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Summary

A low blood pressure (hypotension, as mean arterial pressure < 65 mmHg) in patients on the
intensive care unit (ICU) is associated with adverse outcomes and death. Pro­active treatment
with the use of a predictive alarm could improve patient outcome. The Hypotension Prediction
Index (HPI) is a machine­learning algorithm that uses arterial blood pressure waveforms to
calculate the probability of impending hypotension. Prior to clinical implementation, the HPI
model needs to be validated. In previously published validation protocols of the HPI, possible
sources of bias were identified. Therefore, the primary objectives were to assess HPI perfor­
mance on the ICU population by using a clinically relevant validation protocol and to evaluate
the differences between previous protocols. Secondary objectives included evaluation of sub­
group performance and the effect of individual validation protocol settings on the subsequent
results.

The three applied validation protocols used conceptually different methods to classify predic­
tions (e.g. as a true or false alarm). The primary forward sliding window (FSW) protocol labels
each single prediction based on hypotension occurrence thereafter. The forward tumbling win­
dow (FTW) groups predictions in non­overlapping time windows to only classify the window
based on hypotension occurrence thereafter. The backward (BW) protocol labels the onsets
of hypotension based on alarm occurrence at ’t’ minutes prior to onset, hence ’backward’ in
time. Identical metrics were used to quantify performance. For secondary analyses the FSW
protocol was used.

Performance for the FSW protocol was reduced compared to the FTW and BW protocol. Us­
ing the FDA­approved alarm settings for FSW, FTW and BW (t=10min) protocols, sensitivity
was 0.59, 1.00 and 0.83, respectively. Positive predictive values were 0.41. 0.83 and 1.00,
respectively. For the FSW protocol the median [IQR] time­to­hypotension was 3.3 [1.0 to 7.3]
min, for an alarm defined as the last of consecutive alarms prior to hypotension. Reducing
the minimal mean arterial pressure in the definition of non­hypotension from 75 to 65 mmHg
reduced the area under the precision recall curve from 0.82 to 0.31. Omission of a washout
period of 30 min increased the positive predictive value from 0.41 to 0.64.

This thesis demonstrates the importance of validation methodology and the generalizability
of the Hypotension Prediction Index to the intensive care unit population. The definition of
non­hypotension and a washout period strongly influenced the results. Overall, the results
demonstrate the ability of the HPI to predict hemodynamic instability in ICU patients. Therefore,
validation results support the introduction of the HPI to the ICU for clinical use. However, the
optimal alarm threshold and clinical benefit remain to be evaluated in future clinical studies.
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Blood Flow =
Blood Pressure

Vascular Resistance
(1)

Sensitivity = Recall =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

PPV = Precision =
TP

TP + FP
(4)

NPV =
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=
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Table 2: Contingency table

Observation
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Introduction

The Veil Nebula is a cloud of heated and ionized gas. It is a galactic supernova 
remnant from an explosion 10,000-20,000 years ago. The red and blue colours of 
the nebula are a metaphor for the oxygen-rich arterial blood and the oxygen-poor 
venous blood. Just like the Hypotension Prediction Index model, this image was 
constructed using features invisible to the naked eye and many hours of data.



Introduction

Organ function fundamentally relies on adequate oxygen supply for its cellular metabolism.
Maintenance or restoration of oxygen supply is therefore important to preserve organ function,
especially in critically ill patients on the Intensive Care Unit (ICU) as oxygen consumption is
increased.38 Shock is the clinical state of circulatory failure that leads to an inadequate blood
supply to vital organs. This results in hampered oxygen delivery and an oxygen deficit in
tissue. Severity and duration of tissue hypoxia (i.e. shortage of oxygen in tissue) correlates
with complications, organ failure and death.46

On a cellular level, hypoxia is damaging in multiple ways. Hypoxia causes energy metabolism
in mitochondria to switch from aerobic to anaerobic breakdown of glucose. This produces an
excess amount of lactate, hydrogen ions and inorganic phosphates. Primary energy molecule
levels in cells, Adenine triphosphate (ATP), decrease because of diminished production and
continued consumption. Low ATP levels hamper production of proteins, which imperils mito­
chondrial function and eventually leads to cell death and end­organ failure.1,18

Unfortunately, options to identify an oxygen deficit in tissue of patients are limited in clinical
practice. Clinicians have to rely on clinical presentation of the patient and surrogate (bio)
markers to determine adequate tissue oxygenation.38

Tissue oxygenation is, amid other factors, generally determined by blood flow. However, blood
flow cannot be measured easily and is mostly measured invasively. According to the laws of
science, flow rate is proportional to driving pressure and inversely proportional to the resis­
tance. So, blood flow depends on blood pressure and vascular resistance. Therefore, one of
the indirect markers that indicate circulatory stability is arterial blood pressure.38

Hypotension is the state of having a low arterial blood pressure and an indicator for an oxygen
deficit in tissue. Hypotension is associated with a higher occurrence of acute kidney injury and
a higher mortality rate during noncardiac surgery and patients with sepsis on the intensive care
unit (ICU).3,14,31,33,52 Prevention of hypotension is therefore included in treatment guidelines
for septic patients.29,45 However, incidence of hypotension in the intensive care unit reportedly
still ranges from 23% to 72%.16,33,47,53. Reducing hypotensive event duration or severity could
lead to improved clinical outcome of patients.14,43

Current treatment of hypotension is mainly reactive. Possible hemodynamic interventions
include administration of fluids, medication that predominantly increases peripheral vascu­
lar resistance and medication that stimulates the contractility of the heart.1,14,38 Hypotensive
episodes can occur unexpectedly and suddenly. As hemodynamic interventions are applied
reactively, intervention is only initiated once the patient has already entered a hypotensive
episode. A limitation of reactive treatment is the delayed effect. Once the intervention is
prepared and comes into effect, the blood pressure could have decreased even further.

3
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Alarms on impending hypotension could enable pro­active treatment. Multiple predictive com­
puter models have been designed to alarm for impending hypotension.8,9,19,25,39 Such an
alarm would both enable clinicians to pro­actively start treatment and increase time for clin­
icians to prepare hemodynamic intervention. Timely intervention by use of a predictive model
could reduce hypotension occurrence and severity in intensive care patients. This effect has
already been demonstrated in surgical patients. During noncardiac surgery, pro­active treat­
ment with the use of the Hypotension Prediction Index (Edwards Lifesciences, Irvine, CA,
USA) resulted in less intraoperative hypotension, without increasing the amount of medication
administered.59

The Hypotension Prediction Index (HPI) algorithm is a machine­learning derived algorithm
that alarms for impending hemodynamic instability.19 It is designed on arterial blood pressure
wave form data from both surgical and intensive care patients. A logistic regression model
was used to calculate the predictive HPI value, which was scaled between 0 and 100. More
details are explained in Appendix A. A higher HPI value should be interpreted as a greater cal­
culated probability of impending hypotension. A threshold value for HPI is used to dichotomize
the continuous warning scale into ‘alarm’ and ‘no­alarm’ of impending hypotension. In clinical
practice, an HPI value that exceeds the threshold value triggers a bed­side alarm. This sug­
gests initiation of a hemodynamic intervention to prevent hypoperfusion of critical organs.19

Prior to any clinical implementation, predictive computer models require thorough retrospec­
tive quality assessment. During validation of a predictive model, its generalizability is as­
sessed, i.e. the degree in which model predictions correspond with the actual outcomes. Cor­
rect validation methodology is of paramount importance in evaluating the potentially added
clinical value of the model, as well as the potentially induced harm due to incorrect predic­
tions.48

Designing the validation method is a challenging task as it is subject to the intention of the val­
idation and to the setting in which the predictive model would be used. Previously published
validation protocols for hypotension prediction models for intensive care patients showed that
the onset of hypotension could be predicted. However, previous validation protocols may show
overoptimism in their presented results, when translated to clinical applicability. This was con­
cluded in the literature study conducted prior to this master’s thesis (Appendix J). Possible
bias of results on algorithm performance was introduced by the following aspects: Firstly, use
of performance metrics was often not justified as they could be inflated by class imbalance, i.e.
the skewed ratio of hypotension versus non­hypotension occurrence. Secondly, some results
of statistical features were presented for clinically unrealistic alarm settings. Lastly, in several
statistical analyses, blood pressure datapoints were ignored if they showed near­hypotension
values. Removing this ‘twilight zone’ from analysis creates more contrast between the hy­
potension and non­hypotension scenarios. Therefore, it becomes easier for the model to give
a correct prediction and to achieve better scores on performance metrics. Removing near­
hypotension values arguably polarises the results unrealistically.

All aspects mentioned above are ought to contribute to biased results as they do not depict the
real clinical situation in which the predictive model may be used. Therefore, generalizability of
validation results could be highly impaired. This impairment could lead to erroneous decision
making on clinical implementation of the algorithm, with potential harm or untouched benefit
to patients as a result.

The primary objectives of this Masters’ Thesis were to assess the performance of the HPI on
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the intensive care population, by using a clinically relevant validation protocol and to evaluate
the differences with previously published protocols. Validation protocols cover data prepro­
cessing, (non­)hypotension classification and a selection of performance metrics to evaluate
discriminative performance, calibration and timeliness of the algorithm.

Secondary objectives of this Masters’ Thesis included the comparison between subgroups of
patients on algorithm performance. Additionally, the effect of multiple settings in validation
methodology that could bias results on algorithm performance were evaluated.





Background



Background

Core concepts that form the foundation of this masters’ thesis are discussed in this section.
This includes elaboration on the definition of hypotension, general elements of a validation
protocol and the description of the three validation protocols applied in this thesis.

2.1. Definition of hypotension

No consensus exists on the clinical definition of hypotension.4 Many different definitions for
hypotension exist, with criteria using absolute systolic (SBP), diastolic (DBP) or mean arte­
rial blood pressure (MAP) values and their relative differences to the baseline values of the
patient. A commonly used threshold of hypotension is a mean arterial blood pressure of
65 mmHg.4 This originates form mammal experiments that indicated a lower cerebral self­
regulatory threshold at 65mmHg.10,11 For blood pressures below this threshold, cerebral tissue
was not able to locally reduce vascular resistance to maintain adequate blood flow. However,
autoregulatory thresholds differ per organ and per patient.24,51 For example, patients with a
history of chronic hypertension can present with shock symptoms under universally accepted
blood pressures.14

So, no one­size­fits­all definition of hypotension is applicable. However, a fixed threshold for
the definition of hypotension is indeed used for all ICU patients by most ICU clinicians. A
recent survey among ICU physicians and nurses showed that the majority used a MAP lower
than 65 mmHg to define hypotension.44

With hypotension defined as a MAP < 65 mmHg, hypotension is associated with several com­
plications. In general ICU patients, hypotension is found to be a risk factor for the development
of acute kidney injury (AKI).28 In ICU patient with a distributive shock, AKI2,33,41, myocardial
infarction33 and mortality2,33,41,58 are associated with hypotension.

2.2. Validation protocol elements
A validation of a hypotensive predictive algorithm is divided into three stages: 1) Data pre­
processing, 2) labeling of data according to definitions of (no­)alarms and (non­)hypotension
and 3) calculation of performance metrics. Each individual validation protocols will be ex­
plained according to these three stages.

2.2.1. Data preprocessing

Data preprocessing is generally defined as the “the collection and manipulation of items of
data to produce meaningful information”.13 In this step, data inadequate for analysis is re­

8
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moved. Data points with a bad signal quality or other artefacts deemed as non­physiological
are removed or annotated. This step also includes imputation of missing data, i.e. replacing
missing values with its estimation.

2.2.2. Data Labelling

Time segments in the data need to be categorized and labelled, to allow calculation of statistical
performance metrics of a predictive algorithm. Each label consists of a categorical value pair:
the prediction (alarm/no­alarm) and the outcome (hypotension/non­hypotension).

As both values are binary, four types of labels exist. True positives (TPs) are alarms that are fol­
lowed by hypotension. False positives (FPs) are alarms that are followed by non­hypotension.
True negatives (TN) are no­alarms that are followed by non­hypotension. False negatives
(FN) are no­alarms that are followed by hypotension.

So, a TP are correctly predicted hypotensive events. A TN is a correctly predicted non­
hypotensive event. A FP is a falsely predicted non­hypotensive event, also known as type
I errors. A FN is an event that was not predicted and is also known as type II error. All labels
can be presented in a contingency table : a tool for model performance assessment that forms
the foundation of other performance metrics(Table 2.1).27

Prediction values in the form of an HPI value between 0 and 100 are dichotomized by an alarm
threshold to an ‘alarm’ or ‘no­alarm’. For example, if a threshold of 50 is used. HPI values
greater than 50 will produce an alarm. HPI values lower than or equal to 50 will be a no­alarm.
An alarm threshold could form a cut­off value for clinicians to initiate pro­active treatment or
not. The performance of an algorithm is often presented for multiple thresholds.

Outcome values are also dichotomized by defining hypotension and non­hypotension. The def­
initions of hypotension and non­hypotension that the model must predict are a design choice
during the development of the predictive algorithm. So, the definitions may vary per algorithm
design or published validation protocol.

Table 2.1: Contingency table

Observation
Hypotension Non­hypotension

HPI Alarm True positive
(TP)

False positive
(FP) Ö PPV = TP/(TP+FP)

No­alarm False Negative
(FN)

True Negative
(TN) Ö NPV = TN/(TN+FN)

× ×

Se = TP/(TP+FN) Sp = TN/(TN+FP)
Abbreviations: Se, sensitivity; Sp, specificity; PPV, positive predictive value;
NPV, negative predictive value
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2.2.3. Performance metrics

During validation, model quality can be split in two different aspects: discriminative perfor­
mance and calibration.

Discriminative performance is the ability of the model to separate the different outcomes.
Therefore, dichotomized predictions are used in attempt to separate the healthy from the dis­
eased, or the time windows with hypotension from non­hypotension.50

Calibration is the agreement between the predicted probability of an event and the observed
frequency of events. Therefore, the rate of hypotension occurrence is evaluated for every HPI
value from 0 to 100. This is one of the primary requirements to determine clinical usefulness.48

Performancemetrics quantify the quality of discrimination and calibration of models. Examples
of different performance metrics are provided in below in Chapter 2.1.2 of the Literature Study
(Appendix J).

Examples of performance metrics

Sensitivity , or ’Recall’, is defined as ’the true positive rate’ or ’the share of TP of all events.
Sensitivity depicts the probability of an alarm given that hypotension will occur shortly.

Sensitivity = Recall =
TP

TP + FN
(2.1)

Specificity is defined as ’the true negative rate’ or ’the share of TN of all non­events’. Speci­
ficity depicts the probability of a non­alarm given that non­hypotension will occur.

