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SUMMARY

In this report a mathematical model is formulated which is
sufficiently accurate to describe quantitatively and qualitatively the
behaviour of a ship berthing to a structure equipped with fenders as
well as to determine the response of the fenders themselves. In order
to achieve this a set of equations is drawn up by which the (coupled)
transient motions — in six degrees of freedom - of shiplike bodies
can be described adequately.

To this end use is made of the so-called 'impulse response
function' ~ technique, which has as the restriction that the ship-
fluid system is supposed to be linear. This approach enables the
inclusion of external forces of arbitrary nature; the fluid reactive
forces are taken into account by means of the hydrodynamic coefficients
which are incorporated in the impulse response functions representing
the properties of the linear ship-fluid system,

The influences of a restricted water depth and of a (quay-)wall
parallel to the ship can be taken into account,

The ‘'impulse response function'-technique is applied to the case
of a ship with a box-like shape in order to avoid coupling between
the respective ship motions. This is, however, not an essential
simplification. Since berthing manoceuvres and the ship-fender inter-
actions take place mainly in the horizontal plane, only the sway
and yaw motions are considered; the effect of a forward speed is not
included. For the case of shallow water with a horizontal bottom and
relatively large horizontal dimensions the respective impulse
response functions for the sway and yaw motion are calculated from
experiments and/or theory.

Using the 'impulse response function'~technique a mathematical
model is presented describing both the behaviour of the schematized
ship berthing to a structure equipped with one undamped, (non-)linear
fender and the behaviour of the fender itself. 'Centric' as well as

‘eccentric impacts' are considered.



An extensive experimental verification was carried out by means of
model tests on shallow water with relatively large horizontal
dimensions. Two water depths were regarded.
The same situations as investigated experimentally were simulated
numerically by means of the mathematical model, using thereby the
impulse response functions calculated.

The results of calculations and model tests show a very good

agreement.




Section I: INTRODUCTION

L.1: GENERAL DESCRIPTION OF THE PROBLEM AND ITS SIMPLIFICATION

Ships are becoming larger and larger. As a consequence berthing
facilities have to be newly constructed or adapted to the larger
units. Up to now reliable, theoretically founded, design criteria
are hardly available. The lack of good design criteria is the prime
reason for making researches into the possibilities of an experimental
and /or theoretical determination of berthing forces.

Generally a berthing facility consists of one or more elastic
elements (fenders) attached to a rigid structure (finger pier,
caisson-type jetty, etc.). The fenders absorb the berthing forces
and form a protection for ship and berthing structure.

The phenomena occurring during the berthing manceuvre of a
ship are complicated and the fender loads are influenced by a lot
of parameters: the geometry and the rigidity of the (hull of the)
ship, the elastic properties of the fender(s), the speed of approach,
the forces exerted by tugs, wind, current and waves, the mode of
motion (in general translation combined with rotation), the keel
clearance.

As the maximum permissable berthing force against the side of e.g.
a mammoth tanker is distinctly lower than what is acceptable for
the berthing structure, the ship is therefore the prevailing factor
for fender design.

The behaviour of a berthing ship and the resulting fender loads
can be determined either by means of experiments with scale models
or by way of an analytical treatment of the phenomenon. Of course
a combination of both methods is possible as well.

On the one hand model testing has a few drawbacks. Model tests are
expensive and time consuming. The test set-up is complicated; it
is essential that the elastic properties of fenders are simulated

very carefully and, sometimes, sophisticated facilities are needed




to simulate the relevant environmental conditions. For these reasons
test programs are usually restricted to final design configurations
and selected conditions which are assumed to be the most critical.
Besides, the insight gained from model tests into the fundamentals
of the problem remains limited: only the resulting output is
measured without yielding much knowledge of the mechanism which
causes the output. On the other hand a general analytical treatment
of the problem is rather complicated.

This report presents a mathematical model describing the
behaviour of a ship berthing to a jetty (or similar facility) and
predicting the fender loads in a purely theoretical way, in which
all essential features are maintained and which produces
qualitative results of sufficient accuracy for most practical
applications.

For reasons of completeness the mathematical model to be presented
will be generalized to systems with six degrees of freedom. The

ship is berthing to a fender mounted on a rigid structure, while
the elastic characteristics of the fender may be non-linear and
asymmetric.

In addition to the fender loads other external forces upon the ship,
such as forces exerted by wind, waves, current, tugs and mooring
lines, can be incorporated in the model as well. Within the scope
of the mathematical model also the influence of a closed vertical
wall (a quay) can be taken into account.

For the specific case of the berthing ship the undermentioned
assumptions and simplifications are made.

As berthing manoceuvres and the ship-fender interactions take place
mainly in the horizontal plane, only the surge, sway and yaw motions
of the ship are of importance; so heaving, rolling and pitching

are neglected. Hereby it is assumed implicitly that the heave, roll
and pitch motions — which in a way do occur in reality - do not

influence the motions in the horizontal plane.




The ship's forward speed is supposed to be zero or negligible. This
assumption is justified by the fact that during a berthing operation
the forward speed is indeed small or zero.

Only berthing operations on sheltered locations (e.g. harbours) are
considered, i.e. the influences of waves, current and wind are

not taken into account.

Special attention is paid to the case when shallowness of the water
is of dominant importance, for, berthing structures are often located
in shallow water. Farther, the bottom is horizontal. The fluid
domain is supposed to be relatively large in the horizontal
directions; this implies an open (jetty~type) berthing structure.
The vessel is considered as a rigid prismatic body with a rectangular
cross~section and a symmetrical distribution of mass. This
schematization is justified by the fact that many sea-going vessels
and the most inland ships have a more or less box~like shape, being
slightly streamlined at bow and stern.

A very important assumption is that the displacements of the ship
remain small, for, this makes it possible to regard the problem of
the ship motions as linear.

Further it is supposed that the fluid is inviscid and incompressible
and moves irrotationally.

With the supposed linearity of the ship~fluid system and under
the simplifications mentioned above the problem of a ship berthing to
a fender structure now has been reduced greatly. What remains is the
formulation of a mathematical model based on the linearity of the
ship~fluid system, which is able to describe the force(s) exerted
by a schematized ship with a horizontal motion (swaying and yawing)
upon some berthing facility at calm shallow water with idealized

properties and with relatively large horizontal dimensions.
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.2: SURVEY OF EXISTING STUDIES AND OUTLINE OF THE APPROACH TO BE

FOLLOWED

When designing a berthing structure generally an approach is
used in which it is assumed that the energy to be absorbed by the
fender(s) equals the kinetic energy of the ship. Usually the mode
of motion of the ship then consists of a translation - with or
without forward speed — combined with a rotation; to include the
effect of the entrained water a certain constant added mads (moment
of inertia) is introduced (see e.g. refs. [[] through [17]).

This approach, in fact, involves the use of Newton's second law

a d

- (mx) = £(v) ,

(1 TS

describing the motion(s) =x(t) of a free floating ship with mass
(moment of inertia) m in response to some external force or
moment f£(t); t represents the time-coordinate. Since m may be
regarded as a constant the equations of motion become:

Py n¥ = £(t) )

In the following the concept force(s) has to be understood in a

generalized sense meaning force(s) or moment(s). In general the

external force f(t) in egs. (la’b) is composed of:

- forces, e.g. due to waves, varying arbitrarily in time,

- hydrodynamic and hydrostatic restoring forces, which are a
function of the motions of the ship,

- (restoring) forces due to the fender system, which are a function
of the instantaneous position of the ship.

In the classical theory of ship motions it is common practice to

formulate the equations (of motion) as follows:

(2) (m + a)X + bx + cx = £(t),




where a, b and c are coefficients representing the hydrodynamic and
the hydrostatic restoring functions. Eq. (2) is not a real equation
of motion in the sense that it relates the variables of the
instantaneous motion to the instantaneous values of the exciting
forces. On the contrary, eq. (2) merely represents a set of algebraic
equations fixing the amplitudes and phases of the (six) oscillations
of the ship under the action of an exciting oscillatory force at one
specific frequency. Therefore eq. (2) can only be used as a description
in the frequency domain of (a) steady oscillatory motion(s), since
the hydrodynamic coefficients (a and b) depend on the frequency of
motion.

The analytical (and experimental) work on the problem of the berthing
of ships, as mentioned in refs. [[] through [li] , in principle is
based on eq. (2). Hereby the coefficient a is supposed to be
independent of the frequency, while the coefficients b and c are

neglected. Eq. (2) then reduces to:
(3) (m + a)X = f(t)

Eq. (3) can be regarded as a differential equation, representing a set
of equations of motion, which is adequate to describe the motion of

a body in an infinite fluid; it will yield, however, incorrect results
when a free water surface is present. Then a 'memory effect', is
introduced, i.e. each occurrence is, in fact, dependent on all
preceding occurrences. The hydrodynamic influences are reflected only
by the added mass (moment of inertia), which is assumed to be constant
during the motion of the ship; the effect of the hydrodynamic damping
has not been taken into account. Besides, the choice of a value for
the added mass (moment of inertia) is a problem, the more so as it
" appears from literature (see e.g. refs. [18] through [32]) that the
hydrodynamic coefficients are very much dependent on the frequency,

especially in shallow water: generally it holds true that the




agsumption of constant hydrodynamic coefficients cannot be justified.
Consequently, to determine the fender forces as a result of the
berthing of a ship a time domain description of the behaviour of the
moving ship is needed, which makes allowance for the frequency
dependency of the fluid reaction forces; or, in other words, a method
has to be used in which the hydrodynamic coeffigients are taken into
account as functions of the frequency. To this end an approach will
be followed in which use is made of the so-called 'impulse response
function'~technique.

If for any linear system the response k(t) to a unit impulse
is known, then the response x(t) of the system to an arbitrary

forcing function f(t) is:
t
4 x(t) = J f(t) k(x - 1) dt

T represents an integration variable (time).

It will be obvious that the berthing ship as a whole - i.e. the
combination of ship, fluid and fender(s) - may not be thought of

as a linear system. By isolating the free floating ship in still
water, however, the ship and the fluid combined can be regarded

as a system for which the assumption of linearity holds true as

long as the motions remain small. The external forces then may be
linear or mon-linear and can be incorporated in the forcing function.
The forces exerted somewhere upon the ship will be conceived of as
input signals, whereas the motion of the ship will be considered to
be the output signal. If the input signal and the output signal are
represented by f(t) and x(t), respectively, then - provided the
ship-fluid system is linear - they are connected by means of a
convolution integral over the entire time history of the forcing
function(s) according to eq. (4). There is a theoretical relationship

between the equations in the time domain and those in the frequency

domain.




In this approach to the berthing ship problem the system of the ship-
fluid interaction is regarded as a black box, relating the input and
output signals of the system without reflecting the physical processes

behind it (see fig. 1).

input signal = fit) linear output signal = x[t)
system
i
i ship + fluid i
forcing functionls) motion of ship
il il
forcels) and momentls) displacementls) and
upon ship rotation(s} or derived
quantities

Fig. 1| - Schematic representation of mathematical model.

The external forces may be of arbitrary nature; this implies that
besides fender loads also forces exerted upon the ship by wind,
waves, current, tugs and mooring lines can be incorporated in the
forcing function. It is essential that the effect of the nearness

of the bottom on the hydrodynamic coefficients as well as the effects
of a quay parallel to the ship can be included.

A good review of an other description of the ship-fluid system
in the frequency domain and the time domain, together with the
possibilities and difficulties of passing from one to another, is
given in refs. [33] and [34]. For practical applications of the

approach presented herein is referred to refs. [35] and [3[] .

In section II the 'impulse response function'-technique is
described in a general mathematical formulation, and its features

are discussed. Then the impulse response functions are calculated for



the schematized ship (model) in case of horizontal motions (sway and
yaw) at zero forward speed on (shallow) water with relatively large
horizontal dimensions.

In Section III the 'impulse response function-technique' is applied
to the berthing ship problem. First of all the mathematical model

to simulate the berthing of a (schematized) ship to a jetty and

to determine the relevant quantities is presented. Use is made of
the impulse response functions as calculated in Section II. Then,
the results of theoretical and experimental investigations for certain
situations are compared and discussed. Possible extensions of the
mathematical model to other situations are indicated.

Section IV reviews the main conclusions which can be drawn from the

research of the berthing ship problem.
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Section II:; THE 'IMPULSE RESPONSE FUNCTION'~-TECHNIQUE

II.1: THE 'IMPULSE RESPONSE FUNTION'~TECHNIQUE FOR ARBITRARY SHIP
MOTIONS WITH SIX DEGREES OF FREEDOM

In this section a general formulation of the ship motion problem
is presented in the frequency domain as well as in the time domain.
This general formulation is valid for both deep and shallow water;
also the effect of the presence of (a) vertical wall(s) can be
included.

A theoretical derivation of the formulae is provided.

The two important assumptions made are that the ship behaves as a
rigid body and that the motions of the ship remain small. The effects
governed by rigid body characteristics and by hydrodynamics must be
incorporated separately, since they are controlled by different
parameters.

Before starting the formal formulation of the problem three
further restrictions are made: firstly, the ship's form is transversely
symmetric with respect to the vertical centre plane, longitudinal
symmetry is not assumed; secondly, at rest the ship is floating
upright in stable equilibrium; and thirdly, the ship is following
a straight track at a constant mean forward speed in the above plane
of symmetry. In principle these simplifications are not essential to
the general formulation of the problem, but they facilitate the
formulation greatly. Besides they correspond to what is common
practice in naval hydrodynamics.

Analogous to ref,. [Qi] then the following co-ordinate system are

introduced:

0§1§2§3 = gpace fixed right-handed system of Cartesian co-ordinates
with origin O; O;1§2 coincides with the water surface at
rest; the vertical 0§3—axis is positive upwards; the
forward speed V of the ship coincides with the positive

O;l—axis.



OX X Xy = right-handed Cartesian co-ordinate system parallel with

Ox1x2x3, but translating with the (constant) ship's speed V;
at rest the origin o coincides with the ship's centre of

gravity G; the longitudinal ox,-axis is positive in forward

1
direction, the oxz—axis is positive to port-side, the
ox3—axis is positive upwards.

Gxyz = moving right-handed Cartesian co—ordinate system with origin
G and fixed with respect to the ship; Gxz coincides with
the longitudinal plane of symmetry of the ship; the
Gy-axis is positive to port-side, the Gz-—axis is positive
upwards.

The relations between the two co-ordinate system are:

~=+ X = —=+
xI x] Ve, x2 X2’ x3 x3 a,
where a = distance of G below the plane of the water—line,
t = time co-ordinate.

The motions of the ship now can be represented by the motion variable
xj(t), where j = 1, 2, ..., 6} X5 %, and Xy stand for the
translations surge, sway and heave, while X, Xg and X denote the

rotations around the ox -axis, the ox,—axis and the ox3—axis,

] 2

respectively. In naval hydrodynamics it is usual to introduce a set
of three independent angular displacements, the so-called Eulerian
angles, viz.: yawing, being about the absolutely vertical ox3—axis,
pitching around the rotated position of the oxz—axis, which remains
in the horizontal plane, and rolling about the position of the
oxl—axis after the previous two rotations. If only small motion
amplitudes are considered, these Eulerian angles coincide with the
angular displacements about the space fixed axes (see ref. [23] ).

The displacements xj(t) in the six respective directions then are:




Xl(t) = translation in the x}-direction = surge motion (positve
forwards),
xz(t) = translation in the gz—direction = sway motion (positive to

port-side),

x3(t) = translation in the x3-direction = heave motion (positive

upwards),

xé(t) = rotation about the Ogl—axis = roll motion (positive
from deck to starboard-side),

xS(t) = rotation about the ng—axis = pitch motion (positive
with bow moving downwards),

x6(t) = rotation about the O§3—axis = yaw motion  (positive

with bow moving to port=-side).

The combination of ship plus fluid can be conceived of as a(n
arbitrary) stable system: the forces exerted somewhere upon the ship
are regarded as input signals, whereas the motion of the ship
(displacement and rotation or derived quantities) is considered to be
the output signal. In comsequence of the 'memory effect' associated
with the influence(s) of the free surface (and of the vorticity,
respectively), it is necessary to represent the transient ship
motion - arising from a set of forces — in terms of a convolution
integral over the entire time history of the forcing functions. Thus

the six components of the motion have to be considered to be of the

(general) form (see refs. [3{] , [37, 38] )
t

(5) u, () = [ k. [£.(t), t-1]dr,
J o j—-1
i,j=1, 2, ....6 ,

where T = integration variable (time),

fi(t) = forcing function in the i-direction = input signal,
kj = kernel for motion in the j=-direction,
uj(t) = response of the system in the j~direction to the

set of input signals {fi(t)} = output signal.
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The kernel kj depends on the set of forcing functions {fi(t)} ,

on the retarded time t - 7, on the geometry of the ship and on the
physical properties of the fluid.

If it is allowed to consider the ship and the fluid combined as a
stable linear system, eq. (5) changes into a more familiar and simple

form (see refs. [36] , [37, 38] ):

(t
J fi(T) kij(t-—r) dt =

1]
W ~10n

(6) u. (t)
J i=1 -o
LG
= k..(t) £.(t - 1) dt , i=1, 2, ...6,
i=t o *
where kij(t) = response for the j—direction to a unit pulse

(i.e. Dirac function at t = 0) in the
i~direction = impulse response function (i.r.f.).
On account of the above definition for kij(t) it holds good that

(principle of causality):

7% k..(t) =0  for £<0;

1]
as initial condition it is stated:

b
(75 kij(o)

]
(]

The i.r.f. kij(t) is a real function of t which depends on the
geometry of the ship as well as on the boundaries of the fluid
domain and its physical properties. The matrix {kij(t)} completely
characterizes the response to an arbitrary excitation. Apart from
convergence of the (convolution) integrals the only assumption

required in this is that the ship-fluid system behaves linearly. The

input signals need not be linear.




_2]_

As an example of the necessity for the representation given above,

it can be noted that in the case of a captive model which is given

a short 'pulse' disturbance and then returned to its original

steady restrained condition, an unsteady fluid motion - visible
especially in the disturbance of the free surface - and an associated
force will persist thereafter, in principle ad infinitum.

On account of several investigations (see e.g. refs. [?O, 23,
26, 30, 31 j) it can be stated that the ship-fluid system is linear.
In addition to the references mentioned a good survey on this point
as well as a (comprehensive) description of character and behaviour
of the linear ship-fluid system are given in ref. [34] . All
(experimental) data indicate that this basic linearity assumption is
a good working approximation for small to moderate displacements of
real ship forms. Therefore it is hypothesized that the assumption of
linearity of the ship-fluid system holds absolutely.

With regard to the fluid idealization the facts point in two
directions. While it is practically sure that the restriction to a
homogeneous, incompressible fluid, free from surface tension, is not
a serious limitation, the viscosity leads to complications. On the
one hand, in dealing with (ship) motions it is of great advantage
and in most cases necessary to consider the water as inviscid ; it
is a logic comsequence of the validity of the linearization, for if
the viscosity would have a great influence then the linearity would
be impaired as well. On the other hand, flow seperation and consequent
eddy formation are distinctly perceptible, especially with lateral
ship motions. It makes itself primarily felt in additional damping
and in a change in the hydrodynamic coefficients which couple the
motions mutually.

Consistent with the hypothesis of linearity of the ship-fluid
system it is assumed that ffi(t)[ remains bounded. This assumption is
closely linked up with the demand for stability of the linear system:

if fi(t) is bounded in time, then uj(t) will be bounded in time as

well,
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kij(w) = %ig kij(t) need not necessarily equal zero; in a damped
system which is not unstable kij(w) can be a finite constant.

If the displacement or the rotation aects as output signal, in modes
of motion without a restoring force (surge, sway and yaw) the i.r.f.
will increase indefinitely as t tends to infinity; this implies that
for these modes of motion the ship-fluid system cannot be considered
as being stable. For the remaining modes of motion (heave, roll and
pitch) it holds good that kij(W) = 0, and the ship-fluid system does
behave stable.

Looking upon ﬁhe velocity (or the acceleration) as output signal in
modes of motion without a restoring force the i.r.f. will
asymptotically approach to a certain finite value as t increases,
whereas in the remaining modes of motion kij(m) = 0. In this latter
case the ship-fluid system then behaves stable in all modes of

motion.

As far as the ship motions are concerned therefore distinction can

be made between:

a - ship motions with a restoring force (heave, roll and pitch
motion),

and

b - ship motions without a restoring force (surge, sway and vaw
motion).

Ad a: In this case the ship-fluid system always behaves stable,
independent of the fact whether the displacement/rotation or
the velocity or the acceleration is conceived of as output
signal.

Eq. (6) now can be written as:

6 t
x _—
(67 xj(t) izl _J £.(0) kij(t t) dt =

6 oo

x
) kK,. (1) £.(e-1)dt, j=1,2, ...6
i=1 of ] t

(exclusive of j = 1, 2, 6),
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where k?j(t) = i.r.f. based on the displacement/rotation as

output signal.

Ad b: In this case the ship~fluid system only behaves stable if
the velocity (or the acceleration) is considered to be
the output signal. Displacements or rotations can be
measured in a much easier way than velocities and
accelerations. Besides the calculation of the velocity
from displacements/rotations is more accurate than the
calculation of the acceleration. Consequently a choice
is made in favour of the velocity as output signal.

Eq. (6) then becomes:

b 6 t
(6 x.(t) = ff.(”t k..(t-1) dt =
) MCE IV ENOR T
6 jm
= 3 k..(t) f.(t-t) dt j =1, 2, ..., 6,
i=1 o/ M .
where kij(t) = i,r.f. based on the velocity as output signal.

On behalf of the generality of the following dissertation the
velocity will be conceived of as output signal throughout.

For an elaborated definition and a further explanation of the
concept 'stability' in case of the linear ship-fluid system is
referred to Appendix I.

