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Fractional derivative in continuous-time Markov processes
and applications to epidemics in networks

Matteo D’Alessandro * and Piet Van Mieghem
Faculty of Electrical Engineering, Mathematics and Computer Science,

Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

(Received 26 July 2024; accepted 25 October 2024; published 6 January 2025)

Continuous-time Markov processes are governed by the Chapman-Kolmogorov differential equation. We show
that replacing the standard time derivative of the governing equation with a Caputo fractional derivative of order
0 < α < 1, leads to a fractional differential equation whose solution can describe the state probabilities of a
class of non-Markovian stochastic processes. We show that the same state probabilities also solve a system of
equations that describe semi-Markov processes in which the sojourn times follow a Mittag-Leffler distribution,
contrasting the usual Markov processes with exponentially distributed sojourn times. We apply the fractional
framework to the ε-SIS epidemic process on any contact graph and we propose a microscopic epidemic descrip-
tion in which infection and curing events follow a Mittag-Leffler distribution and are not independent. We analyt-
ically prove that the description exactly solves the fractional extension of the Chapman-Kolmogorov differential
equation, and we provide an extensive study of how the dependence between events strongly affects the dynamics
of the spreading process. We conclude verifying the proposed framework with Monte Carlo simulations.

DOI: 10.1103/PhysRevResearch.7.013017

I. INTRODUCTION

Since real-world epidemics are very likely characterized by
nonexponential infections and curings [1–3], non-Markovian
models [4–7] are expected to describe real epidemic processes
better. In order to account for memory in Markovian stochastic
processes, several authors [8–10] have proposed to replace the
standard differential operator, in the equations which define
the evolution of the probability state vector of a Markov
process, with integral operators, which “sum” over the past
and incorporate memory effects. In this paper, we focus on
the well-known Caputo fractional derivative [11], an operator
which generalizes the notion of standard derivative to nonin-
teger orders and that can be written as the convolution of the
standard differential operator with a power-law kernel, which
incorporates all the times up to the present in the evolution of
the process. The main idea is therefore to employ the Caputo
fractional derivative to generalize the equations describing
Markovian stochastic processes to a wider framework, and
then to apply the fractional formalism to the modeling of
epidemic processes on networks.

Compared to other studies [9,10,12] on the fractional
derivative to model epidemic spreading processes, we pro-
vide the following contributions: (i) we discuss in depth how
the Caputo fractional derivative affects the theory of Markov
processes; (ii) we extend the N-intertwined mean-field
approximation (NIMFA) [13] of the ε-SIS process on net-

*Contact author: m.d.dalessandro@tudelft.nl

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

works to a fractional setting; (iii) we devise a microscopic
description that “physically” interprets the fractional exten-
sion of Markovian equations in terms of the interactions
between curing and infection processes on any fixed contact
graph; and (iv) we discuss the limitations of a fractional ex-
tension of Markov theory to model a realistic epidemic.

In Sec. II, we briefly review the theory of Caputo-type
differential equations, laying a theoretical baseline for the sub-
sequent results. In Sec. III, we show which restrictions must
be imposed when applying the Caputo fractional derivative to
stochastic processes and which are the consequences on the
physical dimensions of the equations. The general process de-
fined by the fractional extension of the Markovian equations is
then presented and the deep relation with semi-Markov pro-
cesses and their equations is disclosed. Section IV applies the
devised framework to ε-SIS epidemic processes on networks
and the well-known N-intertwined mean-field approximation
(NIMFA) is also translated to the fractional setting. Finally,
Sec. V defines a microscopic epidemic process, whose state
probabilities solve the fractional equations. We analytically
prove the validity of the model and we confirm with Monte
Carlo simulations the new theory.

II. CAPUTO-TYPE FRACTIONAL
DIFFERENTIAL EQUATIONS

A. Definition

The Caputo fractional derivative can be defined as
[8,11,14]

Dα
p;m f (t ) = dα f (z)

dzα

∣∣∣∣
z=t

= 1

�(m − α)

∫ t

p

f (m)(x)

(t − x)α+1−m
dx

(1)
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with m − 1 < Re(α) � m and m ∈ N. The parameter p is
almost always chosen equal to 0. The integral in (1) is an
extension of the standard derivative to the noninteger order α.
Indeed, for α → 1, the definition (1) reduces to the standard
derivative df (t )

dt . Expression (1) naturally defines differential
equations in which the order α of the derivatives can be
noninteger and even complex

Dα
0;my(t ) = g(t, y(t )), (2)

with initial conditions y(n)(0) = y(n)
0 , for n = 0, 1, . . . , m −

1. We choose the Caputo fractional derivative because the
most important properties in the classical theory of com-
plex functions, such as Peano’s existence theorem and the
Picard–Lindelöf uniqueness theorem, remain valid [14] for
(2). Moreover, (2) is a natural extension of first-order differen-
tial equations as the initial condition employed in the standard
case can also be employed in the fractional setting.

B. Solution of the linear problem

For a linear fractional differential equation where
g(t, y(t )) = ay(t ) in (2), the solution can be expressed in
closed form [14, Theorem 4]. Assuming α ∈ R, the power
series expansion of the Mittag-Leffler function [15],

Eα,b(z) =
∞∑

k=0

zk

�(b + αk)
, (3)

converges for all complex numbers z if α > 0, implying that
the Mittag-Leffler function Eα,b(z) is an entire function. In
particular, its one parameter version with b = 1 is written as
Eα,1(z) = Eα (z). Given the N-dimensional real vector sα (t )
and the real N × N matrix Q, the solution of the fractional
differential equation

Dα
0;msα (t ) = −Qsα (t ) m − 1 < α � m, (4)

with given initial conditions {s(n)
α (0)}m−1<n�m, is [8,

Appendix C]

sα (t ) =
m−1∑
n=0

t nEα,n+1(−Qtα )s(n)
α (0), (5)

where Dα
0;m is the Caputo fractional derivative (1) with p = 0

and m > 0.

III. FRACTIONAL DERIVATIVE IN CONTINUOUS-TIME
MARKOV PROCESSES

A. The fractional equation

Given a continuous-time Markov process {M(t ), t � 0}
[16], with infinitesimal generator −Q, the Chapman-
Kolmogorov equation, which describes the evolution of the
state probability vector s(t ) of the process, is

d

dt
s(t ) = −Qs(t ). (6)

Given the initial condition s(0), the Chapman-Kolmogorov
equation (6) is solved by

s(t ) = e−Qt s(0). (7)

As in [8, Sec. III A], we replace the standard derivative in the
Chapman-Kolmogorov equation (6) of the continuous-time
Markov process M(t ), with the Caputo fractional derivative
(1) for p = 0, m = 1, and 0 < α < 1. We obtain the fractional
differential equation (4), whose solution (5) for m = 1 can
describe the evolution of the state probability vector sα (t ) of a
process, which depends on the fractional order α. The integral
operator in (1) incorporates all the previous times instants up
to time t . The evolution of a process, defined by (4), formally
depends upon its past (see also Fig. 1 in [18]).

The dimensions of the physical quantities in (4) are
discussed in Sec. III A 1 and the dimensionless fractional
Chapman-Kolmogorov equation (8) is then proposed. The
choice of the parameter p = 0 simplifies in (1) the fractional
differential equation (4) with a valid initial condition in t = 0,
while for the choice of m, which implies m − 1 < α � m
for the fractional order α, a detailed analysis is presented in
Sec. III A 2.

1. Dimensional analysis

The dimension of a physical quantity x is denoted by [x].
For example, if t is a physical quantity of time, then [t] = T,
where T is the symbol for the physical dimension of time in
the SI standard. The elements qi j of the infinitesimal gener-
ator Q in (6), have dimension [qi j] = T−1 and the fractional
derivative of a dimensionless function c(t ) has dimension
[Dα

0 c(t )] = T−α , because in the defining integral (1) the prod-
uct between all the time variables leads to the power −α

regardless of the value of m. Therefore, we define a rescaled
dimensionless time [t̃] = 1 and a rescaled dimensionless
matrix [Q̃] = 1, and from (4) with m = 1 we write the dimen-
sionless [17] fractional Chapman-Kolmogorov equation,

Dα
0 sα (t̃ ) = −Q̃sα (t̃ ), 0 < α � 1, (8)

which will be the main equation employed throughout this
paper. The solution of (8) with initial condition sα (0) is the
vector sα (t̃ ) = Eα (−Q̃t̃α )sα (0). In the following we will thus
work in the dimensionless framework whenever α �= 1.

In [8, Sec. IV A] it is alternatively proposed to replace
Q with Qα to have dimensional coherence in Eq. (4). If the
matrix Q is diagonalizable, then it can be decomposed as [19,
Chapter 4]

Q =
N∑

k=1

μkxkyT
k ,

where μk is the eigenvalue belonging to the right-eigenvector
xk and the left-eigenvector yk of Q. The power α ∈ (0, 1) of Q
becomes thus

Qα =
N∑

k=1

μα
k xkyT

k .

In our case of interest, −Q is the infinitesimal generator of
a continuous-time Markov process and thus the eigenvalues
μk of Q are all non-negative [20, Chapter 10]. The power
α ∈ (0, 1) of the eigenvalues “compresses” the eigenvalues
greater than 1 and “dilates” the eigenvalues smaller than 1.
Therefore, the structure of the matrix Q is lost, because the
relative distance between the eigenvalues is modified in a

013017-2
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FIG. 1. Graph of the possible transitions of the process defined
by −Qα when −Q generates a Markovian birth-death process with a
population of N = 3. In red the new transitions appearing for −Qα , in
black the ones already present for −Q. The minus signs in front of the
rates (Qα ) ji on the picture are omitted to simplify the visualization.

nonhomogeneous way. For example, if −Q is an infinitesimal
generator of a birth-death process, which is known to be a
tridiagonal matrix [20, Sec. 11.3], the power α ∈ (0, 1) of
the matrix Q, namely Qα , is a full matrix with all elements
different from zero.

We denote the elements of Qα with (Qα ) ji and Fig. 1
draws the Markov graph of the process defined by −Qα for
a birth-death process with a population of maximum N = 3
individuals. Figure 1 depicts in black the transition rates that
are already present in the Markov graph related to Q. The red
arcs are the newly appearing transitions when employing Qα

and show that the process defined by −Qα allows any pos-
sible transition. The process itself is still Markovian because
uT Qα = 0 (the zero eigenvalue is not affected by the power
operation), where uT is the all-one vector, but the process is
different from the Markov process defined by Q. The new
transition rates of the Qα process will be the elements minus
(Qα )i j and the embedded Markov chain will include the tran-
sitions depicted in Fig. 1. Therefore, if −Q is the infinitesimal
generator of a Markov process, employing −Qα in (4) leads
to a fractional equation, which does not describe the fractional
extension of the process defined by −Q.

2. Probability theory restrictions

In Sec. III A 1, we have proposed the dimensionless frac-
tional Chapman-Kolmogorov equation (8) choosing m = 1 in
(4) and therefore restricting the fractional order of the Caputo
derivative (1) to be 0 < α � 1. Usually, the choice m = 1
is not explicitly justified but in this section we show why
allowing m � 2 and thus α > 1 creates problems when the
fractional equation (4) is employed in the context of stochastic
processes.

For stochastic processes, the vector sα (t̃ ) must satisfy the
first axiom of probability [20, Sec. 2.1], which implies that
uT sα (t̃ ) = 1 for all times t̃ . Multiplying the general solution

(5) by the all-one vector uT , we obtain

uT sα (t̃ ) =
m−1∑
n=0

t̃ nuT Eα,n+1(−Q̃t̃α )s(n)
α (0),

and employing the Mittag-Leffler Taylor series (3) we write

uT sα (t̃ ) =
m−1∑
n=0

t̃ n

( ∞∑
k=0

(−t̃α )k

�(n + 1 + αk)
uT Q̃k

)
s(n)
α (0)

=
m−1∑
n=0

t̃ n

(
uT I

1

n!
+

∞∑
k=1

(−t̃α )k

�(n + 1 + αk)
uT Q̃k

)
s(n)
α (0).

Since uT Q̃ = 0 for any infinitesimal generator Q̃ of a
Markov process [20, Sec. 10.2.1], the general solution (5) of
(4) must obey

uT sα (t̃ ) =
m−1∑
n=0

t̃ n

n!
uT s(n)

α (0) = 1. (9)

Since uT s(0)
α (0) = uT sα (0) = 1, Eq. (9) reduces to

m−1∑
n=1

t̃ n

n!
uT s(n)

α (0) = 0. (10)

Given that (10) must hold for all t̃ , it follows by equating
corresponding powers of t̃ , that

uT s(n)
α (0) = 0 n = 1, 2, . . . , m − 1. (11)

Hence, s(n)
α (0) for n = 1, 2, . . . , m − 1 must be orthogonal to

the all-one vector u, which is the eigenvector of Q̃ belonging
to the eigenvalue μ = 0. The conditions uT sα (t̃ ) = 1 and (11)
are necessary for the general solution (5) to describe a proba-
bility vector at any time t̃ .

In Appendix C, we show with a counter example that, when
m > 1, conditions uT sα (t̃ ) = 1 and (11) are not sufficient for
the solution (5) to describe a probability vector at any time t̃ .
Therefore, the replacement of the standard derivative with the
fractional operator needs the restriction to m = 1 and in the
sequel we will thus confine ourselves to the case m = 1 in (4),
which corresponds to (8) with fractional order 0 < α � 1.

