
Low-Thrust Gravity
Assist Trajectory
Optimisation
Using Evolutionary
Neurocontrol

T.A.H. Kranen

Cover image shows an enhanced color view of the surface of Pluto as captured by the New Horizons spacecraft
on July 14, 2015 at a distance of 450,000 km. The image combines four images from the Long Range Recon-
naissance Imager (LORRI) with blue, red and infrared images taken by the spacecraft’s Ralph/Multispectral
Visual Imaging Camera (MVIC). Courtesy of [57].

Low-Thrust
Gravity Assist
Trajectory

Optimisation
Using Evolutionary

Neurocontrol

by

T.A.H. Kranen
to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Thursday July 18, 2019 at 14:00 AM.

Student number: 4148193
Project duration: January 07, 2018 – July 18, 2019
Thesis committee: Prof. Dr. Ir. P. N. A. M. Visser , TU Delft, department chair

Ir. K. J. Cowan MBA, TU Delft, supervisor
Prof. Dr. B. Dachwald, FH Aachen, supervisor
Dr. A. Cervone, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

With pride I present my thesis on low-thrust gravity assist trajectory optimisation using the novel method
of evolutionary neurocontrol. This work marks the culmination of my time at Delft University of Techno-
logy, where I have studied for both a BSc and MSc degree in Aerospace Engineering. My years at TU Delft
have given me valuable insights, impeccable problem solving skills and a strong mathematical foundation.
With my acquired skill set I am more than ready to tackle any upcoming challenges in both my personal and
professional life.

My interest in space exploration originated at primary school, where a teacher recognised I could use a chal-
lenge and tasked me with researching the planets of our Solar system. I proudly created a mobile of the
planets, ready to present it in front of the entire class, however –and I kid you not– the dog ate it the day
before. I showed up at school with a mobile that was covered in bite marks and disintegrating papier-mâché
planets, and proudly presented my results. From that point onwards I was hooked on the space bug, which
ultimately led to this work.

The bachelor thesis project, in which we designed a mission to Jupiter’s icy moon Europa, introduced me to
the concepts involved in space mission analysis and phase-A studies. Mission analysis intrigued me, rende-
ring me to enrol for an MSc programme in Space Exploration. An integral part of mission analysis in phase-A
studies is the design of the trajectory, which nowadays heavily relies on numerical methods. Exposure to
the GTOC(1) further increased my interest in trajectory optimisation and gravity assists, especially for intri-
cate trajectories in the Jovian system. Intrigued by what others were achieving with artificial intelligence and
machine learning, I wondered whether machine learning could be combined with trajectory design. Much
to my enjoyment, I stumbled across the original work of Bernd Dachwald on the low-thrust trajectory opti-
misation method termed InTrance, which combines exactly what I had hoped for; artificial intelligence and
interplanetary trajectory optimisation.

The original developers of InTrance, Bernd Dachwald and Andreas Ohndorf, were happy for me to continue
on their work. Coincidentally, Bernd and Andreas organised a workshop on InTrance, which my thesis super-
visor Kevin Cowan and I attended, rendering a host of possible research topics. Due to my interest in intricate
trajectory design, such as those in the Jovian system which can perform as many as 16 gravity assist, I opted
to extend InTrance with gravity assist capabilities.

Although my original intention of optimising low-thrust gravity assist trajectories to Europa could not be
achieved within the scope of this work, a promising novel method has been developed. This accomplishment
was no small feat, as it was uncertain whether evolutionary neurocontrol could be used to perform a gravity
assist at all, and even thought to be out of scope of a MSc thesis by the original developers of InTrance. A
proper baseline for low-thrust gravity assist optimisation with evolutionary neurocontrol is set, which is ho-
pefully extended in future work to eventually allow for the optimisation of trajectories to Europa.

I would sincerely like to thank Bernd Dachwald, Andreas Ohndorf and Kevin Cowan for taking the time in
guiding me through this lengthy process. Our fruitful meetings have given me clarity of the problem and
guided me in the right direction. I specifically thank Bernd for our initial hours-long meetings on possible
strategies, and Andreas for our weekly in-depth technical calls.

T.A.H. Kranen
Nieuwegein, June 28, 2019

(1)Global Trajectory Optimisation Competition: https://sophia.estec.esa.int/gtoc_portal/?page_id=26

iii

https://sophia.estec.esa.int/gtoc_portal/?page_id=26

Contents

Preface iii
List of Abbreviations ix
List of Figures xi
List of Tables xiii
1 Introduction 1

1.1 Research Motivation . 2

1.2 Research Framework Definition. 3

1.2.1 Research Questions . 3

1.2.2 Research Objectives . 3

1.3 Report Structure . 4

2 Gravity Assists 7
2.1 Missions with Gravity Assists . 7

2.1.1 New Horizons . 8

2.1.2 Dawn . 9

2.2 Dynamics and Geometry . 10

2.3 Effects of Gravity Assists. 13

2.3.1 Deflection Angle . 13

2.3.2 Velocity Variation . 13

2.3.3 Inclination Variation . 15

2.4 Powered Gravity Assist . 16

2.4.1 New Horizons Powered Gravity Assist Simulations . 16

3 Low-Thrust TrajectoryOptimisationwith Evolutionary Neurocontrol 19
3.1 The Low-Thrust Trajectory Optimisation Problem . 19

3.2 Traditional Trajectory Optimisation . 20

3.2.1 Local Trajectory Optimisation Methods . 20

3.2.2 Global Trajectory Optimisation Methods. 22

3.2.3 State-of-the-Art Trajectory Optimisation Tools. 22

3.3 Smart Low-Thrust Trajectory Optimisation . 23

3.4 Artificial Intelligence and Reinforcement Learning . 23

3.4.1 Markov Decision Process. 24

3.4.2 Solving Markov Decision Processes . 25

3.4.3 Trajectory Optimisation from the Perspective of Reinforcement Learning 25

3.5 Artificial Neural Networks. 26

3.5.1 Biological Paradigm . 26

v

vi Contents

3.5.2 Components of Artificial Neural Networks . 27

3.5.3 Network of Neurons . 28

3.6 Evolutionary Algorithms . 29

3.6.1 Elements of Evolutionary Algorithms . 29

3.6.2 Convergence and Properties . 33

3.7 Neuroevolution . 33

4 InTrance 35
4.1 Development History . 35

4.2 InTrance Architecture . 36

4.3 Multiphase Framework and Fitness . 37

4.3.1 Target State, Proximity, and Deviation . 37

4.3.2 Phase Transition Conditions . 39

4.3.3 Fitness Evaluation . 39

4.4 Evolutionary Algorithm . 40

4.4.1 Representation and Initialisation . 40

4.4.2 Reproduction, Crossover and Mutation . 41

4.5 Artificial Neural Networks. 41

4.5.1 Input to the Artificial Neural Networks . 41

4.5.2 Output Values . 42

5 Low-Thrust Gravity Assist TrajectoryOptimisation Implementation 45
5.1 Single Phase vs. Multiphase Gravity Assist Strategy . 45

5.1.1 Single Neurocontroller . 46

5.1.2 Multiple Neurocontrollers . 47

5.2 Gravity Assist Architecture . 47

5.3 Gravity Assist Model . 48

5.3.1 Analytical Gravity Assist Model. 49

5.4 Initial and Final States of Gravity Assist Phases . 49

5.4.1 Velocity Relative to SOI Entry Velocity in GA-Phase . 51

5.4.2 Velocity Relative to Gravity Assist Body. 51

5.5 Chromosome . 52

5.6 Fitness . 54

5.6.1 Algorithm . 56

6 Verification and Validation 57
6.1 Analytical Gravity Assist Model . 57

6.2 New Horizons Validation Case . 59

6.2.1 Validation Data . 59

6.2.2 InTrance Input Parameters. 60

6.2.3 Optimisation Run . 60

6.2.4 External Integration . 61

6.2.5 Initial and Final Conditions at Gravity Assist . 62

6.3 Applicability of the Implementation . 63

Contents vii

7 Mission Analysis 65
7.1 Low-Thrust New Horizons . 65

7.1.1 Simulation & Mission Defining Input Parameters . 65

7.1.2 Results . 66

7.1.3 Compared to High-Thrust New Horizons Mission . 67

7.1.4 Compared to Literature . 69

7.1.5 Improvement due to Gravity Assist. 70

7.1.6 Influence of Thrust During Gravity Assist . 71

7.2 Dawn . 72

7.2.1 Simulation & Mission Defining Input Parameters . 73

7.2.2 Results . 75

7.2.3 Compared to Dawn’s Actual Trajectory . 76

7.2.4 Improvement due to Gravity Assist. 77

7.2.5 Influence of Thrust During Gravity Assist . 79

7.2.6 Optimisation of the Three-Phase Scenario – Earth to Ceres 80

8 Conclusion and Recommendations 83
8.1 Summary . 83

8.1.1 Research Motivation and Framework . 83

8.1.2 Approach and Results . 84

8.2 Analysis of Results and Performance . 86

8.2.1 Analysis of Performance, Implementation and Robustness 86

8.2.2 Analysis of Results . 87

8.3 Recommendations for Further Work . 89

8.3.1 Fundamental Research. 89

8.3.2 Application Oriented. 90

A Reference Frames 91
A.1 Inertial Cartesian Reference Frame . 91

A.2 Inertial Polar Ecliptic Reference Frame . 92

A.3 Orbital Elements . 93

B Results Dawn Simulations 97
C InTrance Input Files 101

C.1 Low-Thrust New Horizons with Jupiter Gravity Assist . 101

C.1.1 General Input Files. 101

C.1.2 Phase 1 Input Files . 102

C.1.3 Phase 2 Input Files . 102

C.2 Dawn with Mars Gravity Assist — Earth to Vesta . 103

C.2.1 General Input Files. 103

C.2.2 Phase 1 Input Files . 104

C.2.3 Phase 2 Input Files . 104

C.3 Dawn with Mars Gravity Assist — Vesta to Ceres . 105

C.3.1 General Input Files. 105

viii Contents

C.3.2 Phase 1 Input Files . 106

Bibliography 107

List of Abbreviations

AI Artificial Intelligence.
ANN Artificial Neural Network.

DC Delta Coding.
DE Differential Evolution.
DGA Diploid Genetic Algorithm.
DP Dynamic Programming.

EA Evolutionary Algorithm.
ENC Evolutionary Neurocontrol.
EoM Equations of Motion.
EP Electric Propulsion.

FB Flyby.
FPDC Floating Point Delta Coding.

GA Gravity Assist.
GP Genetic Programming.
GTOM Global Trajectory Optimisation Method.

InTrance INtelligent TRAjectory optimisation Using
NeuroController Evolution.

IVS Input Variable Selection.

KBO Kuiper Belt Object.

LTOM Local Trajectory Optimisation Method.

MDP Markov Decision Process.
MET Mission Elapsed Time.
ML Machine Learning.

NC Neurocontroller.
NEAT NeuroEvolution of Augmenting Topologies.
NEP Nuclear Electric Propulsion.
NN Neural Network.

RDC Real Delta Coding.
REP Radioisotope Electric Propulsion.
RL Reinforcement Learning.
RV Rendezvous.

S/C Spacecraft.
SEP Solarelectric Propulsion.
SOI Sphere of Influence.
SP Selective Pressure.
SSS Search Space Scan.

TWEANN Topology- and Weight Evolving Artificial
Neural Network.

ix

List of Figures

2.1 Nominal flight-path of New Horizons and the planetary positions at Jupiter flyby. 8

2.2 Nominal New Horizons trajectory. 9

2.3 Dawn’s interplanetary trajectory in the in-plane heliocentric frame. 10

2.4 Dawn’s interplanetary trajectory in the heliocentric frame. 11

2.5 Geometry of the hyperbolic Gravity Assist (GA) section. 11

2.6 Vector diagrams of some gravity assist maneuvers. 14

2.7 Geometry of an inclination change of the Spacecraft (S/C)’s orbit due to a GA. 15

2.8 Maximum inclination change due to a GA as a function of the hyperbolic excess velocity. 16

2.9 Powered New Horizons like GA at Jupiter. 18

3.1 Traditional trajectory optimisation using local optimisation methods. 21

3.2 Smart low-thrust trajectory optimisation using a global trajectory optimisation method. 23

3.3 Illustration of a typical biological neuron and artificial neuron. 26

3.4 General form and block-diagram of a computing unit within an Artificial Neural Network (ANN). 27

3.5 Topology of a general feed-forward ANN. 28

3.6 Principle components and reproduction cycle of Evolutionary Algorithms (EAs). 30

3.7 One-at-a-time reproduction with tournament selection. 31

3.8 Some common crossover types. 32

3.9 Illustration of the generation of offspring with the crossover nodes operator. 32

3.10 Convergence of a simple GA. 33

3.11 Mapping of Neurocontroller (NC) parameters on a chromosome ξ. 34

4.1 Multi-phase trajectory optimisation using evolutionary neurocontrol. 37

4.2 Composition of chromosome ξ in the multi-phase framework. 38

5.1 Single NC GA-approach within the multi-phase framework. 46

5.2 Multi-NC GA-approach within the multi-phase framework. 47

5.3 Multi-phase low-thrust gravity assist trajectory optimisation within INtelligent TRAjectory op-
timisation Using NeuroController Evolution (InTrance). 48

5.4 Definition of initial position of a phase directly following a GA in the XY-plane. 51

5.5 Definition of initial state in a phase directly following a GA using the entry velocity of the prece-
ding phase. 52

5.6 Definition of initial state in a phase directly following a GA using the body velocity at Sphere of
Influence (SOI) exit. 53

5.7 Proximity functions of the analytical gravity assist phase. 55

5.8 Example geometry to showcase transition conditions between a GA-phase and its succeeding
phase. 55

6.1 Trajectory while performing a GA at both Mars (left) and Jupiter (right) for varying entry velocities. 58

xi

xii List of Figures

6.2 Deviation between analytical GA-model and numerically integrated trajectory. 58

6.3 Heliocentric trajectory from an InTrance run of the validation case. 60

6.4 External RK4(5) integration of InTrance’s result of the validation case. 61

6.5 Heliocentric distance and velocity of both InTrance and the externally re-integrated solution. . 62

6.6 Close-up of the gravity assist portion of the validation case in the heliocentric frame. 63

7.1 Heliocentric InTrance optimised New Horizons like low-thrust trajectory. 67

7.2 Close-up of the gravity assist portion of the resulting trajectory from InTrance for the New Ho-
rizons like low-thrust mission. 67

7.3 Initial state of the phase departing from Jupiter with velocities optimised relative to the entry
velocity. 68

7.4 Heliocentric trajectory, velocity and distance of the actual New Horizons missions and a low-
thrust alternative computed with InTrance. 68

7.5 Heliocentric trajectory, velocity and distance of two low-thrust NEP trajectories to Pluto gene-
rated with InTrance, one direct transfer and one including a Jupiter GA. 70

7.6 Helio- and planetocentric portions of the New Horizons trajectories computed with the analy-
tical GA-model and numerical GA-model. 72

7.7 Dawn trajectory as optimised by InTrance in the heliocentric frame. 75

7.8 Close-up of the Mars GA portion in the planetocentric frame of the Dawn trajectory computed
with InTrance. 76

7.9 Heliocentric trajectory, velocity and distance of the actual Dawn missions and the resulting tra-
jectory from InTrance. 77

7.10 Heliocentric trajectory, velocity and distance of the Dawn trajectory computed with InTrance
both with and without a Mars GA. 78

7.11 Helio- and planetocentric portions of both Dawn trajectories computed with the analytical GA-
model and numerical GA-model. 79

7.12 Heliocentric trajectory, velocity and distance of the Dawn trajectory computed with InTrance
both through a single optimisation of the complete mission and the concatenated simulations. 80

7.13 Close-up of the Mars GA portion in the planetocentric frame for the three-phase optimisation
run. 81

A.1 The Inertial Cartesian reference frame J. 91

A.2 The Inertial Polar Ecliptic Reference Frame P. 92

A.3 Geometry of an elliptical orbit. 93

A.4 Geometry of a hyperbolic orbit. 93

A.5 Geometry of the orbital elements w.r.t. the ecliptic. 94

B.1 Three-dimensional view of the Dawn trajectory as computed by InTrance in the heliocentric
frame. 97

B.2 Three-dimensional view of the initial state of the second phase in the heliocentric frame of the
Dawn trajectory computed with InTrance. 98

B.3 Three-dimensional view of the heliocentric Dawn trajectory as computed by InTrance compa-
red to Dawn’s actual trajectory generated through SPICE. 98

B.4 Three-dimensional view of the heliocentric Dawn trajectory as computed by InTrance with a
Mars GA and without a GA. 99

B.5 Three-dimensional view of the heliocentric Dawn trajectory as computed by InTrance, both the
concatenated results of the two separate simulations and the single optimisation of the com-
plete missions. 99

List of Tables

2.1 Maximum attainable ∆V of the S/C due to a GA at different celestial bodies. 15

2.2 Key GA parameters for the four New Horizons like scenarios under the influence of thrust inside
the SOI. 17

4.1 Classification of the mechanism and techniques added by Ohndorf to InTrance. 36

4.2 Currently implemented InTrance objective functions. 40

4.3 NC input parameters. 43

5.1 Simulation parameter encoding onto the chromosome. 53

6.1 Validation data for a low-thrust New Horizons like trajectory. 59

6.2 Mission defining parameters used to generate an optimised New Horizons like low-thrust tra-
jectory similar to the validation date. Values in square brackets indicate ranges. 60

6.3 Results and reference data for the New Horizons like validation simulation. 61

6.4 The SOI exit states computed using the analytical GA model and an external numerical integra-
tion plus the actual initial state of the second phase in InTrance. 63

7.1 Mission defining parameters used to generate an optimised New Horizons like low-thrust gra-
vity assist trajectory . 66

7.2 Results of the InTrance optimisation run of the New Horizons like low-thrust gravity assist tra-
jectory. 66

7.3 Comparison of low-thrust NEP trajectories to Pluto generated by InTrance and the actual high-
thrust New Horizons trajectory. 69

7.4 InTrance’s optimised trajectory to Pluto with a GA at Jupiter compared to the validation literature. 69

7.5 Mission defining parameters used to generate a direct Earth-Pluto transfer. 70

7.6 Comparison of low-thrust NEP trajectories to Pluto generated by InTrance, both as a direct
transfer and with a GA at Jupiter. 71

7.7 Different mission defining parameters used in the New Horizons numerical GA computation. . 71

7.8 Mission defining parameters used to re-compute the Dawn trajectory from Earth to Vesta. . . . 74

7.9 Mission defining parameters used to re-compute the Dawn trajectory from Vesta to Ceres. . . . 74

7.10 Results of the InTrance optimisation run of the Dawn trajectory including a Mars GA. 75

7.11 Comparison of InTrance results and actual Dawn mission. 78

7.12 Comparison of InTrance results for the Dawn mission, both with and without a Mars GA. 79

7.13 Comparison of Dawn trajectories computed with InTrance, both for a single optimisation of the
complete mission and the patched results of the two separate optimisation runs. 81

xiii

1
Introduction

The earliest interplanetary space voyages, such as the Venera and Mariner missions, led the spacecraft to re-
latively close-to-Earth targets such as Venus and Mars. It was quickly realised that interplanetary travel was
inherently limited by the propellant mass which could be taken on-board and by what relative velocity, or C3,
a launcher could provide, rendering the outer planets to be out of reach. M.A. Minovitch proposed a solution
in 1961 he termed Gravity Propelled Inteplantary Space Travel [53], in which he suggested performing close
flyby’s of planets along the way to the final target, utilising a momentum exchange between the spacecraft
and flyby planet, resulting in an increase of velocity relative to a third body such as the Sun. This method is
now generally referred to as a gravity assist or swinbg-by, and although its mechanics were known by astro-
nomers such as Laplace (1749-1827) [12] and used on the Luna 3 spacecraft in 1959 by the Russians [37], its
application to interplanetary trajectory design is generally credited to Minovitch [26].

The combination of gravity assists with classical chemical high-thrust propulsion has given rise to many
highly successful missions such as the Voyagers, Pioneers, and Cassini-Huygens. More recently the GA techni-
que has successfully been applied in the New Horizons mission to Pluto and the Juno mission to Jupiter. Ho-
wever, the propellant of these missions still took up a large chunk of the mass and ∆V budgets, limiting the
amount of payload that could be taken on-board. Gravity assist trajectories are furthermore constrained to
very strict launch windows as the planets need to form favourable configurations.

With all major bodies within our Solar System explored from atleast a single flyby, modern interplanetary
missions are increasingly becoming more demanding. The focus has shifted to exploring bodies in more
detail, for which the spacecraft usually has to enter an orbit around it. Missions are also becoming more
intricate by having multiple targets, such as was the case in the Dawn mission, which orbited both Vesta and
Ceres. More intricate missions generally require a larger ∆V budget and hence a larger propellant mass, to
which an upper limit is set by the maximum attainable characteristic launch energy C3. As an example, New
Horizons was launched with a C3 of 164 km2/s2, which can be seen as a practical upper limit [36].

In order to accommodate the ∆V budget needed for modern interplanetary missions, more and more is re-
lied upon low-thrust propulsion methods. Low-thrust propulsion is characterised by (very) low thrust force
levels; long continuous thrust arcs, often lasting months at a time; and a high specific impulse. Low-thrust
propulsion can generally be divided in two groups; Electric Propulsion (EP) and internal-reaction mass free
propulsion. The former requires expelled mass to be accelerated electrically, for which the power is usually
either delivered by photovoltaic-based or nuclearelectric power generation systems. The electric power is
used to accelerate the expelled mass with a much higher exit velocity and much lower mass flow than com-
pared to classical chemical high-thrust propulsion. Contrary, internal-reaction mass free propulsion met-
hods do not require any mass to be expelled, and hence do not require any propellant. These methods use
the (electro-)magnetic environment to their benefit with methods such as laser propulsion, electrodynamic
tethers and solar/magnetic sails.

One of the more prominent applications of low-thrust propulsion can be found in the Dawn mission, in
which both Vesta and Ceres are orbited with a single spacecraft, making use of three xenon ion-drives capa-
ble of outputting a maximum of 92mN [63]. Dawn was the first to orbit two extraterrestial bodies; previous
multi-target missions, such as in the Voyager programme, were limited to flybys. Placing a spacecraft in orbit

1

2 1. Introduction

around both Vesta and Ceres would not have been possible with conventional chemical high-thrust propul-
sion, and hence without low-thrust the mission would have had to be carried out by two separate probes.
Both high-thrust probes would have been heavier than its low-thrust counterpart; requiring more propellant
and a larger launch vehicle. Russell et al. [65] determined that each of the two high-thrust probes would have
cost some $750m, compared to a total cost for the low-thrust counterpart of well under $500m, saving NASA
over $1bn due to the application of low-thrust propulsion.

Low-thrust has shown to be a viable alternative to conventional chemical high-thrust propulsion, although
often requiring (much) longer flight times due to the low applied thrust force and therefore small accele-
ration. Furthermore, Solarelectric Propulsion (SEP) and solar sails cannot be relied upon for interplanetary
mission much beyond Mars’ orbit, and propellant mass for Nuclear Electric Propulsion (NEP) systems quickly
increases for missions to the outer planets. Therefore, low-thrust is nowadays often combined with gravity
assists, which combined can deliver the required ∆V budget for intricate missions and simultaneously de-
crease transfer time. The Dawn missions was the first to combine low-thrust with a Mars GA, but would have
been possible without; the Mars GA was solely added to increase technical margins [63].

On the contrary, BepiColombo is a low-thrust mission actively using multiple GAs to reach its final orbit about
Mercury. BepiColombo makes use of an Earth GA to deflect the spacecraft towards Venus, followed by two
consecutive Venus GAs to reduce the perihelion to nearly Mercury’s distance, using hardly any propellant. A
total of six Mercury GAs are then performed to slow down the spacecraft, followed by four more final thrust
arcs to reduce the velocity enough to be weakly captured by Mercury. Benkhoff et al. [7] list the reasons for
employing EP due to it providing large flexibility to trajectory design within the launcher capability, spacecraft
mass and flight duration, at a very low propellant cost. EP furthermore gives flexibility in choosing the trajec-
tory and launch window, thereby providing robustness with regards to mission operations. BepiColombo was
launched in 2018 with a launch mass of 4100 kg, of which 2250 kg of payload and about 32% of propellant.

1.1. Research Motivation
Traditional high-thrust trajectory optimisation is relatively straightforward compared to its low-thrust coun-
terpart; thrust is only applied at a few instances and each operation is modelled as an instantaneous burn.
These relatively simple trajectories were traditionally designed by a team of astrodynamics experts by hand,
followed by simple numerical integration. Contrary, low-thrust can be applied for months at a time, where at
each time step the direction and magnitude can be varied, resulting in a much larger problem dimensions.
With the inclusion of gravity assists, the optimisation of the trajectory becomes even more difficult. Tradi-
tional trajectory optimisation tools heavily rely on astrodynamics expertise to generate an initial guess to a
local optimisation scheme. Global optimisation tools exist, but usually require heavy modification for each
new mission scenario and are not capable of optimising any trajectory. There is a clear need for a smart glo-
bal low-thrust trajectory optimisation tool, capable of optimising low-thrust trajectories from only a broad
description of the mission.

One such smart global low-thrust trajectory optimisation method, termed InTrance, was developed by Da-
chwald [17] in 2004. Originally only capable of optimising single-target heliocentric low-thrust trajectories,
it was later extended by Ohndorf [59] to allow for optimisation of multi-target and planetocentric low-thrust
trajectories. InTrance makes use of a novel method termed evolutionary neurocontrol, tackling the problem
from the perspective of reinforcement learning and artificial intelligence. Evolutionary neurocontrol combi-
nes biologically inspired Artificial Neural Networks (ANNs) and Evolutionary Algorithms (EAs). The ANN acts
as an agent, indicating at each time step whether the thruster should be engaged, with what magnitude, and
in what direction. The internal parameters of the ANN and initial conditions of the trajectory are optimised
by an EA. The trajectory then results from numerical integration from the initial conditions onward while
applying the thrust as indicated by the ANN at each step. InTrance then only requires a broad description
of the mission, such as windows for the launch date, launch C3 and desired arrival dates plus target bodies
and target orbits (captured, flyby, rendezvous, etc.), and can find (near-)global optimal trajectories without
relying on astrodynamics expertise or an initial guess.

With low-thrust missions becoming more intricate, often relying on one or multiple GAs, the need for a smart
low-thrust optimisation tool is extended to the need for a smart low-thrust gravity assist trajectory optimi-
sation tool. It was the goal of this work to develop such a tool, which was found in extending InTrance with
GA capabilities. GAs have been implemented as intermediate targets, allowing a NC to learn the benefits of

1.2. Research Framework Definition 3

performing a GA while another NC is trained to reach its next target. The EA then has to find both favourable
entry and exit conditions into and out of the SOI such that the next target is reached optimally, while gene-
rating a steering strategy (internal ANN parameters) which steer the spacecraft to perform that GA and reach
its next target.

The extended version of InTrance can then be used for fundamental GA research such as determining the
efficiency increase due to the inclusion of GAs with respect to transfer time and propellant mass and to in-
vestigate the effects of a powered vs. unpowered GA. The extended version will furthermore be used to (re-
)calculate optimal trajectories for two prominent missions; a low-thrust adaptation of New Horizons, perfor-
ming a GA at Jupiter; and the previously mentioned Dawn mission, performing a GA at Mars.

1.2. Research Framework Definition
This research aims to supply the needed smart low-thrust gravity assist trajectory optimisation software,
tackling the problem from the novel standpoint of Reinforcement Learning (RL). The software tool InTrance
plays a vital role in the remainder of this work and will be extended to allow for the optimisation of both
time- and propellent-optimal low-thrust gravity assist trajectories. In order to fulfil this aim, a set of research
questions and objectives were devised, which are described below.

1.2.1. Research Questions
Providing the answers to the set of research questions will give the required knowledge to achieve the objecti-
ves of this research. In aiding to develop a smart low-thrust gravity assist optimisation tool, the main research
questions is defined as:

Research Question: To what extent can neurocontrol be used to extend the smart low-thrust trajectory
optimisation tool InTrance to optimise low-thrust gravity assist trajectories either
time- or propellant optimal?

This main research question is further broken down into sub-questions:

Sub-question 1: How can the optimisation of gravity assists be implemented in InTrance?

a. Should a gravity assist sequence be optimised by InTrance or provided externally?

b. Should a gravity assist be optimised by a neurocontroller or by a dedicated (local) optimisation scheme?

c. Should a gravity assist occur mid-phase or be a target in itself and therefore have a separate neurocon-
troller?

d. How can a neurocontroller be trained to perform a gravity assist?

e. To what extent can the gravity assist optimisation problem be simplified by using an analytical formu-
lation and how does that impact the performance?

f. How should (sub-)fitness functions be defined such that they drive a neurocontroller to perform a gra-
vity assist?

Sub-question 2: To what extent can gravity assists be optimised with such a method and how do they
affect the overall trajectory?

a. Can gravity assists be performed both at bodies with small and bodies with large spheres of influence?

b. What is the effect of powered vs. unpowered gravity assists?

c. What is the efficiency increase from including a gravity assist?

d. Is it possible to optimise trajectories in which multiple gravity assists are performed?

1.2.2. Research Objectives
The main aim of the research is to supply in the need for a smart low-thrust gravity assist optimisation tool,
which was described in Section 1.1. This main objective is firstly broken down into smaller sub-objectives
which need to be achieved first, resulting in the achievement of the overall objective. Once a validated

4 1. Introduction

smart low-thrust gravity assist optimisation tool has been developed, it will be used to achieve a set of sub-
objectives related to preliminary trajectory design.

The overarching objective is formally defined as:

Research Objective: To develop and use a smart low-thrust trajectory optimisation tool using evolutio-
nary neurocontrol by extending InTrance, capable of robustly optimising prelimi-
nary low-thrust gravity assist trajectories in both transfer time and propellant usage
which should only be dependent on basic mission defining inputs.

Which can be further broken down into the following sub-objectives:

Sub-objective 1: Develop a gravity assist implementation strategy.

Sub-objective 2: Formulate (sub-)fitness functions that drive optimal gravity assists.

Sub-objective 3: Assess the applicability of an analytical formulation of the gravity assist.

Sub-objective 4: Validate the implementation by comparison with reference cases from literature.

Once such a smart low-thrust gravity assist optimisation method has been developed it can be used to achieve
the following objectives in order of importance:

Sub-objective 4: Use the extended version of InTrance to perform a gravity assist at a body with a large
sphere of influence such as Jupiter.

Sub-objective 5: Optimise a low-thrust version of the New Horizons mission to Pluto using a Jupiter
gravity assist

Sub-objective 6: Use the extended version of InTrance to perform a gravity assist at a body with a small
sphere of influence such as Mars.

Sub-objective 7: Optimise a Dawn-like mission which rendezvouses with Vesta and Ceres, making use
of a Mars gravity assist.

Sub-objective 8: Assess the performance improvement from the inclusion of a gravity assist.

Sub-objective 9: Asses the impact of a powered gravity assist.

Sub-objective 10: Asses whether multi-GA trajectories can be optimised with the developed tool.

The focus of this thesis is on the development and validation of such a smart low-thrust gravity assist optimi-
sation tool, capable of answering the above research questions and achieving the research objectives. Within
its intended use as a preliminary mission analysis tool, high-fidelity solutions are not required. The develo-
ped tool should however be able to provide a (near-)global optimal solution, which can be an input to existing
local optimisation schemes in the detailed design phase.

1.3. Report Structure
Prior to discussing the implementation of gravity assists in InTrance to develop a smart global low-thrust
gravity assist trajectory optimisation tool, certain concepts have to be introduced. The dynamics and effects
of a gravity assist are firstly described in Chapter 2. Analytical formulations are derived for the governing
parameters of a gravity assists, together with minimum and maximum values for the deflection angle, velocity
variation, and inclination change. The focus then shifts to the powered gravity assist, in which it is allowed to
apply thrust while inside the SOI. Four different thrust scenarios will be presented, showcasing the effect of
thrust during the GA on New Horizon’s nominal trajectory.

Chapter 3 formally defines the low-thrust trajectory optimisation problem, firstly transforming it to the re-
alm of optimal control problems. With this definition, a brief description of traditional low-thrust trajectory
optimisation methods is given, indicating their main drawbacks which then leads to the definition of a smart
low-thrust trajectory optimisation method. Since this work solves the problem from the perspective of rein-
forcement learning, a brief introduction in artificial intelligence and reinforcement learning is presented,
followed by a formal definition of the Markov Decision Process (MDP) and an introduction on how to solve

1.3. Report Structure 5

them. The low-thrust trajectory optimisation problem can then formally be transformed to the perspective
of reinforcement learning, after which the two main components of evolutionary neurocontrol –the ANN and
EA– are introduced.

With an understanding of the dynamics and governing methods used within evolutionary neurocontrol, the
computing software InTrance is described in Section 4. This chapter starts with a brief overview of the deve-
lopment history, followed by a description of the overall architecture and components, with a main focus on
the definitions of fitness and optimality.

The implementation of gravity assists within InTrance is described in Chapter 5, starting with a rationale
and description of the employed neurocontroller strategy. The architecture of the implemented strategy in
the larger architecture of InTrance is then discussed, followed by a description of its components, the initial
states and the fitness evaluation.

The implementation is verified and validated in Chapter 6. The focus lies on the validation of the optimisa-
tion of gravity assists, as verification of most components, such as the correct working of the evolutionary
algorithm, has been performed by Dachwald [17] and Ohndorf [59] in their versions of InTrance. The appli-
cability of the analytical gravity assist model is is a new component, and hence verified by comparison with
a numerically integrated trajectory. From this effort, the analytical GA-model is deemed accurate enough
for non-extreme gravity assists within the intended use of InTrance as a preliminary design tool. The over-
all implementation is then validated by optimising a low-thrust New Horizon’s like mission constrained to
similar conditions as found in literature, and then comparing the resulting trajectory with those found in li-
terature. The physical correctness of the resulting trajectory is furthermore verified by an external numerical
integration from the initial conditions at launch while applying the thrust history as found by InTrance.

Chapter 7 demonstrates InTrance’s capabilities as a preliminary design low-thrust gravity assists trajectory
optimisation tool through the optimisation of the trajectories of both a low-thrust New Horizons like mission
to Pluto and the re-optimisation of the Dawn mission to Ceres and Vesta. The resulting trajectories will be
compared to the actual trajectories of those missions retrieved through SPICE, to results found in literature,
to a trajectory excluding the gravity assists and to a trajectory in which a powered GA is allowed. The last two
comparisons allow to quantify the efficiency gain due to a GA and the efficiency gain due to a powered GA,
respectively.

Chapter 8 presents a summary of this report and an analysis on the implemented method and obtained re-
sults. It serves as the conclusions to this work, highlighting the answers to the research questions and achie-
vement of objectives. It lastly provides recommendations for future research.

The appendices lastly contain a description of the reference frames used within this work, enlarged three-
dimensional heliocentric plots of the generated Dawn trajectories, and selected input parameters used in the
InTrance simulations.

2
Gravity Assists

It was quickly realised that chemical propulsion was inherently limited in the amount of fuel that could be
taken onboard and therefore limited in the amount of orbital energy (∆V) that could be produced, rendering
exploration of the outer planets next to impossible. M.A. Minovitch proposed a new method in 1961 he ter-
med Gravity Propelled Interplanetary Space Travel [53]; making use of conventional chemical propulsion and
combining it with close flyby’s of the planets, resulting in a momentum exchange and an increase in velocity
of the spacecraft, a method now known as gravity assists (GA’s) or swing-by’s.

The first S/C that exploited the gravity field of a celestial body to increase its velocity was Pioneer 11, launched
in 1973, performing a gravity assist maneuver at Jupiter on its way to Saturn. Since then, many missions have
used the concept, among others, the highly-successful Galileo mission to Jupiter launched in 1989, the Cassini
mission to Saturn launched in 1997 and the New Horizons mission to Pluto launched in 2006. These missions
primarily used gravity assists to increase their orbital energy, as a direct transfer to their target planet would
not have been possible with conventional high-thrust chemical propulsion. Gravity assists can also be used
to change the inclination, as was achieved in the Ulysses mission to the Sun, launched in 1990. Ulysses used a
gravity assist at Jupiter to achieve a 78 degree inclination change, relative to the ecliptic, enabling exploration
of the South and North polar regions of the Sun. Without Jupiter’s gravity assists, the high out-of-ecliptic
inclination would not have been possible [77].

A gravity assist can be regarded as an elastic collision of a spacecraft with a celestial body. It is analogous to
the elastic collision between a baseball and a bat. With respect to the bat, the baseball has the same velocity
when coming from the pitcher as when leaving the park, however, relative to any other observer, the baseball
has increased its speed by picking up the velocity of the bat in the interaction. A gravity assist works in much
the same way, in the frame of the GA-body, the incoming and outgoing hyperbolic excess velocities v∞ are
the same, and a gravity assist then only provides a reorientation of the v∞ vector. However, in the frame of
an outside observer, such as the Sun, the S/C has gained some additional velocity due to its interaction with
the gravity field of the GA-body. When a S/C passes behind a GA-body, the velocity relative to some outside
observer will increase; the GA-body then ’drags’ the spacecraft along the planet’s gravitational field. When a
S/C passes in front of a GA-body, the velocity relative to some outside observer will decrease; as the GA-body
is moving towards the point of closest approach, the S/C travels further into the GA-body’s gravitational field,
and loses some energy in getting out [47].

Prior to introducing the dynamics and geometry of a GA in Section 2.2, two GA performing missions – New
Horizons and Dawn– are introduced in Section 2.1. These two mission will be used throughout this work and
are chosen because of their distinct GA types. Section 2.3 describes the effects of unpowered gravity assists
and derives equations for the maximum generated∆V , inclination variation and deflection angle. The effects
of thrusting while performing a GA are explored in Section 2.4 through a New Horizons like simulation.

2.1. Missions with Gravity Assists
Two missions will be central in this work; the New Horizons mission to Pluto and the double-asteroid ren-
dezvous mission Dawn to Ceres and Vesta. The trajectories of both will be re-computed with the developed

7

8 2. Gravity Assists

method as a low-thrust mission in Chapter 7 and will serve as examples to showcase effects of GAs in the
remainder of this work.

2.1.1. New Horizons
The New Horizons mission was NASA’s first mission in its flagship New Frontiers Programme, the medium
class of principal investigator-led projects, and had a total cost of approximately $700 million over the period
2001-2016. New Horizons was selected for development in November 2001 following a competitive selection
after a NASA Announcement of Opportunity; it was the first mission to the Pluto system and intended to
complete the reconnaissance of the then prevailing classical planets. New Horizons achieved the highest
launch ∆V relative to Earth of 16.2 km/s, setting the S/C on a direct solar escape trajectory.

Mission Description and Objectives

While S/C have visited each of the terrestrial and Jovian planets, the high-thrust New Horizons mission was
the first to explore icy dwarf planets that dominate the outer portion of our solar system. Its nominal mission
would direct New Horizons past Jupiter to perform a flyby of the Pluto-Charon system. If the mission would
be extended, the S/C could continue to investigate Kuiper Belt Objects (KBOs). The orbits of the planets and
Pluto, together with the nominal flight-path of New Horizons are shown in Figure 2.1.

58 Y. Guo, R.W. Farquhar

Fig. 3 Interplanetary trajectory

The C3, DLA, and the right ascension of the launch asymptote (RLA)—the launch targets
to which the spacecraft must be delivered by the launch vehicle—specify the New Horizons
launch requirements. The New Horizons mission trajectory was designed as a ballistic flight
from Earth to Pluto with or without the Jupiter flyby. All energy and the associated orbit state
required for arriving at Pluto at the desired time and encounter geometry were computed and
specified in the launch targets that were provided to the launch vehicle provider. The New
Horizons launch required a three-stage rocket consisting of the Atlas V 551 EELV launch
vehicle and the Star 48B third stage. The Atlas V 551 is a two-stage rocket supplied by
Lockheed Martin. The first stage consists of a common core booster and five strap-on solid
rocket boosters, and the second stage is a powerful Centaur booster that has restart capability.
The third stage Star 48B is a spin-stabilized solid rocket made by Boeing and customized for
the New Horizons mission. The New Horizons spacecraft was placed into an Earth parking
orbit by the first stage and the Centaur’s first burn. It was then injected into the specified
heliocentric trajectory through the combined injection burn supplied by the Centaur (second
burn) and the Star 48B after a short coasting in the parking orbit.

4.2 Interplanetary Trajectory

The baseline mission design considered two interplanetary trajectories:

(i) the JGA trajectory for the primary launch period for a fast flight to Pluto and
(ii) the Pluto-direct trajectory for the extended launch period.

The January 19, 2006, launch put the spacecraft into the favorable early Pluto arrival JGA
trajectory that flew by Jupiter on February 28, 2007, and will encounter Pluto and Charon
on July 14, 2015, as shown in Fig. 3. The flight from Earth to Jupiter only took 404 days; no
spacecraft has ever reached Jupiter from Earth in such a short time with such a fast speed.

However, by nature, New Horizons cannot maintain this high speed for its entire flight.
During the interplanetary flight toward Pluto, the spacecraft is immersed in the Sun’s grav-
itational field, which slows down the spacecraft along its path as it moves away from the

Figure 2.1: Nominal flight-path of New Horizons and the planetary positions at Jupiter flyby [36].

Pluto and Charon form a double planet system, with the barycentre of the system exterior to Pluto. Despite
their proximity, the two bodies are vastly different. Pluto is red in colour, has a surface covered in volatiles
which supports a seasonal atmosphere, and has a large variable albedo. Contrary, Charon is neutral in colour,
has a water-ice dominated surface and no atmosphere has been observed [85]. At the time of launch, little
was known about the other two satellites in the system, Nix and Hydra, which where discovered only a year
prior to launch.

The 478 kg (wet mass) New Horizons spacecraft carries seven scientific instruments, including imagers, spectro-
meters, radio science, a plasma and particles suite, and a dust counter. New Horizons was designed to broa-
den the understanding of the Pluto system, such as its origin, processes operating on the surface, the volatile
transport cycle, and the energetics and chemistry of the atmosphere [85]. The observations will furthermore
extend the knowledge of other bodies which are; formed by giant impact (Earth-moon), formed in the ou-
ter solar system (comets and icy dwarf planets), with surfaces in vapour-pressure equilibrium (Triton and
Mars), and other bodies with N2:CH4 atmospheres (Titan, Triton, early Earth). New Horizons will study the
surface composition of Pluto, take measurements of its atmosphere, and characterise its topography, surface
temperatures and solar wind interaction.

Trajectory

New Horizons was launched on January 19, 2006 from Cape Canaveral on a Jupiter gravity assist trajectory
toward the Pluto system with a maximum launch C3 of 164 km2/s2 on an Atlas V. It performed a GA at Jupi-
ter with a closest approach distance of 32.2 RX (2.3 million km) on February 28, 2007. After 9.5 years, New
Horizons encounters Pluto on July 14, 2015, at a distance of 5.2 R\ (12.4 thousand km) during its 9-month

2.1. Missions with Gravity Assists 9

observation window of the Pluto system. The mission was designed as a ballistic flight from Earth to Pluto,
and all energy and encounter geometry were computed and specified in the launch targets [36].

The heliocentric trajectory followed by New Horizons is shown in Figure 2.2(a), which is computed through
NASA’s SPICE [1] toolkit with official New Horizons kernels.(1) Figure 2.2(b) shows the heliocentric velocity
over time, clearly indicating the effect of its Jupiter GA. Due to the planetary geometry (see Figure 2.1), there
was hardly any need for an out-of-plane manoeuvre and most of the GA’s effect is concentrated in increasing
the heliocentric velocity and deflecting the in-plane direction.

-20 -15 -10 -5 0 5 10 15 20

x [AU]

-30

-25

-20

-15

-10

-5

0

5

y
[A

U
]

Earth's Orbit

Jupiter's Orbit

Pluto's Orbit

(a) Heliocentric trajectory

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Date [yr]

10

15

20

25

30

35

40

45

H
el

io
ce

nt
ric

 V
el

oc
ity

 [k
m

/s
]

Jupiter GA

(b) Velocity over time

Figure 2.2: Nominal New Horizons trajectory.

2.1.2. Dawn
NASA’s Dawn mission is the first to orbit a main belt asteroid and the first to orbit two extraterrestrial bodies.
With the Dawn mission being part of the small mission programme Discovery, it was quickly realised that
within the associated cost cap only flyby’s of Ceres and Vesta could be performed. However, much more can
be learned with an orbiter than with a flyby mission, which rendered the Dawn team to investigate alterna-
tives. They found a viable alternative in using low-thrust propulsion in the form of ion engines, which had
been demonstrated with the Deep Space 1 mission in the late ’90s. The use of low-thrust propulsion allowed
to orbit both asteroids with a single craft well within the budget of Discovery class missions [65].

Mission Description and Objectives

Ceres, Vesta and Pallas are the three largest minor planets, and are intact survivors from the earliest period
of the formation of the solar system. Visiting these bodies would greatly increase our understanding of the
conditions and processes acting at the solar system’s earliest epoch. Pallas’ high inclination makes a mission
difficult, even with low-thrust propulsion, so the Dawn mission focusses on orbiting both Ceres and Vesta.

The 747 kg (dry mass, +425 kg propellant) Dawn S/C carries three scientific instruments; a pair of framing
cameras, a visible and infrared mapping spectrometer, and a gamma ray and neutron detector. Gravitational
field measurements are furthermore possible through its radiometric tracking system [65]. Dawn’s objectives
are designed to provide insight into the conditions and processes that have acted upon Ceres and Vesta from
their formation to the present, its level 1 requirements are described by Rayman [63] as:

1. Determination of the bulk density of Vesta and Ceres to better than 1%;

2. Determination of the spin axis orientation of Vesta and Ceres to better than 0.5%;

3. Determination of the gravity fields of Vesta and Ceres;

4. Optical mapping of the surface of Vesta and Ceres;

(1)New Horizons kernels available at: https://naif.jpl.nasa.gov/naif/data_archived.html

https://naif.jpl.nasa.gov/naif/data_archived.html

10 2. Gravity Assists

5. Creation of a topographical map of the surface of Vesta and Ceres;

6. Measure and map the abundances of major rock-forming elements and the elements H, K, Th, and U
of the surface of Vesta and Ceres;

7. Obtain spectral frames of the surfaces of Vesta (≥ 10 000 frames) and Ceres (≥ 8 000 frames).

Trajectory

Dawn was launched on September 27, 2007 from Cape Canaveral toward its first target Mars on a Delta 2925H.
Although direct trajectories towards Vesta are possible, it was chosen to include a GA at Mars to increase
technical margins [63]. The heliocentric in-plane trajectory is shown in Figure 2.3, in which the portions
indicated in black denote when the spacecraft is not thrusting. Comparing this trajectory to the one of New
Horizons (Figure 2.2), it is clear they are distinctly different. The Dawn case makes use of characteristic long
low-thrust arcs to slowly increase its semi-major axis over multiple rotations about the Sun, whereas New
Horizons was launched directly into a ballistic trajectory to Jupiter.

Figure 2.3: Dawn’s interplanetary trajectory in the in-plane heliocentric frame. [11]

Dawn performed its gravity assist at Mars in February 2009 at a closest approach distance of 1.15R� (3.8
thousand km). Some 2.5 years later Dawn arrives at Vesta and enters an orbit around it, departing towards
Ceres some 1.5 years later. Dawn arrived in the spring of 2015 at its final nominal mission target Ceres.

The heliocentric trajectory is shown from a different perspective in Figure 2.4, generated with SPICE, indica-
ting the effect of the Mars GA is mostly concentrated in an out of plane manoeuvre; altering the inclination
to be more in line with those of Ceres and Vesta. This is again contrary to the New Horizons mission, which
made use of a GA to predominantly increase its heliocentric velocity.