The i.r.f.'s k?j(t) and kij(t) are related as follows. According to

eq. (6%) % (0) is:

6 t
% (6) = y ffi(r) k’;j(t—n dr ;

1m=] oo

farther it can be derived that:
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6 t x
izl i _wf fi(T) kij(t-r) dt =

[=9

it

ij(t)

o S E (- ar s gf()k"w)-
N B AR T T AL L Tk

LS
fi 100

k*.(O) = 0, so that:
1]

t d *®
J fi(r) TS kij(t - 1) dt

] -

being equivalent with eq. (6b) this expression yields:

_d b3
(8) kij(t) =3 kij(t)'

Successively now the two respective cases of ship motions with

and ship motions without a restoring force are dealt with. In regard
to the behaviour of the i.r.f. at inginity the first case
corresponds with kij(m) =0, i.e. ]kij(t)[dt does exist, and

the latter case corresponds with kij(w) = constant # 0, i.e.

]kij(t)]dt does not exist.

II.1.a: SHIP MOTIONS WITH A RESTORING FORCE: kij(w) = 0

It is supposed that fi(t) has the characteristic of a harmonic
(force) excitation in the i-direction with form:

ei(wt + ¢i)

(9) fi(t) = fia
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where £f. =
ia
the i-direction,
w = circular frequency,
(bi_
the i-direction,
i = v~1

amplitude of the harmonic (force) excitation in

phase angle of the harmonic (force) excitation in

Substitution of this expression into eq. (6a) yields for ij(t):

(10%) ORI UG ®)
where

(11 K£§)<w> = —m{m k; () cos(wr) dt
and

1P Ki?)(w) - _m{m ki () sin() dr

l(wt-+¢i)

represent the Fourier cosine transform and the Fourier sine transform

(t), respectively (see refs,
(t) 0 for £ 20 (i.

of k
be borne in mind that k
i.r.f.

Fourier transforms (see refs. [ 39, 40, 41])

= o

kij(t)

(12%:) [ coston an
0

= |

f k(%) (1) sin(et) de.
ol

[39, 40, 41] ).

Hereby it should
e. egs. (7a’ )). The

(t) is related to K(j)(w) and K(j)(w) by the inverse

The relation between K( )( ) and K( )(w) is unique: if one of the
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two functions is known, then the other can be determined by means of
egs. (IZa’b) and (lla’b).

An other way of representing eq. (lOa) is:

where Kij(iw) is a complex quantity given as:
Loy (e) _ e (s)
(13) Kij(lw) Kij (w) I.Kij (w) ,

with Ki(g.:) @) = Re[k;; (iw)]  and KEJS.)(N) = -tk Go)ls
the symbolic notation Re E..] and Im [..J means 'real part of' and
'imaginary part of', respectively.

Kij(im) represents the harmonic transfer function for the j-direction
in response to a (harmonic force) excitation in the i-direction; or
in other words, Kij(iw) is the frequency response function (f.r.f.).
On account of eq. (13) and refs. [37 through 4]] it can be stated in

a more general way that the f.r.f. and the i.r.f. are related by a

Fourier transform:

a . B ® ~iwt
(147) Kij(lw) = —mJ kij(T) e dt,
or

b _ 1 > . iwt
(147) kij(t) =5 -ej Kij(lw) e dw.

(s)
ij
amplitudes of the in-phase and out-of-phase components of the

By eq. (IOa) it can be seen that K§§)(w) and K.."(w) are the respective
response in the j-direction to a harmonic forcing function - with
unit amplitude and circular frequency w - in the i-direction. In

. a .
this context eq. (107) can be written as:
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. 2 2 1 . .

(10%) i (0) = fia\ﬁl(g) W)+ {Kﬁ)(w)} Jilot + o+ 0, (W)}
Kgé)(w)

where tan {ej(w)} = ]

(c) )
Kij (w)

This expression shows that the response of the linear ship-fluid

system to a harmonic (force) excitation with unit amplitude has the

amplitude

(c) 2 (s), 2
\/{Kij (W)} + {Kij (w)}
and follows the excitation by the phase

arctan {Kii)(w)/%éﬁ)(w)}.

The behaviour of the linear ship-fluid system in the

frequency domain can be described by (see refs. [33, 34]):

6
(15) jZl{(mjk *ag %+ bk 4 eqxi) = £ (0),
where mjk = inertia matrix (i.e. generalized mass) of the ship,
ajk = ajk(w) = hydrodynamic coefficient of the mass term
in the k-equation as a result of motion in the
j-direction,
bjk = bjk(w) = hydrodynamic coefficient of the damping
force in the k—equation as a result of motion in
the j-direction,
Cjk = hydrostatic restoring coefficient in the k-equation

as a result of a static displacement in the

j~direction at zero forward speed,
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£, (t) = external exciting harmonic force upon the ship
in the k-direction; f (¢) =0 for k # 1.
For the case under consideration with k (w) 0 it holds good

that ¢ > 0. By substitution of egs. (]O ) and (9) into eq. (15) a

systemjgf equations can be formed for the unknown functions ajk(w)
and bjk(w); the coefficients cjk are supposed to be known, e.g. as
being determined from static measurements. In order to determine the
unknown hydrodynamic coefficients it is necessary to consider the
responses to excitations in each of the modes of motion seperately.
If the in-phase and out-of-phase components of the responses aré
seperated, then enough equations are obtained to determine the
hydrodynamic coefficients.
N.B. Generally the following can be remarked. If the ship has a
forward speed, then there are 72 unknown function a (w) and
(w), which formally all are present, except in those cases
where the modes of motion are uncoupled. At zero forward speed
it holds good that ajk(w) = akj(w) and bjk(m) = bkj(w), 50
that in this latter case the number of unknown functions
formally amounts to 42 (see further ref. [21]).
In principle the hydrodynamic coefficients can be determined from
the set of i.r.f.'s {ki.(t)}; therefore they contain no information
which is not derivable from these functions.

The response for a given frequency, as determined by the pair of

functions

\/{Ki(?(w)}z + {Ki(JS.)(w)}z and  arctan {KS)(LU)/KS) (@)} in eq. (107)

or alternatlvely by the pair of functions K( )(w) and K(J)(w) in
eq. (10 ), represents a mapping in the frequency domain of the unit
response function, which is defined in the time domain. Since by
means of eqs. (IOa’b) it is permitted to pass from either domain to

the other , the two representations (in frequency and time domain) of
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the linear ship-fluid system are completely equivalent.

IT.1.b: SHIP MOTIONS WITHOUT A RESTORING FORCE: kij(m) = constant # 0

The integrals in egs. (6b), (lla’b) and (14%) have to be
convergent. As [fi(t)! is supposed to be bounded in time, these
conditions are fulfilled only if fkij(t){dt does exist; considering

the behaviour of the i.r.f. at infinity this should imply that

k . (=) = 0.
ij

However, the case in which kij(t) approaches some non-zero but

finite limit as t tends to infinity can be treated too.

if %%g kij(t) = kij(w) = constant # 0, the ordinary Fourier transform

of kij(t) does not exist. This difficulty can be overcome if in such

a case use is made of the generalized function theory (see refs,

[s0, 41]).

The i.r.f. kij(t) can be written as:

k..(t) = {kij(t) - kij(w) U(e)} + kij(m) u(e) ,

ij
where U(t) = unit step function = 0 for £ < 0
i
'2— for t =
I for t > O
The Fourier transform of {kij(t) - kij(w) U(t)} does exist:
o~ -iwt, 1 ~iwT ®
—OOJ! {kij (T) klj( ) U(T)}e dt = E e {klj (T) klj( )U(T)} -
1 e —ipT,  _
* T f {kij(T) kij( Yy §(t)le dt =

_1 e ~iwt 1 .
=1 -m{ kij(T)e dt i kij( Y,

where §(t) = delta function or Dirac funtion.

+
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For t < O is kij(t) = kij(t) = 0, so that it can be written:

® —iwT _ 1 . —iwr, -
_mf {kij(T) - kij(m) U(t)le dr = — {Of kij(T)e dt kij( V.

N.B. For @ = O one obtains:

. . -lwt, _ <. _ ) - _ -
iig OJ kij(r) e dt = OJ kij(T) dt = kij( ) kij(O) = kij( ) .

From the generalized function theory (see refs. [;O, 4[]) it is

known that:

“ -iwT 1
_wf U(t) e dt = T + 18 {(w)

The Fourier transform of kij(t) then takes the following form:

0

—-iwt _ ® -iwt _
_mj kij&)e dr = OJ kij(T) e dt

Kij(iw)

'wTd

UEIORINC s L j 1'<ij(1:) e WTar
0

iw

This expression contains a singularity for w = 0; if this

singularity is excluded Kij(im) changes into:

. _ 1 . ~-iwT
Kij(lw) = OJ kij(T) e dr, w # 0,

which by means of eqs. (13) and (lla’b) can be written as:
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o

Klj(iw) = J kij(r) cos(wt) dt - 1 f kij(r) sin{wt) 41 =
iy [ .
= {O{ kij(r) cos(wt)dt ~ 1 of kij(r) sin(wt) dt},

or otherwise:

S R L U OIS S S OR

1J

where K§§)(w) and Kig)(w) are the Fourier sine transform and the
Fourier cosine transform of kij(t), respectively (see refs. [39, 40,

4E}). From this it follows finally:

167" kP - - L, 1P = LiPw  wimuto.

If use is made of these expressions for K(J)(m) and K<J)(w), then
eqs. (10 ) and (13) keep their validity setting beforehand in
eq. (9) f = 1 and ¢

It has to be noted that K(j)(w) and K(J)(m) in the case under
consideration are no longer Fourier transforms of kij(t)’ because
these do not exist. Nevertheless an inverse Fourier transform is

still possible. To that end the following expression is considered:

( {kij(r) - kij(w)} cos(wt) dt =

0l
= i- klj(T) - kij(w)} sin(wt) . - % of kij(T) sin{wt)dt =
1 > (s) _ L)
- —U_J_ Klj (w) = Kij (LO),

or, K§§>(w) is the Fourier cosine transform of {kij(t) - kij(m)};

for the inverse Fourier transform it can be written (see refs.



_32_

(39, 40, 41]):

_ o a2 [
(17) kij(t) = kij( )+ - o! Kij (w) cos(wt) dw.

When kij(w) =0 eq.(7) 1is identical with eq. (12a).

In an analogous way as above it can be considered:
OJ {kij () - kij (=)} sin(wt) dT =

o 0,

1 -
+ - OJ kij (1) cos(wt) dt =

- -1 - ©
=- = {kij (1) kij( )} cos(wt) .

= - —{k (oo) + = OJ {(ij(’[) cos(wt) dt = {K(C)(w) - k (°°)} =

(s) -1 -
Kij (W) = = kij( ),

or, K].(_?l)(w) - -(l; kij (@) is the Fourier sine transform of
{ki.(t) - kij (»)}; for the inverse Fourier transform it holds

good that (see refs. [:39, 40, 41] )

kij(t)

o+ 2 [k =Lk @) s -
klj( ) + - OJ {Kij (w) = kij( )} sin(wt) dw

klj (=) {1 - % (J %‘”—9 dw} + —‘%OJ K].(j) (w) sin(wt) dw =

%OJ Ki(j)(w) sin(wt) dw,

since J sin(ut) dw = & for t > 0.
0 w 2
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Therefore, eq. (iZb) holds generally even when kij(m) = constant =
# 0.

If K(C)(w) and K(s)(w) are known, it is not difficult to determine
whether k (w) eqials zero or not. According to eq. (12 ) kij(w)
can be wrltten as:

o)

k,.(x) = lim-g J Kgg)(w) sin(wt) dw.
1] tso T 1j
0
Substitution of eq. (l6b) into this expression yields:
k.. () = lim 2 jK.(Q(w) sin(we) 4
1] feroo m 1] w

0
If a function f(w) on an interval (0,a) satisfies the Dirichlet
conditions, then it holds good for positive values of a that
(see refs. [39, 42]):

a

lim f £ (w )-iiﬂiﬁEl do = +r£00Yy . a > o.
t”)“x’o

[ad

Making use of this theorem kij(m) changes into:

+ .
(18) k.. (=) = <C)(o< Yy = 1im w k) ().
1] 1]
w>0

The complete set of i.r.f.'s forms a so-called i.r.f. matrix, which
in principle can be determined experimentally.

For the above case with kij(m) = constant # 0 it applies that
in eq. (15) - i.e. the description in the frequency domain of the

linear ship-fluid system - cjk = 0.
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I1.2.: THE 'IMPULSE RESPONSE FUNCTION'-TECHNIQUE FOR THE CASE OF
UNCOUPLED SHIP MOTIONS

A special case arises when the modes of motion of the ship are

uncoupled.

For uncoupled ship motions eq. (6b) can be written as:

t oo
(19) ki(t) =‘wJ fi(r) kii(t-r) dr = OJ kii(T) fi(t"T) dr,

This description of the linear ship-fluid system in the time domain
is equivalent to its description in the frequency domain according

to (see refs. [37, 38]):
(20) F{&i(t)}=F{fi(t)} F{kii(t)} s

where F{f(t)} = f f (1) e—in dt

represents the Fourier transform of the function £(t). Eq. (20)
can be derived by taking the Fourier transform of eq. (19). Eq. (20)
is only then a meaningful expression, if the respective Fourier
transforms of ki(t), fi(t) and kii(t) in a general sense - 1.e.
thinking in terms of the generalized function theory (see refs.
[40, 41]) - do exist.

N.B. Naturally it is also possible to take the Laplace transform
of eq. (19) - this yields a similar expression as eq. (20) -
and, subsequently, to make use of the Laplace transforms of
éi(t), £,(t) and k. (t).

Generally the Fourier transforms in eq. (20) are complex functions

with real and imaginary parts, which both depend on the circular

frequency w.
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On account of eq. (13) - whether or not combined with eqs. (Iéa’b) -
and of refs. [37, 38] it can be stated generally that:
R (Gw) = Fik ()}

in other words, the f.r.f. and the i.r.f. are related by a Fourier

transform:
o .
a . B -iwT
(219 Kii(lw) = _m] kii(T) e dt
or
b 1 “ . int
217) kii(t) = i?r_mf Kii(lw) e dw .

In accordance with the definition of the i.r.f., kii(t> is a real

function of t for which it holds good that:

A

(22) kii(t) =0 for t

. a b . . .
With regard to eq. (217) and eq. (217) (again) distinction has to be
made between ship motions with a restoring force and ship motions
without a restoring force; these two cases correspond with

kii(w) = 0 and kii(w) = constant ¥ 0, respectively.

I1.2.a: UNCOUPLED SHIP MOTIONS WITH A RESTORING FORCE: kii(w) =0

In this case the ordinary Fourier transform of kii(t) does

exist and eq, (Zla) remains valid. The £fir.f. Kii(iw) can be written

as:

(23) K, (o) = OJ k(0 e T dr = Re[K, ()] +

+1Im (K Ge)]



where

Re [K.,

Im[K.

(iw)]
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= Kii)(w) = OJ kii(r) cos(wt) drt

even function of w,

i.e. KEE)(w) = Kéz)(~w)

(iw)] = - K(S)(w) = - f ke (1) sin(ur)
0
= odd function of w,
i.e. K§§>(w) = - Kf§)<

With these expressions eq. (21b) becomes:

(t) is a real function of t,

of w, and K( )(w) and sin(wt) are odd functions of w; therefore:

so that,

) f Kii)(w) sin(wt) dw =

NOE 5— [ {K§§>(w> cos (wt) + Kii)(w> sin(ut)} do+

+ 1
A

—00!

—C0

-0

k(0 = %;-_mf K§§)(m) cos(wt) duw +

+

1

5= j K§i)(w) sin(wt) dw =

—c0.

b

dt

-w) .

f {KEE)(M) sin(ut) - Kii)(w) cos (wt) }du;

ic)(w) and cos(wt) are even functions

j Kii)(w) cos(wt) dw
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= %-OJ Kig)(w) cos(wt) dw +

(

+ OJ

0
1 (s) .
— K.V (w) sin(wt) dw.
T | K @) sinur)
Since the first term in the right-hand member of this expression is
an even function of t and the second term an odd function, while at

the same time kii(t) =0 for t<0, it must hold good that:

N

a,b
(24777 kii(t) 0

&l

J KEE)(w) cos{wt) dw =

\S]

-2 Of Kg) () sin(ot) do.

IT.2.b: UNCOUPLED SHIP MOTIONS WITHOUT A RESTORING FORCE:

kii(w) = constant # 0

When kii(W) = constant # 0 the ordinary Fourier transform of

kii(t) does not exist. Using the generalized function theory it can be

derived that (see Section II.l.b):

1

T §{w) kii(m) + T—'OJ iii(T) e-iUUT

1

a .
(257) Kii(lw) o dr,

or, with w # 0:

A Ji..m eTT gp -
0 11

b .
(257) Kii(lw) o

]

Re[l(ii(iw)_—}J + 1 Im[Kii(iw)],



._38_..

where Re[k,, (iw)] = KS) (w) = -

(%, .
-3 OJ kii(T) sin(wt) dt =

even function of w,

i
~

Im(K, ; (iw)]
= - é.of ﬁii(r) cos(wt) dt =

odd function of w.

Since Rii(t) again is a real function of t with Eii(t) =0

for t < 0, and since it holds good that

U)Re[kii(iwi1 wKig)(w) = ~OJ ﬁii(T) sin(wt) drt

odd function of w,

~wmk, Gw)] = k{3 (W) OJ k. (1) cos(ur) du

even function of w,

the following expression(s) can be derived in a completely
analogous way as in Section II.2.a:
b 3

a’
(267°7) k.. (1)

RN

j wKii)(w) cos(wt) dw =

= -2 J K.((.:)(w) sin{wt) dw.
0 11

m
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Integration of eq. (263) with respect to t yields:

k..(t) = 2 J Kgé)(w) sin(wt) dw + 'constant of
ii Tl il

integration',

where 'constant of integration' = 0 since kii(O) = 0.

Similarly integration of eq. (26b) with respect to t gives:

k..(t) = 2 { Kg?)(w) cos(wt) dw + 'constant of
ii T ii

. . '
integration ,

supposing that the integral

JRe [Kii(iw)] dw= fKS)(w) dw

0 0

converges absolutely, it holds an account of the lemma of Riemann-

Lebesgue (see refs. [;2, 43]):

lim J Kg?)(m) cos(wt) dw = O,
ii
to 0

so that

i = . = tant.
lim kii(t) kil(w) constan
L0

Consequently kii(t) can be written as:

2 [T -
(27277 ki (0) = k(=) + o of Ris' (W) cos(ue) du

=2 f K§§)(w) sin(wt) dw,
'rrO 11
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where - according to eq. (18) = kii(w) has the form:
o) = 2 (D (s)
(28) kii( ) = Kii (0 ) = lim u}Kii (w).
w0

For a physical interpretation and an explanation of the behaviour
of the i.r.f. at infinity in case of uncoupled ship motions without

a restoring force is referred to Appendix II.

1I.3: THE IMPULSE RESPONSE FUNCTION FOR UNCOUPLED HORIZONTAL SHIP
MOTIONS AT ZERO FORWARD SPEED, AS DETERMINED FROM THE HYDRO-
DYNAMIC COEFFICIENTS: kii(t) fori=1, 2, 6.

From the foregoing it is obvious that the main interest concerns
the i.r.f.: for the determination of transient ship motions the
i.r.f. must be known.

In this section the i.r.f. is determined for the (simplified) case
of uncoupled ship motions in the horizontal plane. This implies that
only the surge, sway and yaw motions are taken into account; so
heaving, rolling and pitching are neglected. Further the ship’s
forward speed is supposed to be zero.

In the case of uncoupled ship motions the description in the

frequency domain of the linear ship~fluid system reads (see eq. (15)):

(29) {mii + aii(wﬂ“fi + bii(w) ki + c % < fi(t),

where c.., =0 for i=1, 2, 6,

ii
Since in the following only motions in the horizontal plane - i.e.
motions without restoring force — are considered, eq. (29) takes the

form:
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(30) {mii + aii(w)}xi + bii(m) x; = fi(t), i=1, 2, 6,
while with respect to the i.r.f. it applies that:
kii(w) = constant ¥ 0.

For the f.r.f. Kii(iw) it then can be written (see refs. [37, 38] )

1

T aii(w)}iw + bii(“’)

s

31 Kii(iw) *Tm

with (see eq. (25b)):

a : (©) by ;@
(327 Re[Kii(l“’)] = K@ = { + ( )}2 2, 2 (w)
i aglwrw i\
and
—w{m, . + a.. (0}
(32°) Im[Kii(iw)] - - Ki(i)(“’) - ii o Yid i

fmg, + a @Y’ + bl W

From eqgs. (32a’b) and (27a’b) it follows that the i.r.f.'s for
uncoupled horizontal ship motions (at zero speed of advance) can be
determined if the hydrodynamic coefficient aii(w) and bii(w) are
known functions of w.

In the case under consideration the uncoupling of the ship
motions is materialized by schematizing the shin to a rigid
prismatic body with a rectangular cross—section and a symmetrical
distribution of mass. Besides, in case of shallow water the uncoupling
of the motions requires a horizontal bottom.When a closed wall is
present the ship motions are only uncoupled if one of the horizontal
body axes of the (schematized) ship is parallel to the wall.