B. The general process described by the fractional
Chapman-Kolmogorov equation

The solution of the fractional Chapman-Kolmogorov equa-
tion (8) with sα (0) as initial condition is given by (5) with
m = 1,

sα (t̃ ) = Eα (−Q̃t̃α )sα (0). (12)

In Sec. III A 2, we have shown that when α ∈ (0, 1] the prop-
erty uT sα (t̃ ) = 1 is satisfied. Moreover, each component of
sα (t̃ ) is positive at all times t̃ because (12) indicates that

(sα (t̃ )) j =
N∑

k=1

(Eα (−Q̃t̃α )) jk (sα (0))k > 0, ∀ j = 1, . . . , N,

as all the matrix elements (Eα (−Q̃t̃α )) jk are positive [15] and
all the initial vector components (sα (0))k are also positive. We
can thus assume that sα (t̃ ) is the probability state vector of a
stochastic process {Yα (t̃ ), t̃ � 0} on the same state space S

013017-3
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with N states of a Markov process generated by −Q̃. The law
of total probability indicates that

(sα (t̃ )) j = Pr[Yα (t̃ ) = j] =
N∑

l=1

(Eα (−Q̃t̃α )) jl (sα (0))l .

It follows that the transition probability matrix of the process
Yα (t̃ ) is equal to

Pα (t̃ ) = Eα (−Q̃t̃α ), (13)

where each matrix element describes the conditional proba-
bility

(Pα (t̃ )) ji = Pr[Yα (t̃ ) = j|Yα (0) = i]. (14)

In Sec. III C below, we prove that a matrix of the type of (13),
where −Q̃ is an infinitesimal generator of a Markov process,
also satisfies the following system:{

Dα
0 Pα (t̃ ) = −Pα (t̃ )Q̃

Dα
0 Pα (t̃ ) = −Q̃Pα (t̃ )

,

that generalizes classical Markov theory (α = 1) [20, Lemma
10.2.2]. The evolution of the state sα (t̃ ) can thus be written as

sα (t̃ ) = Pα (t̃ )sα (0).

Without any assumption on the process Yα (t̃ ), Eq. (8) only
defines the state probabilities (sα (t̃ )) j = Pr[Yα (t̃ ) = j] and the
conditional probabilities (Pα (t̃ )) ji = Pr[Yα (t̃ ) = j|Yα (0) = i].
Equation (8) for α ∈ (0, 1) does not specify the dependence
on the previous states, in contrast to the Markov case (α = 1).
Indeed [8, Eq. (33)]

Pr[Yα (t̃ + u) = j]

=
N∑

k=1

N∑
m=1

Pr[Yα (t̃ + u) = j|{Yα (u) = k,Yα (0) = m}]

× Pr[Yα (u) = k,Yα (0) = m] (15)

manifests for 0 < α < 1 the general intricate dependence
among process states at different times. Hence, the joint prob-
abilities Pr[Yα (t̃ + u) = j,Yα (t̃ ) = j] are not uniquely defined
by the fractional Chapman-Kolmogorov equation (8), while
the single-state vector probabilities (sα (t̃ )) j = Pr[Yα (t̃ ) = j]
are. The fractional Chapman-Kolmogorov equation (8) and
its solution (12) define, in general, a class of non-Markovian
stochastic processes. Only in the Markovian case (α = 1),
the Chapman Kolmogorov equation completely defines both
the joint and the single-state vector probabilities [8]. From
(15) we also deduce that the distribution of the sojourn times
of the process will certainly depend on the history and will
not even be guaranteed to stay functionally the same at
all times.

C. Fractional equations in continuous-time
semi-Markov processes

So far, we have merely replaced the standard derivative
in the Chapman-Kolmogorov equation (6) with the Caputo
fractional derivative, resulting, after dimensional rescaling, in
Eq. (8). A different approach [21,22,24], would be to build
a stochastic process, whose transition probabilities explicitly

satisfy fractional differential equations. We use the notation in
Appendix A to define a stationary Markov process {M(t̃ ), t̃ �
0} on the state space S with i = 1, . . . , N states, which is
generated by the matrix −Q̃. Following [22], we consider a
continuous-time semi-Markov process {Xα (t̃ ), t̃ � 0} on the
same state space S , such that

Xα (t̃ ) = Xn, Tn � t̃ < Tn+1, T0 = 0, Tn =
n−1∑
k=0

Jk, n ∈ N

(16)

where Jk is the sojourn time that the process spends in the
state Xk to which the embedded Markov chain has transitioned
at step k. The time Tk is the total time elapsed from 0 to
the kth transition. The embedded Markov chain transition
probabilities are

Vji = Pr[Xn+1 = j|Xn = i] = − q̃ ji

q̃ii
, ∀n ∈ N, i, j ∈ S

(17)

and are exactly the same as the embedded Markov chain of
the original Markov process M(t̃ ) (Appendix A), because the
transition probabilities are built with the same infinitesimal
generator −Q̃. The sojourn times Jn in state i follow a general
distribution Pr[Jn > t̃ |Xn = i] = 1 − Fi(t̃ ). Here, we choose
the Mittag-Leffler distribution

Fi(t̃ ) = 1 − Eα (−q̃iit̃ ), i = 1, . . . , N, t̃ > 0, (18)

rather than the exponential distribution that describes Marko-
vian sojourn times, and we assume that (18) is time
independent and functionally the same for each state i. Fur-
thermore, we assume that the sojourn time Jn, given that
Xn = i, only depends on the state i and we define the sojourn
time of i with a variable τ̃i that represents the random time that
the process remains in state i.

The extension of the Markov property (A1) for the semi-
Markov process Xα (t̃ ) can thus be expressed for integers
k > 0 as

Pr[Xα (t̃ + τ ) = j|Xα (τ )= i, Xα (u)= x(u), 0 � u < τ, Tk = τ ]

= Pr[Xα (t̃ + τ ) = j|Xα (τ ) = i, Tk = τ ]. (19)

The process Xα (t̃ ) is called “semi-Markov”, because the prob-
ability in (19) to make a transition at time t̃ + τ to another
state j, given that at time τ the process made the kth transition
to i �= j, does not depend on states before time τ and does not
depend on k. We then define the transition probabilities of the
stationary process {Xα (t̃ ), t̃ � 0} as

αP ji(t̃ ) : = Pr[Xα (t̃ ) = j|Xα (0) = i]

= Pr[Xα (t̃ + τ ) = j|Xα (τ ) = i, Tk = τ ]. (20)

Given the time of the first jump J0, the law of total probability

Pr[X (t̃ ) = j|X (0) = i] = Pr[X (t̃ ) = j, J0 > t |X (0) = i]

+ Pr[X (t̃ ) = j, J0 � t |X (0) = i]

013017-4
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leads to the so-called renewal equation [20, Theorem 10.5.1]

αP ji(t̃ ) = Pr[J0 > t̃ |X (0) = i]δ ji

+
N∑

l=1

∫ t̃

0
αP jl (t̃ − s)Vli fi(s)ds

= Pr[J0 > t̃ |X (0) = i]δ ji

−
N∑

l=1

∫ t̃

0
αP jl (t̃ − s)

q̃li

q̃ii
fi(s)ds, (21)

where the quantity fi(s) is the probability density func-
tion of the sojourn time distribution Fi(t ). The system of
equations (21) has been proven to be equivalent to the
systems of forward and backward fractional equations [22,
Proposition 2.1]{

Dα
0 αP ji(t̃ ) = −∑N

l=1 αP jl (t̃ )q̃li, αP ji(0) = δ ji

Dα
0 αP ji(t̃ ) = −∑N

l=1 q̃ jl αPli(t̃ ), αP ji(0) = δ ji,
(22)

which, in matrix form, read{
Dα

0 αP(t̃ ) = − αP(t̃ )Q̃

Dα
0 αP(t̃ ) = −Q̃ αP(t̃ )

.

The operator Dα
0 is the Caputo fractional derivative (1) with

m = 1 and p = 0. In Appendix D we solve the system of
fractional forward equations (equivalent to the backward as
shown in [22]), which corresponds to the first equation in (22).
We obtain that, for integers k > 0, the transition probability
matrix of the semi-Markov process Xα (t̃ ) is

αP ji(t̃ ) = Pr[Xα (t̃ ) = j|Xα (0) = i]

= Pr[Xα (t̃ + τ ) = j|Xα (τ ) = i, Tk = τ ]

= (Eα (−Q̃t̃α )) ji. (23)

Semi-Markov processes satisfy the fractional
Chapman-Kolmogorov equation

Relation (23) indicates that the transition probability ma-
trix of the semi-Markov process Xα (t̃ ) is mathematically
equivalent to the transition probability matrix (13) of the
more general fractional process Yα (t̃ ) described in Sec. III B.
The main difference between the two conditional probability
distributions is that the semi-Markov transition probability
matrix elements αP ji(t̃ + u), defined in (20), describe the
probability of the process Xα (t̃ ) transitioning from i to j
in time t̃ , conditioned on the fact that the process has just
transitioned in state i at time u � 0. The general fractional
process transition probability matrix elements (Pα (t̃ + u)) ji,
defined in (14), describe instead the probability of the process
Yα (t̃ ) transitioning from i to j at time t̃ + u, given that at
time 0 the process was in state i. Other than the stationar-
ity, the general process Yα (t̃ ) is not assumed to satisfy the
semi-Markov property (19) and therefore the two matrices

αP(t̃ ) and Pα (t̃ ), even if formally the same, describe different
conditional probabilities. On the other hand, the evolution
of the state probabilities of the processes are exactly the

same,

(sα (t̃ )) j = Pr[Yα (t̃ ) = j] = Pr[Xα (t̃ ) = j]

=
N∑

k=1

(Eα (−Q̃t̃α )) jk (sα (0))k > 0, ∀ j = 1, . . . , N.

Therefore, we claim that the fractional Chapman-Kolmogorov
equation

Dα
0 sα (t̃ ) = −Q̃sα (t̃ ), 0 < α < 1,

with initial condition sα (0), also describes the evolution of
the semi-Markov process Xα (t̃ ) with Mittag-Leffler sojourn
times (18).

IV. FRACTIONAL EPIDEMICS

We apply the framework discussed in Sec. III to model
epidemic processes on networks with the aim to understand
if Eq. (8) can describe a more realistic epidemic spreading
compared to the Markovian models. Real-world epidemics
are characterized by nonexponential infections and curings
[1–3], which implies that the memoryless property of Marko-
vian processes is often unrealistic. The fractional framework
introduces Mittag-Leffler functions (3), which possess power-
law heavy tails, like the functions (e.g., Weibull, Gamma
distribution) usually employed in non-Markovian models for
epidemic spreading on networks [4–7]. Without any assump-
tion on the memory structure of the process (as in Sec. III B),
a fractional epidemic process formally takes into account the
history of the events happened up to a certain time t̃ and
is thus different from a Markov process, which neglects the
past. Moreover, it has been shown that non-Markovian models
potentially increase the persistence of the epidemic on the
network compared to the Markovian case [4,6]. In summary,
deviating from the Markovian assumptions can strongly im-
pact on how an epidemic outbreak affects a population.

For the reader’s sake a brief review on Markovian
susceptible-infected-susceptible (SIS) epidemics on a graph
[23] is presented in Appendix B.

A. Fractional ε-SIS process on networks

In order to extend the Markovian ε-SIS process on
networks (Appendix B) to the fractional framework, the
Chapman-Kolmogorov equation (6) is replaced by the di-
mensionless fractional Chapman-Kolmogorov equation (8)
employing the definition of the infinitesimal generator (B2)
of the process on a static graph G with N nodes, provided
that the elements of (B2) and the time are dimension-
ally rescaled as: ε̃ = ε/δ, τ = β/δ, t̃ = δt . The fractional
Chapman-Kolmogorov equation (8) is solved by the proba-
bility state vector sα (t̃ ) = Eα (−Q̃t̃α )sα (0). In analogy with
(B3), the nodal viral infection probability is defined as ( j =
1, ..., N)

wα; j (t̃ ) = Pr[Xα; j (t̃ ) = 1] = E [Xα; j (t̃ )],

Wα (t̃ ) = [wα;1(t̃ ), . . . ,wα;N (t̃ )]T

and the conversion defined in (B4) becomes Wα (t̃ ) = Msα (t̃ ).
It follows that the average fraction of infected nodes at time t̃
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(i.e., prevalence) in the fractional ε-SIS process on a graph G
equals

yα (t̃ ) = 1

N
uT MEα (−Q̃t̃α )sα (0)

= 1

N
uT Wα (t̃ )

= 1

N
||Wα (t̃ )||1. (24)

Equivalently, given the linearity of the integration and deriva-
tion, when we apply the Caputo fractional derivative (1) to the
ε-SIS governing equations (B8), we obtain the dimensionless
fractional ε-SIS governing equation for node i (i = 1, . . . , N),

Dα
0 E [Xα;i(t̃ )] = E

[
− Xα;i(t̃ ) + (1 − Xα;i(t̃ ))

×
{
τ

N∑
k=1

akiXα;k (t̃ ) + ε̃

}]
, (25)

where ai j is an element of the adjacency matrix A of the graph
G.

General bounds for the average fraction of infected nodes

We investigate how the fractional derivative affects the
initial growth and the convergence towards the steady state
of the epidemic spreading.

Theorem IV.A.1. Given a fractional SIS spreading process
on a fixed graph G with N nodes, the average fraction of
infected nodes at time t̃ (i.e., the prevalence yα (t̃ )) satisfies
the following bounds for α ∈ (0, 1]:

Eα (−t̃α )yα (0) � yα (t̃ ) � min(1, Eα ((τ (N − 1)−1)t̃α )yα (0))
(26)

Proof. See proof in Appendix G 1. �
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FIG. 2. Evolution of the prevalence in the α-fractional extension
of the SIS process on a complete graph with N = 20 nodes, one
initial infected nodes, infection rate β = 0.2, curing rate δ = 1 (here
self-infection rate ε = 0). Time axis is in log-scale. In solid line the
exact prevalence, with + the upper bound defined in (26).
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FIG. 3. Evolution of the prevalence in the α-fractional extension
of the SIS process on a complete graph with N = 20 nodes, N initial
infected nodes, infection rate β = 1/N , curing rate δ = 1 (here self-
infection rate ε = 0). Both axes are in log-scale. In solid line the
exact prevalence, with + and – the upper and lower bounds defined
in (26).