2.2. Dynamics and Geometry
The dynamics of the many-body problem can be used to describe the motion of a S/C while performing a
gravity assist, both the version that is relative to the GA-body or relative to an inertial reference frame (bary-
center), with the gravitational attraction of the GA-body modelled as an additional perturbing acceleration,
as was described in the Literature Review [43] performed prior to this work. However, in the fashion of the
patched conics approximation, an unpowered GA is often modelled as a two-body problem from the instance
of entering until exiting the SOI. In that case, the S/C follows a hyperbolic trajectory in a non-rotating inertial
frame centred at the GA-body, for which analytical solutions exist. The equations relating to conic sections
used within this chapter which are not derived are from Wakker [76], unless stated otherwise.

The geometry of an unpowered and unperturbed GA is shown in Figure 2.5, in which v+∞ and v−∞ are respecti-
vely the incoming and outgoing hyperbolic excess velocities, θ the true anomaly, a the semi-major axis, e the

2.2. Dynamics and Geometry 11

2
1

0

y [AU]

-1
-0.4
-0.2

0
0.2

z
[A

U
]

0.4

-2

x [AU]

-2 -1 0 1 2

Earth's orbit
Mars' orbit

Vesta's orbit Ceres' orbit

Mars GA

Figure 2.4: Dawn’s interplanetary trajectory in the heliocentric frame.

eccentricity, b the semi-minor axis, rp the point of closest approach and δ the turn or deflection angle.

-a

��
δ

(π/� � δ/��

rp

V
�
-

V�
+

b

-ae

-a
e

b

v(t1)

r(t1)

v(t2)

r(t2)

δ

π-δ
γ γ

ββ

Figure 2.5: Geometry of the hyperbolic GA section. [5]

Realising that a GA results in a rotation of the v∞ vector around the angular momentum axis in a non-rotating
inertial reference frame centred at the GA-body, the exit state out of the SOI can be determined from the entry
state into the SOI. Firstly, the position and velocity of the S/C with respect to the GA-body at epoch t (r(t),
v(t)) can be computed from the heliocentric states of the GA-body (Rb(t),Vb(t)) and S/C (R(t), V(t)) as

r(t) = R(t)−Rb(t) (2.1)

v(t) = V(t)−Vb(t) (2.2)

One of the most profound effects of GAs is the rotation of the position and velocity vectors around the angular
momentum axis c = (c1,c2,c3)T = r(t)× v(t). The corresponding rotation matrix for a rotation of angle α is
given by [5]

R(α) =
 cosα c3

c sinα − c2
c sinα

− c3
c sinα cosα c1

c sinα
c2
c sinα − c1

c sinα cosα

 . (2.3)

The rotation angle of the position vector α is comprised of the angles δ and γ, see Figure 2.5, and is given by

α=π−δ+2γ. (2.4)

12 2. Gravity Assists

The velocity vector is rotated over the deflection angle δ, as shown in Figure 2.5. The velocity and position
vector of the S/C with respect to the GA-body at the end of the GA (epoch t2), as a function of the velocity and
position at the beginning of the GA (epoch t1), are then given by

r(t2) = R(α)r(t1) = R(π−δ+2γ)r(t1), (2.5)

v(t2) = R(δ)v(t1), (2.6)

and converted to heliocentric frame as

R(t2) = Rb(t2)+R(π−δ+2γ)r(t1), (2.7)

V(t2) = Vb(t2)+R(π−δ)v(t1). (2.8)

Rotation Angles γ and δ

The incoming position vector r is rotated over an angle α through equation 2.4, for which the determination
of the intermediate angles δ and γ is described below. The deflection angle can be computed by firstly con-
sidering the true anomaly of the incoming asymptotes θ∞ (Figure 2.5), which is found by letting r tend to
infinity as

cosθ∞ = lim
r→∞

{
1

e

[
a

(
1−e2

)
r

−1

]}
=−1

e
, (2.9)

which can be rewritten as

θ∞ = cos−1
(
−1

e

)
. (2.10)

From the geometry in Figure 2.5, the true anomaly of the asymptotes can also be written as

θ∞ = π

2
+ δ

2
, (2.11)

such that after substituting equation 2.11 in equation 2.10, the deflection angle is found as

1

e
= sin

δ

2
(2.12)

⇒ δ= 2sin−1
(

1

e

)
. (2.13)

To evaluate this function, an equation for the eccentricity is needed. The semi-major axis for any hyperbola
can be expressed as

b = a
√

1−e2, (2.14)

re-arranging and substituting a =−µ/v2∞ gives

e =
√

1+b2
v4∞
µ2 . (2.15)

Lastly, from the geometry in Figure 2.5 and setting |r(t1)| = |r(t2)| = RSOI, the following equations can be
derived:

sinγ= b

RSOI
; b = r(t1)∧v(t1)

v(t1)
, (2.16)

in which b = |B| is the B-plane aiming point distance, also known as collision parameter or target point.

Equation 2.15 is then used to evaluate the eccentricity with r = RSOI. The eccentricity can then be used to
calculate the deflection angle with equation 2.13. The deflection angle, together with equation 2.16, gives all
angles necessary to determine the rotation angle α through equation 2.4.

2.3. Effects of Gravity Assists 13

Flight Time within SOI

The time spent within the SOI can be determined from Kepler’s equation as

n(t −Tp) = ehsinhH −H , (2.17)

where n2a3 =µ and Tp is the epoch at periapsis. Using the symmetry of the hyperbolic orbit, t = Tp −∆t/2 at
the entry point, the time spent within the SOI is given by

∆t =−2

√
a3

µ
(esinhH −H) , (2.18)

in which the hyperbolic anomaly H is given by

coshH =
(r

a
−1

) 1

e
, (2.19)

where r = RSOI.

2.3. Effects of Gravity Assists
GAs are mostly used to increase the magnitude and/or alter the direction of the heliocentric S/C velocity
vector, or to change the inclination. This section shall briefly describe some of the effects caused by a GA
and derive maximum values for some of them. Equations within this section are either derived from basic
equations for conical sections given by Wakker [76] or stem from Barrabes et al. [5].

2.3.1. Deflection Angle
The deflection angle is one of the major characteristics of a GA and will determine the extent of the achieved
∆V and direction of the S/C after the GA. The minimum deflection angle of 0◦ occurs when there is no at-
traction from the GA-body (µ = 0 or r →∞) or when the incoming velocity tends to infinity. The maximum
deflection angle is found by considering the eccentricity, which solely determines the deflection angle ac-
cording to equation 2.13. The eccentricity is a function of the incoming hyperbolic velocity v2∞ and closest
approach distance rp as

rp = a(1−e) (2.20)

⇒ e = 1+ rp a = 1+ rp
V 2∞
µ

. (2.21)

Substituting this formulation of the eccentricity in equation 2.13, gives the deflection angle as

δ= 2sin−1
(

1

1+ rp v2∞/µ

)
, (2.22)

which shows that performing a GA with a lower closest approach results in a higher deflection angle. The
limit case occurs when the closest approach distance is equal to the radius of the GA-body Rb , such that

δmax = sin−1
(

1

1+Rb v2∞/µ

)
. (2.23)

2.3.2. Velocity Variation
Besides deflecting the trajectory, a GA usually affects the velocity of the S/C. Gravity assists can supply both a
positive and negative ∆V , depending on whether the GA-body is approached from the front or behind. The
former is useful in reaching targets which are further away with less propellant or simply to get there faster,
whereas the latter is useful in slowing a S/C down. Multiple GAs of Jupiter’s moons are for instance used to
slow down a S/C enough to enter into a Europa orbit without requiring excessive propellant use [74].

Not all bodies within the solar system are good candidates for a gravity assists, which will be shown by deriving
an equation for the maximum velocity variation, which is shown to be a function of GA-body properties

14 2. Gravity Assists

2(t)V

(t)1V

(t)1V
2(t)V

2(t)V
(t)1V

V V

V V
2(t)V

(t)1V

vοο vοο

vοο

vοο

vοο

vοο vοο

vοο

γ

a) b)

c) d)

γ γ

γ

Figure 13: Vector diagram of the gravity assist manoeuvre.

where rmin is the minimum admissible distance to the centre of the planet at
the pericenter of the fly-by hyperbola (which must be equal or greater than the
radius of the planet plus the height of its atmosphere).

As can be seen from the diagrams in Figure 13, the rotation of v∞1 may
produce either an increase ‖V(t2)‖ > ‖V(t1)‖ (acceleration perturbation ma-
noeuvre) or a decrease ‖V(t2)‖ < ‖V(t1)‖ (deceleration perturbation manoeu-
vre) in the spacecraft outgoing velocity. In the case where the spacecraft passes
through the point of intersection of the orbits before the fly-by body, angles ν
and γ add up (v∞1 rotates counter-clockwise) and the spacecraft velocity de-
creases (case a). If the spacecraft flies behind the fly-by body, the angles ν and
γ are subtracted (v∞1 rotates clockwise) and the spacecraft velocity increases
(case b).

¿From Figure 13 it can be seen that the minimum value of the outgoing
velocity V(t2) can be attained when 2ν+γ = π and the maximum value can be
reached when the angles are subtracted γ−2ν = 0. In both cases, the spacecraft
post-perturbation velocity will be collinear to the planet’s velocity vector

Vmin(t2) = Vpl(t2)− v∞1, Vmax(t2) = Vpl(t2) + v∞1.

It should be noted that there are cases for which the change in the spacecraft
velocity (increase or decrease) is the same whatever the direction of rotation of
v∞1. This takes place when the spacecraft incoming velocity vector is collinear
(or almost collinear) to the velocity vector of the fly-by body. If V (t1) < V pl,
then only acceleration perturbation manoeuvres can occur. If V (t1) > V pl a
deceleration manoeuvre takes place. This is illustrated in Figure 13 (c and d
respectively).

When analysing such cases, one should take into account that, depending
on altitude of the spacecraft fly-by relative to the planetary surface, the angle

28

δ

δ

δ

δ

-+

b

-

+
b

-

+

b

-

+
b

Figure 2.6: Vector diagrams of some gravity assist maneuvers [5].

only. First off, consider the vector diagrams in Figure 2.6, where V(t1) is the incoming heliocentric velocity of
the S/C towards the GA-body, V(t2) is the outgoing heliocentric velocity after the GA, Vb is the heliocentric
velocity of the GA-body, and |v−∞| = |v+∞| = v∞ is both the incoming and outgoing hyperbolic excess velocity
of the S/C.

When the S/C passes in front of the GA-body, the angles γ and δ add up, resulting in a decrease of the helio-
centric velocity of the S/C, see Figure 2.6a. When the S/C passes behind the GA-body, the GA will produce an
increase in heliocentric velocity of the S/C as shown in Figure 2.6b. The geometry furthermore shows that the
minimum outgoing velocity occurs when δ+γ=π. Similarly, the maximum value is attained when γ−δ= 0.
In both cases, the S/C’s heliocentric velocity after the GA will be collinear to the GA-body’s velocity vector.

From the geometry in Figure 2.6, the velocity increment due to the GA (∆V = V(t2)−V(t1)) is described by

∆V = |∆V| = 2v∞ sin
δ

2
, (2.24)

substituting equation 2.22 and re-writing gives

∆V = 2v∞
1+ rp v2∞/µ

. (2.25)

This result shows that the maximum ∆V for a given v∞ is attained when the closest approach distance rp

is at its minimum, i.e., equal to the radius of the GA-body Rb . The v∞ that will give the maximum velocity
variation can be computed from

∂∆V

∂v∞

∣∣∣∣
rp=Rb

= 0, (2.26)

so that the maximum ∆V is found at a value of

v∞,opt =
(
µ

Rb

)1/2

, (2.27)

that is, the maximum ∆V is attained when the magnitude of the hyperbolic excess velocity is equal to the
circular velocity of a S/C in a circular orbit around the GA-body with radius r = Rb .

Substituting the result of equation 2.27 in equation 2.25 with rp = Rb gives

∆Vmax =
2v∞,opt

1+Rb/µ · v2
∞,opt

= 2v∞,opt

1+Rb/µ · µ
Rb

= 2v∞,opt

1+1
= v∞,opt (2.28)

=
(
µ

Rb

)1/2

. (2.29)

Table 2.1 shows the maximum attainable ∆V for a S/C performing a GA at the major planets, Sun and Moon,
determined from equation 2.29, with planetary data from [46]. Jupiter has by far the highest potential velocity
gain of the planets, which partly explains why many missions to the outer planets and beyond –such as New
Horizons and the Voyagers– have performed GA’s at Jupiter.

2.3. Effects of Gravity Assists 15

Table 2.1: Maximum attainable ∆V of the S/C due to a GA at different celestial bodies.

Body rb [km] µ [km3/s2] v∞,opt =∆Vmax [km/s]

Sun 6.96 ·105 132712.4 ·106 436.67

Mercury 2440 22032 3.00

Venus 6051.8 324859 7.32

Earth 6371 398600 7.91

Moon 1737 4905 1.68

Mars 3389.9 42828 3.55

Jupiter 71492 126686.5 ·103 42.10

Saturn 60268 379311.9 ·102 25.09

Uranus 25559 579393.9 ·101 15.06

Neptune 24766 683652.9 ·101 16.62

2.3.3. Inclination Variation
Gravity assists can also be used to significantly alter the inclination of the trajectory. This is for instance used
to reach an orbit over the poles of the Sun, as was the case in the Ulysses mission. When the S/C approaches
the GA-body from within the body’s orbital plane, the hyperbolic excess velocity vector can be rotated to any
location on a sphere, as shown in Figure 2.7.

V (t)1

V (t)2

V

C (t)1

vοο

vοο

M

y
x

z
i

i

Figure 20: Changes in the inclination angle of the spacecraft orbit as a result
of gravity assist manoeuvre.

Figure 21 gives the curves of maximum change in the spacecraft orbital plane
inclination resulting from a single fly-by of different planets in the solar system.
The data show that the highest potentialities for changing the spacecraft orbital
plane in a single fly-by is typical of those large planets of the Jovian group –
Jupiter, Saturn, Uranus, Neptune and Pluto. The potentialities of the Earth
group planets –Earth, Venus, Mars and Mercury– are somewhat lower.

Multiple fly-bys of the attracting body allow a greater increase in the in-
clination angle of the spacecraft orbital plane by way of additional rotation of
v∞2 during each fly-by.

It is evident that orbits with large inclination angles can be obtained. To
do this, it is necessary to perform fly-bys with large v∞, though the efficiency
of the gravity assist manoeuvre in this case will decrease (in accordance with
equation (49), growth in v∞ results in a reduction in the rotation angle 2ν).
This, in turn, will require the number N of fly-bys of the attracting body to be
increased so as to attain the necessary ∆i.

Gravity assist manoeuvres in space make it possible to significantly change
the inclination of the spacecraft orbital plane. This can be particularly impor-
tant in exploration beyond the ecliptic plane (e.g. in flights over the Sun) or in
flights to celestial bodies whose orbits are notably inclined to the ecliptic plane.

4.5 Numerical estimations for close encounters

In a previous section, we have seen how the energy of the interplanetary trajec-
tories with respect to the Sun changes after a close encounter with a planet. The
effect caused by the encounter with the planet can be studied numerically using
the Circular Restricted Three Body problem as a model. As the trajectory can
be approximated by a hyperbola during the close approach, we can also restrict
our attention to the planar case.

The aim is to classify a large variety of initial conditions of orbits with a
close encounter with the small primary (the planet), according to the effects

39

b

-

+

δ∆

Figure 2.7: Geometry of an inclination change of the S/C’s orbit due to a GA [5].

From this geometry, it follows that the change in inclination ∆i as a result of a GA is described by:

sin∆i = v∞ sinδ

Vb
, (2.30)

in which, from Section 2.3.1, the deflection angle δ is given by

sin
δ

2
= 1

1+ rp v2∞/µ
. (2.31)

It can then be derived that for a fixed value of v∞, the maximum increment in inclination is given by

sin∆i = v∞
Vb

, (2.32)

which is plotted in Figure 2.8 for the planets and Pluto. The potentialities in altering the inclination of the
terrestrial planets is much lower than those of the outer planets. The inner planets can still be used to generate
large inclination changes, but will require multiple GAs, whereas a single pass of one of the outer planets
usually suffices.

16 2. Gravity Assists

Figure 21: Maximum changes in the inclination angle of the spacecraft orbit
as a result of gravity assist manoeuvre. In the top figure 1 = Mercury, 2 =
Venus, 3 = Earth, 4 = Mars. In the bottom figure 1 = Jupiter, 2 = Saturn, 3
= Uranus, 4 = Neptune, 5 = Pluto.

due to the encounter with the planet. The classification are done evaluating
the energy and the angular momentum of the third body before and after the
passage near the planet. The orbits are identified by the Jacobi constant CJ

of the third body, the angle ψ between the primaries line and the pericenter
direction of the trajectory and the pericenter distance rp (see Fig. 22).

Then, given arbitrary values for the Jacobi constant CJ , the minimum dis-
tance rp and the angle ψ, the procedure has the following steps:

1. The position and the velocity at pericenter in the rotating synodical sys-
tem (x, y) is given by

rp = (1− µ+ rp cosψ, rp sinψ), ṙp = (−vp sinψ, vp cosψ),

where vp, the modulus of the velocity, can be calculated from the Jacobi
first integral.

2. Taking rp as initial conditions, the equations of motion are integrated for-
ward and backward until the distance between the third body and the
planet is bigger than a certain fixed distance. For bigger distances, the

40

Figure 2.8: Maximum inclination change due to a GA as a function of the hyperbolic excess velocity. Left figure: 1 = Mercury, 2 = Venus,
3 = Earth, 4 = Mars. Right figure: 1 = Jupiter, 2 = Saturn, 3 = Uranus, 4 = Neptune, 5 = Pluto. Courtesy of [5].

2.4. Powered Gravity Assist
All analytical equations derived so far relating to GAs are only valid for an unpowered and unperturbed S/C
in the vicinity of the GA-body and are a result of modelling the problem as a two-body problem. However,
thrusting within the SOI can have a significant effect, as this section will demonstrate. Within this section
the focus lies on the effect of thrust during a GA on the resulting ∆V and other GA parameters; the effect of a
powered GA on trajectory design and overall mission objectives shall be touched upon in Chapter 7.

There are two reasons why thrusting while inside the SOI can greatly affect the resulting ∆V and other GA-
related parameters. The first reason being that the closest approach distance rp can be altered, which accor-
ding to the result of Section 2.3 has a big impact on the generated ∆V and other parameters. Although the
equations derived in Section 2.3 are no longer valid due to the application of thrust, the qualitative results
still hold. The second reason why thrusting during the GA can have a significant impact is due to the ∆V
generated by that thrust force and the Oberth Effect [58], which states that an impulse applied inside a gravi-
tational well is a more efficient way to gain kinetic energy then if applied outside of that gravitational well. It
essentially states that a burn should be applied when the S/C is at its maximum velocity, i.e. at its periapsis.
The effect occurs since the propellant has more usable energy due to its kinetic energy in addition to its che-
mical potential energy, such that the S/C is able to employ that kinetic energy to generate more mechanical
energy. Since the S/C only remains near the periapsis for a short time, a large impulsive shot has the most
effect, which is limited to high-thrust missions. Such an impulsive shot at the periapsis does not affect the
closest approach distance, which means the increase in ∆V from that shot can readily be evaluated.

Low-thrust has to be applied over a longer duration to have much of an effect, and therefore will always alter
the closest approach distance. One could devise a simulation which would alter the entry conditions into the
SOI such that a comparison can be made between a powered and unpowered GA with both the same closest
approach distance. However, both would enter the SOI with different hyperbolic excess velocities, meaning
the two cannot be directly compared. It is assumed that in low-thrust application the effect of thrust on the
GA exit parameters is mostly caused by a change in closest approach distance, for which simulations follow.

2.4.1. New Horizons Powered Gravity Assist Simulations
A New Horizons like scenario will be presented which will show the effects of continuously applying tangen-
tial low-thrust at different parts of the trajectory within the SOI. The initial entry conditions into the SOI are
those of the actual mission, generated through SPICE [1] from official NASA kernels(2). The initial state will
be propagated while under the influence of the thrust and gravitational pull of the GA-body, after which the
resulting trajectories are compared to the baseline trajectory without thrust.

Four scenarios are computed numerically with a simple RK4 integrator with a step-size of h = 100s from the
initial conditions a few days prior to entering the SOI with a total integration time of 3 months (15 Jan - 15 Apr
2007). The helio- and planetocentric trajectories, together with the heliocentric velocity and planetocentric
distance of these scenarios are shown in Figure 2.9. Key parameters are tabulated in Table 2.2. The four

(2)Kernels available at: https://naif.jpl.nasa.gov/naif/data_archived.html

https://naif.jpl.nasa.gov/naif/data_archived.html

2.4. Powered Gravity Assist 17

computed scenarios are:

1. Baseline. The baseline trajectory is the nominal trajectory flown by New Horizons in which no thrust
was applied during the GA-manoeuvre and is shown in blue in Figure 2.9. The S/C spent a total of
59.2 days inside the SOI and approached Jupiter at a minimum distance of rp = 32.23 RX with closest
approach velocity of Vp = 21.2 km/s. The deflection angle of the resulting GA is δ= 15.9◦ which resulted
in a ∆V of 5.14 km/s.

2. From entry to periapsis. The trajectory shown in red is the result of applying a tangential thrust-force
of 1 N from the point of entry upto the point of closest approach. This thrust profile significantly lowers
the closest approach distance and therefore greatly increases the resulting ∆V and deflection angle.
The resulting flight time within the SOI is 52.6 days (-11% w.r.t. baseline) with a total thrust-time of 27.5
days. The closest approach occurs at a distance of rp = 2.67 RX (-92%) with a velocity of Vp = 42.2 km/s
(+99%). The ∆V due to the thrust and resulting GA is 8.58 km/s (+67%) and the trajectory is deflected
over 74.6◦ (+369%).

3. While altitude < 1
2 RSOI. Applying a tangential thrust force of 1 N from halfway into, to halfway out of

the SOI, results in the trajectory shown in magenta. In this trajectory, the thrust is applied while closest
to the periapsis and therefore makes use of the Oberth effect most effectively. Since thrusting is applied
before the periapsis is reached, the point of closest approach will be altered and therefore the effects of
the GA are also altered. With respect to the baseline of no thrust, the time within the SOI is decreased
by 6% to 55.3 days, of which thrust is applied continuously for 27.3 days. The trajectory has a closest
approach at 23.8 RX (-26%) where the closest approach velocity is Vp = 23.3 km/s (+10%). The resulting
∆V is 5.89 km/s (+15%) and the deflection angle is 23.1◦ (+45%).

4. From periapsis to exit. The trajectory shown in green is the effect of applying a tangential thrust force
of 1 N from the point of closest approach onward, until exiting the SOI. This thrust profile does not
alter the point of closest approach which renders the ∆V due to the GA to be broadly equal to that of
the baseline. The increase in∆V and deflection angle is mainly caused by the effect of the thruster, and
not because of altering the GA geometry. The flight-time within the SOI is 57.2 days (-3%), during which
the thruster is engaged for 27.6 days. The closest approach distance is similar to the baseline case at
rp = 32.23 RX (+0%) where the closest approach velocity is Vp = 21.2 km/s (+0%). The∆V has increased
to 5.44 km/s (+6%) as a direct result from expelling mass through is thruster. Similarly, the deflection
angle has increased to 20.6◦, an increase of +30% from the baseline case.

Table 2.2: Key GA parameters for the four New Horizons like scenarios under the influence of thrust inside the SOI.

Scenario Tflight (days) Tthrust (days) rp (RX) Vp (km/s) ∆V (km/s) δ (deg)
1. Baseline 59.2 - 32.2 21.2 5.1 15.9
2. From entry to periapsis 52.6 27.5 2.7 42.2 8.6 74.6
3. While altitude < 1

2 RSOI 55.3 27.3 23.8 23.3 5.9 23.1
4. From periapsis to exit 57.2 27.6 32.2 21.2 5.4 20.6

The three presented scenarios have about the same thrust-time with the same thrust-force, but do show
tremendous differences amongst each other. These simulations have shown that the effects of thrusting while
performing a GA are mostly caused by lowering the closest approach distance, rather than by the direct ∆V
generated by the thruster and the Oberth effect as in high-thrust missions. It is clear that thrusting during
a GA alters the trajectory in such a way that the analytical equation derived in the previous sections cannot
be used and one will have to rely on numerical methods. It should be noted that the SOI of Jupiter is much
larger than those of the terrestrial planets. Due to their smaller size, the maximum thrust-time within the SOI
is much shorter and therefore the effects of thrust will be smaller.

18 2. Gravity Assists

-3.5 -3 -2.5 -2

x [m] #1011

-8.2

-8

-7.8

-7.6

-7.4

-7.2

-7

-6.8

y
[m

]

#1011 Heliocentric

-5 0 5

x [m] #1010

-6

-4

-2

0

2

4

y
[m

]

#1010 Planetocentric

0 20 40 60 80

Time [days]

15

20

25

30

35

40

45

50

H
el

io
ce

nt
ric

 v
el

oc
ity

 [k
m

/s
]

0 20 40 60 80

Time [days]

0

200

400

600

800

1000

1200

1400

D
is

ta
nc

e
[R

]

Figure 2.9: Powered New Horizons like GA at Jupiter, continuous thrust of T = 1 N applied tangential to the trajectory. Grey spheres
denote the SOI of Jupiter, grey line denotes properties of the orbit of Jupiter around the Sun. Blue lines relate to the unpowered baseline,
red lines are the result of thrusting from entering the SOI until reaching the periapsis, magenta when the thrust is applied from halfway

into to halfway out of the SOI and green when the thrust is applied from the point of closest approach until exiting the SOI.

3
Low-Thrust Trajectory Optimisation with

Evolutionary Neurocontrol

This chapter will formally define the low-thrust trajectory optimisation problem. The problem is conventio-
nally solved from an optimal control standpoint, which will briefly be introduced in Section 3.1. This will help
in determining optimality and in the formulation of objective and fitness functions. An important distinction
in classical methods is that of local and global trajectory optimisation methods, and a high-level description
is given of each in Section 3.2. Due to the drawbacks of these classical method, a high-level description of a
smart low-thrust trajectory optimisation method is presented in Section 3.3; indicating what requirements
such a method should fulfil. The remainder of this chapter describes elements which will be used to create
such a smart method, tackling the problem from the perspective of RL, a sub-field of Machine Learning (ML).
To this end, Section 3.4 formally introduces the concepts of Artificial Intelligence (AI), ML and in particular
RL. With an understanding of RL, the low-thrust trajectory optimisation problem is tackled from the per-
spective of RL in Section 3.4.3. The focus shall then shift to a specific RL method termed neuroevolution or
evolutionary neurocontrol, which combines ANNs (Section 3.5) with EAs (Section 3.6) to solve optimal control
problems. This method lies at the heart of the low-thrust trajectory optimisation tool termed InTrance (Chap-
ter 4), which will be adapted in Chapter 5 to create a smart low-thrust trajectory optimisation tool capable of
optimising low-thrust gravity assist trajectories.

3.1. The Low-Thrust Trajectory Optimisation Problem
The trajectory of a S/C is defined as an image of some time interval [t0, t f] in some six-dimensional S/C state
space {x} ⊂ R6. The state at each time instance t can be described with any suitable coordinate system, with
Cartesian elements being the most common. The state x at some instance t is then described by a vector
x = [r v]T = [x, y, z, ẋ, ẏ , ż]T . The low-thrust trajectory optimisation problem then consists of finding a set of
states that describe the complete trajectory from some initial condition to some target, while abiding to the
constraints of and on the system, and maximising some performance criteria.

The low-thrust trajectory optimisation problem can be transformed to the perspective of optimal control the-
ory. The goal is then to find an optimal S/C control function U which maps some input domain onto a control
vector u ∈ Rnu , thereby completely defining the magnitude and direction of the S/C’s thrust force T, while
abiding to the constraints of and on the system, and minimising some cost function J . The trajectory is then
found by (numerically) integrating the Equations of Motion (EoM) from the initial conditions while applying
the control vector as ẋSC(t) =G (xSC(t),u(t)), G :R6+nu 7→R6. The optimal trajectory is then a combination of
optimal initial conditions x∗(t0) plus optimal control vector u∗(t).

Finding a continuous control vector u∗(t) from a continuous control function U∗ in a per definition infinite
solution space is often not possible. Discretising the domain [t0, t f] (t 0 ≤ t0 = t̄0, ..., t̄ f = t f ≤ t̄τ ≤ t̄ f) into τ

intervals is usually more practical and efficient. This reduces the function parameter space to nuτ and solving
the problem turns into a problem of finding the optimal S/C control vector history u∗[t̄] ∈Rnuτ. The optimal
trajectory x∗SC[t] = x∗SC[t̄0, t̄ f] is then found by applying u∗[t̄] and numerically integrating the EoM from the

19

20 3. Low-Thrust Trajectory Optimisation with Evolutionary Neurocontrol

initial conditions onward.

Two elemental formulations of the low-thrust trajectory optimisation problem are the Rendezvous (RV) pro-
blem and the Flyby (FB) problem. A successful RV requires to match its velocity and position to that of the
target at some time instance, whereas a S/C in a FB problem only requires to match the position. The target
is generally a body such as a planet or asteroid but can be any of the following: a celestial body, the orbit of a
celestial body, a free orbit described by an (incomplete) set of orbital elements, a fixed state vector, or a fixed
state in space. In the realm of optimal control, the rendezvous and flyby problem boil down to finding the
optimal control vector u∗ that steers the S/C optimally from the initial conditions. The formal expressions, in
the case of discrete time, are described by Ohndorf [59, p. 32] as:

Discrete RV problem from the perspective of optimal control theory:
Find a spacecraft control vector history u[t̄], with t̄ ∈ [

t̄0, ..., t̄ f −1
]
, which forces the state XSC(t) =(

rT
SC, ṙSC(t)T

)T
of the spacecraft from its initial value xSC(t̄0) to the state xT (t̄) of the target body,

along a trajectory that obeys the dynamic constraint ẋSC(t̄) = G(xSC(t),u(t)) and the terminal
constraint xSC(t̄ f) = xT (t̄ f), and at the same time minimises a specific cost function J for that
transfer.

Discrete FB problem from the perspective of optimal control theory:
Find a spacecraft control vector history u[t̄], with t̄ ∈ [

t̄0, ..., t̄ f −1
]
, which forces the position rSC(t)

of the spacecraft from its initial value rSC(t̄0) to the position rT (t̄) of the target, along a trajectory
that obeys the dynamic constraint ẋSC(t̄) = G(xSC(t),u(t)) and the terminal constraint rSC(t̄ f) =
rT (t̄ f), and at the same time minimises a specific cost function J for that transfer.

Within the realm of optimal control problems, the optimality of a trajectory is determined through minimi-
sation of cost functions. Common examples of cost functions within the low-thrust trajectory optimisation
problem are to minimise transfer time

JT =
∫ t f

t0

dt = t f − t0 =∆t , (3.1)

or to minimise the required propellant for a given transfer time and launch mass

Jmp =
∫ t f

t0

ṁp dt = mp (t f)−mp (t0) =∆mp . (3.2)

However, both are examples of single-objective optimisation, whereas within the low-thrust trajectory opti-
misation problem one is usually interested in optimising both propellant usage and flight time. Such multi-
objective optimisation can be performed by Pareto optimisation, or more simply by introducing constraints
on one parameter and solely making the other parameter subject to optimisation.

3.2. Traditional Trajectory Optimisation
Satellites have been flying through interplanetary space since the 1960’s with the Venera missions to Venus.
Initially, trajectories were often based on an initial guess by an astrodynamics expert. Nowadays, more sophi-
sticated methods are available to optimise trajectories, and their general characteristics will be discussed in
this section. Traditional trajectory optimisation usually transforms the problem of finding a 6-dimensional
state representation of the trajectory over time into finding a 3-dimensional control vector history, which
when combined with an initial state and a numerical integrator, results in the trajectory. Solving for the opti-
mal control vector is no trivial tasks, and in general, no analytical methods exist that can tackle the problem.
In high-thrust optimisation problems, one usually looks to optimise a handful of instantaneous burns along
the trajectory. Low-thrust complicates the problem further, as one is no longer looking at a handful of burns
but at very long thrust arcs, often lasting for months at a time, vastly increasing the problem’s dimensions.

In general, there are two traditional classes of trajectory optimisation methods for both high- and low-thrust
trajectories, these are either termed local or global methods, which are described next.

3.2.1. Local Trajectory Optimisation Methods
Local Trajectory Optimisation Methods (LTOMs) are build on an extensive mathematical background based
on the calculus of variation, employing so called optimal control methods. LTOMs can be divided in direct

3.2. Traditional Trajectory Optimisation 21

and indirect methods; where nonlinear programming is an example of a direct method, and gradient met-
hods like hill climbing and neighboring extremal methods are examples of indirect methods. The theoretical
basis behind these methods is not required for a qualitative assestment of LTOMs, and therefore will not be
elaborated on. For a comprehensive survey of both direct and indirect methods, the reader is referred to
Betts [9]. The common denominator in all LTOMs is their need for an initial guess, often of the control vector
history u[t̄], and are therefore not suited for autonomous trajectory design. LTOMs find the most optimal
steering strategy that is in the vicinity of that initial guess, and boil down to finding a better solution than the
initial guess, rather than finding the absolute best solution.

A block diagram of conventional LTOMs is shown in Figure 3.1. The first step is the setup of the initial con-
ditions, arrival conditions and a discretisation. Setup of these values is done by the user, and requires expert
knowledge in the fields of mission design, astrodynamics and optimal control theory. A simulation is then
performed during which the local steering laws change the orbital elements, until the S/C’s terminal state is
close enough to the target state or body. Local steering laws are a set of equations that give the locally opti-
mal thrust direction that changes some specific osculating orbital element of the S/C with a maximum rate.
Lagrange’s planetary equations in Gauss’ form (see [76]) are often used as local steering laws, as they describe
the rate of change of a body’s osculating elements due to some acceleration or force.

3. TRAJECTORY OPTIMIZATION 37

Figure 3.4: Traditional Trajectory Optimization Using Local Optimization Methods.
[13] The basic algorithm or procedure of LTOMs starts with the problem setup and defines the
initial and terminal conditions as well as the timely discretization. Application of LSLs then
gives an initial guess of the control history, which is again input to the LTOM. The result is an
improved, local-optimal solution, which is often close to the initial guess.

Starting from there, LTOMs try to find an optimal u� rt̄s in the sense of finding “a better
solution than the initial guess” than finding “the best solution”.

Figure 3.4 shows a generic sketch of a LTOM algorithm. Its first step is the setup of the
transfer, i.e., initial conditions, arrival conditions, and a timely discretization. This requires
expert knowledge in mission design and astrodynamics. A simulation is then carried out
during which the application of LSLs changes the orbital elements until the spacecraft’s
terminal state is close enough to the target state or body. This is again done under supervision
of an expert and finally results in an initial control vector history that can be input to an
LTOM. Convergence of the following LTOM application with this initial guess is however not
guaranteed because similar initial guesses can produce dissimilar results.1 The generation
of the initial guess must be repeated if the LTOM does not converge. This makes regular
user interaction and supervision indispensable. The result of a successful LTOM run is an
improved solution, which will however be often close to the initial guess solution. That means,
if the initial guess solution was far away from the global optimum, then the LTOM-improved
solution will most likely also be far away from the global optimum. An LTOM is by principle
not able to cross big distances in the solution parameter space, but that is exactly what is
required to move from a far-off input solution towards a globally optimal one.

The advantages of LTOMS are:

• Proven mathematical foundations. Being purely mathematical, LTOMs are well
understood and deterministic, which gives confidence in their results.

• Accuracy. The results of an LTOM are of very high fidelity, which is not surprising
as they are mathematical optimization methods. A given transfer is often treated as a
boundary value problem (BVP) and therefore the initial and final conditions matched
exactly.

1This is no contradiction to the well understood mathematical foundations of LTOMs.

Figure 3.1: Traditional trajectory optimisation using local optimisation methods. Courtesy of [59].

LTOMs are, despite their need of constant supervision, quite popular and have been used in many trajectory
optimisation problems. A major advantage is that they have a proven mathematical foundation, and their
behaviour is well understood and deterministic. The main upside of LTOMs is their accuracy; the resulting
trajectory usually matches exactly to the initial and desired final conditions. However, they naturally also
have their drawbacks. The major disadvantage is the need for an initial guess, which either requires an ex-
pert in the fields of mission design, astrodynamics and control theory; or expertise in intricate shape-based
methods. Furthermore, when LTOMs converge to a solution, it is usually a local optimum, not the desired
global optimum. Iterative variation of the initial guess to improve a solution is difficult, as similar inputs can
produce very dissimilar results. Additionally, local steering laws are needed and often cannot be described
analytically, necessitating additional effort to approximate them numerically. Lastly, the computational ef-
fort of LTOMs can be substantial, as many transcribe the trajectory problem into a system of linear equations,
often resulting in matrices with dimensions reaching up to many thousands.

Hence, if high accuracy is of the utmost importance, one should rely on LTOMs. However, they can only find
the global optimal solution if it is sufficiently close to the initial guess. Therefore, LTOMs are often initialised
with an initial guess generated by Global Trajectory Optimisation Methods (GTOMs), which are the subject
of the next section.

22 3. Low-Thrust Trajectory Optimisation with Evolutionary Neurocontrol

3.2.2. Global Trajectory Optimisation Methods
GTOMs are different from LTOMs in that they search for the true global optimum and do not require an
initial guess. Some common global methods in trajectory optimisation are; Dynamic Programming (DP),
branch and bound algorithms, differential evolution, particle swam optimisation, genetic programming and
simulated annealing. There is no GTOM method superior to all other methods for all trajectory optimisation
problems, as the optimal method is highly problem dependent. Again, the mathematics of every algorithm is
not necessary to discuss their common behaviour. For additional information, Alemany [2] gives an extensive
survey of GTOMs applicable to the low-thrust trajectory optimisation problem for an asteroid rendezvous
mission.

The major advantage of GTOMs is their global search behaviour and independence from an initial guess. The
search space of a GTOM is not constrained to the vicinity of an initial guess, and if a global optimum exist, a
GTOM is likely to find it when properly coded and given sufficient resources. Due to their independence of
an initial guess, GTOMs can often be initialised at random, without the need for expert knowledge. Another
major advantage of GTOMs is their ability to optimise both the initial conditions of the trajectory, and the
optimal control history u. Especially when incorporating gravity assists; optimisation of initial conditions of
the S/C becomes important. Gravity assists require the planets to form favourable configurations, which can
more easily be found with an optimisation of a launch window, as opposed to a fixed launch date. However,
GTOMs also have their drawbacks. The first being their lower accuracy as compared to LTOMs, however,
this is not necessarily a drawback for preliminary mission design studies. Furthermore, since GTOMs are
heuristic optimisation methods, and their behaviour is therefore non-deterministic, they could potentially
require multiple runs to converge to a solution.

It is clear that for intricate problems a GTOM is preferable over an LTOM, where the solution of the GTOM
can be used later on as an initial guess for an LTOM to generate a higher fidelity solution. For preliminary
design though, a GTOM often suffices in terms of required accuracy. The problem with conventional GTOMs
is that they are often problem specific, and no single tool exists that can determine optimal trajectories for all
types of missions, especially not for low-thrust gravity assist trajectories.

3.2.3. State-of-the-Art Trajectory Optimisation Tools
Methods that are commonly used in the industry are ESA’s PaGMO, NASA’s Mystic and independent open-
source PSOPT. PaGMO [39] is developed by ESA ESTEC and is a library for massively parallel optimisation
and provides a unified interface to optimisation algorithms. Although very powerful, it is not equipped to
optimise a large set of trajectories, rather, it provides the building blocks to create a tool capable of optimising
a specific trajectory.

NASA’s Mystic [78] is a tool combining both global and local methods and is fully capable of optimising many
types of interplanetary low-thrust trajectories and can autonomously find gravity assists if beneficial. It is
still dependent on an initial guess through a ’guesstool’ GUI, requires heavy modification for new missions,
and is highly dependent on astrodynamics and mission design expertise. This tool was used to design the
Dawn and Jupiter Icy Moon Orbiter missions. Mystic is only available to US companies/citizens due to ITAR
regulations.

PSOPT [6] is often used by nations involved in spaceflight lacking a dedicated tool for trajectory optimisation
and (university) researchers. It is, for instance, used by the Brazilian space agency to determine optimal
trajectories to an asteroid [81]. PSOPT is an open-source optimal control software package that uses direct
collocation methods. It is a general tool capable of solving many types of control problems, with no specific
focus on trajectory optimisation, and therefore has to be adapted for each new mission, which is no trivial
task.

A commonly used method for the design of low-thrust gravity assist trajectories is to combine a software
tool termed GALLOP with STOUR-LTGA [15, 25, 51]. STOUR-LTGA was developed by Petropoulos [61] and
is capable of making broad searches in the set of low-thrust gravity assist trajectories with simple analytical
shape-based methods. STOUR-LTGA generates thousands of candidate solutions, from which the user should
select a single one to serve as an initial guess for GALLOP. GALLOP [51] then uses a direct local optimisation
method developed by Sims and Flanagan [68] to find an optimal solution which is close to the initial guess.
All in all, before a trajectory results from GALLOP, a total of at least three software tools has to be used, all
which rely heavily on astrodynamics expertise [50].

3.3. Smart Low-Thrust Trajectory Optimisation 23

3.3. Smart Low-Thrust Trajectory Optimisation
A truly smart GTOM should be able to function independent from knowledge of low-thrust trajectory opti-
misation experts, both during the optimisation process and at its initialisation. Such a method should furt-
hermore not require any input different than a description of the mission, i.e. which targets it should visit
and intervals for the initial conditions. It should furthermore be able to optimise a broad set of trajectories to
varying targets without the need of re-writing its code for each new mission. The general concept of such a
method was sketched by Dachwald [17] and is shown in Figure 3.2.

�
�

�
�

?

�
�

�
�

?�� �

?�� �

?

�
�

�
�

'

&

$

%
done by the

computer

Initial, intermediate and target bodies

Initial conditions t0, vexc, etc.

GTOM

near-global optimal trajectory

Intervals for initial conditions

Figure 3.2: Smart low-thrust trajectory optimisation using a global trajectory optimisation method. Courtesy of [17].

Dachwald [17] created such a smart low-thrust trajectory optimisation method he termed InTrance, which
was later extended by Ohndorf [59] to include multi-phase missions. This method is described in Chapter 4
and will serve as the basis to create a tool capable of optimising low-thrust gravity assist trajectories as descri-
bed in Chapter 5. InTrance makes use of a method from the field of RL, for which the general characteristics
are described in the remainder of this chapter.

3.4. Artificial Intelligence and Reinforcement Learning
Artificial Intelligence (AI), as its name suggests, is an artificial tool that aims to mimic the capabilities that
distinguish man from machine, i.e. the ability to learn, think, generalise, solve problems, and adapt to its
environment. A comprehensive definition of AI was devised by Shapiro [67] as:

"Artificial Intelligence is a field of science and engineering concerned with the computational un-
derstanding of what is commonly called intelligent behaviour, and with the creation of artefacts
that exhibit such behaviour."

An essential part of AI is Machine Learning (ML); i.e. the ability for a machine to learn from –an adapt itself
to– its environment. A common denominator in the definition of ML is, according to De Jong [23], its abi-
lity to make structural changes to themselves over time with the intention of improving their performance
on given tasks evaluated by the problem environment, to discover and subsequently exploit interesting pat-
terns/concepts, or to improve the consistency and generality of internal knowledge structures. ML tasks are
generally divided into three categories; (1) Supervised Learning (SL), (2) Unsupervised Learning (UL), and (3)
Reinforcement Learning (RL).

Within the first category, supervised learning, the algorithm is presented with example inputs and their de-
sired outputs, in which the goal is to learn a general rule that maps inputs to outputs. The second category,
unsupervised learning, is given data as its input, but there is no accompanying output, leaving the machine
to find a structure within the data. Unsupervised learning can also be the goal in itself, for instance, in dis-
covering hidden patterns or as a means to learn a specific feature. The last category, reinforcement learning,
is most often used when solving control problems; it allows the application of ML to problems for which no
data is available. Within RL, a program interacts with the environment in which it must perform a certain
goal, for which feedback is provided through the use of an objective or fitness function. The learning system
in ML is termed an agent, and optimal behaviour of that agent is defined by an associative mapping from a
situation domain X onto an actions domain A trough S : X 7→A. Evaluation of the reaction of the environ-
ment then results in a scalar fitness value J , which ’measures’ the quality of the agent’s action. Reinforcement
learning can further be subdivided in immediate or delayed reinforcement learning, where in the former the

24 3. Low-Thrust Trajectory Optimisation with Evolutionary Neurocontrol

environment reacts immediately after each of the agent’s actions, and in the latter only a single fitness J is
returned for all actions during a certain time step. The optimal strategy then is the strategy that maximises
the sum of positive reinforcements and minimises the sum of negative reinforcements.

With respect to the intended use, RL boils down to solving a Markov Decision Process (MDP), indicating
which action to perform for a certain state of the system, while maximising some reward. The concept of
MDPs will be the subject of the following section.

3.4.1. Markov Decision Process
The control of a S/C can be described by a Markov Decision Process (MDP), that is, at each time step the S/C
has a certain state and a decision has to be made on what action to perform to eventually reach a target in
minimum time, with minimal fuel consumption, or any other metric. The environment is then modelled as
a set of states, where actions can be performed to control the system’s state in such a way that a performance
criterion is maximised.

A multitude of problems can be modeled as MDPs, such as (stochastic) planning problems, learning (robot)
control and game playing problems. Instead of creating a planning in which every foreseeable action and out-
come is documented, MDPs deal with policies that map states onto actions in such a way that the expected
outcomes will have the intended effects. Principally, good or optimal policies for problems modeled as MDPs
can be computed with either Dynamic Programming (DP) or RL, where RL deals with the more general case
in which no (prior) knowledge about the MDP is available. DP can be used when problems have a relatively
small number of states and when the underlying random structure is relatively simple [34]. Delayed RL can
then be described as a class of algorithms in the field of ML that aims at allowing an agent to learn how to
behave in an environment, where (scalar) feedback is only provided after numerous actions have been com-
pleted. The remainder of this section will consist of formal definitions of states, actions, transition between
states, and rewards, after which the MDP can formally be defined. The following definitions are from Wiering
[80]:

States
A state is a unique characterization of all information that is important in describing the state of the modelled
problem. As an example, in chess, the state is given by a complete configuration of the board, that is, all the
positions and types of both black and white pieces. The complete set of all possible states is then the finite
set S = {

s1, ..., sN
}
, where the size of the state space is |S| = N .

Actions
Actions are used to control the system state, the set of actions that can be applied to a particular state s ∈ S is
denoted by A(s), with A(s) ⊆ A. The complete set of actions is then given by A = {

a1, ...aK
}
, where the size of

the action space is |A| = K . Not all actions can be applied in all states s ∈ S, and hence a precondition function
pre : S × A → {true,false} is applied, stating whether action a ∈ A is applicable to state s ∈ S. As an example,
the action A of moving the queen in chess can only be applied when the queen is still available in the state s,
hence, when it has not yet been removed from the board.

The transition function
The system makes a transition from state s ∈ S to a new state s′ ∈ S by applying an action a ∈ A, based on
a probability distribution over the entire set of possible transitions. The transition function T is defined as
T : S × A×S → [0,1], which states that the probability of ending up in state s′ after applying action a on state
s is T (s, a, s′). The state transitions of a MDP satisfy the Markov or memoryless property, that is, the action of
the state does not conditionally depend on the previous states and actions, but only on the current state:

P (st+1|st , at , st−1, at−1, ...) = P (st+1|st , at) = T (st , at , st+1) . (3.3)

Hence, the current state s gives enough information to make an optimal decision, regardless of what states
were achieved and what actions were taken before.

Reward function
The reward function (positive for a reward, negative for a penalty) specifies rewards for being in a specific state
or for performing some action in a particular state. Within this work, the reward function will be defined as
R : S × A ×S → R, giving rewards for particular transactions between states. The reward function implicitly
states the goal of learning, for instance in chess; all states that resulted in a won can be given a positive reward,
all states that resulted in a loss a negative reward, and a zero reward for each state that resulted in a draw, such

3.4. Artificial Intelligence and Reinforcement Learning 25

that the reward function gives direction to how the system (i.e. the MDP) should be controlled.