From a physical point of view the hydrodynamic coefficients aii(m)

and bii(w) must be even functions of w; this is affirmed
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mathematically by egs. (32 »D ) where K( )(w) is an even function of
w and K(S)(w) an odd function. For (very) small values of w
a i(w) and bii(w) -~ in case of surge, sway and yaw motions at zero

speed of advance - then can be represented by:

(33a) aii(w) = aii(O) + a§§)w2 + terms of higher order in w
for w0,
(33b) bii(w) = bii)wz + terms of higher order in w

respectively,

where a( n) coefficient of term with order n in power series

development for aii(w),

b(n)

i1 coefficient of term with order n in power series

development for bii(w).
In case of (very) great values of w aii(w) and bii(w) can be

approximated by (see Appendix II1I):

a
34 a..(w) = a,.(x) =
(34%) L@ = ag
q for w » =,
b i
34 b..(w) = —%
(34”) INOREE
W
respectively,
where p; = constant in approximative expression for
a.. in case w »
ll(w) in R
q; = constant in approximative expression for

. i -
bll(w) in case w -+ «}

P is dependent on the mode of motion as well as the water depth,

4 is also dependent on the mode of motion but independent of the
water depth. For ship motions on (shallow) water with unrestricted
horizontal dimensions egs. (33a’b) and (BAa’b) apply in any case
(see ref. [3@] and Appendix III). When a closed vertical wall is
present, which is parallel to one of the horizontal body axes of

the ship, the validity of eqs. (33a,b) and (343) seems to be
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confirmed by ref. E}G.
Starting from eq. (28) and making use of egs. (32b) and (33a,b)
kii(m) can be written as:
Wlim,. + a,. ()}
ii il
2

ii

k() = lin ok (@) = lin -t
w>0 w0 {mii + aii(w)} w + b

(w)

wz{m.. + a,.(0) + ag?)wz + ...
- lim ii ii ii
wrd {m,, + a,.(0) + agg)wz + ...}zwz + {bg?)wz + ...}2
ii ii ii ii

1

m; * 230

The fact that this expression for kii(w) is independent of bii’

is caused by the parabolic behaviour of bii(w) near by the point w=0.

N.B. Since it holds good that

1

ki) = o7
11 11

= constant # O,

the linear ship-fluid system indeed does behave stable in

the case under consideration (see Appendix I).

With kii(w) known, substitution of egs,. (32a’b) into egs. (27a
yields the following expression(s) for kii(t): N
0 b..{w) cos(wt)
a 1 2 ii
(357) k..(t) = ——————ct — [ dw=
. mig aiiko) T o {m..*—a..(w)}zwz-kb?.(w)
ii ii ii

dw

‘e D 2
{357) =

Jw wim,, + aii(w)} sin{wt)
0

11
2 2 2
{mii+ aii(w)} W +bii(w)

2Dy

for t> 03
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<
(22) kii(t) =0 for t = 0.

N.B. If the hydrodynamic coefficients aii(m) and bii(w) were

constants - i.e. quantities independent of the circular

frequency w - then eq. (35a) can be solved analytically,
yielding:
b..
1 —t__.,ﬁ__,_
kll(t) = W{l + e mll + all } for t > 0,
ii ii

where as; and bii have to be conceived of as constant quantities.

By means of eqs. (9) and (lOb) it can be obtained from eq. (30):

(s)
(363) m. 4 a (w> _ ,]__ Kii (UJ)
HET e w Wy e wP wn?
(c)
(36%) by () =y it E:i 5 ;
(K@ + R (w) )

these same expressions can also be derived from egs. (323) and (32b).
N.B. Using eq. (328) combined with egs. (33a’b) and (34a’b) it can

be shown in a simple way that the integral
J k9 (W) du
ii
0
indeed converges absolutely.

From the foregoing it is obvious that the derivation of an

expression for kii(t) - even in case kii(w) = constant # 0 - does not
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present any problem, if use is made of eq. (24b): for, eq. (24b)

is identical to eq. (27b). For the case of uncoupled horizontal
ship motions (with zero speed of advance) eq. (24b) as well as

eq. (27b) lead directly to the expression for kii(t) as given in
eq. (357).

In addition to the method already dealt with, there are two further
methods to derive an expression for kii(t) as given in eq. (35a).
These methods, in which use is made of Laplace transforms, are

not specifically different but they are more direct. For an

explanation in this is referred to Appendix IV.

IT.4: EXAMPLES OF THE IMPULSE RESPONSE FUNCTION IN CASE OF
SHALLOW WATER WITH UNRESTRICTED HORIZONTAL DIMENSIONS:
kii(t) for i = 2, 6

As pointed out already the determination of tramsient ship
motions requires knowledge of the behaviour of the i.r.f.,'s. With
regard to the question whether the i.r.f.'s have to be determined
theoretically or experimentally, in general the following can be
remarked.

The respective descriptions of the linear ship-fluid system in the
time domain and the frequency domain are completely equivalent. Both
methods of description can be used in order to define the response
to transient disturbances; there is no spec? . advantage attached

to either of them. If the linear ship~flu’ . system has been
formulated mathematically the i.r.f.'s or the f.r.f.'s can be
evaluated, but if this is not possible they can also be determined
in an experimental way.

The f.r.f.'s can be determined experimentally using a
harmonically varying input signal. The measured output signal

contains only one single frequency due to the linearity of the



ship-fluid system. Therefore it is sufficiently characterized by its
amplitude and phase, which are represented in the f.r.f. in a complex
way.
Since the i.r.f. and the f.r.f. are related by means of a Fourier
transform, a mere determination of the f.r.f. is sufficient. Direct
determination of an i.r.f., however, would be far more efficient than
direct determination of a f.r.f. In the first case a few experiments,
using a pulse or/and an arbitrary function of time, are sufficient,
whereas in the second case many tests have to be carried out in order
to find the f.r.f. over a sufficiently long interval of the frequency.
In this context, by way of example, refs. [;4] and [%5] may be
mentioned: in ref. [%{] the f.r.f.'s for heave and pitch are deter-
mined by means of tramsient (force) pulse tests, in ref. [%5] the
i.r.f.'s for sway and yaw are calculated from measured f.r.f.'s; both
references concern mainly ships with non-zero forward speed. Compared
with transient pulse tests experiments to determine f.r.f.'s are
much easier, since the pulse technique presents more specific problems
and demands a higher degree of accuracy of the measuring equipment.
For these reasons the choice in favour of a determination of the
f.r.f. - what actually amounts to direct determination of the
hydrodynamic coefficients as functions of the frequency - is obvious.
Consequently, if the hydrodynamic coefficients are known along a
frequency range which is sufficiently large, then the corresponding
i.r.f.’'s can be determined making use of the expressions derived in
the preceding section(s).

In ref.[?@] the hydrodynamic coefficients of a ship (model)
were determined in case of swaying and yawing at zero speed of advance.
The water was calm (no waves, no current) and shallow and had
relatively large horizontal dimensions; the bottom was horizontal.
Farther, the ship (model) was schematized to a rigid prismatic body
with a rectangular cross-section and a symmetrical distribution of
mass (see also Section II.3.a), so that any coupling between sway

and yaw motion did not exist.
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The results for aii(w) and bii(m) in case i = 2, 6 as presented in

ref. [3@] now will be used for the numerical calculation of the two

i.r.f.'s

kzz(t) and k66(t).

The main particulars of the schematized ship used in the model are

given in Table 1.

Table 1.

Main particulars of ship model.

length (on the water-line)

beam

draught

volume of displacement

area of cross—section

water—~line area

lateral plane area

block coefficient

centre of gravity (with respect

to frame 10)

centre of gravity in height (with

respect to keel point)

mass for horizontal (surge and

sway) motion

mass~moment of inertia around

Gz-axis

radius of gyration with respect

to Gz—axis

Since shallowness of the water is of

hydrodynamic coefficients, two water depths were chosen, viz.

h=0.200 m and h = 0.175 m.

Farther in the following is:

o ow

L.B.D

L.B
L.D

m

SRRV

m66

2.438
0.375
0.150
0.1371
0.056
0.924
0.366
1.000

0.140

137.24

50.99

0.610

o BNJB“)EU)B ® 8

=}

kg

kg m

dominant importance for the
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p = specific mass density of fluid = 1000 kg m~3,

g = acceleration due to gravity = 9.81 m 8_2.

In ref. Eﬂﬂ the hydrodynamic coefficients were determined both
in an experimental and in an analytical way. As a consequence of
the restricted possibilities of the experimental facilities the
hydrodynamic coefficients could only be measured in a limited
frequency range. Therefore an analytical determination of the hydro-
dynamic coefficients was necessary, not only to check the measured
results but also to obtain information concerning aii(m) and
bii(w) (i =2, 6) along a sufficiently long frequency range.

As in ref. [?Q} the theoretical results for the hydrodynamic

coefficients were derived using strip theory (i.e. a two~dimensional

approach), three-dimensional effects, such as the circulation around
'bow' and 'stern' cannot be taken into account. This is the main
cause of the discrepancy in ref. Eﬂﬂ between the theoretical and the
experimental results for the hydrodynamic coefficients in the lower
frequency range. In case of higher circular frequencies the theory

is sufficiently accurate - also on shallow water - to determine the
hydrodynamic coefficients in a (two-dimensional) stripwise manner

(see further ref. [3@] and Appendix III).

Since the hydrodynamic coefficients for the lower circular frequencies
have a relatively greater influence on the behaviour of the i.r.f.
than those for the higher circular frequencies, especially in the
lower frequency range aii(w) and bii(w) (i =2, 6) must be known as
accurate as possible.

The respective i.r.f.'s for the sway motion and the yaw motion are
calculated making use of eq. (35a). For an outline and an elucidation
of the method used for the numerical calculation of eq. (35a) reference

is made to Appendix V.
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IT.4.a: THE IMPULSE RESPONSE FUNCTION FOR THE SWAY MOTION: k22(t)

The hydrodynamic coefficients for the case of pure swaying
at zero forward speed, as determined theoretically and experimentally
in ref. [BQ] , afe given in dimensionless form (azz(pLBD)_l,
bzz(pLBD)—l(B/g)7 in figs. Za’b and 3a:b as functions of the
dimensionless circular frequency w(B/g)? with the dimensionless water
depth h/D as a parameter. In these figs. the hydrodynamic coefficients
for the sway motion are represented for that part of the frequency
range, for which also experimental results are available; the
hydrodynamic coefficients in case of higher circular frequencies are
given in ref. [3@]. The figs. 22P and 3%°°

circular frequencies a discrepancy exists between the theoretical

show that in case of low

(i.e. two-dimensional) and the experimental (i.e. three-dimensional)
results for the hydrodynamic sway coefficients. As a consequence,
for the low circular frequencies the hydrodynamic sway coefficients
calculated two-dimensionally have been adapted to the (three-
dimensional) experimental values; for the higher frequencies they
are maintained. To avoid a possible non-linear distortion of the
f.r.f. (i.e. the hydrodynamic coefficients) this local adaptation
of theory to experiment is based on the smallest amplitudes of the
harmonically oscillating sway motion.

Starting from the hydrodynamic coefficients azz(w) and bzz(w) as
given in figs 2a,b and 3a,b and farther in ref. [}Q] , the i.r.f.
for the sway motion kzz(t) can then be calculated making use of
eq. (35a) (see also Appendix V). The results are presented in
dimensionless form (pLBD %22) in figs. 4 and 5 is functions of the
dimensionless time t(g/B)® with the dimensi .iess water depth h/D
as a parameter, The figs. 4 and 5 each show three curves:
~ the dot and dash line represents kzz(t) as calculated from

hydrodynamic coefficients determined theoretically (i.e. two-
dimensionally) along the whole frequency range;

-~ the full line represents kzz(t) as calculated from hydrodynamic
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coefficients which in case of higher frequencies were determined
theoretically (i.e. two-dimensionally) and in case of low frequencies
were adapted to experimental (i.e. three-dimensional) values;

- the broken line represents kzz(t) as calculated from an expression
which can be derived analytically using a long-wave approximation
for the motion of the water; this long-wave approximation is
basically two-dimensional (see Appendix VII).

From figs. 4 and 5 it can be seen that the i.r.f. kzz(t) approximates

rather quickly to a constant value as t increases; this means that

in the convolution integral eq. (19) - representing for i = 2 the

motion of the ship in the sway direction - much emphasis is laid on

the very near past of the time history of the forcing function,

IT.4.b: THE IMPULSE RESPONSE FUNCTION FOR THE YAW MOTION: k66(t)

The hydrodynamic coefficients for the case of pure yawing at

zero forward speed, as determined theoretically and experimentally
] 2 i

in ref. [3@], are given in dimensionless form (a66(T§ L pLBD)— s
- L
b66(%§ szLBD) 1(B/g)’)in figs. 6a’b and 73”b as functions of the

dimensionless circular frequency w(B/g)% with the dimensionless

water depth h/D as parameter. In these figs. the hydrodynamic
coefficients for the yaw motion are represented along that part of

the frequency range, for which also experimental values are available;
for the hydrodynamic coefficients in case of higher circular
frequencies is referred to ref. [3@]. The figs. Ga’b and 7a,b show
that the theoretical (i.e. two-dimensional) and the experimental (i.e.
three~dimensional) results for the hydrodynamic yaw coefficients do
not agree along the frequency range considered. As a consequence in
the low frequency range the hydrodynamic yaw coefficients calculated
two—~dimensionally have been adapted to the (three-dimensional)
experimental values; they are maintained for the higher frequencies.
To avoid a possible non-linear distortion of the f.r.f. (i.e. the
hydrodynamic coefficients) this local adaptation of theory to

experiment is based on the smallest amplitudes of the harmonically
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oscillating yaw motion.

Concerning the values of the added mass-moment of inertia for the
yawing motion a66(w) and the yaw damping moment coefficient b66(w)
as actually used the following additional remarks have to be made.
In case h/D = 1.333, for w(B/g)? = 0.567 (i.e. w S 2.9 s°1)
a66(w) as well as b66(w) have been adapted to their corresponding
experimental values; for 2.9 Swisg s_] a66(w) was extrapolated

by means of a straight line - according to ag (w) =-34.32 + 217,22 -,
which was faired into the curve at w = 2.9 s ;3 for w > 5.9 s—l, it

2

. 1 . )
was applied a66(w) = Ti-L azz(w) (see Appendix III); for

2.9 2 2 3.3 s¢1 b66(w) was extrapolated by means of a straight

line - according to b66(w) = 235.36 w - 436.89 - which was faired

into the curve at w = 2.9 s ; for w > 3.3 s_] it was applied

b66(w) = %5 Lzbzz(w) (see Appendix III). In case h/D = 1.167, for
1

w(B/g)? = 0.567 a66(m) as well as b66(w) have been adapted to

1

their corresponding values; for 2.9 Swi3.9s a66(w) was

extrapolated by means of a straight line - according to a66(w) =
= -88.26 w+ 367.75 -, which was faired into the curve at w = 2.9 s-l;

-1, . 12
for w > 3.9 s it was applied a66(w) =13 L azz(w) and for

1 1 2 .
b66(w) =13 L bzz(w) (see Appendix III).

w>2.9s

Starting from the hydrodynamic coefficients a66(w) and b66(w),
b and 7a,b and farther above and in ref. [3@],
the i.r.f. for the yaw motion k66(t) then can be calculated making

use of eq. (35a) (see also Appendix V). The results are presented in

. . . a
as given in figs. 6 °

dimensionless form (m66 kﬁ6) in figs. 8 and 9 as functions of the

dimensionless time t(g/B)* with the dimensionless water depth h/D

as a parameter. The figs. 8 and 9 each show two curves:

~ the dot and dash line represents k66(t) as calculated from
hydrodynamic coefficients determined theoretically (i.e. two-
dimensionally) along the whole frequency range;

-~ the full line represents k66(t) as calculated from hydrodynamic
coefficients which in case of low frequencies were adapted to

experimental (i.e. three—-dimensional) values and further were
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extrapolated linearly, and which in case of higher frequencies were
determined theoretically (i.e. two-dimensionally).
From figs. 8 and 9 it can be seen that the i.r.f. k66(t), just like
k22(t), approximates rather quickly to a constant value as t increases;
this means that in the convolution integral eq. (19) - representing
for i = 6 the motion of the ship in the yaw direction - much emphasis

is laid on the very near past of the time history of the forcing

function.
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SECTION IIT: APPLICATION OF THE 'IMPULSE RESPONSE FUNCTION'-TECHNIQUE

TO THE BERTHING SHIP PROBLEM

ITII.1: GENERAL CONSIDERATIONS

In this section the 'i.r.f.'-technique is applied to the
berthing ship problem. First of all the mathematical model to
simulate the berthing of a (schematized) ship to a jetty and to
determine the fender loads is presented. Then, the results of
theoretical and experimental investigations for certain situations
are compared and discussed.

For the sake of convenience the assumptions and simplifications
concerning the case of the berthing ship - as presented and
discussed in Section I - are recapitulated.

The displacements of the ship are assumed to remain small. Only the
motions in the horizontal plane are considered, particularly the

sway and yaw motions. The ship's forward speed is supposed to be
zero. The vessel is schematized to a rigid prismatic body with a
rectangular cross—section and a symmetrical distribution of mass.
Further, it is assumed that the fluid is inviscid and incompressible
and moves irrotationally; this assumption of fluid idealization is,
however, not essential. The fluid domain is supposed to be relatively
large in the horizontal directions; this implies an open berthing
structure. The water depth may be arbitrary and the bottom is
horizontal,

The influences of waves, current and wind are not taken into account.

The theoretical as well as the experimental investigations of
the berthing ship problem are carried out with the same schematized
ship (model) and for the same water depths as described in Section IL.4.
The fender loads and the ship trajectories are determined for various
values of the (lateral) speed of approach, the fender elasticity and
the water depth.

For reasons of clearness a choice is made for a simple berthing facility,

viz. an open (jetty—type) berthing structure with one single fender.
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III.2: OUTLINE OF THE MATHEMATICAL MODEL; NUMERICAL SOLUTION

Consider the schematized ship berthing to an open jetty equipped
with one single fender. The characteristics of the fender are assumed
to be represented by an undamped spring with a horizontal line of
action situated in the plane of the water surface at rest. The mass
of the fender is supposed to be small with respect to the mass of
the ship. The frictional force between the hull of the ship and the
fender is neglected.

N.B. As only horizontal motions are involved, the position of the
ship's centre of gravity G in height is of no importance.
Consequently, for the sake of simplicity, G is assumed to be
situated in the free water surface at rest,

Initially, i.e. before the first contact between ship and fender,

the ship moves laterally towards the berth with a constant speed

of approach vy and without rotation. The first contact between ship

and fender is supposed to take place at point of time t = 0. Then

the line of action of the fender is perpendicular to the longitudinal

axis of symmetry of the ship; its initial distance to the ship's

centre of gravity G is denoted by e _. Since the constant forward

0

speed of the ship V equals zero, the oxlx2x3—co—ordinate system 1is

space fixed. At t = 0 the OX1X2X3~CO—Ordinate system is assumed to

coincide with the moving, ship fixed, Gxyz-co-~ordinate system. When
eq # 0, at t = 0 the ship starts rotating, so that for t > 0 the
motion of the ship consists of a translation in the sway direction
and a rotation around the ox3—axis. The co-ordinates of the ship's
centre of gravity G at point of time t during the contact between
ship and fender are indicated by le(t) and xzc(t); the angle of
rotation of the ship's longitudinal axis of symmetry around the
ox3—axis then is x6(t) =9y (t). The co-ordinates of the point of the

. 1
fender are x]f(t) = -eg, for all t, and X2f(t) with Xzf(t) = E—B

for t = 0. The impression of the fender is denoted by szf(t) =

~ | .. . ,
-xzf(t) §-B. With the position of the ship given by le(t), XZG(t)




and its orientation by y(t) the impression of the fender can be

expressed as:

(37) szf(t) = x2G~% B {l~cos(y)}+ {le —X1G+%B sin(y)} tan(y) ,

8%, £ (£) 2o .

For a definition sketch see fig. 10.
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Fig. 10 - Definition sketch: plan and cross-section.
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The relation between the impression of the fender szf(t) at
a certain point of time t > 0 and the corresponding reaction force

in the fender sz(t) can be represented as:
>
(38) sz(t) = f(szf) for £t =0

The resulting force and moment, as acting in and about the ship's

centre of gravity, then become:

(39%) £.(t) = F, . cos(p)
2 2f 5
t=20,
(39) £ (t) = - A6 F.. cos(d)
6 of cos(¥
respectively,
X - X
— _ 16 T1f _ 1
where AG = o5 (P) > B tan(y)
. - - X = 21
with Xig =7 eg V<3, IAG[~2L

According to eq. (19) the description of the linear ship-fluid system
in the time domain in case of uncoupled sway and yaw motions reads as

follows:

(40) £i<t) = _w{t £.(0) k(¢ - 1) dr, i=2, 63
the forcing functions fi(t) are the input signals of the linear ship-
fluid system, the velocities xi(t) from which the translation and the
rotation can be determined are the output signals. Since the forcing
functions fz(t) and f6(t), as acting during the contact between ship
and fender, are functions of the displacement(s) of the ship as well
as of the impression of the fender, eqs. (37), (38), (39a’b) and (40)

combined form a closed loop system; eq. (40) represents a set of two
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integro-differential equations. Then, if the time history of the
forcing functions fi(t) before touching the fender is also known, it
is possible to determine fender loads and ship trajectories, provided
the relevant i.r.f.'s are known. From the expression for the i.r.f.'s
in case of uncoupled horizontal motions at zero forward speed —

eq. (353) - and eq. (40) it follows that the time history of the
forcing functions for t o can be chosen such that the ship has got
a constant lateral speed of approach and a zero rotational velocity at
the first instant of contact between ship and fender, i.e.

%2(0) = v 26(0) = 0. Eq. (40) then changes into:

A,
a . t

(417) Xz(t) =V, + oj fZ(T) kzz(t-T) dt,
b . ¢

(417) Xé(t) = of fé(r) k66(t - 1) dt;

fz(t) has to be interpreted as the component of the reaction force

in the fender, which - during the successive positions of the ship -
acts upon the ship's centre of gravity G and has a direction
perpendicular to the ship's longitudinal plane of symmetry (see also
eq. (39a)); likewise, éz(t) is the velocity of G in the sway direction;
f6(t) is the moment of fz(t) around the Gz-axis (see also eq. (39b))
and x6(t) is the rotational velocity of the ship.

The eqs. (37), (38), (39a’b) and (41a’b) combined now have to be

solved (numerically); naturally this can only be done if the fender
characteristics as well as the i.r.f.'s kzz(t) and k66(t) are known.