Specificity =
TN

TN + FP
(2.2)

Positive Predictive Value (PPV), or ’Precision’, is ’the share of TP in all alarms’. PPV de­
picts the probability that an alarm will be followed by an event, i.e. hypotension.48 Thus, PPV
measures the exactness the positive predictions.20

PPV = Precision =
TP

TP + FP
(2.3)

Negative Predictive Value (NPV) is ’the share of TN in all non­alarms’. It depicts the prob­
ability that a non­alarm will be followed by a non­event.

NPV =
TN

TN + FN
(2.4)

Accuracy is the proportion of correct predictions in all predictions.

Accuracy =
TP + TN

TP + FP + TN + FN
=
# correct predictions

# samples
(2.5)
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Receiver Operating Characteristic Curve is a frequently used method for analysing dis­
criminative performance. A Receiver Operating Characteristic (ROC) Curve curve displays
the performance of the model by plotting the sensitivity against 1­specificity for all thresh­
old values.5 A point on the ROC curve represents model performance for a single, particular
threshold value. Thereby, true positive rate is plotted against false positive rate for the com­
plete range of thresholds. This gives plot gives an overview of model performance.

Thereafter, the ROC curve can also be used to pick the eventual classification threshold, in
combination with a cost function. A cost function defines the desired trade­off between sensitiv­
ity and specificity, which also forms a line on the ROC plot. The intersection of the ROC curve
and cost function indicate the optimal threshold value for that cost function. But also without
any cost function, the ROC curve shows valuable information when the operating threshold of
the algorithm is yet to be determined.21

Via the ROC curve, discriminative ability of a model can be summarised in a single numeri­
cal measure: the area under the curve (AUC). The area under the ROC curve (AUROC) is
a common technique for evaluating and comparing models on dat asets with varying class
distribution.21 A perfect model has an AUC of 1. A non­informative model has an AUC of 0.5,
which is the case when predicting ‘heads’ of ‘tails’ when flipping a coin.

Precision Recall Curve displays the Recall (i.e. sensitivity) against the Precision (PPV) for
the complete range of thresholds. Thereby, it is similar to the ROC curve. The area under the
PR curve (AUCPR) can be used a a summarizing metric.

2.3. Validation protocols used
The three applied validation protocols are described below. Each protocol uses a conceptually
different method to label the data. Protocol also used different performancemetrics to describe
model performance. The protocol of Moghadam et al. 37 was originally used on a different
hypotension predictive algorithm than the HPI. The original protocol is described below and
the necessary adaptations for validation of the HPI are explained in the methods section.

2.3.1. Forward sliding window validation

This continuous forward sliding window (FSW) validation protocol was previously published
by Moghadam et al. 37. This research group validated their own hypotension prediction al­
gorithm by using a novel, continuous validation method. This validation methods mimics the
clinical scenario of real­time monitoring by performing ‘forward’ validation of predictions with
1­minute intervals. Data pre­processing consisted of three elements to exclude erroneous
data from analysis: 1) the removal of spikes in MAP data in which the variation was > 25%
of the baseline in a one­minute window, 2) removal of values outside of the clinical range as
listed in Table 2.2, 3) interpolation of physiological values if the missing interval was less than
5 minutes, otherwise that interval was removed.

A hypotensive event was defined as a period of minimally 30 minutes with MAP < 65 mmHg
for at least 90% of the time. Non­hypotension was defined as any datapoint with MAP > 75
mmHg.



2.3. Validation protocols used 12

Table 2.2: Defined clinical range of physiological blood pressure values.

Minimum Maximum

Mean arterial blood pressure (mmHg) 30 150
Systolic blood pressure (mmHg) 50 220
Diastolic blood pressure (mmHg) 20 103

Labelling of events was performed using the ‘forward’ methodology. In forward validation, each
individual prediction is annotated first. Thereafter, the label is determined by the occurrence
of hypotension in the subsequent period.

The different algorithm evaluated by Moghadam et al. 37 is expected to alarm for hypotension
30 minutes in advance. So, an alarm must be followed by the onset of hypotension within the
next 30 minutes to be labelled as TP, as illustrated in Figure 2.1 via positive points. Positive
points are timestamps in the 30­minute window prior to hypotension. The predictive model is
expected to alarm for hypotension on positive points. Regarding predictions made on positive
points, an alarm is labelled a TP and a non­alarm is labelled a FN.

Every non­alarm is expected to predict an absence of hypotension for the next 40 minutes.
So, every timestamp located at more than 40 minutes before onset of hypotension is pictured
as a negative point in figure 3. Regarding predictions made on negative points, a non­alarm
is labelled a TN and alarm is labelled a FP.

There is a difference between the timewindows that an alarm and a non­alarm cast a prediction
on, i.e. 30 minutes and 40 minutes, respectively. These data points are regarded as neutral
and were removed for analysis. The neutral points are called ‘leading neutral buffer points’.

Predictions during a hypotensive period were also removed from analysis, as well as predic­
tions made in the 20 minutes after a hypotensive event. In this so­called ‘washout’ period of 20
minutes, the physiological state of the patient is deemed to be subject to past hemodynamic
interventions. As the hemodynamic state during the washout period is subject to recent inter­
ventions, predictions are inaccurate. In addition, the patient would be monitored more closely
during the washout period, which reduces the value of a predictive model during that time.

Performance metrics were calculated using a statistically optimal threshold. Metrics consisted
of accuracy, sensitivity, specificity, positive predictive value, and negative predictive value.
Several different statistical methods were used to pick the alarm threshold, of which the results
were presented. The alarm threshold with the maximum F1­score was chosen (Equation 2.6).
The F1­score is a general, overall performance metric. The Receiver Operating Characteristic
(ROC) curve was also used as performance metric. In an ROC curve, the sensitivity is plotted
against the sensitivity for all possible alarm thresholds. Each point on the line represents the
sensitivity and specificity, calculated for one single threshold.

F1− score =
Precision×Recall

Precision+Recall
=

PPV × Sensitivity

PPV + Sensitivity
(2.6)
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Figure 2.1: Illustration of forward sliding window labelling method. Negative points are predictions that are
followed by non­hypotension, thus TN or FP. Positive predictions are predictions that are followed by
hypotension, thus TP or FN. The image is reprinted from Moghadam et al. 37, with permission from Elsevier.

2.3.2. Forward tumbling window validation

The forward tumbling window (FTW) validation protocol was used by Wijnberge et al. 60 to
validate HPI scores based on continuous non­invasive blood pressure data during surgery.
Nonetheless, this validation protocol can also be applied for validation of HPI on intensive care
patients. Data preprocessing consisted of removal of suspected hemodynamic intervention,
as described at Section 2.2.1. No imputation of missing values was applied.

Hypotension was defined as a MAP < 65 mmHg for at least one minute. In contrast to other
validation protocols, non­hypotension was defined as a MAP > 65 mmHg instead of > 75
mmHg. An alarm was defined as an HPI value > 85 for at least one minute.

Data was labelled with a tumbling window approach. So, every 20­minute window was as­
signed one label. The time window was ’tumbled’ or ’flipped’ ahead in time, so windows did
not overlap. Data was sequentially labelled from the start to the end of the data timeline of
a patient. As long as no alarm was encountered, each past 20 minute window was labelled
based on the occurrence of hypotension in that window (as TN or FP). Upon an alarm, a new
20 minute window ­ starting from the alarm ­ was forced. Again, its label depended on the
occurrence of hypotension in this window (TP or FN). Every next window only started once
hypotension had resolved. Performance metrics consisted of sensitivity, specificity, PPV and
NPV for an HPI threshold of 85. This threshold of 85 was chosen as it is the threshold of the
FDA­approved and commercially available HPI algorithm.

2.3.3. Backward validation

The backward (BW) protocol by Hatib et al. 19 was the original method used in the first publica­
tion on HPI performance. To date, this is the only validation study on HPI performance in the
general ICU population, albeit internal validation. So, only to this protocol could the external
PHYSIC cohort be directly compared, as both cohorts include the same patient population.

Data preprocessing consisted of data removal of segments that were suspected to be artefacts
(e.g. change of pressure transducer height) , external events or acute events (e.g. sudden
blood loss) that were outside the scope of the predictive algorithm. A rate of decrease in MAP
of > 0.5 mmHg/s was deemed non­physiological. Every data point that showed a decreasing
trend of > 0.5 mmHg/s was excluded from analysis.

A hypotensive event was defined as a section in which each data point showed a MAP <
65 mmHg for a minimal duration of one minute. A non­hypotensive episode was defined as
a period which satisfies two conditions: 1) all data points have a MAP of > 75 mmHg for a
minimal duration of 30 minutes, and 2) data points are separated from any hypotensive event
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by at least 20 minutes.

Labelling of events was performed by the ‘backward’ methodology. Again, a label (TP, FP, TN
or FN) consists of a pair of binary values on prediction and a pair of binary values on outcome.
In backward labelling, the actual outcomes are annotated first, i.e. the onset of hypotension.
Then, this outcome is paired with a prediction value from a specified duration ’t’ prior to the
outcome value. Event prediction samples were defined as the HPI value recorded exactly ‘t’
minutes prior to the onset of the hypotensive event. Results are presented separately for each
lead time ‘t’, with ‘t’ being 5, 10 and 15 minutes. Non­event samples were defined as the mid­
point of each 30­minute non­hypotension episode. This would reportedly reduce intraclass
correlation. Each individual prediction per 20 seconds was considered to come from nearly
the same hemodynamic state. Repetitive information from including all information would have
introduced bias, according to Hatib et al. 19.

Performance metrics were separately calculated for each lead time ‘t’ (5, 10 or 15 minutes).
Sensitivity, specificity, positive predictive value, and negative predictive value were calculated
for each lead time using a statistically optimal threshold. The optimal threshold was defined
to result in the minimal difference between sensitivity and specificity. Other metrics included
the ROC curve, with displayed area under the ROC curve (AUROC) and a calibration curve.
A calibration curve illustrates the mean rate of event occurrence per HPI range.

Figure 2.2: Illustration of backward labelling method. The example uses a ’t’ of 15 minutes to pair the onset of
hypotension with a prediction. The image was reprinted from Hatib et al. 19, with permission from Elsevier.
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2.4. Validation types: internal and external validation
An important aspect that contributes to the added value of this thesis is that the HPI model
is externally validated on the ICU population. In contrast, internal validation is often a first
step after model development to test the model on reproducibility and is an indication for gen­
eralizability. Internal validation uses data that was kept apart from the originally available
development data. As internal validation data originates from the same underlying population
as the training data, it is sensitive to confounding. Therefore, internal validation only leads
to an initial indication of model generalizability, as it only allows conclusions on the directly
underlying population the model is trained on.48 Generalizability can better be assessed via
external validation, as this involves an independent data set.23 Data for external validation
can differ in geographic location (e.g., hospital or country), moment in time, and clinical case
type or severity.49 Thus, external validation evaluates a predictive model in a broader context,
which shows true model performance that can be expected upon implementation.
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The primary goal was to validate the HPI by using a clinically relevant validation protocol,
and to compare these results with previously published methods. Therefore, three different
validation protocols were applied to the same database of patients admitted on the intensive
care unit (ICU). As described below, the primary validation protocol is a newly tailored version
of the protocol by Moghadam et al. 37 (Section 2.3.1). The other validation protocols are the
protocols published by Wijnberge et al. 60 (Section 2.3.2) and Hatib et al. 19 (Section 2.3.3).

3.1. PHYSIC database
The PHYSIC database was used for validation of the HPI. This database, from Amsterda­
mUMC – Location Academic Medical Center, consists of 499 adult patients admitted to the
intensive care unit (ICU).The PHYSIC was acquired in a different study. Patient inclusion crite­
ria were: age above 18 years, expected minimum stay on ICU longer than eight consecutive
hours and that arterial blood pressure was already recorded as part of standard care. Ex­
clusion criteria consisted of: inability to measure blood pressure continuously, a target MAP
below 65 mmHg and logistic difficulties around patient transport.

For each included patient, continuous arterial blood pressure data was collected for an in­
tended duration of seven to eight hours. The goal was to measure blood pressure with a
five French cannula in the radial artery. If the radial artery was not accessible, the brachial
or femoral artery could be used to measure blood pressure. Baseline patient characteristics
that were obtained included: age, weight, height, sex, intoxications, medical history, reason
for ICU admission and sequential organ failure assessment (SOFA) score. Continuous blood
pressure data was acquired using the FloTrac EV1000 hemodynamic monitor (Edwards Life­
sciences LTD, Irvine, CA, USA). Hemodynamic variables that were automatically derived from
the blood pressure data included: mean arterial blood pressure (MAP), systolic arterial blood
pressure, diastolic arterial blood pressure, heart rate and variables derived from the arterial
waveform such as cardiac output, cardiac index, stroke volume, SV index, stroke volume vari­
ation and pulse pressure variation. All hemodynamic variables were averaged per 20 second
window. After data collection, Edwards Lifesciences retrospectively applied their proprietary
HPI algorithm on the continuous blood pressure data. HPI values were returned per 20 second
window by design and added to the PHYSIC database for the purpose of validation.

The study that led to the formation of the PHYSIC database was conducted with approval of
the Medical Ethical Committee of Amsterdam UMC ­ Location Academic Medical Center under
source ID: W18_142#18.176. The study was also included in the Netherlands Trial Register
under ‘NTR7349’. Consent was obtained for every patient included in the database. Data was
anonymized with its key only available to main researchers.

18



3.2. Other materials 19

3.2. Other materials

Validation protocols of Moghadam et al. 37 andHatib et al. 19 were reproduced in the Python pro­
gramming language version 3.9.4 (The Python Software Foundation, Wilmington, DE, USA).54
This included data preprocessing, labelling, calculation performance metrics and creation of
figures. Frequently used libraries were Pandas36 version 1.2.5, Numpy17 version 1.21.0, Scikit­
learn40 version 0.24.2 and Matplotlib22 version 3.4.2. A full list of required libraries is listed in
the ’Requirements’ text file with the scripts. For the validation protocol of Wijnberge et al. 60
the original code could be reused.Therefore, this analysis performed in MATLAB (The Math­
Works Inc., Natick, MA, USA)32, version 9.5.0 (R2018b). For calculation of extra performance
metrics, additional code was added to the original scripts.

A secure digital workspace on a remote server was used for coding and testing with patient
data (Azure DRE, anDREa, Nijmegen, The Netherlands). Offline version management was
performed via Git6 version 2.21.0.windows.1. Python scripts for performed validation protocols
are available online (via https://github.com/mpligtenberg/HPI­validation). Other code and data
is available upon request.

3.3. Primary validation protocol: Forward sliding window
A newly tailored version of the forward sliding window (FSW) was used as the primary valida­
tion protocol in this thesis. This protocol approximates real­time clinical application of the HPI
by using single predictions in the calculation of performance metrics. Moghadam et al. 37 exe­
cuted the validation protocol on a different algorithm with different constraints (Section 2.3.1).
Therefore, the validation protocol was tailored to the application of the HPI on the PHYSIC
database, as detailed below.