With the above definitions, the MDP is defined as tuple 〈S, A,T,R〉 where S is a finite set of states, A a finite
set of actions, T a transition function defined as T : S × A × S → [0,1] and R a rewards function defined as
R : S × A ×S → R. Hence, a MDP is a discrete stochastic control process, where at each step the system is in
some state s, such that the policy π decides which action a should be taken, resulting in a new state s′, from
which it receives a certain reward R(s, a, s′). The policy, or agent,π is then a computable function that outputs
what action a ∈ A(s) should be taken given state s ∈ S, and hence acts as a mapping from inputs to outputs,
formally defined as π : S → A.

3.4.2. Solving Markov Decision Processes
Solving a MDP is equivalent to computing the optimal policy π∗. There are two classes of algorithms, based
on whether the algorithm is model-based or model-free, that can solve a MDP. Model-based algorithms are
categorized under the umbrella term Dynamic Programming (DP), in which the basic assumption is that a
model of the MDP is known a priori such that it can be used to compute value functions and policies. Model-
free algorithms fall in the class of RL, they do not rely on the availability of a perfect model, but rather interact
with an environment, such that a simulation of a policy generates samples of state transitions and rewards,
which are then used to estimate state-action value functions.

Within the remainder of this work, only RL will be considered. The reason is twofold, first off, DP requires an
a-priory model, which is tedious and difficult to obtain for the low-thrust trajectory optimisation problem.
Furthermore, the mentioned DP algorithms require iterations over the full state-space and are therefore at
a major disadvantage due to the curse of dimensionality. RL methods can still find near-optimal solutions
without the need for a model, thereby rendering a much more efficient process for large scale problems [35].

There are roughly four categories of direct RL methods; (1) direct policy-search, (2) Temporal Difference (TD)
learning, (3) brute forcing, and (4) Monte Carlo simulations. The latter three are not used within this work
and the reader is referred to Wiering [80] and the Literature Review [43] for more information. Direct policy-
search searches directly in the policy space, such that the problem becomes a case of stochastic optimisation.
The main type of algorithms within this class are the Evolutionary Algorithms (EAs), which when used in
conjunction with an Artificial Neural Network (ANN) as the agent, results in the field of neuroevolution.

Direct policy-search is by no means limited to EAs, and can be any global or local optimisation method. Ho-
wever, evolutionary methods have proven to be a particularly popular way to search policy space, rendering
that a rich collection of algorithms and results are available in the RL literature. Furthermore, EAs often out-
perform other global methods in RL tasks [43]. Local methods will not be considered since they often find
sub-optimal solutions and can get trapped in local minima. The determination of parameters (weights/thres-
holds) in ANNs with a predetermined structure, such as fixed feed-forwards multilayer perceptrons, requires
the solution of a non-linear optimisation problem. Such problems are usually NP-complete and the chance
of finding the optimal solution using gradient-based methods is minimal for large dimensions [82].

3.4.3. Trajectory Optimisation from the Perspective of Reinforcement Learning
The low-thrust trajectory optimisation problem can be modelled as a Markov Decision Process (MDP). The
task is then to solve the MDP, hence, to determine the optimal policyπ∗. The policy, combined with an agent,
results in a steering strategy S.

The RV and FB problem are readily transformed to the domain of RL as:

Discrete RV problem from the perspective of reinforcement learning:

Find a spacecraft steering policy π∗, which forces the state XSC(t) = (
rT

SC, ṙSC(t)T
)T

of the space-
craft from its initial value xSC(t̄0) to the state xT (t̄) of the target body, along a trajectory that obeys
the dynamic constraint ẋSC(t̄) =G(xSC(t),u(t)) and the terminal constraint xSC(t̄ f) = xT (t̄ f), and
at the same time minimises a specific cost function J for that transfer.

Discrete FB problem from the perspective of reinforcement learning:
Find a spacecraft steering policy π∗, which forces the position rSC(t) of the spacecraft from its
initial value rSC(t̄0) to the position rT (t̄) of the target, along a trajectory that obeys the dynamic
constraint ẋSC(t̄) = G(xSC(t),u(t)) and the terminal constraint rSC(t̄ f) = rT (t̄ f), and at the same
time minimises a specific cost function J for that transfer.

26 3. Low-Thrust Trajectory Optimisation with Evolutionary Neurocontrol

3.5. Artificial Neural Networks
Artificial Neural Networks (ANNs) are technologies counterpart to the biological Neural Network (NN). An
ANN tries to simulate the workings of a NN, making it possible to tackle numerous types of problems under
varying conditions. An amazing biological example of the capability of a NN can be seen in the housefly, with
an estimated amount of 100 000 neurons, its NN is capable of controlling the housefly’s intricate flight path,
guiding the fly on its quest to find food and a suitable mate, to eventually produce offspring; arguably the
main goal of the housefly. The controller within the housefly does not rely on intricate calculus of variations,
but has adapted –and improved– itself due to Darwin’s [22] principle of evolution. Nature and time have taken
care of the optimisation of the neurocontroller trough both recombination and mutations of the fly’s genetic
material, and trough natural selection, i.e. through ”survival of the fittest”.

The analogy to nature in ANNs can be taken a step further by also employing an optimisation scheme that
works in much the same way as the evolution of the housefly, collectively termed EAs, used to optimise the
effectiveness of the NN. Combining ANNs with EAs results in the field of research that is then termed neuroe-
volution, or evolutionary neurocontrol when applied to control problems. ANNs have been applied in many
fields of research, primarily due to their ability to approximate complex environments without any a priori
knowledge about the underlying function. Hence, ANNs have opened a complete new realm of possibilities,
allowing research in topics in which the underlying theory is unknown or simply not fully understood.

This section will describe the basics of ANNs, most prominently being the components which make up the
network. Section 3.6 will detail the workings of EAs such that neuroevolution can formally be defined in
Section 3.7. The reader is reffered to the Literature Review [43] conducted prior to this work for a more com-
prehensive overview of the history, inner workings and learning algorithms of ANNs.

3.5.1. Biological Paradigm
Artificial Neural Networks (ANNs) are an attempt at modeling the information processes of nervous systems.
Contrary to cellular automata, NNs have a hierarchical multilayered structure; information is not only trans-
mitted to its direct neighbors but also to more distant units [64]. It achieves this by interconnecting one
neuron with many other neurons, thereby forming a network which is able to process and store information,
generalise, learn, and make decisions, based on both experience and the current environment. Biological
neurons exist in many different shapes and forms, depending on its task and the specie. However, common
features in most types of neurons are the cell body, dendrites, synapses, and the axon. An illustration is de-
picted in Figure 3.3. Although the exact workings of the neuron are not completely understood, the general
consensus is that a neurons’ electrical output is dependent on the level of exciting and inhibitive inputs. If the
excitement exceeds the sum of inhibitive inputs, the neuron fires an electrical signal along its output exten-
sion. Inhibitive inputs are received by other neurons and connect to the cell body trough extensions called
dendrites. If the neuron fires an electrical signal, it travels through its output extension, termed axon, and
either connects directly to muscles and organs, or branches of and connects to dendrites of other neurons via
synapses.

cell body

axon from neuron

synapse

dendrite

wixi

wnxn

w1

output axon

activation

function

f∑wixi
i

f()∑wixi

x1

w1x1

n
i

n

+θ
+θ

Figure 3.3: Illustration of a typical biological neuron (left) and artificial neuron (right), both from [41].

An artificial neuron (also termed unit), as depicted on the right side of Figure 3.3, mimics much of the basic
functions of a biological neuron. In an artificial neuron, the output of one neuron is connected to many other
neurons, receiving the output of the former neurons as input, similar to the axon in a biological neuron. The
artificial axon then connects to a synapse, where the input is multiplied by some weight w . The product of the
two then travels along to the cell body, much in the same way as the dendrite in a biological neuron. Within
the cell body, the inputs are summed and compared to some threshold θ. It is then run trough an activation

3.5. Artificial Neural Networks 27

function f , which determines how large the output of that neuron is, which again travels over an axon and
connects to a new neuron.

3.5.2. Components of Artificial Neural Networks
ANNs are constructed by connecting single neurons (also termed units). The flow of information within a unit
and internal workings are discussed first. A vital part of the unit is the activation function, which determines
how and if a neuron should fire, which is discussed next.

Single Neuron

A neuron can be generalised to the form as shown on the left in Figure 3.4. It receives inputs xi with i = 1, ...,n,
which are multiplied by their respective weights wi , then run through an integration function g , and lastly
through an activation function f . The integration function is usually taken as the addition function. Possible
activation functions are described below, but the sigmoid and step-functions are most common. The output
of the unit is then given by f

(
g (x1, x2, ..., xn)

)
.

wixi

wnxn

f

w1x1

g f(g(x1,x2,...,xn) ∑
×

�

T

x1

xn

ω1

ωn

o

Figure 3.4: General form (left, [64]) and block-diagram (right) of a computing unit within an ANN.

A block diagram of this sequence is shown on the right side of Figure 3.4. The input is a vector x, each element

xi (i = 1, ..,n) of that vector is multiplied by a certain weight ωi (denoted by × in Figure 3.4). The sum of

these products is then taken as
∑n

i=1 x ·ω (
∑

in Figure 3.4), of which the output is run through an activation
function. This particular example makes use of the step-function, returning a 1 only if the summed input is
larger than some threshold value T . The output of the network will then be a vector function f of the inputs
x and the weightsω, which can be denoted as o = f (x,ω).

Activation Functions

The activation function of a unit effectively controls the output of a unit. Its role is usually to introduce
non-linearity in the mapping so that any complex function can be approximated. Without an activation
function, an ANN would only be able to deal with linearly separable data. In theory, the step-function is a
good activation function; a neuron either fires or it does not. However, since it is not differentiable at 0, which
is necessary in gradient based optimisation methods, other functions are devised. Furthermore, the binary
step-function would require a large number of neurons when approximating mappings that are not linearly
separable. Hence, a quest arose to find alternative activation functions, some based on biological neurons,
others on statistics, and some simply on intuition.

Some desirable properties in activation functions are:

• Nonlinearity. When multiple layers use linear activation functions, all those layers can be replaced by
a single layer. When the activation functions are non-linear, a three-layer model can be proven to be a
universal function approximator [16].

• Continuously differentiable. A necessity for gradient-based optimisation methods.

• Monotonic. The error surface associated with a single layer is guaranteed to be convex if the activation
function is monotonic.

• Smooth. A necessity for gradient-based optimisation methods. Smooth functions with a monotonic
derivative have been shown to generalise better in specific cases [30].

• Approximates identity near origin. Activation functions that approximate identity (f (x) = x) near the
origin can be initialised with small random weights [66].

28 3. Low-Thrust Trajectory Optimisation with Evolutionary Neurocontrol

The logistic sigmoid activation function s(x) is the most common used activation function in NN literature
[31]. The sigmoid is one of the most popular activation functions, as it is a smooth representation of the
step-function, and is described by

s(x) = 1

1+ex . (3.4)

Although the logistic sigmoid is often used, it has its limitations. The sigmoid does not have a steady state
at 0, a property that is desirable within activation functions from an optimisation standpoint [45]. Further-
more, due to asymptotes at s(x) = 0 and s(x) = 1, the sigmoid is known to saturate and kill gradients. Hence,
when the input is either small or large, the gradient will be almost zero, limiting the signal flow through a
neuron and thereby limiting the efficiency of the weight updates. Lastly, the outputs of sigmoids are not zero-
centered, which leads to undesired zig-zagging dynamics in gradient updates [41]. Other activation functions
are available with their own upsides and limitations, the reader is referred to the Literature Review [43] for a
comprehensive overview.

3.5.3. Network of Neurons
Single neurons are only capable of solving simple threshold logic. Single units can be used for classification
purposes, but only when the inputs are linearly separable. Combining multiple neurons results in a network,
and increases the computing capacity. Feed-forward networks only allow edges to run from a particular neu-
ron to a neuron in the next layer; there are no backwards connections or skips of layers. Recurrent networks,
in which a neuron in layer j ’s output can be fed into a neuron in layer p < j , have its own advantages and
disadvantages (see [64] for a discussion), but are not used within this work.

The topology of a general feed-forward ANN is shown in Figure 3.5. The layers of the network can be split in
(1) the input layer, which is the very first layer in which the n inputs are given to the network, (2) the output
layer, which is the last layer and generates the m output of the entire network, and (3) the hidden layers,
which are all layers in between the input and output layers. Hidden layers are necessary to determine more
complex mappings. Within this model, connections can only run from left to right, connecting a neuron with
all neurons within the next layer. The input and output layers are always a single layer, whereas the number
of hidden layers can be any positive integer number. Each layer can contain a different amount of units;
the number of input sites within the input layer is always equal to the number of inputs, and the number of
output units in the final layer is always equal to the number of outputs of the network.

layer 1
n input sites

layer 2
k1 units

layer ℓ-1
kℓ-1 units

layer ℓ
m output units

input layer hidden layer(s) output layer

Figure 3.5: Topology of a general feed-forward ANN.

It can be proven that the general learning problem for networks of threshold functions is NP-complete [64].
This follows from Kolmogorov’s theorem, which states that any continuous function of n arguments can al-
ways be represented using a finite composition of functions of a single argument, in addition. It implicitly

3.6. Evolutionary Algorithms 29

states that addition is the only function needed to represent continuous functions with any number of argu-
ments. A modern version of Kolmogorov’s theorem (proof in [69]) is given by

Kolmogorov’s Theorem. Let f : [0,1]n → [0,1] be a continuous function. There exist functions of one argument
g and φq for q = 1, ...,2n +1 and constants λp , for p = 1, ...,n such that

f (x1, x2, ..., xn) =
2n+1∑
q=1

g

(
n∑

p=1
λpφq

(
xp

))
.

In the perspective of ANNs, Kolmogorov’s theorem states that any continuous function of n variables can be
represented by a finite network of functions of a single argument, where addition is used as the only function
of several arguments. Accepting units capable of computing integral powers of the input, polynomial approx-
imation of a given function can be used, resulting that any real continuous function can be approximated with
arbitrary precision using a finite number of computing units [64].

3.6. Evolutionary Algorithms
Evolutionary Algorithms (EAs) is an umbrella term for a family of population-based metaheuristic or stochas-
tic optimisation algorithms inspired by biological evolution. Best known algorithms within this class include
Genetic Algorithms (GAs) [40], Differential Evolution (DE) [72], Evolutionary Programming (EP) [28] and Ge-
netic Programming (GP) [42]. All of these methods share the same enabling principles but focus on different
problem classes. Common features in all are the simulation of evolution of individual structures through
reproduction, inheritance, and selection mechanisms, dependent on their perceived performance defined
with respect to an environment (survival of the fittest). This section will describe the basic mechanism and
principles of EAs, the reader is referred to De Jong [24] for a more comprehensive overview.

3.6.1. Elements of Evolutionary Algorithms

The key element in EAs is a population Ξt that is comprised of numerous individuals ξt
k∈1,...,q , also termed

chromosomes or strings, where the superscript t denotes the time step or generation within the simulated
evolution. Each individual within a population is a potential solution to the given optimisation problem.
Analogous to nature, the relatively good solutions within the population reproduce, whereas the relatively
bad solutions go extinct. In order to determine which solutions are relatively good, a performance measure
J is introduced. This performance measure is similar to the cost function in optimal control theory, and is
also termed fitness or objective function. A selection scheme then determines which individuals (parents),
with a probability according to their fitness value J (ξt

k), are to reproduce and create offspring into a newly
created population Ξt+1. Offspring is reproduced by recombination of the ’genetic’ material of the parents,
which is possibly subject to mutation. In order to further avoid premature convergence, immigration of new
individuals within the population is often beneficial. After some reproductive cycles, all individuals should
converge to a single solution, which is in best case the global optimal solution ξ∗ to the given problem.

EAs mostly have four essential components; (1) a population Ξ, containing the candidate solutions; (2) a
mechanism to select candidates for reproduction; (3) the reproduction itself, containing both the mutation
and recombination operators; and (4) an evaluation of the fitness of a solution. These four components
are illustrated in Figure 3.6, in which the arrows show the flow of the reproduction cycle of a population
individual ξi . Parent individuals are denoted by ξp and children individuals by ξc . ξin are either individuals
that initialise the population or outside immigration individuals, and ξd are extinct individuals removed from
the population.

Initialisation and Representation

The population is usually initialised as a pool of randomly generated individuals within the domain S. In
general, the accuracy of an EA is dependent on the population size, and a few trial-and-error runs usually
suffice. Alternatively, a commonly used rule of thumb in selecting a population size is based on the number
of optimisation parameters and length of the chromosome as npop = npar m ×2` [32].

An important distinction between EAs is whether an individual is represented by a bit string or by a real-
valued number vector. Using real-valued coding, a chromosome corresponds to a vector of real numbers,

30 3. Low-Thrust Trajectory Optimisation with Evolutionary Neurocontrol
52 4.3 Evolutionary Algorithms

Figure 4.10: Evolutionary Algorithm Elements. Although differing in detail, EAs mostly
have four essential components: a population Ξ, which holds the candidate solutions; a mecha-
nism to select the candidates for reproduction; the reproduction itself, consisting of the genetic
operators recombination and mutation; and evaluation for assessment of an offspring’s adaption to
the environment. The arrows show the “reproduction cycle” of the population individuals ξi. In-
dividuals selected for reproduction become parent individuals ξp from whose genome information
reproduction generates the child individuals ξc.

required basic elements and principles of evolution to exploit its robust optimization capabil-
ity. EAs are problem-independent, heuristic, parallel search methods. Information about the
actual problem is encoded within the individuals ξi the EA acts upon. It therefore depends
on proper encoding of the problem solution parameters on the ξi if the particular problem
can be solved by the EA. Additional but unnecessary data is thereby less important than
missing essential information. Figure 4.10 shows the elements and mechanisms of a generic
EA: the population Ξ, a selection mechanism, genetic operators simulating recombination and
mutation, and a problem dependent evaluation. The implementation and the importance of
the EA elements differ from one EA to another. Within the used ENC implementation, a
GA trains an ANN parameter set, and the following description and explanation therefore
concentrates on the particular implementation in the optimization software InTrance.

Like natural populations consist of individuals of the same species, the data structure of an
EA’s population Ξ holds candidate solutions or individuals ξi of the same type, with the
population dimension q and i P N, 1 ¤ i ¤ q. The same type means that each ξi, which
is also called a chromosome or a string, is a potential or candidate solution for the same
problem. A ξi presents a solution candidate to the GA. There is no ideal generic representation
type, which makes the choice of representation dependent on the actual problem, and in
practice bit strings, real-value vectors, or graphs are used. Each ξi corresponds to exactly one
candidate solution, and the individual’s scalar fitness value J measures the overall quality of
this incorporated solution. The fitness J is a metric for the fulfillment of the actual objective
function, e.g., minimum flight time or minimum propellant mass. It however also serves to
express violations of additional boundary constraints. The fitness is by convention subject to
maximization. Greater J-values are therefore assigned to those individuals that are better
adapted to their environment and are consequently better solutions of the respective problem.
If necessary, this can be reversed with �J .

The fitness Jpξiq of an individual ξi determines its chances during selection for taking part in
reproduction. Selection is the second EA element and decides which ξi of Ξ may reproduce

in d

Figure 3.6: Principle components and reproduction cycle of EAs. Adapted from [59].

an allele to a real number value, and the loci to the index; ξ = 〈r1,r2, ...,r`〉. The binary representation was
assumed superior for a long time, as it decomposes the optimisation problem into the largest number of
smallest building blocks. However, it was found that EAs using the binary representation often suffer from
lack of precision and inability to operate in the presence of nontrivial constraints [52]. These problems result
in high-dimensional high-precision numerical problems, as is often the case in training ANNs. As an example,
consider an ANN with three layers with 24 input nodes, 30 hidden nodes and 3 output nodes, the total number
of internal parameters is then 908. If the domain of all of them is [-2,2] and a precision of 8 digits after the
decimal is desired, the total length of the binary vector is `= 908 ·29 = 26332. For such problem dimensions,
EAs do not perform optimal [52]. Contrary, when using a real-valued number representation, the length of
the vector for each individual is only `= 908 and the precision is the machine precision [17].

Adaptive parameter encoding schemes, such as Delta Coding (DC), optimise the representation of an indivi-
dual [79]. DC uses an EA that restarts multiple times with a bit-string representation; the first run is used to
find an interim or partial solution h, and subsequent runs decode the genes as a distance (delta value) from
the last interim solution, such that ξk = h+δk . Each restart forms a new hypercube with the interim solution
at its origin and the search space can be extended or contracted by altering the resolution of the delta va-
lues. A restart (re-initialisation of population) occurs when the Hamming distance (number of differing bits)
between the best and worst individual of the population (

∑`
i=1

∣∣bi ,1 −bi ,q
∣∣) is larger than 1. Usually, the hyper-

cube is extended by one bit if the new partial solution is identical to the old one, i.e. if the bestδ-chromosome
is a zero-string. Otherwise, the hypercube is contracted by one bit. The reduction mechanism allows the al-
gorithm to focus on promising search subspaces, whereas the expansion mechanism allows the algorithm to
explore previously overlooked areas of the search space [48]. DC has outperformed both a standard GA and
a mutation-driven stochastic hill-climbing algorithm on a suite of standard EA test functions. DC used fewer
trials than the other methods for most test functions, and was the only method to consistently find the global
optimum for all test functions [48]. The idea of DC has also been extended to real-valued strings, termed
Floating Point Delta Coding (FPDC), the reader is referred to [21] for more information.

Selection and Diversity

Two important issues in any EA are Selective Pressure (SP) and population diversity. They are mutually-
influencing; an increase in selective pressure results in a decrease in population diversity, and vice versa.
SP is defined as the expected number of individuals of the next generation, whereas the population diversity
is a measure of the different genome material in a population. There exist a multitude of selection schemes,
of which some will be discussed here. The selection of a scheme highly depends on the dimensions and type
of optimisation problem. The first and simplest method is termed elitist selection, in which the q individu-
als with the highest fitness, in a pool with both the parents and children, are selected to populate the next
generation. A major problem with elitist selection is premature convergence, and hence is not the recom-
mended approach. So-called superindividuals (individuals with a much higher fitness than other individuals
in the population) have a much larger probability of creating offspring, thereby limiting the diversity within
a population, and thereby possibly resulting in premature convergence to a local minimum. Carefully cho-

3.6. Evolutionary Algorithms 31

sen, problem-dependent, fitness functions or fitness scaling functions can partly alleviate this problem, but
are not recommended as they dependent on a user decision, which makes the method less robust and less
diverse.

There are a multitude of selection schemes that do not require scaling of the fitness functions, but most of
them are dependent on an individuals relative fitness –its rank(1)–, therefore requiring an ordering of the indi-
viduals, which is computationally expensive. Another selection scheme, also based on ranking but more com-
putationally efficient, is tournament selection. Within tournament selection, a single individual is selected to
progress to the next generation by choosing the individual with the highest fitness from some random cho-
sen subset of the entire population. Note that if the subset is equal to the entire population, the method is
simply a relative elitist selection scheme. A common subset size is µ = 2 [4], resulting in a so-called binary
tournament selection scheme. The tournament is then repeated a total of q times, such that all parents that
create offspring are selected. With tournament selection, the selection probabilities are given by [4]

pi (µ) =
(
q − i +1

)µ− (
q − i

)µ
qµ

⇒ p1(2) = 2q −1

q2 , (3.5)

so that for a binary tournament (µ= 2)

SP = p1 ·1 = 2q −1

q
= const. with lim

q→∞SP = 2. (3.6)

Hence, the SP remains constant throughout the search process, and the best individual receives –on average–
about two copies in the next generation. Since selection probability is independent of the absolute fitness,
tournament selection does not require fitness scaling. A major advantage of tournament selection is that
each tournament can be performed with respect to a different optimisation objective, thereby allowing multi-
objective optimisation without explicitly weighing the objectives; such a scheme prefers individuals that per-
form resonably well with respect to all objectives. In the words of Dachwald [17], “Its like a duel between two
cowboy gunslingers. To survive a duel, one must draw fast and aim accurately”.

Recombination, Crossover and Mutation

The basic recombination scheme within the realm of EAs is the generational reproduction scheme. Within the
generational reproduction scheme, q individuals are selected from the population pool of both parents and
children, and copied to the new population Ξt+1. The scheme is computationally expensive, as most of the
runtime is spent for copying strings without progressing the search [17]. An alternative method is termed one-
at-a-time or steady-state reproduction, which only lets one reproduction take place at each time step, and is
often combined with tournament selection, as shown in Figure 3.7. Two tournaments are performed, which
results in two winners and two losers. Within the new population, the two losing individuals are replaced
by the offspring of the two winning individuals, and the other individuals remain the same. Hence, only
two individuals have to be replaced to form a new population, whereas generational reproduction requires
copying of q individuals from a population of 2q (parents+children) into a new population.5. IMPLEMENTATION 91

Figure 5.12: One-at-a-time Reproduction with Tournament Selection. This is a modi-
fied version of the figure from [13] and shows how two binary tournaments determine two winners
and two looser out of four randomly picked individuals. The winner individuals recombine their
genome material to create two new offspring, which then replace the individuals that lost the
tournament in the new population.

The SP of tournament selection is constant for the entire EA run, if q � const., which ap-

proaches 2 for q Ñ 8. The best individual of a large population therefore contributes on

average and independent on its absolute fitness value to two individuals to a new population.

Another advantage of tournament selection is its implicit support for multiobjective opti-

mization. Using a different optimization criterion for each tournament, this selection scheme

prefers individuals that incorporate desired compromises between the respective criteria.

InTrance uses a different reproduction mechanism than traditional EA implementations. Its

one-at-a-time reproduction or steady-state reproduction mechanism lets reproduction happen

at each time step, which is computationally more efficient than generational reproduction and

also combines well with tournament reproduction.

5.4.5 Crossover

InTrance implements the four crossover types one-point crossover, uniform crossover, arith-

metic crossover, and loci crossover. The actual operator is chosen randomly with an initial

probability p � 0.25 and applied to the parent individual’s chromosomes, which potentially

contain an ANN for each mission phase and the allele holding the transition conditions. Sim-

ilar to node crossover, which assures that ANN node-related data is kept together during

crossover, a specialized operator now keeps together the data fragments that belong to a

mission phase.

The crossover probability is constant at the begin of the algorithm. Later, after ¡ 100

successful reproductions, i.e., reproductions that resulted in a new best solution, crossover

operator probabilities are determined dynamically by InTrance. Therefore a counter for each

crossover operator keeps track of the number of successful reproductions after application of

that operator. Once the sum of all operator counters exceeds 100, the ratio of an operator’s

counter value and the sum of all counters is taken as probability. This dynamic adaption of

EA control parameters helps to adapt to the respective problem and reduces an EA’s cus-

tomization to a particular application or problem type, which in this case is the optimization

of low-thrust trajectories.

Figure 3.7: One-at-a-time reproduction with tournament selection. Courtesy of [59].

(1)The best individual has a rank of (population size−1) and the worst individual a rank of zero.

32 3. Low-Thrust Trajectory Optimisation with Evolutionary Neurocontrol

A multitude of crossover types exist, of which some common ones are (1) one-point crossover, (2) two-point
crossover, (3) uniform crossover, and (4) arithmetic crossover. The first three types can be applied to both bit
strings and real-valued strings, the 4th type is limited to real-valued strings. A special crossover type is termed
(5) node crossover, derived from the uniform crossover type, and is derived for the training of ANNs with an
EA [59]. Within one-point crossover (Figure 3.8a), a single crossover loci on both parents’ chromosome is
selected at random, all data behind that loci is then swapped between the chromosomes of the parents. The
downside is that not all possible schema (building blocks) can be represented, furthermore, schemas with
long defining lengths are likely to be destroyed under one-point crossover, and the endpoints of the loci are
always switched, thereby treating some loci preferentially [27]. Two-point crossover (Figure 3.8b) is similar,
but now the data within two loci of both parents is swapped. The method alleviates the problem of treating
the endpoint preferentially, and is less likely to disrupt schemas with large defining lengths. However, it still
cannot combine all schemas [54]. Uniform crossover (Figure 3.8c) evaluates each loci in the parent string for
exchange with a probability p, often p = 0.5. In that case, children have approximately 50% of the genes from
the first parent and 50% of genes from the second parent. Empirical evidence suggests that uniform crossover
is a more exploratory approach then the more traditional approaches that maintain longer schemata. Hence,
the uniform crossover results in a more complete search of the search space while maintaining good exchange
of information [38]. The uniform crossover operator does not have any positional bias; any schema contained
at different positions in the parents can potentially be recombined in the offspring. However, the lack of
positional bias can prevent coadapted alles from ever forming in the population, since the uniform crossover
operator can be highly disruptive of any schema [54].

Parents:

crossover point

Children:

(a) One-point crossover.

Parents:

crossover points

Children:

(b) Two-point crossover.

Parents:

Children:

(c) Uniform crossover.

Figure 3.8: Some common crossover types.

Arithmetic crossover is only applicable to real-valued chromosomes, and is the only crossover type mentio-
ned here that actually changes the value, and not just the location. The offspring ξc,i is a linear combination
of its parents (ξp,i), determined as

ξc,1 =αξp,1 + (1−α)ξp,2 (3.7)

ξc,2 = (1−α)ξp,1 +αξp,2, (3.8)

in which α is a random weighting factor, chosen before each crossover operation.

Crossover nodes (Figure 3.9) is designed specifically for the training of ANNs. Within this method, it is decided
for each coded neuron in the first offspring (with a probability of 50%) which parent contributes its coded
parameters for that neuron. The second offspring then receives the coded neuron from the other parent.
A promising feature of this method is that the parameters of a single neuron are not torn apart. Crossover
nodes has been tested on a complex sonar image classification problem by Montana [55], and was found to
outperform the backpropagation algorithm (see the Literature Review [43]). However, it is difficult to asses
how the method compares to more conventional crossover operators, as the performance is highly problem-
dependent and fundamentally different.

5.4 Evolutionary Operators 65

from being torn apart. Crossover nodes was proposed and studied in [63] as a tailored
operator for ANN parameter optimization, where it was implemented within a GA that
outperformed the backpropagation algorithm on a complex sonar image classification
problem.

Figure 5.3 Implemented evolutionary operators

The one-point crossover operator and the uniform crossover operator are applied with proba-
bility 1/4 respectively, whereas the crossover nodes operator is applied with probability 1/2,
so that in total pc = 1. It is to note that all three crossover operators do only exchange real
numbers between the chromosomes but do not change the numbers themselves. This can only
be done by the mutation operator.

5.4.2 Mutation

Whitley pointed out that for DC no mutation operator is necessary, since the population is
re-initialized at regular intervals [96]. Preliminary InTrance tests, however, have revealed that
this might be different for real-valued strings. In this case, the absence of a mutation operator
leads for small population sizes to premature convergence within the epochs. For this reason,
InTrance implements a mutation operator, which should be termed fast uniform mutation.
Fast uniform mutation is based on uniform mutation [90]. However, if uniform mutation
was applied to a string, it would be decided for each locus (with probability pm ≈ 10−3),
whether or not the respective allele is to be mutated. This process is very time consuming.5

Therefore, a fast uniform mutation operator is implemented in InTrance. If fast uniform
mutation is applied, it is decided for the entire chromosome (with probability 0 ≤ pm ≤ 1),
whether or not a single allele of the chromosome is to be mutated. If this is the case, the
locus that is to be mutated is randomly selected. If for example the ith locus of chromosome
δj is to be mutated, its allele δji is replaced with a new one, δ′ji ∈ [−δmax,+δmax].

5 since about 1000 random numbers have to be generated for a single mutation

Figure 3.9: Illustration of the generation of offspring with the crossover nodes operator. Figure from [17].

3.7. Neuroevolution 33

It is difficult to prefer some crossover type over another, as the success or failure depends in a complicated
fashion on the particular fitness function, encoding and other details of the EA [54]. Extensive literature is
available which quantifies aspects of different crossover types, such as the positional bias, the disruption po-
tential, the ability to create different schemas in one step, and so on. However, these do not give a definitive
answer to which operator should be preferred. As an example, some problems work better with highly dis-
ruptive schemas, whereas other benefit from coevolution of alleles. A multitude of literature is available that
compare the performance of different operators on a suite of test functions, but results are often conflicting,
indicating the problem-dependency [54]. In general, it is accepted that two-point and uniform crossover out-
perform one-point crossover, but it might be beneficial to alternate between different types of operators to
receive some of the benefits of each.

Mutation introduces genetic diversity into the population pool and can help the algorithm to move away from
a local optimum. In bit strings, the mutation operator determines for each loci with probability pm whether
its allele should be mutated, that is, wheter a 1 will be mutated to a 0, and vice versa. Uniform mutation is
most common and determines for each locus whether that allele should mutate, resulting in the generation of
many random numbers for potentially only a few mutations, making it a computationally intensive method.
According to Whitely [79], mutation is not necessary when using DC.

3.6.2. Convergence and Properties
At first sight, the process of recombination and mutation seems to be completely random and therefore one
might think that the search process within EAs is completely undirected. However, with the inclusion of a
selection method that prefers fitter individuals, the search becomes directed and an active force of impro-
vement is present [3]. Compared to gradient based methods, the main advantages of EAs is their good global
search behaviour, their blindness, their problem independence, and their robustness. These advantages are
not exclusive to EAs, and to some respect are also shared with other global optimisation methods. EAs initially
evaluate the target function to be optimised at randomly selected points of the domain. From an evaluation
of their fitness, a new generation is formed, and gradually the points in the population approach the global
optimum, as shown in Figure 3.10. This results in a good global search behaviour within multi-modal envi-
ronments, since the optimum is relatively independent of the initial conditions. Contrary to gradient based
methods, EAs achieve this without any additional information about the gradient of the function at the eva-
luated points –they are blind– and the function itself need not be differentiable or even continuous. This
makes EAs especially suited for delayed reinforcement learning problems, where auxiliary information is not
available. Furthermore, EAs can be applied to a wide range of optimisation problems, since every problem
whose parameters can be encoded on a string can be optimised, thereby making it a very robust method.

-5

2

0

3

f(
x,

y)

2

y

5

0 1

x

0
-1-2 -2

-3

(a) Generation: 1

-5

2

0

3

f(
x,

y)

2

y

5

0 1

x

0
-1-2 -2

-3

(b) Generation: 5

-5

2

0

3

f(
x,

y)

2

y

5

0 1

x

0
-1-2 -2

-3

(c) Generation: 39

Figure 3.10: Convergence of a simple GA with a population size of q = 200 over the generations. Mutation probability is set at
pm = 0.001, tolerance at ε= 10−9, and the bit string lengths at `1 = 18 and `= 17. Underlying function:

f (x, y) = 3(1−x)2 exp(−(x2)− (y +1)2)−10(x/5−x3 − y5)exp(−x2 − y2)−1/3exp(−(x +1)2 − y2).

3.7. Neuroevolution
The coupling between ANNs and evolutionary methods is termed neuroevolution [84], and is often referred
to as evolutionary neurocontrol when applied to control problems. Within the realm of neuroevolution, it
is the task of an evolutionary algorithm to optimise the internal parameters of the ANN in such a way that

34 3. Low-Thrust Trajectory Optimisation with Evolutionary Neurocontrol

it provides a mapping from a state of the agent to an optimal action. The Literature Review [43] conducted
prior to this work found that neuroevolution is one of the most popular and successful direct policy-search
RL methods for complex control problems. Evolutionary RL is by no means limited to ANN representations,
but is by far the most common [80], and is the representation that will be used within this work.

In the context of neuroevolution, low-thrust trajectory optimisation becomes a problem of finding the opti-
mal weights of an ANN that acts as a policy π. Those weights are determined by an EA, such that the entire
problem boils down to finding an optimal chromosome ξ∗, see Figure 3.11. A trajectory is then formed by
sampling the ANN at each control step, telling the agent what action to take. With the current state plus the
action (a thrust force or acceleration), the EoMs can be integrated, resulting in the next state. This process is
then repeated from the initial time t̄0 to the final time t̄ f , resulting in a complete trajectory. Upon reaching
the final target, the trajectory can be evaluated and a fitness J is determined. The process is repeated until
finding the (near) global optimal trajectory. A major upside of neuroevolution is that the initial state and
launch date can also be optimised by including them as optimisation parameters onto the chromosome.

58 4.4 Multiphase Evolutionary Neurocontrol for Trajectory Optimization

Figure 4.13: Mapping of the NC Parameters on a Chromosome. Optimizing an NC
means to find the optimal values of its ANN weight factors wij, its input bias or thresholds θi, and
its neuron transfer function parameters γi. Mapping these parameter on a string or chromosome
ξ allows the application of a GA for their optimization.

The inner loop starts with the initialization of the NC, using the information encoded on

ξi. In addition to π, ξi also contains the simulation’s initial conditions. These are the

spacecraft’s initial state xSC,0, which may depend on the launch date t0, and, for spacecraft

with propellant-dependent propulsion, on the initial propellant mass mp,0. Both are therefore

also subject of the optimization. The simulation is the numerical integration of a differential

equation system (DES) of the state equations, also called equations of motion (EOM). Each

integration step from t̄i to t̄i+1 � t̄i � h, with the control step size1 h, precedes an NC

application. The NC provides the control u pt̄iq, based on Nπ and the input data x pt̄iq, which

comprises at least the astrodynamic states of the spacecraft xSC pt̄iq and the target xT pt̄iq.
This simulation model neglects realistic rotation dynamics and allows instantaneous attitude

alteration at each control step. The control vector2 u pt̄iq is constant in O-frame during h but

changes in the I-frame according to the relative motion of O w.r.t. I. Numerical integration

of the EOMs is the next step, followed by a check that decides about whether to continue

integration or not. If the trajectory integration should continue, the new u pt̄i+1q of the next

step is obtained through another NC application.

Trajectory integration stops upon fulfillment of the accuracy constraints, or violation of

boundary constraints, or after a preset maximum integration time. Based on the resulting

r rt̄s, an assessment w.r.t. the optimization criterion gives the individual’s fitness J pξiq.
The evaluated individual is passed on to the calling outer loop, where it is put back to the

population. This process repeats until the outer loop achieves population convergence, i.e., no

ξi with a better trajectory and resulting higher fitness could be generated. If the problem was

properly coded and all the parameters relevant for the problem were chosen appropriately,

1The control step size not necessarily equals the integration step size. Most integrators automatically
adapt the integration step size to meet predefined accuracy limits.

2As the optimal control in this case is the direction and magnitude of the thrust direction vector, this
vector is three-dimensional.

Figure 3.11: Mapping of NC parameters on a chromosome ξ. Here, the parameters of the NC are the connection weights wij, the bias or
threshold of each unit θi , and the reciprocal of the temperature coefficient γi used in the sigmoid activation function of each unit. Note

that the first layer consists of input nodes, and hence has no tunable parameters. Courtesy of [59].

4
InTrance

SMART-1 was a very successful mission carried out by ESA and demonstrated the in situ application of low-
thrust electric propulsion. It reached a Selenocentric orbit by following a preset thrust profile with a max-
imum of 70 mN generated by a single ion engine. Although following a moderately simple trajectory, its
steering command history was developed with significant effort by a team of flight dynamic experts [60]. Lo-
cal trajectory optimisation methods are plagued by their need for an initial guess and existing global methods
are often far from robust and require heavy modification for every new mission, as detailed in Section 3.2. For
future application and greater onboard autonomy there is a need for easy-to-use and robust techniques to
find (near-)global optimal steering strategies for low-thrust trajectories.

A promising method to overcome the drawbacks of traditional trajectory optimisation methods was develo-
ped by Dachwald [17] which he termed INtelligent TRAjectory optimisation Using NeuroController Evolution
(InTrance). InTrance tackled the low-thrust trajectory optimisation problem from the perspective of rein-
forcement learning through Evolutionary Neurocontrol (ENC). InTrance is a smart GTOM according to the
definition of Section 3.3; it is capable of autonomously finding the (near-)global optimal trajectory, without
the need of an expert in the field of mission design and astrodynamics, and optimises both the initial condi-
tions and trajectory with no dependence on an initial guess.

InTrance is adapted and extended as described in Chapter 5 to allow for the optimisation of low-thrust gravity
assist trajectories. To this end, this chapter will contain a high level description of the governing algorithms
in InTrance, and furthermore discuss essential elements such as the specific EA, the size of, and inputs and
outputs to, the ANN, how the multi-phase framework is incorporated, how the trajectory is integrated, and
how the fitness is evaluated. For a more thorough description, the reader is referred to the original work by
Dachwald [17] and the revised version by Ohndorf [59].

4.1. Development History
InTrance was developed by Dachwald [17] in 2004 with the intention of devloping a smart preliminary de-
sign tool capable of solving the single-phase low-thrust trajectory optimisation problem for interplanetary
heliocentric trajectories from a reinforcement learning perspective. Dachwald implemented conventional
neuroevolution, as described in Section 3.7, utilising a custom evolutionary algorithm for the training of the
Artificial Neural Network (ANN). Dachwald used InTrance to recalculate a variety of trajectories utilising solar
sails, SEP and NEP, and often found superior results over some reference cases [17–20].

Ohndorf [59] extended and revised the original version of InTrance to accommodate the optimisation of both
non-heliocentric and heliocentric multi-phase low-thrust trajectories, such that each phase is governed by a
separate neurocontroller. Ohndorf classified his enhancements in three groups; type A contains mechanisms
that are essential to accommodate the multi-phase framework; type B contains mechanisms that allow re-
fined mission analysis through trajectory integration in a more realistic environment; and type C comprises
mechanisms that increase the robustness of the optimisation. The updates incorporated by Ohndorf can
then be summarised as shown in Table 4.1, and the reader is referred to [59] for a thorough description of
each.

35

36 4. InTrance

Table 4.1: Classification of the mechanism and techniques added by Ohndorf to InTrance. Courtesy of [59, p. 66].

Element/mechanism Type A Type B Type C
Non-heliocentric simulation x n/a n/a
Planetary shadows n/a x n/a
Third-body perturbation x x n/a
Excess energy optimisation n/a x n/a
Dynamic control step size n/a n/a x
Parameter range adaptation n/a n/a x
Search space scan n/a n/a x
Hypercube size control n/a n/a x
Variable boundary constraints n/a n/a x

Ohndorf used the revised version of InTrance to simulate three transfers; (1) a two-phase transfer from an
Earth-bound orbit into an orbit about the Moon, (2) a multiple asteroid rendezvous mission, similar to Dawn
but without the GA, and (3) a solar system escape mission to the heliosphere bow shock using SEP, Radioiso-
tope Electric Propulsion (REP) and a Jupiter GA. It should be noted that Ohndorf’s version of InTrance lacks
the generic support for gravity assists, but that they are implicitly possible.

Carnelli [13] worked on extending Dachwald’s initial version of InTrance to incorporate GAs within the single-
phase framework, thereby relying on a single Neurocontroller (NC); hence optimisating the weights of a single
ANN that is to solve the entire trajectory and autonomously detect GAs. Carnelli’s initial hypothesis was that
since a single NC was found capable of performing solar photonic assists by Dachwald [17], it should also
be able to optimise gravity assist manoeuvres. However, this method was deemed unsuccessful after many
iterations and many adaptations to both the environment (artificially increasing the SOI) and the genetic
algorithm. Individuals suffered from premature death, and the method did not converge to a solution in
most cases. Even when convergence was achieved, it usually was a sub-optimal local optimum; such that
non-GA performing trajectories still achieved a higher fitness. Carnelli eventually relied on a local gradient
based method to optimise GAs, which is only applicable to single GA trajectories and no longer implemented
in the multi-phase version of InTrance.

4.2. InTrance Architecture
The general functional principle of ENC within InTrance is shown in Figure 4.1. The method consists of three
loops: an outer EA optimisation loop, a middle phase loop, and an inner trajectory integration loop. Within
InTrance, a chromosome ξ encodes both a policy π (i.e. the internal parameters of the ANN) and the initial
simulation conditions, which are usually comprised of; the initial state xSC,0, usually depending on the launch
date t0; and the initial propellant mass mp,0, if the spacecraft uses a propellant-depend propulsion method.
This ensures that both an optimal steering strategy and optimal initial conditions are found.

The outer loop takes care of the reproduction of individuals and the fitness evaluation of generated trajecto-
ries. These individuals are then fed into the middle loop, in which the chromosome is decoded for a specific
flight phase. The inner loop initialises the ANN with the parameters π j . The state of the S/C x(ti) and the
state of the target xT are then supplied to the ANN (NC); which returns a control u(t̄i). With the control and
state specified, the EoMs are integrated(1),(2) and a check is performed whether the termination conditions
are met. If not, the resulting new state is again supplied to the NC, together with the state of the target at that
time, which again results in a control u(t̄i+1), which is used to propagate to the next S/C state x(t̄i+1).

The process repeats until a termination condition is met, i.e. on fulfilment of the accuracy constraints, on
violation of boundary constraints, or after a preset maximum integration/mission time. Once the termination
conditions are met, the middle loop performs a check whether there is an additional phase. If so, it returns to
the inner integration loop to integrate the next phase of the trajectory. After all phases have been integrated,
the resulting trajectory xSC[t] is evaluated and a new population is formed. This process repeats until the
outer loop achieves population convergence, i.e. no ξi with a higher fitness could be generated.

(1)The control step size and integration step size are not necessarily the same.
(2)InTrance uses either the RKF4(5) or RKDP8(7) adaptive step-size integrators. RKF4(5) is used for lower-precision calculations and

RKDP8(7) for high-fidelity simulations.

4.3. Multiphase Framework and Fitness 37

population of individuals ξ 1, ..., ξ q

evolutionary
algorithm

fitness
function

initial conditions
phase k

termination
conditions

met?

additional
phase?

yes

no

no

neurocontroller

candidate solution ξ j

π j,k

control uk(t i)

xSC,k(t i+1)

xSC,k(t 0)

xSC,k(t i)

xT,k(t i)

fitness J (ξ j)

trajectory xSC[t]

evaluates the trajectory

yes

outer, NC optimisation loop

inner, trajectory integration
loop

state equations
xSC,k = G (xSC,k, u, t) proximity Pk

Nπ : X U

k++

middle, phase loop

Figure 4.1: Multi-phase trajectory optimisation using evolutionary neurocontrol. Figure adapted from [59].

4.3. Multiphase Framework and Fitness
The major change in Ohndorf’s extension of InTrance is the inclusion of the multi-phase framework, making
it possible to optimise mission designs that consist of more than one transfer phase. This extensions allows
for the optimisation of, for instance, an Earth-Mars-Earth double RV mission with the scientific operations
at Mars accounted for with a stay or dwell time. This example is then modelled as a two-phase mission –the
first from Earth to Mars and the second from Mars back to Earth– where each phase is controlled by its own
distinct Neurocontroller (NC).

Independently optimising the two separate separate NCs –and therefore the two phases– does not necessarily
result in the optimal overall trajectory. After all, there are physical constraints which must be met which are
dependent on both phases. As an example, the 2nd phase can only start after the arrival date of the first phase,
even when an earlier departure might result in a more optimal 2nd phase. Furthermore, considering transfer
time minimisation, the time optimal independent phases might not result in a time optimal overall trajectory.
After all, a slightly slower first phase might result in favourable initial conditions for the second phase, which
makes the overall Mission Elapsed Time (MET) shorter. InTrance tackles this problem by co-evolving the
solutions of both NCs and both phases’ initial conditions by encoding them on the same single chromosome,
see Figure 4.2. The optimisation then drives the S/C to reach the targets of each phase, to optimise the overall
objective and to match the final conditions of phase i to the initial conditions of phase (i +1).