The initial values of the problem are:

x,(0) = v, %, (0) = ¥(0) =0,
(42) x,6(0) = 0, %,5(0) = 0, %, (0) = $(0) = 0,
1
x,:(0) = 5 B, £,00 =0, £,(0) = 0

The numerical solution of the set of eqs. (37), (38), (39a,b)
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and (Ala’b) with initial conditions (42) is carried through according
to the following procedure. Suppose that the (mathematical)
simulation of the schematized ship berthing to the jetty has arrived
to the point of time t. At is the time increment applied, so the
above set of equations has to be solved for the point of time t + At.

First of all the velocities for t + At are predicted:
xz(t + At) = xz(t), x6(t + At) = x6(t).

Subsequently the new orientation and the new position of the ship are
determined by numerical integration of the velocities, applying the

trapezoidal rule:

§6(t) + §6(t + At)

yp(e+Ae) = y(t) + 5 At,
iz(t) + %,(t + At) _

le(t + At) = le(t) - At 5 sin{y(t + At)},
éz(t) + x,(t + AL) -

x2G(t + At) = XZG(t) + At 5 cos{y(t + AtL)},

where @(t + At)

b

- ¥() + v(t + Ar)
2

representing the mean value of ¥(t) on the interval of time
considered. For time t + At eq. (37) then yields the displacement

of the fender szf(t + At) and eq. (38) the fender force sz(t + At);
the resulting force and moment, as acting in and about the ship's
centre of gravity G - fz(t + At) and f6(t + At), respectively - can
be predicted by means of egs. (39a’b). Now the time history of the
forcing functions is known until the time t + At; therefore the
convolution integrals in eqs. (4la) and (Alb) can be calculated.

The numerical integration of these comvolution integrals is carried

out by means of the trapezoidal rule, using a time increment equal to
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the time step At. In doing so one obtains new, corrected, values for
the velocities at t + At. Finally these corrected velocities are
compared with the corresponding values predicted at the beginning of
the calculation. If the respective differences are acceptable (i.e.
in case the predicted and the calculated velocities at t + At are

in satisfactory agreement), the calculation continues for the next
time step; if not, the calculation is repeated with the new corrected
velocities iz(t + At) and i6(t + At) (predictor—-corrector method,
c.q. iteration procedure). The criterion for the continuation of

the calculation for the next time step is based on the absolute
value of the difference between the predicted and the calculated
velocities (expressed in m s_l): it is assumed that this absolute
value has to be smaller than 10—7. The calculation is finished when
the ship loses the contact with the fender; this is the case when
szf(t + At) becomes zero.

For the case of a berthing operation in which Xip = 7oy = 0 (i.e.

a '"centric impact') to a linear fender, a criterion can be derived
for the convergence of the computational scheme (see Appendix VI),

viz.:

(43)

where ¢y = spring rate of linear fender.

ITY.3: EXAMPLES OF CALCULATED BERTHING OPERATIONS AND THEIR
EXPERIMENTAL VERIFICATION

In order to examine the adequacy of the mathematical model
for the simulation of berthing operations under conditions as
described in Sections III.! and IIL.2, an extensive experimental
program was carried out to analyse the behaviour of a (schematized)

ship berthing to a(n open) jetty equipped with one single fender.
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Afterwards typical test situations were selected for the numerical

simulation to see whether the observed phenomena could be reproduced

by means of the mathematical model.

Two kinds of fenders were considered: a linear fender represented

by

(44%)

0 for szf(t) < 0,

Fae(0) = N
=g szf(t) for szf(t) = 0,

and a non-linear fender represented by

(442
where CO =
Cps €y =
d =
sc

A distinction

viz. berthing

0 for Ax f(t) <0 ,
=4 <
sz(t) = c szf(t) for O szf(t) dsc’ §
-c, szf(t) - cy {szf(t)-dsg-for szf(t) =d

Ao

SC

spring rate of linear fender,

respective spring rates of the two linear springs
which combined form the non-linear fender,

initial distance (i.e. at rest) between the two linear
spring elements of the non-linear fender.

can be made between two kinds of berthing operations,

operations in which ey = 0 ('centric impacts') and

berthing operations in which e, # 0 ('eccentric impacts').

IIT.3.a: DESCRIPTION OF THE EXPERIMENTAL SET-UP

The experimental study was executed with a schematized ship model

berthing to an open jetty equipped with one single fender, in water

with respective depths amounting to 1.333 and 1.167 times the draught

of the vessel.

The schematized ship model and the water depths are

3
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the same as described in Section II.4 and ref. [3@]. The lay-out
of the test set—up and the conditions under which the operations
took place, correspond with the situation as described in
Sections III.! and III.Z2.

In the experiments the following quantities were measured
as functions of the time: the displacement of the fender (and
therefore the fender load), the position of the ship's centre of
gravity G and the angle of rotation of the ship's longitudinal
plane of symmetry.

The model tests were carried out in the Laboratory of Fluid
Mechanics of the Delft University of Technology, department of
Civil Engineering. The experimental facility was situated in the
middle of a rectangular basin with relatively large horizontal
dimensions ~ effective length = 33.15 m, effective breadth = 13.95 m -

and a horizontal bottom.

|
i~ starting-position for berthing operation

3

D=0406 m

2438m
|

For an explanation of

TS the numbers is referred
to the text.

Fig. 11 - Plan of berthing lay-out .
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The test arrangement consisted of the following principal parts

(the numbers refer to fig. 11):

1 - the schematized ship model;
2 = the fender;
3 - an open structure, fixed to the bottom of the basin, which

acted as support for the fender; the value of e could be
varied by moving the fender along the structure (for instance
to the places indicated by A, B, C and D);

4 - an open structure, fixed to the bottom of the basin, to fasten
the ship in a fixed position when at rest; this fixed position
acted as starting-position for the berthing operation;

5 - a facility to give the ship model the proper constant lateral
speed of approach;

6 - a 'position follower'to measure the 'X/Y—co-ordinates' of the
ship's centre of gravity G;

7 =~ a facility mounted on the bottom of the ship to measure the
angle of rotation of the ship's longitudinal plane of
symmetry.

Fig. 12% shows a general view of the test arrangement.

The longitudinal plane of symmetry of the ship model in its

starting—position (i.e. when at rest) coincided with the breadthwise

axis of symmetry of the basin. The trajectory of the ship's centre
of gravity G before the contact between ship and fender coincided
with the lengthwise axis of symmetry of the basin.

The 'position follower' was mounted horizontally on a frame which

was adjustable in height. In principle it was a mechanical X/Y-

recorder.

The 'position follower' consisted of a carriage and a routing
carrier. The carriage — measuring the motions of G in the
'Y-direction' - moved along two parallel, horizontal shafts, had a
span of 0.70 m and could cover a distance of 0.90 m. The carriage

was composed of two parallel, horizontal shafts along which the




Fig. 12% - General view of experimental set-up .

routing carrier could move; the routing carrier measured the motions
of G in the 'X-direction' and could cover a distance of 0.60 m.

The alignment of the carriage was such that the 'X~' and 'Y-
directions' were orthogonal. The direction of motion of the carriage
was chosen parallel to the lateral speed of approach of the ship.
The 'X~' and 'Y-co-ordinates' were measured by means of two
independent string-driven potentiometers of high precision, one

for each axis (see figs. 132 and 13b).

The horizontal motions of the ship's centre of gravity G were
transferred to the routing carrier via a shaft. This shaft was
connected with the routing carrier in such a way that it - while

in upright position — only could move vertically without restraint,



shaft
3 i \ e b
@ T o ® + ¥ L
string/ . / ~—shaft
shaft— string o
routing carrier _5 routing carrier
Y- direction ,ﬁ,/ = _’/
— +i“~_. A
- <
. ) .
carriage * carriage
shaft -
P ~ 07 ¢ 4 - ¢ o
3 R ¥ ¥ 17
Legenda
}—— shaft support F— string support @ pulley

@ potentiometer with sheave (string one time wound around)

Fig. 13% - Plan of carriage Fig. l3b - Plan of routing
(= 'Y'~)axis string carrier (= 'X'-)
driven potentio- axis string driven
meter circuit. potentiometer

circuit .,

and rotation (around its lengthwise axis) with respect to the
carrier was impossible. By a universal joint, situated in the plane
of the water-line just above the ship's centre of gravity G, this
vertically movable, non-rotatable shaft was coupled to a second
shaft which coincided with the Gz-axis of the moving, ship fixed
Gxyz—co-ordinate system. This second shaft was my means of a
gear-wheel transmission - mounted on the bottom of the ship -
connected with a precision potentiometer, by which the angle of
rotation of the ship's longitudinal plane of symmetry could be
measured. In order to prevent that during a berthing operation too
vehement roll motions - if any - yet were transferred to the
routing carrier, c.q. carriage, the absolutely vertical shaft (i.e.
the upper one) was supported elastically with respect to the sides

of the ship (see fig. IZb).
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Fig. 12b - Connection between ship model and

'position follower'.

A measuring arrangement of this type implied that the ship model was
allowed to heave, to roll and to pitch without any restraint, whereas
the motions in the horizontal plane (i.e. translations as well as
rotation) could be measured without being influenced.

The 'position follower' was constructed as light and rigid as
possible. The friction in the moving parts was minimized by applying
eminent materials, such as precision ball-bearings, ball bushing
constructions, special extruded and hardened shafts, etc.

According to Section II.4 the mass of the ship model, as based on

the volume of displacement, amounted to 137.10 kg, whereas the mass
for horizontal motions as used in the tests énd the calculations,
m,y, Was 137.24 kg. This difference was caused by the presence of
the 'position follower' (carriage with routing carrier), which
contributed to the (moving) mass of the ship. Otherwise, the
contribution of the mass of the 'position follower' to that of the
ship model - including frictional effects in the moving parts -

could be considered as negligible (less than 0.5 per cent., i.e.
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within the accuracy of the measurements.

To give the ship model the proper constant speed of approach
two equal horizontal forces were applied to the fore and aft end
of the ship model such that rotational motions did not arise. These
forces were exerted by a weight connected to the ship model via
lines and pulleys. At the beginning of a test the ship model was
released from its starting-position at a distance of about 0.50 m
from the fender. Then it was accelerated gradually until the distance
to the fender was about 0.10 m, at which moment the weight reached
a cantilever , Till the fender was touched the only external force
acting on the ship model was the fluid resistance. It appeared that
in this phase the lateral speed of approach remained almost constant.
The following constant lateral speeds of approach were applied in the

b 0.02ms™! and 0.03 m s™!. Their actual

tests: circa 0.0l m s
values were determined by (numerical) differentiation of the
displacement of the ship's centre of gravity G in the 'Y-direction’

as measured by the 'position follower'.

Several fenders were used. The elasticity of these fenders was
simulated by means of two or more undamped leaf springs, as shown in
fig. 12% and fig. lZd. The frictional force between the hull of the
ship and the fender was minimized by using a (small) horizontal wheel
which was fitted on a precision ball-bearing at the extreme end of
the fender. The fender was attached to its supporting structure in
such a way that this horizontal wheel was situated in the water surface
at rest and the line of acrion of the fender was perpendicular to
the longitudinal plane of symmetry of the ship when approaching
laterally. The reaction forces (or strictly speaking the impressions)
of the fender were measured by means of strain gauge transducers,

The own mass of the fender could be neglected with respect to the
mass of the ship model. The natural period of the respective fenders

was many times smaller than the length of time of their impression.



Fig. 12° - Simulation of linear Fig. 12d - Simulation of non-—

fender. linear fender.

The 'centric impacts' were carried out with three linear fenders
(co = 2146 kg s_z; ¢y = 1373 kg s_z; ¢y = 576 kg s_z) and with
one non-linear fender (c] = 625 kg 5_2, ¢, = 1108 kg s_z,

dSC = 0.664 = 10—2 m). The 'eccentric émpacts' were carried out
with one linear fender (cO = 637 kg s ) for three valuées of e
(eo = 0,406 m; ey = 0.813 m; ey = 1.219 m).

All signals were recorded simultaneously on paper chart.

0

III.3.b: CALCULATION OF BERTHING OPERATIONS

For the numerical simulation of the berthing operations those

test situations were selected from the experiments, which were in
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agreement with the conditions and the situation as described in
Sections III.1 and III1.2. This implied that the calculations were
carried out for the same schematized ship (model), for the same
constant lateral speed of approach, for the same water depths, for
the same fenders and for the same values of e, as in the tests.

Since the schematized ship model and the water depths were the same
as described in Section II.4, in the numerical calculations use could
be made of the relevant i.r.f.'s as determined at that place.

In the numerical simulation of the berthing operations the
following quantities were calculated as functions of the time (see
also fig. 10):
the velocity of the ship's centre of gravity G in the sway direction,
iz(t);
the rotational velocity of the ship, x6(t) = w(t);‘
the co—ordinates of the ship's centre of gravity G, le(t) and xzc(t);
the angle of rotation of the ship's longitudinal axis of symmetry
around the ox3—axis, x6(t) = y(t);
the impression of the fender, szf(t);
the reaction force in the fender, sz(t);
in the relevant cases these quantities were determined only for the
length of time, during which there was contact between ship and
fender.

The results of the calculations showed that generally X}G<t) was

very small with respect to x,.(t); in all cases considered le(t)

2G

remained smaller than 0.4 = 10—3 m. Besides, the values of XIG(t>
as determined experimentally fell within the accuracy of the
measurements. For these reasons le(t) further is left out of
consideration.

According to criterion (43), yielding a condition for the
convergence of the computational scheme in case of a 'centric
impact' against a linear fender, the time step of the calculationms,

At, - for the situations considered - has to be smaller than 0.4 s.
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On the one side the computing time roughly is linearly proportional

to the inverse of the time step At. On the other hand, systematic

calculations with varying time step have shown that the accuracy

of the calculations decreases with increasing values of At. To

arrive at am accuracy as great as possible all calculations were

carried out with a time step At = 0.0 s.

N.B. Using a long-wave approximation for the motion of the water,
the expressions describing the berthing of the schematized
ship (model) to a linear fender can be derived analytically

(see Appendix VII).

I1I1.3.c: PRESENTATION AND DISCUSSION OF RESULTS

In this section the most representative results of the tests
are given together with the corresponding results of the calculations.
Since the berthing operation of the (schematized) ship to a
certain fender can be described completely by the reaction force
in the fender and the position and orientation of the ship during
its contact with the fender, in the following only sz(t), XZG(t)
and ¢(t) will be considered. In order to bring about a 'collapse

of data' these quantities are represented in dimensionless form by

FZf = dimensionless reaction force in the (linear) fender,
MY \/';Bg
*26 \ [0 : . :
:;—- T = dimensionless translation of the ship's centre of
A 0 gravity G during the contact between ship and
(linear) fender,
YMes \ [0

—~ = dimensionless angle of rotation of the ship's
longitudinal axis of symmetry during the contact

between ship and (linear) fender,
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where J— =

2
€0 1
My Mg

e .
pLBD

M0 has to be interpreted as the reduced or effective mass of the ship

(model) for horizontal motion. The results are presented as functions

of the dimensionless time

The respective expressions with which sz(t), XZG(t)’ P(t) and t

are made dimensionless can be determined analytically by solving the
problem of the schematized ship berthing to a linear fender for the
case of motion in an ideal medium to the neglect of the hydrodynamic
effects.

The dimensionless representation above of the relevant quantities
applies to the case of the ship berthing to a linear fender. For the
case of the ship berthing to the non-linear fender < has to be
replaced by cye

The parameters which further play a part in the presentation of the
experimental and theoretical results are the (dimensionless) water
depth, the (dimensionless) characteristics of the fender, the
(dimensionless) initial distance of the line of action of the fender
to the ship's centre of gravity G and - for the tests — the
(dimensionless) constant lateral speed of approach.

In addition to the experimental results which are plotted as
centred symbols, the figures to be presented each show three curves
representing the theoretical results (see also Sections II.4.a
and IT.4.b):

- the dot and dash line represents the results as calculated by
means of i.r.f.'s which have to be considered as two-dimensional;

- the full line represents the results as calculated by means of
i.r.f.'s which can be considered as three-dimensional;

- the broken line represents the results as determined (analytically)
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by making use of a long-wave approximation for the motion of the
water (see Appendix VII); these results are basically two-
dimensional. '
Therefore, the theoretical results as given by the dot and dash
lines and the broken lines have to be considered as two-dimensional,
whereas the theoretical results as given by the full lines have
to be considered as three-dimensional.
Two kinds of berthing operations were investigated, viz.
berthing operations in which e, = 0 ('centric impacts') and

0
berthing operations in which e, # 0 ('eccentric impacts'),

]
o

I1I1.3.c.1: CENTRIC IMPACTS: eo

Since in case of a 'centric impact' Y(t) = O, xzc(t) = szf(t)
and sz(t) =.f(Ax2f), only the results for sz(t) have to be

presented.

-1 1/2 /2

Figs. 14 through 19 show sz vy (cOMO)
for the case of a linear fender, with the dimensionless water depth

h/D and the dimensionless fender characteristic cO(pgDz)_I as

1
versus t(cO/MO)

parameters, As could be expected the calculated fender forces are
proportional to the constant lateral speed of approach. Farther,

it can be seen from these figures that in case of increasing fender
stiffness the (maximum value of the) fender force also increases,
whereas the length of time of the contact between ship and fender
decreases and the point of time at which the fender force reaches its
maximum occurs earlier, In case of a greater water depth - at comnstant
fender stiffness — the (maximum value of the) fender force as well as
the length of time of the contact between ship and fender is smaller,

while the point of time at which the fender force reaches its

maximum occurs earlier.
R -1 ~1/2 1/2
Figs. 20 through 23 show sz VA.(CIMO) versus t(cl/MO) for

the case of the non-linear fender, with the dimensionless water depth
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h/D and the dimensionless constant lateral speed of approach YA(gh)—l/Z

as parameters. The dimensionless fender characteristics are represented
by cl(pgDz)_l, c]/c2 and dsc/B' From figs. 20 through 23 it appears
that a greater lateral speed of approach causes an increase of the
(maximum value of the) fender force and a decrease of the length of
time of the contact between ship and fender; likewise, the point of
time at which the fender force reaches its maximum occurs earlier in
case of a greater lateral speed of approach. Farther, in case of
increasing water depth the (maximum value of the) fender force as
well as the length of time of the contact between ship and fender
decrease, while the point of time at which the fender force reaches
its maximum occurs earlier.

The total amount of energy E absorbed by a fender with linear
behaviour is given by

] 2
Fog(t) d(dxye) = 5 ¢q (8xy0) o

. f(AXZf)max

0

) = maximum impression of the (linear) fender.
f/max

By means of this expression the influence of the fender stiffness

where (Ax2

in case of a linear fender on the absorption of emergy can be
represented. However, problems arise when the fender is infinitely

stiff (i.e. c. -+ =) and when the fender is infinitely soft (i.e.

0

¢y = 0). The kinetic energy of the schematized ship at the first
moment of contact between ship and fender in case of a constant

lateral speed of approach /e this implies w = 0 - is:

1 2
3 {PLBD + a22(0)} vy

In case < -+ o, during the impact the total kinetic energy of the

schematized ship is transferred to the '(linear) fender' in a length

of time At = 0; the (hydrodynamic) damping then can be neglected.
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As small lengths of time correspond with high (circular) frequencies -
w = = is predominant -, the total amount of energy absorbed by

the '(linear) fender' in case Cp becomes:

! c. {Ax

1 2
5‘ 0 -2 {pLBD + azz(w)}vA for ¢ =+ «

)2
2f " max 0

In case ¢ = 0 the presence of the fender is not palpable. During

the 'impact' the kinetic energy of the schematized ship is transferred
to the '(linear) fender' in a length of time At> « ; the (hydrodynamic)
damping does not play any part since the lateral speed of the ship

does not change: N is maintained. The energy 'absorbed by the

(linear) fender' equals the kinetic energy of the ship at the first

moment of 'contact' between ship and fender, and becomes:

1 2

1 2
7 % (szf)max-———-— 5 {pLBD + a22(0)}VA for ¢, + 0.

0

Figs. 24 and 25 show the dimensionless absorbed energy,
< (sz )i x (pLBD)—1 Vz’ versus the dimensionless fender characteristic

< ( gb ), with the dimensionless water depth h/D as parameter.
2

3
max
was made dimensionless with the kinetic energy as possessed by the

In these figures the total amount of absorbed energy, % o (szf)

schematized ship before and during the first contact between ship and

fender in case of the absence of water, viz. % pLBD v2 From figs. 24

A
and 25 it can be seen that - at constant water depth — a stiff fender
absorbs less energy to stop the ship than a soft fender. This effect
is caused by the greater wave radiation in case of a stiffer fender.
Farther, in case of a smaller water depth the total amount of energy
as absorbed by the (linear) fender increases.

Generally it can be stated that the agreement between theory
and experiment is amply satisfactory. Notably by means of the theory
adapted to the three-dimensional situation the (maximum values of

the) fender forces as well as the lengths of time of the contact
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between ship and fender, and the points of time at which the fender
forces reach their maxima are predicted very well. This applies for
both water depths investigated.

For a first estimation of the maximum value of the fender force use
can be made of the long-wave approximation or - with less accuracy -
of the two-dimensional theory. The same holds in case of a first
evaluation of both the iengths of time of the contact between ship
and fender and the points of time at which the fender forces reach
their maxima. For the smaller water depth the long-wave approximation
as well as the two-dimensional theory do not provide & very good
prediction of the length of time of the contact between ship and
fender.

In the mathematical model viscous effects have not been taken
into account. Since in model tests these effects are overestimated,
it may be concluded from the good agreement between calculated
and measured results that the viscosity of the fluid does not
influence the fender forces significantly.

Although the combination of purely lateral speed of approach
and 'centric impact' not often will occur, the experimental and
theoretical results demonstrate that the mathematical model
presented provides a good foundation for the determination of the
forces exerted by a moving ship on some (open) berthing structure,
equipped with linear or non-linear fenders.