For τ > 1
N−1 , relation (26) provides an upper bound to the

initial growth of the epidemic process as depicted in Fig. 2.
The prevalence yα (t̃ ) cannot increase faster than Eα ((τ (N −
1) − 1)t̃α )yα (0) > e(τ (N−1)−1)t̃ y(0). The bound (26) shows
then that the fractional growth can be faster than the Marko-
vian (α = 1) and the growth is faster when α is reduced, as
shown in Fig. 2. Moreover, compared to the Markovian case
(F6), even if τ < 1

N−1 , the epidemics will last longer as the
heavy-tailed nature of the Mittag-Leffler converges extremely
slowly. Figure 3 illustrates indeed that the fractional process is
characterized by a power-law decay towards the steady state
contrary to the exponentially fast convergence of the Markov
process towards the all-healthy state.

Given that usually the self-infection rate ε is very small,
the bounds (26) are approximately valid also for ε �= 0 and
indicate that the prevalence of the fractional extension of the
ε-SIS on any graph G presents two main properties: (1) very
slow power-law convergence towards the steady state when
τ < 1

N−1 and (2) faster than exponential growth in the begin-
ning of the epidemic spreading when τ > 1

N−1 . The fractional
epidemic for 0 < α < 1 is always worse (i.e., more danger-
ous) than the Markovian epidemic because grows faster in the
beginning and survives more in the long run.

B. Fractional N-intertwined mean-field
approximation (f-NIMFA)

Equivalently as in Appendix B 5, we replace the nodal
variables Xα;i in (25) with their approximated expected value
E [X (1)

α;i ]. The mean-field approximation of the fractional equa-
tions reduces the set (25) of 2N linear fractional equations to
N nonlinear fractional equations. Although an approxima-
tion, NIMFA enables computations for very large graphs.
We denote vα;i(t̃ ) = Pr[X (1)

α;i (t̃ ) = 1] = E [X (1)
α;i (t̃ )] and we ob-

tain a set of fractional differential equations, which we can
call the fractional N-intertwined mean-field approximation
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(f-NIMFA),

Dα
0 vα;i(t̃ ) = ε̃ − (1 + ε̃)vα;i(t̃ ) + τ (1 − vα;i(t̃ ))

N∑
j=1

ai jvα; j (t̃ ),

(27)

where i = 1, . . . , N . Equation (27) is the fractional extension
of (B11). We extend the method in [25, Theorem 1] to (27)
on the complete graph KN with N nodes, employing the fact
that the Caputo fractional derivative preserves the properties
of ordinary differential equations [14]. Indeed, if we assume
vα;i(0) = vα; j (0) for each i �= j = 1, . . . , N , the nodal proba-
bility vα;i(t̃ ) = vα (t̃ ) is the same for each node i = 1, . . . , N ,
then (27) becomes for the complete graph KN ,

Dα
0 vα (t̃ ) = ε̃ − (1 + ε̃)vα (t̃ ) + τ (N − 1)(1 − vα (t̃ ))vα (t̃ ).

(28)
Equation (28) is a fractional Riccati differential equation

Dα
0 vα (t̃ ) = ε̃ − c1vα (t̃ ) − c2v

2
α (t̃ ),

with c1 = 1 + ε̃ − τ (N − 1) and c2 = τ (N − 1), whose ana-
lytical solution does not seem to be known in explicit form for
α ∈ (0, 1), but is known for α = 1 (see [26, Appendix C]). If
we define the average number of infected nodes as Iα (t̃ ) :=
Nvα (t̃ ) and the average number of susceptible nodes as
Sα (t̃ ) := N (1 − vα (t̃ )), Eq. (28) is rewritten, after multiplying
by the constant N , as

Dα
0 Iα (t̃ ) = ε̃Sα (t̃ ) − Iα (t̃ ) + τ

(N − 1)

N
Sα (t̃ )Iα (t̃ ).

If we define τeff := τ (N − 1)/N , we can finally write the
mean-field fractional ε-SIS model as{

Dα
0 Iα (t̃ ) = ε̃Sα (t̃ ) − Iα (t̃ ) + τeffSα (t̃ )Iα (t̃ )

Dα
0 Sα (t̃ ) = −ε̃Sα (t̃ ) + Iα (t̃ ) − τeffSα (t̃ )Iα (t̃ )

, (29)

where the total population N = Iα (t̃ ) + Sα (t̃ ) is conserved.
The set of equations in (29), as well as similar variations, is
usually the starting point of various analyses [27,28] in the
homogeneous-mixing assumption. However, the derivation of
the fractional homogeneous-mixing model from (25) is often
ignored.

Fractional epidemic threshold

The Markovian SIS model in Appendix B is characterized
by the appearance of a phase transition when the effective
infection rate τ = β/δ approaches the epidemic threshold
τc (see Appendix B 3 a for further details). An analysis of
the f-NIMFA approximation (Sec. IV B) around the epidemic
threshold, formally similar as in [20, Sec. 17.3.2], leads to

Lemma IV.B.1. The epidemic threshold of the fractional
NIMFA SIS process on a fixed graph G equals τ (1)

c = 1/λ1,
where λ1 is the largest eigenvalue of the adjacency matrix A
of the graph G.

Indeed, the steady state of the f-NIMFA equations (27)
and of the Markovian NIMFA equations (B10) is the same,
because the fractional derivative does not alter the equations,
which define the steady state [8, Sec. D]. Most of the re-
sults known for the Markovian NIMFA approximation are
thus valid also in the fractional framework and the epidemic
threshold of the fractional NIMFA SIS process is independent

of the fractional order α. Moreover, employing the properties
of the NIMFA steady-state vector (which is the same for any
0 < α � 1), we can state that the NIMFA epidemic threshold
τ (1)

c = 1
λ1

, which is a lower bound for the Markovian epi-
demic threshold as proven in [4] and [20, Lemma 17.4.6] (i.e.,
τc > τ (1)

c ), is also a lower bound for the fractional epidemic
threshold.

In the ε-SIS process, usually the self-infection rate ε is
assumed to be very small (e.g. ε � 10−6 × δ), because the
self-infections are often rare in real-world spreading pro-
cesses, and therefore the epidemic threshold of the fractional
SIS process is a valid control parameter also for the fractional
ε-SIS process. Furthermore, under the semi-Markov assump-
tion, the independence of the epidemic threshold from the
fractional order α is coherent with the fact that the embedded
Markov chain [8, Sec. F] of the process does not depend on α.

V. THE PHYSICS OF THE FRACTIONAL EQUATION

So far, we have described the fractional extension
(Sec. IV A) of the ε-SIS epidemic process (Appendix B),
without detailing the microscopic processes. The Markovian
ε-SIS epidemic process on a network consists of the inter-
actions between independent Poisson infection and Poisson
curing processes [20, Sec. 17.2], which cause the sojourn
time in state k to be exponentially distributed with rate q̃kk =∑

j�1; j �=k (−q̃ jk ) equal to the sum of all single Poisson rates
from state k to any other state j �= k.

Here, under the semi-Markov assumption, we explain the
“microscopic” physics in fractional SIS epidemics, based on
the same process property: given that the process has just
transitioned to state Xα (t̃ ) = k, the occurrence time of the first
arrival T̃j of the jth process event (i.e., either an infection
or a curing event) in Sα (k), which is the set of all possible
events in state k, is the minimum time Tα (k) of all possi-
ble process events in Sα (k), which satisfies {Tα (k) > t} =⋂

j∈Sα (k){T̃j > t}. Inspired by the sojourn time distribution in
the Markovian case, whose rate is given by the sum of the
single independent Poisson processes rates, we propose the
generalization (30) for any α, which preserves the property
q̃kk =∑ j�1; j �=k (−q̃ jk ) but introduces a nontrivial dependence
between the involved infection and curing processes.

A. Dependent fractional ε-SIS process on networks

Our main result is:
Theorem V.A.1. Let {Xα (t̃ ), t̃ � 0}, with 0 < α < 1, de-

scribe the state at time t̃ of a continuous-time susceptible-
infected-susceptible epidemic process on a fixed graph G with
nodal self-infections (ε-SIS). Let −Q̃ be the corresponding
dimensionless Markovian infinitesimal generator. If the fol-
lowing properties

(a) the infection and curing processes are renewal pro-
cesses with Mittag-Leffler interarrival times Fτ (t̃ ) = 1 −
Eα (−λt̃α ) and parameter λ equal to the Markovian rate of the
corresponding Poisson process for α = 1;

(b) the memory of the process is reset every time the
process transitions to a new state;
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(c) the joint distribution of the occurrence times of possi-
ble process events Sα (k) in state k equals

Pr

[ ⋂
j∈Sα (k)

T̃j > t̃ j

]
= Eα

(
−
∑

j∈Sα (k)

λ j t̃
α
j

)
(30)

where T̃j is the occurrence time of process events j ∈ Sα (k);
hold, then:
(1) the process transition probabilities satisfy the semi-

Markov property (19);
(2) the process sojourn times follow the Mittag-Leffler

distribution (18);
(3) the process transition probabilities are described by the

embedded Markov chain probabilities (17);
(4) the state probability vector of the process solves the

fractional Chapman-Kolmogorov equation (8).
Proof. See proof in Appendix G 2. �
Theorem V.A.1 allows for a physical interpretation of the

solution of the fractional equation (8) when the matrix −Q̃
is the infinitesimal generator of a Markovian epidemic pro-
cess on a fixed graph. The process in Theorem V.A.1 is
characterized by two driving mechanisms: (1) the “classical”
epidemic one, given by the interactions between susceptible
and infected nodes, which directly depends on the underly-
ing network topology and determines at each new step of
the process, which are the events that can happen; (2) the
coupling between all the possible infection and curing times,
which is driven by the distribution (30) that creates a positive
dependence between all the possible events, even if the events
involve nodes which are many hops (in the shortest path) apart
in the underlying graph. The second mechanism is induced by
the application of the Caputo fractional derivative and is the
hallmark of the fractional process.

1. The role of dependence

The distribution (30) shows that the underlying first occur-
rence times T̃j of process events are not independent anymore
and that the dependence is caused by the absence of the
semi-group property for the Mittag-Leffler function [8, Ap-
pendix D]. On the other hand, for α = 1 the joint distribution
(30) reduces to

Pr

[ ⋂
j∈S1(k)

T̃j > t̃

]
= e−t̃

∑
j∈S1 (k) λ j

=
∏

j∈S1(k)

e−λ j t̃

=
∏

j∈S1(k)

Pr[T̃j > t̃].

Hence, in the Markov case, the sojourn times Pr[T̃j > t̃] are
exponentially distributed and events are independent infection
and curing Poisson processes. The semi-group property of
the exponential function leads to independence of the sojourn
times and to the famous memory-less property in Markov
processes.

The joint distribution (30) characterizes the dependence
of the occurrence time of all physical processes, defined in
Theorem V.A.1, at a same state in the Markov graph. Without
loss of generality and to simplify the exposition, we focus on

the joint distribution of two process times [29] in (30),

Pr[T̃1 > t̃, T̃2 > t̃] = Eα ( − t̃α (λ1 + λ2)). (31)

Comparison of (31) with the joint distribution when the two
processes are assumed to be independent

Pr[T̃1 > t̃]Pr[T̃2 > t̃] = Eα (−t̃αλ1)Eα (−t̃αλ2), (32)

illustrates how the dependence affects the interaction of the
processes involved in the epidemic spreading. We employ the
following lemma:

Lemma V.A.1. Given two random variables T̃1 and T̃2 and
the differences

Y>(t̃ ) := Pr[T̃1 > t̃, T̃2 > t̃] − Pr[T̃1 > t̃]Pr[T̃2 > t̃], (33)

Y�(t̃ ) := Pr[T̃1 � t̃, T̃2 � t̃] − Pr[T̃1 � t̃]Pr[T̃2 � t̃], (34)

then the following identity

Y�(t̃ ) = Y>(t̃ )

is satisfied at any time t̃ .
Proof. See proof in Appendix G 3. �
In our specific case, Lemma V.A.1 together with (31) and

(32) leads to

Y>(t̃ ) = Eα ( − t̃α (λ1 + λ2)) − Eα (−t̃αλ1)Eα (−t̃αλ2)

= Y�(t̃ ),

Figure 4 shows that the difference Y>(t̃ ) > 0 is positive, for
each value of t̃ if α < 1 (the difference is always positive for
any λ1 and λ2 as shown in [15]). It means that each process
positively influences the other process. Thus, it is more likely
that the two dependent processes both happen after a given
time t̃ compared to the independent case. Lemma V.A.1 shows
that Y�(t̃ ) satisfies the same properties as Y>(t̃ ), thus Fig. 4
also represents Y�(t̃ ). In particular, the difference Y�(t̃ ) > 0
indicates that the positive dependence additionally favors the
two processes to both happen before a given time t̃ compared
to the independent case. In the Markovian case (i.e., α = 1),
all the processes are independent and Y�(t̃ ) = Y>(t̃ ) = 0.

10-10 10-5 100 105 1010
0

0.01

0.02

0.03

0.04

0.05

FIG. 4. Plot of Y>(t̃ ) with λ1 = 1, λ2 = 10 and different values
of α.
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We rewrite the difference Y>(t̃ ) in terms of con-
ditional probabilities, using Pr[T̃1 > t̃, T̃2 > t̃] = Pr[T̃1 >

t̃ |T̃2 > t̃] Pr[T̃2 > t̃] as

Y>(t̃ ) = (Pr[T̃1 > t̃ |T̃2 > t̃] − Pr[T̃1 > t̃]
)

Pr[T̃2 > t̃].

For Mittag-Leffler random variables, as proven in [15], it
holds that

Pr[T̃1 > t̃ |T̃2 > t̃] > Pr[T̃1 > t̃].