4.3.1. Target State, Proximity, and Deviation
The target state describes the state which the S/C should attain at the end of a mission phase. Flybys or
rendezvous at specific celestial bodies are the most common targets, but a target can also be an escape or
capture from/by a body, rendezvousing with a fixed point in space or rendezvousing with an incomplete set
of orbital elements. In the case of a single phase mission, the target state of this phase is the same as the
mission target. In case of multi-phase missions, there are intermediate targets and a final mission target. In

38 4. InTrance
62 4.4 Multiphase Evolutionary Neurocontrol for Trajectory Optimization

Figure 4.16: Multiphase Mission Parameters on a Single Chromosome.

optimization. The subsequent optimization of the second transfer leg, obeying

p2qt0 ¥ p1qtf, (4.9)

provides pp2qt0, p2qmp,
p2q∆tqi. With the true p2qmp, a second optimization of the first transfer

leg gives an updated pp1qt0, p1qmp,
p1q∆tqi. If p1qtf would violate (4.9), a second optimization

gives a new p2qmp, etc. The combination of valid triplets that has fewest transfer days is the
final solution. Both options are viable ways to obtain solutions for this problem but involve
manual interaction and several iterations to find the global-optimal solution, although parts
can certainly be semiautomated.

Respecting also the additional dwell time constraint, however, does not invalidate the de-
scribed manual approach but turns it into a tedious process, even for this simple mission
design. That is because of the mutual effect of each phase on the other and on the opti-
mization objective. On one side, the second phase should have minimal duration but must
begin within a time frame specified by the dwell time limits and p1qtf of the preceding phase.
On the other side, this preceding phase is “coupled” to the second phase via p2qmp, which
has an effect on p1q∆t and on p1qt0, due to the required, flight-time-dependent, initial phase
angle between the launch and target bodies. Manually finding of a valid solution requires
the determination of the respective launch dates and to adjust them according to the results
of the trajectory optimization of each phase. Depending on the actual problem, the launch
body, the target, and on the posed constraints, this optimization can be time consuming.

MENC exploits the principle of coevolution for the automatic optimization of multiphase
transfers and thus mitigates tedious, manual optimization. As the following description is
not restricted on two-phase transfers, the generic notations i for a phase and pi � 1q for its
successor phase are used in the following.

An important decision for MENC concerns the evaluation of the individuals, which now
contain solutions of more than one phase. Precisely, it is about the simulation and its
trajectory integration’s initial conditions. There are two options, and both have their pros
and cons.

Figure 4.2: Composition of chromosome ξ in the multi-phase framework. Courtesy of [59].

the case of a double Earth-Mars-Earth rendezvous, both Mars and Earth are targets.

Proximity

As was discussed in the previous section, prior to evaluation of a given candidate solution ξ, the simulation
integrates the EoMs until reaching some stopping criteria. In the absence of physical constraint violations,
such as flying too close to the Sun, this stopping criteria is often the maximum integration time or maximum
MET. However, it is unlikely that the final spacecraft state at the stopping criteria is the best in terms of being
close to the target. To this end, a measure of ’being close to the target’ is generated through a proximity P ∈R
which has to be determined at each trajectory point, see Figure 4.1. The proximity P is determined through
one or more so-called deviations δi as

P (δi) :=
{

−
√∑

δ2
i if ∃δi : δi < 0

minδi if ∀δi : δi ≥ 0
, (4.1)

and hence is negative if at least one criterion is negative. Alternatively, if all δi ≥ 0, then P corresponds to the
smallest positive δi .

The computation of the deviations δi depends on the target type, and is generally one of three: the flyby pro-
blem, the rendezvous problem, or the capture problem. A successful flyby requires the distance between the
spacecraft and the target position ∆r f at time of closest approach to be smaller or equal to some predefined
maximum distance ∆rmax. The deviation of the position is then determined as:

δr ∈ (−∞,1] : δr := ∆rmax −∆r f

∆rmax
. (4.2)

Positive δr values denote a successful flyby, with a maximum value of 1 denoting a perfect flyby.

Analogous, the rendezvous problem must fulfil both a distance ∆r f and velocity ∆v f constraint, such that
the proximity PRV(δr ,δv) can be determined from equation 4.1. The determination of δr is equivalent to that
of the flyby problem, whereas the velocity deviation is determined as

δv ∈ (−∞,1] : δv = ∆vmax −∆v f

∆vmax
. (4.3)

The proximity in the capture problem is essentially also determined with P (δr ,δv) and the above defined
deviations δr , δv . However, the ∆rmax and ∆vmax are no longer arbitrarily chosen values, but should be the
maximum that describe a closed orbit that resides completely within the influence region of the body around
which it is captured. The maximum distance is then given as the maximum of either the Hill sphere rH or the
SOI; ∆rmax = max(rH ,rSOI).

4.3. Multiphase Framework and Fitness 39

4.3.2. Phase Transition Conditions
Since a mission involving multiple targets is split into multiple phases, certain transition condition con-
straints have to be put in place to ensure the physical validity at phase crossings. Transition conditions can
stem from a mission having more than one phase, such as incorporating a dwell or stay time in a RV mission,
and can also stem from the concurrent optimisation of each flight leg, as each leg is separately optimising its
initial conditions. The overall fitness should take these gaps between initial and final states of consecutive
stages into account; driving the optimisation to both a physically valid trajectory which reaches all targets,
and optimises the overall objective (minimise flight time, minimise propellant usage, etc.).

The scalar violation (i)Vdw counts the days by which a launch date t0 is outside the specified launch date
window

[
t0,min t0,max

]
and is given by

(i)Vdw =


(i)t0,min−(i)t0

0
(i)t0−(i)t0,max

, if
, if
, if

(i)t0<(i)t0,min
(i)t0,min≤(i)t0≤(i)t0,max

(i)t0,max<(i)t0

. (4.4)

When incorporating a dwell or stay time at a certain target, (i)t0,max is the maximum allowed stay time∆tdw,max

plus the arrival time of the preceding phase (i−1)tf. The earliest allowed launch date (i)t0,min is then the mini-
mum dwell time∆tdw,min plus the arrival time of the preceding phase (i−1)tf. If no dwell time between phases
is required, for instance in the flyby case, a steady and smooth continuous time history along the entire tra-
jectory is provided by setting (i)∆tdw,min =(i) ∆tdw,max = 0 such that (i)t0,min =(i) t0,max =(i−1) tf.

Due to the concurrent optimisation of the initial conditions of all phases, state and (propellant) mass gaps are
inevitable between phases. The optimisation process is driven towards decreasing these gaps by including a
scalar state violation (i)Vs and a scalar mass violation (i)Vm in the fitness, defined as follows:

(i)Vs =
(

(i)x0 −(i−1) x f

)2
(4.5)

(i)Vm =
(

(i)mSC,0 −(i−1) mSC,f

)2 −(i)∆2
m (4.6)

These violations measure the difference between the states and mass at the end of a predecessor phase (i −1)
and the beginning of a successor phase i . Indices 0 and f denote initial and final conditions, respectively. The
mass (i)∆m accounts for any intended mass change, such as a jettisoned propulsion stage, collected sample
material or docked-on spacecraft.

4.3.3. Fitness Evaluation
The overall scalar fitness J (ξ) of an individual (trajectory) is a function of the proximity, the transition con-
ditions and overall objective function. The proximity indicates how ’close’ each phase approaches its target,
the transition conditions indicate the physical validity in phase transitions, and the overall objective function
indicates how well the trajectory performs in terms of propellant usage, transfer time, or some other metric.

Firstly an intermediate fitness function is implemented, indicating how well all phases perform in reaching
their target with a single scalar value. This intermediate fitness JP is a function of the proximities Pi of each
phase and is given by

JP =
 −

√∑np
i=1 min(0,Pi)2

np
if ∃i ∈ (0,np) : Pi < 0

min(Pi) if ∀i ∈ (0,np) : Pi ≥ 0
. (4.7)

Hence, if all proximity variables Pi ≥ 0, then all constraints of all phases have been met and the sub-fitness
Jp ≥ 0. The overall fitness J (ξ) is then determined by the objective functionO and phase transition conditions
Vi . The complete list of currently implemented objectives functions in InTrance is depicted in Table 4.2,
which are always subject to maximisation. The overall fitness of the complete trajectory is then determined
as

J (ξ) =
{

JP if JP < 0
O ·∏i∈(d w,m,s)

1
1+Vi

if JP ≤ 0
. (4.8)

Hence, once all phase-specific constraints have been achieved, any fitness improvement results from an in-
creased value of the respective objective function O or from a decrease of the transition condition violations
Vi , or both.

40 4. InTrance

Table 4.2: Currently implemented InTrance objective functions [59].

No. Symbol Definition Description

1 O∆t,min 1−
∑np

i=1∆ti∑np

i=1∆ti

transfer time minimisation

2 Omp

1
(0)mp,0 −np mp, f

minimum propellant consumption

3 OmSC∆t

(np)mSC

∆t
maximum final mass over transfer time

4 OmSC∆tm

(np)mSC
(np)t f −(0) t0

maximum final mass over mission duration

5 O∆tdw

∑
∆tdw,i∑
∆t dw,i

maximum stay (dwell) time

6 O∆tm

∆t m −∆tm

∆t m
minimum mission duration

7 Ot0,min

(0) t̄0 −(0) t0
(0) t̄0 −(0) t 0

earliest launch date

8 Ot0,max

(0)t0 −(0) t 0
(0) t̄0 −(0) t 0

latest launch date

4.4. Evolutionary Algorithm
InTrance makes use of an EA to optimise both the ANN parameters of each NC and the initial conditions for
each phase, as described in Section 4.3. The basic elements and customisation options of EAs have been
described in Section 3.6, and hence will not be repeated here. This section briefly describes the chosen ini-
tialisation method, representation, reproduction scheme, crossover and mutation operators. The reader is
referred to Ohndorf [59] for a more thorough description of the EA employed within InTrance.

4.4.1. Representation and Initialisation
The chromosomes in InTrance’s EA are represented by real valued strings as the distance δ to a previous solu-
tion h, such that ξ=δ+h, by an iterative search strategy termed Real Delta Coding (RDC). RDC is an extension
of Delta Coding (DC) [79], which was described in Section 3.6.1. Within RDC, a real-valued population indi-
vidual ξi is comprised of a h-chromosome and a δ-chromosome

ξi = h +δi ⇔〈r1, . . . ,rl 〉i = 〈h1, . . . ,hl 〉i +〈δ1, . . . ,δl 〉i . (4.9)

RDC thus limits the EA to explore a dynamically selected subspace around the current best solution h = ξ∗
instead of the entire search space.

RDC runs in cycles, called epochs, in which a dynamically selected parameter subspace –the hypercube H–
around the current best solution is explored. The hypercube of the very first epoch e0 is constructed around
the null solution h(e0) = 0 as

H0 = [−δmax(e0),δmax(e0)] ∈R (4.10)

such that the very first population is randomly initialised as Ξt0 (e0) =
(
δ

t0
1 (e0), . . . ,δt0

q (e0)
)
. The EA then runs

until convergence of that epoch’s population; that is until the relative fitness improvement over the last ν time
steps is smaller than a preset limit ε.

The best solution ξtc
1 (e0) from this epoch becomes the partial solution h(e1) of the next epoch e1, whose new

delta range is

δmax(e1) = κ ·δmax(e0), (4.11)

in which κ is a search-space reduction mechanism. The reader is referred to Ohndorf [59] for a discussion
on this hypercube size control method. The new population Ξt0 (e1) is then constructed from equation 4.9

4.5. Artificial Neural Networks 41

within the updated search space hypercube

H1 = [h1(e1)−δmax(e1),h1(e1)+δmax(e1)]× . . .× [hl (e1)−δmax(e1),hl (e1)+δmax(e1)] ⊂R (4.12)

This process continues until convergence over the epochs is achieved, i.e., until the relative improvement
between two consecutive epochs is smaller than a preset limit ε.

InTrance can start an optimisation run either as a warmstart or coldstart. The prior starts from a user-
provided solution, usually generated from an earlier run of InTrance, such that a higher fidelity solution can
be generated. The second option, coldstart, requires no externally provided solution and initialises the op-
timisation via a heuristic parameter search called Search Space Scan (SSS). This algorithm uses niching and
co-evolution to explore the entire search space to find a suitable starting point. SSS is initialised by random
individuals which are evaluated and ordered according to their fitness. Each of these individuals initialise a
new generation which are evaluated until convergence within its epoch. If the fitness of an individual at the
end of the epoch is better than that of the one which initialised that epoch, it replaces the old one in the list
of individuals. After all individuals are evaluated within the list, they are ordered and the one with the worst
fitness is removed. This process repeats until only a single individual is is left, which is the result of the SSS
and the starting solution h for the subsequent optimisation run.

4.4.2. Reproduction, Crossover and Mutation
As reproduction mechanism, InTrance uses the in Section 3.6.1 described one-at-a-time reproduction with
tournament selection. The selection scheme is a binary tournament scheme, hence, µ = 2. Four crossover
types have been implemented in InTrance; (1) one-point crossover, (2) uniform crossover, (3) arithmetic cros-
sover and (4) loci crossover. All of these crossover operators have been described in Section 3.6.1. A crossover
type is chosen at random during each reproduction, with the probability for each initially set at p = 0.25.
Once more than 100 successful reproductions have taken place, crossover types are determined dynamically.
The probability for each type is then given by the number of times that operator has been applied, divided by
the total amount of reproductions. This ensures that operator types that have been successful in the past are
used more often in later stages of the optimisation.

InTrance uses a more computationally friendly method derived from uniform mutation, termed fast uniform
mutation, as its mutation operator. In conventional uniform mutation, each allele at each loci of the chro-
mosome has a chance pm of mutating, and consequently a random number generator has to be initiated for
each loci. Contrary, in fast uniform mutation, it is decided (with probability pm) for the entire chromosome
whether an allele of a singly loci is to mutate. If it is decided that mutation is to occur, a random loci of that
chromosome Ξi is chosen and its allele δij is replaced with a new δij ∈ [−δmax,+δmax].

4.5. Artificial Neural Networks
The Artificial Neural Network (ANN) within InTrance is an a priori specified fixed feed-forward network. The
number of hidden layers, and number of nodes within each, can freely be specified in InTrance’s input files.
The size of the input and output layers are fixed, with one node for each input/output parameter. The inputs
to the ANN are described in Section 4.5.1, and Section 4.5.2 describes how to decode the ANN output to result
in the required control data.

4.5.1. Input to the Artificial Neural Networks
The ANN in InTrance receives the complete set of inputs as shown in Table 4.3. The input to the network is a
combination of normalised forms of:

• the current Cartesian S/C state xC = [
x y z vx vy vz

]
— nodes 1-6;

• the current control step size(3) h — node 7;

• the current polar S/C state xP = [
r ϕ ϑ ṙ ϕ̇ ϑ̇

]
— nodes 12-15;

• the current Cartesian state of the target xTC = [
xT yT zT vxT vyT vzT

]
— nodes 16-21

• the current relative state of the S/C w.r.t. the target xTC −xC — nodes 22-27; and

• the currently available propellant mass mp — node 28

(3)The control step size is dynamically adapted by a dedicated algorithm, for more details the reader is referred to [59].

42 4. InTrance

The use of the sigmoid and/or tanh activation functions within InTrance requires input data to be normalised
to prevent saturation of neurons. Normalisation of positions and distances is achieved by scaling them with
the norm of the current S/C distance w.r.t. the central body, defined as:

r̂ = rSC. (4.13)

Units of time are scaled to the time norm t̂ , which is derived from the circular velocity of a body in an orbit
with radius r̂ as:

t̂ = r̂

vcirc
= r̂

√
r̂

µ
, (4.14)

such that all velocities can be scaled by the velocity norm v̂ , defined as

v̂ = r̂

t̂
= vcirc(rSC). (4.15)

Lastly, the propellant mass is normalised to the initial propellant mass mp,0.

To overcome the discontinuous nature of angular values, angular inputs are provided to the ANN by both the
sine and cosine of those angles. Although the ANN could be trained to overcome sudden jumps in angular
inputs –while the actual change is small– it would be rather time consuming. Providing the network with the
sine and cosine values provides a smooth input domain, essentially helping the ANN so that it can spend all
its resources on modelling the control vector. Since the sine and cosine have a domain of (-1,1), there is no
need for normalisation.

4.5.2. Output Values
The output of the NC is a vector d ∈ Rnd , with nd = 3 for solar sailing missions and nd = 6 for propellant-
dependent propulsion systems. This output vector can be decoded to result in the spacecraft control vector
u, which is comprised of the local-optimal thrust direction vector e f and an additional throttle factor χ for
propellant-dependent propulsion systems. The reader is referred to Ohndorf [59] for a complete description
on the encoding scheme of the output parameters.

4.5. Artificial Neural Networks 43

Table 4.3: NC input parameters [59].

Input node Variable NC Input Norm Frame

1 Spacecraft position x/r̂ r̂ (rotating),cartesian

2 Spacecraft position y/r̂ r̂ (rotating),cartesian

3 Spacecraft position z/r̂ r̂ (rotating),cartesian

4 Spacecraft velocity vx /v̂ v̂ (rotating),cartesian

5 Spacecraft velocity vy /v̂ v̂ (rotating),cartesian

6 Spacecraft velocity vz /v̂ v̂ (rotating),cartesian

7 Control step size h/t̂ t̂ n/a

8 Spacecraft azimuth angle sinϕ n/a polar

9 Spacecraft azimuth angle cosϕ n/a polar

10 Spacecraft elevation angle sinϑ n/a polar

11 Spacecraft elevation angle cosϑ n/a polar

12 Spacecraft azimuth rate ϕ̇/t̂ t̂ polar

13 Spacecraft elevation rate ϑ̇/t̂ t̂ polar

14 Range
||rT − rSC||

r̂
r̂ n/a

15 Range rate
(vT −vSC)(rT − rSC)

v̂ ||rt − rSC||
v̂ n/a

16 Abs. target position xT /r̂ r̂ (rotating),cartesian

17 Abs. target position yT /r̂ r̂ (rotating),cartesian

18 Abs. target position zT /r̂ r̂ (rotating),cartesian

19 Abs. target velocity vx,T /v̂ v̂ (rotating),cartesian

20 Abs. target velocity vy,T /v̂ v̂ (rotating),cartesian

21 Abs. target velocity vz,T /v̂ v̂ (rotating),cartesian

22 Rel. target position (xT −x)/r̂ r̂ (rotating),cartesian

23 Rel. target position (yT − y)/r̂ r̂ (rotating),cartesian

24 Rel. target position (zT − z)/r̂ r̂ (rotating),cartesian

25 Rel. target velocity (vx,T − vx)/v̂ v̂ (rotating),cartesian

26 Rel. target velocity (vy,T − vy)/v̂ v̂ (rotating),cartesian

27 Rel. target velocity (vz,T − vz)/v̂ v̂ (rotating),cartesian

28 Propellant mass mp /mp,0 mp,0 n/a

5
Low-Thrust Gravity Assist Trajectory

Optimisation Implementation

This research was initiated with the idea of extending the current multi-phase framework of InTrance to ac-
commodate Gravity Assists (GAs), thereby making it a truly versatile and smart global trajectory optimisation
method. Both for high- and low-thrust applications, the domain of possible mission scenarios is greatly in-
creased due to the enormous ∆V potential of gravity assist manoeuvres. InTrance can easily be extended to
high-thrust, and with the inclusion of GA optimisation, trajectories to the outer planets and beyond can be
optimised in an autonomous fashion. However, the main idea behind InTrance is the optimisation of low-
thrust trajectories, which also stand to benefit from the inclusion of GAs; the almost instantaneous ∆V due
to the slingshot manoeuvre around a celestial body can, for one, significantly decrease transfer times an-
d/or propellant usage. Besides the GA accounting for part of the ∆V budget itself, due to the Oberth effect,
thrusting at later stages will be more efficient.

The initial version of InTrance by Dachwald [17] was, to the best of the authors knowledge, the first method
that could achieve autonomous trajectory design using Reinforcement Learning (RL), albeit solely for single-
phase low-thrust heliocentric trajectories. The updated and revised version by Ohndorf [59] further increased
the capabilities of the method, allowing the autonomous design of both helio- and planetocentric low-thrust
trajectories, which could be comprised of multiple phases. It then became possible to, for instance, design
intricate multiple asteroid rendezvous missions; optimising the trajectory leg from an Earth-bound orbit to
the first asteroid, optimising all the transfer time, propellant usage, and dwell time at that asteroid, after which
the S/C continued to the next asteroid, and so on. By adding the capability for GAs, InTrance is brought one
step closer to becoming that fully autonomous method that can design optimal trajectories for any mission,
as no mission specific assumptions or models are used. Instead, the problem is tackled from a RL perspective,
which essentially derives its own underlying model.

This thesis has focussed on the development of such a versatile and autonomous method, that is, to build
on the multi-phase framework of InTrance for the design of GA trajectories. A central question in the work
was how GAs can optimally be implemented in InTrance, which is discussed in Section 5.1. The remainder of
this chapter discusses the changes that have been made to InTrance to allow GA-trajectories to be optimised,
starting with the GA-model in Section 5.3, followed by the final and initial conditions of phases ending at and
starting from a GA-body in Section 5.4, after which the changes to the chromosome and fitness function are
discussed in Section 5.5 and 5.6, respectively.

5.1. Single Phase vs. Multiphase Gravity Assist Strategy
Theoretically, a NC should be able to steer a S/C to perform a GA without externally being directed to do
so, and autonomously find a sequence of gravity assists whenever favourable. However, from the work of
Dachwald [17], Ohndorf [59] and Carnelli [14], GAs are hardly ever found with neurocontrol. This can be
explained by the fact that a gravity assist solution is within a very small subset of the solution space, and even
when an individual performs a GA, it is very unlikely it will be an optimal one and will therefore go extinct

45

46 5. Low-Thrust Gravity Assist Trajectory Optimisation Implementation

in favour of more optimal non-GA performing individuals. Hence, a method has to be implemented which
actively directs the search to perform GAs.

GAs can be implemented within InTrance in two fundamentally different ways. The first being to re-tackle
the problem that Carnelli [13] faced, that is; can a single NC be constructed that autonomously finds opti-
mal (possibly multi-) GA trajectories to reach some target? The major upside of this method is that physical
correctness is assured at every step along the trajectory, and that no external tools are necessary to compute
an optimal sequence of gravity assists. Thereby staying true to the beliefs behind InTrance; to be a global
trajectory optimisation method that requires no expert knowledge or supervision. The second approach is
to break-up the trajectory to some target that performs an intermediate GA in two phases; where a phase n
is to end at a GA-body, and a new phase n + 1 starts from that point onward. This method is conceptually
much simpler to implement, but has some caveats. The major downside of such a method is that it would
require the user to specify a sequence of GAs. Both strategies will be discussed in the subsequent sections;
detailing how such a method could work, what problems could be encountered, and possible methods to
alleviate those problems.

5.1.1. Single Neurocontroller
Theoretically, according to Kolmogorov’s theory (Section 3.5.3), a suitably sized and trained single NC should
be able to model any arbitrary underlying function, and hence should also be able to represent a steering
strategy that directs a S/C along a trajectory while performing (multiple) optimal GAs.

Within the single NC approach, a GA would simply be located somewhere along the trajectory leg of a certain
phase, see Figure 5.1. The NC will have to learn the benefits of performing a GA, and a proper fitness function
should drive the optimisation to perform them. The major benefit of this strategy is its physical validity and
independence of a user-supplied GA-sequence, staying true to the definition of a smart low-thrust trajectory
optimisation method as given in Section 3.3. Whenever a GA is favourable, the NC should perform one,
without the user indicating at which body or at what time to perform one.

GA 1 GA 2

Phase 2Phase 1 Phase 3

GA 3
Target 1 Target 2 Target 3

Figure 5.1: Single NC GA-approach within the multi-phase framework; a GA is some intermediate action within a phase.

The optimisation of GA trajectories with a single NC within Dachwald’s version of InTrance has been tackled
before by Carnelli [13]. The hypothesis was that since a single NC was found to perform solar photonic assists
by Dachwald [17], GAs should also be possible. Unfortunately, Carnelli was unsuccessful in this approach
and had to revert to a separate local optimisation scheme whenever crossing a SOI. Carnelli implemented
a local optimisation method termed steepest ascent, utilising the gradient of the fitness function to find the
optimum value. Whenever a trajectory found itself inside a SOI, the steepest ascent algorithm was employed
to find the optimal injection point, which was then passed on as the new state to the NC. The downsides of
this method are that it results in an instantaneous jump in the position of the S/C and that this method is
only applicable to single GA and single-phase trajectories. Carnelli’s work is no longer implemented in the
current multi-phase version of InTrance.

The first problem that Carnelli encountered when using a single NC to optimise GAs was that only a very
small percentage of simulated trajectories actually crossed a SOI, and therefore having a very limited learning
environment. Carnelli tried to increase the number of SOI crossings by artificially inflating the size of the
SOI, but to no avail. Carnelli furthermore found that GA performing individuals always performed a GA sub-
optimal, that is, they did not achieve to penetrate the B-plane at the optimal aiming point distance. This
resulted in premature death as their fitness was lower than non-GA performing individuals. In the hopes of
alleviating this problem, Carnelli split the population into two sub-species; a group that performed one or
more GAs, and a group that did not. This subdivision should give the GA performing individuals a chance
to optimise their aiming point, before competing with non-GA individuals. Carnelli furthermore gave an
additional boost in fitness to GA-performing individuals by multiplying the conventional fitness function J
with a term dependent on how many GAs it performed. However, even with all of these alterations, InTrance

5.2. Gravity Assist Architecture 47

would eventually still converge to a non-GA performing solution or an infeasible one.

Carnelli lists another difficulty for the single NC strategy; the gravity field around a GA-body is dynamic and
therefore information about a possible GA location cannot be passed to offspring when analysing different
launch dates. One possible adaptation to alleviate this problem is to supply the NC with the relative states
between the S/C and possible GA-bodies. However, since a GA sequence is not supplied, these states should
be supplied relative to all possible GA-bodies. Supplying the NC with relative states for all possible bodies at
each control step greatly increases the size of the ANN (n bodies × 6 coordinates) and therefore results in a
much larger search space, which greatly hinders the optimisation of the internal parameters.

Although some more work with this approach could be done, including implementation of a more suitable
fitness function, this approach is not further explored within this work. Even if the single NC GA appro-
ach could successfully be implemented to perform a GA, it is very unlikely to work for more intricate GA-
sequences, such as an EVEV-GA(1). After all, the chances of simulating such a trajectory are very slim, and
even slimmer for generating four optimal GAs. Instead, a more promising strategy is to use a separate NC for
each GA, which is discussed next.

5.1.2. Multiple Neurocontrollers
Within the multi-NC approach, a GA is a target in itself and marks the end of a phase, see Figure 5.2. This
example shows the same sequence as in Figure 5.1, but is now a six phase trajectory instead of the three phase
trajectory in the single NC GA approach. The major advantage of the multi-NC GA approach is that a NC can
solely be trained to reach a GA-body and optimise that GA, with no risk of non-GA performing individuals
outperforming GA-performing individuals. After all, not reaching a GA target is a constraint violation which
is heavily penalised trough the fitness function as discussed in Section 4.3. The downside of this method is
that a sequence of gravity assists has to be supplied, which is not directly in line with the definition of a smart
low-thrust trajectory optimisation method. However, these sequences can be supplied by external heuristic
sequencing algorithms, which could even be directly implemented within InTrance in the future.

GA 1 GA 2

Phase 2Phase 1

GA 3Target 1 Target 2 Target 3

Phase 6Phase 4 Phase 5Phase 3

Figure 5.2: Multi-NC GA-approach within the multi-phase framework; a GA is a target in itself and ends a phase.

Since a GA is now a target in itself, the NC is supplied with the relative position of the S/C to the GA-body
at each control step, as detailed in Section 4.5.1. Therefore, information about a possible GA location can be
passed on to offspring without increasing the search space of the NC of the GA-phase, as would have been
required in the single NC approach discussed above. By ending a phase right after a GA has been performed,
the optimisation is steered to first optimise each phase in reaching its target. Only once each phase has
reached its respective target, the optimisation shifts to decreasing the phase transition gaps and optimisation
of the overall objective function. Therefore, a NC has ample opportunity to learn the benefits of a GA and how
to properly perform one.

5.2. Gravity Assist Architecture
The above discussed multi-NC GA approach has been implemented within InTrance and the flow of this
approach is shown in Figure 5.3 for an exemplary two phase mission with a single GA. The first phase starts
at the launch body and ends with a GA when exiting the SOI of the GA-body. The second phase then starts on
the rim of the SOI of the GA-body and takes the S/C towards its final target where it either performs a flyby or
rendezvous, or is captured.

The evolutionary algorithm provides a candidate solution ξ j , which is essentially the chromosome containing
the internal parameters of both NCs and initial conditions of both phases. The internal NC parameters π1

(1)Earth-Venus-Earth-Venus-Gravity Assist; common in trajectories to Mercury.

48 5. Low-Thrust Gravity Assist Trajectory Optimisation Implementation

Retrieve initial conditions and
NC parameters phase 1

Integrate 1st phase until reaching
the termination conditions

Stopped on
SOI entry?

yes

no Stopped on
SOI exit?

no

yes

Analytical
GA model

Determine
∆V

new proximity P1

∆VGA

Retrieve initial conditions and
NC parameters phase 2

Integrate 2nd phase until reaching
the termination conditions

∆VEA

Fitness
function

trajectory xSC[t]

candidate solution ξ j

fitness J (ξ j)

evolutionary
algorithm

P1, P2

P1

Figure 5.3: Multi-phase low-thrust gravity assist trajectory optimisation within InTrance. Figure shows the flow of an exemplary two
phase mission; the first phase ending with a GA, the second starting from the GA-body towards its final target.

and initial conditions xSC ,1(t0) of the first phase are then extracted from the chromosome from which the NC
is initialised and integration commences from the initial state. The NC is sampled at each control time step
to provide a control u(ti) and integration continues until reaching a termination condition, exactly similar
to the architecture as shown in Figure 4.1. Additional termination conditions have been added to support
GAs, depending on whether the GA is modelled analytically or numerically, see Section 5.3. When using
the analytical GA model, the integration is stopped when entering the SOI. These entry conditions are then
supplied to the analytical GA model such that the exit state and resulting∆V can be determined. When using
the numerical model, the trajectory is integrated until crossing the SOI for the second time, i.e. when exiting
the SOI, after which the∆V is readily available. If the particular individual never crosses the first target’s SOI,
the integration is stopped from any of the other termination conditions (max MET, max integration steps,
etc.).

The proximity is determined at each integration step, but contrary to any of the other trajectory types already
implemented within InTrance, when one of the new termination conditions are triggered, a new proximity
for the GA-phase is determined. This new proximity is a function of the actual achieved∆V due to the gravity
assists, and the ∆V EA which is an initial condition of the following phase and actively optimised by the EA.
This∆V EA and the new proximity functions are described in more detail in Sections 5.4 and 5.6, respectively.

With the integration of the first phase terminated and the proximity determined, the second phase can be
initialised by extracting the internal NC parameters π2 and initial conditions xSC ,2(t0) of the second phase
from the same individual ξ j . These initial conditions of the second phase are different than those of other
trajectory types, and are described in detail in Section 5.4. Integration then starts from the initial conditions
and the NC of the second phase is again sampled at every control step. Integration continues until reaching
one of the regular termination conditions relating to the flyby, rendezvous or capture problem. This results
in a complete trajectory which is then evaluated through the fitness function as discussed in Section 4.3. The
evolutionary algorithm then supplies a new individual and the process repeats until convergence.

5.3. Gravity Assist Model
Two gravity assist models have been implemented in InTrance. The first is an analytical method derived from
Keplerian two-body dynamics as described in Section 2.2. This method has the advantage of not having to in-
tegrate while within the SOI, where the control and integration step sizes are the smallest due to the increased

5.4. Initial and Final States of Gravity Assist Phases 49

dynamic gravitational environment. A possible downside of this method is that no thrust can be applied while
inside the SOI, thereby not taking effect of the Oberth effect and having no possibility to alter the closest ap-
proach distance from the instance of entering the SOI onwards. As Section 2.4 showed, especially when using
thrust to lower the closest approach, the effects can be large. However, a lower closest approach distance can
also be achieved by having a different aiming point on the B-plane, which is fully determined by the entry
conditions into the SOI. Furthermore, historical missions have not allowed thrusting while performing a GA
due to its increase in mission risk.

Nevertheless, it is interesting to investigate the effect of thrust while performing a GA on the overall trajec-
tory. InTrance autonomously determines when to engage the thruster, and it would be interesting to see if
InTrance returns a more optimal solution when allowing thrust during the GA portion versus without. To this
end, a numerical model for the GA portion has also been implemented, which simply records the entry state
into the SOI and continues the integration until exiting the SOI. The ∆V due to the gravity assist portion is
then readily available by subtracting the entry velocity from the exit velocity in the heliocentric frame. The
numerical model furthermore has the added benefit that it ensures physical correctness with a high accuracy
(depending on the integration scheme) and can take disturbing bodies into account. However, it is compu-
tationally much heavier and increases the search space.

5.3.1. Analytical Gravity Assist Model
The analytical gravity assist model is shown in Algorithm 5.1 and is derived from the geometry and equations
described in Section 2.4. The algorithm’s input is made up out of the the heliocentric position and velocity
vectors of both the S/C and GA-body at the entry date into the SOI (R1, V 1, Rb,1, V b,1), the entry date itself
(Tent), the standard gravitational parameter of the GA-body (µb), and a C++ body object (pointer) of the GA-
body (body), which is necessary to retrieve certain parameters of that body. The algorithm will then determine
the resulting exit state out of the SOI (R2, V 2) and resulting GA parameters∆V , the time spent within the SOI
(TGA), and the closest approach distance rp .

The algorithm first determines the S/C state relative to the GA-body in lines 1-3, after which the angles γ, β
and deflection angle δ (see Figure 2.5) can be determined from the eccentricity e, hyperbolic excess velocity
v∞ and b-point aiming distance b in lines 4-9. The closest approach distance rp and time spent within the
SOI TGA are then determined from the hyperbolic anomaly H , the semi-major axis a and eccentricity e in
lines 10-13. The exit state is determined from realising that the result of a GA is a rotation of the incoming
velocity vector around the angular momentum vector in the GA-bodycentric frame. The position vector is
rotated over an angle α and the velocity vector over an angle δ through rotation matrix

R(ϕ,h) =

 cosϕ h3
h sinϕ −h2

h sinϕ

−h3
h sinϕ cosϕ h1

h sinϕ
h2
h sinϕ −h1

h sinϕ cosϕ

 , (5.1)

in which h = [h1, h2, h3] and h = ‖h‖. This is shown in lines 14-17. The heliocentric state of the GA-body at
the instance of exiting the SOI is then retrieved in lines 18 and 19, after which the heliocentric exit state and
resulting ∆V is determined in lines 20-22. Line 23 determines the velocity difference between the exit state
of the S/C and the velocity of the GA body at the instance the S/C exits the SOI. This ∆V b will be elaborated
on in Section 5.4.2.

5.4. Initial and Final States of Gravity Assist Phases
A phase ending with a GA ends when the S/C exits the SOI. When using the analytical GA model, the integra-
tion is stopped when the S/C enters the SOI, after which the exit state is determined analytically and added
to the state vector history. Hence, the trajectory within the SOI is not integrated and therefore results in a gap
in the state history of that phase. When using the numerical model, the trajectory is integrated until exiting
the SOI, so that the GA-phase again ends with a state positioned on the rim of the SOI. When the evaluated
individual does not enter the SOI, the integration is stopped at one of the termination conditions (e.g. max.
MET or max. arrival date) and whatever state the S/C has attained at that point is the final state of that phase.

The initial conditions of a phase succeeding a GA-phase are directly supplied by the Evolutionary Algorithm
(EA). The initial position has to be on the rim of the SOI, as a GA-phase always ends on the rim of the SOI when
a GA has been performed. To this end, two additional parameters have been encoded onto the chromosome;

50 5. Low-Thrust Gravity Assist Trajectory Optimisation Implementation

Algorithm 5.1: [R2, V 2, ∆V , ∆V b , TG A , rp] = AnalyticalGravAssModel(R1, V 1, Rb,1, V b,1, Tent, µb ,
body)

Input : Heliocentric position and velocity vectors of both the GA-body and SC at instance of entering
the SOI R1, V 1, Rb,1, V b,1, time of entry into SOI Tent, the standard gravitational parameter of
the GA-body µb , and the body object body

Output: Heliocentric position and velocity vectors of the SC when exiting the SOI R2, V 2, two types of
∆V which are the result of the GA, the time spent within the SOI TG A , and the closest
approach distance rp .

Result: Find the exit state and resulting ∆V due to a gravity assist.

// Determine GA-bodycentric state of SC at SOI entry
1 r 1 = R1 −Rb,1

2 v 1 =V 1 −V b,1

3 r1 = ‖r 1‖ , v1 = ‖v 1‖
// determine GA-geometry

4 v∞ =
√

v2
1 −

2µ
r1

// hyperbolic excess velocity

5 β= r 1·v 1
r1v1

// angle between velocity direction and distance vector

6 γ=π−β // b-distance angle
7 b = r sinγ // b-distance

8 e =
√

1+b2 v4∞
µ2 // eccentricity

9 δ= 2asin
(1

e

)
// deflection angle

// determine time spent within SOI and closest approach distance

10 a =
(

v2
1
µ − 2

r1

)−1

// semi-major axis

11 H = acosh
[(

1+ r
a

)
sin δ

2

]
// hyperbolic anomaly

12 TGA = 2
√

a3

µ (esinhH −H)

13 rp =− µ

v2∞
(1−e)

// determine GA-bodycentric SC SOI exit state
14 h = r 1 ×v 1 // angular momentum vector
15 α=π−δ+2γ // position rotation angle
16 r 2 ← R (α,h) · r 1

17 v 2 ← R (±δ,h) ·v 1

// determine heliocentric SC SOI exit state and ∆V both relative to entry velocity and body velocity
18 Rb,2 ← getPosVec

(
Tent +TGA,body

)
// retrieve heliocentric position at SOI exit of GA-body

19 V b,2 ← getVelVec
(
Tent +TGA,body

)
// retrieve heliocentric velocity at SOI exit of GA-body

20 R2 = Rb,2 + r 2

21 V 2 =V b,2 +v 2

22 ∆V =V 2 −V 1

23 ∆V b =V 2 −V b,2

the initial launch position azimuthαGA and the initial launch position elevation δGA. A bodycentric reference
frame centred at the GA-body is then used to set the initial position at a distance RSOI with an azimuth and
elevation supplied by the EA, see Figure 5.4. The azimuth and elevation are allowed to be varied by the EA
within user defined bounds, indicated in red in Figure 5.4 for the azimuth angle. This initial bodycentric
position is then converted to Cartesian elements and added to the heliocentric position of the GA-body at
the launch date, resulting in the heliocentric initial position of a phase which directly follows a GA-phase.
The launch date of this phase is also a parameter on the chromosome and is optimised within user defines
bounds.

The initial velocity of a phase following a GA-phase is either defined relative to the entry velocity into the SOI
of the preceding phase or relative to the GA-body velocity at launch. Both methods will be tested and both

5.4. Initial and Final States of Gravity Assist Phases 51

have their advantages and drawbacks, as will be detailed next.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x [AU]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y
[A

U
]

Trajectory of
GA phase

Initial launch
azimuth

SOI

Initial launch
position

min

max

Trajectory of phase
succeeding GA

Figure 5.4: Definition of initial position of a phase directly following a GA in the XY-plane. Elevation angle completes the right-handed
system.

5.4.1. Velocity Relative to SOI Entry Velocity in GA-Phase
For clarity, the phase ending with a GA will be refereed to as phase 1, the subsequent phase which starts from
the rim of the SOI of the GA-body is referred to as phase 2. Within this approach, the initial velocity of phase
2 is given by the heliocentric entry velocity into the SOI as found in phase 1 plus a ∆V EA generated by the
evolutionary algorithm, see Figure 5.5. Hence, once the actually generated ∆V due to the GA in phase 1 is
equal to the required ∆V EA needed to reach the next target in phase 2, and the final position of phase 1 is
equal to the initial position of phase 2, a physically valid GA has been performed.

The initial velocity of the second phase is shown with a red vector in Figure 5.5, starting from the initial
position of the second phase. The green vector is the entry velocity into the SOI as found in the first phase,
and the purple vector shows the ∆V EA as supplied by the EA. This ∆V EA is optimised within user defined
bounds by the EA, to which end three parameters are encoded onto the chromosome; the magnitude of the
velocity increment ∆VEA, the azimuth angle α∆V and the elevation angle δ∆V . These angles are defined in a
similar fashion as for the initial position and are shown in Figure 5.5; the only difference is that the reference
frame is centred at the initial position of the second phase on the rim of the SOI.

The advantage of this method is the physical correctness and straightforward use of the ∆V , which is as its
definition the difference in heliocentric velocity at exit and entry into the SOI. The downside, however, is that
the two phases are inherently coupled. The second phase will only be able to reach its target if the entry
velocity into the SOI of the first phase is sufficiently close to the actual optimal injection velocity. Whenever
a vastly wrong GA, or no GA at all, is performed in the first phase; the second phase is also unable to reach its
target. This goes against the overall idea of the multi-phase framework, in which each phase is first optimised
separately and independent from other phases, and only after all phases reach their respective targets, the
focus shifts to finding the overall optimal trajectory. Therefore, in an effort to partly decouple the phases, an
alternative approach is detailed next.

5.4.2. Velocity Relative to Gravity Assist Body
Instead of defining the initial velocity of the second phase relative to the entry velocity into the SOI of the
first phase, it is defined relative to the velocity of the GA-body at launch of the 2nd phase, see Figure 5.6. The
initial velocity of the second phase is then given by the GA-body velocity at launch plus a ∆V EA,b supplied

52 5. Low-Thrust Gravity Assist Trajectory Optimisation Implementation

-3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2

x [AU]

-5.6

-5.4

-5.2

-5

-4.8

-4.6

-4.4

y
[A

U
]

Burn
CoastEntry position into SOI,

final state 1st phase

Final velocity of 1st phase

Initial launch position
azimuth of 2nd phase

Initial "V azimuth angle
of 2nd phase

"V

Initial position 2nd phase

Final velocity of 1st phase

"V

Initial velocity of 2nd phase

Figure 5.5: Definition of initial state in a phase directly following a GA using the entry velocity of the preceding phase.

by the EA. The ∆V EA,b in this approach cannot be interpreted as a classical ∆V due to a GA, but rather as a
’launch velocity’ or C 3 relative to the GA-body as if it were supplied by a launch vehicle. Nevertheless, if the
∆V generated due to the GA is also defined relative to the GA-body at the instance the S/C exits the SOI, it
can be compared to the initial launch ∆V EA,b of the second phase. Once these values match, and the final
position of phase 1 and initial position of phase 2 match, a physically valid GA has been performed.

The initial velocity of this approach is shown with a red vector in Figure 5.6. The blue vectors indicate the
velocity of the GA body at the launch date of the second phase, and the purple vectors the initial ∆V EA,b.
The velocity increment∆V EA,b is again optimised by the EA within user defined bounds, defined in the same
polar reference frame as described in Section 5.4.1.

The major upside of this definition of an initial launch ∆V EA,b is that the second phase is decoupled from
the first phase. The NC of the second phase is then free to optimise towards its first goal of reaching the next
target, and only after all targets in all phases have been reached, the optimisation focusses on decreasing
phase transition gaps and maximising the actual objective function. The downside of this method is that it is
less intuitive and therefore more difficult to interpret.

5.5. Chromosome
The EA chromosome ξi contains both the internal parameter set (j)π of the ANN of all NCs for each phase j ,
and the simulation parameters which affect either S/C design or mission design of all phases j . The two to
be optimised S/C design parameters of each phase are the propellant mass mp,0 and the characteristic power
output of the electric propulsion system Pe,0. The propellant mass is optimised in such a way that enough
propellant should be brought on-board for both the current phase plus enough reserve for all succeeding
phases. The characteristic power output can be optimised if a mission requires so, or simply be set at a
constant value if a specific propulsion system is chosen. The simulation parameters affecting the mission
design are the launch/departure date t0, the hyperbolic excess velocity v∞ at t0, and the initial state vector
xSC (t0). Two additional simulation parameters have been added if the phase starts from a GA-body; the
launch position azimuth αG A and launch position elevation δG A , as described in Section 5.4. Table 5.1 shows
the encoding of the above described simulation parameters.

5.5. Chromosome 53

-3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2

x [AU]

-5.4

-5.2

-5

-4.8

-4.6

-4.4

y
[A

U
]

Burn
Coast

Initial launch position
azimuth of 2nd phase

Final velocity of 1st phase

Initial position 2nd phase

Initial velocity of 2nd phase

Initial "V azimuth angle
of 2nd phase

"V
b

"V
b

GA-body velocity at SOI exit

GA-body velocity at SOI exit

Figure 5.6: Definition of initial state in a phase directly following a GA using the body velocity at SOI exit.

Table 5.1: Simulation parameter encoding onto the chromosome.

Relative Locus Allele Associated Variable Affected Initial Condition
0 r0 t0 t0

1 r1 v∞ v∞
2 r2 α∞ v∞
3 r3 δ∞ v∞
4 r4 mp,0 xSC(t0)
5 r5 Pe,0 xSC(t0)
6 r6 r, v xSC(t0)
7 r7 r, v xSC(t0)
8 r8 r, v xSC(t0)
9 r9 ϕ,ϑ xSC(t0)

10 r10 ϕ,ϑ xSC(t0)
11 r11 ϕ,ϑ xSC(t0)
12 r12 ζ,Φ xSC(t0)
13 r13 ζ,Φ xSC(t0)
14 r14 ζ,Φ xSC(t0)
15 r15 αGA xSC(t0)
16 r16 δGA xSC(t0)

InTrance can optimise the initial launch v∞, thereby simulating the launch velocity supplied by a launch
vehicle. However, its parameters on the chromosome are only used in the very first phase, when the S/C
is launched. No use is made of alleles r1 to r3 after the very first phase in the classical version of InTrance,
which is why they are re-used for a phase following a GA and supply the∆VEA, the azimuth angleα∆V and the
elevation angle δ∆V , as described in Section 5.4.

54 5. Low-Thrust Gravity Assist Trajectory Optimisation Implementation

5.6. Fitness
The fitness determination within InTrance in the multi-phase framework has been detailed in Section 4.3,
and remains largely the same with the implementation of GAs. However, since a new target state –the gravity
assist– has been added, new proximity functions and transition conditions have been defined.

In case of the gravity assist problem, the deviation δ is not used. Furthermore, there is no need to keep track
of the best solution along the trajectory, as entering the SOI always stops the integration. It would be logical
to define the gravity assist problem analogous to the rendezvous problem; with a δr which compares the
current distance to the gravity assist body at each integration step to the maximum allowed distance (RSOI),
and a δv which compares the ∆V supplied by the gravity assists with the ∆V which is actually used by the
second phase and optimised by the evolutionary algorithm. However, the required closest approach distance
is unknown a priori, hence it is not possible to define a deviation δr . After all, the definition of δr drives
the spacecraft as close as possible to the desired target distance. In principle, a velocity deviation δv could
be defined as detailed in Section 4.3.1. However, it is often the case that the δr of the second phase reaches
a very large negative number; orders of magnitude larger than that of a velocity deviation of the GA phase.
Therefore, a better result in the second phase will have a much larger effect on the overall fitness than a better
result in the first phase. This will result in the optimisation to focus more on the second phase and almost
neglect the first phase, giving rise to physically invalid trajectories in which no GA is performed.

In order to overcome the above mentioned problems, use has been made of dedicated proximity functions
for the gravity assist phase. The proximity function can be regarded as a sub-fitness function of the GA-
phase, driving the NC to perform an optimal GA which supplies the ∆V required by its succeeding phase
to reach its target. Initially, the proximity function is defined in such a way that it drives the optimisation
towards reaching the SOI of the gravity assist body. Once the SOI is entered, the integration is stopped and
the gravity assist model takes over. The ∆VGA determined by the GA model is then compared to the required
∆VEA as determined by the evolutionary algorithm. The proximity function of the gravity assist problem is
then defined as:

PGA =
{ −c1 (r −RSOI)2 −M1 if r > RSOI

min
[
−c2 ·abs

(
∆VG A−∆VE A

∆VE A

)]
+ c2 ·0.01p if r ≤ RSOI

, (5.2)

where the min() function here means the minimum proximity in one of the three Cartesian velocity directions
x, y, z. Additionally, c1 and c2 are scaling factors, p the maximum allowed percent deviation between the two
∆V vectors, r = |r|, and M1 a sufficiently large negative value such that performing a gravity assist is always
favoured over not reaching the SOI, regardless of how large the deviation between the two ∆V vectors is.

