

**Delft University of Technology** 

#### **Topology Optimization for Computational Fabrication**

Wu, Jun; Aage, Niels ; Lefebre, Sylvain; Wang, Charlie

DOI 10.2312/egt.20171030

Publication date 2017 **Document Version** Final published version

Published in EG 2017

#### Citation (APA)

Wu, J., Aage, N., Lefebre, S., & Wang, C. (2017). Topology Optimization for Computational Fabrication. In A. Bousseau, & D. Gutierrez (Eds.), *EG 2017 : Tutorials* The Eurographics Association. https://doi.org/10.2312/egt.20171030

#### Important note

To cite this publication, please use the final published version (if applicable). Please check the document version above.

Copyright

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy

Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim.



# Topology Optimization for Computational Fabrication

Jun Wu, Niels Aage, Sylvain Lefebvre, Charlie Wang



Technical University of Denmark



#### **Topology Optimization: Applications**

- Lightweight: Engineering
- Customization: Medicine
- Organic appearance: Art & Archeticture





Airbus & EOS, 2014



Reconstructive surgery Glaucio H. Paulino @ UIUC



Qatar national convention



**Optimization of Bone Chair** by Lothar Harzheim & Opel GmbH

#### **Additive Manufacturing**

• "Geometric complexity is (almost) free"



TU Delft & MX3D, 2015



Joshua Harker



Scott Summit

## Topology Optimization

- Lightweight
- Customization
- Organic shape



## Additive Manufacturing

- Geometric complexity
- Customization

#### Schedule

- Fundamentals of
  - Advanced Manufacturing (Charlie Wang)
  - Topology Optimization (Niels Aage)
- Coffee break, and Exhibition of 3D prints
- Controllable Topology Optimization for
  - Geometric Features (Jun Wu)
  - Appearance and Structure Synthesis (Sylvain Lefebvre)



#### Topology Optimization for Computational Fabrication

Jun Wu, Niels Aage, Sylvain Lefebvre, Charlie Wang



Technical University of Denmark



#### Part One: Advanced Manufacturing

#### Charlie C. L. Wang

Delft University of Technology

April 24, 2017

### **Conventional Manufacturing Processes**

#### Net Shape Processes

- Forging, drawing, extrusion, rolling
- Sheet metal forming, bending
- Die casting, investment casting
- Injection modeling

#### Subtractive Processes

- Lathing, milling, grinding, drilling,
- Water jetting, laser cutting, etc.

#### Challenges for Designers (An Example)



## Challenges for Designers (Cont.)

- Conventional Mouse produced by Injection Molding
- Problems:
  - Complex shape? No
  - Moldability? Important
  - Flexibility? No
  - Customization? No



http://www.imould.com



http://mold-technology4all.blogspot.nl/

- Process to make a mold
  - Mold design (professional)
  - CNC machining (expensive)

## Challenges for Designers

- Design a product
  - Cannot be fabricated
  - Shape limitation
  - Cannot have too many parts
  - Otherwise, having a high cost
- Design for manufacturing <sup>[1]</sup>
  - Rule I:Reduce the total number of parts
  - Rule 2: Design for easy-to-fabrication
  - Rule 3: Use of standard components
- Main Problem:
  - Conventional manufacturing lacks of flexibility

[V] Computer-Aided Manufacturing, 2nd Ed., T.-C. chang, R.A.Wysk, and H.-P.Wang, Prentice Hall, 1998.

### Additive Manufacturing

- Defined by ASTM as:
  - Process of joining materials to make objects from 3D model data, usually layer upon layer
- Six Different Types of AM:
  - Lasers: Stereolithography Apparatus (SLA), Selective Laser Sintering (SLS)
  - Nozzles: Fused Deposition Modeling (FDM)
  - Print-heads: Multi-jet Modeling (MJM), Binder-jet Printing (3DP)
  - Cutters: Laminated Object Modeling (LOM)
- Mainly used for Rapid Prototyping (Past)
- More and More used for 'Mass'-Production (Present)