Hence, given that a second process event in a same state
occurs after a given time, then it increases the probability that
a first process event also occurs after that same given time.

Figure 5 displays that when t̃ increases, the difference
between Pr[T̃1 > t̃ |T̃2 > t̃] and Pr[T̃1 > t̃] becomes larger, im-
plying that the dependence structure becomes more relevant
for large sojourn times of the process.

We conclude with an example that highlights the conse-
quences of the time-dependence property depicted in Fig. 5,
and therefore of Theorem V.A.1, for a realistic epidemic in
a network. Suppose at time 0, two nodes or individuals in a
connected network are infected, one node belongs to a cluster
in Tokyo and one node belongs to a cluster in Rome. The two
nodes are not directly connected by a link, but since the net-
work is connected, there exists a path between the two nodes.
We denote by T̃1 the curing time of the node in Tokyo and by
T̃2 the curing time of the node in Rome. Figure 5 implies that
the probability that the node in Rome takes more than t̃ days
to cure increases the probability that also the curing time of
the Tokyo node is larger than t̃ . The time coupling of curing
events is questionable because a curing event is mainly related
to the individual properties of an infected node (e.g., immune
system and its local environment). The dependence (30) in
Theorem V.A.1 is inducing a simultaneous global positive
coordination between all the possible event times given the
viral state of the system, regardless of how far or how close
the involved nodes and links are in a connected network. The
described coordination mechanism increases the probability
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FIG. 5. Difference between (31) and (32) with λ1 = 1, λ2 = 10
and different values of α. The black-dashed line is the asymptotic
value of Pr[T̃1 > t̃ |T̃2 > t̃] − Pr[T̃1 > t̃] at large time t̃ → ∞ and can
be computed employing the properties of the Mittag-Leffler function.

that an event happens at extremely short or extremely large
times compared to the Markovian case, and thus causes the
faster than exponential growth and the power-law decay in
Figs. 2 and 3.

2. Simulations on different graphs

We apply the Monte Carlo method described in Ap-
pendix H to simulate the process defined in Theorem V.A.1.
The analytic results for the prevalence (24) on different
graphs are then compared with the results of the Monte Carlo
simulations.

Figures 6, 7, and 8 illustrate that the prevalence, computed
with the Monte Carlo simulation (Appendix H) of the pro-
cess defined in Theorem V.A.1, coincides with the analytical
solution of the fractional equation (8) regardless of the un-
derlying topology of the contact graph. Theorem V.A.1 is
therefore confirmed to “physically” interpret the solution of
the fractional Chapman-Kolmogorov equation (8) correctly.
Figures 6, 7, and 8 also display that a fractional epidemic
process is characterized by a faster than Markovian (α = 1)
growth at short times, but slower than Markovian decay at
large times.

The behavior is compatible with the properties of the
Mittag-Leffler distribution of the sojourn times (18). Figure 9
illustrates indeed the Mittag-Leffler distribution function:
higher probability for small times (i.e., fast infections) causes
the prevalence to increase faster for smaller α. On the other
hand, the very slow convergence towards the steady state is
caused by the heavy-tailed behavior of Mittag-Leffler dis-
tribution (which possesses an infinite mean). The behavior
of the prevalence observed in Figs. 6, 7, and 8 also agrees
with the underlying coordination mechanism highlighted in
Sec. V A 1: compared to the Markovian case, where all
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FIG. 6. Evolution of the prevalence in the α-fractional extension
of the ε-SIS process on a complete graph with N = 10 nodes, one
initial infected node in red in the network plot, β = 0.3, δ = 1, and
ε = 10−6. The time axis is in log-scale. The full line is the prevalence
in (24) obtained from the solution of the fractional equation (8). The
circles represent the average outcome of the 5 × 103 Monte Carlo
simulations with Tmax = 104.
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FIG. 7. Evolution of the prevalence in the α-fractional extension
of the ε-SIS process on a Erdös–Rényi with N = 10 nodes, edge
probability p = 0.3, one initial infected node in red in the network
plot, β = 1, δ = 1, and ε = 10−6. The time axis is in log-scale. The
full line is the prevalence in (24) obtained from the solution of the
fractional equation (8). The circles represent the average outcome of
the 5 · 103 Monte Carlo simulations with Tmax = 104.

process events occur independently of each other, more events
happen at short times because of the dependence that arises
from the joint distribution (30) and the prevalence is indeed
higher at short times; for the same reason, events can still
happen at very large times compared to the Markovian inde-
pendent case and we observe the emergence of the power-law
convergence towards the steady state.
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FIG. 8. Evolution of the prevalence in the α-fractional extension
of the ε-SIS process on a Barabási–Albert graph with N = 10 nodes,
initial clique size m0 = 7, m = 2 degree of the new added nodes, one
initial infected node in red in the network plot, β = 0.3, δ = 1, and
ε = 10−6. The time axis is in log-scale. The full line is the prevalence
in (24) obtained from the solution of the fractional equation (8). The
circles represent the average outcome of the 5 · 103 Monte Carlo
simulations with Tmax = 104.
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FIG. 9. The Mittag-Leffler distribution with rate λ equal to 1 for
different 0.1 � α � 1. The t̃ axis in in log-scale. The same plot but
with lin-scale is Fig. 1 in [8].

VI. CONCLUSIONS

In order to describe stochastic processes, we have shown
that the fractional Chapman-Kolmogorov equation (8) should
be restricted to the fractional order 0 < α < 1 and should
be employed in a dimensionless framework. The fractional
extension (8) of Markov processes defines a large class of
non-Markovian stochastic processes, which are difficult to in-
terpret because the mathematical description does not directly
specify the underlying physical mechanisms. For instance,
Markovian processes consist of a set of independent Poisson
processes, but an analogous correspondence in the fractional
generalization in (8) is not obvious. Without additional infor-
mation about the dependence on the previous states, a physical
interpretation of the fractional processes is hardly possible (as
also was concluded in [8]).

In the general case, the fractional derivative in the gov-
erning equations of ε-SIS epidemics on networks enables
the deduction of power-law bounds of the average fraction
of infected individuals (26). Additionally, the fractional N-
intertwined mean-field approximation (f-NIMFA) of the ε-SIS
process on networks (29) provides a useful tool to compute
fractional epidemic processes on large graphs and allows to
understand why the epidemic threshold is independent of the
fractional order α.

Assuming the independence on previous states in the frac-
tional process similarly as in the Markov case, we obtain
a semi-Markov process with Mittag-Leffler sojourn times
(Sec. III C). The semi-Markov assumption still features the
analytic tractability of the fractional equations (8), while at
the same time allows us to interpret the fractional process
physically.

Our main result within a fractional semi-Markovian set-
ting is the epidemic description in Theorem V.A.1: the single
infection and curing processes are dependent renewal pro-
cesses with Mittag-Leffler interarrival times. Theorem V.A.1
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specifies the “microscopic” level of a “fractional epidemic”
on a fixed graph detailing the interactions between the indi-
vidual infection and curing processes that are governed by
the fractional Chapman-Kolmogorov equation (8). Moreover,
the joint distribution (30) of the event times of all processes
in a same state is a key result, which highlights a positive
dependence between the competing processes leading to the
collective behavior of the average fraction of infected individ-
uals observed in Figs. 6, 7, and 8.

Although the semi-Markov assumption is “naturally” made
in fractional analyses, which implicitly suggests a similar
independence and memory-less property as in Markov pro-
cesses, our key Theorem V.A.1 implies that, at a new state, the
semi-Markov process is characterized by an interesting depen-
dence among the times of all infection and curing processes.
Those same infection and curing processes, each with rates
determined by the Markovian Q-matrix (which is the same
in the fractional case), are independent in the corresponding
Markov process with α = 1. The fractional order α indicates
how strong is the dependence (30) between the processes in
the network and how heavy tailed are the event times: with
decreasing α the dependence is increased and the probability
of very long or very short events compared to the Markovian
case becomes also larger.

While nonexponential infection and curing times have been
measured in real-world scenarios [2,3], the global depen-
dence, discovered in (30), between all the occurrence times
of the infection and curing processes at each step/state seems
questionable. If we think about the spreading of a biological
virus on a large contact network between individuals who
live in different locations (e.g., different cities or nations),
events which affect people who live far apart are likely not
dependent. However, when considering the transmission of
viruses between individuals sharing the same environment
(e.g., household, office), the infection and curing events are
naturally dependent. For instance, an infected individual tak-
ing more time to cure in a household, may impact on how
long other infections and/or curings take, because they alter
the environment by contaminating objects and/or the air [30].

For a rumor spreading on a network, the fractional process
framework may include aspects not considered in Markovian
models: for instance, when a rumor spreads on social media
the infection and curing events are not independent, because
single infected nodes may affect the recommendation algo-
rithm of the platform and therefore all other nodes in the
network [31].
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APPENDIX A: CONTINUOUS-TIME
MARKOV PROCESSES

1. Definitions and Markov property

A stationary continuous-time Markov process {M(t ), t �
0} on the state space S with N states (i = 1, . . . , N) is charac-
terized by the Markov property

Pr[M(t + τ ) = j|M(τ ) = i, M(u) = k, 0 � u < τ ]

= Pr[M(t + τ ) = j|M(τ ) = i], (A1)

with i, j, k = 1, . . . , N . The transition probabilities are
defined as

Pji(t ) = Pr[M(t + τ ) = j|M(τ ) = i]

= Pr[M(t ) = j|M(0) = i]

and the probability state vector of the process is defined as

sk (t ) = Pr[M(t ) = k], k = 1, . . . , N.

Assuming that the N × N transition probability matrix P(t )
is continuous and differentiable, the infinitesimal generator of
the Markov process M(t ) is defined as

−Q := lim
h→0+

P(h) − I

h
,

where I is the N × N identity matrix. In particular, the ele-
ments of −Q can be physically interpreted as “rates” since for
h → 0

Pr[M(t + h) = j|M(t ) = i] = −qjih + o(h),

Pr[M(t + h) = i|M(t ) = i] = 1 − qiih + o(h).

As a result, if u is the all ones N × 1 vector, uT Q = 0 and
det(Q) = 0.

Lemma A.1.1. Given the continuous-time stationary
Markov process {M(t ), t � 0} whose infinitesimal generator
is −Q, the transition probability matrix P(t ) satisfies the
following forward and backward equations:

P′(t ) = −P(t )Q, (A2)

P′(t ) = −QP(t ). (A3)

Proof. See [20, Lemma 10.2.2]. �
Given the initial condition P(0) = I , Eqs. (A2) and (A3)

are solved by

P(t ) = e−Qt .

We can define the sojourn time τ j of state j as the random time
the process stays in state j before transitioning to a different
state.

Theorem A.1.1. The sojourn times τ j of the continuous-
time Markov process M(t ) in a state j are independent,
exponential random variables with mean 1

q j j
:

Pr[τ j > t] = e−q j j t , j = 1, . . . , N.

Proof. See [20, Theorem 10.2.3]. �
This feature is a consequence of the Markov property (A1)

and the exponential distribution is the only distribution for
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which

Pr[τ j > t + u|τ j > u] = Pr[τ j > t], j = 1, . . . , N.

If the process M(t ) admits a steady state limt→∞ s(t ) = π , it
must satisfy the equation πQ = 0.

2. Chapman-Kolmogorov equation

From the Markov property (A1) the evolution of the state
probability vector is written as

s(t + τ ) = P(t )s(τ ).

Lemma A.1.1 can thus be employed to derive the so-called
Chapman-Kolmogorov equation, which describes the evolu-
tion of the state probability vector s(t )

d

dt
s(t ) = −Qs(t ).

Given the initial condition s(0), the equation is solved by

s(t ) = e−Qt s(0).

3. Embedded Markov chain

The embedded Markov chain of the continuous-time
Markov process M(t ) is the corresponding discrete Markov
chain that follows the same state transitions, but that abstracts
the sojourn time relation. In particular, the transition probabil-
ity of the embedded Markov chain can be written as

Vji = lim
h→0+

Pr[M(h) = j|M(h) �= i, M(0) = i] = −qji

qii
.

(A4)

If the embedded Markov chain possesses a steady-state vector,
whose components are vi, for i = 1, . . . , N , then it obeys [20,
Sec. 10.4]

vi =
N∑

j=1

Vi jv j .

It follows that the components of the steady-state vector π of
the continuous Markov process M(t ) can be written as [20,
Eq. (10.25)]

πi = vi/qii∑N
j=1 v j/q j j

.

APPENDIX B: BRIEF REVIEW OF MARKOVIAN SIS
EPIDEMICS ON A GRAPH

1. Markovian ε-SIS epidemics on a graph

The state of a node i at time t in a Markovian SIS process
on a static graph G with N nodes is specified by a Bernoulli
random variable Xi(t ) ∈ {0, 1}: Xi(t ) = 0 for a susceptible
node and Xi(t ) = 1 for an infected node (i = 1, . . . , N). A
node i at time t can be in one of the two states: infected, with
probability wi(t ) = Pr[Xi(t ) = 1] or susceptible with proba-
bility 1 − wi(t ). We assume that the curing (also known as
recovery) process per node i is a Poisson process with rate
δ and that the infection process per link is a Poisson process
with rate β. The effective infection rate is τ = β

δ
. Only if a

node is infected, then it can infect its direct neighbors, that

are still susceptible. Both the curing and infection Poisson
process are independent. This is the general continuous-time
description of the simplest type of a susceptible-infected-
susceptible (SIS) process on a network. Occasionally, a third,
independent self-infection process with self-infection rate ε

is considered, which describes background or indirect infec-
tions. Infections may happen either through direct contact or
indirectly, for example, after touching infected surfaces or
inhaling air in a closed room previously contaminated by an
infected individual. The Markovian ε-SIS model consists of
three, independent Poisson processes: (i) curing process with
rate δ, (ii) infection process with rate β, and (iii) self-infection
process with rate ε.