Figure 5.7 shows a plot of the proximity functions of the gravity assist problem. The figure on the left side
shows the function when the spacecraft has not yet reached the SOI, with a scaling factor of c1 = 106 and
M1 = 2000. The figure on the right shows the proximity function when the S/C performs a GA, with scaling
factor c2 = 100 and the maximum allowed deviation p = 3%. These scaling factors have been used throughout
this work for all simulated trajectories. It is clear that the sub-fitness of an individual performing a gravity
assist is much higher than that of non-GA performing individuals, regardless of the deviation between the
two velocity increment vectors.

Once the sub-fitness functions JP (see Section 4.3.3) becomes positive, then all proximity constraints have
been met and the gravity assist has provided the required ∆V needed by its subsequent phase to reach its
respective target. The overall fitness J (ξ j) for individual ξ j is then determined by the objective function O
(such as transfer time minimisation) and the phase transition condition violations Vi as

J (ξ) =
{

JP if JP < 0
O ·∏i∈(d w,m,s)

1
1+Vi

if JP ≤ 0
. (5.3)

Hence, once the phase-specific constraints have been met, any fitness improvement results from an increa-
sed value of the respective objective functionO or from a decrease of the phase transition condition violations
Vi , or both.

The phase transition condition violations Vi provide a measure on how well two phases connect. Naturally,
the position at the end of the first phase and the initial position of the second phase cannot be too far apart.
The same is true for the final and initial velocity of the two phases, the propellant mass, and the arrival and
departure dates. Since the proximity function is defined in such a way that the final velocity of the GA-phase

5.6. Fitness 55

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Distance to GA-body [R
SOI

]

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

P
ro

xi
m

ity
 [-

]
×105

(a) if r > RSOI

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
max(abs(∆VGA−∆VEA

∆VEA

))

-100

-80

-60

-40

-20

0

20

P
ro

xi
m

ity
 [-

]

(b) if r ≤ RSOI

Figure 5.7: Proximity functions of the analytical gravity assist phase. c1 = 106, M1 = 2000, c2 = 100, p = 3.

and initial velocity of its succeeding phase are approximately equal when optimised, there is no need for a
phase transition condition on the velocity. However, since a p% deviation between the velocity is allowed
in the proximity (see eq. 5.3), a transition conditions is applied to the velocity to further decrease the gap.
The second phase’s initial position can be anywhere within predefined bounds on the edge of the SOI, and
hence also requires a phase transition condition. Example geometry of these position and velocity gaps are
shown in Figure 5.8. The state phase transition condition between a GA-phase and its succeeding phase is
formulated as:

Vpos =
{ ‖r 2−r 1‖

‖r2‖ if Vpos > θ
0 if Vpos ≤ θ

, Vvel =
{

max
(

abs(v 2−v 1)
v 2

)
if Vvel > θ

0 if Vvel ≤ θ
, Vstate = max

(
Vpos,Vvel

)
. (5.4)

Hence, the position transition condition is the distance between the GA-bodycentric final position of the first
phase (r1) and initial position of the second phase (r2), divided by the radius of the SOI of the gravity assist
body ‖r2‖ = RSOI. The velocity transition condition is the maximum difference in any of the three Cartesian
directions divided by the initial velocity of the 2nd phase in that direction. When any of the transition con-
dition violations are smaller than some user defined threshold θ, it is set to zero and indicates there is no
violation. The state transition condition is then given by the maximum of the velocity and position transition
conditions.

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

x [AU]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

y
[A

U
] Initial launch radius

2nd phase

Asymptote

Initial position of
2nd phase

Initial velocity of
2nd phase Final position of 1st phase

Final velocity of 1st phase

Launch position
azimuth

Entry state into SOI

Position
gap

(a) Position gap

-10 -5 0 5 10 15

V
x
 [km/s]

-20

-15

-10

-5

0

V
y [k

m
/s

]

Initial velocity
2nd phase

Exit velocity SOI

∆V due to GA

∆V 2nd phase

Entry velocity SOI

(b) Velocity gap

Figure 5.8: Example geometry to showcase transition conditions between a GA-phase and its succeeding phase.

56 5. Low-Thrust Gravity Assist Trajectory Optimisation Implementation

5.6.1. Algorithm
The determination of the proximity when using the analytical GA model is shown in Algorithm 5.2. The
algorithm is called at each integration step and starts with retrieving the then current heliocentric state and
converts them to the GA-bodycentric reference frame. The proximity is then set as defined in equation 5.2,
with r > RSOI, awarding an individual for getting closer to the SOI. If the S/C has not entered the SOI, the
algorithm stops and integration continues. If the S/C has entered the SOI, then a termination condition flag
is set which stops the integration loop (line 11). The analytical GA model (see Algorithm 5.1) is then called
which returns the ∆V due to the GA and SOI exit state. This exit state is then saved on line 13 such that it
can be accessed by the second phase and used to determine the transition conditions later on. The ∆V due
to the GA is then compared to the ∆V EA used in the initial conditions of the 2nd phase, which first has to
be converted to Cartesian elements (lines 14-15). The proximity when the S/C has performed a GA is then
determined and set in lines 17 and 18, where line 16 determines which∆V definition to use (see Section 5.4).
Lastly, if the S/C collides with the GA-body, the proximity is set to a large negative value.

If the S/C has entered the SOI or if any of the other termination conditions have been reached, the integration
loop is stopped and the evaluation of the next phase commences. If no termination conditions are reached,
the trajectory is propagated to the next state and the proximity is again determined.

Algorithm 5.2: Proximity(s, b,∆V EA)

Input : spacecraft object s, body object b, initial ∆V of next phase∆V EA,pol in polar coordinates
Output: none
Result: Determine and set the proximity at each integration step.

// Retrieve current heliocentric state, date, µb , and RSOI and convert state to GA-bodycentric
1 date = getDate()

2 R = s → g etPosV ec(), V = s → g etV elV ec()
3 Rb = b → g etPosV ec(), V b = b → g etV elV ec()
4 r = R −Rb , v =V −V b , r = ‖r ‖ , v = ‖v‖
5 RSOI = b → RSOI(date)
6 µb = b → getGM

7 setStateSOIExit(R ,V ,date)

// determine and set deviation/proximity
8 prox =−c1 (r −RSOI)2 −M1

9 setProx(0,prox)

// if SC is within the SOI, determine different deviation/proximity.
10 if 0.9RSOI < r ≤ RSOI then

11 setIsSOIEntry(true) // termination condition -> stops the integration loop

// determine and set heliocentric exit state of SC
12 [R2, V 2, ∆V GA, ∆V GA,b, TG A , rp] = AnalyticalGravAssModel

(
R ,V ,Rb ,V b ,date,µb ,b

)
13 setStateSOIExit(R2, V 2, date+TG A)

// convert initial∆V of subsequent phase from polar to Cartesian coordinates
14 ∆VEA =∆V EA,pol(0), α=∆V EA,pol(1), δ=∆V EA,pol(2)
15 ∆V E A =∆VEA · [sinαcosδ, cosαcosδ, sinδ]

// determine and set proximity
16 if relative to entry velocity then∆V =∆V GA else∆V =∆V GA,b

17 prox = min
[
−c2 ·abs

(
∆V −∆V EA
∆V EA

)]
+ c2 ·0.01p

18 setProx(0,prox)

// penalise if impacting the surface
19 if rp < (b → getMeanRadius()) then setProx(0,−1e7)

end

6
Verification and Validation

InTrance has undergone significant validation efforts by both Ohndorf [59] and Dachwald [17] to validate the
overall search behaviour and optimised solution plus all components such as the EA and numerical integra-
tor. Therefore, the current validation effort focusses on the newly implemented components, and the ana-
lytical GA-model in particular. It is generally not possible to determine whether a solution to the low-thrust
trajectory optimisation problem is the actual global optimum, therefore, in order to assess the convergence
behaviour and validity of the obtained solution, it will be compared to reference solutions found in literature.
To his end, a low-thrust New Horizons like trajectory is re-computed using the developed extended version
of InTrance to assess the overall validity and optimality of the gravity assist implementation within InTrance.

6.1. Analytical Gravity Assist Model
An analytical gravity assist model has been incorporated within InTrance to reduce complexity and compu-
tation time. Since this is an analytical model, based on two-body dynamics (see Section 5.3), its validity in a
more realistic environment has to be evaluated. To this end, several gravity assists have been simulated using
an external RK4(5) integrator implemented in MATLAB, which can then be compared to the results from the
analytical GA-model.

Figure 6.1 shows a selection of simulated gravity assists at both Jupiter and Mars in the planetocentric frame,
all starting from the same initial position(1) on the rim of the SOI and having the same initial velocity direction,
but a different entry velocity (≈ v∞) magnitude. The trajectories are integrated using a constant step-size of
h = 10 s for the trajectories at Mars and h = 50 s for the trajectories at Jupiter. The trajectories are integrated
from the initial conditions in the heliocentric frame under the main attracting gravitational force from the
Sun, the gravitational attraction of the GA-body is then modelled as a disturbing potential. The heliocentric
states of the GA-bodies have been retrieved through SPICE at an arbitrary start date of 27 sept 2007. The
resulting SOI exit states have also been computed with the analytical GA-model given in Algorithm 5.1, and
are indicated with red dots in Figure 6.1.

A lower entry velocity results in a lower closest approach distance, giving rise to a larger deflection angle δ, as
described in Section 2.3. This effect can clearly be seen in the simulated trajectories, where the trajectories
with the largest entry velocity (v∞,max = 20 km/s at Jupiter and 5 km/s at Mars) are only deflected over a few
degrees, whereas the trajectories with the lowest entry velocities (v∞,mi n = 5 km/s at Jupiter and 1 km/s at
Mars) are deflected over approximately 115◦. The positional SOI exit deviation between the numerical and
analytical method can clearly be seen to increase with increasing deflection angles. The deviation is especially
apparent in the case of a Jupiter GA, in which the S/C spends more time inside the SOI then in the Mars case.

The deviations between the analytical and numerical gravity assists have been plotted in Figure 6.2, using the
same initial conditions as in the above simulations. The deviations are shown in percentages, determined as

∆r = ‖r ana − r num‖
‖r num‖ ×100, ∆v = ‖v ana −v num‖

‖v num‖ ×100, ∆δ= δana −δnum

δnum
×100, (6.1)

(1)Initial Cartesian position: r = RSOI ·
[
cos56◦, sin56◦, 0

]T; initial Cartesian velocity: v = v∞ · [−cos53◦, −sin53◦, 0
]T

57

58 6. Verification and Validation

-6 -4 -2 0 2 4 6

x [m] #108

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
[m

]

#108

(a) Mars; entry v∞ = 1 : 0.5 : 5 km/s, h = 10 s.

-6 -4 -2 0 2 4 6

x [m] #1010

-4

-3

-2

-1

0

1

2

3

4

y
[m

]

#1010

(b) Jupiter; entry v∞ = 5.5 : 1.5 : 20 km/s, h = 50 s.

Figure 6.1: Trajectory while performing a GA at both Mars (left) and Jupiter (right) for varying entry velocities from RK4(5) integrator
(blue lines) and corresponding analytical GA-model exit positions (red dots).

where r and v are, respectively, the position and velocity in the GA-bodycentric frame at SOI exit and δ the
deflection angle. Indices num and ana indicate whether the parameters are determined from the numerical
or analytical method, respectively. These figures again show that the deviation of these parameters between
the two methods quickly increase with increasing deflection angle. The deviation between the positions and
velocities are almost identical, going up to about 6.3% in the Mars case and about 26% in the Jupiter case. The
deviation in deflection angle between the two methods is smaller, attaining a maximum of 3.5% in the Mars
scenario and 15% in the Jupiter case. The deviation in the deflection angle is most telling, as the position
and velocity error follow a practically linear relation with the SOI radius. The deviation is partly explained by
the inclusion of a gravitational acceleration from the Sun in the numerical method, thereby stepping away
from the simplifying two-body dynamics of the analytical model. The analytical method furthermore sim-
plifies the problem by making certain assumptions, such as assuming the entry velocity into the SOI to be
equal to the incoming hyperbolic excess velocity v∞. It should also be noted that the numerical method does
not necessarily give the correct result, as it is highly dependent on the integration step size h, for which no
variable stepsize method has been implemented in the simple RK4(5) implementation used here. Especi-
ally for the extreme gravity assists, the step size is rather important due to the rapidly changing gravitational
environment around the point of closest approach.

1 2 3 4 5

Entry v1 [km/s]

0

1

2

3

4

5

6

7

"
 [%

]

0 50 100 150

Num. / [deg]

0

1

2

3

4

5

6

7

"
 [%

]

Deflection angle
Position
Velocity

(a) Mars

0 10 20 30

Entry v1 [km/s]

0

5

10

15

20

25

30

"
 [%

]

0 50 100 150

Num. / [deg]

0

5

10

15

20

25

30

"
 [%

]

Deflection angle
Position
Velocity

(b) Jupiter

Figure 6.2: Deviation between analytical GA-model and numerically integrated trajectory in deflection angle δ, exit position r2 and exit
velocity v1 versus the entry v∞ = v1 and numerically determined deflection angle. Entry position same as in Figure 6.1.

6.2. New Horizons Validation Case 59

It is problem dependent whether these deviations can be deemed acceptable. Generally, deflection angles
in missions are not as extreme as simulated above and a trajectory resulting from a preliminary design tool
such as InTrance is usually run through a local optimiser to generate a higher fidelity solution, which are
usually able to smooth out these gaps. Furthermore, as detailed in Section 5.6, InTrance allows a certain user
defined state gap between phases. As long as the deviation from the analytical GA model is in the same order
of magnitude as the allowed state transition gap, the analytical model can generally be deemed acceptable. If
more extreme gravity assists are simulated, or when a higher fidelity solution is desired, use can be made of
the implemented numerical method.

6.2. New Horizons Validation Case
In order to assess the overall validity of the GA implementation in InTrance, an optimised solution is compa-
red to results found in literature. A New Horizons like trajectory will be optimised, utilising low-thrust NEP
and a Jupiter GA to generate the required ∆V to perform a flyby of Pluto. The reference solutions are genera-
ted by Vasile et al. [75] using a direct collocation method based on a finite element transcription implemented
in the software DITAN [8], and by Carnelli [13] using his implementation of gravity assists in the single-phase
framework version of InTrance.

6.2.1. Validation Data
The software DITAN [8] has been used by Vasile et al. [75] to optimise trajectories to Pluto and beyond. They
generated trajectories using SEP and aero gravity assists at Jupiter to reach Pluto, but relied on NEP and con-
ventional GAs to generate more favourable mission scenarios. With NEP, they calculated several trajectories
to Pluto which performed GAs at several different bodies along the way. One of their simplest and fastest
solutions was termed ’fast transit’, a low-thrust version of the New Horizons mission, which performs a GA
at Jupiter and a fast flyby (v∞ = 15.337 km/s) of Pluto. For increased scientific return, they also computed
trajectories which perform slow flybys (v∞ = 50 m/s) of Pluto, trajectories which are captured by Pluto, tra-
jectories which perform a Petit Tour (flybys/GA at the inner planets) prior to performing a flyby of Pluto, and
lastly trajectories which perform a Grand Tour (flybys/GA at the outer planets) prior to reaching Pluto.

Carnelli [13] worked on implementing gravity assists back in 2005 in the original single-phase version of In-
Trance developed by Dachwald [17]. As described in Sections 4.1 and 5.1, Carnelli relied on a local optimi-
sation scheme to determine the optimal injection point into the B-plane, after having been unsuccessful in
using a NC to directly optimise gravity assists. Carnelli validated his implementation with the New Horizons
like solution found by Vasile et al., described above.

The results by Vasile et al. [75] and Carnelli [13] are summarised in Table 6.1 and show excellent agreement
between them. Both reference trajectories have been optimised to have the lowest overall mission time, with
the solution from DITAN resulting in a MET of 3181 days and Carnelli’s implementation resulting in 3185
days. Vasile et al. constrained their optimisation to reach a specific v∞ of 15.4 km/s at Pluto for which it used
a total of 34.5 kg of propellant. Contrary, Carnelli constrained his solution by allowing a maximum propellant
usage of 34.5 kg and does not report on the resulting v∞ at Pluto.

Table 6.1: Validation data for a low-thrust New Horizons like trajectory.

Vasile et al. [75] Carnelli [13]
Launch V∞ 12 km/s 12 km/s
Launch date Jan. 19, 2006 Jan. 4, 2006
Jupiter encounter Feb. 23, 2007 Feb 16, 2007
Pluto arrival Oct. 4, 2014 Sep. 23, 2014
Mission elapsed time 3181 days 3185 days
Total thrust time 6600 hours Unknown
Pluto v∞ 15.337 km/s Unknown
Mass at departure 600 kg 600 kg
Mass at arrival 565.5 kg 565.3 kg
Thrust 34−40 mN 40 mN
Specific impulse 1700−4000 s 3000 s

60 6. Verification and Validation

6.2.2. InTrance Input Parameters
An optimisation run of InTrance is performed with the intention of generating a trajectory that is broadly
similar to the above discussed validation data. To this end, only the steering strategy is optimised globally,
constraining the maximum allowed propellant mass, the launch, and arrival dates to be in the vicinity of the
reference trajectory.

The trajectory is split in two phases, with the first starting at launch from Earth and ending with entry into
the SOI of Jupiter. The second phase starts on the rim of the SOI after having performed a GA, as described in
Section 5.4, and ends with a flyby of Pluto. The S/C drymass is set at 565 kg and both phases are propelled by
a single NEP thruster with bang-bang control, a maximum thrust of 40 mN and specific impulse of 3000 s.

The set of mission defining input parameters used in this optimisation run of InTrance is completed by:

Table 6.2: Mission defining parameters used to generate an optimised New Horizons like low-thrust trajectory similar to the validation
date. Values in square brackets indicate ranges.

Phase 1 – Earth to Jupiter Phase 2 – Jupiter to Pluto
Launch date [Jan. 18, 2006 – Jan. 20, 2006] [Jan. 20, 2007 – Feb. 09, 2007]
Arrival date [Jan. 20, 2007 – Feb. 09, 2007] [Sep. 30, 2014 – Oct. 30, 2014]
Launch V∞ or ∆VGA [5.00 – 12] km/s [4 – 6.5] km/s
Target Jupiter GA Pluto flyby
Maximum target distance N/A 107 km
Dry mass 565 kg [75] 565 kg
Propellant consumption [10 – 22] kg [5 – 13] kg

6.2.3. Optimisation Run
The solution from InTrance is plotted in Figure 6.3, with the left portion showing the complete heliocentric
trajectory and the right showing a close-up to properly display the thrust arcs and direction (green arrows).
The S/C is launched from Earth on Jan. 19, 2006 with a launch V∞ of 12 km/s. A continuous thrust of 40 mN
is supplied from launch for 184 days, about 50% of the flight time of the first phase. The S/C enters the SOI of
Jupiter on Jan. 26, 2007 and performs its closest approach 30 days later, on Feb. 24, 2007. The S/C leaves the
SOI another 31 days thereafter, resulting in a ∆V = ∥∥V 2,i −V 1, f

∥∥ of 5.29 km/s, which commences the second
phase on Mar. 26, 2007. Thrust is applied from departure for 54 days; about 2% of the flight time of the second
phase. The S/C finally performs a flyby of Pluto on Oct. 3, 2014 with a relative v∞ to Pluto of 15.371 km/s.
Note that the trajectory while the S/C is within the SOI is computed with an external RK4(5) integrator and is
not an output of InTrance, and is solely added for presentation purposes.

-20 -15 -10 -5 0 5 10 15 20

x [AU]

-30

-25

-20

-15

-10

-5

0

5

y
[A

U
]

Burn
Coast

-6 -5 -4 -3 -2 -1 0 1 2 3 4

x [AU]

-7

-6

-5

-4

-3

-2

-1

0

1

y
[A

U
]

Burn
Coast

Figure 6.3: Heliocentric trajectory from an InTrance run of the validation case.

The results of the simulation are summarised in Table 6.3, together with the results from Vasile et al. [75]

6.2. New Horizons Validation Case 61

and Carnelli [13], and shows very good overall agreement. In terms of flight time, the generated trajectory by
InTrance is one day faster than the solution computed with DITAN and five days faster than the result from
Carnelli. All three results use about the same amount of propellant, to within 0.4 kg, and the three v∞ at Pluto
are almost identical. The solution generated by InTrance uses about the same amount of propellant as the
one generated with DITAN, but its total thrust time is 13% shorter. This must be caused by a lower thrust force
or lower Isp used within DITAN, versus the fixed 40 mN used in InTrance. Vasile et al. do not explicitly state
the thrust force for this specific trajectory, but state that they used a thrust force ranging between 34 and 40
mN for all generated trajectories.

Table 6.3: Results and reference data for the New Horizons like validation simulation.

Vasile et al. [75] InTrance Carnelli [13]
Launch V∞ 12 km/s 12 km/s 12 km/s
Launch date Jan. 19, 2006 Jan. 19, 2006 Jan. 4, 2006
Jupiter encounter Feb. 23, 2007 Feb. 24, 2007 Feb 16, 2007
Pluto arrival Oct. 4, 2014 Oct. 3, 2014 Sep. 23, 2014
Mission elapsed time 3181 days 3180 days 3185 days
Total thrust time 6600 hours 5739 hours Unknown
Pluto v∞ 15.337 km/s 15.371 km/s Unknown
Mass at departure 600 kg 600 kg 600 kg
Mass at arrival 565.5 kg 565.1 565.3 kg
Thrust 34−40 mN 40 mN 40 mN
Specific impulse 1700−4000 s 3000 s 3000 s

6.2.4. External Integration
In order to further asses the validity of the result of InTrance, the trajectory is integrated from the initial con-
ditions at launch from Earth with an external RK4(5) integrator implemented in MATLAB. At each integration
step, the control as supplied by InTrance is applied. The states of the attracting bodies are retrieved from
InTrance and the integration is performed in the heliocentric reference frame, with each phases’ initial and
target bodies as the only disturbing bodies. The result of this external integration is shown in Figure 6.4 in red,
together with the result of InTrance in black, in both the heliocentric frame and a close-up of the GA portion
in the GA-bodycentric frame.

-20 -15 -10 -5 0 5 10 15 20

x [AU]

-30

-25

-20

-15

-10

-5

0

5

y
[A

U
]

InTrance
Validation

(a) Heliocentric

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

x [m]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y
[m

]

(b) GA-bodycentric

Figure 6.4: External RK4(5) integration of InTrance’s result of the validation case.

It can be seen, at least on this scale, that the externally integrated trajectory during the first phase is broadly
equal to the solution from InTrance. A clear deviation can be seen in the planetocentric frame in the initial

62 6. Verification and Validation

conditions of the second phase as supplied by InTrance, which is mostly caused by the inaccuracy in the ana-
lytical GA model. The exit position out of the SOI is shown with a blue dot, which is very close to the initial
position of the second phase in InTrance. The deviation between the analytically determined exit position
and the numerical integration is about 0.017RSOI ,X ≈ 11RX. The two trajectories diverge further over time,
which is attributed to the relatively large step size (up to 10 days) used in the external integration. The ex-
ternal integration uses the control step size returned in the output files of InTrance as integration step size
to accurately supply the thrust, however, the internal integration step size of InTrance usually differs from
the control step size. InTrance therefore generates a higher fidelity solution than can be generated externally
afterwards.

The heliocentric distance and velocity of the S/C are plotted in Figure 6.5, which further show the deviation
between the solution generated by InTrance and the externally re-integrated solution. The deviation is small
for the first phase, but jumps at the start of the second phase due to the inaccuracy of the analytical GA-model
and state gaps between the two phases. The deviation grows over time due to the difference in integration
step size, which is especially apparent in the second phase.

0 500 1000 1500 2000 2500 3000 3500

Time since launch [days]

0

5

10

15

20

25

30

35

H
el

io
ce

nt
ric

 d
is

ta
nc

e
[A

U
]

0 500 1000 1500 2000 2500 3000 3500

Time since launch [days]

15

20

25

30

35

40

45

H
el

io
ce

nt
ric

 v
el

oc
ity

 [k
m

/s
]

Validation
InTrance

Figure 6.5: Heliocentric distance and velocity of both InTrance and the externally re-integrated solution.

6.2.5. Initial and Final Conditions at Gravity Assist
Figure 6.6 shows a close-up of the GA portion of the trajectory in the heliocentric frame. Both the output of
InTrance and the externally integrated GA portion are plotted, including the corresponding initial velocity
of the second phase. The right side of this figure shows a close up of the initial state of the second phase
(indicated by 2), and includes the exit states as computed by the analytical GA model used in the InTrance
optimisation (indicated by 1) and by an external integration from the entry conditions onward (indicated
by 3).

The resulting trajectory from InTrance has a state phase transition gap of εT = 16.7 s, εr = 4.86 · 105 km=
0.0098RSOI and εv = 290 m/s between its analytically determined SOI exit position (1) and initial condition
of the 2nd phase (2). These values give phase transition violations (see Section 5.6) of Vpos = 0.00983 and
Vvel = 0.00979, which are less than the user defined allowed threshold of 0.01. The gap can be decreased
further by decreasing the threshold, but is deemed satisfactory for the current application.

The complete set of both heliocentric and GA-bodycentric coordinates of the three states shown in Figure 6.6
are tabulated in Table 6.4. Note that only the initial distance of the 2nd phase is exactly equal to the SOI radius
of Jupiter (as computed by InTrance), as per its definition. Ideally, the exit positions of both the analytical
GA model and numerical integration should also end exactly on the rim of the SOI. However, the analytical
method rotates the very first state that is within the SOI, which due to a finite step size, is not exactly on the
rim of the SOI. The external numerical re-integration does not end exactly on the rim of the SOI again due to
its finite stepsize, ending the integration with the first state that is larger than the SOI radius.

6.3. Applicability of the Implementation 63

-3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2

x [AU]

-5.4

-5.2

-5

-4.8

-4.6

-4.4

y
[A

U
]

"V

V2,0

V1,end

V1,end

-2.038-2.036-2.034-2.032 -2.03

x [AU]

-5.3

-5.298

-5.296

-5.294

-5.292

-5.29

-5.288

-5.286

-5.284

y
[A

U
]

State from ana.
GA model

State from num.
integration

Initial state
2nd phase

3

1

2

Figure 6.6: Close-up of the gravity assist portion of the validation case in the heliocentric frame.

Table 6.4: The SOI exit states computed using the analytical GA model and an external numerical integration plus the actual initial state
of the second phase in InTrance.

Analytical GA
Model 1

Numerical
Integration 3

Initial State 2nd

Phase 2

Heliocentric
Position R [AU]

x -2.0308 -2.0359 -2.0327
y -5.2912 -5.2881 -5.2937
z 0.0824 0.0809 0.0816

‖R‖ 5.6681 5.6671 5.6711

Planetocentric
Position r [AU]

x -0.1309 -0.1354 -0.1328
y -0.2999 -0.297 -0.3024
z 0.0192 0.0177 0.0183

‖r ‖ 0.3278 0.3269 0.3308

Heliocentric
Velocity V [km/s]

ẋ 5.3216 5.0500 5.0399
ẏ -21.7725 -21.7292 -21.8708
ż 1.0229 0.9439 1.0354

‖V ‖ 22.4367 22.3283 22.4679

Planetocentric
Velocity v [km/s]

ẋ -6.7321 -7.0031 -7.0317
ẏ -17.7315 -17.6867 -17.8299
ż 1.276 1.197 1.2885

‖v‖ 19.0093 19.0603 19.203

∆V =V ext −V ent

[km/s]

ẋ 2.1209 2.1179 2.1207
ẏ 4.5545 4.5671 4.5544
ż -0.0631 -0.0636 -0.0631

‖∆V ‖ 5.0245 5.0346 5.0244

6.3. Applicability of the Implementation
The implementation of gravity assists within InTrance is deemed verified and validated. The generated results
for a New Horizons like reference case show excellent agreement with literature; validating the overall search
behaviour and optimality. The external re-integration from the initial conditions at Earth indicate the correct
implementation of phase transitions, implementation of initial conditions for each phase and implementa-
tion of additional chromosome parameters. It is clear there is a deviation between a numerical re-integration
and the analytical GA model implemented within InTrance, however, its accuracy for non-extreme cases is
deemed sufficient. Furthermore, if higher fidelity solutions are required, use can be made of the numerical
model.

7
Mission Analysis

Trajectory analysis and design is a crucial part of the feasibility analysis of any space mission. Trajectory
design is a complicated multi-asset task, with connections into an coming from many other design groups.
Trajectory design is, for instance, constrained by the available launcher, but also sets constraints on the max-
imum achievable payload mass for certain launch velocities, transit times and launch masses. The trajectory
sets bounds on the achievable orbits at the target body, but also receives requirements on those orbits de-
termined from the science objectives and available instruments. Preliminary trajectory analysis plays a vital
part in analysing the feasibility of a mission, for which an easy-to-use and robust method should be available.
It will be demonstrated that InTrance can be used as a preliminary gravity assist low-thrust trajectory design
tool by analysing two main missions: a low-thrust adaptation of New Horizons and Dawn.

7.1. Low-Thrust New Horizons
The low-thrust adaptation of New Horizons has been introduced in Chapter 6 and formed part of the valida-
tion effort. However, the generated validation trajectory was optimised in such a way that it mimicked the
results found in literature. It was found that a gain could be achieved by further optimising the initial condi-
tions, for which the results will be discussed here. First, the mission defining and simulation parameters will
be detailed in Section 7.1.1, after which the results are presented in Section 7.1.2. These results are then com-
pared to the actual high-thrust New Horizons mission and to similar low-thrust missions from literature, in
Sections 7.1.3 and 7.1.4, respectively. The improvement due to the inclusion of a GA is investigated in Section
7.1.5 by comparing the resulting trajectory with a direct transfer from Earth to Pluto, which is also compu-
ted with InTrance. Lastly, a third trajectory is generated and presented in Section 7.1.6 in which thrusting is
allowed while performing the gravity assists, such that the effects of a powered gravity assist on the overall
trajectory design can be analysed.

7.1.1. Simulation & Mission Defining Input Parameters
The trajectory is split in two phases, with the first starting at launch from Earth and ending with entry into
the SOI of Jupiter. The second phase starts from the rim of the SOI of Jupiter after having performed a GA,
and ends with a flyby of Pluto. The analytical gravity assist model as described in Section 5.3.1 has been
used to determine the ∆V due to the gravity assist and the resulting exit position out of the SOI. The second
phase is initialised relative to the entry velocity, as explained in Section 5.4.1. The drymass of the S/C has
been set, similarly to the validation case, at 565 kg and both phases are propelled with a single NEP thruster
with a specific impulse of 3000 s. Bang-bang control is applied, meaning the thruster is either fully engaged
at 40 mN or completely turned off. The only disturbing potentials taken into account are the gravitational
attraction of initial and final target bodies of a respective phase.

Both NCs are represented by a 3 layer ANN with 35 neurons in the hidden layer in which the sigmoid is used as
activation function. The population is comprised of 50 individuals during the SSS (30 epochs) and thereafter
reduced to 30 individuals. The hypercube is initialised at 1.0 during the SSS and 0.2 thereafter, and is allowed
to shrink with a factor of 0.09 after a successful epoch or after a predefined number of bad epochs. The

65

66 7. Mission Analysis

mutation probability of the chromosome is set at 0.9, and at 0.05 for a genome. The trajectory of both phases
is integrated in the heliocentric frame under the influence of a gravitational attraction from the Sun with an
RK4(5) integrator using dynamic step size control.

The goal of the optimisation is to minimise the transfer time to Pluto while making use of a GA at Jupiter.
The S/C has to perform a flyby of Pluto within 107 km and has to arrive before Oct. 30, 2014. The allowed
transition threshold between phases has been set at 0.05. InTrance has to optimise both the initial conditions
of each phase plus all internal parameters of both NCs. The initial condition windows are quite small for some
parameters, which are a result of prior InTrance runs with larger windows and lower accuracy. The complete
set of mission defining parameters is given by:

Table 7.1: Mission defining parameters used to generate an optimised New Horizons like low-thrust trajectory. Values in square
brackets indicate ranges.

Phase 1 – Earth to Jupiter Phase 2 – Jupiter to Pluto
Launch date [Jan. 05, 2006 – Jan. 25, 2006] [Mar. 19, 2007 – Apr. 08, 2007]
Arrival date [Jan. 20, 2007 – Feb. 09, 2007] [Feb. 02, 2014 – Oct. 30, 2014]
Launch V∞ or ∆VGA [5.00 – 12] km/s [4 – 6.5] km/s
Launch V∞ or ∆VGA azimuth [-10 – 10] deg [100 – 120] deg
Launch V∞ or ∆VGA elevation [0 – 10] deg [0 – 15] deg
Departure azimuth GA N/A [180 – 220] deg
Departure elevation GA N/A [-8 – 8] deg
Target Jupiter GA Pluto flyby
Maximum target distance N/A 107 km
Dry mass 565 kg [75] 565 kg
Propellant consumption [10 – 22] kg [5 – 13] kg
Specific Impulse 3000 s [75] 3000 s
Maximum thrust 40 mN [75] 40 mN

7.1.2. Results
The resulting trajectory from the above described InTrance run is shown in Figure 7.1, with the left portion
showing the complete heliocentric trajectory and the right showing a close-up to better display the thrust
arcs and corresponding direction of the thrust vectors (green arrows). The S/C is launched from Earth on
Jan. 17, 2006 with a launch V∞ of 12 km/s. A continuous thrust arc follows with a total duration of 185 days,
which is about 50% of the total flight time of the first phase. The S/C enters the SOI of Jupiter on Jan. 25,
2007 to perform its closest approach of Jupiter on Feb. 23, 2007 at a distance of 27.5 RX. The second phase
commences from the rim of the SOI after having performed a GA which generated a ∆V of 6.01 km/s on Mar.
25, 2007. A thrust arc follows from departure for a total of 77 days, or 3% of the total flight time in the second
phase. The S/C performs its flyby of Pluto on Jul. 05, 2014 at a distance of 3.1RSOI,\ with a relative v∞ to Pluto
of 15.9 km/s.

The resulting trajectory and its characteristics are summarised in Table 7.2. The total MET is 3,091 days,
of which the S/C spends 6,299 hours thrusting and 59.0 days inside the SOI of Jupiter. A total of 30.8 kg
propellant is consumed, of which 21.7 kg in the first phase and 9.1 kg during the second phase.

Table 7.2: Results of the InTrance optimisation run of the New Horizons like low-thrust gravity assist trajectory.

Launch V∞ 12.02 km/s ∆V due to GA 6.01 km/s
Launch date Jan. 17, 2006 Closest approach Pluto 3.1RSOI,\ km
Jupiter encounter Feb. 23, 2007 Pluto v∞ 15.9 km/s
Pluto arrival Jul. 05, 2014 Mass at departure 595.8 kg
Mission elapsed time 3,091 days Mass at arrival 565.2 kg
Total thrust time 6,299 hours Thrust 40 mN
Closest approach Jupiter 27.5 RX Specific impulse 3000 s

A close-up of the gravity assist portion of the trajectory is shown in Figure 7.2, both in the planetocentric (left)
and heliocentric (right) reference frames. The trajectory inside the SOI is integrated externally from InTrance

7.1. Low-Thrust New Horizons 67

-20 -15 -10 -5 0 5 10 15 20

x [AU]

-30

-25

-20

-15

-10

-5

0

5

y
[A

U
]

Burn
Coast

-6 -4 -2 0 2 4

x [AU]

-8

-7

-6

-5

-4

-3

-2

-1

0

1

y
[A

U
]

Burn
Coast

Figure 7.1: Heliocentric InTrance optimised New Horizons like low-thrust trajectory. Close-up of thrust direction on the right side.

and solely added for presentation purposes. The incoming v∞ is deflected over an angle of 18.14◦ in the
planetocentric frame, and the S/C approaches Jupiter closest at a distance of 27.5 RX. The resulting ∆V due
to the gravity assist of 6.01 km/s is indicated with a purple arrow in the heliocentric plot, relative to the SOI
entry velocity.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

x [AU]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y
[A

U
]

-3 -2.8 .4 -1.2

-5.4

-5.2

-5

-4.8

-4.6

-4.4

y
[A

U
]

-2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.

x [AU]

"V

V2,0

V1,end

V1,end

Figure 7.2: Close-up of the gravity assist portion of the resulting trajectory from InTrance for the New Horizons like low-thrust mission
in both the planetocentric (left) and heliocentric (right) reference frames.

The initial conditions of the second phase are defined relative to the arrival conditions of the first phase, as
detailed in Section 5.4.1. The optimised initial state of the second phase is shown in Figure 7.3, in which the
optimised initial ∆V vector is indicated in purple. InTrance found an optimal initial ∆V EA with a magnitude
of 5.60 km/s, an azimuth angle of 111.2◦ and an elevation angle of 9.6◦. The initial launch position is located
on the rim of the SOI with an azimuth angle of 201.9◦ and elevation of 3.1◦. The initial velocity V 2,0 is then
determined as the velocity at SOI entry V 1,end plus∆V EA.

7.1.3. Compared to High-Thrust New Horizons Mission
The resulting InTrance trajectory, together with the actual New Horizons high-thrust trajectory, is plotted
in Figure 7.4 in the heliocentric frame on the left hand side. The heliocentric velocity and distance of both
trajectories are plotted, respectively, in the middle and right-hand side. The trajectory of the high-thrust New
Horizons missions has already been described in Section 2.1, and will not be further elaborated upon here.

68 7. Mission Analysis

-3 -2.8 -2.6 -2.4 -2.2 -2 -1.8 -1.6 -1.4 -1.2

x [AU]

-5.4

-5.2

-5

-4.8

-4.6

-4.4

y
[A

U
]

Launch position
azimuth of 201.9 deg

"V azimuth of 111.2 deg

"V

V2,0

V1,end

SOI at Entry

SOI at Exit

Figure 7.3: Initial state of the phase departing from Jupiter with velocities optimised relative to the entry velocity.

The high-thrust New Horizons trajectory has been retrieved through SPICE(1), which does not completely
reflect the actual flown mission, but rather one of the solutions found during its baseline design. The low-
thrust solution found by InTrance cannot directly be compared to New Horizon’s trajectory, as InTrance does
not take any thrust restriction times into account. However, a qualitative analysis is possible.

It can be seen that the low-thrust version computed by InTrance reaches Pluto faster and therefore performs
a flyby with a higher relative velocity to Pluto. The higher velocity is disadvantageous as it decreases the
scientific return, however, could easily be decreased by applying a braking manoeuvre. After all, the low-
thrust S/C uses less propellant than New Horizons, and can therefore take additional propellant on-board.
Overall, the two trajectories are quite similar upto the gravity assist, where the low-thrust S/C exits with a
higher velocity, resulting in the divergence of the two trajectories.

-20 -15 -10 -5 0 5 10 15 20 25

x [AU]

-30

-25

-20

-15

-10

-5

0

5

y
[A

U
]

InTrance
New Horizons

2006 2008 2010 2012 2014 2016

Date [yr]

10

15

20

25

30

35

40

45

H
el

io
ce

nt
ric

 V
el

oc
ity

 [k
m

/s
]

2006 2008 2010 2012 2014 2016

Date [yr]

0

5

10

15

20

25

30

35

H
el

io
ce

nt
ric

 D
is

ta
nc

e
[A

U
]

InTrance
New Horizons

Figure 7.4: Heliocentric trajectory, velocity and distance of the actual New Horizons missions and a low-thrust alternative computed
with InTrance.

Some mission defining parameters of both the high-thrust New Horizons trajectory and the low-thrust GA
solution found by InTrance are tabulated in Table 7.3. The low-thrust version is launched 2 days prior to the
New Horizon case with a slightly lower V∞ due to its higher mass. Both trajectories perform a gravity assist at
around the same time, but the InTrance solution has a lower closest approach (27.5 vs. 32.2RX), which results
in a higher generated ∆V . The low-thrust version generated by InTrance is therefore faster during the second
phase, resulting in a MET of 3,091 days versus 3,103 days for New Horizons. InTrance’s goal was to perform a

(1)SPICE New Horizons kernel available at: https://naif.jpl.nasa.gov/naif/data_archived.html

https://naif.jpl.nasa.gov/naif/data_archived.html

7.1. Low-Thrust New Horizons 69

flyby with a minimum distance to Pluto equal to about 3.5 times the SOI, which explains the large difference
between the two closest approach distances. InTrance is capable of lowering this distance, if desired, but the
current result suffices within the intended use as a preliminary design.

Table 7.3: Comparison of low-thrust NEP trajectories to Pluto generated by InTrance and the actual high-thrust New Horizons
trajectory. New Horizons data from SPICE files unless stated otherwise.

InTrance New Horizons InTrance - NH
Launch V∞ 12.02 km/s 12.56 km/s -0.54 km/s
Launch date Jan. 17, 2006 Jan. 19, 2006 -2 days
Jupiter encounter Feb. 23, 2007 Feb. 28, 2007 -5 days
Pluto arrival Jul. 05, 2014 Jul. 19, 2014 -14 days
Mission elapsed time 3,091 days 3,103 days -12 days
Total thrust time 6,299 hours N/A N/A
Closest approach Jupiter 27.5 RX 32.24 RX -4.74 RX
∆V due to GA 6.01 km/s 5.14 km/s +0.87 km/s
Closest approach Pluto 3.1RSOI,\ 64,088 km +3.1RSOI,\

Pluto v∞ 15.9 km/s 13.8 km/s +2.1 km/s
Mass at departure 595.8 kg 478 kg [36] +117.8 kg
Mass at arrival 565.0 kg 426.4 kg1 [36] +138.6
Thrust 40 mN 4×4.4 N [29] -17.56 N

1 Including a 25.4 kg propellant reserve.

This comparison has shown that low-thrust missions which make use of intermediate GAs can be excellent
alternatives to conventional high-thrust missions, even those to the outer planets. InTrance has found a
result which is more time-optimal than the actual trajectory using less propellant, even though the S/C has
more than 100 kg additional launch mass. The S/C drymass used in the InTrance run is derived from similar
optimisations in literature [75], however, could easily be set to equal the actual New Horizons mass. The
low-thrust alternative would then result in a smaller launch mass, leaving additional room for payload or to
further decrease the flight time by taking along more propellant.

7.1.4. Compared to Literature
InTrance has optimised the conditions within larger windows than those set during the validation case, the-
refore, an even faster solution is found than those found by Vasile et al. and Carnelli as discussed in Section
6.2. The most prominent results from the InTrance validation run and those generated by Vasile et al. [75]
and Carnelli [13] are repeated in Table 7.4, together with the current optimised solution from InTrance. In-
Trance has found more favourable initial conditions which result in a decrease of about 3% in flight time and
a decrease of about 11% in required propellant mass. It should be noted that the closest approach distance at
Pluto is not reported by Vasile et al. and Carnelli; if their solutions performed a closer flyby of Pluto then the
MET would naturally be higher than the one found with InTrance.

Table 7.4: InTrance’s optimised trajectory to Pluto with a GA at Jupiter compared to the validation literature.

Vasile et al. Validation Carnelli InTrance
Launch V∞ 12 km/s 12 km/s 12 km/s 12 km/s
Launch date Jan. 19, 2006 Jan. 19, 2006 Jan. 4, 2006 Jan. 17, 2006
Jupiter encounter Feb. 23, 2007 Feb. 24, 2007 Feb 16, 2007 Feb. 23, 2007
Pluto arrival Oct. 4, 2014 Oct. 3, 2014 Sep. 23, 2014 Jul. 05, 2014
Mission elapsed time 3,181 days 3,180 days 3,185 days 3,091 days
Total thrust time 6,600 hours 5,739 hours Unknown 6,299 hours
Pluto v∞ 15.337 km/s 15.371 km/s Unknown 15.9 km/s
Mass at departure 600 kg 600 kg 600 kg 595.8 kg
Mass at arrival 565.5 kg 565.1 565.3 kg 565.0 kg
Thrust 34−40 mN 40 mN 40 mN 40 mN
Specific impulse 1700−4000 s 3000 s 3000 s 3000 s

70 7. Mission Analysis

7.1.5. Improvement due to Gravity Assist
The improvement due to the inclusion of a GA over a direct transfer is investigated by also optimising a direct
Earth-Pluto transfer with InTrance. Jupiter is excluded from the list of disturbing bodies in the direct transfer
case to make sure InTrance does not implicitly perform a GA. This is equivalent to launching at a date where
Earth and Pluto would have the same relative geometry, but where Jupiter is not in the vicinity. During an early
run with Jupiter included as a disturbing body, InTrance did find a GA at Jupiter, albeit a far from optimal one.
The direct transfer is optimised to minimise the propellant usage and constrained to still have a reasonably
close MET to the solution with a GA.

The mission defining input parameters are shown in Table 7.5. The launch and arrival date windows are
the same as used in the trajectory with a Jupiter GA as given in Section 7.1.1. Due to the higher mass, the
maximum launch V∞ is slightly lower (11.65 vs 12.04 km/s), determined from setting the maximum launcher
C3 capacity at 7200 km2/s4 with an exponent of 0.01725 [75]. The S/C can use anywhere between 50 and 500
kg of fuel to reach Pluto, its goal is then to minimise this number while abiding to the other constraints.

Table 7.5: Mission defining parameters used to generate a direct Earth-Pluto transfer. Values in square brackets indicate ranges.

Phase 1 – Earth to Pluto
Launch date [Jan. 05, 2006 – Jan. 25, 2006]
Arrival date [May. 23, 2014 – Oct. 30, 2014]
Launch V∞ [5.00 – 11.653] km/s
Launch V∞ azimuth [-10 – 10] deg
Launch V∞ elevation [0 – 10] deg
Target Pluto flyby
Maximum target distance 107 km
Dry mass 565 kg
Propellant consumption [50 – 500] kg
Specific Impulse 3000 s
Maximum thrust 40 mN

The optimised direct transfer resulting from a run of InTrance is shown in Figure 7.5, together with the GA
performing solution discussed above. The left-hand figure shows both heliocentric trajectories and their cor-
responding thrust arcs, the middle the heliocentric velocity over time and the right-hand plot the heliocentric
distance over time. A major noticeable difference between the trajectories is the long continuous thrust arc
of the direct transfer; engaging the thrusters for 1083 days, compared to a total of 262 days in the GA trajec-
tory. This long continuous thrust arc provides almost the same ∆V as the GA, with the difference in velocity
between the two trajectories converging to about 1 km/s after the thruster is disengaged.

-20 -15 -10 -5 0 5 10 15 20

x [AU]

-30

-25

-20

-15

-10

-5

0

5

y
[A

U
]

Burn
Coast

Direct transferGA trajectory

2006 2008 2010 2012 2014 2016

Date [yr]

15

20

25

30

35

40

45

H
el

io
ce

nt
ric

 V
el

oc
ity

 [k
m

/s
]

2006 2008 2010 2012 2014 2016

Date [yr]

0

5

10

15

20

25

30

35

H
el

io
ce

nt
ric

 D
is

ta
nc

e
[A

U
]

Jupiter GA
Direct transfer

Figure 7.5: Heliocentric trajectory, velocity and distance of two low-thrust NEP trajectories to Pluto generated with InTrance, one direct
transfer and one including a Jupiter GA.

7.1. Low-Thrust New Horizons 71

The two trajectories are characterised by the parameters shown in Table 7.6. Due to the optimisation goal
of propellant consumption minimisation, the direct transfer utilises the entire allowed flight time; from the
lower constraint of the launch date to the upper constraint of the arrival date. This results in a MET of 3,200
days, an increase of 3.5% from the 3,091 days with a Jupiter GA. In order to reach Pluto within this time, the
thruster burns a total of 126.8 kg; an almost 312% increase from the 30.8 kg in the GA case.