### Benefit of Additive Manufacturing

- Very flexible: direct digital fabrication from CAD models
- Rapid fabrication
- Excellent for customization
- Manufacturing is responsible for 33% of the world's carbon footprint AM has minimal material waste





20 : 1 Buy to fly

### Limitations / Challenges

- Limited part sizes
- Limited fabrication speed
- Limited materials (20k vs. 200 materials)
- Poor surface finish / low accuracy
- Inconsistent part quality
- High cost (machine, material, pre- and post-processing)



General functional principle of laser-sintering

#### Break-even Analysis of Conventional Manufacturing and 3D Printing



Source: Mark Cotteleer and Jim Joyce, 3D opportunity: Additive manufacturing paths to performance, innovation, and growth, Deloitte University Press, http://dupress.com/articles/dr14-3d-opportunity/, accessed March 17, 2015.

Graphic: Deloitte University Press | DUPress.com

#### Main Computation Steps in AM



#### Numerical Robustness

- Computation in IEEE arithmetic
  - Limited precision of floating-point arithmetic
- Geometry becomes inexact after intersection
- Geometric predicates
  - Correct?
  - Self-intersected models?



#### Problem of Inexact B-rep



P. Huang, C.C.L. Wang, and Y. Chen, "Intersection-free and topologically faithful slicing of implicit solid", ASME Transactions - Journal of Computing and Information Science in Engineering, vol. 13, no.2, 2013.

#### Problem of Inexact B-rep (Cont.)



### Robust Computation in Image Space

#### Voxel representation



Problem: Memory Cost is extremely high

Yuen-Shan Leung, and Charlie C.L. Wang, "Conservative sampling of solids in image space", IEEE Computer Graphics and Applications, vol.33, no.1, pp.14-25, January/February, 2013.

#### Supporting Structure?



#### Difference? Why and how?



Multi-Materials: Resolvable materials for supporting structure





Single Material: Using structures to support

#### Support Structure Generation



Direct slicing and support generation resultant contour

Fabricated part with support

Fabricated part after removing support

Pu Huang, Charlie C.L. Wang, and Yong Chen, "Algorithms for layered manufacturing in image space", Book Chapter, ASME Advances in Computers and Information in Engineering Research, vol. 1, pp.377-410, 2014.

#### **GPU-based** Implementation



http://ldnibasedsolidmodeling.sourceforge.net/

## 2.5D vs 3D Printing



19 X. Zhao, Y. Pan, C. Zhou, Y. Chen, and C.C.L. Wang, "An integrated CNC accumulation system for automatic building-around-inserts", Journal of Manufacturing Processes, vol. 15, no.4, pp.432-443, 2013.

## Robot-Assisted Additive Manufacturing

- Using robot arms as device for motion control in AM
- Collaborative operations on two arms More DoFs to fabricate curved regions / layers
- Challenges:
  - Model decomposition
  - Collision-free tool path generation
  - Configurations in joint-angle space





https://youtu.be/mrR7IKpHo9k





#### https://youtu.be/5B37oz4cw9s

20 C.Wu, C. Dai, G. Fang, Y.-J. Liu, and C.C.L. Wang, "RoboFDM: a robotic system for support-free fabrication using FDM", IEEE International Conference on Robotics and Automation (ICRA 2017).

#### From 3D to 4D Printing

- > 3D Printed Self-Assembly Structures
- How to predict the shape of fabricated model?
- Pattern Design / Process Optimization / New Triggers



21 T.-H. Kwok, C.C.L. Wang, D. Deng, Y. Zhang, and Y. Chen, "Four-dimensional printing for freeform surfaces: design optimization of Origami and Kirigami structures", ASME Journal of Mechanical Design, 2015.

