h(n) = w(lg) A Path(n,lq,d)

We refer to g(n) as the distance function and h(n) as
the heuristic function. Their non-estimated counterparts are
f(n), g(n) and h(n), where g(n) is the weight of the shortest
path from s to n, and h(n) is the weight of the shortest path
from n to d. Formally, this is:

f(n) = g(n) + h(n)
Als. g(n) = w(ls) A ShortestPath(s,ls,n) 6)
Al4. h(n) = w(lg)n A Shortest Path(n, 14, d)

The distance function is updated within the iterations of

A* as it expands new nodes. The heuristic function is a para-
meter, and is derived from the problem domain. The heuristic

must be positive, admissible, and consistent. These properties
are defined as follows:

positive(h) <> Yn.h > 0
admissible(h) < Yn.h(n) < h(n)
consistent(h) < (V(a,b) € E. h(a) < w(a,b) +
Ah(t) =0

h(b))

)
3.3 OPEN and CLOSED Sets

A* flags vertices as open and can later flag them as closed [7].
In order to keep track of which nodes are open and which are
closed, it defines two sets: OPEN and CLOSED. A* uses the
OPEN set to retrieve the open vertex with the smallest f(n).

3.4 The A* Algorithm

A* is an informed search algorithm which finds the weight of
the shortest path from a given source s to a given destination
d. It functions similarly to Dijkstra’s algorithm, but it chooses
vertices slightly differently [24]. Dijkstra prioritises vertices
based only on g(n), while A* extends this with h(n) to es-
timate the rest of the distance to the destination, allowing it
to prioritise vertices based on the entire distance through the
given vertex f(n) = g(n) + h(n). The algorithm follows the
pseudocode in Algorithm 1, and functions as follows [7]:

1. Mark s as “open” and calculate f (s) (lines 2-4).

2. Select the open node n with the smallest f(n) (line 6).
3. If n = d, close n and terminate (lines 7-9).
4

. Otherwise, mark n closed. For each successor of n, cal-
culate f(n) and mark as open each successor not already
marked closed (lines 11-16). Then, go to Step 2 (line 5).

Algorithm 1: The A* Algorithm
1 function AStar(s,d)

2 OPEN <+ {s}
3 CLOSED « 0
4 g(s)«0
s | while OPEN # () do
6 n < argmin f(v)
v€OPEN
7 OPEN « OPEN \ {n}
8 CLOSED <~ CLOSED U {n}
9 if v = dst then
10 | return g(u)
11 for u € successors(n) do
12 new_g < g(n) + edge_weight(n,)
B if u¢ CLOSED then
14 if u¢ OPEN or new_g < §(u) then
15 g(u) < new_g
16 OPEN « OPEN U {u}
17 return No such path exists.

3.5 Properties to Prove

We sought to prove the correctness of our implementation by
proving the following properties, which we know should hold
for the algorithm.

Optimal Substructure A subset of a shortest path, must
also be a shortest path:

ShortestPath(ng, (10, ., Ma, Mby -y Mym)y Nm,)
— ShortestPath(ng, (ng, ..., Na), Na) 8)
A ShortestPath(ng, (N, ..., Tom) o)

Consistency Implies Admissibility A consistent heuristic
is also an admissible heuristic [7]:

consistent(h) — admissible(h))

Termination and Completeness A* terminates. Either no
path exists and all reachable nodes were closed, or the result
r is the shortest distance:

(Vn,l. Path(s,l,n) +>n € CLOSED)

V (3l. ShortestPath(s,l,d) A (r = w(l))) (10

Optimal Efficiency A* closes all nodes n where f(n) is
less than the weight of the shortest path from s to d:

Vn. f(n) < f(d) < n € CLOSED a1

Minimal Expansion At any given moment, the shortest
path has been found for all closed vertices. This can be ex-
pressed as the following invariant:

VYn € CLOSED. g(n) = g(n) (12)

Open Optimum For any shortest path from the source (s)
to some n, if n is not closed by A*, then there must exist an
open vertex n’ on this path, where the g(n') = g(n’). This
is the “Lemma 1” proven in the original paper of A* [7], and
can be defined by the invariant:

Vb ¢ CLOSED. VI = (no, ..
ShortestPath(s,l,b)
— (Fi. g(n;) = g(ni) Am; € OPEN)

s M)

13)

4 Implementation of A* in WhyML

In this section, we describe key aspects of our implementa-
tion, available on GitHub' and in Appendix C.

4.1 Graph and Paths

To define a graph in WhyML, we used the same ap-
proach as in the proof for Dijsktra’s algorithm [9]. The
exact implementation can be seen in Listing 1, where
graph: fset vertex (line 5) is the finite set of vertices
and successors (lines 7-9) in the successors function
of the graph. It is marked with the ghost keyword,
such that it can be used in logical expression. We also
define successors_impl (lines 11-12), which functions like
successors but can be used directly in program code. This
is required since WhyML restricts where different function

"https://github.com/kmneumann/Why3- A- Star.git

R R R R N N

B = e
SO XN R W~

types can be used (logic vs. programs). Listing 1 also shows
the definition of the edge predicate (line 14), which is defined
to link the standard library definition of paths to our imple-
mentation. Additionally, it shows the Positive weight ax-
iom (line 20) which ensures weights (as defined in the stand-
ard library code) are always greater than zero.

type vertex

clone set.SetImp with type elt = vertex

constant graph: fset vertex

val ghost function successors (x: vertex): fset vertex

ensures { subset result graph }

ensures { not mem x result }

val successors_impl (x: vertex): set
ensures { result = successors x }

predicate edge (a b: vertex) = mem b (successors a)
clone graph.IntPathWeight with

type vertex = vertex,
predicate edge = edge

axiom positive_weight: forall a, b. weight a b > 0

Listing 1: Definitiont of paths taken from the graph.Path
module in the Why3 Standard Library [21].

In order to avoid redefining concepts and lemmas from
scratch, we used the definition of paths provided in Why3’s
Standard Library [21]. Paths are therefore defined inductively
as a list of vertices, as seen in Listing 2. The base case is a nil
path (Path_empty, lines 2-3), and the inductive case defines
extending paths from the front (Path_cons, lines 4-6). It is
important to note that, as defined in the standard library, the
list never contains the final vertex on the path. In the context
of our implementation, this allows easier appending of paths
by simply appending the two lists. The standard library also
defines a path weight function, which is defined recursively
over a list of vertices and returns the cumulative weight of the
edges between them [21].

inductive path vertex (list vertex) vertex =

1

2 | Path_empty:

3 forall x: vertex. path x Nil x

4 | Path_cons:

5 forall x y z: vertex, 1l: list vertex.

6 edge x y -> path y 1 z -> path x (Cons x 1) z

Listing 2: Definitiont of paths taken from the graph.Path
module in the Why3 Standard Library [21].

We defined shortest paths using the aforementioned path
predicate and path_weight function, as can be seen in List-
ing 3. We say that the list must be a valid path (line 2), and
for all other paths, their weight does not exceed this path’s
weight (lines 3-4) — exactly as defined in Equation (4).

predicate shortest_path (a:vertex) (l:list vertex) (b:vertex) =

path a 1 b /\

1

2

3 (forall 1’. path a 1’ b ->

4 path_weight 1 b <= path_weight 1’ b)

Listing 3: Definitiont of shortest paths in WhyML.

