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Size Effects in Flow of Flux-Line Solids and Liquids
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Flow of 2D flux lines confined to narrow channels has been studied. In the solid,
(in)commensurability between lattice and channel width cause mobility oscillations from which the
actual channel width follows. In the liquid, the oscillations disappear and flow is dictated by the
shear viscosityh. By repeated experiments for different channel widths,h is determined for the first
time. It diverges according toh ~ j2

1sT , Bd. An indication for the hexatic-to-liquid transition is also
observed. [S0031-9007(96)00579-0]

PACS numbers: 74.60.Ge
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The appearance of a flux liquid just below the upp
critical field Bc2 has been predicted to be a gene
property of the mixed state [1]. This prediction w
largely ignored until recently Nelson suggested that
absence of zero resistance in a magnetic field obse
in high temperature superconductors is caused b
transition to the flux liquid state [2]. At present,
variety of experiments provided evidence for melti
(even in presence of weak disorder), both for a th
dimensional (3D) vortex lattice [3] and for a 2D vorte
lattice [4].

Now that the existence of a flux liquid is well esta
lished, one may focus on its properties, particularly,
appearance of a dynamic shear viscosityhsT , Bd in place
of a shear modulusc66. The shear modulus should di
continuously disappear at melting when the shear fie
vary slowly in both space and time [5]. The behavior
h close to freezing is especially interesting, since the (h
atic) liquid then may be considered as a solid with a l
density of free dislocations (i.e., dislocation loops in 3
[6] and edge dislocations in 2D [7]). Concentrating on
2D case being the actual situation in our experiments,
follow Nelson’s suggestion [8] thath is inversely propor-
tional to the density of free dislocationsnf which itself is
determined by the translational correlation lengthj1 in the
liquid given by

hsT , Bd , 1ya2
0m̃nf , j2

1sT , Bd , (1)

with a0 the lattice spacing and̃m a typical dislocation
mobility. Approaching the melting lineTmsBd from above,
h mimics the strong divergence ofj1, i.e.,

j1 ­ j10 exp

∑
b0

µ
Tm

T 2 Tm

∂n∏

­ j10 exp

∑
b00

µ
Bm

B 2 Bm

∂n∏
, (2)

with n ­ 0.369 63..., b0 andb00 nonuniversal constants o
order unity, andj10 ø a0 being the smallest length sca
of the system.

In order to probe this behavior we extended the
periment of Pruijmboomet al. [9] who studied the flow
0031-9007y96y77(1)y159(4)$10.00
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of a vortex solid through narrow channels in a doub
layer device. We designed similar devices consisting
an amorphous Nb3Ge bottom layer (thickness 500 nm
covered with a 50 nm thick NbN layer. Using nan
lithography 300 identical, parallel channels were etch
through the NbN layer into the NbGe, one channel
each10 mm, down to a depth of 240 nm from the to
surface leaving a layer of 310 nma-Nb3Ge; see Fig. 2(b)
inset. Different samples with channel widths ranging b
tween 238 , w , 1185 nm were made in a four-poin
terminal configuration with the voltage probes next to t
channel array and the current flowing perpendicular to
channels. The width of the samples was300 mm. In
a perpendicular magnetic field the flux lines experien
a Lorentz force in the direction of the channels. In t
solid, the flux lines outside the channels are pinned

FIG. 1. Shear forceFs (h) and rac (±) and rdc (≤) as a
function of field at T ­ 1.70 K for the sample withw ­
637 nm. Dashed lines are predictions for peak fields accord
to Eq. (5). The transition from Ohmic to non-Ohmic behavi
coincides with the “unexpected” peak betweenN ­ 20 and21.
The arrow denotesBc2. The inset shows the channel widt
computed from the peak fields according to Eq. (5). From
to bottom results forN0 ­ 8, 7, 6, 5. For N0 ­ 7 a horizontal
line is obtained atw ­ 637 nm.
© 1996 The American Physical Society 159
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the strong pinning NbN layer (withjc in NbN $ 104jc