#### Summary Remarks

- Conventional Manufacturing vs. Additive Manufacturing
- Reduce the challenges for designers
- Slicing and support generation
- Numerical robustness
- Multi-axis 3D printing
- Robot-assisted 3D printing
- 3D printed self-assembly structures (4D printing)

#### Thanks for Your Questions

Charlie C. L. Wang

Professor and Chair of Advanced Manufacturing Department of Design Engineering Delft University of Technology

Landbergstraat 15 2628 CE Delft The Netherlands

Email: <u>c.c.wang@tudelft.nl</u> URL: <u>http://www.io.tudelft.nl/en/organisation/personal-profiles/professors/wang-ccl/</u>






































Adjoint method for sensitivities - discrete • Example problem - Linear compliance  $\Phi = F^{T}u = u^{T}Ku, \quad R = K(\rho)u - F = 0$ • The 4 required terms become  $\frac{\partial \Phi}{\partial \rho_{e}} = u^{T}\frac{\partial K}{\partial \rho_{e}}u \qquad \qquad \frac{\partial \Phi}{\partial u} = 2F$   $\frac{\partial R}{\partial \rho_{e}} = \frac{\partial K}{\partial \rho_{e}}u \qquad \qquad \frac{\partial R}{\partial u} = K = K^{T}$ • The adjoint becomes (so-called self-adjoint!):  $K(\rho)\lambda = -2F \Rightarrow \lambda = -2u$ Niels Aage, Mechanical Engineering, Solid Mechanics























































































































## Topology Optimization for Computational Fabrication

Jun Wu, Niels Aage, Sylvain Lefebvre, Charlie Wang



Technical University of Denmark







## Topology Optimization for Computational Fabrication

## Part 3: Controllable Topology Optimization – Geometric Features

Dr. Jun Wu TU Delft

## Complexity is free



TU Delft & MX3D, 2015



Joshua Harker



Scott Summit
## Complexity is free? ... Not really!

#### **Tiny details**

# Ralph Müller

**Supports** 



Infill

Concept Laser GmhH

mpi.fs.tum.de

Paul Crompton

## Outline

- Geometric feature control by **density filters**
- Geometric feature control by **alternative parameterizations**

## Geometric feature control by density filters (An incomplete list)

Reference



#### Minimum feature size, Guest'04



#### Coating structure, Clausen'15





Self-supporting design, Langelaar'16



Porous infill, Wu'16

## Geometric feature control by alternative parameterizations (An incomplete list)





## Outline

- Geometric feature control by density filters
- Geometric feature control by alternative parameterizations



**Bone-inspired infill** 



#### Self-supporting infill

## Infill in 3D Printing

- A user-selected regular pattern, with a volume percentage
- A rough balance between
  - Physical properties (mass, strength), and
  - Cost (material usage, print time)



Different infill percentages

28%

https://3dplatform.com/3d-printing-tips-infill-percentage-and-pattern-explained/

## Infill in Nature

- Trabecular bone
  - Porous structures, oriented with the principle stress direction
  - Resulted from a natural optimization process
  - Light-weight-high-resistant





Cross-section of a human femur



Principle stress directions

wikipedia.org

Optimize bone-like structures as infill for AM?

## **Topology Optimization Applied to Design Infill**



## **Topology Optimization Applied to Design Infill**

- Materials accumulate to "important" regions
- The total volume  $\sum_i \rho_i v_i \le V_0$  does not restrict local material distribution





Infill in the bone

## Approaching Bone-like Structures: The Idea

• Impose local constraints to avoid fully solid regions



Constraints Aggregation (Reduce the Number of Constraints)

$$\widehat{\rho_i} \leq \alpha, \forall i \quad \longleftrightarrow \quad \prod_{i=1}^{n}$$

$$\max_{i=1,\dots,n} |\widehat{\rho_i}| \le \alpha \quad ()$$

$$\lim_{p \to \infty} \|\rho\|_p = \left(\sum_i (\widehat{\rho_i})^p\right)^{\frac{1}{p}} \le \alpha$$

Too many constraints!