We also introduced two useful predicates for reasoning
about paths and shortest paths using their path weight rather
then a list of nodes. The main motivation behind this is from
the proof for Dijkstra’s shortest path algorithm mentioned be-
fore [9]. The definition of these predicates can be seen in

https://github.com/kmneumann/Why3-A-Star.git

Listing 4. We utilise the exists keyword to say that there
exists a path of the given weight (lines 1-2). Similarly, we
define a predicate like this for shortest paths (lines 4-5).

predicate path_with_len (a b:vertex) (d:int)
exists 1. path a 1 b /\ (path_weight 1 b

[*))

predicate shortest_path_with_len (a b:vertex) (d:int)
exists 1. shortest_path a 1 b /\ (path_weight 1 b

Listing 4: Definitons of path (top) and shortest path (bottom)
based on their distance rather a list of nodes.

4

4.2 Heuristic and Distance Functions

In our implementation, we chose to have the heuristic func-
tion be a parameter of the A* algorithm. This allowed for
greater control in pre-/post-conditions. In order to reason
about this function, we defined four predicates seen in List-
ing 5. The first is the positive predicate (lines 1-2), which
ensures the function only returns positive values. The second
predicate (admissible on lines 4-5) defines admissibility of a
function for a specific destination node. It does so using path
and path weight, mentioned previously. Lastly, we defined
consistent and path_consistent (lines 7-11 and 13-17),
which both give alternate but equivalent definitions of con-
sistency. The consistent predicate defines it traditionally as
mentioned in Section 3. On the other hand, path_consistent
defines consistency over a whole path rather than a single
edge. This definition seemed to help the provers reason about
the implication of consistency and path finding, which we dis-
cuss further in Section 5. These two definitions are equival-
ent; a fact we were able to prove with a lemma in our imple-
mentation.

predicate positive (f: vertex -> int) =

forall n. £ n >= 0
vertex) =

predicate admissible (f: vertex -> int) (dst:

forall a, 1. path a 1 dst -> f a <= path_weight 1 dst
predicate consistent (f: vertex -> int) (dst: vertex) =
£ dst = 0 /\
(forall a b:vertex.
edge a b ->
f a <= weight a b + £ b)
predicate path_consistent (f: vertex -> int) (dst: vertex) =

f dst = 0 /\
(forall a b:vertex, 1:
path a 1 b ->
f a <= path_weight 1 b + £ b)
Listing 5: The positive (lines 1-2), admissible (lines 4-5)
and consistent (lines 7-11 and 13-17) predicates defined in
WhyML.

list vertex.

The distance function was expressed exactly like in the
proof for Dijkstra’s algorithm [9]. We took from this proof
the definition of a mutable map type (called mutMap), which
we used to keep track of the currently found shortest distance
from the source to a given vertex (i.e. g(n)). The functions
we utilised in the code for A*, described later in this section,
is the [] functions for querying value for a given key, and
the [] <- function which assigns a value to a given key. The
WhyML module defining these functions can also be seen in
Appendix A.

4.3 OPEN and CLOSED Sets

The OPEN and CLOSED sets is defined using the
set.SetImp module in Why3’s Standard Library. It provides
an implementation of a mutable set. Additionally, for the
CLOSED set, we defined functions that allow us to retrieve
the vertex with the smallest f(n) score. These are expressed
in WhyML as seen in Listing 6. The min predicate (lines 1-3)
is used to assert that a given vertex is a vertex with the smal-
lest f(n) in the given set, calculated using the distance map
(d) and the heuristic function (h). Then, we used the val
keyword to define the get.min function via a specification-
only approach (lines 5-9). It ensures that the returned vertex
is the minimum and that it is removed from the open set. This
is modelled almost exactly like the visited set in the proof
for Dijkstra’s algorithm [9].

predicate min (m:vertex) (q:set) (d:mutMap int) (h:vertex->int) =

mem m q /\

(forall x: vertex. mem x q -> d[m] + h m <= d[x] + h x)

get_min (open:set) (d:mutMap int) (h:vertex->int) : vertex

writes { open }

requires { not is_empty open }

ensures { min result (old open) d h }
ensures { open = remove result (old open) }

Listing 6: Definition of a function (bottom) to take the
minimum vertex from a set. The predicate (top) is used to
define minimum.

4.4 The A* Algorithm

Due to WhyML supporting various common programming
constructs, we were able to express the algorithm almost en-
tirely like in the original pseudocode shown in Algorithm 1.
Our implementation, as seen in Listing 7, deviates from the
pseudocode definition in only a few minor ways. Firstly, the
function returns an option, rather than an integer (end of
line 1). This is done so that we can encode the case where no
path from source to destination exists (line 23). Secondly, as
mentioned before, we chose to pass the heuristic function as
a parameter to the function (h: vertex -> int on line 1).

For the sake of readability, we removed the preconditions,
postconditions, invariants, variants, and assertions from List-
ing 7. We cover those specifically in the next subsection.

1 let astar_code (src dst: vertex) (h: vertex -> int): option int
2 = let closed: set = empty () in
3 let open: set = singleton src in
4 let d: mutMap int = create 0 in
5 while not is_empty open do
6 let u = get_min open d h in
7 if eq u dst then begin
8 return Some d[u]
9 end;
10 add u closed;
11 let su = successors_impl u in
12 while not is_empty su do
13 let y = choose_and_remove su in
14 let x = d[u] + weight u y in
15 if not mem y closed then begin
16 if not (mem y open) || x < d[y] then begin
17 add y open;
18 dly] <- x
19 end
20 end
21 done
22 done;
23 return None
Listing 7: WhyML implementation of A¥*, without

verification code.

1
2
3
4

1
2
3

4.5 Properties to Prove

We expressed the properties of A* listed in Section 3 us-
ing lemmas, variants, invariants, assertions, and pre-/post-
conditions. Some properties are expressed through more than
one of these constructs. In this section, we detail how we
introduced each property into our implementation.

Besides the properties listed below, we also defined addi-
tional lemmas, invariants, variants, and pre/post-conditions to
facilitate proving. For example, we defined a pre-condition
that the heuristic must be consistent via the requires
keyword. To improve readability of code, we grouped many
invariants into single predicates (like inv, inv_succ, and
inv_succ2). The code base has comments describing what
each expresses in more detail, as visible in Appendix C
(lines 215-262). Most of these were taken from the proof
for Dijkstra’s algorithm [9], and annotated by us.

Optimal Substructure We express this property, as seen
in Listing 8, by showing that any shortest path from s to ¢
consisting of three sections (s-a, a-b, and b-t) implies that the
section from a to b is also a shortest path from a to b.
lemma optimal_substructure_property:
forall s, t, a, b, 11, 12, 1_ab.

shortest_path s (11 ++ (Cons a 1l_ab) ++ (Cons b 12)) t ->
shortest_path a (Cons a 1l_ab) b

Listing 8: Optimal substructure property of paths expressed
in WhyML.

Consistency Implies Admissibility We expressed this, as

seen in Listing 9, by an implication for all vertices dst and

functions f using the the consistent and admissible pre-

dicates described before. We also ensured, through implica-

tion, that the only functions to consider are positive functions.
lemma consistent_implies_admissible:

forall dst: vertex, f: (vertex -> int).
consistent f dst -> admissible f dst

positive f ->

Listing 9: Consistency implies admissibility expressed in
WhyML.

Termination and Completeness This property was
defined directly in the astar_code using post-conditions and
assertions. The post condition is defined using the returns
keyword as seen in Listing 10. It states the properties that
must hold if None or Some are returned — there is no path if
None is returned (line 4), or this is the shortest path is Some
is returned (line 3). We also assert right before returning
None that forall v, 1. path src 1 v -> mem v closed,
which ensures all nodes with a path from the source have
been closed.

returns { result ->
match result with
| Some n -> shortest_path_with_len src dst n
| None -> forall 1. not path src 1 dst
end

}

Listing 10: Completeness post-condition for A* expressed in
WhyML.