in NbGe), while those inside the channels will start
move as soon as the Lorentz force surpasses the she
teraction with the pinned vortices at the channel edg
The condition for plastic shear flow in the continuum a
proximation can be written asFs ­ jsB ­ 2tyw, where
t ­ Ac66 is the flow stress. The parameterA depends
on the flux line lattice configuration inside the channe
e.g., when the lattice parameter is commensurate to
channel widthA ø 0.05, but at incommensurability misfi
dislocations will develop along the edges which redu
A. Measured as a function of field,Fs thus globally fol-
lows c66 ~ bs1 2 bd2, with b ­ ByBc2, but also oscil-
lates with changing commensurability being maximum
perfect matching; see Fig. 1. In Ref. [9], two periodic
ties were observed at small flow velocities correspond
to two lattice orientations with respect to the channe
It turns out that at higher velocities the orientation w
closed packed direction parallel to the channel is the
ble one. Here we present only results for this orien
tion taken at a voltage criterion of 0.1 Vym per channel
(y . 0.05 mys).

In the liquid phase,c66 ­ 0 and the oscillations in
FssBd should disappear. The flow through the chann
(defined byy ­ 6wy2) is now controlled by the Bardeen
Stephen drag parameterg [10] and the shear viscosit
h. The velocity profile follows from the (simplified
hydrodynamic equation [11]

2g $y 1 h=2
' $y 1 $fT ­ 0 (3)

and the boundary condition$ys6wy2d ­ 0. The driving
force $fT is in the x direction. The velocity profile is
maximum aty ­ 0 and decays exponentially at the edg
in a length scaled ­

p
hyg. The integrated velocity

determines the net flow through the channel and the
flow resistivityrf to be measured:

rf ­ r0
f f1 2 s2dywd tanhswy2ddg , (4)

wherer
0
f ­ B2yg is the Bardeen-Stephen value in whic

small corrections for weak pinning are supposed to be
sorbed. This means thatr

0
f should be measured indepe

dently. We therefore prepared a reference sample w
has only one “channel” ofw ­ 3 mm.

The double layers are fabricated by RF-sputter de
sition [9]. Pattern transfer into the NbN layer is pe
formed by reactive ion etching in a mixed SiCl4-Cl2-
He plasma [12]. The width and depth of the cha
nels were determined by atomic force microscopy (AF
and alpha step. We carried out a series of four-pro
I-V measurements on all samples, both in a dc a
an ac (120 Hz) mode, as a function of field atT ­
1.70, 2.00, 2.20, and2.40 K and as a function of tem
perature atB ­ 1.00, 0.70, 0.50, and0.30 T. Charac-
teristic parameters of our two layer devices areTc ­
11.4 K and Bc2s0d ø 16 T for the NbN top layer, and
Tc ­ 2.68 K, DTc ­ 10 mK, and Bc2s0d ­ 3.8 T [5],
residual resistivityr0 ­ 2.17 mV m and dBc2ydT jTc ­
160
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22.1 TyK for the NbGe reference sample. The upp
critical field was originally determined by linear extrap
olation of racsT , Bd to the normal state resistivityrn [4].
The superconducting parameters determined from th
data arejs0d ­ 7.7 nm, ls0d ­ 0.94 mm, k ­ 75, and
Bcs0d ­ 30.0 mT.

A typical result of aFs versusB plot is shown in Fig. 1
for the sample withw ­ 631 6 10 nm (AFM) measured
at T ­ 1.70 K for decreasing field. For increasing fiel
the peaks occur at the same field denoting one preferen
lattice orientation for sufficiently large velocities. A
substantial contribution toFs ($105 Nym3) is related to
the flux flow (B , Bc2) or the normal state resistivity
(B . Bc2). Obviously Fs should be zero in the latter
case. We now focus on the values of the peak fieldBmax
from which the effective channel widthweff for vortex
flow is determined. This parameter is essential for t
interpretation of the data. We assume thatweff is the
distance between the first rows of strongly pinned vortic
in the NbN layer near the channel edges, i.e.,weff ­
w 1 2x1 2 b0, wherex1 is the distance of the first row to
the channel edge andb0 ­ a0

p
3y2. Since the depth of

the channel from the top is 40% of the total length of t
vortex, we take forx1 the equilibrium value [13]:x1 ­
sb0y2d f1 1 fesByBc2dg, where fesByBc2d expresses the
contribution due to screening currents at the surface.
the field range of interestfe ø 0.607 2 1.05. Using an
interpolation formula given in [14],x1 can be computed
at any field. As noted above, the vortex lattice atBmax