A description of the ε-SIS epidemic process on a graph is
as follows. Let I denote the set of infected nodes in the graph
G and let ai j be an element of the adjacency matrix A. Then,
the Markov transitions{

for j /∈ I:I 	→ I ∪ { j} at rate β
∑

k∈I ak j + ε

for i ∈ I:I 	→ I\{i} at rate δ
(B1)

detail the dynamics between the infected subgraph I and its
complement Ic = G\I . The sequel will specify the high-level
description (B1) further.

2. Markovian assumptions

We will first show that the ε-SIS epidemic process on a
fixed graph can be described as a Markov continuous-time
process if we make some assumptions. Once we succeed in
transforming a physical process into the realm of Markov
theory, the entire and powerful theory of Markov processes
provides a solution as well as deep insights. A crucial property
in Markov theory [20, Chapters 9 and 10] is that the current
state Xi(t ) only depends on the previous state (see also (A1)).
The Markov property implies that the processes acting on a
state Xi(t ) only are independent Poisson processes. All out-
comes or Poisson events are independent in time and occur at
exponentially distributed times with the same mean, which is
the inverse of the rate or strength of the Poisson process. Thus,
the stronger a Poisson process operates, the smaller the inter-
arrival time between Poisson events. The Poisson assumption
thus implies that the infection time T as well as the curing or
recovery time R are exponential random variables.

At first glance, the Poisson assumption, apart from the
independence assumptions, may raise doubts and stimulate
the search for a non-Markovian theory, because observations
indicate that the infection time T is, for most diseases, not
exponentially distributed. Perhaps, one of the compelling rea-
sons why Markov theory is not so bad for epidemics, is the
lack of knowledge when infections or curings precisely occur.
Often, one can determine a time interval [t1, t2], where we
know that the item (or node) is susceptible at time t1, but
infected at time t2. Hence, during the time interval [t1, t2],
an infectious event must have occurred at time u ∈ [t1, t2].
If we do not know the occurrence time u accurately, a de-
fendable modeling assumption is that any time u ∈ [t1, t2]
is equally possible. Precisely, this assumption that, given an
event has occurred in the time interval [t1, t2], its occurrence
time u ∈ [t1, t2] is “uniformly distributed” over [t1, t2] is a
basic property of the Poisson process that no other process
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shares and that is related to its memoryless property. Another
property of Poisson processes and the exponential distribution
is that a susceptible node can be infected by any of its infected,
direct neighbors, where each neighbor acts independently of
the others. If each neighbor k ∈ N (i) of node i, where N (i)
is the set of neighbors of node i, has rate β, then the node
i is infected by that neighbor that transmits the infection the
fastest. This means that the time at which the infection event
at node i occurs, is the minimum of the infection times of each
infected neighbor. The minimum of independent, exponen-
tially distributed times each with rate β is again an exponential
random variable with rate

∑
k∈N (i) β, a property that we will

use in (B6) below and which is further physically explained in
a Markov discovery process [20, Sec. 16.2] that allows us to
model a stochastic shortest path problem on a graph.

3. Governing equation of Markovian ε-SIS epidemics

The time-dependent ε-SIS process can be described
as a continuous-time Markov chain with 2N states [32].

Computationally, enumerating the infected subgraphs I in G
leads to the governing equation (6). As explained in [13],
we label the Markov state i as i =∑N

k=1 xk (i)2k−1, where the
binary kth digit xk (i) represents the infectious state of a node
k in the network. In other words, any state i in the SIS Markov
graph represents the infectious state of each node in the graph
and since a nodal state Xi is only 0 or 1, the combined binary
word x1x2 . . . xN equals i in decimal notation. In a graph with
N nodes, the total number of Markov states is 2N , all possible
binary words with N digits.

The time dependence of the probability state vector s(t ) in
ε-SIS epidemics, with components

si(t ) = Pr[X1(t ) = x1(i), X2(t ) = x2(i), . . . , XN (t ) = xN (i)]

and normalization
∑2N −1

i=0 si(t ) = 1, obeys the Chapman-
Kolmogorov equation (6), where the 2N × 2N infinitesimal
generator −Q [33], specified in [32], has entries

q ji =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−δ if j = i − 2m−1; m = 1, 2, . . . , N and xm(i) = 1

−ε − β
∑N

k=1 amkxk (i) if j = i + 2m−1; m = 1, 2, . . . , N and xm(i) = 0

−∑2N

k=1;k �= j qk j if j = i

0 otherwise

. (B2)

The solution of the matrix differential equation is (7). For
self-infection rate ε > 0, a nontrivial [34] 2N × 1 steady-state
vector s∞ exists, that obeys Qs∞ = 0, and s∞ is the right
eigenvector belonging to zero eigenvalue of Q, while the
corresponding left eigenvector is the all-one vector u, that
specifies the basic property uT Q = 0 of any Laplacian −Q.

The nodal viral infection probability is defined as

w j (t ) = Pr[Xj (t ) = 1] = E [Xj (t )],

W (t ) = [w1(t ), . . . ,wN (t )]T (B3)

and can be obtained from the state vector s(t ) with the relation

W (t ) = Ms(t ), (B4)

where M is a N × 2N matrix, which contains the states in bi-
nary notation but bit reversed. The average fraction of infected
nodes in G at time t (i.e., prevalence) equals

y(t ) = 1

N
uT Me−Qt s(0) = 1

N
uT W (t ) = 1

N
||W (t )||1. (B5)

The 2N × 1 probability state vector s(t ) provides the prob-
ability of each possible configurations in which a subgraph
is infected at time t . This interesting information is diffi-
cult to simulate with a Monte Carlo-like algorithm, because
sufficient events must be generated in which a particular
configuration is infected at the same time and, consequently,
very long simulations are required, even for relatively small
graphs. Although exact, the solution (7) is numerically

hard to compute [35] for a large size N of the contact
graph.

a. Markovian SIS epidemics phase transition

Another fundamental property of the Markovian SIS epi-
demic on a graph is whether a virus will spread through the
entire network or will die out (when ε = 0). Many authors
(see [36–38]) define the epidemic threshold as a parame-
ter τc, which separates two different phases of the dynamic
spreading process on a network: if the effective infection
rate τ = β/δ is above the threshold τc, the infection spreads
and eventually becomes persistent in time; if τ is below
τc, the infection dies out exponentially fast. An infection
becomes persistent in time when a large fraction of the to-
tal population stays infected for a time period, which is
many times longer than the average time a single nodes
takes to cure (e.g., E [Tδ] = 1/δ). The exact epidemic thresh-
old for the SIS process on finite networks is still an open
problem. Thus, all details about the phase transition of the
ε-SIS process around the epidemic threshold that are em-
bedded in the huge 2N × 2N matrix Q are still waiting to be
unraveled.

For example, as inspired by phase transitions in physics,
are all joint probabilities si(t ) of the same order of magnitude
in a narrow region around the epidemic threshold? Although
the nature of the epidemic phase transition is different from
the crystallization of matter from the liquid to the solid phase,
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in particular the freezing of water around zero Celsius, a
comparable interpretation may be asked for: How does long-
range epidemic “freezing” grows from disconnected infected
subgraphs towards a massive interconnected “ice-plate” over
the entire graph in the endemic phase, when sweeping an
effective infection rate τ from below to above the epidemic
threshold? Exact analyses of the nodal infection probability
Pr[Xj (t ) = 1] for any node j in the complete graph are pre-
sented in [39,40] and for the star in [41].

b. Example: ε-SIS on three nodes one-dimensional lattice

As an example, let us consider the ε-SIS process on a
one-dimensional lattice with three nodes. The infinitesimal
generator (B2) becomes

FIG. 10. The state diagram for the ε-SIS in a path graph with
N = 3 nodes. The decimal numbering of the states is in bold. The
lines represent the possible transitions in the Markov process, whose
rates are given by the infinitesimal generator Q.

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3ε −δ −δ 0 −δ 0 0 0

−ε δ + β + 2ε 0 −δ 0 −δ 0 0

−ε 0 δ + 2(β + ε) −δ 0 0 −δ 0

0 −(β + ε) −(β + ε) 2δ + β + ε 0 0 0 −δ

−ε 0 0 0 δ + β + 2ε −δ −δ 0

0 −ε 0 0 −ε 2(δ + β ) + ε 0 −δ

0 0 −(β + ε) 0 −(β + ε) 0 2δ + β + ε −δ

0 0 0 −β − ε 0 −(2β + ε) −(β + ε) 3δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

A entry Qji = q ji indicates (minus) the rate at which the
process can transition from state i to state j. For instance,
−Q75 = 2β + ε (matrix indices start from 0) is the rate with
which the process transitions from state i = 5 (in binary 101)
to state j = 7 (in binary 111), and is given by the infec-
tion rates β of the two neighbors of the susceptible central
node, summed with the self-infection rate ε of the susceptible
central node. Figure 10 displays the 2N state space and the
possible transition of the process.

4. Physical approach towards Markovian SIS epidemics

The fact that the Markov state Xi(t ) in SIS epidemics is a
Bernoulli random variable facilitates an elegant and physical
differential equation for the infection probability of node i,
first proposed in [42],

dE [Xi(t )]

dt
= E

[
−δXi(t ) + β(1 − Xi(t ))

N∑
k=1

akiXk (t )

]
(B6)

= −δE [Xi(t )] + β

N∑
k=1

akiE [Xk (t )]

−β

N∑
k=1

akiE [Xi(t )Xk (t )]. (B7)

The time-derivative of the infection probability E [Xi(t )] =
Pr[Xi(t ) = 1] of a node i consists of the expectation of two
competing processes in (B6), expressed in the Bernoulli ran-
dom variable Xi ∈ {0, 1}: (a) if node i is infected Xi = 1, then
the node i is cured at rate δ and only first term in (B6) matters,

else (b) if node i is susceptible Xi = 0, only the second term
in (B6) plays a role, indicating that all infected neighbors∑N

k=1 akiXk of node i try to infect the node i with rate β. The
first term in (B6) refers to a nodal process with curing strength
δ, whereas the second term in (B6) is a link process on the
graph with infection strength ranging over integer multiples
m =∑N

k=1 akiXk of β with 0 � m � di, the degree of node i.
The Bernoulli random equation between brackets [.] represent
the simple local rule of the SIS process, which is essentially an
“if-then-else” statement. Usually an “if-then-else” statement
requires nonlinear operations, but here is decoded by a linear
sum of two Bernoulli terms. The last term in (B7), contain-
ing joint probabilities E [Xi(t )Xk (t )] = Pr[Xi(t ) = 1, Xk (t ) =
1], is complicating and requires us to deduce the differential
equation for E [Xi(t )Xj (t )], which is found in [20, Sec. 17.3].

The resulting differential equation for dE [Xi (t )Xj (t )]
dt contains the

joint probabilities E [Xi(t )Xj (t )Xk (t )] of the triples. Continu-
ing in this manner as shown in [20, Sec. 17.3], we again arrive
at the 2N linear differential equations in (6). The exponentially
increasing set of linear equations in the size N of the graph (or
system) describes the complex interacting processes, whose
emergent behavior contains a phase transition around the
epidemic threshold.

When the self-infection rate ε �= 0 the governing equa-
tions are

dE [Xi(t )]

dt
= E [−δXi(t ) + (1 − Xi(t ))

×
{
β

N∑
k=1

akiXk (t ) + ε

}]
(B8)
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dE [Xi(t )]

dt
= ε − (δ + ε)E [Xi(t )] + β

N∑
k=1

akiE [Xk (t )]

−β

N∑
k=1

akiE [Xi(t )Xk (t )] (B9)

because if node i is susceptible then Xi = 0, and node i can
also self-infect with rate ε.

5. First-order mean-field approximation NIMFA

Many interesting insights from (B6) can be deduced. First,
a powerful mean-field approximation, called N-intertwined
mean-field approximation [43] (NIMFA) [13,44], follows
from (B6) by replacing the random variable Xi by its simplest
approximation, its mean [45] vi(t ) = E [X (1)

i ],

dvi(t )

dt
= −δvi(t ) + β(1 − vi(t ))

N∑
j=1

ai jv j (t ). (B10)

The accuracy of NIMFA in (B10) is assessed in [46]. Second,
the NIMFA epidemic threshold τ (1)

c = 1
λ1

[13, Lemma 6],
where λ1 is the largest eigenvalue or spectral radius of the
adjacency matrix A, is proven in [4] to be a lower bound
for the Markovian epidemic threshold, i.e., τc > τ (1)

c . In [47]
the NIMFA infection probability vi(t ) is shown to upper
bound Pr[Xi(t ) = 1]. The joint probability E [XiXk] = Pr[Xi =
1, Xk = 1] = Pr[Xi = 1|Xk = 1] Pr[Xk = 1] is approximated
in NIMFA by E [X (1)

i ]E [X (1)
k ] and the NIMFA independence

implies that the conditional probability Pr[Xi = 1|Xk = 1] is
replaced by Pr[X (1)

i = 1], while the Markovian epidemics
satisfies the inequality Pr[Xi = 1|Xk = 1] � Pr[Xi = 1] as
proved in [48,49]. Further, NIMFA has been extended to a
large variety of compartmental models in [50], exact solutions
of the NIMFA differential equation (B10) on the complete
graph are derived in [25] and analytic solutions around the
epidemic threshold in terms of tanh(x) are deduced in [51].

After dividing both sides in (B10) by δ > 0 and denot-
ing the dimensionless time t̃ = tδ, the dimensionless NIMFA
equation

dvi(t̃ )

dt̃
= −vi(t̃ ) + τ (1 − vi(t̃ ))

N∑
j=1

ai jv j (t̃ )

only contains as parameter the effective infection rate τ , while
the nodal infection probability vi(t̃ ) is expressed in time units
of the average curing time E [R] = 1

δ
.