Optimal Efficiency We use an assertion before returning
the shortest distance (line 10 in Listing 7) to prove this prop-
erty. We assert that for all vertices v with a shortest path of

© 0NN AW —

weight s, if f(v) = s + h(v) is strictly less than f(n) of the
destination node, then this node must have been closed, seen
in Listing 11.

assert {
forall v:vertex, s:int.
shortest_path_with_len src v s ->
s + h v <d[u]l] + h u -> mem v closed
¥
Listing 11: Optimal efficiency property expressed as a
WhyML assertion.

Minimal Expansion We prove this property by adding an
assertion after retrieving the next open node (after line 6 in
Listing 7). We assert that the d[u] is the weight of the
shortest path using the shortest_path with len predicate
described before. Additionally, we add an invariant to both
loops to ensure that for all members of closed, we already
found the shortest path (expressed as a clause in the inv pre-
dicate seen in Appendix C on line 241).

Open Optimum This is expressed with an invariant on the
outer loop, as seen in Listing 12. The invariant states that
for any path from source for which the destination (n) is not
yet closed (line 2), there must exists an open vertex u (line
4), which is on this shortest path (lines 5-7), and A* already
found the shortest distance from source to u (line 8).
invariant {
forall n, 1. shortest_path src 1 n -> not (mem n closed) ->
(exists u, 11, 12.
mem u open /\
shortest_path src 11 u /\
shortest_path u 12 n /\
1 =11 ++ 12 /\
d[u] = path_weight 11 u)
}

Listing 12: “Lemma 1” of the A* proof expressed in WhyML.

5 Results and Observations

In this section we give an overview of the proof generated
from our implementation as well as the observations we made
in the process.

5.1 Statistics on Generated Proof

To prove the properties mentioned before, we used Why3
with three SMT provers (Alt-Ergo, Z3, CVC5) and one ATP
prover (E Theorem Prover). We elaborate on how to re-
produce our results in Section 6. We predominately relied
on applying transformations, and running the Auto_Level_1
strategy provided by Why3, which runs the three SMT solvers
with a time-limit of 5 seconds. If the aforementioned strategy
failed, we ran Eprover (E Theorem Prover) before attempting
further transformations.

From the initial 17 goals (which includes 16 lemmas and
the astar_code), the transformations generated a further 181
sub-goals, totalling 198 proof goals. Of the 181 sub-goals,
128 are leaf-goals (VCs without any further sub-goals, which
are directly offloaded to the provers). The number leaf-goals
proven, minimum time, maximum time, and mean time taken
to prove a goal (in seconds) for each prover can be seen listed
in Table 4. As can be seen, all leaf-goals were proven well
within 5 seconds, mostly using CVC5 and Z3.

Prover # of Goals | Min Max | Mean
Alt-Ergo 2.6.2 21 0.01s | 1.73s | 0.10s
CVC51.2.1 53 0.01s | 2.66s | 0.34s
Eprover 2.0 2 0.07s | 0.37s | 0.22s
734.15.0 52 0.00s | 0.69s | 0.03s
Total 128 0.00s | 2.66s | 0.17s

Table 4: The number of leaf-goals proven, and the minimum,
maximum, and mean time taken per leaf-goal by each prover.
(Leaf-goals are VCs without any further sub-goals, which are
directly offloaded to the provers.)

We used 70 transformations in the proof. The frequency of
use for each type of transformation can be seen in Table 5.
The most common transformation used was assert (used 18
times), while the least common was induction (each used
only once). The following are short descriptions of what each
transformation does, which are explained more thoroughly in

the Why3 Manual [20]:

e assert — Adds the given premise to the context, and
generates an additional sub-goal to prove said premise
holds.

» unfold — Substitutes instances of the predicate/function
with the given name with its definition. Optionally, in
can be used to do it in a hypothesis rather than the goal.

* destruct rec — Recursively destructs the top-most lo-
gic symbol and stops if a symbol of a different type is
found. If necessary, generates additionally sub-goals to
prove that part of the premise holds, for example, the
antecedent, A, must be proven when destructing the im-
plication, A — B.

e split.vc — Splits the goal into small verification condi-
tions.

¢ inst rem — Introduces a new hypothesis by substituting
the variable in the top-most forall by the given val-
ues in a given hypothesis. It also removes the original
hypothesis after substituting.

* exists — Replaces the top-most term in an exists with
the given term and generates a goal to prove this holds.

* case — Generates sub-goals based on a given premise
split — one where it holds, and one where it does not.

* induction pr — Attempts to split the current goal into a
base case and inductive cases based on some premise,
such as an inductive predicate.

e introduce_premises — Moves variables in forall and
antecedents from implications from the goal into the
context.

e induction — Creates goals for the base case and induct-
ive case for a proof by induction on a given integer term.

5.2 Usability

Below we list our observation related to the usability and
user-friendliness of Why?3.

Transformation # of Uses

—
oo

assert
unfold
destruct_rec
split_vc
inst_rem
exists

case
induction pr

introduce_premises

—_— W A N N O 0 O O

induction

~
e

Total

Table 5: The number of uses for each type of Why3 trans-
formation in the proof of A*.

High Expressivness of WhyML: Due to WhyML provid-
ing various common programming constructs (such as while
loops, for loops, if statements, and code blocks), translating
the A* pseudocode in Algorithm 1 required little effort. Al-
most no changes needed to be made to write the pseudocode
in WhyML, except the use of while loop instead of a for loop
for the inner loop, as seen in Listing 7.

Simple Installation Process: The installation process of
the Why3 platform was simple through OPAM [25] (OCaml
Package Manager). Through OPAM, it was possible to in-
stall Why?3, its IDE, as well as Alt-Ergo, with one command:
opam install why3 why3-ide alt-ergo.

Why3 IDE Lacks The ‘“Undo” Feature: In the version of
Why?3 used in this project (see Section 6 for list of versions),
its IDE does not allow undoing changes to the source file.
This was a recurring impediment during development, since
changes or deletions were permanent and impossible to undo.

Limited/Out-Dated Documentation: The main sources
of documentation of the Why3 platform are the Why3
Manual [20] and the Standard Library documentation [21],
both of which lack information. The manual, although ex-
tensive, misses documentation on certain transformations,
such as induction pr and inversion pr. Additionally,
it gives little information on what the various WhyML lan-
guage constructs actually do, with only the syntax grammar
available for most. The standard library, although extens-
ive, mostly provides direct code rather than explanation of
its function, with some comments. However, not all modules
have comments or explanations.

5.3 Automation

We outline below our observation on the proof automation
feature of the Why3 platform.

Fast, Consistent and Reproducible Proof Generation:
As seen in Table 4, all the provers find proofs in well under
5 seconds. We observed little cases where providing more
time to provers was necessary. The provers either timed-out

after 30 seconds, or found a solution within the 5 seconds.
Additionally, we observed that rerunning the provers never
provided differing results, meaning prover output stayed con-
sistent. Lastly, Why3’s proof sessions and replay command
allowed for easy reproducibility of the results.

ATPs are Useful Despite Out-Dated Versions: Of the two
ATPs we tried, Why3 supports outdated versions of these
provers — supports EProver 2.0 while latest is 3.2, and sup-
ports 0.6 while latest is 4.9. Despite this, we found two cases
(as seen in Table 4) where EProver was the only prover to
succeed within 20 seconds (Alt-Ergo, Z3, and CVCS5 timed-
out).