Table 7.6: Comparison of low-thrust NEP trajectories to Pluto generated by InTrance, both as a direct transfer and with a GA at Jupiter.

Jupiter GA Direct transfer Jupiter GA - Direct
Launch V∞ 12 km/s 11.6 km/s -0.4 km/s
Launch date Jan. 17, 2006 Jan. 25, 2006 -8 days
Jupiter encounter Feb. 23, 2007 N/A N/A
Pluto arrival Jul. 05, 2014 Oct. 30, 2014 -117 days
Mission elapsed time 3,091 days 3,200 days -109 days
Total thrust time 262.5 days 1,092 days -829.5 days
Closest approach Jupiter 27.5 RX N/A N/A
∆V due to GA 6.01 km/s N/A N/A
Closest approach Pluto 3.1RSOI,\ 0.69RSOI,\ N/A
Pluto v∞ 15.9 km/s 15.5 km/s +0.39 km/s
Mass at departure 595.8 kg 691.8 -96 kg
Mass at arrival 565.0 kg 565.0 -
Thrust 40 mN 40 mN -
Specific impulse 3000 s 3000 s -

This demonstration clearly shows the benefits of adding GAs to low-thrust trajectories; with the inclusion of a
GA the transfer time is reduced by almost 3.5% and the required propellant is reduced by over 75%. Although
demonstrating the benefit of a GA in low-thrust trajectories in this case, the inclusion of GAs does not always
result in more optimal trajectories. However, even if a less than optimal trajectory is found with the inclusion
of a GA, it might still be interesting to perform one for increased scientific return.

7.1.6. Influence of Thrust During Gravity Assist
The above simulations all made use of the analytical GA-model, which prevents thrusting while inside the
SOI. It was shown in Section 2.4 that low-thrust can have a large influence on a gravity assist, especially when
applied for a long duration to decrease the closest approach distance. To investigate whether a powered
GA is beneficial for the low-thrust New Horizons case, another run of InTrance is performed in which the
analytical GA-model is omitted. In this way, InTrance will simply continue integrating until having exited the
SOI, which marks the end of the first phase. The mission defining parameters are the same as those given in
Section 7.1.1, with the exception of shifting the arrival date at and departure date from Jupiter by +60 days,
which is the expected duration of the time inside the SOI. The numerical GA has only been implemented for
a body-relative initial state of the second phase (see Section 5.4.2); the windows for the ∆VGA are therefore
different from those used before, which were defined relative to the entry state of the SOI. The windows for
the initial conditions of the second phase relative to the body-velocity are now given by:

Table 7.7: Different mission defining parameters used in the numerical GA computation. Values in square brackets indicate ranges.

Phase 2 – Jupiter to Pluto
Departure ∆VGA [18 – 21] km/s
Departure ∆VGA azimuth [180 – 220] deg
Departure ∆VGA elevation [0 – 15] deg

The resulting trajectory in both the helio- and planetocentric frame is shown in Figure 7.6, together with the
trajectory computed with the analytical GA-model discussed before. InTrance has not found a solution which
performed a powered GA to be more favourable than the optimal solution which performs an unpowered
GA. The resulting trajectory, especially for the first phase, is very similar to the result obtained before with
the analytical GA. With the analytical model, the GA generated a ∆V of 6.01 km/s, which is 100 m/s higher
than the 5.91 km/s found in the numerically computed trajectory. The closest approach in both solutions is

72 7. Mission Analysis

located at a distance of 27.5 RX, and the deflection angle in the numerical computation is 18.24◦ versus 18.15◦
in the analytically computed trajectory. However, InTrance was unable to close the time gap between the two
phases, rendering the second phase to commence 5 days prior to actually having exited the SOI. Therefore,
a more thorough comparison of the two trajectories is meaningless. However, the numerically computed
solution was generated to investigate whether the low-thrust New Horizons mission would benefit from a
powered GA, which has not been found the case.

-5 -4 -3 -2 -1 0 1 2 3

x [AU]

-5

-4

-3

-2

-1

0

1

y
[A

U
]

Numerical GA
Analytical GA

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

x [AU]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

y
[A

U
]

Numerical GA
Analytical GA

Figure 7.6: Helio- (left) and planetocentric (right) portions of the New Horizons trajectories computed with the analytical GA-model
(blue) and numerical GA-model (red). Green arrows denote the thrust vectors of the trajectory computed with the numerical GA-model.

The optimisation with a numerically computed GA is significantly more computationally expensive. The
total optimisation run duration was 33h:26m, whereas the previously discussed run with the analytical com-
putation took 7h:17m. A run which also defined the initial conditions of the second phase relative to the
GA-body and used the analytical GA-model took 8h:17m. All these results have been computed using four
cores on an Intel® Core™ i7-4700HQ. Recomputing the same problems will result in different runtimes, as
the chromosome is initialised at random, but a clear deviation can be seen in the numerical versus analytical
computations. The decrease in efficiency is caused by the small required (dynamically computed) step-size
while inside the SOI; testament by the number of output points: 269 for the first phase with the analytical
model; and 725 in the numerical computation, with 459 points inside the SOI.

7.2. Dawn
Although the previous version of InTrance by Ohndorf [59] did not have the capability to independently op-
timise trajectories such as the low-thrust New Horizons adaptation of the previous section, it was able to
perform a gravity assist a Jupiter, simply due to its massive gravitational potential. Although the resulting GA
is far from optimal, it does show that Jupiter is a relatively easy GA target. Nevertheless, optimising such a
trajectory with neurocontrol is no trivial task, demonstrated by the fact that previous attempts to optimise
gravity assists with NCs, such as the one by Carnelli [14], failed. Having shown very good results for the op-
timisation of a GA at Jupiter, it is interesting to investigate whether InTrance is capable of finding optimal
GA trajectories at smaller bodies. To this end, a challenging case is found in the re-optimisation of the Dawn
mission.

Dawn was the first mission to orbit a main belt asteroid and the first to orbit two extraterrestrial bodies with
a single craft, an achievement which would not have been possible with conventional high-thrust chemical
propulsion. Dawn was launched in September 2007 on its way to Mars, where it performed a gravity assist to
reach its first primary target Vesta. After having orbited Vesta for some 1.5 years, Dawn departed on its way to
Ceres. For more details on the Dawn mission, the reader is referred to Section 2.1.2.

The simulation and mission defining input parameters for the nominal simulation are described in Section
7.2.1, after which the resulting trajectory is discussed in Section 7.2.2. The resulting trajectory is then first
compared to the Dawn’s actual trajectory in Section 7.2.3, followed by a comparison to a non-GA performing
trajectory in Section 7.2.4. The influence of a powered gravity assist is investigated in Section 7.2.5, and the
full three-phase single optimisation is lastly tackled in Section 7.2.6.

7.2. Dawn 73

7.2.1. Simulation & Mission Defining Input Parameters
Due to the challenging nature of the Dawn trajectory, the optimisation effort here is initially focussed on
the trajectory from Earth to Vesta, hence excluding the transfer to Ceres. Due to a stay time at Vesta (+250
days), the phase from Vesta to Ceres can be optimised independently. A propellent reserve for this transfer
is taken into account in the optimisation of the transfer from Earth to Vesta. The first optimisation is split in
two phases; the first from Earth to Mars where a GA is performed, and the second from Mars to ending with
a rendezvous with Vesta. The second, separate, optimisation is a single phase mission, starting from Vesta
and ending with a rendezvous of Ceres. A single optimisation run of the complete three phase trajectory is
discussed in Section 7.2.6.

Initial State after a Gravity Assist

Empirical evidence from early optimisation runs of InTrance on the Dawn trajectory showed that the opti-
misation of the second phase (Mars to Vesta) could not reach Vesta within the predefined bounds. This was
caused by the fact that the initial velocity of the first phase was defined as the final velocity of the first phase,
plus a ∆V optimised by the EA. Due to the small size of Mars’ SOI, it takes some time before InTrance finds
individuals which cross into the SOI. Hence, until that happens, the second phase is initialised on the rim
of the SOI, but with a completely trivial velocity, i.e. the velocity which the S/C attained at one of the stop-
ping conditions outside of entering the SOI. Once the S/C does finally perform a GA, the NC of the second
phase has been trained with completely different initial velocities. Therefore, it performed worse in reaching
Vesta after a GA was performed, rendering the GA individuals to go extinct or favouring reaching Vesta over
performing a physically valid GA.

The first possible solution lay in increasing the importance of the proximity of the GA phase through a larger
scaling factor, see equation 5.2. Although improving the search behaviour, InTrance was still unable to gene-
rate a physically valid trajectory. The focus then shifted to decoupling the second phase from the first phase,
such that the second phase’s training can focus on reaching Vesta, for which the first phase then has to supply
the required∆V . This led to the implementation of a GA-body relative initial state for a phase starting directly
after a GA, as discussed in Section 5.4.2. This new state definition has been used in all Dawn scenarios for
which results are discussed in this work.

Modification of Initial Conditions

Correct formulation of the azimuth and elevation angles of both the ’launch’ position and the∆V EA of a phase
starting after a GA (see Section 5.4) is generally no trivial task as it depends both on the geometry of the planets
at the departure date plus on the resulting GA of the previous phase. Windows for these parameters cannot be
chosen too strict, as the NC needs some initial freedom to find physically valid trajectories, only after which
the state gaps are reduced. However, they also cannot be too large, as the value found from the chromosome
is used in a linear mapping between the minimum and maximum allowed value for each parameter. Hence,
when the windows are large, it is difficult for the EA to supply the accuracy needed for small changes in the
initial parameters.

In order to reduce the dependency on the correct formulation of the initial conditions after a GA (position on
SOI and direction of ∆V), InTrance is allowed to vary the windows of these parameters in the Dawn simula-
tions. The evolutionary algorithm hones in on promising regions by extending and contracting the allowed
window until the minimum and maximum values are within 5 degrees of each other. If the window is larger
than 5 degrees after a successful epoch, it is contracted by (hmax −hmin)/2, centred around the midpoint.

Input Parameters Optimisation 1 – Earth to Vesta

The analytical gravity assist model as described in Section 5.3.1 has been used to determine the ∆V due to
the gravity assist and the resulting exit position out of the SOI. The drymass is taken to be the same as the
Dawn S/C, namely 747 kg [73], plus an additional 70kg which serves as propellant reserve for the subsequent
optimisation for the phase from Vesta to Ceres. The thrust is supplied by a NSTAR engine, modelled after
the one used in the actual Dawn S/C [73], and is allowed to be varied in both direction and magnitude by
InTrance.

Both NCs are represented by a 3-layer ANN with 40 neurons in the hidden layer for phase 1 and 35 for phase
2, and the sigmoid function is used as activation function. The population is comprised of 50 individuals

74 7. Mission Analysis

during both the SSS (30 epochs) and main optimisation. The hypercube is initialised at 1.0 during the SSS
and at 0.2 in the following optimisation run. The mutation probability of the chromosome is set at 0.9, and at
0.05 for a genome. The trajectory of both phases are integrated in the heliocentric frame under the influence
of a gravitational attraction from the Sun and initial and final bodies of a phase, with an RK4(5) integrator
using dynamic step size control.

The goal of the optimisation is to minimise the transfer time to Vesta while making use of a GA at Mars. The
S/C has to rendezvous with Vesta before Feb. 12, 2019 at a maximum final relative distance of 1.5 ·106 km and
maximum relative velocity of 1 km/s. The arrival and departure dates are chosen to be in relative proximity to
Dawns actual trajectory, as generated with SPICE. The allowed transition threshold between phases has been
set at 0.1. InTrance has to optimise both the initial conditions of each phase plus all internal parameters of
both NCs. The complete set of mission defining parameters is given by:

Table 7.8: Mission defining parameters used to re-compute the Dawn trajectory from Earth to Vesta. Values in square brackets indicate
ranges.

Phase 1 – Earth to Mars Phase 2 – Mars to Vesta
Launch date [Sep. 22, 2007 – Oct. 02, 2007] [Jan. 28, 2009 – Feb. 17, 2009]
Arrival date [Jan. 23, 2009 – Feb. 12, 2009] [May. 19, 2011 – Oct. 16, 2011]
Launch V∞ or ∆VGA,b 3.362 km/s [62] [2 – 3] km/s
Launch V∞ or ∆VGA,b azimuth [-20 – 20] deg [-15 – -7.5] deg
Launch V∞ or ∆VGA,b elevation [-20 – 40] deg [-60 – -40] deg
Departure azimuth GA N/A [-20 – 0] deg
Departure elevation GA N/A [-70 – -40] deg
Target Mars GA Vesta rendezvous
Maximum target distance N/A 1.5 ·106 km
Maximum relative target velocity N/A 1 km/s
Dry mass 747 kg + 70 kg reserve propellant 747 kg + 70 kg reserve propellant
Propellant consumption [100 – 160] kg [100 – 160] kg
Thruster NSTAR NSTAR

Input Parameters Optimisation 2 – Vesta to Ceres

A single phase rendezvous is easily tackled by InTrance; physically valid solutions are usually generated within
minutes, and the entire optimisation takes about half an hour. Contrary, the inclusion of a GA vastly com-
plicates the problem and InTrance runs usually take about 10 hours depending on the desired accuracy and
chosen convergence limits (using four cores on an Intel® Core™ i7-4700HQ).

Due to the relative simplicity of the problem, the maximum relative position and velocity to Ceres at the
rendezvous are set lower than was previously the case. There are furthermore only 20 epochs in the SSS and
the hypercube is initialised at a larger size of 1.0, other ANN and EA parameters are equal to those of the two-
phase Earth-Vesta transfer discussed above. The dwell time at Vesta was set to be a minimum of 250 days.
The mission defining parameters are then given by;

Table 7.9: Mission defining parameters used to re-compute the Dawn trajectory from Vesta to Ceres. Values in square brackets indicate
ranges.

Phase 1 – Vesta to Ceres
Launch date [Jan. 24, 2012 – Mar. 14, 2012]
Arrival date [Aug. 31, 2014 – Nov. 19, 2014]
Target Ceres rendezvous
Maximum target distance 1.0 ·106 km
Maximum relative target velocity 500 m/s
Dry mass 747 kg
Propellant consumption [50 – 100] kg
Thruster NSTAR

7.2. Dawn 75

7.2.2. Results
The resulting heliocentric trajectory from the combined results of the two above described optimisation runs
is shown in Figure 7.7, in which the green arrows denote thrust vectors. The S/C is launched from Earth with
a launch V∞ of 3.362 km/s on Sep. 23, 2007. After about 16 months, the S/C performs a Mars GA with a
closest approach of 2.39R� on Jan. 27, 2009. The GA results in an inclination change of 3.3◦ and a ∆V of 2.4
km/s. Vesta is finally reached after another 2 years and 4 months, on May. 19, 2011. The second optimisation
finds a departure from Vesta on Mar. 03, 2012, resulting in a Vesta dwell time of 293 days in which the science
operations are to be performed. The flight from Vesta to Ceres takes about 2 years and 7 months, resulting in
a rendezvous with Ceres on Oct. 29, 2012. An enlarged three-dimensional view of the heliocentric trajectory
is shown in Figure B.1 in Appendix B.

-3 -2 -1 0 1 2 3

x [AU]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y
[A

U
]

Burn
Coast

Mars GA

Figure 7.7: Dawn trajectory as optimised by InTrance in the heliocentric frame. Green arrows denote thrust vectors.

The characteristics of the resulting trajectory are summarised in Table 7.10. The total mission elapsed time is
2,594 days, including the Vesta dwell time of 293 days. Of the total flight duration, hence excluding the dwell
time at Vesta, about 86% is spend thrusting. The launch mass is found as 1,056.1 kg, of which 308 kg (29%)
is propellant. A rendezvous was deemed successful if the relative distance and velocity to the targets were
less than 1.5 ·106 km and 1 km/s, respectively. The final position and velocity relative to Vesta at the end of
the second phase are 1.07 ·106 km and 716 m/s. The final position and velocity relative to Ceres at the end of
the final phase are 0.96 ·106 km and 499 m/s. Although these values are still relatively large, as a rendezvous
should decrease the relative difference to zero, it is deemed sufficient for the current application. InTrance is
a global optimisation tool, not capable of supplying the accuracy to reduce the relative states to zero. With
InTrance intended as a preliminary design phase trajectory optimisation tool, the found results suffice and
can generally be improved by using a local optimisation scheme.

Table 7.10: Results of the InTrance optimisation run of the Dawn trajectory including a Mars GA.

Launch V∞ 3.362 km/s Closest approach Mars 2.39 R�
Launch date Sep. 23, 2007 ∆V due to GA 2.41 km/s
Mars encounter Jan. 27, 2009 Rel. distance Vesta 1.07 ·106 km
Vesta arrival May. 19, 2011 Rel. velocity Vesta 716 m/s
Vesta dwell time 293 days Rel. distance Ceres 0.96 ·106 km
Vesta departure Mar. 03, 2012 Rel. velocity Ceres 499 m/s
Ceres arrival Oct. 29, 2014 Mass at departure 1,056.1 kg
Mission elapsed time 2,594 days Mass at arrival 747.8 kg
Total thrust time 1,973 days Thruster NSTAR

The planetocentric GA portion of the trajectory is plotted in Figure 7.8 in both the XY- and YZ planes. Red

76 7. Mission Analysis

lines indicate the InTrance trajectory, the blue line is an external numerical integration solely added for pre-
sentation purposes, and the green arrow denotes the exit state as computed by the analytical GA-model. The
exit velocity out of the SOI of the first phase and the initial velocity of the second phase are completely mat-
ched, but a position gap of 5.0 ·104 km = 14.7 R� remains. These values are within the allowed state transition
threshold of 0.1, and cannot be reduced much further. InTrance has trouble delivering the required accuracy
to reduce the positional gap as it depends on the values of two alleles on the chromosome, see Section 5.5.
For a slight modification of the launch position, the entire steering strategy has to be updated to accommo-
date these new initial conditions. The chromosome in this optimisation has a total length of 1718 alleles,
meaning that new optimal values for all other 1716 alleles have to be found, which is not likely to occur in a
few evaluations. Therefore, these individuals perform worse and go extinct, leaving the best found solution
with a small state gap.

-5 0 5

x [AU] #10-3

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
[A

U
]

#10-3

-5 0 5

y [AU] #10-3

-5

-4

-3

-2

-1

0

1

2

3

4

5

z
[A

U
]

#10-3

Figure 7.8: Close-up of the Mars GA portion in the planetocentric frame. Red lines indicate the trajectory as computed by InTrance, the
blue line indicates the externally integrated trajectory while inside the SOI and the green arrow indicates the exit state as computed by

the analytical GA-model.

The initial conditions of the second phase are defined relative to GA-body, as detailed in Section 5.4.2. The
optimised initial position of the second phase was already shown in the planetocentric frame in Figure 7.8, the
initial state in the heliocentric frame is shown in Figure B.2 in Appendix B. InTrance found an optimal initial
∆VEA,b of 2.39 km/s relative to the velocity of Mars at departure, with an azimuth of -10.86◦ and elevation
of -40.17◦. The initial position is located on the rim of the SOI with an azimuth of -10.76◦ and elevation of
-43.87◦.

7.2.3. Compared to Dawn’s Actual Trajectory
The resulting trajectory generated with InTrance, together with Dawn’s actual mission trajectory, is plotted
in Figure 7.9 in the heliocentric frame on the left hand side. The heliocentric velocity and distance of both
trajectories are plotted, respectively, in the middle and right-hand side. The trajectory of the Dawn missions
has already been described in Section 2.1, and will not be further elaborated upon here. The actual Dawn
trajectory has been retrieved through SPICE(2), which does not completely reflect the actual flown mission,
but rather one of the solutions found during its baseline design. The two trajectories cannot be compared
directly as no thrust restriction windows are taken into account in the InTrance simulation. However, a qua-
litative analysis is possible.

Overall, the two trajectories are broadly similar in shape when viewed in the heliocentric frame. InTrance
finds a trajectory with a slightly lower pericenter and higher apocentre after the Mars GA. From a three-
dimensional view (see Figure B.3) it furthermore becomes clear that the actual trajectory is deflected slightly
more with regards to the inclination angle (3.5 vs. 3.3◦). From the heliocentric velocity plot it can be seen
that the result from InTrance has a higher velocity some time after the Mars GA, which is not a result of a
higher ∆V due to the GA but due to the earlier application of thrust. The velocity when approaching Vesta is

(2)SPICE New Horizons kernel available at: https://naif.jpl.nasa.gov/naif/data_archived.html

https://naif.jpl.nasa.gov/naif/data_archived.html

7.2. Dawn 77

quite different, as the S/C in Dawn’s actual trajectory has to slow down to a relative velocity of about 0.5 m/s,
whereas InTrance found a solution with a relative velocity of 716 m/s. The velocity of the phase from Vesta to
Ceres is quite different, which is explained by their different departure dates from Vesta.

-3 -2 -1 0 1 2 3

x [AU]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y
[A

U
]

InTrance
Dawn

Mars GA

2007 2010 2012 2015

Date [yr]

16

18

20

22

24

26

28

30

32

34

H
el

io
ce

nt
ric

 V
el

oc
ity

 [k
m

/s
]

2007 2010 2012 2015

Date [yr]

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

H
el

io
ce

nt
ric

 D
is

ta
nc

e
[A

U
]

InTrance
Dawn

Mars GA

Mars GA

Figure 7.9: Heliocentric trajectory, velocity and distance of the actual Dawn missions and the resulting trajectory from InTrance.

Some mission defining parameters of both the actual Dawn trajectory and the solution found by InTrance
are tabulated in Table 7.11. The solution from InTrance is launched 4 days prior to the actual Dawn case and
performs its closest approach of Mars 8 days prior. The GA in InTrance supplies a ∆V of 2.41 km/s and an
inclination change of 3.3◦, whereas the GA in SPICE supplies a ∆V of 2.9 km/s and an inclination change of
3.5◦. The solution from InTrance arrives at Vesta on May. 19, 2011, 84 days prior to Dawn’s actual arrival.
This large deviation is in part caused by the different final relative states to Vesta; InTrance found a relative
final position and velocity of 1.07 ·106 km and 716 m/s, whereas the trajectory from SPICE rendezvouses at
6,700 km with a relative velocity of 0.5 m/s. Another source for the discrepancy could be the thrust restriction
windows, which are included in the solution from SPICE but not in InTrance. Both trajectories have a broadly
similar stay time at Vesta; 293 days from InTrance and 288 days from SPICE. Due to the earlier arrival of the
InTrance solution, it departs Vesta 84 days prior to the SPICE solution, however, both have the same arrival
date at Ceres. It is unknown how much propellant is used in each phase in the SPICE files, but the overall
propellant carried on-board is 184 kg more than required in the solution from InTrance. Therefore, it could
be the case that more propellant is consumed in the transfer from Vesta to Ceres, justifying a lower transfer
time. Ceres and Vesta furthermore have different orbital periods, rendering a more favourable configuration
in the trajectory from SPICE. However, the overall MET of both trajectories are within four days of each other;
2,594 days for the solution from InTrance and 2,590 days for the trajectory from SPICE.

7.2.4. Improvement due to Gravity Assist
The Mars GA in Dawn’s trajectory was not strictly necessary, but added to increase technical margins [63],
hence it is interesting to investigate the benefits of the added GA. The improvement due to the inclusion of a
GA over a direct transfer is investigated by also optimising a double-RV mission to Ceres and Vesta excluding
a GA. The input parameters for this simulation are broadly similar to those of the Ceres and Vesta phases in
the above discussed simulations, and hence will not be repeated here. The main difference is that the direct
transfer is allowed to launch from Earth earlier as its transfer to Vesta will take longer by excluding the GA.
The optimisation goal is again to minimise the transfer time.

The optimised direct transfer trajectory resulting from InTrance is shown in Figure 7.10, together with the GA
performing solution discussed above. The left-hand figure shows both heliocentric trajectories, the middle
the heliocentric velocity over time and the right-hand plot the heliocentric distance over time. The direct
transfer can be seen to be launched from Earth earlier and arriving at Ceres later. Since the S/C in the di-
rect transfer reaches Vesta later, it also departs later, however, the direct transfer reaches Ceres earlier due
to a more favourable relative geometry of Vesta and Ceres. An enlarged three-dimensional view of the two
heliocentric trajectories is available in Appendix B.

78 7. Mission Analysis

Table 7.11: Comparison of InTrance results and actual Dawn mission. Dawn data from SPICE kernels unless stated otherwise.

InTrance Dawn InTrance - Dawn
Launch V∞ 3.362 km/s 3.362 km/s [62] -
Launch date Sep. 23, 2007 Sep. 27, 2007 -4 days
Mars encounter Jan. 27, 2009 Feb. 04, 2009 -8 days
Vesta arrival May. 19, 2011 Jul. 21, 20111 -63 days
Vesta dwell time 293 days 288 days +5 days
Vesta departure Mar. 03, 2012 May. 26, 2012 -84 days2

Ceres arrival Oct. 29, 2014 Oct. 29, 20143 -
Mission elapsed time 2,594 days 2,590 days +4 days
Total thrust time 1,973 days 2,300 days4 [63] 327 days
Closest approach Mars 2.39 R� 1.15 R� +1.24 R�
∆V due to GA 2.4 km/s 2.9 km/s -0.5 km/s
Rel. distance Vesta 1.07 ·106 km ∼ 6,700 km +1.06 ·106 km
Rel. velocity Vesta 716 m/s 0.5 m/s +715 m/s
Rel. distance Ceres 0.96 ·106 km ∼ 3,500 km5 +0.95 ·106 km
Rel. velocity Ceres 499 m/s 222 m/s5 +277 m/s
Mass at departure 1,056.1 kg 1,240 kg4 [63] -183.9 kg
Mass at arrival 747.8 kg 747 kg6 +0.8 kg
Thruster NSTAR NSTAR -

1 Arrival date defined as the date when the S/C has a relative distance to Vesta of 1.07 ·106 km. The actual date when Dawn enters into
orbit is around Aug. 11, 2011.
2 Although having a broadly similar stay-time, the actual Dawn mission requires another 74 days to further decrease the relative velocity
and distance to Vesta as indicated in the above footnote. InTrance currently cannot supply this accuracy and hence is neglected.
3 Arrival date defined as the date when the S/C has a relative distance to Ceres of 0.96 ·106 km. The actual date when Dawn enters into
orbit is around Jan. 31, 2015.
4 This number includes the additional fuel/thrust required to further decrease the rendezvous conditions plus the propellant/thrust
required to enter and exit an orbit around both Vesta and Ceres, which is not included in the InTrance optimisation run. The actual
Dawn S/C carries an additional 45.5 kg of hydrazine for the reaction control subsystem [73], which is not taken into account in the
InTrance simulations.
5 Final relative state provided in the SPICE kernels.
6 The dry mass of Dawn is 747 kg, however, there is undoubtedly a propellant reserve left which is not specified in available literature.

-3 -2 -1 0 1 2 3

x [AU]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y
[A

U
]

Mars GA
Direct

Mars GA

2007 2010 2012 2015

Date [yr]

16

18

20

22

24

26

28

30

32

34

H
el

io
ce

nt
ric

 V
el

oc
ity

 [k
m

/s
]

2007 2010 2012 2015

Date [yr]

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

H
el

io
ce

nt
ric

 D
is

ta
nc

e
[A

U
]

Mars Ga
Direct

Mars GA

Mars GA

Figure 7.10: Heliocentric trajectory, velocity and distance of the Dawn trajectory computed with InTrance both with and without a Mars
GA.

The two trajectories are characterised by the parameters shown in Table 7.12. The solution with the GA laun-
ches 46 days later than the direct transfer case, and arrives at Vesta 105 days prior to the direct transfer; the
inclusion of a GA hence results in a much shorter transfer time to Vesta. The stay time at Vesta in the direct
transfer case is optimised to 245 days, versus 293 days in the Mars GA case. Although the S/C in the direct
transfer case departs Ceres 61 days later, it arrives at Ceres 49 days earlier, again caused by favourable geome-

7.2. Dawn 79

try between Vesta and Ceres. Both scenario’s then have a similar MET, 2,594 days including the Mars GA and
2,598 in the direct transfer, and use about the same amount of fuel (308.3 vs 300.7 kg).

Table 7.12: Comparison of InTrance results for the Dawn mission, both with and without a Mars GA.

Mars GA Direct transfer Mars GA - Direct
Launch V∞ 3.362 km/s 3.362 km/s [62] -
Launch date Sep. 23, 2007 Aug. 08, 2007 +46 days
Vesta arrival May. 19, 2011 Sep. 01, 2011 -105 days
Vesta dwell time 293 days 245 days +48 days
Vesta departure Mar. 03, 2012 May. 03, 2012 -61 days
Ceres arrival Oct. 29, 2014 Sep. 10, 2014 +49 days
Mission elapsed time 2,594 days 2,589 days +5 days
Total thrust time 1,973 days 1,668 days +305 days
Rel. distance Vesta 1.07 ·106 km 0.84 ·106 km +0.23 ·106 km
Rel. velocity Vesta 716 m/s 418 m/s +298 m/s
Rel. distance Ceres 0.96 ·106 km 0.99 ·106 km +0.03 ·106 km
Rel. velocity Ceres 499 m/s 498 m/s +1 m/s
Mass at departure 1,056.1 kg 1,047.8 kg +8.3 kg
Mass at arrival 747.8 kg 747.1 kg +0.7
Thruster NSTAR NSTAR -

It can indeed be seen that both scenarios can be flown with broadly similar total MET and propellant usage,
and that a Mars GA is only included for increased technical margins. Due to the inclusion of a Mars GA, the
S/C arrives at Vesta 105 days earlier, rendering a longer possible dwell time (+20%) for scientific operations.
There is furthermore more flexibility in the mission, as staying even longer at Vesta renders a more favourable
geometry such that Ceres can still be reached at around the same date.

7.2.5. Influence of Thrust During Gravity Assist
To investigate whether a powered Mars gravity assist is beneficial for the Dawn mission, another run of In-
Trance is performed in which the analytical GA-model is omitted. This way, InTrance integrates the trajectory
until exiting the SOI, which marks the end of the first phase. The mission defining parameters are exactly
equal to those presented in Table 7.8, with the exception that the arrival at and departure date from Mars are
5 days later to accommodate the time spent within the SOI. The resulting trajectory, combined with the prior
obtained results with the analytical GA-model, is shown in Figure 7.11 in the heliocentric frame (left) and as
a close-up of the GA portion in the planetocentric frame (right).

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x [AU]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

y
[A

U
]

Numerical GA
Analytical GA

Ana. GA
Num. GA

-5

#10-3

x [AU]

-5

0

0

#10-3

z
[A

U
]

-5

5

#10-3
y [AU]

0 55

Numerical GA
Analytical GA

Figure 7.11: Helio- (left) and planetocentric (right) portions of both Dawn trajectories computed with the analytical GA-model (blue)
and numerical GA-model (red). Green arrows denote the thrust vectors of the trajectory computed with the numerical GA-model.

80 7. Mission Analysis

From the trajectory in the heliocentric frame, especially for the first phase (Earth - Mars), both trajectories are
almost identical on this scale. However, from the close-up on the GA-portion in the planetocentric frame, it
becomes clear that no classical GA has been performed. Although the S/C travels through the SOI, it does so
at a distance from Mars which is too far to have much of an effect on the trajectory. Instead, the inclination
change and ∆V needed to arrive at Vesta are supplied by the thrusters, which are engaged at full throttle
during the entire flight time of 1329 days. While inside the SOI, the thrusters supply a ∆V of 1.3 km/s. The
flight time is 4.3 days shorter than was the case for the result computed with the analytical GA-model, and
hence achieved the goal of minimising the transfer time, although requiring 45 kg (+21%) of additional fuel.
Multiple runs, even when further constricting the propellant mass to be in line with the results from the
analytical model (104 kg for the first phase), did not result in performing the expected GA. Instead, GAs very
similar in shape to the result in Figure 7.11 were found, although with a longer flight time and larger gaps
between phases.

7.2.6. Optimisation of the Three-Phase Scenario – Earth to Ceres
The previously discussed trajectories are the result of concatenating the trajectories from two separate runs
of InTrance, the first optimising the trajectory from Earth to Vesta with a Mars GA, and the second optimising
the trajectory from Vesta to Ceres. However, InTrance can optimise more than two phases simultaneously,
therefore, the problem is re-tackled as a single optimisation for the complete three phase mission. The input
parameters are exactly the same as those given in Section 7.2.1, except that the the input parameters from
Table 7.9 now govern the third phase and no additional 70 kg propellant is taken as reserve in the transfer
from Earth to Vesta.

The heliocentric trajectories in the XY-plane, velocity and distance of both the three-phase single optimisa-
tion and the previously discussed concatenated runs are shown in Figure 7.12. An enlarged three-dimensional
view of the heliocentric trajectory is available in Appendix B. Visually, both optimisations result in trajecto-
ries with a similar shape, but the trajectory from the single optimisation run arrives at and departs from Vesta
earlier, and arrives at Ceres later.

-3 -2 -1 0 1 2 3

x [AU]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y
[A

U
]

Patched
Single opt

Mars GA

2006 2008 2010 2012 2014 2016

Date [yr]

16

18

20

22

24

26

28

30

32

34

H
el

io
ce

nt
ric

 V
el

oc
ity

 [k
m

/s
]

2006 2008 2010 2012 2014 2016

Date [yr]

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

H
el

io
ce

nt
ric

 D
is

ta
nc

e
[A

U
]
Single opt
Patched

Mars GA

Mars GA

Figure 7.12: Heliocentric trajectory, velocity and distance of the Dawn trajectory computed with InTrance both through a single
optimisation of the complete mission (red) and the previously described concatenated simulations (blue).

A close-up of the gravity assist portion in the planetocentric frame is shown in Figure 7.13, which shows
a positional gap between the phases which InTrance is unable to bridge to within the specified transition
condition threshold of 0.1. Although the velocity gap is almost fully bridged, with a difference of only 76 m/s,
the position gap is too large at 39.2 R�, resulting in a state phase transition condition violation (equation 5.4)
of 2.48. This state gap was mostly persistent over multiple runs of the same problem, but whenever the gap
was closed, the constraints on the final relative states to Vesta and Ceres were not matched.

The main trajectory defining parameters are compared to those of the two separate patched optimisations
in Table 7.13. Although the trajectory of the patched optimisation runs starts 7 days prior and performs its
closest approach of Mars 7 days prior to the single optimisation run, it arrives at Vesta 49 days later. Although

7.2. Dawn 81

-5 0 5

x [AU] #10-3

-5

-4

-3

-2

-1

0

1

2

3

4

5

y
[A

U
]

#10-3

-5 0 5

y [AU] #10-3

-5

-4

-3

-2

-1

0

1

2

3

4

5

z
[A

U
]

#10-3

Figure 7.13: Close-up of the Mars GA portion in the planetocentric frame for the three-phase optimisation run. Red lines indicate the
trajectory as computed by InTrance, the blue line indicates the externally integrated trajectory while inside the SOI and the green arrow

indicates the exit state as computed by the analytical GA-model.

this gives rise to the notion that the transfer from Mars to Vesta is not optimal in the two separate optimisation
runs, the result is misleading. First off, the initial position on the rim of the SOI of Mars is more favourable
in rendezvousing with Vesta in the three-phase optimisation, but in reality cannot be reached, indicated by
the existence of the large positional gap between the phases. Next, the S/C consumes 20 kg of additional
fuel in the three-phase optimisation run in the phase from Mars to Vesta, therefore reaching a higher velocity
and hence shorter transfer time. Lastly, the relative velocity to Vesta is 264 m/s higher than in the patched
trajectory, which would take additional time to decrease. The transfer from Vesta to Ceres takes 120 additional
days in the three-phase optimisation, further giving rise to the notion that this trajectory is not the global
optimal solution, even when neglecting the positional phase gap.

Table 7.13: Comparison of Dawn trajectories computed with InTrance, both for a single optimisation of the complete mission and the
patched results of the previously discussed two separate optimisation runs.

Patched Single opt. Patched - Single opt.
Launch V∞ 3.362 km/s 3.362 km/s -
Launch date Sep. 23, 2007 Sep. 30, 2007 -7 days
Mars encounter Jan. 27, 2009 Feb. 03, 2009 -7 days
Vesta arrival May. 19, 2011 Mar. 31, 2011 +49 days
Vesta dwell time 293 days 318 days -25 days
Vesta departure Mar. 03, 2012 Feb. 12, 2012 +20 days days
Ceres arrival Oct. 29, 2014 Feb. 06, 2015 -100 days
Mission elapsed time 2,594 days 2,686 days -92 days days
Total thrust time 1,973 days 2,363 days -390 days
Closest approach Mars 2.39 R� 3.54 R� -1.15 R�
∆V due to GA 2.4 km/s 1.69 km/s +0.71 km/s
Rel. distance Vesta 1.07 ·106 km 0.93 ·106 km +0.14 ·106 km
Rel. velocity Vesta 716 m/s 980 m/s -264 m/s
Rel. distance Ceres 0.96 ·106 km 1.08 ·106 km −0.12 ·106 km
Rel. velocity Ceres 499 m/s 724 m/s +225 m/s
Mass at departure 1,056.1 kg 1,101.3 kg -45.2 kg
Mass at arrival 747.8 kg 756.8 kg +9 kg
Thruster NSTAR NSTAR -

InTrance is unable to optimise this three-phase trajectory directly to within the predefined accuracy requi-
rements. The dimensions of this problem are much larger than those of the two-phase simulation discussed
before; testament by the fact that the chromosome in the three-phase scenario has a length 2632 alleles, com-

82 7. Mission Analysis

pared to 1718 in the two-phase run. The search space is furthermore much larger due to the inclusion of the
additional phase, which can clearly be seen in the optimisation runtime; almost 36 hours for the single three-
phase mission and 8.75+0.75 hours for the two separate simulations. InTrance is unable to find favourable
initial conditions together with a proper steering strategy, and eventually hits the maximum value of the ∆Vb

window of 3.0 km/a at the start of the 2nd phase and optimises a steering strategy which brings the S/C to
the respective targets. Although an almost physically valid trajectory results, neglecting the positional phase
gap at the GA, this is not the global optimal solution, neither in time nor in propellant usage. The EA beco-
mes stuck in a local optimum; whenever more favourable initial conditions are found, the steering strategy is
trained with different conditions, rendering a trajectory which no longer reaches the respective targets, and
therefore individuals which go extinct. Although only slightly changing the initial conditions after the GA at
Mars, which are describes by a few alleles, all other 2600+ alleles have to change to values which are not ne-
cessarily close to their previous values. After all, a small change in initial conditions, under the same steering
strategy, has tremendous effects on the trajectory over a long time frame.

8
Conclusion and Recommendations

This chapter concludes this thesis by first providing a summary of this work, which simultaneously highlights
the answer to the research questions as specified in Section 1.2. A critical analysis on the obtained results and
implementation follows in Section 8.2, from which recommendations for future research are given in Section
8.3. The recommendations are split in fundamental research and application oriented recommendations; the
former focussing on the fundamental components of InTrance, and the latter on areas in which the developed
method can be used and improved upon from an astrodynamics standpoint.

8.1. Summary
It was quickly realised that the outer planets of the Solar System were out of reach with classical chemical
propulsion as sole means of supplying the ∆V budget. Gravity assists were some of the first innovations
which made it possible to explore targets beyond Mars’ orbit, utilising a momentum exchange between an
intermediate flyby body and the spacecraft, resulting in an increase of the spacecraft’s velocity relative to a
third body such as the Sun. The very first missions to the outer planets, such as the Pioneers and Voyagers, all
made use of gravity assists to increase their velocity relative to the Sun, and most mission still do to this day.

With all major bodies within the Solar System explored by at least a single fly-by, modern-day missions are
becoming increasingly more demanding, up to a point where classical chemical propulsion combined with
gravity assists can no longer supply the required ∆V . More and more is relied upon low-thrust propulsion,
characterised by its (very) low thrust force; long continuous thrust arcs, often lasting months at a time; and
high specific impulse. Low-thrust can be supplied by methods from two different categories; electric pro-
pulsion and internal-reaction mass free propulsion. The former makes use of power to electrically accelerate
and expel mass, although with a much smaller mass flow rate than classical chemical propulsion. The latter
does not rely on any propellant, but rather makes use of the (electro-)magnetic environment with methods
such as solar sails, electrodynamic tethers and laser propulsion.

To even further increase the possible ∆V budget, thereby allowing more intricate missions, more payload,
or a lower transfer time; use is made of low-thrust propulsion combined with gravity assists. A prominent
example is the Dawn mission which orbited both Vesta and Ceres and made use of a Mars GA, a mission
which would not have been possible with classical chemical propulsion. Dawn made use of a Mars GA to
increase technical margins, but it would have been possible to perform the mission without one. On the
contrary, a mission which heavily relies on both low-thrust and gravity assists is BepiColombo, performing a
total of six gravity assists to eventually be captured by Mercury, with very low propellant usage.

8.1.1. Research Motivation and Framework
Traditional high-thrust trajectory optimisation is relatively straightforward compared to its low-thrust coun-
terpart; thrust is only applied at a few instances and each operation is modelled as an instantaneous burn.
These relatively simple trajectories were traditionally designed by a team of astrodynamics experts by hand,
followed by simple numerical integration. Contrary, low-thrust can be applied for months at a time, where

83

84 8. Conclusion and Recommendations

at each time step the direction and magnitude can be varied, resulting in a much larger search space. With
the inclusion of gravity assists, the optimisation of the trajectory becomes even more difficult. Traditional
trajectory optimisation tools heavily rely on astrodynamics expertise to generate an initial guess to a local
optimisation scheme. Global optimisation tools exist, but usually require heavy modification for each new
mission scenario, are not capable of optimising any trajectory, and still require experts in the fields of as-
trodynamics, optimal-control theory and optimisation. There is a clear need for a smart global low-thrust
trajectory optimisation tool, capable of optimising low-thrust trajectories from only a broad description of
the mission.

One such smart global low-thrust trajectory optimisation tool, termed InTrance, was developed by Dachwald
[17] and later extended by Ohndorf [59]. InTrance tackled the problem from the novel perspective of artificial
intelligence and machine learning, using a method termed evolutionary neurocontrol to design multi-phase
low-thrust trajectories. Neuroevolution, or evolutionary neurocontrol when applied to control problems,
combines biologically inspired Artificial Neural Networks (ANNs) with Evolutionary Algorithms (EAs). The
internal parameters of the ANN and initial conditions of each phase are optimised by the EA, which then
serves as an agent; supplying the S/C with a steering strategy at each integration step. Although InTrance
can optimise a wide variety of trajectories from only a basic description of the mission, it lacks the generic
support for gravity assists.

With missions becoming more intricate, nowadays making use of both low-thrust and gravity assists, the
above described need is extended to the need for a smart low-thrust gravity assist optimisation tool. It was
the aim of this thesis to supply in the need for such a tool, and the solution was found in extending the above
described InTrance to allow for the optimisation of low-thrust gravity assist trajectories. The objective was
formally defined as:

Research Objective: To develop and use a smart low-thrust trajectory optimisation tool using evolutio-
nary neurocontrol by extending InTrance, capable of robustly optimising prelimi-
nary low-thrust gravity assist trajectories in both transfer time and propellant usage
which should only be dependent on basic mission defining inputs.

This developed smart low-thrust gravity assist trajectory optimisation tool was then used to optimise gravity
assists at bodies with both small and large spheres of influence, to optimise trajectories which make use of
gravity assists at bodies with both small and large spheres of influences, and to provide insight into the effects
and efficiency increase due to the inclusion of both powered and unpowered gravity assists.

8.1.2. Approach and Results
InTrance splits the trajectory into multiple phases, each with their own respective targets and governed by a
distinct ANN, also termed Neurocontroller (NC). The internal parameters of all NCs plus all initial conditions
of each phase are encoded on a single chromosome, which is optimised in its entirety by an EA. Gravity Assists
(GAs) have been implemented as a target in itself, marking the end of a phase when crossing into the Sphere
of Influence (SOI) of the GA-body. As an example, a flyby mission of Pluto which performs a GA at Jupiter
would be characterised by two phases; the first taking the S/C from Earth up to entering the SOI of Jupiter;
the second phase then commences on the rim of the SOI after the GA and takes the S/C to Pluto where it
performs a flyby.

Sub-fitness functions first drive each phase to reach their respective targets, and only after all targets of all
phases have been reached, the focus is shifted to the overall optimisation objective such as minimising the
transfer time or propellant usage of the entire trajectory, and to minimise gaps in phase transitions. The phase
starting after a GA has an initial position on the rim of the SOI of the GA-body, optimised by the EA. The initial
velocity of this phase is either the entry velocity into the SOI of the previous phase plus a ∆V optimised by
the EA, or the velocity of the GA body at the departure date plus a ∆V optimised by the EA. The sub-fitness
function of the phase ending with a gravity assist first drives the S/C to enter the SOI of the GA-body. Once the
SOI is entered, the integration is stopped and an analytical GA-model is employed to calculate the SOI exit
state and resulting ∆V vector. The sub-fitness of this phase is then determined from the difference between
the actual generated ∆V due to the GA and the initial ∆V as determined by the EA of its subsequent phase.
The phase ending with the GA is therefore inherently coupled to its subsequent phase; initial conditions at
the departure body plus a steering strategy have to be optimised which render the S/C to perform a GA which
supplies the ∆V needed by its subsequent phase to reach its respective target.

8.1. Summary 85

The implementation has been verified and validation by external re-integration and by comparison of In-
Trance optimised trajectories with literature. The analytical GA-model has firstly been verified by simulating
the gravity assist portion from a fixed initial position on the rim of the SOI for both Mars and Jupiter for
varying entry velocities, and comparing the integrated exit states with those computed with the analytical
model. The simulated trajectories had deflection angles ranging from a few degrees to >120 degrees. The
deviation between the numerically integrated simulations and analytical model grows with increasing de-
flection angle, or equivalently, with decreasing entry velocity. The simulations at Mars show a deviation in
both SOI exit velocity and position of about 6% for the most extreme deflection angles, whereas due to the
larger SOI the deviations reach values of up to 26% at Jupiter. It is problem dependent whether these devi-
ations can be deemed acceptable. Generally, deflection angles will not reach values as high as 120 degrees,
and some deviation is permissible given InTrance is designed for preliminary phase-A mission design. When
higher accuracy is required, or when an extreme gravity assist is expected, the analytical GA can be omitted
which will result in InTrance integrating the trajectory until exiting the SOI. However, due to the vast vari-
ation in the gravitational environment, especially around the point of closest approach, a small integration
step-size has to be applied which does hinder the performance.

A low-thrust version of the New Horizons mission to Pluto with a Jupiter GA was optimised by InTrance and
compared to literature. The windows for the initial and arrival conditions at each phase were set to resemble
the validation trajectories as closely as possible, thereby focusing on the optimisation of the steering strategy
and gravity assist. The resulting trajectory was compared to two different trajectories from literature [13, 75]
and all showed very good agreement. All three solutions had a total flight time within 5 days (0.15%) of each
other, use about the same amount of propellant to within 0.4 kg (1.1%) and achieved a flyby velocity relative
to Pluto to within 34 m/s (0.22%) deviation. The resulting InTrance trajectory was furthermore integrated
with an RK4(5) integrator in MATLAB from the initial conditions at Earth onward while applying the thrust
history supplied from InTrance. The externally re-computed trajectory does not completely agree with the
solution from InTrance, which is mostly caused due to a state gap after the GA and a different integration
step-size between the two computations. However, the deviation was small enough to further validate the
implementation of the GA within InTrance.