A single constraint But non-differentiable A single constraint and differentiable Approximated with p = 16

## Bone-like Infill in 2D





Cross-section of a human femur

## A Test Example



(d)

(e)

## **Result: 2D Animation**



xPhys

## **Result: 2D Animation**

xPhys

## **Robustness wrt. Force Variations**

• Bone-like structures are significantly stiffer (126%) in case of force variations





## Robustness wrt. Material Deficiency

• Bone-like structures are significantly stiffer (180%) in case of material deficiency



c = 76.83 c' =242.77

Total volume constraint

Local volume constraints



c = 93.48 c'= 134.84

## Bone-like Infill in 3D



Infill in the bone



Optimized bone-like infill



Wu et al., TVCG'2017

## Outline

- Geometric feature control by density filters
- Geometric feature control by alternative parameterizations



Bone-inspired infill



#### Self-supporting infill

## **Infill Optimization**

• To find the optimal material distribution in the interior of a given shape



## **Overhang in Additive Manufacturing**

• Support structures are needed beneath overhang surfaces



https://www.protolabs.com/blog/tag/directmetal-laser-sintering/

## **Support Structures in Cavities**

• Post-processing of inner supports is problematic



## Infill & Optimization Shall Integrate



Solid, Unbalanced Optimized, Balanced With infill, Unbalanced

## The Idea

- Rhombic cell: to ensure self-supporting
- Adaptive subdivision: as design variable in optimization



Rhombic cell

Adaptive subdivision

## Self-Supporting Rhombic Infill: Workflow



## Self-Supporting Rhombic Infill: Subdivision Criteria

• Min:  $c = \frac{1}{2}U^T K U$  Subject to: KU = F;  $V = \sum_i \rho_i \le V_0$ 

Voxel-wise topology optimization Per-voxel density as variable  $\rho_i \in \{0.0, 1.0\}, \forall i$ 

Per-voxel sensitivity: 
$$G_i = -\frac{\partial c/\partial \rho_i}{\partial v/\partial \rho_i}$$
 Per

Subdivision-based topology optimization Per-subdivision as variable  $\beta_c \in \{0, 1\}, \forall c$ Per-voxel density assigned by subdivision  $\rho_i(\beta) = \begin{cases} 1.0 & i \text{ covered by walls} \\ 0.0 & \text{otherwise} \end{cases}$ r-subdivision sensitivity:  $G_c = -\frac{\partial c/\partial \beta_c}{\partial V/\partial \beta_c}$ 

## Self-Supporting Rhombic Infill: Results

- Optimized mechanical properties, compared to regular infill
- No additional inner supports needed



Wu et al., CAD'2016

## **Mechanical Tests**





Under same force (62 N)



Dis. 2.11 mm



Dis. 4.08 mm

#### Under same displacement (3.0 mm)



Force 90 N



Force 58 N



- Geometric feature control by **density filters**
- Geometric feature control by **alternative parameterizations**





# Thank you for your attention!

# **Questions?**

Dr. Jun Wu j.wu-1@tudelft.nl

Depart. of Design Engineering, TU Delft

## Incomplete references: Density filters

- Guest, James K., Jean H. Prévost, and T. Belytschko. "Achieving minimum length scale in topology optimization using nodal design variables and projection functions." International journal for numerical methods in engineering 61, no. 2 (2004): 238-254.
- Wang, Fengwen, Boyan Stefanov Lazarov, and Ole Sigmund. "On projection methods, convergence and robust formulations in topology optimization." Structural and Multidisciplinary Optimization 43, no. 6 (2011): 767-784.
- Clausen, Anders, Niels Aage, and Ole Sigmund. "Topology optimization of coated structures and material interface problems." Computer Methods in Applied Mechanics and Engineering 290 (2015): 524-541.
- Langelaar, Matthijs. "An additive manufacturing filter for topology optimization of print-ready designs." Structural and Multidisciplinary Optimization (2016): 1-13.
- Wu, Jun, Niels Aage, Ruediger Westermann, and Ole Sigmund. "Infill Optimization for Additive Manufacturing--Approaching Bone-like Porous Structures." IEEE Transactions on Visualization and Computer Graphics, 2016.