The heterogeneous NIMFA equation [51] is

dvi(t )

dt
= −δivi(t ) + (1 − vi(t ))

N∑
j=1

βi jai jv j (t )

where δi is the curing rate of node i and βi j is the infection
rate from node j to node i. The heterogeneous NIMFA matrix
differential equation for the N × 1 infection probability vector
v(t ) = (v1(t ), v2(t ), . . . , vN (t )) is

dv(t )

dt
= −Dv(t ) + diag(u − v(t ))Bv(t )

where u is the N × 1 all-one vector, the N × N curing rate
matrix D = diag(δ1, δ2, . . . , δN ) and the N × N infection
rate matrix B contains as elements Bi j = βi jai j . The basic

reproduction number R0 is defined as “the expected number
of secondary cases produced, in a completely susceptible
population, by a typical infective individual during its entire
period of infectiousness”. Van den Driessche and Watmough
[52] demonstrated that R0 = ρ(D−1B), where ρ(U ) denotes
the spectral radius of a square matrix U . In the homogeneous
setting, the basic reproduction number R0 = β

δ
λ1 = τλ1.

Since the epidemic threshold τ (1)
c in a first-order mean-field

approximation as NIMFA corresponds to R0 = 1, we again
find that τ (1)

c = 1
λ1

. Hence, the basic reproduction number
R0 = τ

τ
(1)
c

is inversely proportional to the first-order mean-field

epidemic threshold τ (1)
c = 1

λ1
. The precise relation between

the basic reproduction number R0 and the Markovian epi-
demic threshold τc is, to the best of our knowledge, not known.

When the self-infection rate ε̃ = ε/δ �= 0, the dimension-
less NIMFA equation becomes

dvi(t̃ )

dt̃
= −vi(t̃ ) + (1 − vi(t̃ ))

{
τ

N∑
j=1

ai jv j (t̃ ) + ε̃

}
. (B11)

APPENDIX C: FRACTIONAL EQUATION
IN PROBABILITY THEORY FOR α > 1

We show that when m > 1 and α > 1, the conditions
uT sα (t̃ ) = 1 and (11) are not sufficient for the solution (5) to
describe a probability vector at any time t̃ .

Consider a 3 × 3 Laplacian matrix Q̃, which satisfies the
condition uT Q̃ = 0,

Q̃ =
⎛
⎝0 −1 0

0 1.5 −2
0 −0.5 2

⎞
⎠ (C1)

and choose as initial conditions for the fractional differential
equation (4) with m = 2 and α = 1.5,{

sα (0) = (0, 1, 0)

s′
α (0) = (−2, 1, 1)

(C2)

FIG. 11. Components of the solution of Eq. (4) for m = 2, α =
1.5, Q̃ equal to (C1) and initial conditions (C2).
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compliant to (11), which in this case translates to{
uT sα (0) = 1

uT s(n)
α (0) = 0

.

The evolution over time of the three components of the so-
lution (5), shown in Fig. 11, indicates that the components
of the vector sα (t̃ ), which represent probabilities, can be
negative. Therefore, the conditions uT sα (t̃ ) = 1 for every t̃
and uT s(n)

α (0) = 0 together are not sufficient to guarantee that
the components of the vector sα (t̃ ) are probabilities values
between [0,1].

APPENDIX D: SOLUTION OF THE SYSTEM
OF FRACTIONAL FORWARD EQUATIONS

We show that the matrix Eα (−Q̃t̃α ) solves the first equa-
tion of the system (22).

The single-sided Laplace transform for complex z is de-
fined as [53]

ϕ(z) =
∫ ∞

0
e−zt̃ f (t̃ )dt̃ = L[ f (t̃ )],

while the inverse Laplace transform is defined as [53]

f (t̃ ) = 1

2π i

∫ c+i∞

c−i∞
ϕ(z)ezt̃ dt = L−1[ f (t̃ )].

We employ relation (22) in [8] to write the Laplace transform
of the fractional derivative of the αP ji(t̃ ),

L
[
Dα

0 αP ji(t̃ )
] = zαL[αP ji(t̃ )] − zα−1

αP ji(0),

from which (22) becomes

zαL[αP ji(t̃ )] − zα−1
αP ji(0) = −

N∑
l=1

L[αP jl (t̃ )]q̃li. (D1)

If we define the Laplace transformed transition matrix whose
elements are � ji(z) := L[αP ji(t̃ )], expression (D1) can be
written in matrix form as

�(z)(zαI + Q̃) = zα−1I, (D2)

in which I is the identity matrix coming from the initial
conditions Pji(0) = δ ji. If we assume that Q̃ is diagonalizable,
we decompose

Q̃ =
N∑

k=1

μ̃kxkyT
k , (D3)

where μk with Re(μk ) � 0 is the non-negative eigenvalue be-
longing to the right eigenvector xk and the left eigenvector yk

of Q̃. Substituting (D3) into (D2) and using the decomposition
of the identity I =∑N

k=1 xkyT
k , we obtain

�(z)
N∑

k=1

(zα + μ̃k )xkyT
k =

N∑
k=1

zα−1xkyT
k . (D4)

The matrix B(z) =∑N
k=1(zα + μ̃k )xkyT

k can be inverted, for
Re(z) > 0 as

(B(z))−1 =
N∑

k=1

1

(zα + μ̃k )
xkyT

k ,

from which (D4) becomes �(z)B(z) = zα−1I and solved for
�(z) as

�(z) = zα−1(B(z))−1 =
N∑

k=1

zα−1

(zα + μ̃k )
xkyT

k . (D5)

Inverse Laplace transforming (D5) yields the transition prob-
ability matrix

αP(t̃ ) =
N∑

k=1

Eα (−μ̃kt̃α )xkyT
k . (D6)

Substituting the Taylor series of the Mittag-Leffler function
(3), we express (D6) as

αP(t̃ ) =
N∑

k=1

( ∞∑
m=0

μ̃m
k (−tα )m

�(1 + αm)

)
xkyT

k

=
∞∑

m=0

(−tα )m

�(1 + αm)

N∑
k=1

μ̃m
k xkyT

k .

Invoking the spectral decomposition (D3), followed by the
Taylor series results in

αP(t̃ ) =
∞∑

m=0

Q̃m(−tα )m

�(1 + αm)
= Eα (−Q̃t̃α ).

APPENDIX E: SEMI-MARKOV PROCESSES AS TIME
TRANSFORMED MARKOV PROCESSES

It is known in literature [22,54], that the process defined
in (16) can be also constructed by replacing the determinis-
tic time t̃ in the Markov process presented in Appendix A
with a random time given by a stochastic process, which
produces non-negative and nondecreasing trajectories. The
process involved is the right-continuous inverse of an inde-
pendent α-stable subordinator. An α-stable subordinator is a
nondecreasing stochastic process with stationary, independent
increments, whose distribution is strictly stable with a charac-
teristic exponent α. A stochastic process H (t̃ ) is said to be
strictly α stable if limt→∞ H (ct̃ )

H (t̃ ) = c1/α . The right-continuous
inverse of the α-stable subordinator H (t̃ ) is defined as

L(t̃ ) := inf{s � 0 : H (s) > t̃}
and is the first passage time of the stable subordinator above
time t̃ � 0. The stable subordinator H (s) is a strictly increas-
ing pure jump process while the inverse L(t̃ ) is continuous
and shows flat periods, which are caused by the jumps of
the subordinator [54, Figs. 4 and 5]. In [22,54] it is therefore
shown that the process (16) is the same as the Markov process
M(t̃ ) presented in Appendix A if t̃ → L(t̃ ) and that M(L(t̃ ))
has the same Mittag-Leffler times of Xα (t̃ ):

M(L(t̃ )) d= Xα (t̃ ), t̃ � 0.

A semi-Markov process with Mittag-Leffler sojourn times can
thus be interpreted as a Markov process, which evolves in
its state space with random bursts and delays that cause the
sojourn times to be Mittag-Leffler distributed (18).
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APPENDIX F: BOUNDS FOR THE PREVALENCE
OF THE MARKOVIAN SIS EPIDEMICS ON A GRAPH

Starting from (B9) we devise an upper and a lower bound
for the average fraction of infected nodes in a graph G in
which a spreading process described by the ε-SIS model
takes place. Since 0 �∑N

k=1 Xi(t )Xk (t ) we can deduce an
upper bound for the nodal viral infection probability [20,
Sec. 17.3.3]:

dW (t )

dt
� εu + (βA − (δ + ε)I )W (t ). (F1)

It follows, in the dimensionless framework (ε̃ = ε/δ, τ =
β/δ, t̃ = δt):

W (t̃ ) � e(τA−(1+ε̃))t̃ W (0) +
∫ t̃

0
e(τA−(1+ε̃)I )(t̃−s)ε̃u ds. (F2)

We can use (F2) to bound the prevalence (B5) similarly as in
[55]. Given an N × 1 vector v and a positive and symmetric
matrix H , the Jensen inequality stands [20, Sec. 5.2],

||eHv||2 � ||eH ||2 ||v||2 � e||H ||2 ||v||2 = eλ1(H ) ||v||2, (F3)

where λ1(H ) is the largest eigenvalue of H , which is positive
and real. Moreover, from the Cauchy–Schwarz inequality,

||v||2 � ||v||1 �
√

N ||v||2. (F4)

For ε = 0 we compute the 2-norm of (F2),

||W (t̃ )||2 � ||e(τA−I )t̃ W (0)||2,

which employing (F3) is rewritten as

||W (t̃ )||2 � e(τλ1−1)t̃ ||W (0)||2, (F5)

with λ1 largest eigenvalues of the adjacency matrix A. Given
that ||W (t̃ )||1 = Ny(t̃ ), and in view of the inequalities (F4) we
rewrite (F5) as an upper bound for the prevalence,

y(t̃ ) � e(τλ1−1)t̃
√

Ny(0),

Also employing the lower bound from [26, Sec. B], then we
write

e−t̃ y(0) � y(t̃ ) � e(τλ1−1)t̃
√

Ny(0). (F6)

The bounds in (F6) highlight that, for τ < 1
λ1

, the process
tends exponentially fast to the overall healthy steady state on
any graph G. For the complete graph, (F5) is also valid for the
1-norm,

||W (t̃ )||1 � e(τλ1−1)t̃ ||W (0)||1.
Indeed, starting from (F2) with ε = 0,

||W (t̃ )||1 � ||e(τA−I )t̃ W (0)||1. (F7)

Employing the eigendecomposition A =∑N
k=1 λkvkv

T
k of the

adjacency matrix of the complete graph [19, Sec. 6.1] and
choosing normalized eigenvectors such that vT

k vk = 1, as in
[56, Eq. (15)],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 = N − 1, v1 = 1√
N

u

λk = −1, vk =
√

N−k+1
N−k+2

⎛
⎜⎜⎜⎜⎜⎝

0(k−2)×1

1
− 1

(N−k+1)
...

− 1
(N−k+1)

⎞
⎟⎟⎟⎟⎟⎠, k = 2, . . . , N,

we obtain from (F7)

||W (t̃ )||1 � ||e(τλ1−1)t̃ 1

N
uuT W (0)

+ e−(τ+1)t̃
N∑

k=2

vkv
T
k W (0)||1.

Writing explicitly the vectors

||W (t̃ )||1 �

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣e

(τλ1−1)t̃ 1

N

⎛
⎜⎝
∑N

k=1 Wk (0)
...∑N

k=1 Wk (0)

⎞
⎟⎠

+ e−(τ+1)t̃ 1

N

⎛
⎜⎜⎜⎝

(N − 1)W1(0) −∑k �=1 Wk (0)
(N − 1)W2(0) −∑k �=2 Wk (0)

...

(N − 1)WN (0) −∑k �=N Wk (0)

⎞
⎟⎟⎟⎠
∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
1

,

we sum the two vectors obtaining

||W (t̃ )||1 � 1

N

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

⎛
⎜⎜⎜⎜⎝

(e(τλ1−1)t̃ + (N − 1)e−(τ+1)t̃ )W1(0) +∑k �=1(e(τλ1−1)t̃ − e−(τ+1)t̃ )Wk (0)

(e(τλ1−1)t̃ + (N − 1)e−(τ+1)t̃ )W2(0) +∑k �=2(e(τλ1−1)t̃ − e−(τ+1)t̃ )Wk (0)
...

(e(τλ1−1)t̃ + (N − 1)e−(τ+1)t̃ )WN (0) +∑k �=N (e(τλ1−1)t̃ − e−(τ+1)t̃ )Wk (0)

⎞
⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
1

. (F8)

Given that λ1 = N − 1, the term e(τλ1−1)t̃ − e−(τ+1)t̃ is always
positive for t̃ � 0, τ � 0 and thus all the elements of the

vector in (F8) are positive, which allow us to drop the absolute
value when performing the 1-norm. Explicitly preforming the
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1-norm in (F8) we obtain

||W (t̃ )||1 � 1

N

N∑
i=1

((
e(τλ1−1)t̃ + (N − 1)e−(τ+1)t̃

)
Wi(0)

+
∑
k �=i

(
e(τλ1−1)t̃ − e−(τ+1)t̃

)
Wk (0)

)

= 1

N

(
e(τλ1−1)t̃ + (N − 1)e−(τ+1)t̃

)||W (0)||1

+ (N − 1)
((

e(τλ1−1)t̃ − e−(τ+1)t̃)||W (0)||1
)
,

which translates in

||W (t̃ )||1 � e(τλ1−1)t̃ ||W (0)||1.
In summary

e−t̃ y(0) � y(t̃ ) � e(τ (N−1)−1)t̃ y(0). (F9)

The upper bound in (F9) is consistently better than (F6)
highlighting the fact that for τ < 1

λ1
the process tends ex-

ponentially fast to the steady state. Relation (F9) provides
bounds for the prevalence on any graph when ε = 0. Indeed,
the complete graph is the topology in which the prevalence
is always higher than any other graph because there is the
higher number of infection links available, and the lower
bound is general as shown in [26, Sec. B]. It follows that
the prevalence y(t̃ ) cannot increase faster than the exponential
e(τ (N−1)−1)t̃ y(0).