3.3.1. Data preprocessing

Missing data was interpolated linearly if the missing interval was less than five minutes. Data
segments separated by missing intervals of 5 minutes or larger treated as separate segments
in analysis.

Data points with bad signal quality or showing non­physiological values or changes in values
were annotated as bad data points. Labels based on data segments containing bad data
points were excluded from analysis.

Bad signal quality was annotated by a proprietary detection algorithm by Edwards Lifesciences.
Non­physiological blood pressure values were annotated, according to the physiological ranges
that were used byMoghadam et al. 37 (Section 2.3.1). Non­physiological changes in MAPmea­
surements were annotated by using the same rules as used in previous validation by Hatib
et al. 19 and Wijnberge et al. 60. A decrease of MAP greater than 0.5 mmHg/s was regarded as
non­physiological as this would result from an external factor, rather than the changing state
of the patient.19 A MAP increase of 5 mmHg in 20 seconds from any baseline or 8 mmHg in 2
minutes form a baseline of less than 70 mmHg was assumed to result from a hemodynamic
intervention, thus non­physiological.19,60 Removal of spikes based on the variance, as in the
original protocol of Moghadam et al. 37, was not feasible.

https://github.com/mpligtenberg/HPI-validation
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3.3.2. Alarm definition

An alarm is defined by a combination of an HPI value and the alarm threshold. An alarm is
an HPI value that exceeds the alarm threshold. No minimal duration for HPI value above the
threshold is applied. Multiple HPI threshold values are used to calculate performance metrics.
This allows interpretation by the individual reader on optimum alarm thresholds. The optimal
HPI threshold depends on patient characteristics and individual user preferences when to
be alarmed or when to initiate pro­active treatment. Therefore, performance was presented
for thresholds that include all multiples of five and additional statistically optimal thresholds:
maximum f1­score, sum of sensitivity and specificity (Youden Index, as used by Wijnberge et
al. 60) and minimal difference between sensitivity between sensitivity and specificity (as used
by Hatib et al. 19).

3.3.3. Hypotension definition

A hypotensive event was defined as a MAP < 65 mmHg for a period of at least one minute.
Non­hypotension was defined as MAP ≥ 70 mmHg.

3.3.4. Prediction window

Every HPI value is regarded to cast a prediction over the succeeding 15 minutes, as the HPI
model was developed with waveforms up until 15 minutes prior to onset of hypotension. There­
fore, a sliding window with a duration of 15 minutes was used to assess HPI performance. The
correctness of every alarm is based on the occurrence of hypotension in this window. A lead­
ing neutral buffer of 5 minutes was used, so that alarms with a time­to­hypotension of 15 to
20 minutes were not labelled as a FP. A washout period of 30 minutes was used. A washout
period reduces the influence of repetitive hypotension onsets that inflate the number of hy­
potension predictions, whereas they could be regarded as one episode.

3.3.5. Performance metrics

Metrics for discriminative performance (sensitivity, specificity, PPV, NPV and F1­score) were
calculated for each alarm definition discussed above at Section 3.3.2. Discriminative perfor­
mance was further evaluated using the Receiver Operating Characteristic (ROC) curve (i.e., a
graph of specificity against sensitivity for all alarm thresholds) and precision­recall (PR) curve
(i.e., a graph of PPV against sensitivity for all alarm thresholds). Each point on the line repre­
sents the sensitivity and specificity or PPV, calculated for one single threshold. As an addition
to conventional curves, the colour of the line indicates the alarm threshold used to calculate
the values. Area under the ROC and PR curves (AUROC and AUCPR, respectively) were
also used as a summarizing metric.

Performance on calibration was illustrated using a calibration curve and summarized by the
Matthews Correlation Coefficient35.

In addition to discrimination and calibration, timeliness of the alarm is fundamental for the
added clinical value of the HPI mode. Timeliness of the algorithm was graphically illustrated
by showing the sensitivity for each time interval ‘t’ between prediction and onset of hypotension,
i.e. the time­to­hypotension ‘t’. By evaluating the sensitivity for all predictions made ‘t’ minutes
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before the onset of hypotension, effectively, backward validation is applied. Sensitivity was
plotted against time­to­hypotension, as early as 30 minutes before onset of hypotension.

Also, timeliness of HPI was assessed via distribution of time­to­hypotension of alarms. This
is the duration between alarm and onset of hypotension. The distribution was presented in a
histogram. This was done by two different methods, resulting in two histograms. The backward
method evaluated the time interval between onset of hypotension and the last of consecutive
alarms prior to hypotension. The forward method evaluated the time interval between the
earliest alarm within the prediction window and the onset of hypotension. If a washout period
was in effect within the prediction window, this hypotensive event was not included in the
forward distribution of time­to­hypotension durations. Median values with interquartile range
(IQR) were also reported as summarizing metric.

3.4. Other protocols
Previously published protocols were also applied to the PHYSIC database to enable compari­
son with the FSWprotocol. Backward (BW) validation was performed according to the protocol
of Hatib et al. 19. Forward tumbling window (FTW) validation was performed according to the
protocol by Wijnberge et al. 60. The BW and FSW protocols were performed as described in
Chapter 2. However, the same performance metrics as in the primary protocol were used, in
order to directly compare the labelling methods.

3.5. Subgroup analyses
Clinically relevant subgroups of patients were evaluated individually on HPI performance. Sub­
group performance was compared to non­subgroup performance. Subgroups that were anal­
ysed were: patients with cardiogenic shock, distributive shock, admission post cardiothoracic
surgery and admission due to a subarachnoid hemorrhage.

3.6. Exploratory analyses
To evaluate bias induced by different protocol elements, different variations of primary protocol
were applied. Each variation was applied individually to enable clear comparison with the
baseline protocol. Different elements consisted of: a non­hypotension threshold of a MAP
greater than 65, 70 and 75 mmHg; a predicted window of an alarm of 5, 10, 15 and 20 minutes;
a leading neutral buffer of 0, 10 and 20 minutes; a washout period of 0, 10, 20 and 30 minutes;
downsampling of non­hypotensive events by 20% to show the result of class imbalance; a
scatter plot of HPI against MAP for single predictions.
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4.1. Data preprocessing
Data preprocessing of the primary FSWprotocol resulted in 212 splits onmissing data intervals
of greater than five minutes. A total of 7345 imputations were performed on shorter missing
data intervals to a total of 920987 data points. The amount of excluded data points per label
is shown in Appendix B.

4.2. Baseline patient characteristics
Baseline characteristics of patients included in the PHYSIC database are presented in Ta­
ble 4.1. The median monitoring duration was 7 hours and 21 minutes.

Table 4.1: Baseline patient characteristics in the PHYSIC database.

Baseline parameters

Total number of patients 499
Sex, male, n (%) 327 (66)
Age, years, mean (sd) 61 (14)
Number of patients older than 65 years, n (%) 221 (44)
Weight (kg), mean (sd) 82.97 (19.5)
Height (cm), mean (sd) 174 (9.9)
BMI, mean (sd) 27 (6)
SOFA score, mean (sd) 10 (3)
Vasoactive medication during measurements, n (%) 302 (61)
Mechanical ventilation, n (%) 358 (72)

Measurement details
Monitoring time per patient (minutes), median [Q1­Q3] 441 [411 – 962]
Number of daytime measurements, n (%) 305 (61)
Number of night­time measurements, n (%) 194 (39)

Reason of ICU admission
Respiratory failure, n (%) 57 (11)
Neurological disease, n (%) 82 (16)
Subarachnoid haemorrhage , n (%) 51 (10)
Sepsis, n (%) 38 (8)
Cardiac shock/other cardiac, n (%) 19 (4)
Postoperative after surgery, n (%) 216 (43)
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Table 4.1 continued from previous page

Baseline parameters

Cardiothoracic surgery, n (%) 199 (40)

Assigned shock groups
Cardiogenic shock, n (%) 66 (13)
Distributive shock, n (%) 94 (19)
Hypovolemic shock, n (%) 12 (2)
Obstructive shock, n (%) 2 (0.4)
Combination type of shock, n (%) 32 (6)
Non shock classification, n (%) 293 (59)
Statistic presented as mean (standard deviation), median [first quartile, third quartile],
or number of patients (%). Abbreviations: MAP, mean arterial pressure; BMI,
body mass index; SOFA, sequential organ failure assessment.

4.3. Primary analysis: Forward sliding window validation
For the tailored FSW protocol, the AUCPR was 0.59 and the AUROC was 0.87. PR curve,
ROC curve and Calibration are presented in Figure 4.1, 4.2, and 4.3. Optimal statistical thresh­
olds for the validation protocol were 94 for maximum f1 score, 64 for maximum Youden Index
and 60 for minimal difference between sensitivity and specificity. Performance across all cal­
culated thresholds is described in Appendix C.
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Figure 4.1: PR curve of FSW protocol
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Figure 4.2: ROC curve of FSW protocol
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Figure 4.3: Calibration curve for the FSW protocol, with
an alarm threshold of 85
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Figure 4.4: Sensitivity against time­to­hypotension,
using an alarm threshold of 85.

The median time­to­hypotension [IQR] was 3.3 [1.0 to 7.3] minutes for backward analysis (Fig­
ure 4.5) and 14.3 [6.5 to 15] minutes for forward assessment (Figure 4.6), by using an HPI
threshold of 85. No alarm went off for 35 of the 759 hypotensive events of which the full pre­
diction window was available. The alarm went off in the entire prediction window in 130 of
982 evaluated hypotensive events. The HPI became more sensitive as the predictions are
made closer to the onset of hypotension, as illustrated in Figure 4.4. From 30 to 13 minutes
before onset of hypotension, the sensitivity increased from 40% to 45% Thereafter, sensitivity
increases more rapidly. An increase in HPI threshold from 65 to 95 resulted in a decrease
of time­to­hypotension for all quartile values (Table 4.2). All distributions are included in Ap­
pendix H.

15 10 5 0
Time-to-hypotension (min)

0

40

80

120

160

C
ou

nt

Figure 4.5: Backward timeliness assessment. Distribution of time to hypotension in backward timeliness
assessment, using an alarm threshold of 85. For backward assessment, the alarm is defined as the lasts of
consecutive alarm prior to hypotension. Bars include the higher edge value end exclude the lower edge value.
The bar for a time­to­hypotension higher than 15 min indicates the amount of hypotensive events that were
preceded by 15 minutes of non­stop HPI alarms. The bar with a negative time value indicates the number of
hypotensive events without an alarm in the 20 second before onset. The total count is 982.
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Figure 4.6: Forward timeliness assessment. Distribution of time to hypotension in forward timeliness
assessment, using an alarm threshold of 85. For forward assessment, the alarm is defined as the first HPI value
above threshold in the prediction window. Bars include the higher edge value end exclude the lower edge value.
The bar with a negative time­to­hypotension indicates the number of hypotensive events that were not preceded
by any alarm. The total count is 759.

Table 4.2: Time­to­hypotension across thresholds for forward and backward timeliness assessment. Time is
stated in minutes.

Forward Backward
HPI threshold 65 75 85 95 65 75 85 95

25th percentile 12 9.6 6.5 1.7 2.3 1.6 1.0 0
50th percentile 15 15 14.3 8.3 6 4.3 3.3 1.0
75th percentile 15 15 15 14.3 13 11 7.3 2.7

4.4. Forward tumbling window validation
For the FTW protocol, the AUCPR was 0.95 and the AUROC was 0.97. The PR curve and
ROC curve are presented in Figure 4.7 and 4.8. The optimal statistical threshold for the valida­
tion protocol was 95 for all statistical optimums: maximum f1­score maximum Youden Index,
and minimal difference between sensitivity and specificity. The median time­to­hypotension
[IQR] was 2.7 [1 to 6.3] min. Performance across all calculated thresholds is described in
Appendix D.

4.5. Backward validation
For the BW protocol with lead times of 5, 10 and 15 minutes, the AUCPR was 0.99, 0.99 and
0.97, respectively. The AUROC was 0.99, 0.98 and 0.95, respectively. PR curve, ROC curve
and Calibration are presented in Figure 4.9, 4.11, and 4.13. For more detail, zoomed figures
were created (Figure 4.12, 4.10). For lead times of 5, 10 and 15 minutes, the optimal statis­
tical thresholds for the validation protocol with maximum f1­score were 52, 57 and 70, with
maximum Youden Index were 64, 79 and 65 and with minimal difference between sensitivity
and specificity were 51, 71 and 61. Performance across all calculated thresholds is described
in Appendix E.



4.5. Backward validation 28

Figure 4.7: PR curve of FTW protocol Figure 4.8: ROC curve of FTW protocol
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Figure 4.9: PR curve of BW protocol, for different lead
times ’t’
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Figure 4.10: Zoomed PR curve of BW protocol, for
different lead times ’t’
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Figure 4.11: ROC curve of BW protocol, for different
lead times ’t’
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Figure 4.12: Zoomed ROC curve of BW protocol, for
different lead times ’t’
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Figure 4.13: Calibration curve of BW protocol, for
different lead times ’t’

4.6. Overview of all protocols, for alarm threshold 85

Table 4.3: Overview of performance metrics for all validation protocols, using an alarm threshold of 85. For the
BW protocol, lead time ’t’ is stated in round brackets.

FSW FTW BW (5 min) BW (10 min) BW (15 min)

Se 0.59 1.00 0.86 0.83 0.81
Sp 0.94 0.77 0.99 0.99 0.94
PPV 0.41 0.83 1.0 1.0 0.96
NPV 0.97 1.00 0.82 0.79 0.76
AUROC* 0.873 0.972 0.987 0.981 0.946
AUCPR* 0.585 0.951 0.993 0.990 0.965
MCC 0.448 0.794 0.837 0.811 0.735

no. of AHE* 982 7654 6072 6025 5972
TP 21346 7628 5207 5010 4818
FP 31050 1566 2 2 217
TN 470562 5107 3901 3901 3686
FN 14573 22 865 1015 1154
Fields with a (*) do not depend on the threshold value. Abbreviations: Se,
sensitivity; Sp, specificity; PPV, positive predictive value; NPV, negative predictive
value; AUROC, area under the ROC curve; AUCPR, area under the PR curve;
MCC, Matthews correlation coefficient.

4.7. Secondary analyses
Secondary analyses were performed using the primary validation protocol or single parameter
variations on the primary protocol. The primary validation protocol applied sliding forward
validation with a prediction window of 15 minutes, leading neutral buffer of 5 minutes, washout
period of 30 minutes and a non­hypotension threshold of > 70 mmHg.

All ROC curves and Calibration curves of the secondary analyses are placed in Appendix F.
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4.7.1. Subgroup analyses

Subgroup performance with an alarm threshold of 85 is presented in Table 4.4. PR curves are
presented for each subgroup analysis (Figure 4.14, 4.15, 4.16, 4.17).