Manual Proving is Still a Large Component: As seen in
Table 5, the proof required 72 manual transformations, with
the most frequently used transformation being assert. Addi-
tionally, various lemmas, outside the ones proving the prop-
erties mentioned in Section 3, were provided which aided the
provers in finding a proof without the need for manual trans-
formations. For example, the path_zero lemma states that if
a path has weight zero, it must be a nil-path.

5.4 Program Verification

This section lists out observations pertaining to program veri-
fication in WhyML.

Possibility of Principle of Explosion: We have observed
in our attempts that it is possible to prove contradictions in
Why3, which lead to the principle of explosion. We proved
that our attempted implementation of A* returns shortest
path despite having an inadmissible heuristic, and generates
a proof significantly faster than previous and later attempts.
This is a known flaw, and is usually caused by to providing
contradictory axioms, which Why3 assumes are true [3].

Pre/Post-Loop States are Linked Through Invariants:
When proving that the Open Optimum property (expressed
in Section 4) is preserved after a single loop iteration, we no-
ticed that there is no relation in the task context between the
open set before the inner loop and after the inner loop. We
relied on the invariants to reason about the new state of open
in order to prove this property. Through experimentation, we
observed that it was non-trivial to generate a proof that the
open set before the loop must be a subset of the set after the
loop, a premise which must hold due to the inner loop only
adding elements to the set.

6 Considerations for Responsible Research

We sought to uphold responsible research practices in this
project. As such, we dedicated this section to detailing our
considerations in that regard. We provide useful information
for reproducing our results (Section 6.1) and how we used Al
for this project (Section 6.2).

6.1 Reproducibility

To ensure reproducibility, the code developed in this pro-
ject, as well as the proof generated using Why3, is publicly
available on GitHub?. The repository contains a README.md,

2https://github.com/kmneumann/Why3- A-Star.git

which details its contents and useful information for repro-
ducibility - how to run, versions of software used, and com-
mands to replicate proofs. Additionally, the code is annotated
with comments to improve clarity.

In this project we used various software, with different ver-
sions. We sought to use the most up to date versions. For the
provers, we were limited by the versions supported by Why3.
The following versions were used:

* Why3 1.8.0

* Alt-Ergo 2.6.2
* CVC51.2.1

» Eprover 2.0

* 7Z34.15.0

Why3 provides ‘“sessions” which save the versions of
provers, transformations, as well as proofs generated by the
provers for a given file. This allows for easier replication of
results, as one can used the commands why3 replay astar.
More information regarding this can be found in the
README.md. We also recommend consulting the Why3
Manual for more useful commands [20].

There are two factors that we identified which might im-
pact reproducibility of our results. Firstly, although provers
are mostly deterministic, some, like Z3, are known to use ran-
domness for some of their heuristics. Although this did not
seem to impact determinism during this project, it is, nonethe-
less, something to note. Secondly, provers have preset time
and memory limits. The results in this study were generated
on a MacBook Pro with the M1 Max and 32 GB of RAM.
As can been seen in Section 5, all proofs ran far below the
20 second limit. If however, this seems to be an issue, we
suggest increasing the time and memory limits available to
provers as described in the Why3 Manual [20].

The results shown in Table 4 were generated using Why3’s
--provers-stats and --session-stats flags [20]. The res-
ults in Table 5, however, were generates using the unix com-
mand:

why3 session info --session-stats ./astar |
grep -oE ’transformation +[a-zA-Z_]+ " |
grep -oE ’'[a-zA-Z_]1+$’ |

sort |
unig -c |
sort -nr

6.2 Use of Al in This Project

ChatGPT was used in the writing of this report to help with
finding appropriate LaTeX packages, such as the listings
package for code blocks. Additionally, we used ChatGPT at
the begining of the project to generate a different perspective
on how to go about implementing A* in WhyML. However, it
failed to provide useful information for our implementation.
We used the following prompt for this:

Can you show me an implementation of the A* al-
gorithm in WhyML?

We also used LLMs to help in understanding Rocq [11]
strategies as an introduction to the transformations provided
by Why3.

https://github.com/kmneumann/Why3-A-Star.git

7 Conclusion

7.1 Main Conclusions

We have successfully demonstrated and implementation A*
in WhyML (Why3’s native language). Using this, we were
able to prove various properties which define the correctness
of A*. This process led us to discover a number of capabil-
ities and limitations of the platform as a tool for automated
software verification.

The biggest advantage of Why3 that we found is it’s highly
expressive language. Our implementation, seen in Listing 7,
followed almost exactly the pseudocode we defined in Al-
gorithm 1, in most part due to this expressivity. Similarly, the
properties we defined could be expressed with WhyML’s sup-
port for logical expressions. Another strength of this tool was
the speed, consistency, and reproducibility of the proofs it
generates. We think its mainly due to the variety of automated
provers which Why3 utilises. Lastly, we found the installa-
tion process to be quite simple, which can greatly improve
more wide spread adaptation of this tool, both in education
and in industry.

We did, however, encounter some limitations. Why3’s
Manual lacked explanations [20], particularly on the lan-
guage and the transformations used during the proving pro-
cess. This created a steep learning curve in the initial phase
of this project. We also found that, although a lot of automa-
tion is available, proofs still involve manual proving by the
user, which could make it difficult to incorporate Why3 in a
developer’s toolkit. Lastly, we found that it is possible to ac-
cidentally prove correctness by introducing contradictory ax-
ioms (principle of explosion). This fact impacts the validity
of proofs, particularly for large scale projects.

Despite these limitations, and considering the age of the
tool, Why3’s features provide a powerful platform for formal
verification of programs. Although writing proof directly
in WhyML still requires significant effort, Why3 provides a
powerful interface to interact with automated provers. There-
fore, the approach taken by tools like SPARK [22], where
Why?3 is used as a back-end, seems the most promising use of
this platform.

7.2 Future Work

A simple extension to this paper could be trying to use our im-
plementation to run the algorithm on a specific example. The
Why3 Manual mentions how one can run WhyML programs
in Section 9 [20]. Additionally, it could be possible to verify
different variations of A* in different contexts, to provide a
better understanding of the shortcomings of our implementa-
tion.

It is also important to note that, in this paper, we ana-
lysed Why3 based only on a single case study of A*. This
approach was chosen due on account of our limited experi-
ence with formal verification and time constraints. An inter-
esting extension to this paper would be a larger, more thor-
ough experiment to test Why3’s limitations. Additionally,
this case study doesn’t use all available constructs provided
by WhyML, which could be tested more exhaustively in a
larger experiment.

A Implementation of a Mutable Map in WhyML

The following is an implementation of a mutable map in WhyML, created by Jean-Christophe Fillidtre in the verification of
Dijkstra’s Algorithm [9]. It is also available on GitHub: https://github.com/kmneumann/Why3- A-Star.git.

0N AW~

(** {2 Mutabe Map Mudole}
This definition was taken from the Why3 proof of Dijkstra’s algorithm.
We use it for the distance function in the A* algorithm.

*)

module ImpmapNoDom

use map.Map
use map.Const

type key
type mutMap ’'a = abstract { mutable contents: map key ’a }

(** initialises a map that with the given value for all keys *)

val function create (x: ’'a): mutMap ’a
ensures { result.contents = const x }

(** retrives the value stored at the given key *)
val function ([]) (m: mutMap ’a) (k: key): ’a
ensures { result = m.contents[k] }

(** logic function that assigns the given value to the given key *)
val ghost function ([<-]) (m: mutMap ’a) (k: key) (v: ’a): mutMap ’a
ensures { result.contents = m.contents[k <- v] }

(** program function that assigns the given value to the given key *)
val ([]<-) (m: mutMap ’a) (k: key) (v: ’a): unit

writes { m }

ensures { m = (old m)[k <- v] }

end

10

https://github.com/kmneumann/Why3-A-Star.git

0NN —

B Verification of Dijkstra’s Algorithm in WhyML

The following is the verification of Dijkstra’s Algorithm in WhyML, created by Jean-Christophe Fillidtre [9]. This proof was

the primary inspiration for verifying A* in this paper.