IIT.3.c.2: ECCENTRIC IMPACTS: e, # O

0

In case of an 'eccentric impact' the results for sz(t) as well

as the results for XZG(t) and Y(t) have to be presented.
. -1 -1/2 -1 1
Figs. 26 through 33 ?7§w FZfVA (cOMO) 1/§ Xy (cO/MO)

/2

-1
and ¢m66(vAe0MO) (cO/MO) for the case of

a linear fender, with the dimensionless water depth h/D and the

versus t(cO/MO)

dimensionless initial distance of the line of action of the fender

to the ship's centre of gravity, eO/L, as parameters. The dimensionless
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fender characteristic is represented by cO(pgDz)—l. Although for

the case ey = 0 experimental results are not available, for the sake

of completeness the calculated results are presented (figs. 26 and 27).
As expected the calculated fender forces, the calculated translations
of the ship's centre of gravity G and the calculated angles of rotation
of the ship's longitudinal axis of symmetry can be considered to be
proportional to the constant lateral speed of approach.

From figs. 26 through 33 it can be seen that in case of increasing

value . of e, the (maximum value of the) fender force as well as the

length of gime of the contact between ship and fender decreases,
while the point of time at which the fender force reaches its
maximum occurs earlier. This general trend does not apply to the
length of time of the contact between ship and fender as calculated
by means of the two-dimensional theory for the case with eO/L = 0.500
and h/D = 1.167: the gradual sagging of the branch of the curve on
the right of the maximum value of the fender force has to be imputed
to numerical causes. Farther, in case of a greater water depth the
(maximum value of the) fender force as well as the length of time of
the contact between ship and fender is smaller, and the point of time
at which the fender force reaches its maximum value occurs earlier.
Froms figs. 26 through 33 it also appears that in case of a greater
water depth the maximum value of the translation of the ship's

centre of gravity G as well as the total angle of rotation of the
ship's longitudinal axis of symmetry is smaller; mainly this is due
to the influence of the shorter length of time of the contact between
ship and fender in case of a greater water depth.

In case of increasing value of e, it is not possible to describe in

0
general terms the trend of the maximum value of the translation of
G and the total angle of rotation of the ship's longitudinal axis
of symmetry: this is a consequence of the fact that the values of
these both quantities are influenced by the length of time of the
contact between ship and fender. So far as the maximum value of the

translation of the ship's centre of gravity G is concerned, the



_96_

results as calculated by means of the long-wave approximation and

the theory adapted to the three-dimensional situation show - for

both water depths - the same trend. Farther, all calculated results
for the total angles of rotation of the ship's longitudinal axis

of symmetry show the same features, for both water depths; due to
numerical causes the result calculated by means of the two-dimensional
theory for the case with eO/L = 0,500 and h/D = 1.167 has to be
excluded.

The test results for $(t) at the smallest speed of approach may

show (locally) some discrepancies with respect to the test results

at the higher speeds of approach. This is caused by the relative

weak signals combined with tolerance(s) in the gear-wheel transmission
which transfers the angle of rotation of the ship's longitudinal

plane of symmetry to the recording potentiometer. These tolerances
have a greater influence on the measured results as the signals are
weaker.

Generally it can be stated that the agreement between theory and
experiment is satisfactory. Notably by means of the theory adapted to the
three-dimensional situation the (maximum values of the) fender forces
as well as the lengths of time of the contact between ship and fender,
and the points of time at which the fender forces reach their
maxima are predicted well. The same holds good with respect to the
maximum values of the translation of the ship's centre of gravity G
and the total angles of rotation of the ship's longitudinal axis of
symmetry. This applies for both water depths investigated.

For a first estimation of the maximum value of the fender force use
can be made of the long-wave approximation or - with less accuracy -~
of the two-dimensional theory. The same holds in case of a first
valuation of both the lengths of time of the contact between ship
and fender and the points of time at which the fender forces reach
their maxima. For the smaller water depth the two-dimensional theory
does not provide a good prediction of the length of time of the

contact between ship and fender. Farther, by means of the long-wave
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approximation a rather reliable estimation can be made for the
maximum value of the translation of the ship's centre of gravity G

as well as for the total angle of rotation of the ship's longitudinal
axis of symmetry. ,

From the satisfactory agreement between calculated and measured
results it may be concluded that - just as in the case of the centric
impacts - the viscosity of the fluid does not influence
significantly the relevant quantities which play a part in case
of eccentric impacts.

The experimental and theoretical results demonstrate that
the mathematical model presented provides a good foundation for
the description and the determination of the relevant quantities which
figure in the problem of a ship berthing to some (open) structure

equipped with fenders.

I1I.3.d: QUALITATIVE ANALYSIS OF RESULTS

From the results of the investigations as presented in the
preceding Section III.3.c it may be concluded that the typical
behaviour of a (schematized) ship berthing to a(n open) structure
equipped with fenders as well as the response of the fenders them-
selves can be predicted by the (complicated) mathematical model as
described in this report. Generally it holds that both the qualitative
and the quantitative agreement between theory and experiment is
satisfactory: especially the theory adapted to the three-dimensional
situation yields results which differ (very) little from the
measured values; for a first estimation of the relevant quantities
figuring in the berthing ship problem use can be made of the
relatively simple long-wave approximation.

Although the (quantitative) agreement between the results of
the mathematical model and those of the physical model in most cases
is very reasonable, some discrepancies remain. It is not clear whether
these differences are due to experimental errors or due to limitations

of the mathematical model.
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Experimental errors may be caused by:

- imperfections in the test set-up, such as the restricted
horizontal dimensions of the rectangular basin in which the tests
were carried out, small differences in height from the horizontal
position of that part of the bottom of the basin covered by the
motions of the ship model, damping and dynamic effects in the
fender, frictional effects between ship model and fender,
flexibility of the 'berthing structure', a lateral speed of
approach which is not exactly a constant, the possibility that
the line of action of the fender is not precisely perpendicular
to the longitudinal axis of symmetry of the ship at the first
contact between ship and fender, deviations of the intended values

of e, dynamic effects, damping, friction and tolerance(s) in both

0’
the 'position follower' and the facility to measure the angle of
rotation of the ship's longitudinal plane of symmetry;

- measuring errors as a result of the limited accuracy of the
electronically measuring and recording equipment;

~ evaluation errors due to the process of converting analogue
signals recorded on paper chart to proper figures.

The magnitude of this first category of errors is hard to estimate,

but the total error due to measuring and evaluation inaccurac{es

is valued at less than five per cent. An exception to this is formed

by the error in the measurement of the angle of rotation ¢ (t), which

may be greater than five per cent. in consequence of mechanical
imperfections of the measuring facility (see Section III1.3.c.2).

~ The 'i.,r.f.'-technique used is based on the assumption that the
ship~fluid system — and therefore the fluid reactive forces - are
linear. All (experimental) investigations (see e.g. refs. [?0, 23, 26,
31:}) indicate that this basic linearity assumption is a good
working approximation for small to moderate displacements of real
ship forms. Especially in ref. [3@] it was shown experimentally
that this assumption holds true for displacements with an order of
magnitude as oocurring during the contact between ship and fender.

= TFluid reactive forces from viscous origin have been neglected. The
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largest influence can be expected in the sway mode of motion. An

estimate of these forces can be made using the empirical formula:

l s .
F2,viscous a im)CDLD XZIXZl >
where F = fluid reactive force on the ship

2, viscous
from viscous origin in the sway mode

of motion,

CD = drag coefficient.

Inclusion of this force in the mathematical model did not change
the results significantly.

Since the fluid is assumed to be inviscid (and incompressible) and
to move irrotationally, the mathematical model is only suitable
to describe transient ship motions and does certainly not apply
to (nearly) steady motions. For, in that case the viscous effects
are no longer small with respect to the 'potential part' of the
mathematical model and they may change the picture entirely.

For remarks on the influence of the effects of the strip theory,
the neglect of viscosity and the end effects on the hydrodynamic
coefficients is referred to ref. [3@].

The fluid reactive forces are taken into account by way of the
hydrodynamic coefficients, which were determined theoretically
and experimentally (see ref. [?Q]). On closer examination of

the relevant quantities of the berthing ship problem, comparison
of experimental results with results as calculated on the one
side by means of the two—dimensional theory and on the other hand
by means of the theory adapted to the three~dimensional situation
shows that the accuracy of the hydrodynamic coefficients -
especially in the lower frequency range - may be an important
factor. Fairly large differences in the hydrodynamic coefficients
for the lower (circular) frequencies may occur without the result
of a significant change in the (maximum values of the) fender

forces, the lengths of time of the contact between ship and



- 100 -

fender, the points of time at which the fender forces reach their
maxima, the translations of the ship's centre of gravity G and
the angles of rotation of the ship's longitudinal axis of
symmetry.

~ Certain approximations are involved in the numerical calculation
of the i.r.f.'s and the set of two integro-differential eqgs.
(4la’b). The accuracy of the numerical calculation of the i.r.f.'s
is discussed in Appendix V, Farther, to arrive at an accuracy as
great as possible the calculation of the egs. (4la’b) was carried

out with a time step At = 0.0l s (see further Section III.3.b).

I11.4: EXTENSION OF THE MATHEMATICAL MODEL TO OTHER SITUATIONS

In this Section III the approach of analysing the berthing of a
ship with the aid of the 'i.r.f.'-technique was applied to a
(schematized) ship berthing to an open structure equipped with one
single undamped, (non-)linear fender.
Naturally, the same approach can also be used for an open structure
equipped with two or more — damped or undamped - (non-)linear fenders.
The case of a ship berthing to a solid structure equipped with
fenders - e.g. a quay parallel to the ship - can be treated in
precisely the same way as described in this resport by using the
'i.r.f.'-technique, provided that the relevant i.r.f.'s, and therefore
the hydrodynamic coefficients, are known.
Farther, the 'i.r.f,'-technique as applied enables the inclusion of
other arbitrarily in time varying forces; in this context it can be
thought of forces exerted upon the ship by wind, waves, current, tugs

and mooring lines.
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SECTION IV: CONCLUSIONS

On account of the theoretical and experimental research of
the berthing ship problem as presented in this report the following
conclusions can be drawn.

The fact that the hydrodynamic coefficients are dependent on
the circular frequency necessitates a time-domain approach for the
analysis of the berthing ship problem, in which the fluid reactive
forces are described by way of the hydrodynamic coefficients and
the remaining forces are taken into account over their entire time
history. The 'i.r.f.'-technique used satisfies these requirements.

The two important assumptions of fluid idealization and
linearity of the ship-fluid system are very well acceptable for the
quantitative analysis of transient motions of shiplike bodies.

The formulation of the mathematical model presented is
sufficiently accurate to be a valuable basis for the qualitative
and quantitative description of the typical behaviour of a ship
berthing to a structure equipped with fenders as well as for the
determination of the response of the fenders themselves.

The fenders may be damped or undamped, linear or non-linear;
combinations of these options may occur,

In addition to the fender forces other external forces upon the ship
such as forces exerted by wind, waves, current, tugs and mooring
lines can be incorporated in the mathematical model as well.

The calculated results show a (very) satisfactory agreement with
values obtained from measurements on (small) scale models. The
viscosity of the fluid does not influence significantly the relevant

quantities which play a part in the berthing phenomenon.
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APPENDICES

APPENDIX I: THE STABILITY OF THE LINEAR SHIP-FLUID SYSTEM

The stability of the linear ship—fluid system can be defined
as follows (see ref. EAG).
Suppose that the (linear) system is subjected to two different
arbitrary pulses (i.e. input signals) and thereupon, in both cases,
is let to take its own course. Then the (linear) system is stable if
the difference of the two results (i.e. output signals) converges
for t » =, and asymptotically stable if the above-mentioned
difference tends to zero for t =+ =,
According to eq. (6b) it applies for the linear ship-fluid system in
the time domain:
(6”) k(o) =

6 t
121 'mj £, () kij(t - 1) dt , =1, 2, ..,6.

At the time t = 0 an arbitrary pulse in the i~direction is exerted

upon the ship:

fk(t) = oL 5 éi(t),

where G T Kronecker alpha, ooy = 1 for k = 1,
G = 0 for k # i,
Ly = (arbitrary) coefficient specifying the
magnitude of the pulse in the i-~direction,
Si(t) = unit pulse (i.e. Dirac or delta function)

in the i-direction.

Substitution of fk(t) into eq. (6b) yields:

t
=z ‘mf 5i(r) kij(t - t) dt = z; k.. ().

case I, é.(t)
3 1]

I
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. > . .
Then, at the time t = t (t1 = 0) an other arbitrary pulse, also in

1
the i-direction, is exerted upon the ship:

fk(t) =ogong di(t - t]),

where n; o= (arbitrary) coefficient specifying the magnitude of
the pulse in the i-direction.
Substitution of this expression for fk(t) into eq. (6b) gives:

t
case 11, xj(t) =n _wf Gi(T - tl) kij(t"T)dT =n; kij(t_ t)).

II

The difference of these two results (i.e. output signals) can be
written as:
i.(t)
J

- Xj(t) =n; kij(t - tl) - Ci kij(t).

11 I

In case t » » the limit of this expression then yields:

lim {>‘<J. (t)

- x.(t)
>0 ]

} n; lim kij(t - t]) -5 lim kij(t)’

iI I £-yoo Te0

which can be reduced to:

ﬁiﬂ {ijm}n - scj(c);l} = (g =T k),

since ii: kij(t - tl) = kij(m).

The linear ship-fluid system now is stable in any case, if this limit

does converge, i.e. 1if kij(m) = constant:

- if kij(W) = 0, the linear ship-fluid system is asymptotically stable;
the modes of motion (heave, roll and pitch) have a restoring force;

- if kij(m) = constant # 0, the linear ship-fluid system is stable, the

modes of motion (surge, sway and yaw) have no restoring force.
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APPENDIX II: THE BEHAVIOUR OF kii(t) FOR i=1, 2,6 AS £ > =

In order to give a physical interpretation as well as an
explanation of the behaviour of the impulse response function as t
tends to infinity for ship motions without restoring force, it is
started from a specific case - this for the sake of simplicity -
with the following features: the ship moves merely in the horizontal
plane at zero forward speed, the water is calm (no waves, no current)
and has unrestricted horizontal dimensions, the ship motions (surge,

sway and yaw) are uncoupled.

In case of uncoupled motions it can be written for the linear ship-

fluid system in the time domain (see eq. (19)):
t
xi(t) = _mf fi(T) kii(t - 1) dt, i=1, 2, 6.

Upon the ship now such a force (moment) is exerted, that it translates

(rotates) with a constant velocity, viz.:

X, =V u(e) ,

constant velocity of the ship in the i-direction,

where VOi =
U(t) = unit step function = 0 for t <0
1
-é‘ for t =0
i for t > 0.
For t » 0 it then holds good:
t
Vi T OJ fi(T) kii(t - ) dT.

Taking the Laplace transform of this expression one obtains:

O = LE (D) Lk (D), re[s] > re[s,],
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where L{f(e)} = f f(t) e St qr = Laplace transform of the
0

function f(t),

]

s complex variable,

il

certain complex number,

|
Re[.]

in doing so it is supposed that L{fi(t)} and L{kii(t)} exist and

real part of ...

that at least one of these Laplace transforms converges absolutely.
If L{f(t)} does exist and f(t) has a limit for t»= then it holds
(see ref. [42:] ):

lim s Li{f(t)} = lim £(t).
s+0 roo

Making use of this lemma one obtains:

lim fi(t) = fi(w) = lim s L{fi(t)},

oo s+0
or:
v . Vi
f.(®) = 1im — 2 = lim =
i Lik. . (o) o _
s+0 il s+v0 st
k..(t) e dt
ii
0
v .
oi

Of kii (t) dt

Under the circumstances mentioned above a steady state will come
into being for great values of t, since it is supposed that the
fluid is inviscid and incompressible and moves irrotationally. In
view of linearity only small velocities are considered. Waves which
are generated in the beginning, have already travelled away from

the ship for great values of t. Separation of flow and vortex
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shedding, which do occur in reality and produce a resistance that
is proportional to certain (positive) power of the velocity, have
to be neglected in this linearized approach. Concluding it can be
stated that the resulting force (moment) upon the ship for great
values of t must equal zero, so:
v .
£(=) = 0= —— |

OJ' kii(t) dt

from which it follows that:

OJ kii(t) dt —= 3

in other words, this integral does not converge absolutely.

Now there are two further possibilities, viz.: kii(w) > 0 and

kii(w) = 0. If kii(w) > 0, the ship - after getting a pulse at

t = 0 - will keep a final velocity greater than zero; if kii(m) = 0,
the ship slows down until its velocity equals zero. This can be
explained as follows:

let
fi(t) = ﬁl(t)’
where Gi(t) = unit pulse (i.e. Dirac or delta function) in the

i-direction,

then it holds good that:
xi(t) = oj éi(r) kii(t - 1) dt = kii(t)’
and consequently:

}'ci(m) =k, (=)
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As the ship at constant (rotational) velocity does not encounter
any resistance, and as it 'forgets' its original (rotational)
velocity with respect to the water, the ship generally will keep

- after a pulse - in the long run a constant (rotational) velocity;

this implies that kii(w) = constant # 0 for i =1, 2, 6.
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APPENDIX III: COMPLEMENTARY REMARKS ON THE HYDRODYNAMIC COEFFICIENTS
aii(w) AND bii(w) FOR i=1, 2, 6

This appendix has to be considered as a supplement upon casu
quo an extension of ref. [3@].

In ref. [BQ] the hydrodynamic coefficients of a ship (model)
were determined in case of swaying and yawing at zero speed of
advance. The water was calm (no waves, no current) and shallow and
had relatively large horizontal dimensions; the plane of the bottom
was horizontal. Farther the ship (model) had been schematized
to a rigid prismatic body with a rectangular cross—section and a
symmetrical mass distribution, so that any coupling between sway
and yaw motion did not exist.

The main dimensions of the schematized ship (model) were:

length (on the water-line) L 2.438 m
beam B 0.375 m
draught D 0.150 m
block coefficient 1,000 .

The hydrodynamic coefficients were determined for two water depths,
viz, h = 0,200 m and h = 0.175 m.

Farther, in the following is:
= gpecific mass density of fluid = 1000 kg m—3,

P
g = acceleration due to gravity = 9.81 m swz.

A-III.1: ADDED MASS FOR SWAYING MOTION AT ZERO CIRCULAR FREQUENCY

In case w = 0 the values of the sway added mass (azz(w)) from
ref. [30:] can be compared with those from ref. [AZ] . Since in both
references use is made of the (two-dimensional) strip theory, the
results are given per unit length; this is indicated by adding an
accent ' to the hydrodynamic coefficient in question.

The values are presented in dimensionless form in the table below.
The agreement between the results from the two respective references

is considered to be satisfactory.
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ref. [AZ] ref. [30]

35,0

pBD
\\\ 2-D pot. theory 2-D pot. theory 2-D long-w. appr.

% = 1.333 3.968 3.955 2,992
% = 1.167 6.850 7.087 5.972
B _

T 2.50

A-III.2: ADDED MASS FOR SWAYING MOTION AT HIGH CIRCULAR FREQUENCIES

Concerning the (special) problem of determining the sway
added mass at high circular frequencies work has been done with
regard to its relevance to ship vibrations. Reference is made to
ref. [Ai] where an excellent review is given of published data. In
ref. [A@] experimentally sway added masses are determined for w -+
by means of an electric analogon, taking into account the influence
of a restricted water depth; the results apply to the case of zero
forward speed on water with unrestricted horizontal dimensions;
the sway added masses are given per unit length for ships with
rectangular cross-sections. On basis of the data from ref. Euq
the following (dimensionless) added mass for the swaying motion at

high circular frequencies is predicted:

2y, (@)

m"‘: 0.35 s w > x,

For comparison the following table with data from ref. [3@] is

provided:
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D pLBD
1.333 0.356
1.167 0.377
1.000 0.433

The agreement of these data with those from ref. [}4} is

satisfactory.

A-III.3: ESTIMATION OF HYDRODYNAMIC DAMPING FORCE COEFFICIENTS
FOR HORIZONTAL MOTIONS AT HIGH CIRCULAR FREQUENCIES

Generally it holds good that the hydrodynamic coefficient of
the damping force approaches asymptotically to zero with increasing
circular frequencies.

To iﬁvestigate the asymptotic behaviour of the damping
coefficient for w » « a two-dimensional approach may be used.

The relation between the damping coefficient and the amplitude
of the radiated waves at infinity in case of a ship on water with
unrestricted (horizontal) dimensions at zero forward speed is given
in ref. [}S] to be (per unit length):
b = 2 w2
ii w3 i ?
where Ri(w) = ratio of the amplitude of the radiated waves at
infinity to the amplitude of the (ship) motion in
the i-direction = wave making coefficient for
(ship) motion in the i-direction.
For shallow water the bottom has to be horizontal.
When the ship is approximated by a vertical barrier extending to
the (sea) bottom (thus ignoring the keel clearance, which is
permissible if the wave length is small compared with the draught

of the ship) the behaviour of the damping coefficients for
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horizontal motions at high circular frequencies can be determined
from refs. [Aé] and EAi]. For the surge and sway modes of motion
the ship then may be regarded as a piston type wave maker. According
to refs. [Aé] and [Ai], respectively, the wave making coefficient

has the form:

2 sinhz(m h) 2 {cosh(2m,h) - 1}
Ri (W) = o5 sTon(m h)oco C BTN 'ng(Z o 1L
i my o sh(m o si m
where mo = usual wave number = positi&e root of wz = gm, tanh(moh).
At high circular frequencies it holds good that m. = wz/g. For the

0
surge and sway modes of motion the wave making coefficient

approaches to a constant value when w - « ;
Ri(w) =2 w > w, i= 1,2,

Consequently, for high circular frequencies the surge and sway

damping force coefficients can be approximated by (per unit length):

4 .