For patients admitted after cardiothoracic (CAPU) surgery versus other patients, the AUCPR
was increased (0.61 vs 0.56), but the AUROC decreased (0.85 vs 0.89). For patients with
a subarachnoid haemorrhage (SAH) versus non­SAH patients, the AUCPR was decreased
(0.28 to 0.59).

The PPV value at 100% sensitivity is the percentage of hypotension labels in the data subset.
Therefore this value represents the class balance between hypotension and non­hypotension.
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Figure 4.14: PR curves for patients admitted after
cardiothoracic (CAPU) surgery
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Figure 4.15: PR curves for patient subgroups with and
without a subarachnoid haemorrhage (SAH)
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Figure 4.16: PR curves for patient subgroups with and
without a cardiogenic shock
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Figure 4.17: PR curves for patients with and without a
distributive shock
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Table 4.4: Performance per subgroup, with an alarm threshold of 85.

Subgroup CAPU Admission SAH admission Cardiogenic shock Distributive shock
Yes No Yes No Yes No Yes No

Se 0.63 0.55 0.38 0.60 0.62 0.59 0.57 0.605
Sp 0.90 0.96 0.99 0.93 0.89 0.94 0.94 0.94
PPV 0.39 0.45 0.24 0.41 0.43 0.40 0.51 0.39
NPV 0.96 0.98 0.99 0.97 0.95 0.97 0.95 0.97
AUROC 0.848 0.892 0.883 0.864 0.829 0.876 0.853 0.875
AUCPR 0.608 0.558 0.280 0.591 0.631 0.576 0.614 0.583
Abbreviations: Se, sensitivity; Sp, Specificity; PPV, positive predictive value; NPV, negative predictive value;
AUROC, area under the ROC curve; AUCPR, area under the Precision Recall curve; CAPU,
cardiothoracic surgery; SAH, subarachnoid haemorrhage.

4.7.2. Non­hypotension definition

Decreasing theminimal MAP in non­hypotension definition from 75 to 65mmHg reduces speci­
ficity, PPV, AUCPR and AUROC (Figure 4.18, Table 4.5). In particular, the AUCPR decreased
from 0.82 to 0.31, respectively.

Table 4.5: Performance metrics for different thresholds of non­hypotension, with an alarm threshold of 85.

MAP
> 65 mmHg > 70 mmHg > 75 mmHg

Se 0.59 0.59 0.59
Sp 0.85 0.94 0.999
PPV 0.21 0.41 0.98
NPV 0.97 0.97 0.96
AUROC 0.822 0.873 0.930
AUCPR 0.307 0.585 0.816
Abbreviations: Se, sensitivity; Sp, Specificity; PPV, positive
predictive value; NPV, negative predictive value; AUROC, area
under the ROC curve; AUCPR, area under the Precision Recall curve.

4.7.3. Prediction window duration

For prediction window durations of 5 and 20 minutes, the AUCPR was 0.63 and 0.54, respec­
tively. An increase in the prediction window resulted in an increase in PPV, but a decrease of
sensitivity (Figure 4.19, Table 4.6).
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Table 4.6: Performance metrics for different prediction windows, supplemented with a leading neutral buffer to a
total of 20 minutes, for an HPI threshold of 85.

Prediction window
5 min 10 min 15 min 20 min

Se 0.75 0.65 0.59 0.56
Sp 0.94 0.94 0.94 0.94
PPV 0.24 0.35 0.41 0.45
NPV 0.99 0.98 0.97 0.96
AUROC 0.930 0.894 0.873 0.860
AUCPR 0.632 0.600 0.585 0.584
Abbreviations: Se, sensitivity; Sp, Specificity; PPV, positive
predictive value; NPV, negative predictive value; AUROC, area under
the ROC curve; AUCPR, area under the Precision Recall curve.
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Figure 4.18: PR curves for different non­hypotension
definitions
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Figure 4.19: PR curves for different prediction window
durations

4.7.4. Leading neutral buffer zone

The effect of a leading neutral buffer zone between negative and positively labelled points prior
to hypotension relatively affected the PPV the most. For a neutral buffer of 0 min and 20 min
the PPV was 0.40 and 0.43, respectively (Figure 4.21, Table 4.7).

Table 4.7: Performance metrics for different leading neutral buffer periods, for an HPI threshold of 85.

Neutral buffer
0 min 10 min 20 min

Se 0.59 0.60 0.60
Sp 0.94 0.94 0.94
PPV 0.40 0.42 0.43
NPV 0.97 0.97 0.97
AUROC 0.871 0.875 0.878
AUCPR 0.580 0.590 0.600
Abbreviations: Se, sensitivity; Sp, Specificity; PPV, positive
predictive value; NPV, negative predictive value; AUROC, area
under the ROC curve; AUCPR, area under the Precision Recall curve.
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4.7.5. Washout period

Reducing the washout period from 30 min to 0 min resulted in an increased PPV from 0.41 to
0.64, using an alarm threshold of 85 (Figure 4.21, Table 4.8). An labelling example including
a washout period is illustrated in ??.

Table 4.8: Performance metrics for different washout periods, for an HPI threshold of 85.

Washout period
0 min 10 min 20 min 30 min

Se 0.72 0.63 0.61 0.59
Sp 0.93 0.93 0.94 0.94
PPV 0.64 0.49 0.44 0.41
NPV 0.95 0.96 0.97 0.97
AUROC 0.9089 0.883 0.876 0.873
AUCPR 0.788 0.659 0.611 0.585
Abbreviations: Se, sensitivity; Sp, Specificity; PPV, positive
predictive value; NPV, negative predictive value; AUROC, area under
the ROC curve; AUCPR, area under the Precision Recall curve.
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Figure 4.20: PR curves for different leading neutral
buffer durations
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Figure 4.21: PR curves for different washout period
durations

4.7.6. HPI vs MAP

HPI is plotted against MAP for single predictions followed by non­hypotension (Figure 4.22)
and for single predictions followed by hypotension (Figure 4.23).
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Figure 4.22: HPI vs MAP: Negative points (TN and FP)
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Figure 4.23: HPI vs MAP: positive points (TP and FN)
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Discussion

This thesis shows that validation methodology is of utmost importance in validation of the
Hypotension Prediction Index (HPI). The validation protocol should mimic the real­life imple­
mentation of the predictive algorithm in labelling of the data points. Also, the protocol should
integrate an appropriate washout period, clinically relevant blood pressure values for hypoten­
sion and non­hypotension, and a true representations of hypotension and non­hypotension
occurrence.

5.1. Primary analysis
In this first external validation of the HPI model on general ICU population, the HPI model
showed good predictive performance in predicting hemodynamic instability. The results demon­
strate generalizability of the HPI model to the ICU population, as the ROC curves showed
decent overall discriminative performance for every protocol. However, the use of the primary
forward sliding window (FSW) protocol resulted in reduced performance metrics when com­
pared to previously published labelling methods for the HPI model. Especially the positive
predictive value (PPV) for the FSW protocol was significantly reduced when compared to the
forward tumbling window (FTW) protocol and backward (BW) protocol.

A major cause of the reduced PPV and calibration in the FSW protocol could be the lower ratio
of hypotension labels versus non­hypotension labels. The PPV depends on this ratio: more
non­hypotension leads to increased probability on FPs, which reduces the PPV. The FTW and
BW protocol increased the hypotension ratio, by either undersampling the non­hypotension
data or by grouping the points into time windows. For example, one label (TN or FP) was
assigned per 20 or 30 minutes of non­hypotension data points. In contrast, the primary FSW
protocol labelled each single prediction per 20 seconds as TN or FP. Thereby, the FSW pro­
tocol labels more non­hypotension, which increases the difference between numbers of hy­
potension and non­hypotension labels. As this so­called ‘class imbalance’ leant more towards
non­hypotensive events, the PPV was reduced as a result (Table 2.1). I believe the reduced
PPV value of the FSW protocol depicts a more realistic value for HPI predictions, as the FSW
protocol mimics the interpretation bed­side HPI values. In calculation of PPV, a more realistic
ratio between occurrence of hypotension and non­hypotension is used.

The HPI showed poor calibration in the primary FSW validation protocol. The calibration curve
does not show a proportional increase in rate of hypotension over the full range of HPI values
(Figure 4.3). So, the amount of increase in HPI value itself was not proportional to the increase
in hypotension occurrence. This means that the interpretation of the continuous HPI valuemay
not be intuitive. However, a sharp inflection point in the rate of hypotension around an HPI
value of 85 was observed: HPI values below 85 showed a low rate of hypotension and values
above 85 showed a high rate of hypotension. This could coincide with a good discriminative

37
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performance when an alarm threshold of 85 is used. Calibration results of the FSW protocol
are in contrast with calibration resulting from the BW protocol (Figure 4.13) and the article of
Hatib et al. 19 as they report a sigmoid calibration curve.

In evaluation of the timeliness of the HPI alarms, sensitivity increases as predictions are made
closer to the onset of hypotension, especially from 13 minutes to onset of hypotension. The
HPI also alarmed more time in advance when lower alarm thresholds were used. In the dis­
tribution of forward timeliness, the initial peak in ’alarm counts’ between 14 and 15 minutes to
hypotension (Figure 4.6) corresponds with the sensitivity of the HPI at 15 minutes (Figure 4.4).
In addition, the differences in distributions of time­to­hypotension between forward and back­
ward assessment seem large. This indicates that the first alarm and the onset of hypotension
were often separated by a non­alarm.

5.2. Secondary analyses
The HPI model showed better performance in particular subgroups of patients. For patients
with a cardiogenic shock and patients admitted after cardiothoracic surgery, the HPI model
showed a better trade­off between sensitivity and PPV. HPI performed poorly on patients ad­
mitted due to a subarachnoid haemorrhage (SAH). Poor performance may be caused by the
low prevalence of hypotension defined as a MAP < 65 mmHg in patients admitted with SAH,
versus patients without SAH (1% vs 8% of labels were predictions on hypotension). This could
be explained by the higher target MAP in patients admitted due to a SAH, compared to other
patients.42,44

For validation on the general ICU population, the definition of non­hypotension heavily influ­
ences performance results. Lowering the non­hypotension definition from a MAP > 75 mmHg
to a MAP > 65 mmHg for labelling of predictions has an extreme effect on the reported PPV,
as seen in the PR curves. Many FPs arise in the MAP range of 65 to 75 mmHg in the FSW
protocol, as Wijnberge et al. 60 also reported. Exclusion of this ‘twilight’ hypotension zone in
analysis, as performed in the BW protocol, polarises the hypotension and non­hypotension
points artificially (Figure 4.22). This polarisation lead to easier discrimination between hy­
potension and non­hypotension (Figure 4.18). Artificial polarisation could be justified during
the design of a predictive model. However, for validation, the clinical scenario should be sim­
ulated. In clinical practice, the HPI would be used for all MAP values. Therefore, this ’twilight’
blood pressure range should also be included in the definition of non­hypotension.

Surprisingly, prediction window size only minimally affected the results on HPI performance
in the FSW protocol. The subtle increase in PPV by enlarging the prediction window can be
explained as a logical result of increasing the number of positive points. PPV depends on TPs
from the positive class and FPs from the negative class. In general, an increase in the ratio
between positive and negative points results in an increase in PPV. Differences in performance
results do not hint towards any optimal prediction window duration for validation nor towards
an expected time to hypotension upon alarm.

A leading neutral buffer duration only minimally affects the results on HPI performance in FSW
protocol. This is in contrast with the idea that this buffer would temporally polarize positive
and negative points and thus would bias model performance. Possibly, temporal polarisation
is limited when using a prediction window of 15 minutes, because most alarms already occur
within the prediction window. Results on model performance using smaller prediction windows
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might be more influenced by leading neutral buffer size.

Omission of a washout period resulted in an increase in PPV, which may be caused by the
increased number of hypotensive event when no washout period is used. Without any washout
period, 15% of all labels describe hypotensive events (TP or FN), whereas with a washout
period of 30 minutes, this is only 7%. The difference in class balance thus contributes to
the change in PPV. In clinical practice, prediction of recurrent hypotensive events could be
deemed less valuable, as the patient would be monitored more closely during this recovery
period.

5.3. PHYSIC database validity
External validation results on the PHYSIC ICU patient database with the backward (BW) val­
idation protocol are similar to the internal validation results reported by Hatib et al. 19. This
indicates that the results presented by Hatib et al. 19 are generalizable and that the model is
not ‘over trained’ . The results were similar in terms of ROC curves for predictions made 5, 10,
and 15 minutes before onset of hypotension. The calibration curves show similar calibration
for predictions made 5 and 10 minutes before onset of hypotension. Despite Hatib et al. 19
reporting a sigmoid curve for predictions of 15 minutes before onset of hypotension, external
validation with BW protocol indicated under calibration and linear calibration.

It must be noted that only 15% of the internal validation cohort by Hatib et al. 19 consisted of
ICU patients. The rest of the cohort consisted of surgical patients. Unfortunately, no internal
validation results were presented on HPI performance on ICU patients alone.

5.4. Strengths and limitations
Relevantly strong areas in methodology of this thesis were identified. Firstly, this includes the
application of multiple and previously reported validation protocols on the same PHYSIC data
set. Thereby, differences between the three different protocols could be accurately shown.
In addition, by repeating the protocol of Hatib et al. 19, the results on both FSW and FTW
protocols could be related to previously published results on the HPI. It is clear that the choice
of validation protocol is a great determinant of the results on model performance. Therefore,
a critical view on reported validation methodology is crucial, prior to accepting the results.

Secondly, performance metrics that display clinically useful information were added to the pre­
viously published protocols. The infrequently used PR­curve provides the clinical reader with
necessary information for bed­side implementation of the HPI: How sensitive is the alarm?
What is the probability of hypotension after an alarm? Additionally, a coloured threshold indi­
cator was added to ROC and PR curves, as a novelty to improve information transfer to the
reader. This could aid the estimation of added clinical value of the HPI by the clinical reader.

Lastly, timeliness was assessed via two time­to­hypotension distributions. The variable time
is of utmost importance for the potential benefit of an alarm on impending hypotension. Con­
ventionally, timeliness is only presented via median and quartile range values. However, the
usefulness of these values were regarded as suboptimal. Therefore, two distributions of time­
to­hypotension were used to increase information transfer on timeliness of the HPI model.

The clinical interpretation and generalization of the presented results may be hampered by sev­
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eral factors. Firstly, the FSW protocol does not directly mimic the pro­active treatment protocol
by using the HPI. It only provides performance metrics on individual predictions. Therefore,
direct clinical generalizability of the primary results could be arguably reduced. Clinical applica­
tion of the HPI would involve only one initiation of pro­active treatment episode of consecutive
alarms. Therefore a series of consecutive alarms could also be labelled as a single predic­
tion, as in the FTW protocol. This approach is used byin the FTW protocol. One could argue
that labelling individual predictions within the prediction window, as as in the FSW protocol,
is irrelevant as a clinician would treat every single alarm. An advantage of this approach is
that every no­alarm that is followed by hypotension in the next 15 minutes affects the sensitiv­
ity. The FTW protocol only evaluates the first initial alarm and does not take any HPI values
into account until the onset of hypotension. So, the validation protocol remains a statistical
abstraction, which is subject to design choices. A validation protocol often cannot completely
mimic actual clinical use of the predictive model.