*

Dijkstra’s shortest path algorithm.
This proof follows Cormen et al’s "Algorithms".

Author: Jean-Christophe Filliatre (CNRS) *)

module ImpmapNoDom

use map.Map
use map.Const

type key
type t ’a = abstract { mutable contents: map key

val function create (x: ’a): t ’a
ensures { result.contents = const x }

val function ([]) (m: t ’a) (k: key): ’a
ensures { result = m.contents[k] }

val ghost function ([<-]1) (m: t ’a) (k: key) (v:

a3

’a): t ’a

ensures { result.contents = m.contents[k <- v] }

val ([1<-) (m: t ’a) (k: key) (v: ’a): unit
writes { m }
ensures { m = (old m)[k <- v] }

end

module DijkstraShortestPath

use int.Int
use ref.Ref

(** The graph is introduced as a set v of vertices and a function g_succ

returning the successors of a given vertex.

The weight of an edge is defined independently, using function weight.

The weight is an integer. *)
type vertex

clone set.SetImp with type elt = vertex
clone ImpmapNoDom with type key = vertex

constant v: fset vertex

val ghost function g_succ (_x: vertex) : fset vertex

ensures { subset result v }

val get_succs (x: vertex): set
ensures { result = g_succ x }

val function weight vertex vertex : int (* edge weight,

ensures { result >= 0 }

Data structures for the algorithm. *)

(* The set of already visited vertices. *)

val visited: set

(* Map d holds the current distances from the source.
There is no need to introduce infinite distances. %)

val d: t int

(* The priority queue. *)

val q: set

predicate min (m: vertex) (q: set) (d: t int) =
mem m q /\
forall x: vertex. mem x q -> d[m] <= d[x]

val g_extract_min () : vertex writes {q}
requires { not is_empty q }
ensures { min result (old q) d }

ensures { g = remove result (old q) }

(* Initialisation of visited, g, and d. *)

val init (src: vertex) : unit writes { visited, g, d }

ensures { is_empty visited }
ensures { q = singleton src }
ensures { d = (old d)[src <- 0] }

11

if there is an edge

88 (* Relaxation of edge u->v. *)

89

90 let relax u v

91 ensures {

92 (mem v visited /\ q = old q /\ d = old d)

93 \/

94 (mem v g /\ d[u] + weight u v >= d[v] /\ q = old q /\ d = old d)
95 \/

96 (mem v q /\ (old d)[u] + weight u v < (old d)[v] /\

97 q =0ld q /\ d = (old d)[v <- (old d)[u] + weight u v])
98 \/

99 (not mem v visited /\ not mem v (old q) /\

100 q = add v (old q) /\

101 d = (old d)[v <- (old d)[u] + weight u v]) }

102 = if not mem v visited then

103 let x = d[u] + weight u v in

104 if mem v q then begin

105 if x < d[v] then d[v] <- x

106 end else begin

107 add v q;

108 dfv] <- x

109 end

110

111 (* Paths and shortest paths.

112

113 path x y d =

114 there is a path from x to y of length d

115

116 shortest_path x y d =

117 there is a path from x to y of length d, and no shorter path *)
118

119 inductive path vertex vertex int =

120 | Path_nil

121 forall x: vertex. path x x 0

122 | Path_cons:

123 forall x y z: vertex. forall d: int.

124 path x y d -> mem z (g_succ y) -> path x z (d + weight y z)
125

126 lemma Length_nonneg: forall x y: vertex. forall d: int. path x y d -> d >= 0
127

128 predicate shortest_path (x y: vertex) (d: int) =

129 path x y d /\ forall d’: int. path x y d’ -> d <= d’

130

131 lemma Path_inversion:

132 forall src v:vertex. forall d:int. path src v d ->

133 (v = src /\d = 0) \/

134 (exists v’:vertex. path src v’ (d - weight v’ v) /\ mem v (g_succ v’))
135

136 lemma Path_shortest_path:

137 forall src v: vertex. forall d: int. path src v d ->

138 exists d’: int. shortest_path src v d’ /\ d’ <= d

139

140 (* Lemmas (requiring induction). *)

141

142 lemma Main_lemma:

143 forall src v: vertex. forall d: int.

144 path src v d -> not (shortest_path src v d) ->

145 v =src /\d>0

146 \/

147 exists v’: vertex. exists d’: int.

148 shortest_path src v’ d’ /\ mem v (g_succ v’') /\ d’ + weight v’ v < d
149

150 lemma Completeness_lemma:

151 forall s: set.

152 (* if s is closed under g_succ *)

153 (forall v: vertex.

154 mem v s -> forall w: vertex. mem w (g_succ v) -> mem w S) ->
155 (* and if s contains src *)

156 forall src: vertex. mem src s ->

157 (* then any vertex reachable from s is also in s *)

158 forall dst: vertex. forall d: int.

159 path src dst d -> mem dst s

160

161 (* Definitions used in loop invariants. *)

162

163 predicate inv_src (src: vertex) (s gq: set) =

164 mem src s \/ mem src q

165

166 predicate inv (src: vertex) (s q: set) (d: t int) =

167 inv_src src s q /\ d[src] = 0 /\

168 (* S and Q are contained in V *)

169 subset s v /\ subset q v /\

170 (* S and Q are disjoint *)

171 (forall v: vertex. mem v q -> mem v s -> false) /\

172 (* we already found the shortest paths for vertices in S *)
173 (forall v: vertex. mem v s -> shortest_path src v d[v]) /\
174 (* there are paths for vertices in Q *)

175 (forall v: vertex. mem v q -> path src v d[v])

176

177 predicate inv_succ (_src: vertex) (s gq: set) (d: t int) =
178 (* successors of vertices in S are either in S or in Q *)
179 forall x: vertex. mem X s ->

12

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

forall y: vertex. mem y (g_succ x) ->
(mem y s \/ mem y q) /\ d[y] <= d[x] + weight x y

predicate inv_succ2 (_src: vertex) (s q: set) (d: t int) (u:

(* successors of vertices in S are either in S or in Q,
unless they are successors of u still in su *)

forall x: vertex. mem X s ->

forall y: vertex. mem y (g_succ x) ->

(x<>u \/ (x=u /\ not (mem y su))) ->

(mem y s \/ mem y q) /\ d[y] <= d[x] + weight x y

lemma inside_or_exit:
forall s, src, v, d. mem src s -> path src v d ->
mem VvV s
\/
exists y. exists z. exists dy.
mem y s /\ not (mem z s) /\ mem z (g_succ y) /\
path src y dy /\ (dy + weight y z <= d)

(* Algorithm’s code. *)

let shortest_path_code (src dst: vertex)
requires { mem src v /\ mem dst v }
ensures { forall v: vertex. mem v visited ->
shortest_path src v d[v] }
ensures { forall v: vertex. not mem v visited ->
forall dv: int. not path src v dv }
= init src;
while not is_empty q do
invariant { inv src visited q d }
invariant { inv_succ src visited q d }

invariant { (* vertices at distance < min(Q) are already

forall m: vertex. min m q d ->

vertex) (su:

in

S

*)

forall x: vertex. forall dx: int. path src x dx ->

dx < d[m] -> mem x visited }
variant { cardinal v - cardinal visited }
let u = g_extract_min () in
assert { shortest_path src u d[u] };
add u visited;
let su = get_succs u in
while not is_empty su do

invariant { subset su (g_succ u) }
invariant { inv src visited q d }
invariant { inv_succ2 src visited q d u su }
variant { cardinal su }
let v = choose_and_remove su in
relax u v;
assert { d[v] <= d[u] + weight u v }
done
done

13

set)

0NN —

C Verification of The A* Algorithm in WhyML

The following is the verification of A* in WhyML as described in Section 4. This code is also available on GitHub: https:

//github.com/kmneumann/Why3- A-Star.git.
(

{2 A* Algorithm Module}

This module implements the specification of A* listed in the paper.
*)
module AStar

use int.Int

use list.List

use list.Append
use option.Option

{6 Graph & Paths Definitions}

Below is the code defininng the graph and paths, as described in the paper.