On account of the fact that:
= 1
b (w) =L bl (w) ,

the sway damping force coefficient becomes for high circular
frequencies:

2
_ 4pgL
bzz(w) = m3 ]

According to ref. [3@] it holds good for the yaw damping moment

coefficient b66(w) that at high circular frequencies:

1 2
b66(w) =17 L bzz(w), w > o,




- 121 -

In general form the hydrodynamic damping force coefficients
for horizontal motions at high circular frequencies now can be

represented by:
9i .
bii(w)=—(;3— N w > o, i=1, 2, 6,

where q; = constant in approximative expression for bii(w) in
case w -

q is dependent on the mode of motion, but independent of the water
depth.
If the hydrodynamic damping force coefficients for horizontal
motions are known from w=0 to w=w, - where w, represents a certain
circular frequency -, then it is possible to choose the values of
the constant q; such that the high frequency approximations
correspond with the known parts of the damping curves.

According to ref, [3@] the sway damping force coefficient in
case of zero keel clearance is:

ZSinhz(m h)

w 0

= 2pL~— -
h=D mg moh + 51nh(m0h) cosh(moh)

D)y (W)

For high circular frequencies this expression changes into:

by ()

h=D w

which is identical with the corresponding expression for b22(w)
derived above.
For high circular frequencies the sway damping force

coefficient in dimensionless form is:

b 2
_ 22\ /B _4g\ /B 1_ w e,
oLED \[g BD \[g 3 °

i3
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In ref. [30] values for bzz(pLBD)n](B/g)l/2 are presented as

function of w(B/g) with h/D as parameter. From these it appears
that:

. 1/2 1/2
- in case of large values of w(B/g) (say w(B/g) > 3.9)

bzz(pLBD)_l(B/g)l/2 becomes independent of h/D, and
- for w(B/g)l/2 > 2.8, independent of h/D,

S \E_sf\EL .
pLBD \/g = BD g w3 ? ’

makes a good approximation for the (dimensionless) sway damping

force coefficient.

A-TII.4: HYDRODYNAMIC COEFFICIENTS FOR YAWING MOTION

From the experimental results as presented in ref. [3@] it
appears that the dimensionless added mass-moment of inertia for
the yawing motion a66(%7 L2 pLBD)_l is not very dependent on the
circular frequency, at least for the frequency range considered in

1/2). In other words,

the experiments (i.e. for low values of w(B/g)
the influence of the free—surface of the fluid seems to pla§ a
minor part. Also the influence of the (dimensionless) water depth
h/D is not very important. One thing and another seems to justify
an approximation of the added mass-moment of inertia for the
yawing motion - certainly for the lower frequency range — by means
of the relevant value for 'infinite' water. The concept of
'infinite' water has to be understood as follows: the fluid domain
has unrestricted horizontal dimensions, there is neither influence
of a bottom, nor of a free-surface (no waves), This implies that
a66(w) = constant and b66(w) = 0,

In the following table expressions are given for the added

mass—-moment of inertia per unit length (= aé6) in case of three

elementary forms.
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1
age reference

T

| I
O %3- TP (a2 - 82)2 see ref, [AS]

] 8

i T

]

f A
II : '\/ % To ot see ref. [A8]

] 20

L= -

‘ 4

| % IZG‘ coeff.* wp B see ref. [:A9]
1l coeff. = f(%)

} 26

]
I

Application of these respective expressions for aé6 to the

schematized ship (model) as used in ref. [3@ yields successively:

I, IT, III applied to
schematized ship, see ref [30]
a
66
al a,,=al! xD|—r——r
o B coeff. 66 66 6,6 -1-- LZ pLBD
2 12
kg m kg m
I | 28 —;—L - 826.74 123.93 1.823
11 -;—L - - 867.40 130.02 1.912
o B
-é- =7 = 0.154
III %B %L 1033.94 154.99 2.280
coeff. = 0.149
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In case of a ship harmonically oscillating on shallow water the
influence of the (three-dimensional) end effects (i.e. the
circulation of water around bow and stern) decreases with increasing
circular frequency. In behalf of the determination of a66(w) and
b66(w) then use can be made of the (two-dimensional) strip theory
(see ref. [30]):

1 2
a66(w) =13 L azz(w)
for the higher circular frequencies.

12
beew) = 73 L by, (w)
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APPENDIX IV: TWO MORE DIRECT METHODS TO DERIVE EQ. (353)

A-VI.1: METHOD IN WHICH USE IS MADE OF BOTH FOURIER AND LAPLACE
TRANSFORMS

For the case of uncoupled ship motions the f.r.f. or harmonic

transfer function of the linear ship-fluid system reads (see eq. (31)):

1

m + aii(w)}lw + bii(w)

(31 Kii(iw) =1

Since - according to egs. (3Ba’b) - aii(O) = constant # 0 and
bii(o) =0 Kii(iw) contains a singularity (i.e. a pole) for o = O.
By means of egs. (33a’b) it can be derived that:
K, . (iw) = lim ! =
ii {

w0 w0 M toag;(@lie + b, ()

i

lim
w0 {m,, + a..(0) + agg)mz + L e + bgg)w2+..
11l 11 11 11

in other words, in the neighbourhood of the pole w = 0 Kii(ﬂn)
behaves as:
1 1

K. . (iw) S S
iz wi0  Pyp ¥ 23100 1w

If there should be further any poles, these probably lie in the left
half-plane; the presence of hydrodynamic damping points that way.
From a physical point of view this pole for w = 0 means that in case

of a tranmslation (rotation) in the horizontal plane with constant
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(rotational) velocity - i.e. w = 0 - no force (moment) is required.
According to eq. (213) the f.r.f. Kii(iw) is the Fourier transform
of the i.r.f. kii(t)’ Now Kii(iw) has a pole for w = 0, and this
indicates that kii(t) is not absolutely integrable. For the
determination of Kii(iw) therefore no use can be made of an ordinary
Fourier transform and it has to be passed on to the Laplace
transform technique.
N.B. The Fourier transform has to be considered as a special case

of the Laplace transform.

Suppose that the pole in Kii(im) can be isolated and that

Kli(iw) can be written as:

(ATV-1) K, ; (o) = K§§>(iw) + KEE)(iw),

! 1
ali(O) iw

i

where K§§)(iw) = part of Kii(iw) containing the

=}
o+

Tt pole for w = 0,

<§>(1w)

(iw) does not contain poles, this function can be treated

part of K..(iw) without poles.
As K, (r)
with ordlnary Fourier transform techniques.

ip)(lw) is purely imaginary, consequently Re[g (1wi] = Re[?( )(1w
so that Re[g(r)(1Q] is not influenced by isolating the pole.
Because of the pole for w = 0 kii(t) cannot be determined as
being the inverse Fourier transform of Kii(iw); however, the
determination of kii(t) as the inverse Laplace transform of the
transfer function is possible. By replacing iw in eq. (AIV-1)
with s = A + iw, where X = Re[{l > 0 and w = Im[é], Kii(iw)

can be transformed into:

_ 1 (r)
(ATV=2) i) =y s K
11 1
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]

where Kii(s) Laplace transform of kii(t) = transfer function for
the i-direction in response to a force excitation
in the i-direction,

Kii%s) = part of Kii(s) without poles,

Im[...] = imaginary part of ...

Taking the inverse Laplace transform of Kii(s) one obtains:

1 ctie st
K10 T mr J Riz(e) e ds =
c—1iw
+400
_ 1 1 ¢ (r) st
RO () N § J Kij (s) e ds,
11 11 c—1c

where ¢ = real constant.
Kii)(s) does not contain poles in the right half-plane. Therefore the
integral in the right-hand member of the above expression can be
written as an inverse Fourier transform (to that end s 1is replaced
by iw):
1 1 © (r),. it
kii(t) =;;TT~———-T6Y U(r) + 7 _wf Kii (iw) e dw

+ a,,
11 11

Kg?(iw) = Re E(S)(iw)] + i Im@ﬁ)(mﬂ = Reﬁ(ii(iw)] +
v i mET (w]
ii

)

substitution of which into the expression for kii(t) yields:
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1 1 ® .
kii(t) =75;;_I—§ZI?67 u(t) + 57 -mj {Re[gii(lwﬂ cos(wt) +

- Im[?ii)(iwij sin(wt) }dw +

+ %T; _J {Re [K,; (iw)] sin(ut) + Im[:K].(_;i)(iw)] cos(wt)} dw .

kii(t) is a real function of t; as a result it applies

f Re[Kii(iw)]sin(wt) dw = - J Im[K].(;)(iw):] cos{(wt) dw

for all ¢,

so that

1

kii(t) “h.. fa..

) U(t) + %; J Re[?ii(iwi} cos(wt) dw +
ii ii —w

- ;——_J Im[Kg)(iw)] sin(wt) do .

Since kii(t) =0 for t < 0 (see eq. (7b)), the second term in the
right-hand member of the above expression is an even function of t,

and the third term is an odd function of t, it must hold good that:

_wj Re[Kii(iwﬂ cos(wt) dw = - J Im[gﬁi)(iwﬂ sin(ut) duw ,
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by means of which kii(t) can be written as:

kii(t) =7;——~£—;—7257 u(e) + %— J Re[ﬁii(iwi] cos(wt) duw .

ii ii o0

Generally it holds that Re[kii(iwi] is an even function of w

(see eqs. (23) and (25b)), so that kii(t> finally becomes:

kii(t) =Tn_—-4l'“5.——(_0-)— U(e) + .T% 0[ Re[Kii(im)] cos{wt) dw.

il ii

Using eq. (32a) kii(t) then can be written as:

bii(w) cos(wt)

5 dw

1 2 [
(358) k,.{(t) =sm—m——rnu0 + = [

+ (0 0 {m..*—a..(w)}zwz + b, (w)
i %ii ii

11 m.. a..
11 11 i

for t > 0,

HA

]
<

(22) kii(t) for ¢

A-IV.2: FORMAL METHOD IN WHICH USE IS MADE OF LAPLACE TRANSFORMS

As indicated in the foregoing, it generally holds good that the
transfer function of a linear system is identical to the Laplace
transform of the i.r.f. (see also refs. [37, 3@]).

The harmonic transfer function or f.r.f. of the linear ship-fluid

system in case of uncoupled ship motions can be written as (see

eq. (31)):

o ] )
(ALV-3) K (w) = Tay, + a7 o+ b (w °
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in section A-~IV.! it has been shown that Kii(iw) contains a pole for
w = 0. If in this expression for Kii(im) iw is replaced by
s = A + iw, it can be passed on to the Laplace notation. The transfer

function Kii(s) then takes the form:

1
mig *oag;(shks + by (s)

(AIV-4) Kii(s) =71

and the i.r.f. kii(t) - through the inverse Laplace transform of

Kii(s) -

1 ctie st
(AIV-5) kii(t) =5 . J Kii(s) e” " ds =
c—iw
ctiw st
_ f e ds
27l i {miii-aii(s)}s + bii(s)

The integrand of this integral has a pole for s = 0. This means
that in eq. (AIV-5) ¢ = 0 and that the path of integration is
formed by a semi-circle around the origin - situated in the right
half-plane and with radius r+ 0 - , plus the respective positive
and negative imaginary axis connected to that. I

Now kii(t) can be written as the sum of three integrals:

1
(ATV-6) kii(®) =g Ty ¥ I+ I,
-ir ot
where I. = lim [ K.,.(s) e° ds ,
I . 11
rv0Q —jiec
I = lim K..(s) e5t ds ,
II 11
40 r>
e st
IIII = lim J Kii(s) e” " ds
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with Kii(s) according to eq. (AIV-4).

In the integral I s can be represented by s = re1¢, where r = |sf

I1 .
and ¢ = arg(s); then ds = ir eubd¢, so that III changes into:
L i¢
I.. = lim 2 e * irei¢ do =
11 om ) 1% i¢
r+0 5 {mii + aii(re Yire T+ bii(re )
. t:re1¢
s lim e
_ fz 0 i do .
T 19
-3 16 biy(re ™)
lim a.i(re ) + m, + lim T
r+0 * t r+0 re ¢

On the analogy of egs. (33a’b) it can be written for small values

of r:
_ id, _ (2) 2 2i¢ .
aii(s) = aii(re ) = aii(O) + aji're + terms of higher
order in r for r-0
. . y
b..(s) = b..(rel¢) bgg)r2e21¢ + terms of higher
ii ii il
order in r
from which it follows:
i¢
. b..(re™ ™) .
lim aii(rel¢) = aii(O) , lim 1l ) = lim biz) rel¢ =0
r+0 r+0 re r+0
Besides it holds good that:
i$
lim etre =1 ,
r+0

Substitution of one thing and another into the expression for III

yields:

(;~ 1 _ i

! d¢
ioomyy + a0 m; * a0

ol =
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In the integral I___it applies s = iw, ds = idw and w > 0, so that

LIT
IIII takes the form:
L . iwt
. ie
I = lim J - - - dw
+ . ..
ITI 10 {mii ail(lw)}lw + bll(lw)
In the integral II it applies s = -iw, ds = -idw and w > 0, so
that II takes the form:
r 1e—iwt
I. = - lim { - : - dw =
I 10 -—{mii + aii( iw) Hiw + bii( iw)
= - lim {m e (_.if;%wt_ ey
I L E EIS T A At #
aii(lw) and bii(lw) are even functions of w: aii(lw) = aii(—lm),

bii(lw) = bii(_lw)’ so that II becomes:

= i e—iwt
I_. = - lim j ; ; - dw .
I 40 T {mli + aii(lw)}lw bii(lw)

For (II + IIII) then it can be derived:
_ I w{mii4—aii(1w)} 31n(mt)+-bii(1m) cos (wt)
I_. + 1 = 1lim 21 55 5 dw.
40 r {mii + aii(lw)} wo o+ bii(lw)

From eq. (AIV-3) it follows:

bii(iw)

|

Re [K . (iw)]
{mii + aii(iw)}zwz + bii(iw) o ’

olmg; + a;, (1w)}

W

- Im[K;; Ge)] .

. 2 2 2 .
{mii + aii(lm)} w” o+ bii(lw)
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Substitution of the results obtained so far into the expression for
kii(t) eq., (AIV-6) yields:

k]_l(t> %‘m*‘% lim J {Re[Kll(lw)] COS(wt) +

i1 11 ri0 r

- Dm[Kii(iw)] sin(wt)} dw =

_1 I (7 .
T 2m,, + a..(0) T f Re[kii(lwi} cos(ut) duw +
11 ii 0

- % Of Im[kii(iwi] sin(wt) de

As kii(t) =0 for t < 0 (see eq. (7b)), the first two terms in
the right—-hand member of the above expression are even functions
of t, and the third term is an odd function of t, it must hold good

that:

1[0 . . i 1
- J Im[kii(lwz] sin{wt) dw = T ETV a0y +
0 ii 1i

ERE

J Re[Kii(iw)] cos{wt) dw ,
0

substitution of which into the expression for kii(t) finally gives:

I 2 7 )
kii(t) =7§T——;—577?67 + = OJ Re[?ii(lwi] cos(wt) dw

ii 1i

Making use of eq. (32a) kii(t) then can be written:



(35%)

(22)

k..
ii

k..
i1

(t)

(t)

m. .

11

1

+ a,

for

11

. (0)

A

o+

ERIN)
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bii(w) cos(wt)

OI {m

for £t > 0

b4

2

o+ oa.. (@)t + bl
11 11 11

(w)

dw
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APPENDIX V: NUMERICAL CALCULATION OF EQ. (35%): k., (t) FOR i=2,6

Eq. (35a) reads as follows:

a i
G5 k() sy
il 11

0 b..(w) cos(wt)
J i w |
0 {m

ERRN

2 2 2
i b @+ by (W)

With

m,, + a..

kii(w) =—————“——*76T = constant # 0
11 11

and eq. (32a)

by (w)

{m; + aii(w)}zmz * bii(“)

(32%)  Refk; (iw)] = K () -

eq. (35a) takes the form:

(AV-1) k(1) =k, (@) %-OJ Re[k.; (iw}] cos(ut) dw, t >0

Suppose now that the hydrodynamic coefficients aii(w) and bii(w)
are known (by calculations and/or measurements) from w = 0 to

w = W

Eq. (AV-1) then can be written as:

)
(AV-2) kii(t) = kii(m) + %»OJ M Re[kii(iwi] cos{wt) dw +

+ %»w J Refkii(iwi] cos(wt) dw .
M
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Since along the closed interval [b, wM] aii(w) and bii(m) - and
consequently Re[Kii(imﬂ - are known in discretized form, the first
integral in eq. (AV-2) can be solved numerically. The solution of

this integral can be represented by:
W
(AV-3) M Re[K. . (iw)] cos(ut) dw = I (t) + R, (t)
o ii M Relt)

where IM(t) = result of numerical integration along the closed

interval [O, wM] ,
RM(t) = discretization error (i.e. process error) in

consequence of the numerical process of integration
along [b, wMj .

Although for high circular frequencies aii(w) might be equated to

aii(w) = constant and an estimate of bii(w) is available (see

Appendix III), an analytical solution of the second integral in

eq. (AV -2) is probably not possible because of the complicated

form of its integrand: only a rough estimate can be made. Therefore

IM(t) has to be used as approximation for the integral in eq. (AV-1).

On account of the behaviour of aii(w) and bii(w) one obtains by

majorating the second integral in eq. (AV-2):

o by ()
(Av-4) J Re[Kii(iw)] cos(wt) dw | < 5
Wy tmg*ay; (o) ey
ki

* 7t byl 5
J cos(wt) dw = £ .
(m,. +a, ()t ©

- i1 T2l Wy

2
2t
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this expression can be regarded as an estimate for the error which
arises by truncating the (numerical) process of integration (i.e.
the truncation error). To provide that the result of the numerical
calculation of the first integral in eq. (AV-2) - i.e. IM(t) -
represents a sufficiently accurate and reliable solution for the
integral in eq. (AV-1), it can be stated that the following
condition must be fulfilled:

b..(wM) 2

2 2

(av-5) = [R“(t) + —] << {k, () + =T ()} .
n {m,. + a..(w )}2w2 t t m M

ii i1 M M

For convenience' sake in the following Re[Kii(iwI] is

represented by the general form:
flw) = Re[Kii(lw)j .

Suppose that aii(w) and bii(w) - and therefore f(w) - are given

in a discretizised form at the abscissas
© = oy Wiy ceeeenens By y
with successive intervals

(Aw)n = wyTw, T - W, n=1, 3,5, ..., M-I
where n = subscript used as running index representing a real
positive odd integer,

M = subscript representing a real positive even integer.

Then eq. (AV-3) can be written as:

“M
IM(t) + RM(t) = oj f(w) cos(wt) dw =
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®
- M-l Jnﬂ f(w) cos(wt) dw .
) o

n=1,3,... n-1

Let for w = w s W, W the values of f(w) be represented by

n~-1*> m’ "+l
f

-1’ fn and an, respectively.

Yo-1,n,ne110) = flw)

N

fn-1 fn fres
‘w
Wn_y Wy Wiy
(AWl (awiy
g

Applying the Lagrange three point interpolation formula for
equally spaced abscissas on the closed interval [wn_], wn+1] .y

f(w) can be approximated by (see ref. [AIO]):

2
£(w) n-1, n, n+el = yn-—l, n, n+1(w) = Ay * bnw * n ?
fn-—l -2 fn * fn+1
where an = > 5
20(a0) )

b om-2a b -onlfarl

n n n 2(Aw) ’
n
Foo1 7 foey
c. =T aw_ +w o + f .

n nn n 2(Am)n n
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The discretization error on the interval [wn—l’ w

as a
nt+l
consequence of this approximation for f(w) is (see ref. [Al()])

3
- - - _ 1 d7f(g)
En—l, n, n+l(w) = wn-l)(LU wn)(w wn+1) 3! 3 ’
dw
{th 2,3, b
wit Ya-1 0= ¥he ’ “n-1 =t = P+t

On the interval [wn—l’ wnﬂj f(w) then can be written as:

flw)

n=1, n, n+l = Tn-1, n, ne10 * Byl ()

n—-1, n, ntl ’

from which it follows:

w w
Jnﬂ f(w) cos(wt) dw = Jnﬂ

yn_)’ n, n+l(w> cos(wt) dw +
w w
n-1 n—1

w
n+
(J En—l, n, n_H(u)) cos(wt) dw

3

“ot1 (w) cos{wt) dw = mnl(a 2+bw+c) os(wt) dw=
. yn_l’ n, n+l w) cos{w ) o o o) © ®
n~1

ujn-l

i
~t—2— {(2&rl © + bn) cos(mn+1 £) - (Zan © + bn) cos(wn ]t)} +

i 2 . 2 .
+ T {(fn_H a —t—z) 31n(wn+lt) - (fn_1 an?) sul(mn 1t)} .
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w
n+l -
UJ En—l, n, n+1(w) cos(wt) dw =

n-1

One) L)
= f (w—wn_])(w-—wn)(w—wnH) 37 3
w dw

cos(wt) dw

n-1

3

. d"£(¢)
be the maximum value of 3 on Ewn_], wn+1] , and

max. dw
3

d7£(8)
dw3

3
let dE(E) (?
dw

suppose that is distributed uniformly on this interval;

max

then it holds good:

Wn+1
a1, n, n_H(m) cos(wt) dw <
w
n-1
3 W
< _;;_' d f(g) [ n+] (w_wn_])(w-wn)(w—wnﬂ) cos(wt) dw ,
dw max.
n-1
with
3 w
1 d 1
5, L [t W=u _D@=-u)(@=-u_,) coswt) d =
‘o dw max. W’
n-1
3
o _ 2 6] 1 d°£(©)
=~ {COS(wnHt) cos(wn_lt)}[Z{(Aw)n} _—ZJ 3T % +
t t dw max.
a3£(e)

. 1
3 a8t 31n(wn_]t)} 3T

- 3(Aw)rl 2 {sin(u)n
t dw

max.
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For IM(t) and RM(t) now it can be written:

M- wn+l

(AV-6) IM(t) = z yn—l, n, n+l cos(wt) dw ,

n=1,3, Wy

M-1 3 w
1
(av-7) R (£) < ) LI W CY I
M = 3. n-1
n=1,3,.. dw max. W -1
. (- wn)(w - wn+1) cos (wt) dw ”

. . . e
respectively. With respect to the evaluation of —3" the
following has to be remarked. 3 du” |max.