Secondly, data preprocessing for the FTW validation protocol was different than for the FSW
and BW protocols. Changing the structure of the authors’ original code to equal data pro­
cessing was considered to be outside the time scope of this project. However differences in
data preprocessing was regarded as a minimal influence on the results, because of the nature
of the windowed labelling approach. By assigning labels to time windows instead of single
prediction values, the influence of missing data points is reduced.

Thirdly, in the definition of non­hypotension for the FSW protocol the range of MAP values
between 65 mmHg and 70 mmHg was excluded from analysis. As stated earlier, the HPI
model would be used for every MAP value. This application would plea for a definition of non­
hypotension as any MAP > 65 mmHg. However, I chose to exclude the range between 65
and 70 mmHg in the definition of non­hypotension. As Figure 4.18 shows, the number of FPs
was extremely high in range of 65 to 70 mmHg, as the PPV becomes poor when including
this MAP range in the definition of non­hypotension. In detailed evaluation of the data, the
excessive amount of FPs appeared to originate from long time segments with a stable MAP
in this range, whilst HPI values exceeded the alarm threshold. These episodes had a large
influence on the results because of the nature of the FSW labelling approach. This approach
labels each single prediction in the episode as a false positive, whereas the hemodynamic
situation remained unchanged for a long time. A different labelling approach, similar to the
FTW protocol, could label this episode as a single prediction. However, to cover this limitation
of the FSW protocol for episodes in the range of 65 to 70 mmHg, non­hypotension was defined
as a MAP > 70 mmHg.

Lastly, labels were not corrected for dependent variables. In the primary protocol, each HPI
value was labelled as an independent prediction. The reason behind this is that each HPI
prediction is an independent calculation of the algorithm based on the data of the previous
20 seconds. However, within a series of predictions the patient is a dependent variable. So,
individual predictions are not independent. If a hypotensive episode is correctly predicted in
a patient, the odds are expected to be higher for the next hypotensive episode in this patient
to be detected correctly as well and vice versa. This means that patients with relatively large
representation of either hypotension or non­hypotension could bias the results. For example,
patients with SAH introduce bias to the data as the incidence of hypotension is low due to a dif­
ferent targeted blood pressure, as discussed previously. To monitor the introduction of bias by
certain patient categories, subgroup analysis was also performed. In addition, a washout pe­
riod limits the introduction bias by dependent predictions of subsequent hypotensive episodes.
Other corrections could make the labelling and calculation of performance metrics more com­
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plex. A potential pitfall could be that complex validation protocols could make it difficult to
comprehend the results.

5.5. Implication by study results
Validation of a predictive algorithm is an essential step in the product life­cycle. Validation
serves as a pre­clinical quality check between algorithm development and studies on clinical
benefit.26,55 Especially external validation shows the expected model performance upon im­
plementation.48 The HPI model was developed by Edwards LifeSciences and received FDA
approval. However, responsibility for clinical use of the algorithm remains with the clinician.26

The decision on clinical implementation of the HPI on the intensive care is supported by these
validation results. However, the clinical benefit should be evaluated in clinical trials. In addi­
tion, the validation results also give direction to further research on alarm threshold selection
and direction to further research on the subgroups which would benefit most from additional
hemodynamic monitoring by the HPI model.

5.6. Recommendations

5.6.1. Validation protocol use

The three conceptually different protocols have different strengths and limitations. The use of
each protocol can be justified, but only by using different research questions. My interpretation
on advantages and justification of the use of each protocol is described below.

The BW protocol only provide an initial indication whether hypotension can be predicted by the
HPI model. By using backward labelling, the protocol does not provide information on what
outcome can be expected upon a particular HPI value or alarm on impending hypotension.
Therefore, generalizability to clinical practice is limited. In addition, the amount of FPs by the
BW protocol is tempered, as only hemodynamically stable periods are selected for labelling
of non­hypotension. Time windows were only labelled as non­hypotension if all MAP values
within a time window showed a MAP > 75 mmHg. So, performance metrics from the BW
protocol are less valuable for interpretation of HPI predictions made during moments with
glooming hemodynamic instability. In clinical practice, predictions during this twilight zone
would affect treatment selection. Therefore, clinical generalizability of results from the BW
protocol are hampered.

The FTW protocol mimics a clinical treatment protocol using the HPI. Only the onsets of alarms
are labelled, as they indicate the initiation of pro­active treatment. This feature strengthens
the generalizability of the results. However, important to note is that an element was added
to the definition of an alarm, which may have clinical consequences. In the FTW protocol, a
minimal duration of one minute of HPI values above alarm threshold was added to the alarm
definition. This constraint raises alarm criteria and reasonably reduces FPs. This would only
be justified as long as the clinical protocol of HPI use would also incorporate this minimum
duration. The downside of this constraint is the reduction of timeliness of the eventual alarm.
In addition, the FTW protocol does not consider that user behaviour may change when HPI
decreases to sub­threshold levels after the initial alarm, which could make the clinical cancel
the pro­active treatment. In the end, the advantage of the FTW protocol is the simulation
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of clinical implementation. Therefore the FTW could best be used for pro­active treatment
protocol evaluation.

The FSW protocol displays the performance of individual predictions and proves a detailed
insight in predictive performance of HPI values. Thereby, it may provide the most realistic per­
formance values, given that a clinician interprets individual HPI values. However, the results
of the FSW are less informative on correctness of hypothetically initiated pro­active treatment,
in contrast to the FTW protocol.

5.6.2. Threshold selection

What HPI threshold should be used in clinical practice on the ICU? This major question cannot
be answered by statistical analysis alone. Performance metrics, as used in validation of the
HPI, are ”just statistical abstractions and not yet informative about clinical value”, as described
by Vickers et al. 57. Eventual threshold selection should be founded on the potential harm and
benefits of interventions up HPI alarm. So only the quantified potential harm and benefits
of each label in combination with these validation result could lead to a calculated clinical
optimum on HPI alarm threshold.

The potential harm and benefits of pro­active treatment on an alarm, whether true or false,
remain to be estimated for ICU patients in future clinical studies. An ongoing clinical study
at the AmsterdamUMC evaluates the effect of pro­active treatment upon an HPI value above
75. For surgical patients, Wijnberge et al. 59 already showed that pro­active treatment upon
an HPI value above 85 reduced hypotension occurrence and severity. Pro­active treatment
did not result in a statistically significant difference in cumulative dose of medication nor fluids
given during surgery.59 However, an other study reported non­significant results reduction of
intraoperative hypotension, using an alarm threshold of 85.34

The ideal threshold is yet to be determined. For now, expert opinion, pilot studies and an HPI
value of 85 as only alarm threshold approved by the FDA determine the thresholds used in
research. The following considerations are recommended to be included in threshold selection
for clinical use of the HPI. Firstly, the potential harm and benefits per label could be estimated
using expert opinion and scientific literature, as mentioned above. A cost­benefit analysis can
be performed within the domains of time, finance and patient health. A possible method to
evaluate the balance between harm and benefits to the health of the patient is the Net Benefit
analysis. The Net Benefit analysis is a decision analytic measure that brings potential harm to
the benefits to the same scale by using an exchange rate based in clinical judgement.Vickers
et al. 57

Secondly, the setting in which the HPI is used also determines the desired threshold. The
HPI model is certified to be applied to both surgical patients and ICU patients. As in ICU
patients the changes in hemodynamic states are expected to be more gradual than in surgical
patients, the expected time­to­hypotension for an alarm is longer in ICU patients.60 This is
supported by the median [IQR] time­to­hypotension, with an alarm threshold of 75, observed
in ICU patients and surgical patients of 4.3 [1.6 to 11] min and 1.3 [0.7 to 4.3],59 respectively.
The extra time­to­hypotension for ICU patients could be exchanged for a reduction in false
positives by increasing the alarm threshold. However, the optimal time­to­hypotension could
differ per setting, as the time from alarm to initiation of treatment also differs between the two
settings. During surgery, a dedicated clinician monitors the patient at all times whereas an
ICU patient is monitored by a nurse that has multiple tasks or even multiple patients to look
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after. Thus, a longer time­to­hypotension of an alarm may be desired in the ICU setting than
in a surgical setting.

The last recommendation for alarm threshold selection is to take the effect of HPI threshold
on usage behaviour into consideration. Change in behaviour of end­users is a great determi­
nant of the impact of an innovation. To estimate difference in acceptance of the HPI algorithm
for different alarm threshold conditions, the extended version of the Technology Acceptance
Model (TAM2) could be used as a foundation. The TAM2 theory by Venkatesh & Davis 56
states that usage behaviour of a technology is eventually determined by both ‘Perceived Use­
fulness’ and ‘Perceived Ease of Use’. The ’Perceived Usefulness’ will be influenced by the
HPI threshold that will be selected for standard clinical use. ’Perceived Usefulness’ is theoret­
ically affected by several factors, of which the following were identified that could be relevant
in alarm threshold selection:

Both the ‘Result Demonstrability’ of the HPI model, i.e. the acquaintance of the user with
results of using the innovation, and the ’Perceived Importance’ of hypotension prevention con­
tribute to the successful implementation of the HPI algorithm.15,56 Facing the validity and the
evidence base by end­users of an innovation is reported as an important facilitator of success­
ful implementation.12 A difference in attitude towards a MAP below 65 mmHg was observed
between nurses in anaesthesiology and the nurses in the ICU. My personal impression was
that a MAP target of > 65 mmHg was more strictly followed during surgery than during ICU
admission. Albeit a single observation, a clear presentation of the evidence base behind the
HPI and the presentation of results for multiple thresholds could aid the implementation of the
HPI algorithm on the ICU.

Lastly, the increase of false positives by using a lower threshold value of the HPI could lead
to alarm fatigue. Alarm fatigue by false positive alarms leads to a lower response rate on
alarms on the ICU.7 However, alarms are in integral part of care provided in ICUs. The further
advancements in use of technology on the ICU will undoubtedly lead to an increase in alarms
as well.30 Therefore the threshold should be selected carefully to avoid alarm fatigue, loss of
perceived “Output Quality” and reduced “Perceived Usefulness” of the HPI model, as defined
in the TAM256.

5.6.3. Performance metric selection

I encourage the use of PPV and PR curves in reports on performance of hypotension prediction
models. Currently, more weight is placed on specificity than on PPV in validation (Appendix J).
Specificity is a good objective metric to compare different models that are tested on different
data sets. The calculation of specificity is not influenced by the ratio between hypotension and
non­hypotension in the data set. Therefore, it is an objective metric for comparison between
models.

However, for demonstration of the clinical applicability of a predictive model, I would suggest
the use of PPV instead of specificity. A hypotension prediction model would be used as a bed­
side warning system. As long as only alarms will affect the clinical behaviour and no­alarms will
not, the user is interested in the probability of impending hypotension upon an alarm, i.e. PPV.
A user would not be interested in the probability on a no­alarm given no hypotension would
occur, i.e. specificity. So, clinical usefulness could better be illustrated using PPV and PR
curves, rather than specificity and ROC curves. This is also applicable to threshold selection.
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5.6.4. Future validation protocol options

More validation approaches and data labelling methods were identified during the project. Un­
fortunately, their evaluation was outside the time scope of this thesis. Therefore, the following
approaches are recommended for future research on HPI or other predictive alarms using
continuous data.

In alarm definition, different thresholds could be used to turn the alarm ‘on’ and to turn the
alarm ‘off’. For example, the HPI model would alarm the clinician when a HPI values exceeds
85, but would only silence this alarm when a HPI value decreases below 75. As the timeliness
assessment shows, sensitivity was approximately 45% already at 20 minutes prior to onset of
hypotension, with an alarm threshold at 85. The two time­to­hypotension distributions show
that an early initial HPI alarm is often followed by a no­alarm towards the onset of hypotension.
Different thresholds for alarm ‘on’ and alarm ‘off’ could result a more consistent and reliable
alarm pattern, whilst maintaining optimal timeliness.

Another approach to obtain a more consistent alarm pattern is to use a moving average or
a minimal alarm duration, as in Wijnberge et al. 60. However, if this modification would be
applied in clinical practice, a clinician is only alarmed when this additional condition is satisfied.
Unfortunately, this reduces the timeliness and thus added value of the algorithm. To avoid
reduction of timeliness, an altered clinical workflow could be designed. In this hypothetical
workflow, a single HPI value above threshold would alarm the clinician to identify the cause of
impending hypotension. Subsequently, the selected hemodynamic intervention would already
be prepared. The intervention would only be initiated once the minimal duration condition is
satisfied and a additional alarm would ring. This hypothetical workflow may not be feasible
as it induces a large amount of extra work­load due to many FPs. But it shows a possible
integration of HPI value behaviour to a pro­active treatment protocol.

A different validation approach could include three categories to classify HPI values: ‘no­alarm
or safe’ – no impending hypotension expected, ‘Caution’ – low probability on impending hy­
potension or an expected long time­to­hypotension, and ‘Alarm’ – alarm on impending hypoten­
sion. Thereby, the validation protocol simulates the nuance that continuous value implies when
displayed on the monitor. However, the ‘caution’ class should only be added to the validation
protocol if the ‘caution’ zone has a clinical implication. An example is already included in a
clinical trial on the effect of HPI. This study protocol recommends the clinician to already iden­
tify the cause of probable impending hemodynamic instability at HPI levels between 50 and
75.

A weighted scoring system could be applied to predictions on hypotension, i.e. TP and FN
labels. TP that are rapidly followed by hypotension would earn less points than TPs that
predict the onset of hypotension far in advance. The opposite could apply for prediction on
non­hypotension: an FN prediction far before onset of hypotension would be punished less
than an FN prediction right before onset of hypotension. The point scoring system should only
be used to compare different predictive models. A single score does not give a clear indication
of absolute clinical usefulness.

Furthermore, the effect of certain protocol elements (e.g. prediction window size) could be
displayed via ’iso­threshold’ PR and ROC curve. Currently, the effect of protocol elements
was displayed via PR or ROC curves over the full range of HPI values(1, 2, .., 100), but for
a small number of values of the protocol element (e.g. 10, 15 or 20 minutes). Thereby, the
effect of the varying value could be evaluated for a curve as a whole, but not for single HPI
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values, because the ability to discriminate colours is limited. The proposed alternative is to plot
‘iso­threshold lines’. For example, in a PR curve, the effect of prediction window size would
be illustrated by plotting the a line between points calculated for the full range of protocol
element values (e.g. 1, 2, .., 20 minutes), but using a single HPI threshold. By repeating this
for multiple thresholds (e.g. 5, 10, .., 100) several quasi­parallel lines would indicate the effect
of a changing variable value.