)
type vertex
clone set.SetImp with type elt = vertex

set of all vertices in the graph *)
constant graph: fset vertex

(** logic (ghost) definition of the ‘successors‘ function *)
val ghost function successors (x: vertex): fset vertex
ensures { subset result graph }
ensures { not mem x result }

program definition of the ‘successors‘ function *)
val successors_impl (x: vertex): set
ensures { result = successors x }

predicate edge (a b: vertex) = mem b (successors a)

clone graph.IntPathWeight with
type vertex = vertex,
predicate edge = edge

ensures edge weights can only be positive *)
axiom positive_weight: forall a, b. weight a b > 0

definition of ‘shortest_path‘ *)

predicate shortest_path (a: vertex) (1l: list vertex) (b: vertex) =
path a 1 b /\
(forall 1’. path a 1’ b -> path_weight 1 b <= path_weight 1’ b)

alternate definition of ‘path‘ via its weight rather than a list *)
predicate path_with_len (a b: vertex) (d: int) =
exists 1. path a 1 b /\ (path_weight 1 b = d)

(** alternate definition of ‘shortest_path‘ via its weight rather than a list *)
predicate shortest_path_with_len (a b: vertex) (d: int) =
exists 1. shortest_path a 1 b /\ (path_weight 1 b = d)

predicate closed_under_succ (v: fset vertex) =
forall n. mem n v -> forall m. edge nm -> mem m v

{6 Lemmas on Graph & Paths}

Below are lemmas about the properties of the graph and paths on it.

*)

paths always have positive weight *)
lemma path_nonneg:
forall x, y, 1. path x 1 y -> path_weight 1 y >= 0

shortest paths always have positive weight *)
lemma shortest_path_nonneg:
forall x, y, 1. shortest_path x 1 y -> path_weight 1 y >= 0

lemma shortest_path_decomposition:
forall x y z: vertex, 11 12: list vertex.

lemma shortest_path_negation:
forall a, b, 1. not (shortest_path a 1 b) ->

14

(** ‘edge‘ predicate used to link the above graph definition to ‘graph.IntPathWeight

imports the definition of ‘path‘ and ‘path_weight‘ from the standard library *

predicate used to ensure that the edges in ‘graph‘ never lead outside of it *

a shortest path consiting of 2 parts, implies both parts are also shortest paths

not (path a 1 b) \/ (exists 1’. path a 1’ b /\ path_weight 1’ b < path_weight 1 b)

the weight of a path is equal to the sum of the weights of the sub-paths on it *

*)

*)

shortest_path x (11 ++ Cons y 12) z -> shortest_path x 11 y /\ shortest_path y (Cons y 12) z

if a list is not a shortest path, it either isn’t a path or there is a path shorter than it *

https://github.com/kmneumann/Why3-A-Star.git
https://github.com/kmneumann/Why3-A-Star.git

88
89
90
9
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

lemma path_weight_sub_path:
forall x y z: vertex, 11 12 13: list vertex.
path_weight (11 ++ (Cons x 12) ++ (Cons y 13)) z =
path_weight 11 x + path_weight (Cons x 12) y + path_weight (Cons y 13) z

(** a sub-path on a shortest path must also be a shortest path *)
lemma optimal_substructure_property:
forall s, t, a, b, 11, 12, 1l_ab.
shortest_path s (11 ++ (Cons a 1l_ab) ++ (Cons b 12)) t ->
shortest_path a (Cons a 1l_ab) b

(** paths can be joined with an edge to make another valid path *)
lemma sub_path:
forall x, a, b, z, 11, 12.
path x 11 a -> path b 12 z -> edge a b -> path x (11 ++ (Cons a 12)) z

a path is either the nil-path,
lemma sub_path_inversion:
forall x z: vertex, 1l:

(x =z /\ 1 =0Nil)
\/ (exists a, b, 11, 12.
path x 11 a /\ path b 12 z /\ edge a b /\ 1 = 11 ++ (Cons a 12))

or it is two paths joined by an edge *)

list vertex. path x 1 z ->

a path from some ‘src‘ in the set ‘s‘ to some ‘v‘ outside of the set ‘s
lemma inside_or_exit_path:

forall s, src, v, 1. mem src s -> path src 1 v -> not (mem v s) ->
(exists y, z, 11, 12.

mem y s /\ not (mem z s) /\ edge y z /\

path src 11 y /\ path z 12 v /\ 1 = 11 ++ Cons y 12)

in the set ‘s‘ to some ‘v‘ outside of the

a shortest path from some ‘src*
lemma inside_or_exit_shortest_path:
forall s, src, v, 1. mem src s -> shortest_path src 1 v -> not (mem v s) ->
(exists y, z, 11, 12.
mem y s /\ not (mem z s) /\ edge y z /\
shortest_path src 11 y /\ shortest_path z 12 v /\ 1 = 11 ++ Cons y 12)
if the exists a path from ‘a‘ to ‘b°‘,
lemma path_imples_exists_shortest_path:
forall a, b, 1. path a 1 b -> (exists 1’.

there must exist a shortest path as

path_weight 1’ b <= path_weight 1

a path of weight zero must necessarily be the nil-path *)
lemma path_zero:

forall a, b, 1. path a 1 b -> path_weight 1 b =0 -> 1 = Nil /\ a =b

a path of weight zero must necessarily be the nil-path *)
lemma main_lemma:

forall src v: vertex. forall 1: list vertex.

path src 1 v -> not (shortest_path src 1 v) ->

v = src /\ 1 <> Nil

\/

(exists v’: exists 1’: list vertex.

vertex. shortest_path v’

this lemma was defined in the proof of Dijkstra’s algorithm *)
lemma completeness_lemma:
forall s: set.
(* if s is closed under
closed_under_succ s ->
(* and if s contains src *)
forall src: vertex. mem src s ->
(* then any vertex reachable from s is also in s *)
forall dst, 1. path src 1 dst -> mem dst s

‘successors ‘ *)

{6 Heuristic Function Definitions}

Here we define predicates about the Heuristic function.

)
(** the heuristic function must never return a negative value *)
predicate positive (f: vertex -> int) =

(forall n. f n >= @)
(** the heuristic function must be admissible *)
predicate admissible (f: vertex -> int) (dst: vertex) =

forall a, 1. path a 1 dst -> f a <= path_weight 1 dst

the heuristic function must be consistent *)
predicate consistent (f: vertex -> int) (dst: vertex) =
f dst = 0 /\
(forall a b:vertex.
edge a b ->
f a <= weight a b + £ b)

(** alternate definition of consistentcy *)
predicate path_consistent (f: vertex -> int) (dst:
f dst = 0 /\
(forall a b:vertex, 1:
path a 1 b ->
f a <= path_weight 1 b + £ b)

vertex) =

list vertex.