In the numerical calculation 4 £C8) was,taken to be the

dw3 max. d £ {w)

maximum out of the values of —3" at the three
= . dw
rgspectlve abgcissas w = Wo_pr O O
d f(mn)
3 was calculated numerically by means of a five point

fog%ula for equally spaced abscissas (see ref. [Ald]).
Since in f(w) = Re[k..(iwi] - with Re[ﬁii(iwi] according to eq. (32a) -

a i(O) = constant # 0 and b (O) 0, f£(0) takes an indeterminate
form. With egs. (33 ) and (33 ) £f(0) can be approximated by:
(2) 2
[ ] bii w ot ...
f(0) = Re K (O) = 1lim =
w0 {m + (0) + a(f) 2 ..}2w2+{b(2) 2+ ..}2
(2)
11

)
{mg; +a;;(0)}

. . . +
Making use of the expressions derived above, now - for t > 0 -
the numerical calculation can be carried out: kii(t) is calculated

from
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i 2
ki ey T W

ii ii

with IM(t) according to eq. (AV-6), while the trunca;ion error

and the discretization error, except for the factor-; , are

estimated by means of the expressions (AV-4) and (AV-7),

respectively. This calculation was done starting from values for

the hydrodynamic coefficients aii(w) and bii(w)—%iven at the

following circular frequencies: for 0 S w < 25s  with frequency

step=0.1 s—l, for 25 < w < 50 s—I with frequency step = 0.5 s-l,

for 50 < w < 80 s_1 with frequency step = 1.0 s—]. In doing so

condition (AV-5), which warrants the accuracy of the numerical

calculation, was fulfilled amply: in all cases considered the value

of the left-hand member in condition (AV-5) remained - for all t -

smaller than 0.017 of the value of the right—hand member.

By systematic variation of Wy it was found that the influence of

the hydrodynamic coefficients at higher circular frequencies on

the i.r.f. kii(t) indeed is of minor importance; when, for instance,

Wy = 30.0 s_l, the ratio of the left—hand member to the righg-hand

member in condition (AV-5) is — for all t - still smaller than 0.01.
It is obvious that the numerical procedure described above

1s not sulted to calculate the value of k (t) at the time t = O+.

At t = 0 for the numerical integration a Slmpson routine (see

ref. [}l@]) was applied along the same range of circular frequencies

as used in the case with t > 0'. It could be shown that the estimated

value of the discretization error (see ref. [A]Q]) remained smaller

than 0.017 of the values as calculated for kii(0+)' It was not

possible to give an estimate for the truncation error. However, by

means of systematic variation of Wy it was found that as long as

Wy 2 30.0 s“1 ~ in all cases considered - the combined influence

of the truncation of the numerical process of integration and the

. . . . . . +
discretization error is within 1% of the values calculated for kii(o ).
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The i.r.f. kii(t) was calculated numerically at intervals of
time amounting to At = 0.0l s. In all cases considered the upper limit
of the calculation was taken as t = 7.50 s; this time range was
regarded to be sufficiently long, since it was found that for

t > 7.50 s kii(t) = kii(oo).

Supplementary note

The value of kii(0+) (i = 2, 6) as calculated above can be
checked c.q. approximated in a rather simple way.
Suppose that the uncoupled motions of the schematized ship can

be described by the equation(s) of motion:

® .. .
m.. xi(t) = fi(t) y i=1,2, ..., 6,
where m?i =m,. + added mass(-moment of inertia), representing

the 'mass effect'.
It is assumed that within a very short length of time the
(hydrodynamic) damping of the ship-fluid system may be neglected.
For t < 0 there is a state of rest. At the time t = 0 the ship

is subjected to a unit pulse in the i-direction:

]

fi(t) =z di(t) s 4

The equation(s) of motion then become(s):

m*i‘i ® (o) =8, (0) .

Taking the Laplace transform of this expression one obtains:

i, [s ot (01 - %,0] = 1 .
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Since ii(O) = 0 this yields:

1

X
m..s
11

L{ii(t)} =

According to eq. (19) it holds good for uncoupled ship motions:
T
(19) ii(t) = dmf fi(T) kii(t - 1) dt , i=1,2, ..., 6.

With fi(t) = gi Gi(t), gi = 1, it can be derived by taking the

Laplace transform of this expression (see also Appendix II):
L{xi(t)} =Lik, ()} .

Therefore it can be written:

i

Lk, ()} =

m, .S
11

from which it follows by taking the inverse Laplace transform:

m. .
11

As small lengths of time correspond with high (circular) frequencies,

it applies:

x
=m,, +
m11 m11 all(w) *
so that
+ 1
k00 s o=
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This expression can be used to check the values of kii(0+) as

calculated above for the cases 1

Concerning the values of azz(W) and a66(w) =

referred to Appendix III.

2 and i = 6.

1
TZ’L

2

azz(w) it is

For comparison the values of (mii + aii(m))—] as well as the

+ . .
values of kii(o ) as calculated for the distinct cases are

presented in dimensionless form in the table below.

ke

theor. theor. with
(2-dim.); modif. 3yos
8D . b22 (3—di?.);
e PLBD k,,(0") pLBD k, (0)
m22 + 322( ) 22 66
h
E-= 1.333 0.738 0.738 0.810
% = 1,167 0.726 0.726 0.790
theor. theor. with
(2-dim.); modif. 3
m . b66 (3~d%?.);
—_— m  k, (07) m  k  (0)
mee * a66( ) 66 66 66 66
3= 133 0.678 0.678 0.784
3 =167 0.665 0.665 0.782
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Generally the agreement between the respective results is considered
to be satisfactory. The discrepancy between (mii + aii(w))_ and
kii(0+) as calculated 'three—dimensionally' can be declared from the
way in which the hydrodynamic coefficients aii(w) and bii(w) in the
lower frequency range were modified with respect to their original
two—-dimensional values, and from the fact that the two-dimensional

values of aii(w) were maintained.




APPENDIX VI: CRITERION FOR THE CONVERGENCE OF THE COMPUTATIONAL
SCHEME IN CASE OF A 'CENTRIC IMPACT' TO A LINEAR FENDER

For the case of a berthing operation in which Xjg =€y = 0o -
i.e. a 'centric impact', no rotation - to a linear fender, the motion

of the schematized ship is given by eq. (41a) (see Section III.2):
a t
417) Xz(t) =V, + 0] fz(T) k22(t - 1) dr

in this expression f2(t) is the reaction force of the linear fender,

which can be represented by:

fz(t) = - COAXZf(t) , szf(t) >0

where ¢y = spring rate of linear fender.

Substitution of fz(t) into eq. (41a) yields:
t
(AVI-1) xz(t) =V, = ¢ OJ szf(r) k22(t - 1) dt .

During the contact between ship and fender the displacement of the

ship's centre of gravity x,.(t) equals the impression of the fender
& 26

szf(t).

For clearness' sake the following simplified notations are used:
x,(8) = v(t), b, (8) = by (t) ky,(t) = k()

eq. (AVI-1) then takes the form:

t
(AVI-2) v(t) = vy T S J Ay(t) k(t - 1) dt .
0

The calculation of eq. (AVI-2) is carried through according to the

iteration procedure as described in Section III.2, using equidistant
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time steps At. It is supposed that the contact between ship and

fender has a length of time of NAt, where N is a real positive

integer.
Let t = nAt , T = lAt
with n=1,2,3, ..., N, 1=1, 2,3, ..., nj
then v(t) = v(ndt) = v,, Vg T Vs
Ay (1) = Ay(lAt) = Ayl, AyO 0, AyN =0,
k(t - 1) = k(uar - 1At) = k{(n - 1) 8e} = k__,.

In these expressions is:

n,l = real positive integer - when used as subscript it
represents a number of time steps At and indicates
that the quantity concerned must be taken at the
point of time t = nAt, T = lAt, respectively.

Suppose that the calculation of eq. (AVI-2) has arrived to the
point of time t - At; in the iteration procedure for point of

. th . . .
time t the m -—approximation of v then can be written as:

m _ _ . § | )
Voo T VAT % 121 7 AWy g R gy P Ay K ) =
n-1 1
VAT % lzl'i By g Ry POV R
I
=g ¢ Al by gt kby)

the superscript (m) indicates that in the iteration procedure the
th . . . .
m -—approximation is taken of the quantity concerned.
The approximation used for Ayn is:
1

by = dy__, + 7 bt {vé

m—l)+ v }
n-1
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Elimination of Ayn from the last two equations yields:

vl o HEI Lacea Kk + Ay, k) o+
n A 0 1=1 2 yl—] n—1+1 yl n—-1
-1 _ 1 2 (m=1)
7 S0 At Ay, (g + k) = e At kg vy * V)

In a completely analogous way it applies for the (m—l)th—

approximation of V¢

n-1
v(m D =y

1
n AT Loty kg, t Ay k) ¢

1 L2y @)
5 cOAt Ayn—l(kO + kl) 3 cOAt k.0 {vn + Vn-l}

-

Now it can be written:

.

V(m) B V(m—l) -
11

¢ (m-1) _ Vém—Z)}

2
<, At ko{vn

)

The iteration procedure for the calculation of v converges if:

}V(m) _ V(m*l)!
n n

. . 1
V(m_l)_ —=2) <1, i1.e. if 7 o At ko <0 ;
e

in other words the computational scheme in case of a 'centric

impact' to a linear fender is convergent if:

At <2

+
N.B. ko = k22(0 ).
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APPENDIX VII: SOLUTION OF THE BERTHING SHIP PROBLEM USING A LONG-
WAVE APPROXIMATION FOR THE MOTION OF THE WATER

In this Appendix VII a simplified approach is given to solve
the problem of a (schematized) ship berthing to a(n open) structure
equipped with one fender, on shallow water with unrestricted
horizontal dimensions.

Use is made of a long-wave approximation for the motion of the
water, in which - even in case of a small keel clearance - no
account is taken of the circulation of water around 'bow' and 'stern'
(i.e. the so-called end effects). Therefore, in addition to the fact
that this approach of the berthing ship problem is subject to the
restrictions of the long-wave theory, it has to be considered as
basically two-dimensional.

The berthing ship problem is solved for the same (schematized)
ship (model),for the same shallow water depths and for the same
berthing lay-out as in the report; likewise the same berthing
operations are considered. The assumptions and simplifications
concerning the case of the berthing ship, as stated in Secrion I
and recapitulated in Section III.1, do also apply in this Appendix VII,
As much as possible the same notations are maintained.

First of all an expression is derived for the i.r.f. for the
sway motion. Subsequently this i.r.f., or the allied equation of
motion of ship and water combined, is used in determining (expressions
for) the relevant quantities which play a part in the berthing ship

problem.

A~VII.1: DETERMINATION OF THE I.R,F, k22(t)

The schematized ship is supposed to have merely a purely lateral
velocity (i.e. in the sway direction), kz(t). Let the heights of the
generated long waves on port-side and starboard-side be np and Ng»
respectively (see fig.); np and ng are assumed to be very small

< h, ng < h.

with respect to the water depth: n s

p
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§ c
__ T_~____~“~ll_ ______ {-%wl::i_ﬁ?ﬁ
Cw 2
D
Vil,s=0 Vils 8 Viip h  vyp=0

With neglect of friction effects, assuming that the waves propagate
without distortion, the velocities of propagation can be represented
by ¢, = vgh. In conformity with the long-wave theory the (horizontal)
fluid velocities under the long waves on port-side and starboard-
side (i.e. Vfl,p and Vfl,s’ respectively) are supposed to be
uniformly distributed in the vertical plane and parallel to iz(t);
this also holds good at a (very) short distance from the ship's wall.
The velocities in the undisturbed fluid region are equal to zero.
Farther it is supposed that the velocities in the keel clearance
underneath the ship are horizontal and parallel with iz(t), and
that they are distributed uniformly; these velocities are indicated
by Vz,kc(t)'

Form the long-wave theory it can be derived that on port-side

and starboard-side of the ship the following respective expressions

hold good:
vfl,p(h * np) T M T 0

and

—nscw * Vfl,s(h - ns) =0
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As both np << h and g << h, vfl,p and Vfl,s can be written as:
_iasb -8 =&
(AVII~| ) vfl,p c. np 5 Vfl,s < Mg o+

Application of the law of conservation of mass on port-side, c.q.

starboard~side of the ship yields:

L]

vfl,p(h + np) Vz,kc(h - D) + XZ(D + np)

and

vfl,s(h - ns) VZ,kc(h - D+ XZ(D - ns)
It is assumed that the water depth h and the draught of the ship D
are of the same order of magnitude; therefore, both np << D and

g << D, so that the above expressions become:

vfl,ph = Vz,kc(h -~ D) + xzD R
(aviT-22*P)

v h v

£1,s 2,kc® = D)+ XD

2

Applying the law of conservation of momentum to the mass of water

underneath the ship one obtains (per unit length):

pB(h - D) Vyke = T pglh - D)(np + ns) ,
or
n_+n
- 5 PS5 _
(AVII-3) vZ,kc + g B o .
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Let the velocity kz(t) be the result of an external force fz(t)
acting upon the schematized ship in the sway direction. The equation

of motion of the ship then can be represented by:

v _ 1 2
PLBDX, = - pg (D nS)L(np + ns) 5 PgL (np + ns) +f2(t),
or,
(AVII~-4) pLBDx2 = - pgDhL (qp + ns) + fz(t) .
.. . _,8,b
Elimination of Vfl,p and Vfl,s from eqs. (AVII~] ) and egs.

(AviT-22P) yields:

g = - > L. = - :
. nph VZ,kc (h D) + xzD s e nsh VZ,kc(h D) + x,D ,

from which it follows:

2
n o+n_ = {v
P s c, 2,

ke (th - D) + XZD} .

By substitution of this expression for np + g into eq. (AVII-3)

and eq. (AVII-4) one obtains:

- ; 2g _ 28 o on o

(AVII-3) Va,ke T Be V2,ke BTD) Fpm %D =0
W W
and
. 2g B 2g . 1
(AVII-6) X * Be VZ,kc (b D) + Bc x2D ~ pLBD fZ(t) '
W w

respectively. Elimination of v from these two expressions

2,ke
then yields:
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e 2¢c .
.s 1 1 2g(h = D) -
- e 1 - £ (t) =0 ;
(AVII-7) 2t 75 % " omep 29 T S5TED Be_ 2 (V) ;

eq. (AVII-7) has to be considered as the equation of motion in
the sway direction of ship and water combined.
For t < 0 there is a state of rest. At the time t = 0 the ship

is subjected to a unit pulse in the sway direction:
fi(t) = Ci cSi(t) s z. =1, i=2.

In case of uncoupled motions it can be written for the sway motion

of the linear ship-fluid system in the time domain (see eq. (19)):
T
Xi(t) = _mf fi(r) kii(t -ty dr , i=2,
From the last two equations it can be derived:
%, (8) = ky,(t)
with Xz(t) = k22(t) = 0 for t £ 0.

Now eqs. (AVII-5) and (AVII-6) can be written as:

. 2g(h - D) 2gD -
Voke T Be Vo ke VB Kpp(®) = 0
w w
and
- 2g(h - D) 2gD _ 1
koo (£) + B V2.ke * Be_ 2200 = Simp $(0) s

respectively. Taking the Laplace transforms of these two expressions

one obtains:

2g(h - D) 2gD -
s L {Vz’kc(t)} + TC-‘;‘—__ L {Vz’kc(t)} +‘B—C"‘; L {kzz(t)} 0
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and

2g(h - D) 2gD 1
L B ot = = —— *
s Dl ()} + Be_ L{Vz,kc(t)}+8cw Lk (O} =gy
elimination of L{VZ,kC(t)} yields:
_ 1 1 _ 2gD 1
I;{kzz(t)} =SiED s {1 v —————TZ;—-}
s * 5

By taking the inverse Laplace transform of this expression one

obtains for the i.r.f. for the sway motion:

a
(AVII-8%) Ky, (8) =

b
(AVII-87) kZZ(t) =0 for t <0 .

The i.r.f. for the sway motion as calculated from eq. (AVII—Sa’b),
is presented in figs. 4 and 5 as a broken line. Derived amalytically
from a long-wave approximation for the motion of the water, it

can be used for the determination of the relevant quantities

playing a part in berthing operations which result in a 'centric

impact'.

A-VII.2: DETERMINATION OF BERTHING OPERATIONS

In case of an undamped linear fender — using a long-wave
approximation for the motion of the water - analytical expressions
can be derived for the relevant quantities figuring in the berthing
ship problem, For the situation of a ship berthing to a non-linear
fender, generally, the relevant quantities can only be determined

by numerical calculations.
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For a definition sketch (plan and cross-section) of the
berthing lay-out reference is made to fig. 10.

In addition to the assumptions and simplifications concerning
the case of the berthing ship, as stated in Section I and
recapitulated in Section III.1, the following is supposed to apply.
- The angle of rotation of the ship's longitudinal axis of

symmetry around the ox3-axis during the contact between ship and
" fender, i.e. Y(t), remains (very) small.
-~ The point of contact between ship and fender does not move along
the ship's hull during the impression of the fender; i.e.
AG = ¢

0
The two above assumptions are affirmed by the results of the

, when there is contact between ship and fender.

experiments and calculations from the report.

~ Regarding the motion of the schematized ship in the sway direction,
the hydrodynamic effects are taken into account by means of a
long~wave approximation for the motion of the water.

- With respect to the rotation of the schematized ship in the
horizontal plane, the hydrodynamic effects are only taken into
account by means of a constant added mass-moment of inertia for
the yawing motion; the (hydrodynamic) damping is neglected. For
a justification of this assumption reference is made to

Appendix III, Section A-III.4.

A-VII.2.a: CENTRIC IMPACTS: eq = 0

In case of a centric impact the following relations apply:
y(t) = 0, xzc(t) = szf(t), sz(t) = f(szf).

For an undamped linear fender the reaction force in the fender

then can be written as (see eq. (44a)):
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0 for XZG(t) <0,
(AVII-9) sz(t) =
—cOXZG(t) for x2G<t) >0 .

The purely lateral motion of the schematized ship (i.e. in the
sway direction) during its contact with the fender can be

represented by eq. (413):
a £
(417) xz(t) =v, + OJ fZ(T) kzz(t - 1) dt
, . a . . - .
in this eq. (417) xz(t) = XZG(t) and fz(t) sz(t), with

sz(t) according to eq. (AVII-9); kzz(t) is represented by
eq. (AVII-Ba’b):

...Yot
kzz(t) = ay * Soe for t >0
k22(t) =0 for t 2 o ,
here Wool_ E-D s oD
v 0~ PLBD n > 0 %BDRh Y0~ B

Substitution of these respective expressions for kz(t), fz(t)
and kzz(t) in eq. (413) yields:

t ~v0(t -7
(AVII-10) kZG(t) =V, "¢ OJ XZG(T) {a o BO e T .

Eq. (AVII-10) can be solved in two ways, which both, naturally,
lead to the same result: in the first approach use is made of
Laplace transforms, in the second approach the integro-differential
equation (AVII-10) is transformed into an ordinary differential

equation.
Taking the Laplace transform of eq. (AVII-10) it can be derived,
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) +
since XZG(O ) = 0:
s+,
(AVII-11) L{XZG ()} = VA 3 N Sz s o0 N s
S Y %" Po’%% T %Y0%

Re[s] > s .

As the denominator of the right-hand member of the above expression
generally has three (different) roots, this right~hand member can
be separated into a sum of partial fractions; XZG(t) then can be
determined by taking the inverse Laplace transform of each
summand separately.

By differentiating eq. (AVII-10) with respect to t one obtains,

using the expression for kzz(t) according to eq. (AVII—Ba’b):

t
%yp(8) = ~(ag + By egxy(t) + vg {vy = %, (8} = apy4e, o{ Xy (1) dts

differentiation of this expression with respect to t yields:

(AVII-12) kéc(t) + ydizc(t) + co(uoi-BO) izc(t)i-aoyoco XZG(t) = 0,
Eq. (AVII-12) is a linear homogeneous ordinary differential
equation of the third order with constant real coefficients.
N.B. As could be expected - since XZG(O+) = &QG(O+) = 0 and
XZG(O+) =V, s solution of eq. (AVII-12) by way of the
Laplace transform technique leads to an expression for
L{xzc(t)} which is identical to eq. (AVII-11).

Let tre general solution of eq. (AVII-12) be represented by

3 wmt
(AVII-13) %y () = L Ce ,

m=1
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subscript representing a real positive integer,

where m =
m=1, 2, 3,
Cm = constant of integration,

and W represents the roots of the characteristic equation:

3
w +

2
You (¥ By) cgW togYgey = O
Generally this characteristic equation has three different roots,
either three real roots, or one real root plus two rooths which
are complex conjugated.
N.B. With xz(t) = XZG(t), fz(t) = sz(t), eq. (AVII-9) and the
0’ BO and Yo» the equation of
motion in the sway direction of ship and water combined,

i.e. eq. (AVII-7) yields directly eq. (AVII-12).

respective expressions for a

The quantity XZG(t) now is determined by solving the linear
ordinary differential equation (AVII-12).

Eq. (AVII-12) can be written as:

(AVII-14) 'kéG(t) + pdizc(t) + qORZG(t) + rOXZG(t) =0 ,
2c
where pO = YO = Bw N
0
Q@ = (4 * By) ¢ = 5ED

0 070% B pLBD  h

The general solution of eq. (AVII-14) can be written as eq. (AVII-13),

where W with m = 1, 2, 3 represents the roots of the characteristic
equation
(AVII-15) W3 +p w2 + qw+r1r, =0

0 0 0 .
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The initial conditions of eq. (AVII-14) are:

(AVII-16) 0) =0, iZG(O) =v &EG(O) = 0.

Tl A’

Eq. (AVII-15) is a cubic equation with real coefficients; for the

determination of the roots of this equation is referred to ref. [Alﬂ .