The last proposal for future exploratory analysis is to evaluate the HPI performance while
excluding all predictions made with a MAP < 70 mmHg. Results of this validation option may
form an solution to the discussion whether the definition of non­hypotension should include
MAP values between 65 and 75. Results would show a performance without any artificial
polarisation. The obvious limitation is that the results cannot be extrapolated to any prediction
with a MAP < 70 mmHg.





Conclusion



Conclusion

This thesis demonstrates the importance of validation methodology of the Hypotension Pre­
diction Index on the ICU population. Labelling of individual predictions via the FSW protocol
resulted in a lower PPV and sensitivity of the HPI model compared to previously reported HPI
performance, in which a time windowed labelling method was used. The HPI model showed
poor performance for patients with a subarachnoid haemorrhage, but a better trade­off be­
tween sensitivity and PPV for patients with a cardiogenic shock. The inclusion of mean blood
pressure values in the range between 65 and 75 mmHg in the definition of non­hypotension
dominantly reduced PPV. Overall, the results show the ability of the HPI to predict hemody­
namic instability in ICU patients. Therefore, validation results support the introduction of the
HPI to the ICU for clinical use. However, the optimal alarm threshold and clinical benefit remain
to be evaluated in future clinical studies.
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Apendices



HPI design

Figure A.1: A High­level overview of the development of the Hypotension Prediction Index, based on arterial
blood pressure waveforms. Model development is described in the original article by Hatib et al. 19. The image
was reprinted from Hatib et al. 19, with permission from Elsevier.
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Exclusion per label type

Table B.1: Data points excluded as erroneuos data per label, for FSW protocol.

Labels Total Excluded % Excluded
TP 22364 1018 4,551959
FP 31256 206 0,659073
TN 476467 5905 1,23933
FN 16519 1946 11,78037
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Forward sliding window validation:
Overview thresholds

Table C.1: Performance according to forward sliding window validation protocol for all thresholds as multiples of
five and statistically optimal thresholds. Min. diff. Se and Sp: The threshold that minimalizes the difference
between sensitivity and specificity.

HPI threshold Se Sp PPV NPV Threshold method

5 0.995 0.1014 0.0735 0.9965
10 0.9901 0.1744 0.0791 0.996
15 0.981 0.2425 0.0849 0.9944
20 0.9697 0.3065 0.091 0.993
25 0.9575 0.3711 0.0983 0.9919
30 0.9396 0.4415 0.1075 0.9903
35 0.9179 0.5225 0.121 0.9889
40 0.8929 0.6015 0.1383 0.9874
45 0.8705 0.6571 0.1538 0.9861
50 0.8475 0.6986 0.1676 0.9846
55 0.8225 0.7369 0.1829 0.983
60 0.7918 0.7759 0.2019 0.9812
65 0.7549 0.8165 0.2276 0.979
70 0.72 0.8508 0.2569 0.977
75 0.683 0.8815 0.2922 0.9749
80 0.6419 0.9099 0.3379 0.9726
85 0.5943 0.9381 0.4074 0.97
90 0.5282 0.9665 0.5303 0.9662
95 0.3954 0.9943 0.832 0.9583
60 0.7918 0.7759 0.2019 0.9812 Min. diff. Se and Sp
64 0.7624 0.8089 0.2222 0.9794 Youden
94 0.438 0.9894 0.7466 0.9609 F1 (score: 0.55)
Abbreviations: Se, sensitivity; Sp, Specificity; PPV, positive predictive value; NPV, negative predictive value;
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Forward tumbling window validation:
Overview thresholds

Table D.1: Performance according to forward tumbling window validation protocol for all thresholds as multiples
of five and statistically optimal thresholds. Min. diff. Se and Sp: The threshold that minimalizes the difference
between sensitivity and specificity.

HPI threshold Se Sp PPV NPV

5 1 0.11 0.6713 1
10 1 0.1676 0.6757 1
15 1 0.23 0.683 1
20 1 0.2821 0.6913 1
25 1 0.3323 0.6989 1
30 1 0.3857 0.7082 1
35 1 0.4494 0.7223 1
40 1 0.5069 0.7381 1
45 1 0.54 0.748 1
50 1 0.5721 0.7582 1
55 0.9999 0.5991 0.7667 0.9997
60 0.9999 0.6271 0.7772 0.9997
65 0.9999 0.6584 0.7878 0.9998
70 0.9994 0.688 0.7998 0.9989
75 0.9991 0.7136 0.8104 0.9985
80 0.9981 0.7341 0.8172 0.9969
85 0.9972 0.7625 0.8304 0.9957
90 0.9935 0.8054 0.8508 0.9911
95 0.9764 0.8963 0.8979 0.976
95 0.9764 0.8963 0.8979 0.976 Min. diff. Se and Sp
95 0.9764 0.8963 0.8979 0.976 Youden
95 0.9764 0.8963 0.8979 0.976 F1 (score: 0.94)
Abbreviations: Se, sensitivity; Sp, Specificity; PPV, positive predictive value; NPV, negative predictive value.
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Backward validation: Overview
thresholds

Table E.1: Performance according to backward validation protocol for all thresholds as multiples of five and
statistically optimal thresholds. Min. diff. Se and Sp: The threshold that minimalizes the difference between
sensitivity and specificity.

t HPI threshold Se Sp PPV NPV Threshold method

5 5 0.999 0.157 0.648 0.989
5 10 0.997 0.269 0.68 0.984
5 15 0.995 0.379 0.714 0.98
5 20 0.993 0.478 0.748 0.977
5 25 0.989 0.578 0.785 0.971
5 30 0.984 0.678 0.826 0.964
5 35 0.978 0.784 0.876 0.958
5 40 0.971 0.873 0.923 0.951
5 45 0.964 0.923 0.951 0.943
5 50 0.957 0.951 0.968 0.935
5 55 0.948 0.968 0.979 0.924
5 60 0.938 0.984 0.989 0.911
5 65 0.927 0.996 0.997 0.898
5 70 0.913 0.998 0.999 0.881
5 75 0.9 0.998 0.999 0.865
5 80 0.881 0.999 0.999 0.843
5 85 0.858 0.999 1.0 0.819
5 90 0.825 1.0 1.0 0.786
5 95 0.752 1.0 1.0 0.721
5 100 0.252 1.0 1.0 0.462
5 51 0.955 0.956 0.971 0.932 Min. diff. Se and Sp
5 64 0.931 0.995 0.997 0.902 Youden

10 5 0.998 0.158 0.646 0.979
10 10 0.995 0.267 0.677 0.974
10 15 0.992 0.375 0.71 0.968
10 20 0.989 0.476 0.745 0.965
10 25 0.984 0.578 0.782 0.959
10 30 0.977 0.675 0.823 0.95
10 35 0.969 0.783 0.873 0.943
10 40 0.961 0.869 0.919 0.935
10 45 0.952 0.912 0.944 0.925
10 50 0.945 0.943 0.963 0.917
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Table E.1 continued from previous page
t HPI threshold Se Sp PPV NPV Threshold method

10 55 0.933 0.963 0.975 0.903
10 60 0.921 0.981 0.987 0.89
10 65 0.903 0.991 0.993 0.869
10 70 0.889 0.997 0.998 0.853
10 75 0.872 0.999 0.999 0.834
10 80 0.855 0.999 0.999 0.817
10 85 0.832 0.999 1.0 0.794
10 90 0.792 1.0 1.0 0.757
10 95 0.712 1.0 1.0 0.693
10 100 0.275 1.0 1.0 0.472
10 50 0.945 0.943 0.963 0.917 Min. diff. Se and Sp
10 59 0.925 0.978 0.985 0.894 Youden

15 5 0.998 0.151 0.643 0.983
15 10 0.996 0.259 0.673 0.978
15 15 0.993 0.349 0.7 0.969
15 20 0.988 0.427 0.725 0.957
15 25 0.982 0.5 0.75 0.948
15 30 0.975 0.56 0.772 0.935
15 35 0.967 0.624 0.797 0.925
15 40 0.954 0.677 0.819 0.907
15 45 0.944 0.708 0.832 0.892
15 50 0.936 0.737 0.845 0.883
15 55 0.925 0.766 0.858 0.87
15 60 0.911 0.799 0.874 0.854
15 65 0.894 0.831 0.89 0.837
15 70 0.878 0.868 0.91 0.823
15 75 0.856 0.9 0.929 0.804
15 80 0.833 0.924 0.944 0.783
15 85 0.807 0.944 0.957 0.762
15 90 0.768 0.96 0.967 0.73
15 95 0.686 0.979 0.98 0.67
15 100 0.274 0.998 0.996 0.473
15 71 0.875 0.873 0.913 0.82 Min. diff. Se and Sp
15 79 0.837 0.921 0.942 0.787 Youden
Abbreviations: Se, sensitivity; Sp, Specificity; PPV, positive predictive value; NPV, negative predictive value.



Additional figures on secondary
analyses

F.1. Subgroup analyses
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Figure F.1: ROC curve for patients admitted after
cardiothoracic surgery.
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Figure F.2: Calibration curve for patients admitted after
cardiothoracic surgery.
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Figure F.3: ROC curve for patients with a subarachnoid
haemorrhage.
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Figure F.4: Calibration curve for patients with a
subarachnoid haemorrhage.
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Figure F.5: ROC curve for patients with a cardiogenic
shock.

0 20 40 60 80 100
Mean HPI value

0

20

40

60

80

100

M
ea

n 
ev

en
t r

at
e 

(%
)

Cardiogenic shock
No cardiogenic shock
Linear reference

Figure F.6: Calibration curve for patients with a
cardiogenic shock.
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Figure F.7: ROC curve for patients with a distributive
shock.
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Figure F.8: Calibration curve for patients with a
distributive shock.
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F.2. Non­hypotension definition
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Figure F.9: ROC curves for different minimal MAP
values in the definition of non­hypotension.
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Figure F.10: Calibration curves for different minimal
MAP values in the definition of non­hypotension

F.3. Prediction window duration
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Figure F.11: ROC curves for different prediction window
durations, supplemented with leading neutral buffer
points to 20 minutes.
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Figure F.12: Calibration curves for different prediction
window durations, supplemented with leading neutral
buffer points to 20 minutes.
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F.4. Leading neutral buffer duration
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Figure F.13: ROC curves for different leading neutral
buffer durations.
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Figure F.14: Calibration curves for different leading
neutral buffer durations.

F.5. Washout periods
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Figure F.15: ROC curves for different washout periods.
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Figure F.16: Calibration curves for different washout
periods.



Time­to­hypotension for different alarm
thresholds
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Figure G.1: Backward timeliness assessment,
with alarm threshold at 65.
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Figure G.2: Backward timeliness assessment,
with alarm threshold at 75.
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Figure G.3: Backward timeliness assessment,
with alarm threshold at 85.
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Figure G.4: Backward timeliness assessment,
with alarm threshold at 95.
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Figure G.5: Forward timeliness assessment, with
alarm threshold at 65.
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Figure G.6: Forward timeliness assessment, with
alarm threshold at 75.
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Figure G.7: Forward timeliness assessment, with
alarm threshold at 85.
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Figure G.8: Forward timeliness assessment, with
alarm threshold at 95.



The effect of undersampling

PPV is the ratio of correct alarms (TP) to all alarms (TP + FP). Therefore, decreasing the
number of FPs increases the PPV. One way of decreasing the number of FPs is to decrease
the number of predictions on non­hypotension. Reduction of non­hypotension prediction can
be achieved by ’undersampling’, which involves only including a subset of the total labels for
analysis.

This step was performed to illustrate the effect that undersampling would have on the reported
performance metrics. In this analysis, the non­hypotension predictions were undersampled to
20% of the total number, as performed in Moghadam et al. 37.
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Figure H.1: PR curves for undersampled and original
class distribution
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Figure H.2: ROC curves for undersampled and original
class distribution
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Figure H.3: Calibration curves for undersampled and
original class distribution



HPI vs MAP
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Figure I.1: HPI vs MAP: all predictions (TP, TN, FP and FN)
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Figure I.2: HPI vs MAP: positive predictions (TN and FP)
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Figure I.3: HPI vs MAP: negative predictions (TN and FP)
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Abbreviation List

Abbreviation Definition

ABP arterial blood pressure
ACC accuracy
AHE acute hypotensive event
AUC area under the curve
AUROC area under the ROC curve
DBP diastolic blood pressure
FN false negative
FP false positive
FPR fasle postive rate: 1 ­ specificity
ICU intensive care unit
IOH intraoperative hypotension
MAP mean arterial blood pressure
mmHg millimetres of mercury, unit of pressure, 100 mmHg = 13,3 kPa
NPV negative predictive value
PPV positive predictive value
PR curve precision­recall curve
PRAUC area under the PR­curve
ROC curve receiver operator characteristic curve
Recall sensitivity
SBP systolic blood pressure
SE sensitivity
SP specificity
TN true negative
TP true positive
TPR true positive rate, see sensitivity
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1
Introduction

Hypotension during noncardiac surgery and intensive care unit (ICU) admission due to sepsis is asso­
ciated with occurrence of acute kidney injury and mortality rate.1–5 Prevention of hypotension is also
included in treatment guidelines for septic patients.6,7 Reducing acute hypotensive event (AHE) dura­
tion or severity could lead to improved clinical outcome of patients.2,8 Current interventions on AHE
are mainly reactive. However, multiple predictive models have been designed to alarm for impending
hypotension.9–13 Such alarm enables clinicians to pro­actively start treatment and increases time for
clinicians to prepare the indicated intervention. Timely intervention could reduce hypotension occur­
rence and severity in the intensive care setting, as already demonstrated during noncardiac surgery.14

Predictive computer models, or algorithms, require thorough retrospective quality assessment be­
fore clinical introduction of a hypotension. Model quality regards the degree in which predictions of the
model correspond with the actual occurrence of hypotension. Correct quantification of model quality
is of paramount importance in evaluating the models potentially added clinical value, as well as the
potential harm on incorrect predictions.15

In design and validation of hypotension prediction algorithms for ICU patients, fundamental incon­
sistencies were found in earlier reported definitions of hypotensive events, as well as metrics used to
quantify model performance. This literature study creates an overview of used definitions of an AHE
and performance metrics. The study is performed in workup to external validation protocol design for
to evaluate the Hypotension Prediction Index (HPI) (Edwards Lifesciences, Irvine, USA) on a data set
of intensive care patients. Therefore, the goal is to converge the medical and technical domains by
asking the following questions:

• What is the definition of hypotensive event used in development and validation of hypotension
prediction algorithms?

• What performance metrics have been used to quantify algorithm performance in hypotension
prediction algorithms?