15

must contain an edge which exists this set

1’ v /\ edge src v’

ige %)

set S

must contain an edge which exists this set ‘s

well *)

b /\ shortest_path a 1’ b)

/\ path_weight (Cons src 1’) v < path_weight 1 v)

*)

180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

*)

(%

{6 Lemmas on Heuristic Function Properties}

Here we define lemmas on the propertiesof a heuristic function (defined above).

the two alternate definitions of consistency are equivelent *)

lemma consistent_is_path_consistent:
forall dst: vertex, f: (vertex -> int). positive f -> consistent f dst <-> path_consistent f dst

x=

a consistent heuristic is also and admissible heuristic *)

lemma consistent_implies_admissible:
forall dst: vertex, f: (vertex -> int). positive f -> consistent f dst -> admissible f dst

*)

(w

{6 Distnace Function and the CLOSED and OPEN Set Definitions}

Here we define functions useful for dealing with the CLOSED and OPEN sets.

clone ImpmapNoDom with type key = vertex

(xx

mem m q /\
(forall x: vertex. mem x q -> d[m] + h m <= d[x] + h x)

val get_min (open: set) (d: mutMap int) (h: vertex -> int) : vertex

(

writes { open }

requires { not is_empty open }

ensures { min result (old open) d h }
ensures { open = remove result (old open) }

{6 Predicates Used in Loop Invariants}

imports the mutable map function we use for the distance function

predicate defining a vertex with the smallest f(n) value in a set
predicate min (m: vertex) (q: set) (d: mutMap int) (h: vertex -> int)

*)

*)

Below are predicates used to define the loop invariants of the A* algorithm.

They are added so that the actual code is easier to follow.

Note that for these predicates: ‘s‘ is the CLOSED set and ‘q‘ is the OPEN set
*)

the source is either closed or open *)

predicate inv_src (src: vertex) (s q: set) =

mem src s \/ mem src q

these invariants hold for both the outer and inner loops *)

predicate inv (src dst: vertex) (s q: set) (d: mutMap int) =

(x*

(* The source is either closed or open: *)
inv_src src s q /\

(* The distance from src to src is zero: *)
d[src] = 0 /\
(* We have not yet closed the destination vertex: *)

not mem dst s /\

(* CLOSED and OPEN are subsets of the graph: *)

subset s graph /\ subset q graph /\

(* CLOSED and OPEN are disjoint: *)

disjoint s q /\

(* We already found the shortest paths for vertices in CLOSED: *)

(forall v: vertex. mem v s -> shortest_path_with_len src v d[v]) /\

(* There are paths for vertices in OPEN: *)
(forall n. mem n q \/ mem n s -> path_with_len src n d[n]) /\

(* For every open vertex ‘n‘, there is a vertex in closed from which

‘n‘ succeeds: *)

(forall n. mem n q -> (exists u. mem n (successors u) /\ mem u s /\ d[u] + weight u n = d[n]) \/ n

(* No node is both open and closed at the same time: *)
(forall n. not (mem n q /\ mem n s))

an invariant that holds for the outer loop *)

predicate inv_succ (_src: vertex) (s q: set) (d: mutMap int) =

(x=

(* successors of vertices in CLOSED are either in CLOSED or in OPEN:

forall x: vertex. mem X s ->
forall y: vertex. mem y (successors x) ->
(mem y s \/ mem y q) /\ d[y] <= d[x] + weight x y

an invariant that holds for the inner loop *)

*)

predicate inv_succ2 (_src: vertex) (s q: set) (d: mutMap int) (u: vertex) (su: set) =

Below is the impletation of the A*

*)

(* successors of vertices in CLOSED are either in CLOSED or in OPEN,

forall x: vertex. mem X s ->

forall y: vertex. mem y (successors x) ->

(x<>u \/ (x=u /\ not (mem y su))) ->

(mem y s \/ mem y q) /\ d[y] <= d[x] + weight x y

{6 The A* Algorithm}

let astar_code (src dst: vertex) (h: vertex -> int): option int

requires { consistent h dst /\ positive h }

16

algorithm as described in the paper.

unless they are successors of

program function which removes and returns the vertex in the given set with the smalles f(n) value

u

src) /\

still in

su

*)

272 requires { closed_under_succ graph }

273 requires { mem src graph /\ mem dst graph }

274 returns { result ->

275 match result with

276 | Some n -> shortest_path_with_len src dst n
277 | None -> forall 1. not path src 1 dst

278 end

279

280 = let closed: set = empty () in

281 let open: set = singleton src in

282 let d: mutMap int = create 0 in

283 while not is_empty open do

284 invariant { inv src dst closed open d }

285 invariant { inv_succ src closed open d }

286 invariant {

287 forall n, 1. shortest_path src 1 n -> not (mem n closed) ->
288 (exists u, 11, 12.

289 mem u open /\

290 shortest_path src 11 u /\

291 shortest_path u 12 n /\

292 1 =11 ++ 12 /\

293 d[u] = path_weight 11 u)

294 3}

295 variant { cardinal graph - cardinal closed }
296 let u = get_min open d h in

297 assert { shortest_path_with_len src u d[u] };
298 if eq u dst then begin

299 assert { forall v:vertex, s:int. shortest_path_with_len src v s -> s + h v < d[u] + h u -> mem v closed };
300 return Some d[u]

301 end;

302 add u closed;

303 let su = successors_impl u in

304 while not is_empty su do

305 invariant { subset su (successors u) }

306 invariant { inv src dst closed open d }

307 invariant { inv_succ2 src closed open d u su }
308 variant { cardinal su }

309 let y = choose_and_remove su in

310 let x = d[u] + weight u y in

311 if not mem y closed then begin

312 if not (mem y open) || x < d[y] then begin
313 add y open;

314 dly]l <- x

315 end

316 end;

317 assert { d[y] <= d[u] + weight u vy }

318 done;

319 assert { forall m. edge u m -> mem m closed \/ mem m open };
320 done;

321 assert { forall v, 1. path src 1 v -> mem v closed };
322 return None

323

324

325| end

17

References

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

(9]

[10]

[11]

D. Edsger W., “Notes on structured programming
(EWD 249),” in Structured Programming, 1972. [On-
line]. Available: https://www.cs.utexas.edu/~EWD/
transcriptions / EWDO02xx / EWD249 / EWD249 . html
(visited on 01/05/2025).

S. Edwards, L. Lavagno, E. A. Lee and A.
Sangiovanni-Vincentelli, “Design of embedded sys-
tems: Formal models, validation, and synthesis,” in
Readings in Hardware/Software Co-Design, G. De
Micheli, R. Ernst and W. Wolf, Eds., San Francisco:
Morgan Kaufmann, Ist Jan. 2002, pp. 86—107, ISBN:
18759661. por: 10.1016/B978-155860702-6/50009-
0. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/B9781558607026500090.

M. Schoolderman, “Verification of goroutines using
why3,” Master’s Thesis, Radboud University, Nijme-
gen, Jul. 2016, 90 pp. [Online]. Available: https://
www.cs.ru.nl/masters-theses/2016/M_Schoolderman_
__Verification_of_Goroutines_using_Why3.pdf.

Why3. [Online]. Available: https://www.why3.org/
(visited on 01/05/2025).

F. Bobot, J.-C. Filliatre, C. Marché and A. Paskevich,
“Why3: Shepherd your herd of provers,” presented at
the Boogie 2011: First International Workshop on In-
termediate Verification Languages, 2011, p. 53. DOIL:
10/document. [Online]. Available: https://inria.hal.
science/hal-00790310 (visited on 26/04/2025).