APPENDIX G: PROOFS

Here, we report the proofs of lemmas and theorems pre-
sented in the main body of the paper.

1. Proof of Theorem IV.A.1

Proof. The proof is the generalization of the results (F6)
and (F9) to the fractional framework. Starting from the frac-
tional extension of (F1) in the dimensionless framework,

Dα
0Wα (t̃ ) � ε̃u + (τA − (1 + ε̃)I )Wα (t̃ ), (G1)

from [14, Theorem 7] the solution of (G1) writes

Wα (t̃ ) � Eα ((τA − (1 + ε̃))t̃α ) Wα (0)

+
∫ t̃

0
t̃α−1Eα,α

(
(τA − (1 + ε̃))(t̃α − s)

)
ε̃u ds.

It follows that for ε = 0, all the steps performed in Appendix F
are still valid and therefore (F6) becomes

Eα (−t̃α )yα (0) � yα (t̃ ) � Eα ((τλ1 − 1)t̃α )
√

Nyα (0). (G2)

Employing the eigendecomposition of the complete graph
adjacency matrix A as in (F9), and the fact that the prevalence
in the complete graph upper bounds the prevalence in any
other graph, relation (G2) becomes (26). The minimum on the
right-hand side of (26) is given by the fact that the prevalence
is never bigger than 1. �

2. Proof of Theorem V.A.1

Proof of 1. Proposition (b) implies that the process restarts
and forgets the past after each transition to a new state, from
which the semi-Markov property (19) follows directly.

Proof of 2. Given property (b), when the process Xα (t̃ )
enters in a new state k, the distribution of the sojourn time
in state k can be computed as

Pr[τ̃k � t̃] = Pr
[

min
j∈Sα (k)

{T̃j} � t̃
] = 1 − Pr

[ ⋂
j∈Sα (k)

{T̃j > t̃}
]
.

Invoking (30) of property (c) in the right-hand side of the
sojourn time distribution yields

Pr[τ̃k � t̃] = 1 − Pr

[ ⋂
j∈Sα (k)

{T̃j > t̃}
]

= 1 − Eα

(
− t̃α

∑
j∈Sα (k)

λ j

)
.

Property (a) tells us that the set {λ j} j∈Sα (k) correspond to
the rates of the Poisson processes, which define the entries
of the (scaled) infinitesimal generator −Q̃ defined in (B2)
corresponding to the same transition in the Markov case
(α = 1) and therefore

∑
j∈Sα (k) λ j =∑2N

j�1, j �=k (−q jk ) = qkk ,
resulting in

Pr[τ̃k � t̃] = 1 − Eα (−t̃α q̃kk )

and (18) is proven. �
Proof of 3. In the Markovian case, the embedded Markov

chain probability Vji of a specific transition i → j is given
by the probability that the Poisson event, which causes the
system transition to state j given the current state i, oc-
curs before all the other possible process events. Using
properties (a) and (c), we compute the probability that a spe-
cific process event happens before all the others, knowing that
the events possess joint Mittag-Leffler waiting times given by
(30). The joint probability density of the first arrival times of
n events follows from (30) as

fT̃1,...,T̃n
(t̃1, . . . , t̃n) = (−1)n ∂n

∂ t̃1 . . . ∂ t̃n
Pr

[ n⋂
j=1

T̃j > t̃ j

]
.

Without loss of generality, we consider the probability that
the event T̃1 happens before all the others

Pr

[ n⋂
i=2

T̃1 < T̃i

]
=

∑
σ j∈P2,...,n

Pr

[{ n⋂
i=2

T̃1 < T̃i

}
∩ {T̃σ j (1) < T̃σ j (2) < · · · < T̃σ j (n−1)

}]
(G3)

with P2,...,n set of all the possible (n − 1)! permutations of the
indices 2, . . . , n and σ j (k) k-th element of the permutation σ j .
For instance if n = 4, a permutation σ j[{2, 3, 4}] = {2, 4, 3}

and σ j (2) = 4. Expression (G3) is obtained employing the
law of total probability because the set of all the events
Eσ j

:= {T̃σ j (1) < T̃σ j (2) < · · · < T̃σ j (n−1)}, with σ j ∈ P2,...,n, is
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mutually exclusive and collectively exhaustive. We denote the joint probability distribution (30) as

Hα (t̃1, . . . , t̃n; λ1, . . . , λn) := Eα

(
−

n∑
j=1

λ j t̃
α
j

)
, (G4)

with α ∈ (0, 1] and n � 1 and we focus on one of the terms in the right-hand side of (G3),

Pr

[{ n⋂
i=2

T̃1 < T̃i

}
∩ {T̃2 < T̃3 < · · · < T̃n}

]
= (−1)n

∫ ∞

0
dt̃n

∫ t̃n

0
dt̃n−1 · · ·

∫ t̃2

0
dt̃1

∂n

∂ t̃1 · · · ∂ t̃n
Hα (t̃1, . . . , t̃n; λ1, . . . , λn). (G5)

We define the multiple integral operator as⎧⎨
⎩

In[h(t̃1, . . . , t̃n)] = ∫∞
0 dt̃n

∫ t̃n
0 dt̃n−1 · · · ∫ t̃2

0 dt̃1
∂n

∂ t̃n···∂ t̃1
h(t̃1, . . . , t̃n)

In−1[h(t̃1, . . . , t̃n)] = ∫∞
0 dt̃n

∫ t̃n
0 dt̃n−1 · · · ∫ t̃3

0 dt̃2
∂n−1

∂ t̃n···∂ t̃2
h(t̃1, . . . , t̃n).

(G6)

The well-known Leibniz integral rule

d

dx

(∫ b(x)

a(x)
f (x, t ) dt

)
= f (x, b(x))

d

dx
b(x) − f (x, a(x))

d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f (x, t ) dt, (G7)

with f (x, t ) and ∂x f (x, t ) integrable functions on the set [a(x), b(x)], allows us to move a partial derivative out of an integral, if
the upper limits of the integral are not functions of the variables that we are differentiating. Therefore, we rewrite (G5) as

Pr

[{ n⋂
i=2

T̃1 < T̃i

}
∩ {T̃2 < · · · < T̃n}

]
= (−1)n

∫ ∞

0
dt̃n

∫ t̃n

0
dt̃n−1

∂

∂ t̃n
· · ·
∫ t̃2

0
dt̃1

∂

∂ t̃2

∂

∂ t̃1
Hα (t̃1, . . . , t̃n; λ1, . . . , λn).

We apply again (G7) to move ∂/∂ t̃2 out from the integral in dt̃1 and obtain

Pr

[{ n⋂
i=2

T̃1 < T̃i

}
∩ {T̃2 < · · · < T̃n}

]
= (−1)n

∫ ∞

0
dt̃n · · ·

∫ t̃3

0
dt̃2

∂

∂ t̃3

(
∂

∂ t̃2

∫ t̃2

0
dt̃1

∂

∂ t̃1
Hα (t̃1, . . . , t̃n; λ1, . . . , λn)

−
[

∂

∂ t̃1
Hα (t̃1, . . . , t̃n; λ1, . . . , λn)

]
t̃1=t̃2

)
. (G8)

We evaluate the last term in (G8) using definition (G4),

[
∂

∂ t̃1
Hα (t̃1, . . . , t̃n; λ1, . . . , λn)

]
t̃1=t̃2

=
[

− λ1t̃α−1
1 Eα,α

(
−

n∑
j=1

λ j t̃
α
j

)]
t̃1=t̃2

= −λ1t̃α−1
2 Eα,α

(
− (λ1 + λ2)t̃α

2 −
n∑

j=3

λ j t̃
α
j

)
.

Noticing that the last expression is equivalent to a derivative in ∂ t̃2 we write

[
∂

∂ t̃1
Hα (t̃1, . . . , t̃n; λ1, . . . , λn)

]
t̃1=t̃2

= λ1

λ1 + λ2

∂

∂ t̃2
Eα

(
− (λ1 + λ2)t̃α

2 −
n∑

j=3

λ j t̃
α
j

)

= λ1

λ1 + λ2

∂

∂ t̃2
Hα (t̃2, t̃3, . . . , t̃n; λ1 + λ2, λ3, . . . , λn), (G9)

having employed in the last line the definition (G4) in which the variable t̃1 is removed and the parameter λ2 associated to the
variable t̃2 is replaced with λ1 + λ2. Evaluating the integral in dt̃1 in (G8) we obtain

Pr

[{ n⋂
i=2

T̃1 < T̃i

}
∩ {T̃2 < · · · < T̃n}

]
= (−1)n

∫ ∞

0
dt̃n · · ·

∫ t̃3

0
dt̃2

∂

∂ t̃3

[
∂

∂ t̃2
Hα (t̃2, t̃3, . . . , t̃n; λ1 + λ2, λ3, . . . , λn)

− ∂

∂ t̃2
Hα (t̃2, . . . , t̃n; λ2, . . . , λn) −

[
∂

∂ t̃1
Hα (t̃1, . . . , t̃n; λ1, . . . , λn)

]
t̃1=t̃2

]
, (G10)

given that Hα (0, t̃2, . . . , t̃n; λ1, λ2, . . . , λn) = Hα (t̃2, . . . , t̃n; λ2, . . . , λn). Substituting (G9) in to (G10) we obtain

Pr

[{ n⋂
i=2

T̃1 < T̃i

}
∩ {T̃2 < · · · < T̃n}

]
= (−1)n

∫ ∞

0
dt̃n · · ·

∫ t̃3

0
dt̃2

∂

∂ t̃3

[
∂

∂ t̃2
Hα (t̃2, t̃3, . . . , t̃n; λ1 + λ2, λ3, . . . , λn)

− ∂

∂ t̃2
Hα (t̃2, . . . , t̃n; λ2, . . . , λn) − λ1

λ1 + λ2

∂

∂ t̃2
Hα (t̃2, t̃3, . . . , t̃n; λ1 + λ2, λ3, . . . , λn)

]
.
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Then, employing (G6), (G10) becomes

Pr

[{ n⋂
i=2

T̃1 < T̃i

}
∩ {T̃2 < · · · < T̃n}

]
= (−1)nIn−1[Hα (t̃2, t̃3, . . . , t̃n; λ1 + λ2, λ3, . . . , λn)]

λ2

λ1 + λ2

− (−1)nIn−1[Hα (t̃2, . . . , t̃n; λ2, . . . , λn)].

Rewriting also (G5) in terms of the notation (G6), we establish a recursion valid for n � 2 and α ∈ (0, 1],

In[Hα (t̃1, . . . , t̃n; λ1, . . . , λn)] = In−1[Hα (t̃2, t̃3, . . . , t̃n; λ1 + λ2, λ3, . . . , λn)]
λ2

λ1 + λ2

− In−1[Hα (t̃2, . . . , t̃n; λ2, . . . , λn)]. (G11)

We proceed by demonstrating that In[Hα (t̃1, . . . , t̃n; λ1, . . . , λn)] does not depend on α. The proof applies the principle of
induction on the recursion (G11). The induction hypothesis is that In−1 does not dependent on α and the recursion then shows
that also In does not depend on α. It remains to show that the start of the induction at n = 2 is also independent of α. For n = 2,
the recursion (G11) simplifies to

I2[Hα (t̃1, t̃2; λ1, λ2)] = λ2

λ1 + λ2

∫ ∞

0
dt̃2

∂

∂ t̃2
Eα

(− (λ1 + λ2)t̃α
2

)−
∫ ∞

0
dt̃2

∂

∂ t̃2
Eα (−λ2t̃α

2 ) = − λ2

λ1 + λ2
+ 1 = λ1

λ1 + λ2
.

The quantity obtained in the n = 2 case corresponds to
the embedded Markov chain probability in the Markovian
case (α = 1) [20, Sec. 10.6], where the arrival distribution
is exponential. It follows that I2[Hα (t̃1, t̃2; λ1, λ2)] is inde-
pendent of α and by induction it proves that for all n,
In[Hα (t̃1, . . . , t̃n; λ1, . . . , λn)] does not depend on α. In sum-
mary, (G3) is the same for any value of α ∈ (0, 1] and
therefore the process transition probabilities are exactly the
same as in the Markov case (i.e., embedded Markov chain
probabilities (17)).

Proof of 4. The three previous proofs indicate that Xα (t̃ ) is
a semi-Markov process as defined in Sec. III C. The renewal
equation (21), which defines the evolution of the transition
probabilities of the process, is solved by

αP ji(t̃ ) = Pr[Xα (t̃ ) = j|Xα (0) = i] = Eα (−Q̃t̃α ).