## Incomplete references: Alternative parameterizations

- Wang, Weiming, Tuanfeng Y. Wang, Zhouwang Yang, Ligang Liu, Xin Tong, Weihua Tong, Jiansong Deng, Falai Chen, and Xiuping Liu. "Cost-effective printing of 3D objects with skin-frame structures." ACM Transactions on Graphics (TOG) 32, no. 6 (2013): 177.
- Lu, Lin, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye, Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. "Build-to-last: Strength to weight 3d printed objects." ACM Transactions on Graphics (TOG) 33, no. 4 (2014): 97.
- Musialski, Przemyslaw, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif Kobbelt. "Reduced-order shape optimization using offset surfaces." ACM Trans. Graph. 34, no. 4 (2015): 102.
- Wu, Jun, Lou Kramer, and Rüdiger Westermann. "Shape interior modeling and mass property optimization using ray-reps." Computers & Graphics 58 (2016): 66-72.
- Wu, Jun, Charlie CL Wang, Xiaoting Zhang, and Rüdiger Westermann. "Self-supporting rhombic infill structures for additive manufacturing." Computer-Aided Design 80 (2016): 32-42.

## **Topology Optimization**

Minimize:

Subject to:

KU = F  $\rho_i \in [0,1], \forall i$  $\sum_i \rho_i \le V_0$ 

 $c = \frac{1}{2} U^T K U$ 







# Topology Optimization for Computational Fabrication

Jun Wu, Niels Aage, Sylvain Lefebvre, Charlie Wang



U Technical University of Denmark







### Topology Optimization for Computational Fabrication

# Part 4: Topology Optimization for Appearance and Structure Synthesis

## Sylvain Lefebvre Inria


## **Textures in Computer Graphics**





Rock Generic Granite



Pavement Path



Rock Generic Obsidian



Rock Pavement 001



Rock Wall Smooth



Rock Pavement 01



#### Rock Wall Wind Eroded



Stone Tiles 03

#### Authoring textures



Forza Horizon 3, Microsoft Studios https://www.forzamotorsport.net/en-us/games/fh3

#### Authoring textures



#### Too much content to be done entirely manually



Forza Horizon 3, Microsoft Studios https://www.forzamotorsport.net/en-us/games/fh3

# **Texture Synthesis**

- Three main directions
  - By-example synthesis

- Procedural synthesis

We will see both in the context of fabrication

– Simulation (e.g. erosion)

# **Texture Synthesis**

- Three main directions
  - By-example synthesis

- Procedural synthesis

We will see both in the context of fabrication

– Simulation (e.g. erosion)

### Texture synthesis: color formulation



(color field)



Assumption (MRF): Same neighborhoods at all scales → Same visual content

#### **Volume Texture Synthesis**



Lazy Solid Texture Synthesis [Dong08]

On-surface texture synthesis



[Lefebvre and Hoppe 2006]



























# Labelling Problem

• Surface neighborhood (2D)



Distortion error



#### **Multiresolution Synthesis**

• Upsample, jitter, correction [Lefebvre and Hoppe 2005]







#### Results



thing:168602 (Steelyd)

Time 18.7s thing:5506 (chylld) Texture as structure?

Model

+ appearance









Texture Synthesis?



???

#### Texture synthesis: structure formulation

(density field)



Exemplar





Neighborhoods capture *local geometry* accross scales

#### **Printability**

- 1. Connected components
- 2. Minimum thickness
- 3. No weak part (rigidity)



2.





# Key ideas for structure synthesis

Pattern is stochastic

- Exhibits degrees of freedom
- Use pattern itself to locally reinforce structure



# Key ideas for structure synthesis

#### Pattern is stochastic

- Exhibits degrees of freedom
- Use pattern itself to locally reinforce structure

#### Exemplar specifies local geometry

- Large scale arrangement can be optimized 'orthogonally'
- Combination with topology optimization?



# Key ideas for structure synthesis

#### Pattern is stochastic

- Exhibits degrees of freedom
- Use pattern itself to locally reinforce structure

#### Exemplar specifies local geometry

- Large scale arrangement can be optimized 'orthogonally'
- Combination with topology optimization?