J.-C. Filliatre and A. Paskevich, “Why3 — where pro-
grams meet provers,” in Programming Languages and
Systems, ISSN: 1611-3349, Springer, Berlin, Heidel-
berg, 2013, pp. 125-128, 1SBN: 978-3-642-37036-6.
DOI: 10.1007/978-3-642-37036-6_8. [Online]. Avail-
able: https://link.springer.com/chapter/10.1007/978-
3-642-37036-6_8 (visited on 26/04/2025).

P. E. Hart, N. J. Nilsson and B. Raphael, “A formal
basis for the heuristic determination of minimum cost
paths,” IEEE Transactions on Systems Science and Cy-
bernetics, vol. 4, no. 2, pp. 100-107, Jul. 1968, 1SSN:
2168-2887. pOI: 10.1109/TSSC.1968.300136. [On-
line]. Available: https://ieeexplore.ieee.org/document/
4082128 (visited on 01/05/2025).

E. W. Dijkstra, “A note on two problems in connexion
with graphs,” Numerische Mathematik, vol. 1, no. 1,
pp- 269-271, 1st Dec. 1959, 1SSN: 0945-3245. DOTI: 10.
1007/BF01386390. [Online]. Available: https://doi.
org/10.1007/BF01386390.

“Gallery of verified programs.” (2012-2025), [Online].

Available: https://toccata.gitlabpages.inria.fr/toccata/
gallery/index.en.html (visited on 26/04/2025).

C. A. R. Hoare, “An axiomatic basis for computer pro-
gramming,” Commun. ACM, vol. 12, no. 10, pp. 576—
580, Oct. 1969, 1SSN: 0001-0782. por: 10. 1145/
363235.363259. [Online]. Available: https://doi.org/
10.1145/363235.363259.

Rocg. [Online]. Available: https://rocq-prover.org (vis-
ited on 02/06/2025).

18

[12]
(13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

Isabelle. [Online]. Available: https://isabelle.in.tum.
de/ (visited on 02/06/2025).

Vampire. [Online]. Available: https://vprover.github.io/
(visited on 02/06/2025).

The E Theorem Prover. [Online]. Available: https://
wwwlehre.dhbw- stuttgart.de/~sschulz/E/E.html (vis-
ited on 02/06/2025).

SPASS. [Online]. Available: https://www.mpi-inf.mpg.
de/departments/automation- of - logic/software/spass-
workbench/classic- spass - theorem- prover (visited on
02/06/2025).

Alt-Ergo. [Online]. Available: https : // alt - ergo .
ocamlpro.com (visited on 02/06/2025).

CVC(C5. [Online]. Available: https://cvcS. github.io/
(visited on 02/06/2025).

Z3 Prover. [Online]. Available: https://github.com/
Z3Prover/z3 (visited on 02/06/2025).

J.-C. Filliatre, “One Logic To Use Them All,” in CADE
24 - the 24th International Conference on Automated
Deduction, M. P. Bonacina, Ed., Lake Placid, NY,
United States: Springer, Jun. 2013. [Online]. Avail-
able: https://inria.hal.science/hal-00809651.

“The Why3 Platform.” (2025), [Online]. Available:
https://why3 . gitlabpages . inria. fr/ why3/index . html
(visited on 10/06/2025).

“Why3 standard library,” Why3 Standard Library.
(2025), [Online]. Available: https://www.why3.org/
stdlib/ (visited on 23/05/2025).

SPARK. [Online]. Available: https://www.adacore .
com/about-spark (visited on 10/06/2025).

J. M. Cohen and P. Johnson-Freyd, “A formalization of
core why3 in coq,” Proc. ACM Program. Lang., vol. §,
no. POPL, Jan. 2024. DO1: 10.1145/3632902. [Online].
Available: https://doi.org/10.1145/3632902.

P. Amit. “Amit’s A* Pages.” (1997), [Online]. Avail-
able: https : / / theory . stanford . edu / ~amitp /
GameProgramming/ (visited on 22/06/2025).

Opam. [Online]. Available: https://opam.ocaml.org/
(visited on 10/06/2025).

https://www.cs.utexas.edu/~EWD/transcriptions/EWD02xx/EWD249/EWD249.html
https://www.cs.utexas.edu/~EWD/transcriptions/EWD02xx/EWD249/EWD249.html
https://doi.org/10.1016/B978-155860702-6/50009-0
https://doi.org/10.1016/B978-155860702-6/50009-0
https://www.sciencedirect.com/science/article/pii/B9781558607026500090
https://www.sciencedirect.com/science/article/pii/B9781558607026500090
https://www.cs.ru.nl/masters-theses/2016/M_Schoolderman___Verification_of_Goroutines_using_Why3.pdf
https://www.cs.ru.nl/masters-theses/2016/M_Schoolderman___Verification_of_Goroutines_using_Why3.pdf
https://www.cs.ru.nl/masters-theses/2016/M_Schoolderman___Verification_of_Goroutines_using_Why3.pdf
https://www.why3.org/
https://doi.org/10/document
https://inria.hal.science/hal-00790310
https://inria.hal.science/hal-00790310
https://doi.org/10.1007/978-3-642-37036-6_8
https://link.springer.com/chapter/10.1007/978-3-642-37036-6_8
https://link.springer.com/chapter/10.1007/978-3-642-37036-6_8
https://doi.org/10.1109/TSSC.1968.300136
https://ieeexplore.ieee.org/document/4082128
https://ieeexplore.ieee.org/document/4082128
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://toccata.gitlabpages.inria.fr/toccata/gallery/index.en.html
https://toccata.gitlabpages.inria.fr/toccata/gallery/index.en.html
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259
https://rocq-prover.org
https://isabelle.in.tum.de/
https://isabelle.in.tum.de/
https://vprover.github.io/
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
https://wwwlehre.dhbw-stuttgart.de/~sschulz/E/E.html
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/classic-spass-theorem-prover
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/classic-spass-theorem-prover
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/classic-spass-theorem-prover
https://alt-ergo.ocamlpro.com
https://alt-ergo.ocamlpro.com
https://cvc5.github.io/
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3
https://inria.hal.science/hal-00809651
https://why3.gitlabpages.inria.fr/why3/index.html
https://www.why3.org/stdlib/
https://www.why3.org/stdlib/
https://www.adacore.com/about-spark
https://www.adacore.com/about-spark
https://doi.org/10.1145/3632902
https://doi.org/10.1145/3632902
https://theory.stanford.edu/~amitp/GameProgramming/
https://theory.stanford.edu/~amitp/GameProgramming/
https://opam.ocaml.org/

	Introduction
	An Introduction to Automated Verification

	The Why3 Platform
	Introduction to Why3
	Interfacing with External Provers
	The WhyML Language
	Applications of Why3

	Formal Specification of A*
	Graph and Paths
	Heuristic and Distance Functions
	OPEN and CLOSED Sets
	The A* Algorithm
	Properties to Prove

	Implementation of A* in WhyML
	Graph and Paths
	Heuristic and Distance Functions
	OPEN and CLOSED Sets
	The A* Algorithm
	Properties to Prove

	Results and Observations
	Statistics on Generated Proof
	Usability
	Automation
	Program Verification

	Considerations for Responsible Research
	Reproducibility
	Use of AI in This Project

	Conclusion
	Main Conclusions
	Future Work

	Implementation of a Mutable Map in WhyML
	Verification of Dijkstra's Algorithm in WhyML
	Verification of The A* Algorithm in WhyML