If sα (t̃ ) = [Pr[Xα (t̃ ) = 1, . . . , Pr[Xα (t̃ ) = N]] is the probabil-
ity state vector of the process Xα (t̃ ), the law of total probability
indicates that

sα (t̃ ) = αP ji(t̃ )sα (0) = Eα (−Q̃t̃α )sα (0),

which is exactly the solution of the fractional equation (8). �

3. Proof of Lemma V.A.1

Proof. We know [20, Sec. 3.4] that

Pr[min{T̃1, T̃2} � t̃] = 1 − Pr[{T̃1 > t̃} ∩ {T̃2 > t̃}].
The probability of the minimum of two events {T̃1 � t}
and {T̃2 � t} equals the probability of the union of those
two events [20, Sec. 2.4], because the minimum can only
be smaller than t̃ if at least one of the events is smaller
than t̃ ,

Pr[min{T̃1, T̃2} � t̃] = Pr[{T̃1 � t̃} ∪ {T̃2 � t̃}]
= Pr[T̃1 � t̃] + Pr[T̃2 � t̃]

− Pr[{T̃1 � t̃} ∩ {T̃2 � t̃}].

where the last equality follows from a general formula [20,
Eq. (2.4)] in probability theory. Then, the definition of Y�(t̃ )
in (34) indicates that

Y�(t̃ ) = Pr[T̃1 � t̃, T̃2 � t̃] − Pr[T̃1 � t̃] Pr[T̃2 � t̃]

= Pr[T̃1 � t̃] + Pr[T̃2 � t̃] − Pr[{T̃1 � t̃} ∪ {T̃2 � t̃}]
− (1 − Pr[T̃1 > t̃])(1 − Pr[T̃2 > t̃])

= 1 − Pr[{T̃1 � t̃} ∪ {T̃2 � t̃}]
− Pr[T̃1 > t̃] Pr[T̃2 > t̃]. (G12)

Finally, with (G12) and recalling (33), we obtain

Y�(t̃ ) = 1 − Pr[{T̃1 � t̃} ∪ {T̃2 � t̃}]
− Pr[T̃1 > t̃] Pr[T̃2 > t̃]

= 1 − Pr[min{T̃1, T̃2} � t̃] − Pr[T̃1 > t̃] Pr[T̃2 > t̃]

= 1 − 1 + Pr[{T̃1 > t̃} ∩ {T̃2 > t̃}]
− Pr[T̃1 > t̃] Pr[T̃2 > t̃] = Y>(t̃ ),

which holds for any value of t̃ .

APPENDIX H: MONTE CARLO SIMULATION
OF THE FRACTIONAL EPIDEMIC PROCESS

We simulate the process in Theorem V.A.1 employing: (a)
the semi-Markov property (19), (b) the knowledge of the so-
journ time distribution of each state (18), and (c) the fact that
the transition probabilities are given by the embedded Markov
chain probabilities (17) of the corresponding Markovian ε-SIS
process. The Monte Carlo simulation of the process con-
sists on the repeating of two steps: (i) the sampling of the
state to which the process transitions from the embedded
Markov chain distribution; and (ii) the sampling of the sojourn
time at which the transition happens from the sojourn time
distribution.
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(i) Given the infinitesimal generator −Q̃ of the ε-SIS pro-
cess on a given graph, we compute the transition probabilities
Vji of the related embedded Markov chain (A4), and for
each state i of the process, we have a discrete probability
distribution

Pr[Xn+1 = j|Xn = i] = Vji,

N∑
j=1

Vji = 1, i, j = 1, . . . , N,

which defines the conditional probability of the process tran-
sitioning from any state to any other state. Therefore, if we
generate a random number θ ∈ [0, 1] and then we compare θ

with the sum of the distribution Vji for fixed i,

[
(0,V1i ), (V1i,V1i + V2i ), . . . ,

(
N−1∑
j=1

Vji,

N∑
j=1

Vji = 1

)]

we can sample in which state j ∈ [1, 2, . . . , N] the process
moves one step forward in discrete time, according to the
distribution Vji. The first step is therefore enough to simulate
a discrete Markov chain given the infinitesimal generator −Q̃
and an initial state i with i = 1, . . . , N .

(ii) Given that the process in Theorem V.A.1 is in con-
tinuous time, we also need to sample the sojourn time τ̃i

at which the transition occurs given the actual state of the
process,

Pr[τ̃i > t̃] = 1 − Fi(t̃ ), i = 1, . . . , N, t̃ > 0.

To sample from the sojourn time distribution we employ the
property of uniform distributed continuous random variables,
which allows to sample from any continuous probability
distribution [20, Sec. 3.2.1]. This method is usually called
the inverse transform sampling method. Indeed, given a ran-
dom number ω ∈ [0, 1] and a probability distribution function
FT (t̃ ) = Pr[T � t̃], the random variable F−1

T (ω) follows the
same distribution as T . If the inverse of the distribution
function is known, the method is straightforward, else some
numerical methods to compute F−1

T (ω) must be employed. In
our case the sojourn times follow a Mittag-Leffler distribution
in (18)

Pr[τ̃k > t̃] = Eα (− ˜qkkt̃α ), k = 0, . . . , N, t̃ > 0

and therefore we need to approximate the inverse distribution
function numerically. Given the random number ω, we em-
ploy the Brent–Dekker method [57] to numerically find the
value of t̃ for which FT (t̃ ) − ω = 0.

Starting from an initial state X (0) = X0, the steps (i) and
(ii) are repeated until the simulation time t̃ reaches a given
maximum Tmax or the steady state of the process. A trajectory
{Xsample(t̃ ), 0 � t̃ � Tmax}, which is a single realization of
the process, is obtained. Repeating the simulation Nsim times
the average trajectory, in the limit of Nsim → ∞, leads to an
approximation of the real trajectory,

X (t̃ ) � 1

Nsim

Nsim∑
i=1

X (i)
sample(t̃ ). (H1)

APPENDIX I: MICROSCOPIC MONTE CARLO
SIMULATION OF THE FRACTIONAL

EPIDEMIC PROCESS

To simulate the process described in Theorem V.A.1 we
can also sample the time of each new event in the epidemics
from the joint distribution (30). The next event in the simu-
lation will then be the fastest of all the sampled events and
its corresponding time will be the minimum of the sampled
times. Let us consider a situation in which we have n com-
peting processes. In order to perform the sampling from the
multivariate distribution we employ iteratively the definition
of conditional probability,

Pr

[ n⋂
j=1

T̃j = t̃ j

]
= Pr

[ n⋂
j=2

T̃j = t̃ j |T̃1 = t̃1

]
Pr[T̃1 = t̃1]

= Pr[T̃1 = t̃1]
n∏

j=2

Pr

[
T̃j = t̃ j |

j−1⋂
k=1

T̃k = t̃k

]

= Pr[T̃1 = t̃1]
n∏

j=2

Pr
[⋂ j

i=1 T̃i = t̃i
]

Pr
[⋂ j−1

k=1 T̃k = t̃k
]

= fT̃1
(t̃1)

n∏
j=2

fT̃1,...,T̃j
(t̃1, . . . , t̃ j )

fT̃1,...,T̃j−1
(t̃1, . . . , t̃ j−1)

= fT̃1
(t̃1)

n∏
j=2

(−1) j ∂ j

∂ t̃1... ∂ t̃ j
Pr
[⋂ j

i=1 T̃j > t̃ j
]

(−1) j−1 ∂ j−1

∂ t̃1... ∂ t̃ j−1
Pr
[⋂ j−1

k=1 T̃j > t̃ j
] . (I1)

The marginal densities are

Pr

[
T̃j = t̃ j |

⋂
k �= j

T̃k = t̃k

]
= fT̃j |T̃1,...,T̃j−1,T̃j+1,...,T̃n

(t̃1, . . . , t̃ j−1, t̃ j+1, . . . , t̃n)

= fT̃1,...,T̃n
(t̃1, . . . , t̃n)

fT̃1,...,T̃j−1,T̃j+1,...,T̃n
(t̃1, . . . , t̃ j−1, t̃ j+1, . . . , t̃n)

= (−1)n ∂n

∂ t̃1... ∂ t̃n
Pr
[⋂n

i=1 T̃i > t̃i
]

(−1)n−1 ∂n−1

∂ t̃1... ∂ t̃ j−1∂ t̃ j+1... ∂ t̃n
Pr
[⋂

k �= j T̃k > t̃k
] . (I2)
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Employing (30) and (I2), we are able to write the marginal distribution functions,

Pr

[
T̃j � t̃ j |

n⋂
k �= j

T̃k = t̃k

]
= FT̃j |T̃1,...,T̃j−1,T̃j+1,...,T̃n

(t̃ j |t̃1, . . . , t̃ j−1, t̃ j+1, . . . , t̃n)

=
∫ t̃ j

0
dt̃ fT̃j |T̃1,...,T̃n

(t̃1, . . . , t̃ j−1, t̃ , t̃ j+1, . . . , t̃n)

= −
∫ t̃ j

0 dt̃ ∂n

∂ t̃1... ∂ t̃ j−1∂ t̃∂ t̃ j+1... ∂ t̃n
Pr
[⋂

i �= j T̃i > t̃i, T̃j > t̃
]

∂n−1

∂ t̃1... ∂ t̃ j−1∂ t̃ j+1... ∂ t̃n
Pr
[⋂

k �= j T̃k > t̃k
]

= −
∂n−1

∂ t̃1... ∂ t̃ j−1∂ t̃ j+1... ∂ t̃n

(
Eα

(−∑n
i=1 λit̃α

i

)− Eα

(−∑k �= j λkt̃α
k

))
∂n−1

∂ t̃1... ∂ t̃ j−1∂ t̃ j+1... ∂ t̃n
Eα

(−∑k �= j λkt̃α
k

)

= 1 −
∂n−1

∂ t̃1... ∂ t̃ j−1∂ t̃ j+1... ∂ t̃n
Eα

(−∑n
i=1 λit̃α

i

)
∂n−1

∂ t̃1... ∂ t̃ j−1∂ t̃ j+1... ∂ t̃n
Eα

(−∑k �= j λkt̃α
k

) . (I3)

The nth derivative of the Mittag-Leffler can be written in a easier way employing the results in [15]

∂n

∂ t̃1 . . . ∂ t̃n
Eα

(
−

n∑
i=1

λit̃
α
i

)
= (−1)n

n∏
k=1

λkt̃α−1
k

n∑
l=0

ql (α, 1, n)Eα,nα+1−l

(
−

n∑
i=1

λit̃
α
i

)
,

where ql (α, γ , n) are polynomials in α, γ of order n − l . From [15] we know the closed form expression for the polynomials,

q j (α, γ , m) =
m∑

q= j

αm−qS(q)
m

q∑
n= j

�(2 − γ )
(n

j

)
S (n)

q

�( j − n − γ + 2)
,

where S(q)
m and S (n)

q are the Stirling numbers of the first and second kind [58, Secs. 24.1.3 and 24.1.4] respectively. It follows that
(I3) is simplified as

FT̃j |T̃1,...,T̃j−1,T̃j+1,...,T̃n
(t̃ j |t̃1, . . . , t̃ j−1, t̃ j+1, . . . , t̃n) = 1 −

∑n−1
l=0 ql (α, 1, n − 1)Eα,(n−1)α+1−l

(−∑n
i=1 λit̃α

i

)
∑n−1

r=0 qr (α, 1, n − 1)Eα,(n−1)α+1−r
(−∑n

k �= j λkt̃α
k

) .
The probability (I1) becomes therefore

Pr

[ n⋂
j=1

T̃j = t̃ j

]
= fT̃1

(t̃1)
n∏

j=2

fT̃j |T̃1,...,T̃j−1
(t̃ j |t̃1, . . . , t̃ j−1)

= λ1t̃α−1
1 Eα,α

(− λ1t̃α
1

) n∏
j=2

λ j t̃
α−1
j

∑ j
l=0 ql (α, 1, j)Eα, jα+1−l

(−∑ j
i=1 λit̃α

i

)
∑ j−1

r=0 qr (α, 1, j − 1)Eα,( j−1)α+1−r
(−∑ j−1

k=1 λkt̃α
k

) .
Knowing the related distributions

FT̃j |T̃1,...,T̃j−1
(t̃ j |t̃1, . . . , t̃ j−1) = 1 −

∑ j−1
l=0 ql (α, 1, j − 1)Eα,( j−1)α+1−l

(−∑ j
i=1 λit̃α

i

)
∑ j−1

r=0 qr (α, 1, j − 1)Eα,( j−1)α+1−r
(−∑ j−1

k=1 λkt̃α
k

)

we are thus able to sample from the joint (30). Each random
variable T̃i can be sampled employing the inverse transform
sampling method in the following way: (1) sample t̃1 from
Pr[T̃1 � t̃1]; (2) sample t̃2 from Pr[T̃2 � t̃2|T̃1 = t̃1] using the t̃1
sampled in the previous step in the conditional distribution; (j)
do the same as in step (2) employing all the previous samples

t̃1, . . . , t̃ j−1 to sample from Pr[T̃j � t̃ j |T̃1 = t̃1, . . . , T̃j−1 =
t̃ j−1]. The simulation of the epidemic process is therefore
given by the repetition of the following step: given the current
nodal state of the system Xcurr and the current time t̃curr, the
next state of the system Xnew is given by updating Xcurr accord-
ing to which node gets infected or cured first. Which event
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happens first is determined by the sampling of the time of the
new event t̃new from (30): the minimum min j∈Sα (Xcurr ){T̃j} re-
turns t̃new, while the argmin j∈Sα (Xcurr ){T̃j} returns which of the
competing curings and infections happens faster. The update
of simulation is therefore

Xcurr
argmin j∈Sα (Xcurr ){T̃j}−−−−−−−−−−→ Xnew,

t̃curr
min j∈Sα (Xcurr ){T̃j}−−−−−−−−−→ t̃curr + t̃new,

and given the semi-Markov nature of the process we can
repeat the step until a maximum time Tmax or until the pro-
cess reaches the steady state. Repeating the simulation many
times we can therefore obtain the average evolution of the
prevalence, which can be compared with the solution of
the corresponding fractional equation (8). In Figure 12 we
observe that the physical epidemic process defined in Theo-
rem V.A.1 correctly describes the epidemic process defined
by (8) when −Q̃ is the infinitesimal generator of the ε-SIS
process on a network. Compared to the method proposed in
Appendix H, the Monte Carlo simulation proposed in this
section is way slower and prone to errors caused by the very
complicated structure of the marginal joint distributions (I3).

FIG. 12. Evolution of the prevalence in the α-fractional exten-
sion of the ε-SIS process on a complete graph with N = 3 nodes, one
initial infected node, β = 0.1, δ = 1, and ε = 6 × 10−8. The time
axis is in log-scale. The full line is the prevalence computed from
the solution of Eq. (8). The circles represent the average outcome
of the 2000 Monte Carlo simulations with Tmax = 104 of the process
defined in Theorem V.A.1.
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