# Pipeline





# Pipeline



# Pipeline





#### How to evaluate weak parts?

- Similar to SIMP method, we consider 'weak' and 'strong' material
- Issues:
  - Voxel grid is huge (~ 5M voxels)
  - Weak and strong  $\rightarrow$  hard to converge
  - We need 20-30 iterations synthesis/analysis
- ➔ Too expensive
- ➔ Approximate the pattern



# **Abstract Pattern Graph**



38
## **Physical Simulation**

• Basic idea: replace graph by finite elements

In 2D: Quad & Triangle In 3D: Hex & Wedge



Local planarity assumption
Few elements: fast solution (1s)

#### **Edge Selection Process**

Solid ---Empty ---Selected ---



Simulation on the Final Mesh

Stress 99th%

#### 153.9 KPa





#### Results – Structure + Color



t<sub>total</sub>: 34.8s



t<sub>total</sub>: 40.0s



t<sub>total</sub>: 14.6s

#### From surface structure to final mesh







#### **Results - Printouts**





#### Other recent references

- Designing Structurally-Sound Ornamental Curve Networks J. Zehnder, S. Coros, B. Thomaszewski, SIGGRAPH 2016
- Stenciling: Designing Structurally-Sound Surfaces with Decorative Patterns C. Schumacher, B. Thomaszewski, M. Gross, SGP 2016
- Synthesis of Filigrees for Digital Fabrication
   W. Chen, X. Zhang, S. Xin, Y. Xia ,S. Lefebvre and W. Wang, SIGGRAPH 2016

All these works use a different point of view: discrete element distributions

# Key ideas for structure synthesis

Pattern is stochastic

- Exhibits degrees of freedom
- Use pattern itself to locally reinforce structure

Exemplar specifies local geometry

- Large scale arrangement can be optimized 'orthogonally'
- Combination with topology optimization?



#### **Our Goal**



Exemplar



Synthesize shapes under structural and appearance objectives

# Local geometry

$$E(\Omega) = \int_{p \in \partial \Omega} \min_{q \in \partial X} D(N_X(q), N_\Omega(p))$$
Local geometry
$$N_X(q) \qquad \qquad N_\Omega(p)$$

$$X \text{ Example shape} \qquad \Omega \text{ Synthesized shape}$$

#### **Structural properties**





# **Structural properties**



Topology optimization [Osher, Allaire, Sigmund]

## **Structural properties**



#### Topology optimization

[Osher, Allaire, Sigmund]

# Challenge





#### Weighted sum





## Appearance + rigidity



| Solver                   | Not great due to combinatorial matching                                            |
|--------------------------|------------------------------------------------------------------------------------|
| Appearance<br>objective  | - Neighborhood matching [Barnes09, Busto10, Kaspar15]<br>- Derivatives <b>A(x)</b> |
| Compliance<br>constraint | - Linear elasticity (FEM)<br>- Derivatives <b>C(x)</b>                             |
| Volume<br>constraint     | - Derivatives <b>sum(x)</b>                                                        |
|                          |                                                                                    |

Gradient-based Optimization GCMMA [Svanberg95]

#### **Compliance Relaxation**



α = 1.2, Vmax = 35%

α = 1.2, Vmax = 40%

# **Multiresolution**



## **Fabricated Objects**



Contour extraction



#### **Fabricated Objects: Shelves**



# Fabricated Objects: Tables



## Fabricated Objects: Phone Stands



# **3D Structures**



# Fabricated Objects: Chairs



# **Texture Synthesis**

- Three main directions
  - By-example synthesis

- Procedural synthesis

We will see both in the context of fabrication

– Simulation (e.g. erosion)

# **Texture Synthesis**

- Three main directions
  - By-example synthesis

– Procedural synthesis

We will see both in the context of fabrication

– Simulation (e.g. erosion)

## Foams in nature



Coral reef



Metallic foam (chemical reaction)

## Challenges: scale, fabricability, mechanical properties

• Data size



4 GB (.ply)

• Fabrication



Mechanical properties



#### Standard approach: periodic structures



# Homogenisation



#### Drawbacks



[Pannetta et al. SIGGRAPH 2015]

# Periodic grid

- Mapping?
  - Hard problem
- Graded properties:
  - Possible, but transitions?