The InTrance optimised low-thrust version of New Horizons used in the validation case aimed to mimic the
trajectories from literature by settings very strict windows on the input dates and propellant mass. However,
it was found that a gain could be achieved by optimising within a larger search space. Therefore, InTrance
has been used to re-optimise the low-thrust New Horizons trajectory with larger windows for the initial and
arrival conditions, resulting in a flight time reduction of about 90 days (-3%) and a propellant mass reduction
of 4.1 kg (-11%). Compared to New Horizons’ actual high-thrust trajectory, the InTrance result arrived at Pluto
12 days earlier, although at a further distance and larger relative velocity. InTrance found a GA with a lower
closest approach to Jupiter, resulting in a larger generated ∆V (+17%). The S/C’s drymass was 565.0 kg in
the InTrance simulations, similar to the validation data used before, but the actual high-thrust New Horizon’s
drymass was 426.4(1) kg. InTrance furthermore used a lower launch C3 of 144 km2s−2, versus the 157 km2s−2

in the high-thrust mission. Hence, the low-thrust trajectory from InTrance reached Pluto faster, with 138.6
kg of additional drymass (=payload) and used 20.8 kg (-41%) less propellant. Although the two trajectories
cannot be compared directly, as InTrance uses a simplified environment (no SRP, not all disturbing bodies,
etc.) and does not take operational constraints into account, InTrance has shown to be able to find low-thrust
gravity assist trajectories which are most likely better than its high-thrust counterpart in terms of flight time
and propellant usage. The effect of the gravity assist on the overall trajectory was assessed through com-
parison with a direct Earth-Pluto transfer, also optimised with InTrance. This direct transfer was optimised
with respect to propellant usage and constrained to still have a reasonably close MET to the solution with
a Jupiter GA. Jupiter has been excluded from the list of disturbing bodies to prevent an implicit GA, which
would be equivalent to launching at a later date when Earth and Pluto have the same relative geometry, but
where Jupiter is not in the vicinity. The direct-transfer utilises the entire allowed flight time of 3,200 days,
which is 109 days more when compared to the solution with a Jupiter GA. It then requires a total of 126.8 kg
of propellant to achieve this flight time, which is 96 kg more than for the Jupiter GA trajectory. Lastly, it was
investigated whether allowing thrusting while inside the SOI of Jupiter would be beneficial. By omitting the
analytical GA-model and have InTrance integrate the trajectory until exiting the SOI, thrust can be applied
while performing the GA. However, InTrance did not find a favourable powered GA solution, and returned a
trajectory very similar to the one generated using the analytical GA-model.

(1)Including a propellant reserve of 25.4 kg.

86 8. Conclusion and Recommendations

The second mission which was optimised with InTrance is the Dawn mission; a double asteroid rendezvous
mission with a Mars GA. The resulting trajectory is a concatenation of two separate optimisation runs of
InTrance, the first from Earth to Vesta with the intermediate Mars GA and the second from Vesta to Ceres.
The resulting trajectory is very similar to Dawn’s actual trajectory in terms of MET, being four days longer
but also having a five days longer stay time at Vesta. InTrance finds a solution which has a faster transfer to
Vesta (-84 days), and therefore departs earlier from Vesta, but arrives at Ceres on the same day as the actual
trajectory. The longer flight time in the phase from Vesta to Ceres is accredited to more favourable geometry
between the two bodies at a later departure date from Vesta and a different thrust strategy. The trajectories
are difficult to compare in much further detail, as the actual Dawn S/C brought along more propellant (+184
kg, +17%) to, amongst others, account for the orbiting and de-orbiting of both Vesta and Ceres. Furthermore,
InTrance is not capable of supplying the accuracy to rendezvous with both bodies with the same relative
distance and velocity as in the actual Dawn trajectory, which would require additional propellant. Comparing
the trajectory to a trajectory which does not perform a GA shows the GA in this mission was mostly included
to increase technical margins, as both missions can be flow with a broadly similar MET (5 days difference,
0.2%) and a broadly similar propellant usage (7.6 kg difference, 2.5%). However, the direct transfer trajectory
has to launch from Earth sooner (-46 days) and arrives at Vesta later (+105 days). Due to a later departure
from Vesta with more favourable geometry with respect to Ceres, and a shorter dwell time at Vesta (245 vs.
293 days), the overall MET is broadly similar. The effect of a powered GA is difficult to assess as InTrance
found a solution which does not perform a classical GA. Instead, the required change in both inclination and
velocity is supplied by the thrusters, which are engaged longer and burn an additional 45 kg of propellant. The
complete three-phase mission has also been tackled by InTrance, but was unable to escape a local optimum
and unable to close the gap between phases to within the allowed threshold.

8.2. Analysis of Results and Performance
The extended version of InTrance with GA optimisation capabilities has shown to produce broadly similar,
or sometimes even better, trajectories compared to the actual flown missions and literature. The trajectories
of the actual missions required a team of experts in the fields of astrodynamics, optimal control theory and
optimisation, and many different software tools. On the contrary, InTrance was initialised with only a broad
description of the missions such as departure and arrival bodies, desired launch and arrival windows and
allowed propellent mass. The novel application of evolutionary neurocontrol to the low-thrust gravity assist
optimisation problem has shown to be promising, which is quite remarkable considering a neurocontroller
has no a-priori knowledge of what a gravity assist is, and has to learn how to properly perform a GA through
evolution.

8.2.1. Analysis of Performance, Implementation and Robustness
The optimisation is very sensitive to the initial conditions of a phase starting after a GA. The New Horizons
trajectory, for instance, did not converge to a valid solution when provided with relatively large windows
(+100◦) for the initial direction of the launch position on the SOI and ∆V due to the gravity assist. The first
issue is that InTrance retrieves a single allele value which is used in a linear mapping from the minimum
to maximum window parameter, hence rendering that when the window is large, a slight change in allele
value has a large effect on the parameter. Next, when only slightly changing the initial launch position angles,
represented by two alleles, all other 2000+ internal ANN parameters also have to be re-optimised. After all,
a slight change in initial conditions will result in providing the NC with different states for which it is not
trained, giving a completely different steering strategy. As it is unlikely all 2000+ parameters are re-optimised
within a single epoch to accommodate these new initial conditions, therefore these individuals go extinct
in favour of individuals which result in a state gap but do fulfil all other constraints. Multiple runs of the
problem where therefore required to first provide insight into promising windows of the initial conditions,
which eventually resulted in windows with a size varying between 10 and 40 degrees. The same problem was
encountered in the Dawn simulations, but was then tackled by allowing InTrance to alter the windows of the
initial conditions, thereby both shifting the midpoint and expanding and contracting the size of the windows.
This resulted in a simpler initialisation of the problem, where InTrance found initial conditions outside of the
initially specified window for the direction of the ∆V of the GA.

The Dawn simulations had to be run multiple times with different initial (random) chromosome parameters
before a valid trajectory which fulfilled all constraints was found. This problem did not occur in the optimi-

8.2. Analysis of Results and Performance 87

sation of the New Horizons trajectory, which was quite robust and returned trajectories with a similar flight
time (the optimisation goal) to within 2 days for each run once proper windows for the initial angles after a GA
were found. InTrance has difficulty in decreasing the gap between the SOI exit position and initial position of
a phase starting from a GA-body with a small SOI, which was also seen in the single optimisation of the three-
phase Dawn mission. This is again attributed to the EA, which was not designed with the required accuracy
for a GA in mind. After all, InTrance was designed as a phase-A mission analysis tool, not having to provide
the accuracy which one would achieve with a local optimisation scheme. This gap can either be decreased by
changing the entry position into the SOI, resulting in a different exit position, or to alter the initial position
of a phase starting from the GA-body. The difficulty in altering the launch position of the phase starting after
the GA was already described above. The second option, decreasing the positional gap from optimising to
a different entry state into the SOI, is no trivial task for InTrance either. As was shown with the validation of
the analytical GA-model, an increase of 500 m/s in entry velocity at Mars could result in the deflection angle
increasing from 70◦ to 120◦, rendering a much larger state gap. To put this into perspective, InTrance was
developed to be capable of rendezvousing with bodies at a relative velocity of 500 m/s. Hence, the EA cannot
always supply the accuracy to change the entry state by a few tens of m/s required to reach an exit position
equal to the initial position of the second phase at small SOIs. Multiple runs of InTrance usually alleviate the
problem, at least for the two-phase Dawn scenario, due to different (random) initialisation of allele values.

It was found that the analytical GA-model performed both more robust and more efficiently than numerically
integrating the trajectory inside the SOI. Empirical evidence of monitoring the optimisation showed that the
NC had more difficulty in learning the benefits of a GA when numerically integrating the trajectory inside the
SOI. Many individuals performed a GA which did not result in much of a change in velocity nor direction, as
was seen in the final Dawn result. Contrary, the analytical model showed much quicker convergence to GA
performing individuals and the resulting trajectories were much more robust. The optimisations using the
analytical model was furthermore more than four times as efficient with respect to computation time for the
New Horizons case. This is caused by the small required (dynamically computed) step-size while inside the
SOI, which makes up 60% of the total steps in the first phase, but only 14% of the total flight time. Due to
Mars’ small SOI size, there was no clear difference in runtime in the Dawn simulations.

GAs are implemented as targets in itself, meaning they have to be provided to InTrance as a target of a re-
spective phase with a full set of input parameters such as propellant usage and arrival date. This decision was
taken as previous work in optimising a GA with neurocontrol without specifically specifying the target was
unsuccessful [14]. Usually, a GA sequence is unknown a priori and a maximum propellant mass is defined
for the complete mission, rather than for each separate phase. The current implementation somewhat goes
against the idea of InTrance being a smart global low-thrust trajectory optimisation tool, as defining a GA
sequence and corresponding input parameters still requires expertise in astrodynamics. However, this work
has shown evolutionary neurocontrol can be used to optimise low-thrust gravity assist trajectories, which
can be build upon by including a heuristic method which solves the combinatorial GA-sequence problem
beforehand.

The proximity functions for the phase ending with a gravity assist make use of scaling factors, as discussed in
Section 5.6. These scaling factors are used to place a larger weight on performing a GA than on reaching the
target in the subsequent phases, which was seen to help the initial convergence to GA performing individuals.
These scaling factors were set somewhat arbitrarily, but showed good results for all generated trajectories.
However, it might be possible that a different value for these factors could result in faster convergence, which
has not been analysed.

8.2.2. Analysis of Results
It has been demonstrated that InTrance can be used for preliminary design of low-thrust gravity assist tra-
jectories, performing different types of GAs at bodies with both small and large SOIs. The gravity assist in
the Dawn trajectory is distinctively different from the one in the New Horizons case. New Horizons mostly
made use of its Jupiter GA to increase its in-plane velocity, whereas Dawn makes use of the GA mostly as an
out-of-plane manoeuvre. The SOI’s of both planets are furthermore very different, with the SOI of Jupiter
being 83.5 times larger in radius than the one of Mars; testament by the fact that the flight time within the
SOI in the New Horizons case was about 60 days, whereas Dawn spends only about 5 days inside the SOI
of Mars. Optimising a GA at Mars is therefore much more difficult, as the number of generated trajectories
which actually enter the SOI is initially much smaller. A slightly different entry state furthermore has a much

88 8. Conclusion and Recommendations

larger effect than would be the case at Jupiter, as can be seen in the validation of the analytical GA-model; at
Mars a 1 km/s relative entry velocity has a deflection angle of about 1◦, and an entry velocity of 5 km/s gives
a deflection angle of about 120◦; to achieve the same deflection angles at Jupiter one would require an entry
velocity of 5.5 km/s and 20 km/s, respectively.

The efficiency increase due to the inclusion of a GA has been investigated for both the low-thrust New Ho-
rizons mission and the Dawn mission. The generated trajectories were compared to InTrance optimised
direct-transfer trajectories, and in both cases the inclusion of the gravity assist was favourable. InTrance opti-
mised the propellant mass for the New Horizons direct-transfer case and was constrained to having a broadly
similar flight time as the trajectory with a GA. Multi-objective optimisation with respect to both time and pro-
pellant usage is currently not available in InTrance. The inclusion of a Jupiter GA in the New Horizons case
resulted in a reduction of 109 days (-3.4%) in flight time and a propellant saving of 96 kg (-75.7%). The incre-
ase in efficiency is partly caused by the S/C being launched with a higher C3 (+3.4%), which is possible due to
its lower initial wet mass, but mostly caused by the velocity increase of 6.01 km/s due to the GA. The effect of
the Mars GA in the Dawn scenario is less apparent, as it was included to increase technical margins, and the
baseline mission could be flown with one [63]. It was found that the MET of the mission with a Mars GA was
5 days longer (+0.2%) and required 7.6 kg (+2.5%) of additional propellant compared to the direct-transfer
trajectory. However, due to the inclusion of the GA the S/C can be launched 46 days later, arrives at Vesta 105
days earlier, spends 48 additional days at Vesta (+19.6%), and arrives at Ceres on the same date. Hence, with
slightly more propellant usage, there is both an increase in launch margins plus increased scientific return,
both from the Mars flyby and from the longer dwell time at Vesta.

The effect of a powered GA is difficult to assess for the New Horizons and Dawn missions. InTrance did not
find a New Horizons solution which performed a powered GA to be more optimal than one which perfor-
med an unpowered GA. This effect was expected, as thrust is supplied in the first half of the first phase which
directs the S/C to the optimal b-plane target point. If a closer flyby of Jupiter would be beneficial, it could
fully be reached by altering the b-plane penetration point prior to entering the SOI. Employing the numeri-
cal GA-model for the Dawn mission resulted in a trajectory which performed a GA which did not alter the
flight direction. Instead, the required changes in inclination and velocity to reach Vesta were supplied by the
thrusters, thereby burning 21% more fuel than in the trajectory computed with the analytical GA-model. A
multi-objective optimisation with respect to both time and propellant usage is needed to properly assess the
effects of the powered GA on the Dawn trajectory, which is currently not implemented. However, it is not that
expected a powered GA would be much more beneficial than an unpowered one, as again the required closest
approach can be reached by altering the b-plane target point prior to entering the SOI. The result computed
with the analytical model furthermore does not apply thrust for the first 118 days, indicating that the unpo-
wered GA is able to provide the required velocity and direction change without thrusting. Lastly, due to the
relatively low mass of Mars, the flighttime inside the SOI is less than 5 days, in which low-thrust cannot make
much of a difference. An increase in efficiency for powered GAs is expected to be seen in SEP missions to the
outer planets, in which the maximum thrust decreases with increasing distance from the Sun. For instance,
when performing a GA at Jupiter to the outer planets; thrusting for the entire flighttime within the SOI of +60
days can make a large difference as corrections later on are difficult [75].

It was one of the goals to optimise trajectories which perform multiple GAs, however, this goal was not inves-
tigated due to time constraints. Optimisation of trajectories with multiple consecutive GAs could be difficult
with the current implementation, as each GA-phase is optimised to provide the ∆V required by its subse-
quent phase. Hence, when GA-phases follow each other, all these phases are inherently linked to each other,
whereas InTrance traditionally optimises each phase separately in reaching its target prior to optimising the
overall objective and state gaps between phases. Although principally not a problem as all phases are co-
evolved, it does significantly increase the difficulty of the problem as now all initial and arrival conditions
have to be optimised at the same time. Furthermore, it was found that the three-phase Dawn mission was
unable to find an optimal trajectory, whereas the two-phase mission excluding the transfer from Vesta to
Ceres could, attributed to the larger problem dimension. When optimising a trajectory with two GAs, the
minimum number of required phases is three, which already significantly increases the problem dimensions
due to the internal parameters of the additional NC. As an example, considering a three-layered ANN with 35
nodes in its hidden layer results in +1100 alleles per additional phase. It is expected that a trajectory with two
consecutive GAs at bodies with large SOIs, such as a Grand Tour with GAs at Jupiter and Neptune [75], can
be optimised with the current optimisation when the windows of initial conditions following a GA are suffi-
ciently small. Intricate trajectories, such as low-thrust gravity assist trajectories to Europa, which can utilise

8.3. Recommendations for Further Work 89

as many as 16 GAs [74], are not expected to be within the capability of the current framework.

8.3. Recommendations for Further Work
This work has resulted in the development of a smart low-thrust gravity assist optimisation tool and demon-
strated both the effects of gravity assists on low-thrust trajectories, and has shown to be a viable alternative
for the design of such trajectories for preliminary phase-A design. However, the method can still be furt-
her improved upon, thereby further increasing InTrance’s capability to become a truly smart and versatile
low-thrust trajectory optimisation method, capable of optimising any low-thrust mission. The recommen-
dations for further work are split in fundamental research and application oriented recommendations, the
former with a focus on InTrance’s components such as the ANN and EA, and the latter with a focus on further
improving InTrance’s GA and mission analysis capabilities.

8.3.1. Fundamental Research
An interesting research topic is the quest for the optimal NC input set for the low-thrust trajectory optimisa-
tion problem. The currently implemented input set of InTrance for each NC is comprised of; the S/C state
in three different representations, two of which are relative to the major body, and one relative to the target
body; the state of the target body in Cartesian coordinates; the control step size h; the range; the range rate;
and the available propellant mass mp . The state relative to the major body is both supplied to the NC in Car-
tesian coordinates and polar coordinates, whereas the relative state to the target is only supplied in Cartesian
coordinates. It is clear that half of these inputs are heavily correlated and redundant, which can hinder the
learning process [43]. For instance, the ANN should be capable of learning how to determine the relative
state of the S/C with respect to the target body, thereby eliminating the need for 6 out of the 28 input nodes.
Furthermore, as the S/C state in polar coordinates is a simple transformation from the Cartesian state; this
is another redundant input set. The dimension of the ANN, assuming the complete input set of 28 nodes, a
single hidden layer of 30 nodes, and an output layer of 6 nodes, is equal to 1148 parameters (connection weig-
hts, thresholds and sigmoid temperature parameter) that are subject to optimisation. When eliminating the
correlated input nodes (14 nodes), the ANN size is reduced by 39% to 700 optimisation parameters. Reducing
the input set will mean that the network has to discover such dependencies itself, which could be costly, but
the optimisation procedure of the internal parameters itself would be more efficient. It would be interesting
to apply Input Variable Selection (IVS) methods [49] to first find how correlated the different input parame-
ters are, and subsequently determine which parameters the ANN relies on most. If it is found that the ANN
is not efficiently able to learn these dependencies without providing them as inputs, an alternative solution
could be found in using indirect encodings, such as employed within HyperNEAT [70], which are specifically
designed to recognise and utilise such dependencies [43]. The large problem dimensions can already be seen
to hinder the optimisation, testament by the fact that the complete three-phase Dawn mission could not be
optimised to within the allowed thresholds. Removing redundant input parameters significantly reduces the
problem dimensions, and could be a possible solution to allow direct optimisation of a three-phase mission.

The quest for the optimal ANN topology would be another interesting research topic in reducing the pro-
blem dimensions and increasing efficiency. The topology should be large enough to represent the intri-
cate dynamics, but small enough to allow efficient computation. Such optimal topologies can be genera-
ted with Topology- and Weight Evolving Artificial Neural Networks (TWEANNs), of which NeuroEvolution of
Augmenting Topologies (NEAT) [71] is a particularly popular method. The reader is referred to the Litera-
ture Review [43] performed prior to this work for a discussion on TWEANNs. Gomez et al. [33] found that
methods such as NEAT can significantly outperform conventional neuroevolution on both Markov and non-
Markov control problems. NEAT was able to robustly and consistently optimise the non-Markov double-pole
balancing problem, whereas conventional neuroevolution failed in nearly 40% of their tests. TWEANNs can
furthermore find recurrent connections, which are required to represent non-Markov control problems, and
could benefit the optimisation of low-thrust trajectories. If such a method would decrease the problem di-
mensions or perform the optimisation more efficient, InTrance’s convergence limits can be decreased which
might result in the needed accuracy increase with respect to phase transition conditions.

Diploid Genetic Algorithms (DGAs) provide another possible alternative to the currently implemented EA.
DGAs make use of the biological diploidy and dominance mechanisms. In the diploid structure, two homolo-
gue chromosomes are twisted together into a duplex structure. In the reproduction cycle, meiosis splits these

90 8. Conclusion and Recommendations

two chromosomes into four haploid chromosomes, which are recombined with other haploid chromosomes
to form a new diploid chromosome. Diploidy organisms furthermore require two genes for each biological
trait, but only the dominant trait is expressed. The recessive gene then helps to keep genetic diversity which
allows organism to evolve more efficiently to changes in the environment. Haploid genetic algorithms, as the
one implemented in InTrance, have a goal of converging the entire population to an identical chromosome.
Therefore, once convergence is achieved, haploid genetic algorithms are unable to adapt to changes in the
environment. On the contrary, due to the recessive genes of a diploid chromosome in DGAs, genetic diversity
is maintained which helps in adapting to a new environment [83]. Since InTrance first focusses on reaching
each respective phases’ target, state gaps between phases inevitably occur. Once each phases’ target is rea-
ched, InTrance shifts its attention to decreasing these state gaps between phase transitions and optimising
the overall objective such as transfer time minimisation. In order to decrease the state gaps, the initial con-
dition are usually varied, which has shown to be no trivial task on large problems such as the three-phase
Dawn scenario. DGAs might be more suitable for this type of problem, as they are better suited to handle
these changes in initial conditions. DGAs are furthermore more robust than conventional haploid genetic
algorithms [10], which could help to overcome having to run InTrance multiple times before finding a valid
solution for some problems.

8.3.2. Application Oriented
Gravity assists have been implemented as specific targets in their own respective phase, thereby requiring
a complete set of input parameters including arrival and departure dates. Ideally, a gravity assist sequence
should not have to be provided, in-line with the original goal of InTrance to be a truly smart low-thrust trajec-
tory optimisation method which does not rely on the astrodynamics expertise of the user. More general, this
also applies to targets in the multi-phase framework, such as multi-asteroid rendezvous missions as Dawn. It
would be ideal to only provide a list of targets, from which InTrance can find its own sequence with respective
parameters for each phase. It is therefore recommended to combine InTrance with a heuristic method to
solve the combinatorial problem beforehand.

InTrance is a global optimisation tool, and hence provides solutions to the low-thrust trajectory optimisation
problem with limited accuracy. Although the accuracy is sufficient for InTrance’s original intended use as
a phase-A mission analysis tool, the correct optimisation of GAs requires a better accuracy than a flyby or
rendezvous mission, even in the preliminary design phase. A gravity assist is usually applied to increase the
heliocentric velocity by a few km/s, however, if there is a velocity gap of 500 m/s between the phases arriving
at and departing from the GA-body, this has a large impact on the phase starting from the GA-body, which can
give a distorted view of realistic flight times and required propellant mass. Besides the recommendations of
the previous section, the combination of InTrance with a local optimisation scheme could supply the needed
accuracy. The base version of InTrance would then first be used to find (near-)global optimal trajectories,
after which its solution can be used as an initial guess to a local optimiser.

Multi-objective optimisation is not supported in InTrance, which leads to having to specify the maximum
flight times and maximum propellant usage for each phase. When the goal is to minimise transfer time,
InTrance will often use the entire allowed propellant mass, without giving any indication to how much lon-
ger the flight time would be with less propellant. Contrary, the reverse is true in minimising the propellant
usage. Multi-objective optimisation for both flight time and propellant usage would be a desirable addition
from a usability standpoint. One method to implement multi-objective optimisation might be to evolve two
different populations simultaneously, one which minimises transfer time and the other which minimises pro-
pellant usage. A multi-tournament reproduction between the two populations, with a relative weighting to
each criteria set by the user, would provide solutions which are both time and propellant optimal.

From a low-thrust gravity assist optimisation standpoint, it would be interesting to determine InTrance’s ca-
pability in optimising multi-GA trajectories. As was previously discussed, it is expected that the current im-
plementation can optimise two consecutive GAs at bodies with large SOIs if the initial conditions are speci-
fied sufficiently close to the actual optimum. It is however unlikely that InTrance can optimise trajectories
in which many consecutive GAs at bodies with small SOIs are performed due to the vast increase in problem
dimensions with each additional phase, and limited accuracy of the EA. However, if the solutions of the pre-
vious section are implemented and result in a sharp decrease of the problem dimensions and increase in
accuracy, it might eventually be within the capabilities of InTrance.

A
Reference Frames

The two main reference frames used within this work are the inertial Cartesian reference frame and the inertial
polar ecliptic reference frame. Both frames are inertial reference frames, in which bodies, whose net force
acting upon them is zero, are not accelerated. Hence, they are either at rest or move with constant velocity
in a straight line. An inertial reference frame describes time and space homogeneously, isotropically and in a
time-independent manner [44].

The inertial Cartesian reference frame has extensively been used throughout this work to showcase trajecto-
ries, either in the heliocentric frame (Ecliptic J2000) or in the bodycentric frame (=Ecliptic J2000 heliocentric
coordinates of S/C - Ecliptic J2000 heliocentric coordinates of GA-body). The inertial polar ecliptic reference
frame is used within InTrance to supply the ANN with a double exhaustive set of S/C coordinates.

The inertial Cartesian and inertial polar ecliptic reference frames are described in Section A.1 and A.2, re-
spectively. Orbital elements are used in the derivation of the analytical GA-model and other GA related para-
meters, and are lastly described in Section A.3. The reference frames used in the defining of initial conditions
after a GA have already been described in Section 5.4 and hence will not be repeated here.

A.1. Inertial Cartesian Reference Frame
The inertial Cartesian reference frame J :

(
ex,ey,ez

)
, shown in Figures A.1 and A.2, is a right-handed frame

defined through its orthogonal unit vectors ex, ey and ez. A vector r can then be defined by its projections
along these vectors. The inertial heliocentric frame (also termed the Ecliptic J2000 frame) is an inertial Carte-
sian reference frame, centered at the Sun, in which the XY-plane is defined by the Earth’s mean orbital plane,
and the principal axis by the vernal equinox direction of epoch J2000 [56].

130 A.1 Inertial Cartesian Frame

Figure A.1: The Cartesian Reference Frame I. It is defined through its base vectors ex, ey,
and ez. A vector r is thus the vector sum of these base vectors multiplied with the components
of r.

Figure A.2: The Polar Reference Frame P : per, eϕ, eϑq is defined through its base vectors
er, eϕ and eϑ. A vector r is expressed with the vector length or magnitude r, the azimuth angle
ϕ P p0, 2πs, and the elevation angle ϑ P

�
�π

2 ,�
π
2

�
.

Figure A.1: The Inertial Cartesian reference frame J. Courtesy of [59].

91

92 A. Reference Frames

The spacecraft’s position r, velocity ṙ = V and acceleration r̈ = V̇ = a in the J frame are then described by:

r = xex + yey + zez =
x

y
z

 , (A.1)

ṙ = ẋex + ẏey + żez =
ẋ

ẏ
ż

 , (A.2)

r̈ = ẍex + ÿey + z̈ez =
ẍ

ÿ
z̈

 . (A.3)

A.2. Inertial Polar Ecliptic Reference Frame
Translational motion of a S/C is better described in a polar reference frame due to the nature of the problem.
The frame is again centered at the Sun, and its principal axis points towards the vernal equinox at epoch
J2000. The frame is shown in Figure A.2.122 Reference Frames

Figure A.1 Ecliptic reference frame

components, the unit vectors are

er =



cosϕ cos θ
sinϕ cos θ

sin θ




eϕ =



− sinϕ
cosϕ
0




eθ =



− cosϕ sin θ
− sinϕ sin θ

cos θ




(A.4)

The spacecraft’s position, velocity, and acceleration in E-frame components are

r = rer (A.5)

ṙ = ṙer + rϕ̇ cos θeϕ + rθ̇eθ (A.6)

r̈ = (r̈ − rθ̇2 − rϕ̇2 cos2 θ)er+

+ (2ṙϕ̇ cos θ + rϕ̈ cos θ − 2rϕ̇θ̇ sin θ)eϕ+

+ (2ṙθ̇ + rθ̈ + rϕ̇2 sin θ cos θ)eθ

(A.7)

Figure A.2: The Inertial Polar Ecliptic Reference Frame P. Courtesy of [17].

The polar reference frame P :
(
er,eϕ,eϑ

)
is an orthogonal right-handed polar frame, where er points along

the sun-spacecraft line, where the vector er points towards the S/C, eϑ lies in the er−ez-plane and points along
the direction of increasing ϑ, and eϕ completes the right-handed coordinate system. The azimuth angle (ϕ)
is the angle between ex and the projection of er onto the ecliptic. The elevation angle ϑ is the angle between
the ecliptic plane and r. The unit vectors, expressed in J components, are described by

er =
cosϕcosϑ

sinϕcosϑ
sinϑ

 , (A.4)

eϕ =
−sinϕ

cosϕ
0

 , (A.5)

eϑ =
−cosϕsinϑ
−sinϕsinϑ

cosϑ

 . (A.6)

The position vector r is defined as r = r er, where r is the shortest distance from the origin to that point. The

A.3. Orbital Elements 93

derivatives of the base vectors are given as [59]

ėr = der

d t
= ϕ̇cosϑeϕ+ ϑ̇eϑ, (A.7)

ėϕ = deϕ
d t

=−ϕ̇ (cosϑer − sinϑeϑ) , (A.8)

ėϑ =
deϑ
d t

=−ϕ̇sinϑeϕ− ϑ̇er, (A.9)

from which the velocity is found as

V = ṙ = d (r er)

d t
= ṙ er + r ėr (A.10)

= ṙ er + r ϕ̇cosϑeϑ+ r ϑ̇eϑ, (A.11)

and the acceleration as

a = V̇ = r̈ = d

d t

(
ṙ er + r ϕ̇cosϑeϑ+ r ϑ̇eϑ

)
(A.12)

= (
r̈ − r ϑ̇2 − r ϕ̇2 cos2ϑ

)
er (A.13)

+ (
2ṙ ϕ̇cosϑ+ r ϕ̈cosϑ−2r ϕ̇ϑ̇sinθ

)
eϕ (A.14)

+ (
2ṙ ϑ̇+ r ϑ̈+ r ϕ̇2 cosϑsinϑ

)
eϕ. (A.15)

A.3. Orbital Elements
The six classical orbital elements are the semi-major axis a, the eccentricity e, the inclination i , the longitude
of ascending node or right ascension of ascending node (dependent on whether defined w.r.t. the ecliptic or
equator) Ω, the argument of periapsis ω and the time of (last) pericenter passage τ. The elements a, e, and
ω are integration constants originating from integrating the differential equations for the motion of a body
(point mass) in the orbital plane, with respect to a non-rotating reference frame that is fixed to the center
of the other (attracting) body. The time of (last) pericenter passage τ is another integration constant, used
to link time and position in the orbit. The above four mentioned elements completely describe the orbit
within the orbital plane, the last two elements (Ω and i) describe the orientation of the orbital plane relative
to the reference frame. The equations to describe the conic sections originate from Wakker [76], unless stated
otherwise.

The geometry of the problem is shown in Figures A.3 to A.5. The first two figures shown the in-plane geometry
for, respectively, an elliptic and hyperbolic orbit. Figure A.5 shows the 3D geometry, relating the orientation
of the orbital plane to the reference frame, in which the ecliptic is usually taken as the principal plane.

134

Figure B.1: Elliptical Orbit and orbit plane Keplerian Elements.

The eccentricity also equals the norm of the eccentricity vector, which points to the orbit’s
pericenter

e �
�
v2 � µ

r

�
r� pr � vqv
µ

, (B.4)

e � }e} . (B.5)

Inclincation i
The angle between the specific angular momentum vector h � r � v and the reference

frame’s third unit vector ez is called inclination angle, or inclination i

i � arccos

�
h � ez

h

. (B.6)

The inclination angle is constrained to 0 ¤ i ¤ π and orbits with i ¡ 0 are called inclined
orbits. Orbits with 0 ¤ i π{2 are called direct or prograde, and orbits with π{2 i ¤ π are
retrograde. Orbits whose inclination is zero or π are in the reference system plane spanned
by ex and ey. These orbits are called equatorial if the Earth is the central body and ecliptical
if they are Sun-centered. A special orbit type is the one with i � π{2. A spacecraft moving
along this orbit crosses both poles of the central body. That gave this type of orbit the name
polar orbits.

Right ascension of ascending node Ω
The right ascension of ascending node is the angle between the unit vector ex and the vector

from the reference system’s origin to the point on the reference system plane spanned by ex

Figure A.3: Geometry of an elliptical orbit.

Fundamentals of Astrodynamics SS Hyperbolic orbits 191

8. HYPERBOLIC ORBITS

In Section 5.3 it was shown that for e > 1 the orbit of body i about body k is a hyperbola with
body k at focus F (Figure 8.1). It was also shown that the equation for the orbit is

Figure 8.1: Geometry of a hyperbolic orbit.

(8.1)

and that the second branch of the hyperbola (dashed curve in Figure 8.1), which has no physical
meaning for celestial mechanics, is described by

(8.2)

For the important left branch in Figure 8.1, i.e. the branch that represents hyperbolic motion in
a gravity field, the true anomaly is limited to

(8.3)

because distance, r, and semi-latus rectum, p, always have positive values.

8.1. Geometry, energy and angular momentum

For the ellipse, we could easily define the major axis. For a hyperbola, the concept of major axis
is much less obvious. However, to simplify the computations for hyperbolic orbits, we define the
major axis of the hyperbola as the negative value of the distance between the vertices of its two
branches (Figure 8.1). This major axis is assigned a value of 2a, which means that a has a
negative value. This looks strange, but we should keep in mind that the sole purpose of this
definition is to simplify the computation process. With this definition, we can write

Figure A.4: Geometry of a hyperbolic orbit.

94 A. Reference Frames

124 Reference Frames

A.4 Orbital Elements

In astrodynamics a set of six so-called orbital elements is commonly used for describing a
body’s orbital motion in space (see figure A.3).

Figure A.3 Orbital motion of two bodies (mass M and m � M) in three-dimensional space

Three orbital elements describe the body’s motion within the orbital plane. Usually the
following three elements are used for this purpose:

• The semi-major axis a denotes the size of the orbit,

• the eccentricity e denotes the shape of the orbit, and

• the true anomaly f denotes the position on the orbit (the angle of the apsidal line to
the body’s position vector).

The position on the orbit can also be expressed by the true longitude θ, the mean longi-
tude Λ, the mean anomaly M , and the eccentric anomaly E.2

The orientation of the orbital plane with respect to the inertial cartesian reference frame J
is usually defined by the three Euler-angles Ω, ι, and ω:

• Ω denotes the longitude of the ascending node, as measured from the vernal
equinox,

• ι denotes the orbital plane’s angle of inclination to the ecliptic, and

• ω denotes the angle of the apsidal line to the direction of the ascending node, called the
argument of perihelion

Instead of ω the longitude of perihelion $ = Ω+ ω is widely used.

2 see e.g. [70] or [13] for their definition and computation

Figure A.5: Geometry of the orbital elements w.r.t. the ecliptic.

Semi-major axis a

The semi-major axis, together with the eccentricity, determines the size and shape of the conic section. The
distance between the two extreme points of an ellipse is termed the major axis. Half of its value, hence from
the center of the ellipse to one extreme, is called the semi-major axis, as depicted in Figure A.3. Analogous
for hyperbolic orbits, the semi-major axis is the distance between the extreme point of the hyperbola and the
extreme point of a mirrored hyperbola over the intersection of its asymptotes, see Figure A.4. The semi-major
axis of a parabola is undefined. In the case of a closed orbit, the semi-major axis can be determined from the
periapsis and apoapsis radii rp and ra as:

a = ra + rp

2
=

(
2

r
− V 2

µ

)−1

. (A.16)

The semi-major axis, for both hyperbolic and elliptical orbits, can also be determined from the total energy
per unit mass (E) and gravitational parameter (µ) of the main body as:

a =− µ

2E
, (A.17)

in which E is computed as:

E = V 2

2
− µ

r
. (A.18)

Note that the semi-major axis is negative by definition in the case of a hyperbolic section.

Eccentricity e

The eccentricity is the shape parameter; it is zero for circular orbits, between 0 and 1 for elliptical orbits,
equal to 1 for parabolic orbits, and larger than 1 for hyperbolic orbits. For closed orbits, the eccentricity can
be determined from the periapsis and apoapsis as

e = ra + rp

ra − rp
. (A.19)

Alternatively, for all types of conic sections, the eccentricity can be determined from the total energy per unit
mass and the specific angular momentum as:

e =
√

1+ 2E h2

µ2 . (A.20)

Lastly, the eccentricity can also be determined from the magnitude of the eccentricity vector (e = |e|), which
points to the orbit’s pericenter, and is defined as [59]

e =
(
V 2 − µ

r

)
r− (r ·V)V

µ
. (A.21)

A.3. Orbital Elements 95

Argument of Periapsisω

The argument of periapsis denotes the angle of a line passing through the periapsis, measured from the as-
cending node, and is shown in Figure A.5. The argument of periapsis can be computed from a vector n
pointing towards the ascending node and the eccentricity vector as:

ω̃= arccos

(
n ·e

|n| |e|
)

. (A.22)

The domain of the argument of periapsis is (0,2π), hence, the following relations should be taken into ac-
count:

ω=
{

ω̃ (e ·ez ≥ 0)
2π− ω̃ (e ·ez < 0)

. (A.23)

Time of (last) Pericenter Passage τ

The time of last pericenter passage is used to link time and position, and can be computed –for elliptical
orbits– as:

t −τ=
√

a3

µ

[
2arctan

(√
1−e

1+e
tan

θ

2

)
−e

√
1−e2 sinθ

1+e cosθ

]
, (A.24)

where θ, also referred to as f , is the true anomaly; the angle between the ascending node vector n and current
position vector r measured over the orbital plane (see Figure A.5), and is determined as:

θ = arccos

(
n · r

|n| |r|
)

. (A.25)

Due to the complicated form of equation A.24, the time of last pericenter passage if often substituted by the
mean anomaly (M). The mean anomaly is the angle between the fictitious orbit point at which an object
would be if it moved with the mean motion

n = 2π

T
=

√
µ

a3 (Elliptical orbits), (A.26)

n̄ =
√

µ

−a3 (Hyperbolic orbits), (A.27)

where T is the orbital period; the time needed to complete a full revolution. The mean anomaly (see Figure
A.3) is then defined as:

M = n (t −τ) (Elliptical orbits), (A.28)

M̄ = n̄ (t −τ) (Hyperbolic orbits), (A.29)

where t is the current time and τ the time of (last) pericenter passage.

From the mean anomaly, the true anomaly can be determined. Although the true anomaly does not link time
and position, it does fully determine the location of the S/C in its orbit, and hence is often used when time
is not of the essence. In order to determine the true anomaly, the eccentric anomaly (E) or the hyperbolic
anomaly (F) –depending on the type of orbit– are required, see Figure A.3. The eccentric and hyperbolic
anomalies can be computed iteratively from M as:

M = E −e sinE (Elliptical orbits), (A.30)

M̄ = sinhF −F (Hyperbolic orbits). (A.31)

The true anomaly is then given by:

θ =


√
1+e
1−e tan E

2 (e < 1)√
e+1
e−1 tanh F

2 (e > 1)
. (A.32)

96 A. Reference Frames

Inclination i

The inclination (see Figure A.5) is the angle between the specific angular momentum vector h = r×V and the
reference frame’s third vector ez, such that

i = arccos

(
h ·ez

h

)
. (A.33)

Hence, the inclination defines the angle between the orbital plane and reference frame, rotated over the x-
axis. The inclination is constrained between 0 and π. Orbits with an inclination smaller than π/2 are called
prograde, orbits with i >π/2 are called retrogade orbits.

Right Ascension of the Ascending NodeΩ

The right ascension, or longitude, of the ascending node is the angle between the unit vector ez and the
location where the orbit crosses the principal frame from southward direction. Due to its definition,Ω is only
defined for inclined orbits. The right ascension of the ascending node can be determined using the angular
momentum vector and node vector:

Ω̃= arccos

(
ex ·n

|n|
)

, (A.34)

then,

Ω=
{

Ω̃
(
n ·ey ≥ 0

)
2π− Ω̃ (

n ·ey < 0
) . (A.35)

B
Results Dawn Simulations

2

y [AU]

0-0.4
-0.2

0
0.2

z
[A

U
] 0.4

-3

x [AU]

-2 -2-1 0 1 2 3

Burn
Coast

Mars GA

Figure B.1: Three-dimensional view of the Dawn trajectory as computed by InTrance in the heliocentric frame. Green arrows indicate
thrust vectors.

97

98 B. Results Dawn Simulations

-1.378
-1.376

-0.042

-0.04

-0.038

-0.036

-1.374
-1.372

-1.37
-1.368

-1.366

z
[A

U
]

-0.034

0.375
0.38

y [AU] x [AU]

0.385
0.39

Mars' velocity
at exit

Initial velocity
2nd phase

" VEA,b

Exit position
analytical GA-model

Figure B.2: Three-dimensional view of the initial state of the second phase in the heliocentric frame of the Dawn trajectory computed
with InTrance.

2

0

y [AU]

-0.4
-0.2

0
0.2

z
[A

U
] 0.4

-3

x [AU]

-2-2 -1 0 1 2 3

InTrance
Dawn

Mars GA

Figure B.3: Three-dimensional view of the heliocentric Dawn trajectory as computed by InTrance (red) compared to Dawn’s actual
trajectory generated through SPICE (blue).

99

2

0

y [AU]

-0.5

0

z
[A

U
] 0.5

-3

x [AU]

-2 -2-1 0 1 2 3

Mars GA
Direct

Mars GA

Figure B.4: Three-dimensional view of the heliocentric Dawn trajectory as computed by InTrance with a Mars GA (red) and without a
GA (blue).

2

0

y [AU]

-0.4
-0.2

0
0.2

z
[A

U
] 0.4

-3

x [AU]

-2 -2-1 0 1 2 3

Patched
Single opt

Mars GA

Figure B.5: Three-dimensional view of the heliocentric Dawn trajectory as computed by InTrance, both the concatenated results of the
two separate simulations (blue) and the single optimisation of the complete missions (red).

C
InTrance Input Files

This appendix contains the InTrance input files used in generating the main results of Chapter 7. The input
files for the low-thrust New Horizons adaptation with a Jupiter GA are given in Section C.1, followed by the
input files for the Dawn re-calculation with a Mars GA for the optimisation from Earth to Vesta in Section C.2,
and for the optimisation from Vesta to Ceres in Section C.3. All simulations are started by opening a com-
mand window in the directory where the executable of InTrance is located and then entering the command
intrance.exe NAME.inp, where NAME should be substituted by the filename of the .inp file.

Each simulation is defined by a set of three input files per phase plus two overarching ones. The phase spe-
cific input files are; (1) the NC configuration files, the (2) spacecraft configuration file, and (3) the simulation
configuration file. The first is used to define the size and activation function of the ANN, the second defines
the throttle and S/C characteristics, and the third configuration file describes the mission defining simula-
tion parameters such as the launch/arrival dates and target body and type, but also the integrator settings
and internal representation of the EoM of the respective phase. The overarching input files contain parame-
ters which govern all phases and are (1) the configuration parameters input file and (2) the EA parameters
configuration file. The former details whether a simulation is a cold- or warmstart (see Section 4.4.1) and
the directory of the other input files. The latter describes the EA parameters such as the population and hy-
percube size during both the SSS and the following optimisation run, the convergence criteria and mutation
rate.