is commensurate with the effective channel width, whi
gives

weff ­ w 1 2x1sBmaxd 2 b0 ­ sN 2 1db0sBmaxd , (5)

with integer N $ 3. In order to find bothN and w
we computedw from Eq. (5) for differentN0 in N ­
N0 1 n, where n ­ 0, 1, 2, 3, . . . numbers the maxima.
For the correctN0 this procedure should give a horizonta
line in a plot ofw versusBmax, as illustrated in the inset
of Fig. 1. We thus obtainN0 ­ 7 andw ­ 637 6 3 nm.
The resulting values ofN are given in Fig. 1. This means
that the first row of weakly pinned vortices is located
the channel edge similar to the scenario where vortices
trapped by a step in the penetration depth (or thickne
[15]. The values ofw obtained from the analysis are i
good agreement with the values obtained from the AFM

We denote in Fig. 1 the expected positions of t
peaks by means of dotted lines. It shows that the
is an unidentified peak atB ø 1.6 T and no further
peaks atN ­ 21 and22. The origin of the extra peak
is clarified by adding in Fig. 1 plots of the dc resistivit
(jdc ­ 1.1 3 106 Aym2) and ac resistivity (jdc ­ 0 and
jac ­ 2.8 3 103 Aym2). A dip in rdc is seen at the
position of the extra peak at 1.6 T. Just below this fie
rac begins to increase steeply and merges withrdc at
a field which lies slightly above the dip inrdc. The
transition from Ohmic to non-Ohmic behavior is know
to be the best indication for the melting transition [3,4]
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FIG. 2. Size effect of the vortex lattice melting as show
by racsBd data atT ­ 1.70 K for several channel widths: the
reference sample (,), w ­ 1195 nm (h), 637 nm (±), 373 nm
(n), 306 nm (≤), and 245 nm (¶). Inset (a) showsracsT d
results at 1.00 T, same symbols. Inset (b) displays a schem
view of a single channel.

a weakly disordered vortex lattice. We interpret the d
in rdc as an indication that just before melting the she
modulus decreases due to plasticity [4,16], but rema
finite in congruence with the dynamic picture of meltin
at finite wavelengths related to weak disorder [8]. W
conclude that at about 1.6 T we observe a distinct,
gradual transition from a vortex solid to a liquid.

Up to Bc2 we probe the liquid phase which explains t
absence of peaks inFs. A kink in rsBd is seen at,1.9 T
which is also the field where the peak atN ­ 22 would
be expected. This feature seems to indicate a chang
the viscosity of the liquid, which will be further discusse
below. The unexpected increase ofrsBd aboveBc2 until
about 3.0 T (not observed in the reference sample) is
to a combination of surface superconductivity at the Nb
channel edges and a proximity effect at the NbNyNbGe
interface, as could be proved in recent experiments.

The length scale dependence of the vortex liq
properties is demonstrated in Fig. 2, where a series ofrac

data for different channel widths atT ­ 1.70 K is plotted.
Noting that the transition from Ohmic to non-Ohm
behavior occurs at aboutr ­ 0.75 mV m, we use this
criterion to determine the finite size melting fieldBmswd.
Similar results ofracsT d at B ­ 1.0 T are shown in the
inset. The free dislocations in the liquid near melting w
in our configuration line up along the channel edges wh
allows us to identifyj1 with weff and check Eq. (2).
The results are shown in Fig. 3. The thermodynam
values (Bm ­ 1.54 T and Tm ­ 2.01 K) are taken from
the data of the reference sample for whichj1 ø 300 mm.
The lines represent fits of Eq. (2) providing the valu
for b0 ­ 1.2 6 0.1, j10 ­ 26 6 5 nm andb00 ­ 1.2 6
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FIG. 3. Finite size effect of the melting temperatureTmsweffd
at B ­ 1.00 T (≤) and the melting fieldBmsweffd at T ­
1.70 K (±). Identifying j1 with the effective channel width
weff, linear fits determine the nonuniversal constantsb0, b00 and
the typical length scalej10 in Eq. (2).