[Schumacher et al. SIGGRAPH 2015]





Hexahedral-dominant meshing [Sokolov et al. 2015] **Procedural Voronoi Foams** 

- Aperiodic, stochastic, stationary Mimics nature.
- Trivially scales.
   O(1) time + memory.
- Fabricable.

Few pockets, connected, thickness ok.

Controllable elasticity


#### **Procedural synthesis**



#### **Procedural synthesis**

#### F(x,y): is q=(x,y) inside?



#### Gradation (stackless)



#### Gradation (stackless)





78

## **Elasticity control**

| Family 2 |        |        |        |        |
|----------|--------|--------|--------|--------|
| Family 1 |        |        |        |        |
| Density  | 0.0097 | 0.0168 | 0.0250 | 0.0332 |

#### Homogenisation



Results

# Crusty Knight





Results

### **Articulated Finger**







## Cute Octopus

Results





Results

# Anisotropy



#### Performances

| Example                 |         | Extent (mm)                   | # Voxels                      | Volume | % Filtered | Time per<br>slice (ms) |
|-------------------------|---------|-------------------------------|-------------------------------|--------|------------|------------------------|
| Moomin                  | fig. 1  | $26.7\times40.8\times51.9$    | $534\times815\times1038$      | 6.44%  | 0.005%     | 68.34                  |
| Ellipsoid               | fig. 13 | 30.9	imes 30.9	imes 41.1      | 617 	imes 617 	imes 822       | 6.30%  | 0.001%     | 37.28                  |
| $\operatorname{Knight}$ | fig. 14 | 26.1 	imes 30.0 	imes 50.55   | 521	imes 600	imes 1011        | 12.50% | 0.023%     | 20.25                  |
| Finger                  | fig. 15 | $25.0\times23.25\times70.5$   | 500 	imes 465 	imes 1410      | 23.35% | 0.006%     | 28.03                  |
| SIGGRAPH logo           | fig. 16 | 20.0	imes 40.0	imes 80.0      | 400 	imes 800 	imes 1600      | 5.73%  | 0.003%     | 69.18                  |
| Half-dome               | fig. 17 | 25.0	imes50.0	imes25.0        | 500 	imes 1000 	imes 500      | 19.49% | 0.025%     | 71.22                  |
| Octopus                 | fig. 18 | $41.7\times41.1\times28.8$    | 833 	imes 822 	imes 576       | 17.27% | 0.009%     | 150.22                 |
| Anisotropic cube        | fig. 19 | 40.0	imes 40.0	imes 40.0      | 800	imes 800	imes 800         | 26.86% | 0.005%     | 113.52                 |
| Forest dragon           | fig. 20 | $770.1\times990.7\times961.7$ | $15402\times19814\times19234$ | N/A    | N/A        | 1666.91                |





# Thank you for your attention!

**Questions?** 

Sylvain Lefebvre sylvain.Lefebvre@inria.fr

ERC ShapeForge StG-2012-307877

#### **Topology Optimization for Computational Fabrication**

Jun Wu<sup>1</sup>, Niels Aage<sup>2</sup>, Sylvain Lefebvre<sup>3</sup>, and Charlie Wang<sup>1</sup>

<sup>1</sup>TU Delft, <sup>2</sup>TU Denmark, <sup>3</sup>Inria

#### Abstract

Additive manufacturing (AM) and topology optimization (TO) form a pair of complementary techniques in transforming digital models into physical replicas: AM enables a cost-effective fabrication of geometrically complex shapes, while TO provides a powerful design methodology for generating optimized models, which are typically complex from a geometric perspective. The potential of both techniques has recently been explored in graphics, resulting in fantastic applications especially regarding structural and aesthetic properties of fabricated models. In this tutorial, we start from the fundamentals of AM and TO, and proceed to advanced TO techniques which steer the optimization process, i.e., taking into account the manufacturing as well as aesthetic appearance.