These questions will be answered in the next section. Chapter 2.1 discusses background informa­
tion that lay the foundation of upcoming chapters. Both hypotension in terms of physiology and different
definitions, as well as statistical performance measures will be discussed. Chapter 2.2 describes the
used methodology in finding relevant literature. Chapter 2.3 presents definitions of hypotension used
in predictive models. Chapter 2.4 presents the results on used performance metrics for discriminative
abilities of the model, i.e., how well it can separate the events from the non­events. Chapter 2.5 out­
lines measures used in previous studies to quantify calibration of predictive models, i.e., the relation
between predicted probability and actual occurrence of events. Chapter 2.6 discusses measures used
to express the timeliness of alarms, i.e., model performance for different temporal alarm lead times.
Lastly, Chapter 2.7 forms the discussion and defines the knowledge gap for the master thesis that
follows this review.

1
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2
Literature Study

This chapter summarises literature to answer the previously stated research questions. First, back­
ground information is provided that form the theoretical foundation of later discussed concepts. In the
sections thereafter

2.1. Background Theory
2.1.1. Blood pressure and Hypotension
To understand the possible tissue damage resulting from hypotension, the concept of oxygen and
nutrition delivery to tissue must be understood. Oxygen and nutrition delivery to tissue depend on
multiple complex factors in critically ill patients. However, a general determinant of delivery is blood
flow, which can be approximated by arterial blood pressure divided by vascular resistance.

Blood Flow =
Blood Pressure

Vascular Resistance
(2.1)

This shows that blood pressure drives blood flow. Local blood flow to organs is autoregulated by
adjusting the local vascular resistance. By autonomous adaptation of muscle tone in special vascular
beds, a constant blood flow is maintained upon changes in blood pressure. However, blood flow reg­
ulation can only be achieved within the autoregulatory range of blood pressures for a particular organ.
Decrease of blood pressure below the autoregulatory threshold leads to inadequate blood flow and
thus insufficient oxygen delivery, to which the heart, brain and kidneys are particularly vulnerable to.16

On a cellular level, hypoxia is damaging in multiple ways. Energy metabolism in mitochondria is
switched from aerobic to anaerobic glycolysis. This procures an excess amount of lactate, hydrogen
ions and inorganic phosphates. As adenine triphosphate (ATP) levels decrease because of diminished
production and continued consumption, protein synthesis is hampered. This imperils mitochondrial
function and will eventually lead to activation of apoptosis and end­organ failure.17,18
Cell damage can occur when blood pressure drops below the autoregulatory threshold of tissue. Inad­
equate local blood flow leads to hypoxia, which induces anaerobic metabolism, mitochondrial failure
and end­organ failure.18 Physiological thresholds of hypotension differ per patient and per organ.

Definition of Hypotension (and Hypotensive events)
No consensus is reached on the clinical definition of hypotension.19 Many different definitions for hy­
potension exists, with criteria using absolute systolic (SBP), diastolic (DBP) or mean arterial blood pres­
sure (MAP) values and their relative differences to the baseline values of the patient.19 A commonly
used threshold of hypotension is a mean arterial blood pressure of 65 mmHg.19 This originates form
experiments in mammals that indicated a lower cerebral autoregulatory threshold at 65 mmHg.20,21
However, autoregulatory thresholds differ per organ and per patient.22,23 For example, patients with a
history of chronic hypertension can present with shock symptoms under normotensive blood pressure.2
So, no perfect absolute threshold exists.

2
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2.1. Background Theory 3

2.1.2. Validation
In addition to clinical background information, it is also important to elaborate on statistical concepts that
form the foundation of the literature study. Quality of a predictive model needs to be determined after
development. This process, called validation, comes down to assessing the model on generalizability,
i.e., the agreement between predictions of the model and actual outcome in reality. Conventional
validation of a model can be divided into two different quality aspects: discriminative performance and
calibration of the model. Both aspects can be described by different performance metrics. Also ‘overall’
performance metrics exist that attempt to comprise both aspects into a single numerical value.

Theory behind Discrimination
Discriminative ability refers to the ability of a predictive model to separate those that will develop a
certain outcome from those that will not. Therefore, all data points need to be labelled on predicted
outcome and actual outcome. The binary labels are illustrated in Table 1. True Positives (TP) are
correctly predicted events. True Negatives (TN) are correctly predicted non­events. False Positives
(FP) are falsely predicted non­events, also known as type I errors. False Negatives (FN) are events
that were missed, are also known as type II errors. These classifications can be listed into a table
called the confusion matrix or contingency table, as shown in Table 1. This is a useful tool for model
performance assessment that forms the foundation of other performance metrics.24 Various methods
exist to quantify discriminative performance.

Sensitivity and Specificity Two of the most popular performance metrics for binary classes in the
clinical domain are sensitivity and specificity. Sensitivity, also commonly referred to as Recall of positive
class, is the true positive rate or the share of TP of all events,TP/(TP+FN). This metric contains the
information on the chance of missing alarms for true events. Specificity is defined as the true negative
rate or the share of TN of all non­events, TN/(TN+FP). This measure contains information on the chance
that the alarm is a correct prediction.

Sensitivity = Recall =
TP

TP + FN
(2.2)

Specificity =
TN

TN + FP
(2.3)

Positive and negative predictive values Positive Predictive Value (PPV), also commonly referred to
as Precision, is the share of TP in all alarms, TP/(TP+FP). It thus provides the important information on
the probability that the alarm will actually be followed by an event.15 PPV can be regarded as a measure
for how exact the positive predictions are.25 Negative Predictive Value (NPV) is the share of TN in all
non­alarms, TN/(TN+FN). It explains the probability that a non­alarm is followed by a non­event.

PPV = Precision =
TP

TP + FP
(2.4)

NPV =
TN

TN + FN
(2.5)

The benefit is the metrics above is that is provides an incredibly useful tool to report performance
of tests with binary outcomes and of its wide use forms the foundation of statistical analyses.15

Accuracy This widely used statistical metric is often used as a conclusive measure of discrimination.
Accuracy is the proportion of correct predictions in all predictions.

Accuracy =
TP + TN

TP + FP + TN + FN
=

# correct predictions

# samples
(2.6)

Note that TPs have the same weight as TNs in the calculation of accuracy. In an imbalanced data
set, i.e., having a skewed classification distribution, accuracy becomes biased.26 This can be illustrated
by the following example: For a data set with a class distribution of 95% non­events, a naively predictive
model can predict every sample as a non­event to obtain an accuracy of 95% percent.25 This level of
accuracy appears to be impressive, whilst none of the actual events is predicted correctly.
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2.1. Background Theory 4

Table 2.1: Confusion matrix by Kubben et al. 24. Abbreviations: TPR, true positive rate; TNR, true negative rate. Figure subject
to Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/)

Receiver Operating Characteristic Curve A frequently used method for analysing discriminative
performance is the receiver operating characteristic (ROC) curve. An ROC curve displays the perfor­
mance of the model by plotting the sensitivity against 1­specificity for all threshold values.27 A point
on the ROC curve represents model performance for a single, particular threshold value. Thereby,
true positive rate is plotted against false positive rate for the complete range of thresholds. This gives
plot gives an overview of model performance. Thereafter, the ROC curve can also be used to pick the
eventual classification threshold, in combination with a cost function. A cost function defines the desired
trade­off between sensitivity and specificity, which also forms a line on the ROC plot. The intersection
of the ROC curve and cost function indicate the optimal threshold value for that cost function. But also
without any cost function, the ROC curve shows valuable information when the operating threshold of
the algorithm is yet to be determined.26 Via the ROC curve, discriminative ability of a model can be
summarised in a single numerical measure: the area under the curve (AUC). The area under the ROC
curve (AUROC) is a common technique for evaluating and comparing models on datasets with varying
class distribution.26 A perfect model has an AUC of 1. A non­informative model has an AUC of 0.5,
which is the case when predicting ‘heads’ of ‘tails’ when flipping a coin.

Precision­Recall Curve Precision, also known as PPV, entails the exactness of positive predictions.
It is acquired by dividing the number of TPs by the total number of positive predictions. Recall of
the positive class, also known as sensitivity, entails the completeness of which events were correctly
predicted. It is acquired by dividing the number of TPs by the total number of events. The relation
between Precision and Recall can be illustrated by plotting the two against each other for the complete
range of classification thresholds. This is analogous to the ROC curve.26 Recall and Precision are
similar to accuracy and error, respectively. But both accuracy and error are sensitive to changes in
data distributions, i.e., the ratio between events and non­events. Regarding precision and recall, only
precision is subjective to the data distribution and recall is not. Therefore algorithm performance can be
effectively evaluated by using precision and recall when applied to unbalanced data sets.25 The area
under the PR curve (PR­AUC) allows comparison of multiple models using a single numeric value,
similar to the AUROC.

F­Measure The F­measure is an alternative on accuracy and displays classification performance in
terms of a weighed ratio between recall and precision. It is most used with factor beta equalling 1,
under the name ‘F1­score’.

F −measure =
(1 + β)2 ×Recall × Precision

β2 ×Recall + Precision
(2.7)

Theory behind Calibration
Calibration is the agreement between the predictions and observed outcomes and is one of the primary
requirements to determine clinical usefulness.15 Perfect calibration is reached when for every value of
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2.1. Background Theory 5

Figure 2.1: ROC curve by Kubben et al. 24. A point on the solid line represents the values of sensitivity and specificity for one
single threshold value. An uninformative model assigns random predictions in the same ratio of classes as observed in the

underlying population. In that case, sensitivity equals 1­specificity, the ROC curve would follow the dashed line and AUC would
be 0.5. Therefore, to perform better than chance, the ROC­curve of the model needs to be located above the dashed line.

Abbreviations: AUC, area under the curve. Figure subject to Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/)

calculated probability, the actual event occurs in the same ratio. For example, in the group of patients
for which the model estimated the probability on event was 80%, the actual occurrence of event was
also 80%.

Hosmer­Lemeshow statistic To evaluate calibration according to the Hosmer­Lemeshow statistic,
the complete range of predicted probability values is divided into subgroups equally. Per subgroup,
the absolute number and proportion of observed events is displayed. The Hosmer­Lemeshow statistic
captures the overall goodness­of­fit into a single numerical number and provides p­values for subgroups
on the null­hypothesis of a good fit. However, this statistic has a low power and does not show the
direction of miscalibration.28

Calibration curve Calibration quality can also be displayed visually, as illustrated in 2.2. Similar to the
Hosmer­Lemeshow test, groups are divided on predicted probability range. But now, average actual
occurrence of events ­ optionally with error bars ­ are plotted over probability values. Two parameters
can be extracted that describe the level of calibration: calibration slope and calibration­in­the­large,
which is the intercept of the curve with the y­axis for a slope set to 1.15,24
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2.1. Background Theory 6

Figure 2.2: Calibration curve by Kubben et al. 24. For a perfectly calibrated model, the distribution of the outcomes for a value
of predicted probability exactly matches this value. Hence, the curve follows the dashed line. Black dots represent outcome in
values of 1 or 0, for events and non­events, respectively. Figure subject to Creative Commons Attribution 4.0 International

License (http://creativecommons.org/licenses/by/4.0/)

Theory behind overall performance measures
‘Overall performance metrics’ capture quality of discriminative ability, as well as calibration into a single
numerical value. Overall performance metrics define general measure of “goodness of fit”. This comes
conceptually down on the ‘distance’, or difference, between predicted and observed outcomes.15 For
example, in weather forecasting the distance is the difference between predicted and measured maxi­
mum temperature that day.15 When model output is the probability on a binary outcome, as in event vs.
non­event, distance is defined as the calculated probability of event occurrence p minus the outcome
(1 for event, 0 for non­event). For example, if a model predicts a 90% chance of event occurrence
correctly, the distance is 0.90 – 1 = 0.10. The smaller the distance, the better the fit of the predictive
model.15

Brier Score The Brier­score in equation 2.8 is the mean squared error of the forecast (f), or probability
of event, in which o represents the outcome. A lower Brier­score represents a better goodness­of­fit.
However, this score is sensitive to the occurrence rate of the event. This is illustrated by the following
scenario: A non­informative, and thus useless, model simply could return a probability that is equal to
the rate of occurrence of the event. If an event occurs for 50% of the data points, the non­informative
model will always give a probability of 50% for occurrence of the event. With an event rate of 50%, the
maximum, worst, Brier­score score is (0.50–0)2 = 0.25. But, for an event rate of 10%, the maximum
score is (0.10–0)2 = 0.01. Therefore, the Brier­score is susceptible to bias due to class imbalance in
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2.2. Literature search method 7

the data set. This could be partially corrected by scaling of the Brier­score with the maximum non­
informative score given the class balance of a particular data set.

Brier − score =
1

N

N∑
t=1

(ft − ot)
2 (2.8)

Internal vs. external validation
Internal validation is often a first step after model development to test the model on reproducibility and
is an indication for generalizability. Internal validation uses data that was kept apart from the originally
available data. This data is exclusively used for testing and is not used in model development to avoid
biased test results. As internal validation data originates from the same underlying population as the
training data, it is sensitive to confounding. Therefore, internal validation leads to a minimal indication
of model generalizability, as it only allows conclusions on the directly underlying population the model
is trained on.15

Generalizability can only be assessed via external validation, by using an independent data set.29
Data for external validation can differ in geographic location (e.g., hospital or country), moment in time
and clinical case type or severity.28 Thereby, the model is placed in a broader context, which shows
true model performance that can be expected upon implementation.

2.2. Literature search method
The search methodology started ’organically’ by using papers reporting on HPI as a start point and man­
ually searching reference lists for other relevant articles. However, a more systematic approach was
favoured for this literature study to find the articles on validation of hypotension algorithms. A search
was performed in the PubmMed database on March 23 2021 using the query (“Hypotension”[MeSH]
AND “Algorithms”[MeSH ]) OR (hyptension AND algorithms ANDmachine learning). Additionally, back­
ward and forward snowballing was applied, according to Wohlin 30, by manually searching through ref­
erence lists and citations of all included articles. This could also include articles from other databases,
such as IEEE. Relevant articles were screened on title, abstract or full text on development or valida­
tion of hypotension prediction models. Reports on hypotension prediction models because of major
interventions were excluded (e.g., induction of anaesthesia or haemodialysis).

Initially, 246 results were yielded by the search query, of which 17 articles were included. Both
forward and backward snowballing yielded another 11 articles in three iterations. A total of 28 articles
were included in the literature study. All studies are detailed in Table 2.2 and Table 2.3.

2.3. Hypotension definition
In validation of hypotension prediction algorithms, various definitions of hypotension for ICU patients
are used. A complete overview is provided in Table 2.2. The first of the two most commonly used defi­
nitions was stated by Moody & Lehman 31 in the PhysioNet/Computers in Cardiology Challenge 2009.
This challenge for development of models to predict acute hypotensive events (AHEs) defines an AHE
as a period of mean arterial pressure (MAP) < 65 mmHg for ≥ 90% of the time within a 30­minute win­
dow. This definition was not only adopted by participants of the challenge, but also by other developers
of predictive models to explicitly allow comparison with other models described in literature.32–38 A total
of 19 studies (68%) used the definition of the PhysioNet Challenge for an AHE. Additionally, Moghadam
et al. 32 defined non­hypotension as data points with MAP < 75 mmHg that occurred ≥ 40 min before
or ≥ 20 minutes after a hypotensive event.