C.1. Low-Thrust New Horizons with Jupiter Gravity Assist

C.1.1. General Input Files

Configuration Parameters – coldstart.inp

COMMAND = optimize
COLDSTART = yes
NO_OF_EVAL_OBJECTS = 4
SIM_PARAM_FILE_1 = p1.sim
SIM_PARAM_FILE_2 = p2.sim
EA_PARAM_FILE = coldstart.eap
SIM_DATA_FILE = coldstart.csv

TRAJ_DATA_FILE = coldstart.dat
GESOP_FILE = coldstart.gesop.txt
VRML_FILE = coldstart.wrl
CTRL_FILE = coldstart.ctr
BEST_CHROM_FILE = coldstart.eac
REPORT_FILE = coldstart.rep

Evolutionary Algorithm Parameters – coldstart.eap

SEARCH_SPACE_HYPERCUBE_SIZE = 1.0
HYPERCUBE_START_SIZE = 2.0E-1
HYPERCUBE_SHRINKING_FACTOR = 90E-2
POPULATION_SIZE = 30
POPULATION_SIZE_SSS = 50
SEARCH_SCAN_EPOCHS = 30
FITNESS_FUNCTION_TYPE = J_AND
CHROMOSOME_MUTATION_PROBABILITY = 0.9

GENOM_MUTATION_PROBABILITY = 0.05
HYPERCUBE_UPPER_LIMIT = 1.0E-4
IL_POP_CONV_FBC_MET = 1.0E-6
IL_POP_CONV_FBC_NOT_MET = 1.0E-5
IL_EA_CONV_FBC_MET = 1.0E-5
IL_EA_CONV_FBC_NOT_MET = 1.0E-5

101

102 C. InTrance Input Files

C.1.2. Phase 1 Input Files

Neurocontroller Parameters – p1.ncp

NC_OUTPUT = direct
TRANSFER_FUNCTION = sigmoid
HIDDEN_LAYERS = 1

NEURONS_IN_HIDDEN_LAYER1 = 35

Spacecraft Parameters – p1.scp

SC_TYPE = NEP
SC_NAME = "New Horizons"
PAYLOAD_MASS = 565kg
MIN_PROP_MASS = 10kg
MAX_PROP_MASS = 22kg

THROTTLE_TYPE = bang -bang
MAX_THRUST = 40E-3
SPECIFIC_IMPULSE = 3000s
NEP_DECAY_CONSTANT = -2.196450873E-5

Simulation Parameters – p1.sim

INTEGRATION_INTERVAL = 500day
FLIGHT_TIME_MIN = 250day
INTEGRATION_STEPS = 1500
MIN_OUTPUT_POINTS = 100
DYN_INTEGRATION_INTERVAL = yes
MODIFY_INIT_PARAMETERS = yes
MODIFY_LAUNCH_DATE = no
MODIFY_INIT_PROP_MASS = no
MODIFY_INIT_VINF = yes
USE_DSSC = yes
DISTURBING_BODIES = disturbance.sim
DSSC_STEP_ANGLE_CONTROL = yes
DSSC_MAX_STEP_ANGLE = 1.0 DEG
DSSC_MAX_STEP_SIZE = 10DAY
DSSC_MIN_STEP_SIZE = 0.5min
SIM_START_TIME_MIN = 53740
SIM_START_TIME_MAX = 53760
ARRIVAL_DATE_MIN = 54120
ARRIVAL_DATE_MAX = 54140
INITIAL_STATE = body
INITIAL_BODY_NAME = EARTH
INITIAL_CENTRAL_BODY = sun
INITIAL_VINF_MIN = 5km/s
INITIAL_VINF_AZIMUTH_MIN = -10deg
INITIAL_VINF_AZIMUTH_MAX = 10deg
INITIAL_VINF_ELEV_MIN = 0deg
INITIAL_VINF_ELEV_MAX = 10deg
LAUNCHER_MAX_C3_CAPACITY = 7200
LAUNCHER_C3_EXPONENT = 0.01725
ANALYTIC_GRAVITY_ASSIST = true
TARGET_BODY_NAME = Jupiter
MIN_SOLAR_DISTANCE = 0.2AU
INTEGRATOR = RK54F
MAX_RELATIVE_ERROR = 1.0E-6
MAX_ABSOLUTE_ERROR = 1.0E-6
USE_ITGR_STOPPER = no
SC_CONF = p1.scp

NAV_TYPE = ANN
NAV_ANN_CONF = p1.ncp
TARGET_STATE = renewed gravity assist
OPTIMIZATION_GOAL = minimum transfer time
STEERING_DYN_UNIT_CALC = yes
STEERING_USE_RANGE = yes
STEERING_USE_RANGE_RATE = yes
STEERING_USE_ACC_THRUST_MAX = yes
STEERING_USE_ACC_THRUST_MAX_DRY = yes
STEERING_USE_STEP_SIZE = yes
STEERING_USE_TIME_UNTIL_PERI_SC = yes
STEERING_USE_TIME_UNTIL_PERI_TGT = yes
STEERING_USE_ABS_CART_POS_X = yes
STEERING_USE_ABS_CART_POS_Y = yes
STEERING_USE_ABS_CART_POS_Z = yes
STEERING_USE_ABS_CART_VEL_X = yes
STEERING_USE_ABS_CART_VEL_Y = yes
STEERING_USE_ABS_CART_VEL_Z = yes
STEERING_USE_ABS_POLAR_POS_R = yes
STEERING_USE_ABS_POLAR_POS_AZI = yes
STEERING_USE_ABS_POLAR_POS_ELE = yes
STEERING_USE_ABS_POLAR_VEL_R = yes
STEERING_USE_ABS_POLAR_VEL_AZI = yes
STEERING_USE_ABS_POLAR_VEL_ELE = yes
STEERING_USE_TGT_CART_POS_X = no
STEERING_USE_TGT_CART_POS_Y = no
STEERING_USE_TGT_CART_POS_Z = no
STEERING_USE_TGT_CART_VEL_X = no
STEERING_USE_TGT_CART_VEL_Y = no
STEERING_USE_TGT_CART_VEL_Z = no
STEERING_USE_TGT_CART_POS_REL_X = no
STEERING_USE_TGT_CART_POS_REL_Y = no
STEERING_USE_TGT_CART_POS_REL_Z = no
STEERING_USE_TGT_CART_VEL_REL_X = no
STEERING_USE_TGT_CART_VEL_REL_Y = no
STEERING_USE_TGT_CART_VEL_REL_Z = no

C.1.3. Phase 2 Input Files

Neurocontroller Parameters – p2.ncp

NC_OUTPUT = direct
TRANSFER_FUNCTION = sigmoid
HIDDEN_LAYERS = 1

NEURONS_IN_HIDDEN_LAYER1 = 35

Spacecraft Parameters – p2.scp

SC_TYPE = NEP
SC_NAME = "New Horizons"
PAYLOAD_MASS = 565kg
MIN_PROP_MASS = 5kg
MAX_PROP_MASS = 13kg

THROTTLE_TYPE = bang -bang
MAX_THRUST = 40E-3
SPECIFIC_IMPULSE = 3000s
NEP_DECAY_CONSTANT = -2.196450873E-5

C.2. Dawn with Mars Gravity Assist — Earth to Vesta 103

Simulation Parameters – p2.sim

INDEPENDENT_FLIGHT_PHASE = no
TRANSITION_THRESHOLD_MASS_PROP = 0.1
SIM_START_TIME_MIN = 54178
SIM_START_TIME_MAX = 54198
MET_MAX = 10JYR
INTEGRATION_INTERVAL = 3000 day
FLIGHT_TIME_MIN = 2000
INTEGRATION_STEPS = 1000
MIN_OUTPUT_POINTS = 200
DYN_INTEGRATION_INTERVAL = yes
MODIFY_INIT_PARAMETERS = no
MODIFY_LAUNCH_DATE = no
MODIFY_INIT_PROP_MASS = no
DISTURBING_BODIES = disturbance.sim
USE_DSSC = yes
INITIAL_VINF_MIN = 4
INITIAL_VINF_MAX = 6.5
INITIAL_VINF_AZIMUTH_MIN = 100deg
INITIAL_VINF_AZIMUTH_MAX = 120deg
INITIAL_VINF_ELEV_MIN = 0deg
INITIAL_VINF_ELEV_MAX = 15.0 deg
INITIAL_POS_AZIMUTH_MIN_GA = 180deg
INITIAL_POS_AZIMUTH_MAX_GA = 220deg
INITIAL_POS_ELEV_MIN_GA = -8deg
INITIAL_POS_ELEV_MAX_GA = 8.0deg
MODIFY_INIT_LAUNCH_POS_GA = no
TRANSITION_THRESHOLD_STATE = 0.01
DSSC_STEP_DISTANCE_CONTROL = YES
DSSC_MAX_STEP_DISTANCE = 0.1AU
DSSC_STEP_ANGLE_CONTROL = YES
DSSC_MAX_STEP_ANGLE = 1.0 deg
DSSC_MAX_STEP_SIZE = 10DAY
DSSC_MIN_STEP_SIZE = 10min
INITIAL_STATE = body
INITIAL_BODY_NAME = Jupiter
ARRIVAL_DATE_MIN = 56800
ARRIVAL_DATE_MAX = 56960
TARGET_STATE = body flyby
TARGET_BODY_NAME = Pluto

TGT_PROX_STATE_THRESHOLD = 0.1
TGT_PROX_STATE_THRESHOLD_FINAL = 0.05
TARGET_DIST_MAX_FINAL = 1E7km
TARGET_DIST_MAX_INIT = 1E7km
TARGET_DIST_MAX_SHRINK = 0.8
TARGET_DIST_MAX_DECREASE = 1.0 E5km
TARGET_DIST_MAX_REDUCTION_USE_MAX = no
OPTIMIZATION_GOAL = minimum transfer time
ACCURACY_FITNESS_FRACTION = 0.01
MIN_SOLAR_DISTANCE = 0.2AU
INTEGRATOR = RK54F
MAX_RELATIVE_ERROR = 1.0E-6
MAX_ABSOLUTE_ERROR = 1.0E-6
USE_ITGR_STOPPER = yes
SC_CONF = p2.scp
NAV_TYPE = ANN
NAV_ANN_CONF = p2.ncp
STEERING_DYN_UNIT_CALC = yes
STEERING_USE_RANGE = false
STEERING_USE_RANGE_RATE = false
STEERING_USE_ACC_THRUST_MAX = yes
STEERING_USE_ACC_THRUST_MAX_DRY = yes
STEERING_USE_STEP_SIZE = yes
STEERING_USE_TIME_UNTIL_PERI_SC = yes
STEERING_USE_TIME_UNTIL_PERI_TGT = no
STEERING_USE_ABS_CART_POS_X = yes
STEERING_USE_ABS_CART_POS_Y = yes
STEERING_USE_ABS_CART_POS_Z = yes
STEERING_USE_ABS_CART_VEL_X = yes
STEERING_USE_ABS_CART_VEL_Y = yes
STEERING_USE_ABS_CART_VEL_Z = yes
STEERING_USE_ABS_POLAR_POS_R = yes
STEERING_USE_ABS_POLAR_POS_AZI = yes
STEERING_USE_ABS_POLAR_POS_ELE = yes
STEERING_USE_ABS_POLAR_VEL_R = yes
STEERING_USE_ABS_POLAR_VEL_AZI = yes
STEERING_USE_ABS_POLAR_VEL_ELE = yes

C.2. Dawn with Mars Gravity Assist — Earth to Vesta

C.2.1. General Input Files

Configuration Parameters – coldstart.inp

COMMAND = optimize
COLDSTART = yes
NO_OF_EVAL_OBJECTS = 4
SIM_PARAM_FILE_1 = Mars.sim
SIM_PARAM_FILE_2 = Vesta.sim
EA_PARAM_FILE = coldstart.eap
SIM_DATA_FILE = coldstart.csv
TRAJ_DATA_FILE = coldstart.dat

GESOP_FILE = coldstart.gesop.txt
VRML_FILE = coldstart.wrl
CTRL_FILE = coldstart.ctr
BEST_CHROM_FILE = coldstart.eac
REPORT_FILE = coldstart.rep
ASTEROID_DATA_FILE1 = c:\ ELEMENTS.NUMBR

Evolutionary Algorithm Parameters – coldstart.eap

SEARCH_SPACE_HYPERCUBE_SIZE = 1.0
HYPERCUBE_START_SIZE = 2.0E-1
HYPERCUBE_SHRINKING_FACTOR = 90E-2
POPULATION_SIZE = 50
POPULATION_SIZE_SSS = 50
SEARCH_SCAN_EPOCHS = 30
FITNESS_FUNCTION_TYPE = J_AND
CHROMOSOME_MUTATION_PROBABILITY = 0.9

GENOM_MUTATION_PROBABILITY = 0.05
HYPERCUBE_UPPER_LIMIT = 1.0E-4
IL_POP_CONV_FBC_MET = 1.0E-6
IL_POP_CONV_FBC_NOT_MET = 1.0E-5
IL_EA_CONV_FBC_MET = 1.0E-5
IL_EA_CONV_FBC_NOT_MET = 1.0E-5

104 C. InTrance Input Files

C.2.2. Phase 1 Input Files

Neurocontroller Parameters – Mars.ncp

NC_OUTPUT = direct
TRANSFER_FUNCTION = sigmoid
HIDDEN_LAYERS = 1

NEURONS_IN_HIDDEN_LAYER1 = 40

Spacecraft Parameters – Mars.scp

SC_TYPE = NSTAR
SC_NAME = "Dawn"
PAYLOAD_MASS = 817kg
MIN_PROP_MASS = 100kg
MAX_PROP_MASS = 160kg

SOLAR_ARRAY_CHAR_POWER = 9.8kW
POWER_VARIATION_EXPONENT = 1.7
N_THRUSTERS = 1
THROTTLE_TYPE = variable

Simulation Parameters – Mars.sim

INTEGRATION_INTERVAL = 800day
FLIGHT_TIME_MIN = 400day
INTEGRATION_STEPS = 400
MIN_OUTPUT_POINTS = 50
DYN_INTEGRATION_INTERVAL = yes
MODIFY_INIT_PARAMETERS = yes
MODIFY_LAUNCH_DATE = no
MODIFY_INIT_PROP_MASS = no
MODIFY_INIT_VINF = yes
USE_DSSC = yes
DISTURBING_BODIES = disturbance.sim
DSSC_STEP_ANGLE_CONTROL = yes
DSSC_MAX_STEP_ANGLE = 6.0 DEG
DSSC_MAX_STEP_SIZE = 60DAY
DSSC_MIN_STEP_SIZE = 1day
DSSC_STEP_DISTANCE_CONTROL = NO
DSSC_MAX_STEP_DISTANCE = 0.50AU
DSSC_APPROACH_CONTROL = yes
DSSC_APPROACH_STEP_SIZE_FACTOR = 0.0
SIM_START_TIME_MIN = 54365
SIM_START_TIME_MAX = 54375
ARRIVAL_DATE_MIN = 54854
ARRIVAL_DATE_MAX = 54874
INITIAL_STATE = body
INITIAL_BODY_NAME = EARTH
INITIAL_VINF_MIN = 3.362km/s
INITIAL_VINF_MAX = 3.362km/s
INITIAL_VINF_AZIMUTH_MIN = -20deg
INITIAL_VINF_AZIMUTH_MAX = 20deg
INITIAL_VINF_ELEV_MIN = -206deg
INITIAL_VINF_ELEV_MAX = 40deg
ANALYTIC_GRAVITY_ASSIST = true
TARGET_BODY_NAME = Mars
MIN_SOLAR_DISTANCE = 0.2AU
INTEGRATOR = RK54F
MAX_RELATIVE_ERROR = 1.0E-6
MAX_ABSOLUTE_ERROR = 1.0E-6
USE_ITGR_STOPPER = yes

SC_CONF = Mars.scp
NAV_TYPE = ANN
NAV_ANN_CONF = Mars.ncp
TARGET_STATE = renewed gravity assist
OPTIMIZATION_GOAL = minimum transfer time
STEERING_DYN_UNIT_CALC = yes
STEERING_USE_RANGE = yes
STEERING_USE_RANGE_RATE = yes
STEERING_USE_ACC_THRUST_MAX = no
STEERING_USE_ACC_THRUST_MAX_DRY = no
STEERING_USE_STEP_SIZE = no
STEERING_USE_TIME_UNTIL_PERI_SC = no
STEERING_USE_TIME_UNTIL_PERI_TGT = no
STEERING_USE_ABS_CART_POS_X = yes
STEERING_USE_ABS_CART_POS_Y = yes
STEERING_USE_ABS_CART_POS_Z = yes
STEERING_USE_ABS_CART_VEL_X = yes
STEERING_USE_ABS_CART_VEL_Y = yes
STEERING_USE_ABS_CART_VEL_Z = yes
STEERING_USE_ABS_POLAR_POS_R = no
STEERING_USE_ABS_POLAR_POS_AZI = no
STEERING_USE_ABS_POLAR_POS_ELE = no
STEERING_USE_ABS_POLAR_VEL_R = no
STEERING_USE_ABS_POLAR_VEL_AZI = no
STEERING_USE_ABS_POLAR_VEL_ELE = no
STEERING_USE_TGT_CART_POS_X = no
STEERING_USE_TGT_CART_POS_Y = no
STEERING_USE_TGT_CART_POS_Z = no
STEERING_USE_TGT_CART_VEL_X = no
STEERING_USE_TGT_CART_VEL_Y = no
STEERING_USE_TGT_CART_VEL_Z = no
STEERING_USE_TGT_CART_POS_REL_X = yes
STEERING_USE_TGT_CART_POS_REL_Y = yes
STEERING_USE_TGT_CART_POS_REL_Z = yes
STEERING_USE_TGT_CART_VEL_REL_X = yes
STEERING_USE_TGT_CART_VEL_REL_Y = yes
STEERING_USE_TGT_CART_VEL_REL_Z = yes

C.2.3. Phase 2 Input Files

Neurocontroller Parameters – Vesta.ncp

NC_OUTPUT = direct
TRANSFER_FUNCTION = sigmoid
HIDDEN_LAYERS = 1

NEURONS_IN_HIDDEN_LAYER1 = 35

Spacecraft Parameters – Vesta.scp

SC_TYPE = NSTAR
SC_NAME = "Dawn"
PAYLOAD_MASS = 817kg
MIN_PROP_MASS = 100kg
MAX_PROP_MASS = 160kg

SOLAR_ARRAY_CHAR_POWER = 9.8kW
POWER_VARIATION_EXPONENT = 1.7
N_THRUSTERS = 1
THROTTLE_TYPE = variable

C.3. Dawn with Mars Gravity Assist — Vesta to Ceres 105

Simulation Parameters – Vesta.sim

INDEPENDENT_FLIGHT_PHASE = no
TRANSITION_THRESHOLD_MASS_PROP = 0.1
INTEGRATION_INTERVAL = 1100 day
FLIGHT_TIME_MIN = 600day
MET_MAX = 4.5 JYR
INTEGRATION_STEPS = 400
MIN_OUTPUT_POINTS = 50
DYN_INTEGRATION_INTERVAL = yes
MODIFY_INIT_PARAMETERS = yes
MODIFY_LAUNCH_DATE = no
MODIFY_INIT_PROP_MASS = no
MODIFY_INIT_VINF = yes
INITIAL_VINF_MIN = 2
INITIAL_VINF_MAX = 3
INITIAL_VINF_AZIMUTH_MIN = -15deg
INITIAL_VINF_AZIMUTH_MAX = -7.5deg
INITIAL_VINF_ELEV_MIN = -60deg
INITIAL_VINF_ELEV_MAX = -40deg
INITIAL_POS_AZIMUTH_MIN_GA = -20deg
INITIAL_POS_AZIMUTH_MAX_GA = 0deg
INITIAL_POS_ELEV_MIN_GA = -70deg
INITIAL_POS_ELEV_MAX_GA = -40deg
MODIFY_INIT_LAUNCH_POS_GA = yes
TRANSITION_THRESHOLD_STATE = 0.1
USE_DSSC = no
DSSC_STEP_ANGLE_CONTROL = yes
DSSC_MAX_STEP_ANGLE = 6DEG
DSSC_MAX_STEP_SIZE = 60DAY
DSSC_MIN_STEP_SIZE = 1DAY
DSSC_STEP_DISTANCE_CONTROL = NO
DSSC_MAX_STEP_DISTANCE = 0.50AU
DSSC_APPROACH_CONTROL = yes
DSSC_APPROACH_STEP_SIZE_FACTOR = 0.0
SIM_START_TIME_MIN = 54859
SIM_START_TIME_MAX = 54879
ARRIVAL_DATE_MIN = 55700
ARRIVAL_DATE_MAX = 55850
INITIAL_STATE = body
INITIAL_BODY_NAME = MARS
TARGET_STATE = body rendezvous
TARGET_BODY_NAME = Vesta
TARGET_DIST_MAX_FINAL = 1.5 E6km
TARGET_DIST_MAX_INIT = 1.5 E6km
TARGET_DIST_MAX_SHRINK = 0.95
TARGET_DIST_MAX_DECREASE = 1.0 E4km
TARGET_DIST_MAX_REDUCTION_USE_MAX = no
TARGET_RELVEL_MAX_FINAL = 1000m/s

TARGET_RELVEL_MAX_INIT = 1000m/s
TARGET_RELVEL_MAX_SHRINK = 0.95
TARGET_RELVEL_MAX_DECREASE = 1m/s
TARGET_RELVEL_MAX_REDUCTION_USE_MAX = no
OPTIMIZATION_GOAL = minimum transfer time
ACCURACY_FITNESS_FRACTION = 0.5
MIN_SOLAR_DISTANCE = 0.2AU
INTEGRATOR = RK54F
MAX_RELATIVE_ERROR = 1.0E-8
MAX_ABSOLUTE_ERROR = 1.0E-8
USE_ITGR_STOPPER = yes
SC_CONF = Vesta.scp
NAV_TYPE = ANN
NAV_ANN_CONF = Vesta.ncp
STEERING_DYN_UNIT_CALC = yes
STEERING_USE_RANGE = yes
STEERING_USE_RANGE_RATE = yes
STEERING_USE_ACC_THRUST_MAX = no
STEERING_USE_ACC_THRUST_MAX_DRY = no
STEERING_USE_STEP_SIZE = no
STEERING_USE_TIME_UNTIL_PERI_SC = no
STEERING_USE_TIME_UNTIL_PERI_TGT = no
STEERING_USE_ABS_CART_POS_X = yes
STEERING_USE_ABS_CART_POS_Y = yes
STEERING_USE_ABS_CART_POS_Z = yes
STEERING_USE_ABS_CART_VEL_X = yes
STEERING_USE_ABS_CART_VEL_Y = yes
STEERING_USE_ABS_CART_VEL_Z = yes
STEERING_USE_ABS_POLAR_POS_R = no
STEERING_USE_ABS_POLAR_POS_AZI = no
STEERING_USE_ABS_POLAR_POS_ELE = no
STEERING_USE_ABS_POLAR_VEL_R = no
STEERING_USE_ABS_POLAR_VEL_AZI = no
STEERING_USE_ABS_POLAR_VEL_ELE = no
STEERING_USE_TGT_CART_POS_X = no
STEERING_USE_TGT_CART_POS_Y = no
STEERING_USE_TGT_CART_POS_Z = no
STEERING_USE_TGT_CART_VEL_X = no
STEERING_USE_TGT_CART_VEL_Y = no
STEERING_USE_TGT_CART_VEL_Z = no
STEERING_USE_TGT_CART_POS_REL_X = yes
STEERING_USE_TGT_CART_POS_REL_Y = yes
STEERING_USE_TGT_CART_POS_REL_Z = yes
STEERING_USE_TGT_CART_VEL_REL_X = yes
STEERING_USE_TGT_CART_VEL_REL_Y = yes
STEERING_USE_TGT_CART_VEL_REL_Z = yes

C.3. Dawn with Mars Gravity Assist — Vesta to Ceres

C.3.1. General Input Files

Configuration Parameters – coldstart.inp

COMMAND = optimize
COLDSTART = yes
NO_OF_EVAL_OBJECTS = 4
SIM_PARAM_FILE_1 = Ceres.sim
EA_PARAM_FILE = coldstart.eap
SIM_DATA_FILE = coldstart.csv
TRAJ_DATA_FILE = coldstart.dat

GESOP_FILE = coldstart.gesop.txt
VRML_FILE = coldstart.wrl
CTRL_FILE = coldstart.ctr
BEST_CHROM_FILE = coldstart.eac
REPORT_FILE = coldstart.rep

Evolutionary Algorithm Parameters – coldstart.eap

SEARCH_SPACE_HYPERCUBE_SIZE = 1.0
HYPERCUBE_START_SIZE = 1.0
HYPERCUBE_SHRINKING_FACTOR = 90E-2
POPULATION_SIZE = 50
POPULATION_SIZE_SSS = 50
SEARCH_SCAN_EPOCHS = 20
FITNESS_FUNCTION_TYPE = J_AND
CHROMOSOME_MUTATION_PROBABILITY = 0.9

GENOM_MUTATION_PROBABILITY = 0.05
HYPERCUBE_UPPER_LIMIT = 1.0E-4
IL_POP_CONV_FBC_MET = 1.0E-6
IL_POP_CONV_FBC_NOT_MET = 1.0E-5
IL_EA_CONV_FBC_MET = 1.0E-5
IL_EA_CONV_FBC_NOT_MET = 1.0E-5

106 C. InTrance Input Files

C.3.2. Phase 1 Input Files

Neurocontroller Parameters – Ceres.ncp

NC_OUTPUT = direct
TRANSFER_FUNCTION = sigmoid
HIDDEN_LAYERS = 1

NEURONS_IN_HIDDEN_LAYER1 = 35

Spacecraft Parameters – Ceres.scp

SC_TYPE = NSTAR
SC_NAME = "Dawn"
PAYLOAD_MASS = 747kg
MIN_PROP_MASS = 50kg
MAX_PROP_MASS = 100kg

SOLAR_ARRAY_CHAR_POWER = 9.8kW
POWER_VARIATION_EXPONENT = 1.7
N_THRUSTERS = 1
THROTTLE_TYPE = variable

Simulation Parameters – Ceres.sim

INDEPENDENT_FLIGHT_PHASE = yes
TRANSITION_THRESHOLD_MASS_PROP = 0.1
SIM_START_TIME_MIN = 55950
SIM_START_TIME_MAX = 56000
MET_MAX = 3.5 JYR
INTEGRATION_INTERVAL = 1100 day
FLIGHT_TIME_MIN = 800
INTEGRATION_STEPS = 110
MIN_OUTPUT_POINTS = 1
DYN_INTEGRATION_INTERVAL = yes
MODIFY_INIT_PARAMETERS = yes
MODIFY_LAUNCH_DATE = no
MODIFY_INIT_PROP_MASS = no
USE_DSSC = no
DSSC_STEP_ANGLE_CONTROL = YES
DSSC_MAX_STEP_ANGLE = 5DEG
DSSC_MAX_STEP_SIZE = 10DAY
DSSC_MIN_STEP_SIZE = 1DAY
DSSC_STEP_DISTANCE_CONTROL = NO
DSSC_MAX_STEP_DISTANCE = 0.50AU
DSSC_APPROACH_CONTROL = yes
DSSC_APPROACH_STEP_SIZE_FACTOR = 0.0
DWELL_TIME_MIN = 100 day
DWELL_TIME_MAX = 1.0 JYR
INITIAL_STATE = body
INITIAL_BODY_NAME = Vesta
ARRIVAL_DATE_MIN = 56900
ARRIVAL_DATE_MAX = 56980
TARGET_STATE = body rendezvous
TARGET_BODY_NAME = Ceres
TGT_PROX_STATE_THRESHOLD = 0.005
TGT_PROX_STATE_THRESHOLD_FINAL = 0.001
TARGET_DIST_MAX_FINAL = 1.0 E6km
TARGET_DIST_MAX_INIT = 1.0 E6km
TARGET_DIST_MAX_SHRINK = 0.8
TARGET_DIST_MAX_DECREASE = 1.0 E5km
TARGET_DIST_MAX_REDUCTION_USE_MAX = no
TARGET_RELVEL_MAX_FINAL = 500m/s
TARGET_RELVEL_MAX_INIT = 500m/s
TARGET_RELVEL_MAX_SHRINK = 0.9
TARGET_RELVEL_MAX_DECREASE = 1m/s
TARGET_RELVEL_MAX_REDUCTION_USE_MAX = no
ACCURACY_FITNESS_FRACTION = 0.01

MIN_SOLAR_DISTANCE = 0.2AU
INTEGRATOR = RK54F
MAX_RELATIVE_ERROR = 1.0E-6
MAX_ABSOLUTE_ERROR = 1.0E-6
USE_ITGR_STOPPER = yes
SC_CONF = Ceres.scp
NAV_TYPE = ANN
NAV_ANN_CONF = Ceres.ncp
OPTIMIZATION_GOAL = maximum dwell time
STEERING_DYN_UNIT_CALC = yes
STEERING_USE_RANGE = yes
STEERING_USE_RANGE_RATE = yes
STEERING_USE_ACC_THRUST_MAX = no
STEERING_USE_ACC_THRUST_MAX_DRY = no
STEERING_USE_STEP_SIZE = no
STEERING_USE_TIME_UNTIL_PERI_SC = no
STEERING_USE_TIME_UNTIL_PERI_TGT = no
STEERING_USE_ABS_CART_POS_X = yes
STEERING_USE_ABS_CART_POS_Y = yes
STEERING_USE_ABS_CART_POS_Z = yes
STEERING_USE_ABS_CART_VEL_X = yes
STEERING_USE_ABS_CART_VEL_Y = yes
STEERING_USE_ABS_CART_VEL_Z = yes
STEERING_USE_ABS_POLAR_POS_R = no
STEERING_USE_ABS_POLAR_POS_AZI = no
STEERING_USE_ABS_POLAR_POS_ELE = no
STEERING_USE_ABS_POLAR_VEL_R = no
STEERING_USE_ABS_POLAR_VEL_AZI = no
STEERING_USE_ABS_POLAR_VEL_ELE = no
STEERING_USE_TGT_CART_POS_X = no
STEERING_USE_TGT_CART_POS_Y = no
STEERING_USE_TGT_CART_POS_Z = no
STEERING_USE_TGT_CART_VEL_X = no
STEERING_USE_TGT_CART_VEL_Y = no
STEERING_USE_TGT_CART_VEL_Z = no
STEERING_USE_TGT_CART_POS_REL_X = yes
STEERING_USE_TGT_CART_POS_REL_Y = yes
STEERING_USE_TGT_CART_POS_REL_Z = yes
STEERING_USE_TGT_CART_VEL_REL_X = yes
STEERING_USE_TGT_CART_VEL_REL_Y = yes
STEERING_USE_TGT_CART_VEL_REL_Z = yes

Bibliography

[1] C. Acton, N. Bachman, J. Diaz Del Rio, B. Semenov, E. Wright, and Y. Yamamoto. SPICE: A Means for De-
termining Observation Geometry. In European Planetary Science Congress, volume 6, EPSC–DPS2011–
32, 2011.

[2] K. Alemany and R.D Braun. Survey of global optimization methods for low-thrust, multiple asteroid
tour missions. In AAS/AIAA 17th Space Flight Mechanics Meetings Jan. 28 – Feb. 1, 2007, Sezonda AZ.
AAS/AIAA, 2007.

[3] T. Bäck. Evolutionary algorithms. SIGBIO Newsl., 12(2):26–31, June 1992. doi: 10.1145/130686.130691.

[4] T. Bäck. Selective pressure in evolutionary algorithms: a characterization of selection mechanisms. In
Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Compu-
tational Intelligence, Orlando, Florida, USA., ICEC-94, 1994. ISBN 0-7803-1899-4. doi: 10.1109/ICEC.
1994.350042.

[5] E. Barrabés, G. Gómez, and J. Rodríguez-Canabal. Lecture notes: Advanced Topics in Astrodynamics,
Gravitational Assisted Trajectories. Institut d’Estudis Espacials de Catalunya, Summer 2004. URL http:

//www.ieec.cat/hosted/web-astro04/index.html.

[6] V. Becerra. Solving complex optimal control problems at no cost with PSOPT. In 2010 IEEE International
Symposium on Computer-Aided Control System Design, pages 1391–1396. IEEE, 2010.

[7] J. Benkhoff, J. van Casteren, H. Hayakawa, H. Laakso, M. Novara, P. Ferri, H. R. Middleton, and R. Ziethe.
BepiColombo—Comprehensive exploration of Mercury: Mission overview and science goals. Planetary
and Space Science, 58(1-2):2–20, jan 2010. doi: 10.1016/J.PSS.2009.09.020.

[8] F. Bernelli-Zazzera, M. Vasile, N. Fornasari, and P. Masarati. Design of Interplanetary and Lunar Mis-
sions Combining Low Thrust and Gravity Assists. Technical report, ESA/ESOC Study Contract No.
14126/00/D/CS, 2002.

[9] J.T Betts. Survey of numerical methods for trajectory optimization. Journal of Guidance control and
dynamics, 21(2):193–207, 1998.

[10] H. Bhasin and S. Mehta. On the applicability of diploid genetic algorithms. AI & SOCIETY, 31(2):265–274,
May 2016. ISSN 1435-5655. doi: 10.1007/s00146-015-0591-x.

[11] J. Brophy, M.D. Rayman, and B. Pavri. Dawn: An ion-propelled journey to the beginning of the solar
system. pages 1 – 10, 04 2008. ISBN 978-1-4244-1487-1.

[12] R.A Broucke and A. Prado. Jupiter Swingy-By Trajectories Passing Near the Earth, AAS 93-177. In AAS-
/AIAA Spaceflight Mechanics Meeting, Session XI: Orbit Transfers, 1993.

[13] I. Carnelli. Optimization of Interplanetary Trajectories combining Low-Thrust and Gravity Assists with
Evolutionary Neurocontrol. Master’s thesis, Politechnico di Milano, 2005.

[14] I. Carnelli, B. Dachwald, and M. Vasile. Evolutionary Neurocontrol: A Novel Method for Low-Thrust
Gravity-Assist Trajectory Optimization. Journal of guidance, control, and dynamics, 32(2), 2009.

[15] K. Chen, B. Aldrin, D. Landau, J. Longuski, and T. McConaghy. Powered earth-mars cycler with three-
synodic-period repeat time. Journal of Spacecraft and Rockets, 42:921–927, 09 2005. doi: 10.2514/1.
11610.

[16] G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals
and Systems, 2(4):303–314, Dec 1989. ISSN 1435-568X. doi: 10.1007/BF02551274.

107

http://www.ieec.cat/hosted/web-astro04/index.html
http://www.ieec.cat/hosted/web-astro04/index.html

108 Bibliography

[17] B. Dachwald. Low-Thrust Trajectory Optimization and Interplanetary Mission Analysis Using Evolutio-
nary Neurocontrol. PhD thesis, Universität der Bundeswehr München, Faculty of Aerospace Engineer-
ing, Instute for Aerospace Engineering, 2004.

[18] B. Dachwald. Global optimization of low-thrust space missions using evolutionary neurocontrol. In
International workshop on global optimization, pages 85–90, 2005.

[19] B. Dachwald. Optimal solar-sail trajectories for missions to the outer solar system. Journal of Guidance,
Control, and Dynamics, 28(6):1187–1193, 2005.

[20] B. Dachwald. Optimization of very-low-thrust trajectories using evolutionary neurocontrol. Acta Astro-
nautica, 57(2):175–185, 2005.

[21] B. Dachwald and L. Tsinas. A combined neural and genetic learning algorithm. In Proceedings of the
First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence,
Orlando, Florida, USA., ICEC-94, 1994. ISBN 0-7803-1899-4. doi: 10.1109/ICEC.1994.349968.

[22] C. Darwin. On the origin of species. New York: D. Appleton and Co., 1871.
http://www.biodiversitylibrary.org/bibliography/28875.

[23] K. De Jong. Learning with genetic algorithms: An overview. Machine Learning, 3(2):121–138, 1988. ISSN
1573-0565. doi: 10.1007/BF00113894.

[24] K.A. De Jong. Evolutionary Computation: A Unified Approach. A Bradford book. 2006. ISBN
9780262041942.

[25] T. J. Debban, T. T. Mcconaghy, and J. M Longuski. Design and optimization of low-thrust gravity-assist
trajectories to selected planets. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, California,
2002. AIAA 2002-4729.

[26] R. L. Dowling, W. J. Kosmann, M. A. Minovitch, and R. W. Ridenoure. The origin of gravity-propelled
interplanetary space travel. Proceedings of the 41st International Astronautical Federation, 1990.

[27] L. J. Eshelman, R. A. Caruana, and J. D. Schaffer. Biases in the crossover landscape. In Proceedings of
the Third International Conference on Genetic Algorithms. George Mason University, San Francisco, CA,
USA., pages 10–19. Morgan Kaufmann Publishers Inc., 1989. ISBN 1-55860-006-3.

[28] L. J. Fogel. Intelligence Through Simulated Evolution: Forty Years of Evolutionary Programming. John
Wiley & Sons, Inc., New York, NY, USA, 1999. ISBN 0-471-33250-X.

[29] G. H. Fountain, D. Y. Kusnierkiewicz, C. B. Hersman, T. S. Herder, T. B. Coughlin, W. C. Gibson, D. A.
Clancy, C. C. DeBoy, T. A. Hill, J. D. Kinnison, D. S. Mehoke, G. K. Ottman, G. D. Rogers, S. A. Stern, J. M.
Stratton, S. R. Vernon, and S. P. Williams. The new horizons spacecraft. Space Science Reviews, 140(1):
23–47, Oct 2008. ISSN 1572-9672. doi: 10.1007/s11214-008-9374-8.

[30] M.S. Gashler and S.C. Ashmore. Training Deep Fourier Neural Networks to Fit Time-Series Data, pa-
ges 48–55. Springer International Publishing, Cham, 2014. ISBN 978-3-319-09330-7. doi: 10.1007/
978-3-319-09330-7_7.

[31] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. volume 15 of JMLR Procee-
dings, pages 315–323. JMLR.org, 2011.

[32] D.E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989. ISBN 0201157675.

[33] F. Gomez, J. Schmidhuber, and R. Miikkulainen. Accelerated neural evolution through cooperatively
coevolved synapses. Journal of Machine Learning Research, 9(May):937–965, 2008.

[34] A. Gosavi. Lecture notes: Neural networks and reinforcement learning. Department of Engineering
Management and Systems Engineering. Missouri University of Science and Tecnology. URL http:

//web.mst.edu/~gosavia/neural_networks_RL.pdf.

http://web.mst.edu/~gosavia/neural_networks_RL.pdf
http://web.mst.edu/~gosavia/neural_networks_RL.pdf

Bibliography 109

[35] A. Gosavi. Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Le-
arning. Kluwer Academic Publishers, Norwell, MA, USA, 2003. ISBN 1402074549.

[36] Y. Guo and R. W. Farquhar. New Horizons Mission Design. Space Science Reviews, 140:49–74, 2008. doi:
10.1007/s11214-007-9242-y.

[37] B. Harvey and O. Zakutnyaya. Russian Space Probes: Scientific Discoveries and Future Missions. Springer
Praxis Books. Praxis, 2011. ISBN 9781441981509.

[38] J.H. Holland. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to
Biology, Control, and Artificial Intelligence. A Bradford book. M.I.T.P., 1992. ISBN 9780262581110.

[39] D. Izzo. PyGMO and PyKEP: Open source tools for massively parallel optimization in astrodynamics (the
case of interplanetary trajectory optimization). 01 2012.

[40] D. Karaboga. Intelligent Optimisation Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing
and Neural Networks. Springer London, 2012. ISBN 9781447107217.

[41] A. Karpathy. Lecture notes: Neural Networks Part 1: Setting up the Architecture , CS321n: Convolutio-
nal Neural Networks for Visual Recognition. Stanford University, Winter 2017. URL http://cs231n.

github.io/.

[42] J.R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural Selection. A
Bradford book. Bradford, 1992. ISBN 9780262111706.

[43] T.A.H. Kranen. Literature study on neuroevolution, interplanetary trajectory optimization and gravity
assists. Technical report, Delft University of Technology; Faculty of Astrodynamics and Space Missions,
2017.

[44] L.D. Landau and E.M. Lifshitz. Mechanics. Elsevier Science, 1st edition, 1982. ISBN 9780080503479.

[45] Y.A. LeCun, L. Bottou, .B. Orr, and K. Müller. Efficient BackProp, pages 9–48. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1998. ISBN 978-3-642-35289-8. doi: 10.1007/978-3-642-35289-8_3.

[46] J.J. Lissauer and I. de Pater. Fundamental Planetary Science: Physics, Chemistry and Habitability. Cam-
bridge University Press, 2013. ISBN 9780521853309.

[47] R.G. Madonna. Orbital Mechanics. Florida: Krieger Publishing Company, 1997.

[48] K.E. Mathias and L.D. Whitley. Initial performance comparisons for the delta coding algorithm. In Pro-
ceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computati-
onal Intelligence. Orlando, Florida, USA., 1994.

[49] R. May, G. Dandy, and H. Maier. chapter Review of Input Variable Selection Methods for Artificial Neural
Networks. InTech, 2011. ISBN 9789533072432.

[50] T. T. Mcconaghy. GALLOP Version 4.5 User’s Guide. Technical report, 2005.

[51] T. T. McConaghy, T. J. Debban, A. E. Petropoulos, and J. M. Longuski. Design and optimization of low-
thrust trajectories with gravity assists. Journal of Spacecraft and Rockets, 40(3):380–387, 2003. doi: 10.
2514/2.3973.

[52] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs (3rd Ed.). Springer-Verlag,
London, UK, UK, 1996. ISBN 3-540-60676-9.

[53] M.A. Minovitch. A Method for Determining Inteplanetary Free-Fall Reconnaissance Trajectories. Techni-
cal report, JPL, TM 312-130, 1961.

[54] M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA, 1998. ISBN
0262631857.

[55] D.J. Montana and L. Davis. Training feedforward neural networks using genetic algorithms. In Pro-
ceedings of the 11th International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’89, pages
762–767, San Francisco, CA, USA, 1989. Morgan Kaufmann Publishers Inc.

http://cs231n.github.io/
http://cs231n.github.io/

110 Bibliography

[56] C.D. Murray and S.F. Dermott. Solar System Dynamics. Cambridge University Press, 1999. ISBN
9780521575973.

[57] NASA/JHUAPL/SwRI. Pluto dazzles in false color. https://solarsystem.nasa.gov/resources/

699/pluto-dazzles-in-false-color/?category=planets/dwarf-planets_pluto. Accessed:
12/05/2019.

[58] H. Oberth. Ways to Spaceflight. Number 622 in NASA technical translation. National Aeronautics and
Space Administration, 1972.

[59] A. Ohndorf. Multiphase Low-Thrust Trajectory Optimization Using Evolutionary Neurocontrol. PhD
thesis, Delft University of Technology, 2016.

[60] A. Ohndorf, B. Dachwald, and B. Gill. Optimization of low-thrust earth-moon transfers using evolutio-
nary neurocontrol. 2009 IEEE Congress on Evolutionary Computation, CEC 2009, pages 358–364, 2009.
doi: 10.1109/CEC.2009.4982969.

[61] A.E. Petropoulos, J.M. Longuski, and N.X. Vinh. Shape-based analytic representations of low-thrust tra-
jectories for gravity-assist applications. AAS/AAIA, 103:563–581, 01 2000.

[62] M. D. Rayman and K. C. Patel. The Dawn project’s transition to mission operations: On its way to ren-
dezvous with (4) vesta and (1) ceres. Acta Astronautica, 66(1):230 – 238, 2010. ISSN 0094-5765.

[63] M. D. Rayman, T. C. Fraschetti, C. A. Raymond, and C. T. Russell. Dawn: A mission in development for
exploration of main belt asteroids Vesta and Ceres. Acta Astronautica, 58:605–616, 2006. doi: 10.1016/j.
actaastro.2006.01.014.

[64] R. Rojas. Neural Networks: A Systematic Introduction. Springer Berlin Heidelberg, 1996. ISBN
9783540605058.

[65] C. T. Russell, F. Capaccioni, A. Coradini, M. C. De Sanctis, W. C. Feldman, R. Jaumann, H. U. Keller,
T. B. Mccord, L. A. Mcfadden, S. Mottola, C. M. Pieters, T. H. Prettyman, C. A. Raymond, M. V. Sykes, D. E.
Smith, M. T. Zuber, F. Capaccioni, M. C. De Sanctis, R. Jaumann, S. Mottola, H. U. Keller, and T. B. Mccord.
Dawn Mission to Vesta and Ceres. Earth Moon Planet, 101:65–91, 2007. doi: 10.1007/s11038-007-9151-9.

[66] David S. Random walks: Training very deep nonlinear feed-forward networks with smart initialization.
CoRR, abs/1412.6558, 2014.

[67] S.C. Shapiro. Encyclopedia of Artificial Intelligence. John Wiley & Sons, Inc. New York, 2 edition, 1992.
ISBN 0471503053.

[68] J. Sims and S. N. Flanagan. Preliminary design of low-thrust interplanetary missions. 103, 01 2000.

[69] D. Sprecher. On the structure of continuous functions of several variables. Transactions of the American
Mathematical Society, 115:340–355, 1964. doi: 10.1090/S0002-9947-1965-0210852-X.

[70] K. O. Stanley, D. B. D’Ambrosio, and J. Gauci. A hypercube-based encoding for evolving large-scale neural
networks. Artificial Life, 15(2):185–212, 2009. doi: 10.1162/artl.2009.15.2.15202.

[71] K.O. Stanley and R. Miikkulainen. Evolving neural networks through augmenting topologies. Evol. Com-
put., 10(2):99–127, June 2002. ISSN 1063-6560. doi: 10.1162/106365602320169811.

[72] R. Storn and K. Price. Differential evolution – a simple and efficient heuristic for global optimization
over continuous spaces. Journal of Global Optimization, 11(4):341–359, Dec 1997. ISSN 1573-2916. doi:
10.1023/A:1008202821328.

[73] V. C. Thomas, J. M. Makowski, G. M. Brown, J. F. McCarthy, D. Bruno, J. C. Cardoso, W. M. Chiville,
T. F. Meyer, K. E. Nelson, B E. Pavri, D. A. Termohlen, M. D. Violet, and J. B. Williams. The Dawn
Spacecraft, pages 175–249. Springer New York, New York, NY, 2012. ISBN 978-1-4614-4903-4. doi:
10.1007/978-1-4614-4903-4_10.

[74] M. Vasile and S. Campagnola. Design of low-thrust gravity assist trajectories to Europa. Journal of the
British Interplanetary Society, 62(1):15–31, 1 2009. ISSN 0007-084X.

https://solarsystem.nasa.gov/resources/699/pluto-dazzles-in-false-color/?category=planets/dwarf-planets_pluto
https://solarsystem.nasa.gov/resources/699/pluto-dazzles-in-false-color/?category=planets/dwarf-planets_pluto

Bibliography 111

[75] M. Vasile, R. Biesbroek, L. Summerer, A. Galvez, and G. Kminek. Options for a Mission to Pluto and
Beyond. In 13th AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, 2003.

[76] K.F. Wakker. Fundamentals of Astrodynamics. TU Delft Library, 2015. ISBN 9789461864192.

[77] J.R. Wertz. Mission Geometry: Orbit and Constellation Design and Management. Space technology li-
brary. Microcosm Press, 2009. ISBN 9781881883074.

[78] G. Whiffen. Mystic: Implementation of the static dynamic optimal control algorithm for high-fidelity,
low-thrust trajectory design. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit, page 6741,
2006.

[79] D. Whitley, K. Mathias, and P. Fitzhorn. Delta coding: An iterative search strategy for genetic algorithms.
In Proceedings of the Fourth International Conference on Genetic Algorithms, pages 77–84. Morgan Kauf-
mann, 1991.

[80] M. Wiering and M. van Otterlo. Reinforcement learning : state-of-the-art. Springer-Verlag Berling Hei-
delberg, Berlin; New York, 2012. ISBN 978-3-642-27644-6. doi: 10.1007/978-3-642-27645-3.

[81] O. Winter, E. Macau, H. Campos Velho, and V. Carruba. ASTER: a Brazilian mission to an asteroid. In
Asteroids, Comets, Meteors, 2012.

[82] D. Włodzisław and K. Jerzy. Optimization and global minimization methods suitable for neural networks.
Neural Computing Surveys 2, 1998.

[83] S. Yang. On the design of diploid genetic algorithms for problem optimization in dynamic environments.
In 2006 IEEE International Conference on Evolutionary Computation, pages 1362–1369, July 2006. doi:
10.1109/CEC.2006.1688467.

[84] X. Yao. Evolving artificial neural networks. Proceedings of the IEEE, 87(9):1423–1447, 1999.

[85] L. A. Young, S. A. Stern, H. A. Weaver, F. Bagenal, R. P. Binzel, B. Buratti, A. F. Cheng, D. Cruikshank, G. R.
Gladstone, W. M. Grundy, D. P. Hinson, M. Horanyi, D. E. Jennings, I. R. Linscott, D. J. McComas, W. B.
McKinnon, R. McNutt, J. M. Moore, S. Murchie, C. B. Olkin, C. C. Porco, H. Reitsema, D. C. Reuter, J. R.
Spencer, D. C. Slater, D. Strobel, M. E. Summers, and G. L. Tyler. New Horizons: Anticipated Scientific
Investigations at the Pluto System. Space Science Reviews, 140:93–127, October 2008. doi: 10.1007/
s11214-008-9462-9.

	Preface
	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Research Motivation
	Research Framework Definition
	Research Questions
	Research Objectives

	Report Structure

	Gravity Assists
	Missions with Gravity Assists
	New Horizons
	Dawn

	Dynamics and Geometry
	Effects of Gravity Assists
	Deflection Angle
	Velocity Variation
	Inclination Variation

	Powered Gravity Assist
	New Horizons Powered Gravity Assist Simulations

	Low-Thrust Trajectory Optimisation with Evolutionary Neurocontrol
	The Low-Thrust Trajectory Optimisation Problem
	Traditional Trajectory Optimisation
	Local Trajectory Optimisation Methods
	Global Trajectory Optimisation Methods
	State-of-the-Art Trajectory Optimisation Tools

	Smart Low-Thrust Trajectory Optimisation
	Artificial Intelligence and Reinforcement Learning
	Markov Decision Process
	Solving Markov Decision Processes
	Trajectory Optimisation from the Perspective of Reinforcement Learning

	Artificial Neural Networks
	Biological Paradigm
	Components of Artificial Neural Networks
	Network of Neurons

	Evolutionary Algorithms
	Elements of Evolutionary Algorithms
	Convergence and Properties

	Neuroevolution

	InTrance
	Development History
	InTrance Architecture
	Multiphase Framework and Fitness
	Target State, Proximity, and Deviation
	Phase Transition Conditions
	Fitness Evaluation

	Evolutionary Algorithm
	Representation and Initialisation
	Reproduction, Crossover and Mutation

	Artificial Neural Networks
	Input to the Artificial Neural Networks
	Output Values

	Low-Thrust Gravity Assist Trajectory Optimisation Implementation
	Single Phase vs. Multiphase Gravity Assist Strategy
	Single Neurocontroller
	Multiple Neurocontrollers

	Gravity Assist Architecture
	Gravity Assist Model
	Analytical Gravity Assist Model

	Initial and Final States of Gravity Assist Phases
	Velocity Relative to SOI Entry Velocity in GA-Phase
	Velocity Relative to Gravity Assist Body

	Chromosome
	Fitness
	Algorithm

	Verification and Validation
	Analytical Gravity Assist Model
	New Horizons Validation Case
	Validation Data
	InTrance Input Parameters
	Optimisation Run
	External Integration
	Initial and Final Conditions at Gravity Assist

	Applicability of the Implementation

	Mission Analysis
	Low-Thrust New Horizons
	Simulation & Mission Defining Input Parameters
	Results
	Compared to High-Thrust New Horizons Mission
	Compared to Literature
	Improvement due to Gravity Assist
	Influence of Thrust During Gravity Assist

	Dawn
	Simulation & Mission Defining Input Parameters
	Results
	Compared to Dawn's Actual Trajectory
	Improvement due to Gravity Assist
	Influence of Thrust During Gravity Assist
	Optimisation of the Three-Phase Scenario – Earth to Ceres

	Conclusion and Recommendations
	Summary
	Research Motivation and Framework
	Approach and Results

	Analysis of Results and Performance
	Analysis of Performance, Implementation and Robustness
	Analysis of Results

	Recommendations for Further Work
	Fundamental Research
	Application Oriented

	Reference Frames
	Inertial Cartesian Reference Frame
	Inertial Polar Ecliptic Reference Frame
	Orbital Elements

	Results Dawn Simulations
	InTrance Input Files
	Low-Thrust New Horizons with Jupiter Gravity Assist
	General Input Files
	Phase 1 Input Files
	Phase 2 Input Files

	Dawn with Mars Gravity Assist — Earth to Vesta
	General Input Files
	Phase 1 Input Files
	Phase 2 Input Files

	Dawn with Mars Gravity Assist — Vesta to Ceres
	General Input Files
	Phase 1 Input Files

	Bibliography