0.1, j10 ­ 34 6 5 nm. As should be, the nonuniversa
constants are of order 1 andj10 is of orderb0, the latter
being 31–35 nm between 1.5 and 1.9 T and 42 nm
1.0 T. This confirms quite nicely the predictions of th
Nelson-Halperin theory [7]. We should note, howeve
that similar plots withn ­ 0.5 gave equally reasonabl
results. So, we cannot discriminate here between
solid-to-hexatic or a hexatic-to-isotropic liquid transitio
although the former seems the more likely one, beca
the channel will promote orientational order. It shou
further be noted that the criterionr ­ 0.75 mV m is
rather arbitrary. In fact, Fig. 2 shows that below th
value rac drops rapidly but not in a sharp step whic
means that the shear viscosity of the liquid grows quick
impeding the flow velocity in the channel. The choic
of a lower criterion does not change the plots of Fig
qualitatively, but gives slightly different values of th
resulting parameters. Similar results are obtained fr
the experiments at other temperatures and fields.

Finally we can, by using Eq. (4) withweff, determine
the shear viscosity from the differentrac curves in
Fig. 2 plus ther

0
f of the reference sample. The da

should result in one curve ofh versusB (or T) that
follows the functional dependence ofj2

1yb2
0 versusB

(or T). This behavior is indeed observed as can
seen in Fig. 4 forhsBd at T ­ 1.70 K and for hsT d at
1.0 T (inset). The lines displayh ­ h0j2

1sBdyb2
0 with

h0 ­ 2.5 3 10210 kg m21 s21. Assuming that we are
dealing with a 2D liquid the diffusion constant far in th
liquid phase would follow fromh0 ­ kBTyD0d [11] and
we obtainD0 ø 0.3 mm2ys and a typical diffusion time
t0 ­ D0ya2

0 of 2 ns. A remarkable feature is the should
in hsBd at 1.9 T. Such a feature is unexpected unles
denotes the transition from a hexatic to isotropic liqu
Below 1.9 T, hsBd would then rather be the effectiv
161
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FIG. 4. The shear viscosityhsBd of the flux-line liquid at
T ­ 1.70 K calculated from the resistivity data in Fig. 2
using Eq. (4) for w ­ 1195 nm (h), 637 nm (±), 373 nm
(n), 306 nm (≤), and 245 nm (¶). The dashed line indicates
the thermodynamic melting fieldBm. The curve represents
h ­ h0j2

1yb2
0 with h0 ­ 2.5 3 10210 kg m21 s21. The arrow

is the possible location of the hexatic-to-liquid (isotropi
transition. The inset showshsTd results for the same sample
at 1.00 T.

viscosityheff of the hexatic phase which at the transitio
reduces toh, the viscosity of the isotropic liquid. Both
viscosities are related byheff 2 h ~ KA [8], where the
Frank constantKA measures the stiffness against bo
angle deformations in the hexatic phase. Near the mel
line it diverges asKA , j2

1, i.e., making the behavior
of heff indistinguishable from that ofh. At the hexatic-
liquid transition it drops to zero. This second transitio
is somewhat smeared, but qualitatively agrees with
theoretical prediction [7]. The increase ofheff at the
shoulder agrees reasonably well with the increase
a factor of 2 at the disclination unbinding temperatu
observed in simulations by Frenkel and McTague [17].
is remarkable that in our relative thick layers (310 nm
the characteristics of a 2D system are observed. T
indicates that the tilt deformations and entanglement
the flux lines play a minor role.

In summary, flow experiments were carried out on fl
line solids and liquids confined to narrow channels
various widthsw. Flow-velocity oscillations are observe
related to commensurate-incommensurate transitions
the solid with respect tow. From the period we conclude
that the lattice flows along the direction of closed packi
and we could determine the effective channel wid
An extra peak in the resistivity could be identified a
the precursor of the melting transition. The field a
temperature of this transition depend onw. We propose
that free dislocations in the liquid line up along th
channel edges so that the correlation lengthj1 ­ weff.
162
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The temperature and field dependence ofj1 agrees well
with the Nelson-Halperin theory. The shear viscosity w
determined and follows the expectationh ­ h0j2

1yb2
0

with h0 ­ 2.5 3 1029 P. A sudden decrease ofh in the
liquid may indicate a second transition from hexatic-
isotropic flux liquid.
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