The second most commonly used definition of hypotension is used by the commercially available
Hypotension Prediction Index (HPI) by Hatib et al. 9. The HPI­algorithm defines hypotension as a period
of MAP < 65 mmHg for ≥ 1 minute. Non­hypotension is defined as MAP > 75 mmHg. Data segments
were excluded if MAP decreased with more than 0.5 mmHg/s as this would result from unpredictable
external manipulation (e.g., blood loss or pressure transducer repositioning).9 External validation of
the HPI on noncardiac surgical patients by Davies et al. 39 copied this definition and also excluded
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2.4. Discrimination 8

data points of suspected haemodynamic intervention to prevent false negative bias. Segments with
an increase of MAP >5 mmHg in 20 seconds or > 8 mmHg in 2 minutes were excluded from analysis.
Validation of HPI during cardiac surgery by Shin et al. 40 also used the definition above for hypotension,
but defined non­hypotension as MAP > 65 mmHg for > 1 minute. Shin et al. 40 used an additional defi­
nition of a severe hypotensive event as MAP < 50 mmHg for > 1 minute.

Similarly to the above definition, Cherifa et al. 41 used MAP < 65 mmHg for > 5 minutes as definition
of hypotension in development of their predictive model. Other definitions included two blood pressure
conditions in the definition of hypotension. Donald et al. 10 used systolic blood pressure (SBP) < 90
mmHg or MAP < 70 mmHg for > 5 minutes in a model on traumatic brain injury induced hypotension.
Yoon et al. 42 defined hypotension as both SBP < 90 mmHg and MAP < 60 mmHg for more than 50%
of the time within a 10 minute window.

A patient specific definition of hypotension was only used by Chan et al. 43, that used relative thresh­
olds. Here, a difference between the 5­minute and 60­minute moving average of the MAP was used to
define the onset of hypotension. A drop of the 5­minute moving average below 20% of the 60­minute
moving average of MAP was used to define the onset of a hypotensive event.

The variety in definitions of hypotensive events used for predictive algorithms comes from the lack
of consensus on hypotension in medical literature. As an example, Bijker et al. 19 concluded from a
systematic literature study that the variety of intraoperative hypotension (IOH) differs dramatically. Ap­
plying the most extreme definitions of hypotension onto a cohort of patients undergoing noncardiac
surgery led to incidences of IOH between 5% and 99%. It was stated that a workable and proper defini­
tion of IOH should include: threshold value and type (absolute or relative), baseline (for relative), blood
pressure type (systolic vs. mean), measurement method and interval, and minimal episode duration.
IOH was stressed to be a dynamic phenomenon of which the threshold and event duration could be de­
fined according to the prevalence of different patient outcomes (e.g., myocardial ischaemia, ischemic
stroke, “watershed” infarction). But on the contrary, they suggested that hypotension should not be
defined using a static threshold, as all dynamic factors of hypotension should be considered in its defi­
nition.

The Society of Critical Care Medicine’s Surviving Sepsis Guidelines from 2016 by Rhodes et al. 44
recommends a MAP of 65 mmHg as target for initial resuscitation for septic patients requiring vasopres­
sor use. Whereas recommendations from 2012 explicitly state a target mean arterial blood pressure of
≥ 65 mmHg.45

Risk on complications increases with depth and duration of hypotension, as concluded by a sys­
tematic review by Wesselink et al. 46, on the risk of postoperative outcomes upon IOH. Relative risk
of end­organ damage in noncardiac surgery started to increase for a mean arterial hypotension < 80
mmHg for an exposure of ≥ 10 minutes. Associations between intraoperative hypotension and post­
operative complications were also observed in a meta­analysis by Wijnberge et al. 47. IOH led to on
odds­ratio (with 95% confidence interval) on cardiac outcomes of 2.44 (1.52 to 3.93), on acute kidney
injury of 2.69 (1.31 to 5.55) and on mortality of 1.94 (1.32 to 2.84).47

2.4. Discrimination
The use of discrimination metrics used in papers reporting on predictive models for AHEs is presented
in Table 2.3. A large variety of metrics is used to express discriminative performance. Performance
metrics we limited to sensitivity, specificity and accuracy in 9 of the 28 (32%) of the included studies.
Rocha et al. 48 supplemented these three metrics with the correlation coefficient to evaluate the predic­
tion of continuous MAP values. Two other studies also used a limited number of metrics to express
discriminative performance. The F1­score as a performance metric for the developed predictive model
was the only used metric by Pathinarupothi & Rangan 49. Sensitivity, positive predictive value (PPV)
and the normalised root mean square of error (NRMSE) were the only metrics used by Ghaffari &
Jalali 50. NRMSE is de facto a the sqaure root of the Brier­score.
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2.5. Calibration 9

A large arsenal of metrics was used by Cherifa et al. 41, who validated their predictive machine
learning algorithm by reporting the Brier score, are under the receiver operator characteristic curve
(AUROC), sensitivity, specificity, PPV, negative predictive value (NPV), and positive and negative like­
lihood ratios. The receiver operator characteristic curve (ROC) was used in 8 of the 28 studies (29%)
and AUROC was used in 7 studies (25%). Surprisingly, these two metrics were used mutually exclu­
sively in all but one of the mentioned studies.

All validation studies on HPI reported ROC curves in addition to the sensitivity, specificity and
PPV.9,39,51,52 Of these, only the external validation by Ranucci et al. 51 included lines of 95% confidence
interval to the ROC curve. Similarly, ROC curves with error bars were reported Donald et al. 10 on a
different model. Other discriminative performance metrics included the F1­score, the precision­recall
curve, and the AUC of the PR­curve.

2.5. Calibration
Only 5 studies (18%) reported on calibration of hypotension prediction algorithm specifically. A calibra­
tion curve was used in 4 studies (14%). A table was used twice to display the distributions of time to
event against the hypotension probability of the model. None of the articles reported values of calibra­
tion slope nor calibration­in­the­large. However, Ranucci et al. 51 did estimate the correlation between
predicted and observed events with a logistic function, specifically for hypotension prediction index
(HPI) values during 5 and 7 minutes prior to the hypotensive event.

2.6. Timeliness
The theoretical benefit of a predictive model increases, if the model is able to alarm for impending hy­
potension more time in advance. Therefore, timeliness of a predictive model is an important aspect
in evaluating clinical usefulness. However, it is not a conventional performance aspect in validation of
algorithms, as discrimination and calibration are. Timeliness as a performance aspect should also be
considered when estimating clinical usefulness of the model. .

Timeliness of the predictive model was evaluated in 17 articles (61%). An overview of usedmethods
is detailed in Table 2.2. None of the included articles used a form of scoring nor a calculated perfor­
mance metric that was dedicated to quantification of timeliness, as seen for discrimination of calibration.
However, two types of assessment of temporal performance were observed across included articles,
here called ‘backward’ and ‘forward’ timeliness assessment.

In backward timeliness assessment, performance metrics for discriminative performance and cal­
ibration are displayed for several alarm lead times. In the definition of a TP, alarm lead time is the
maximum allowed duration between alarm and onset of hypotension. For example, if the alarm lead
time is defined as 15 minutes and an AHE starts 16 minutes after the initial alarm, this alarm is deemed
as a false positive. Here, the onset of hypotension occurred too late. By presenting performance met­
rics for different alarm lead times, model quality under different temporal horizons is displayed.

Backward timeliness assessment was performed in 15 articles (54%). The values for alarm lead
time and the accompanied performance metrics depended on the scope of the predictive model. Mul­
tiple ROC curves for different alarm lead times were only included in the reports of Davies et al. 39 and
Shin et al. 40.

In forward timeliness assessment, the distribution of duration between alarm and onset of hypoten­
sion is displayed. This duration is also known as the time­to­event. Assessment via time­to­event is
observational and independent of the earlier defined alarm lead time. The distribution of time­to­event
can be presented via a histogram or by providing the values for a number of percentiles. To gain deeper
insight in temporal model quality, time­to­event distributions are presented for multiple alarm threshold
ranges.

Forward timeliness assessment was performed in 3 articles (11%). Time­to­event values of the
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2.6. Timeliness 10

25th, 50th and 75th percentile were provided by Davies et al. 39 and Maheshwari et al. 52. A box­plot of
time­to­event distribution on the y­axis over alarm threshold values on the x­axis was used by Donald
et al. 10. No histograms were used to present time­to­event distributions.
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2.7. Discussion 13

2.7. Discussion
Regarding hypotension, a variety of definitions are used in development and validation of hypotension
prediction algorithms. This is a result of the lack of consensus on the clinical definition of hypotension.
One must be aware that predictive models on hypotension can be developed with slightly different
goals or requirement and therefore use different definitions. Generally, two definitions of hypotension
were used for hypotension prediction models. The two definitions differ substantially in required sub­
threshold duration (> 1 min vs >27 min below threshold). This hampers comparison of the algorithms.

The vast majority of the articles used static definitions of hypotension. This prevents the ability of
setting patient­specific blood pressure targets. While absolute thresholds may be more objective and
convenient for model training, ability to set a relative or patient­specific threshold remain a potential
area of improvement for hypotension prediction models.

In assessment of discriminative performance, a large variety of metrics was used. Apart from sen­
sitivity and specificity, accuracy was the mostly used metric, included in more than half of the articles.
However due to both absolute class imbalance in a validation data set and differences in class distri­
bution between data sets, accuracy can be heavily biased. This makes accuracy useless for inter­ and
intra­model comparison in validation.

Metrics on discriminative performance we often consisting of sensitivity, specificity and (AUC of)
ROC curves. These measures are proven to be fairly robust to underlying class imbalance, which en­
ables comparison between algorithms and validation studies. However, use of ROC curves may be
encouraged in addition to reporting AUROC alone, as this gives even more valuable information on
model quality. Also, may the display of threshold values in the ROC curve be informative for commer­
cially available algorithms. This gives clinical insight in the meaning of the predictive model output that
is displayed bed­side.

Evaluation of calibration of algorithms was often overlooked. Despite other studies judging calibra­
tion visually via a plot or table, only Ranucci et al. 51 quantified calibration. Calibration of a single pre­
dictive model can be judged visually.15 But additional quantification would allow more accurate compar­
ison between predictive models, as well as the identification of subgroups eliciting altered performance.

Performance measures with varying degree in robustness to class imbalance have been used in
previous research validating hypotension prediction algorithms. Other specifically informative perfor­
mance measures exist to assess model quality and clinical implications. More insight in the clinical
usefulness of predictive models can be provided by precision­recall curves or extra focus on temporal
quality of models. For example, Dernoncourt et al. 38 and Solomon et al. 61 calculated PPV under alarm
thresholds that were set to match certain specificity levels. This provided more insight on occurrence
of false predictions. Other examples of robust measures that could be used more often are Matthew’s
Correlation Coefficient and F­measure.62

Several data processing steps in used validation methodology reduce the clinical generalizability
of the hypotension prediction algorithm. Some studies exclude data samples from a ‘grey’ zone of
MAP 65­75 mmHg, this reduces the amount of false predictions and heavily reduces the reliability of
reported performance.9,52 Discrimination and distribution of predictions near the alarm threshold are
determinant for clinical usefulness.15

Overoptimism was noted in studies reporting performance on non­clinical alarm thresholds. Hatib
et al. 9 and Davies et al. 39 calculated an extensive amount of performance measures with the statisti­
cally optimal alarm threshold of HPI, of around 40. However, the alarm threshold of the commercially
available HPI is set at 85. This substantial difference in threshold begs for a correction of sensitivity
and timeliness of the model.

Novel continuous evaluationmethods for validation, as described byMoghadam and colleagues35,58
mimic real­time monitoring performance and are potentially a more realistic method of validation. All
other studies apply heavier discretization of the data by segmenting data into multi­minute time win­
dows to label these as TP, FP, etc. This discrete, tumbling window approach uses non­overlapping
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2.7. Discussion 14

time windows. Continuous, sliding window evaluation handles labels each minute or each individual
model prediction as TP, FP, etc. The label then depends on time period following this individual minute
or prediction. The continuous, sliding window approach mimics a real­life clinical situation on the ICU
with real­time monitoring. The continuous evaluation method leads to more labels than the discrete
evaluation method for the same amount of patient data. This may lead to relatively more negative
predictions. A more imbalanced data set negatively affects the PPV. However, PPV and other per­
formance metrics resulting from continuous validation would give a more realistic representation of
real­life performance of the hypotension predicting algorithm.

2.7.1. Knowledge gap
The knowledge gap identified in this literature study regard the lack of consensus on class definition
and validation methodology.

• What defines a true positive prediction?
Class definition is fundamental of model validation. However, previous research has not always
been transparent on data processing and discretization of continuous data to enable classification.

• What is a clinically relevant balance between sensitivity, specificity, PPV and timeliness?
Algorithm design requires picking a threshold value to which the model decides to alarm for hy­
potension or not. No trade­offs between these aspects have been explicitly published for thresh­
old selection.

• Therefore, what is the cost function to determine a clinically relevant threshold ?
• How can maximize transfer of information on model performance to the reader with a clinical back­
ground, by using non­conventional or dedicated performance metric? s to improve judgement on
clinical usefulness of the model, but without losing greater public?
A limited arsenal of statistical measures has been used to describe model quality of hypotension
prediction algorithms. Presumably, validation method complexity is curbed to increase readabil­
ity of the article for the clinical reader. This happens at the expense of information to estimate
clinical usefulness on.

These knowledge gaps forms the basis of the upcoming master thesis. Planning and proposed
methodology on the master thesis project will follow in the master thesis work plan.
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Example of FSW data labelling

Figure K.1: Forward sliding window: labelling example. Red dots on the MAP curve indicate an onset of
hypotension. Colours around the y value of 40 indicate hypotension and labelling of prediction. Purple:
Hypotension. Red: predictions on hypotension, i.e. positive points. Green: predictions on non­hypotension, i.e.
negative points. Blue: Neutral points, either a leading neutral buffer or a washout period. Black dots indicate data
subject to artefacts.

Figure K.2: Forward sliding window: washout example. Consecutive hypotensive episodes are not labelled
individually, as the onset of the next hypotensive event is located in the previous washout period. Red dots on
the MAP curve indicate an onset of hypotension. Colours around the y value of 40 indicate hypotension and
labelling of prediction. Purple: Hypotension. Red: predictions on hypotension, i.e. positive points. Green:
predictions on non­hypotension, i.e. negative points. Blue: Neutral points, either a leading neutral buffer or a
washout period. Black dots indicate data subject to artefacts.
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