1 2Cw
Let T T3 T T3

Em then satisfies the cubic equation with real coefficients:

0

1 2 1 €0 Z*szq

where a, = 3 (3q0 - pO) =3 (3-EE§B-—;;?) R
b, = 1 (2p3 - 9.q, + 27r ) =
0 27 0 070 0
8 2 c
= 2L.:31 Q_iﬂ__ 9 ‘0 + 0270 b - D)
27 B B2 pLBD pLBD h :

On account of the values for o, g, L, B, D, h and CO as used in

the report, it holds good that:

:1 o

o
+

o @

<o w

or, in other words, there is one real root (gl) and there are two
roots (52 and £3) which are complex conjugated; the roots 51,

€2 and 53 read as:




- 161 -

53 2 3
where A = —--9+ —-—9-+—Q— B = __Q___Q+_Q_
c 2 4 27 2 ¢ 2 4 7

Ac and Bc are real constants,

The roots Wi Wy and Wy of eq. (AVII-15) now can be written as:

w1=P, w2=R+iQ, w3=R-—iQ,

Izcw

where P=AC+BC—-—3-—§— R

Ac_Bc

Q= 2 E 3
A +B 2¢

Re-_Cc c_ 1 _w |
2 3 B

By means of the initial conditions (AVII-16) it can be derived

for the constants of integration Cl, C2 and C3:

. - TGy vy) o 2R P
= = - = - — = s
1 (w1 WZ) (w] w3) a @ - R)Z . QZ A

2 2

+ Q7)) _ o
2} = VAS ]_VAT

¢ LAt r vy . 2R - i(P? - R
A9 (P - R)Z + Q

2 (w2 - w3) (W] - Wz)
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and
- -vA(wl+w2) _, 2QR+1(P2_R2+Q2)—vs+ivfr
- - i = ’
(wl w3)(w2 w3) A 2Q {(P - R)2 N QZ} A A
2 2 2
_ R _ P - R+ Q
where S = — s T = S———jﬁﬁ€~———~ .

For XZG(t) and XZG(t) it then can be derived:

LN 2¢ RE {S cos(Qt) + T sin(Qt){}

x2G(t) =V, [}ZS e

and

6 = v, [} 2pse™ + 2Re N (S cos(Qr) + T sin(QT)} +

+ ZQeRt {~ 8 sin(QT) + T cos(Qt){} ,

respectively.

Recapitulating, the analytical solution of the berthing ship
problem in case of a centric impact against an undamped linear fender
- using a long-wave approximation for the motion of the water - can be

represented by:

(AVIT-17%) %,6() = v, {-2 8¢ + 258 cos(ar) + 21T sin(Qe)}

(avIiI-17%) %,,(t) = v, {-2 PS P84 2(Rs + 1) eRF cos(qr) +

- 2(gs - RT) e RY sin(Qr)} ,
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0 for xzc(t) <0
(AVII-9) F._(t) = v
2f —c x..(t) for % .(t) > 0
o 2G 2G = ’
2 2
where 5= ——p—p TS
(P -R)" +Q
1 ch
P=A B 7373 ?
AC - BC
Q = ) ‘/é— ]
A + B 2¢c
R = - c c _ l W
378 ’
3/ b b2 a3 3/ b b2 &l
A = —-._.9 + —.9. +—0- B = --—O—- -— ——-9- +-—-—O—
c 2 i 77 ’ c 2 A 27
| 1 3
3 =3 Gdg "2y s by = 37 (2Pp " %Ppap* 27xy) s
= L?f‘i N r = _zf___(fQ_l;P_
Po =7 99 = 5LBD ’ 0~ "B pLBD 1 °
¢ = +Vgh .,
W

The time histories of the fender forces as calculated from eqs.
(AVII-9) and-(AVII—]7a) for the respective spring rates <o and water

depths h are presented in figs. 14 through 19 as broken lines.
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In case of a fender which is damped and/or (non-)linear the

réal constant coefficients Py 9 and Ty generally are functions

of XZG(t) and iZG(t); an analytical solution of the berthing ship
problem then is only possible in very special cases. Making use of
the i.r.f. for the sway motion, eq. (AVII-Ba’b), in case of the
non-linear fender the time history of the fender force is

determined in the same way (i.e. numerically) as in the report;

for the respective water depths h and lateral speeds of approach

v, the results are presented in figs. 20 through 23 as broken lines.

A

A-VII.2.b.: ECCENTRIC IMPACTS: e, #0

As AC = e and Y(t) remains (very) small during the contact

between ship and fender, the motion of the (schematized) ship in

the xl—direction can be neglected.

The resulting force and moment, as acting in and about the

ship's centre of gravity, are (see eqs. (39a’b)):

#

(39%) £,(t) = Fy. cos(y)

o
v
<
-

b —
(397) f6(t) AG sz cos (P)
in the case under consideration AG = -

For an undamped linear fender the reaction force in the fender has

the form (see eq. (443)):

A
o
-

0 for Ax,.(t)
(442 P (t) = 2t

\'
(o]
.

-, szf(t) for szf(t) >

The equation of motion of ship and water combined for the xz—direction

may be written as (see also eq. (AVII-7)):
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2c 1 2g(h - D)

e W 1 - _
(AVII-18) %6 * 78 ¥a¢ " 51mp 2V T 5imp Be_ £,(t) =0

The equation of motion describing the rotation of the schematized
ship in the horizontal plane reads:

3 e
(AVII-19) me Vo= f6(t) s

where mze = Mo + yaw added mass-moment of inertia;

m26 has to be considered as a constant.

Substitution of egs. (39a) and (448) into eq. (AVII-18) and
subsequent linearization of the terms containing y(t) - i.e.

cos(y) = 1, sin(y) = ¢ - yields as equation of motion for the

translation:
Ze, 0 d 2¢(h - D) 0
(AVII-20) *6¢ "B *26 T 5TED av Mor t Bc_ 5iED Mo = O

Likewise, substitution of egs. (39b) and (443) into eq. (AVII-19)
and subsequent linearization of the terms containing Y(t) yields as
equation of motion for the rotation:

% ..
(AVII-21) mge Vo= eO CO szf .

The relation between XZG(E) and szf(t) reads:

B+ Ax,,. + e, sin(y) - %—B cos ()

I
26 2 2f 0

From this expression it can be derived by linearizing the terms

containing ¢ and/or its derivatives:
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B 4
Xo6 = DRop T egb s %oe = dF Mxpp el
(AVII-22)
2 3
. d . .. _d )
X, . = AX, . + e, ¥, %, = — Ax,_ + e 0" ,
267 7 " T %0 2¢ = 3 Yot T %

Elimination of x from eq. (AVIT-20) and eq. (AVII-22) yields:

2G

w .
3* 78 "2 *oueD dc Be Sl R A A B
dt dt w

[d3 2e, 42 0 4 , 2g(h - D) Co] L. 2 V= o

eliminating ¢y from this expression by means of eq. (AVII-21) ome

obtains:
3 2
d d d _
(AVII-23) 3Py 7 9% o M =0 s
dt dt
2c ez
where P =Y g, = ¢C (—l——-+ 0 )
0 B °’ 0 0‘pLBD oF ’
66
2
r=czcw(h—D L, o
0 0 B h oLBD *® -
66

Eq. (AVII-23) is a linear homogeneous ordinary differential
equation of the third order with constant real coefficients. The

initial conditions of eq. (AVII-23) are:

d d2
I szf(O) = v —5 szf(O) = 0.

(AVIT-24) Ax A’
de

2£(0) = 0,
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Eq. (AVII-23) has the same form as eq. (AVII-i4); the same holds
for the initial conditions (AVII~24) and (AVII-16) in Section A-VII.2.a.
N.B. Starting from Appendix III, Section A~III.4,for the yaw added
mass-moment of inertia a value is chosen which is two times
the mass—moment of inertia of the ship around the Gz-axis;
this implies that mzé = 3m66.
On account of the values for o, g, L, B, D, h, Mo e and g

as used in the report, it holds good that:

2 3
_‘.D_9+.E >0
A 7 ,
2 2
4¢
o 2, 1 0 w
where 3y =3 By = Py = ¢olgp * ) 7
3B
66
b =4 (2p2 - 9 +27r) =
o~ 27 ““Po P9y 0
c 8c2 c c e2
2 S S 0 0 h-D 0 .
5538 % Y s w8y s
B Mo

consequently the solution of eq. (AVII-23) has the same form as

that of eq. (AVII-14). So,

(AVII-25) B3, (0) = v, Ezs Pt 4 2eRE (s cos(qe) + T sin(Qt)}] ,

R ‘ 2 -2+
where S=—‘——“-T-2', I=ST 5
®-R"+Q
: 2¢c
P=A +B - 2



[
i

Eq. (AVII-21)
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I
s = VL 20 AP, 2
’ c 2 4 27

].—-

7

3
(ZPO - 9p0q0 + 27r0) »

= mge *+ yaw added

/en

can be written as:

mass-moment of inertia.

elimination of szf from this expression by means of eq. (AVII-25)

yields:

(AVII-26)

P () = 2 e

Rt
e

cos(Qt) + T eRt sin(Qt)}.



- 169 -

The initial conditions of this ordinary differential equation of the

second order are:
(AVII-27) p() =0 , PO =0 .

Now $(t) can be determined by direct integration of eq. (AVII-26)
with respect to time; the two constants of integration are
eliminated by using the initial conditions (AVII-27). In doing so

one obtains for ¢(t):

Pt . TRZ + 2RSQ - TQZ Rt

e_C
00 1 8 TR sin(qe) +
(R™ + Q%)

v 00 I_
A = 2
P66 g

(AVII-28) ¢(t) = 2 e

SR” - 2TQR - 5Q° Rt

+ e cos(Qt) +
&% + oH?

S _ SR-TQ

0 4+
P R2-+Q2

S _ SR°-2TQR- SQZ}
’ &2+ 052

According to eq. (AVII-22) it can be written for Xo6t
(AVII-29) Xpp = szf + eow .

Since szf(t) and y(t) are given by eq. (AVII-25) and eq. (AVII-28),
respectively, x2G(t) can be determined.

Recapitulating, the (analytical) solution of the berthing
ship problem in case of an eccentric impact against an undamped
linear fender - using a long-wave approximation for the motion of

the water - can be represented by:
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(AVII-25)  4x,.(c) = v, {- 25eP5 4 2 56 RE o5(qr) + 2TeRT sin(Qt)},

A
(]

. 0 for szf(t)
(447) Foe(t) =
-cO A xzf(t) for szf(t) >

v
[

e.c 2 2
(AVII-28) (1) = 2 v, 00 | - Soeft IR - Zng SR Singqe) +
my P (R® + Q%)
66
SRZ—ZT R-S 2 Rt
+ 5 Qz 5 Q e cos(Qt) +
(R™ + Q%)
SR - T
R™ +Q
(5 SRZ-—Z’I‘QR—SQZ )
2 2 2.2 i
P (R™ + 09
(AVII-29) xzc(t) = szf(t) + e, w(t) R
2 2 2
where S = ~——-—%m7 s T = S-IL_.;;%__L&_ R
®-n’+q Q
2c
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___¢c c _ 17w
R = 2 3 B >
3/ b b2 3 3/ b {62 &
s = Vo0 V20, B 5 -V/-_0\ o, %
c 2 "% 27 c ) A 27
1 1
% =3 Gqp ~py) > by = 37 (2pp = 9pgag * 277p)
2
- 2Cw - ( 1 eO )
Po =78 99 = ¢ ‘SLBED w0
66
2
L. 2Cw(h-—D L, S0y
0 0 B h pLBD X
66
m§6 = Mge + yaw added mass-moment of inertia.

The time histories of the fender forces, the angles of rotation and
the translations of G as calculated from egs. (AVII-25) and (443),

eq. (AVII-28) and eq. (AVII-29), for the respective water depths h

and values of e, are presented in figs. 26 through 33 as broken

0
lines.
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NOMENCLATURE

1. General conventions

- Dots over a quantity mean derivatives with respect to time.
- An accent ' indicates that the quantity concerned must be taken

per unit length of the body

- Subscripts:

a with a harmonically varying variable indicates that the
amplitude of that variable is meant;

f indicates that the quantity concerned must be related
to the fender;

£1 indicates that the quantity concermed must be related
to the fluid;

i,j,k are used for a direction or a degree of freedom in a
Cartesian co-ordinate system; in general they vary from
1 to 6, unless specified otherwise;

ke indicates that the quantity concerned must be related
to the keel clearance underneath the ship;

P indicates that the quantity concerned must be related
to the fluid region on port—side of the ship;

s indicates that the quantity concerned must be related
to the fluid region on starboard-side of the ship;

G indicates that the quantity concerned must be related
to the ship's centre of gravity G.

- Superscripts:
(c) is used to indicate a (Fourier) cosine transform;
(s) is used to indicate a (Fourier) sine transport

-~ Abbreviations:
f.r.f. frequency response function;

i.r.f. impulse response function.



- 176 -

2. Co-ordinate systems

0x1x2x3

oX. X, X

Gxyz

space fixed right-handed system of Cartesian co-ordinates
with origin 0; 0§1§2 coincides with the water surface at
rest; the vertical O§3—axis is positive upwards; the
forward speed V of the ship coincides with the positive
O§1~axis.

right-handed Cartesian co-ordinate system parallel with
O§]§2§3, but translating with the (constant) ship's speed
V; at rest the origin coincides with the ship's centre of
gravity G; the longitudinal oxl—axis is positive in
forward direction, the ox2~axis is positive to port-side,
the ox3—axis is positive upwards,

moving right-handed Cartesian co-ordinate system with
origin G and fixed with respect to the ship; Gxz coincided
with the longitudinal plane of symmetry of the ship; the
Gy-axis is positive to port-side, the Gz-axis is positive

upwards.

3. List_of symbols

Symbols not included in the list below are only used at a specific

place and are explained where they occur.

a

W)

22

distance of G below the plane of the water-line; real
constant.

amplitude of harmonically oscillating (pure) sway motion
at zero forward speed,.
coefficients in expression for yn—i,n,n+1(w)'
coefficient of term with order n in power series
development for aii(w).

hydrodynamic coefficient of the mass term in the
k-equation as a result of motion in the j-direction
(=ajk(w))- ‘

added mass for swaying motion (=322(w)); aéz = idem per

unit length.



66
a?,bo
p i)
ii
ik

D)2
66

=2

ik

f()

ia
fi(t)

k(t)

k. [...]

k..{(t)

added mass-moment of inertia for yawing motion (=a66(w));
aé6 = idem per unit length.

real constant coefficient.

coefficient of term with order n in power series
development for bii(w)'

hydrodynamic coefficient of the damping force in the
k-equation as a result of motion in the j-direction
(=bjk(w))-

sway damping force coefficient (=b22(w)).

yvaw damping moment coefficient (=b66(w)).

real constant.

hydrostatic restoring coefficient in the k-equation as a
result of a static displacement in the j-direction at
zero forward speed.

velocity of propagation of long wave.

spring rate of linear fender.

respective spring rates of the two linear springs which
combined form the non-linear fender.

initial distance (i.e. at rest) between the two linear
spring elements of the non-linear fender.

(initial) distance of the line of action of the fender
to the ship's centre of gravity G before and during the
first contact between ship and fender.

general expression for a function (of t).

value of f(w) at w = w .

amplitude of a harmonic (force) excitation fi(t)'
forcing function in the i-directionm.

acceleration due to gravity.

water depth at rest (mean water level).

/=1 .

simplified notation for kzz(t).

kernel for motion in the j-directiom.

response for the j~direction to a unit pulse (i.e. Dirac



n—-1
kzz(t)

kgg (2D
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function at t = 0) in the i-direction = impulse response
function (i.r.f.);

i = i.r.f. based on the velocity as output signal,
X

i i.r.f. based on the displacement/rotation as

]

output éignal.
value of k(t-T1) at t= nAt, T = lAt.
impulse response function for the sway motion.
impulse response function for the yaw motion.
real positive integer; when used as subscript it
represents a number of time steps At and indicates that
the quantity concerned must be taken at the point of
time T = lAt.
subscript representing a real positive integer.
superscript indicating that (in an iteration procedure)
the mth—approximation is taken of the quantity concerned.
representation of the 'mass effect' of the ship in the
equation(s) of motion in case of uncoupled motions
(= m, . + added mass (-moment of inertia)).
inertia matrix (i.e. generalized mass) of the ship.
usual wave number = positive root of wz = gm, tanh(moh).
mass of ship (model) for horizontal (surge) motion.
mass of ship (model) for horizontal (sway) motion.
mass—moment of inertia of ship (model) around Gz-axis.
subscript used as running index representing a real
positive odd integer; real positive integer -when used
as subscript it represents a number of time steps At
and indicates that the quantity concerned must be taken
at the point of time t = nAt.
constant in approximative expression for aii(w) in case
w o w,
real constant coefficient.
constant in approximative expression for bii(w) in case

w ooy




uj(t)

v{(t)

VEl,p? £l

%y (D)
le(t)

26¢Y

n-1,n,n+!

S

(w)
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radius of (semi-)circle around the origin; modulus of s.
complex variable.

certain complex number.

time co-ordinate.

point of time.

response of the ship~fluid system in the j-direction to
the set of forcing functions {fi(t)}'

simplified notation for iz(t).

(horizontal) fluid velocity on port-side, c.q. starboard-
side of the ship.

value of v(t) at t = nAt.

constant lateral speed of approach towards the berth.
constant velocity of the ship in the i-direcrtion.
horizontal fluid velocity in keel clearance underneath
ship.

root of characteristic equation (m = 1,2,3),

j~th mode of motion of the ship.

surge motion.

sway motion.

heave motion.

roll motion; Eulerian angle.

pitch motion} Eulerian angle.

yaw motion; Eulerian angle.

abscissa of the point of the fender (= constant for
all o).

ordinate of the point of the fender.

abscissa of the ship's centre of gravity G at point of
time t during the contact between ship and fender.
ordinate of the ship's centre of gravity G at point of
time t during the contact between ship and fender.
approximative expression for f(w) on the closed

interval E» ], based on the Lagrange three point

n=1°"n+1
interpolation formula for equally spaced abscissas.



(w)

En—],n,n+l

Fog(o)

F .
2,viscous

G

Im[. . ]

IM(t)

II’II[I ’IIII

Kij(iw)

(c)
Kij (w)
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projection of the point of the fender on the ship's
longitudinal plane of symmetry.

real comstant.

beam of the ship (model).

constant of integration (m =1,2,3).

drag coefficient.

draught of ship (model).

total amount of energy absorbed by a fender (with linear
behaviour).

discretization error on the closed interval E»n_],wn+]]

as a result of the approximation y () for f(w).

n-1,n,n+1
reaction force in fender acting in the xzndirection.
fluid reactive force on the ship from viscous origin in
the sway mode of motion.

centre of gravity of the ship (model).

imaginary part of

result of numerical integration along the closed
interval [O,mM] .

symbolic notation of (Laplace) integral.

Fourier transform of kij(t) = harmonic transfer function
for the j-direction in response to a (harmonic force)
excitation in the i-direction = frequency response
function (f.r.f.).

Fourier cosine transform of kij(t).
Fourier sine transform of kij(t).
Fourier cosine transform of Rij(t).

Fourier sine transform of iij(t).

Laplace transform of kii(t) = transfer function for the
i-direction in response to a force excitation in the
i-direction.

part of Kii(s) without poles.




Kig)(iw)

Kii)(iw)

M

P’Q’R!S’T

Re[..l

Ri(w)

RM(t)

u(t)

F{E(D)}
L{f(0)}
o)
%>Bg2Yg

%k
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part of Kii(iw) containing a pole for w = 0.

part of Kii(iw) without poles.

length of ship (model).

subscript representing a real positive even integer.
reduced or effective mass of the ship (model) for
horizontal motion.

real positive integer representing the number of time
steps of the total durance of the contact between ship
and fender; when used as subscript it indicates that the
quantity concerned must be taken at the point of time

t = NAt.

real constant.

real part of

wave making coefficient for (ship) motion in the
i-direction = ratio of the amplitude of the radiated
waves at infinity to the amplitude of the (ship) motion
in the i-direction.

discretization error (i.e. process error) in consequence
of a numerical process of integration along the closed
interval [b,wM] .

unit step function.

constant forward speed of the ship.

abscissa of the position of the ship's centre of gravity
G in the horizontal plane as measured during the berthing
operation by the 'position follower'.

ordinate of the position of the ship's centre of gravity
G in the horizontal plane as measured during the berthing
operation by the 'position follower'.

Fourier transform of the function f(t).

Laplace transform of the function f(t).

main dimension of body with elementary form.

real constant coefficient.

Kronecker alpha: % = 1 for k = i, agy = 0 for k # 1.



P(e+At)
Yo

M> ¥

At
szf(t)

(AXZf)max

Ay (L)
Ayn,Ayl
(Aw)n
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main dimension of body with elementary form.

delta function or Dirac function.

unit pulse (i.e. Dirac or delta function) in the

i-direction.

(arbitrary) coefficient specifying the magnitude of a

pulse in the i-direction.

height of long wave generated on port-side, c.q.

starboard-side of the ship.

phase angle of the response in the j-direction to a

harmonic (force) excitation in the i-direction.

real part of s.

certain value of w on the closed interval Eu W ].
n—1’ n+l

root of cubic equation (m = 1,2,3).

specific mass density.

integration variable (time).

argument of s.

phase angle of a harmonic (force) excitation fi(t)'

angle of rotation of the ship's longitudinal axis of

symmetry around the ox,-axis at point of time t during

3
the contact between ship and fender.

mean value of Y(t) on the interval of time At.
amplitude of harmonically oscillating (pure) yaw motion
at zero forward speed.

circular frequency; imaginary part of s.

certain circular frequency.

interval of time, time step, time increment.

impression of the fender.

maximum impression of the linear fender.

simplified notation for szf(t).

value of Ay at t = nAt, 1 = lAt, respectively.

interval between the successive, equally spaced,

(n = 1,3,5,...).

abscissas w , w_, and w
n—1 n

n +1




