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HIGHLIGHTS

e We quantitatively explore geopolitical consequences of the shale gas revolution.
e We use a multi-model approach to generate and use energy price scenarios.

e Simulations show that current low oil prices could be part of a hog cycle.

o The shale gas boom was an early warning for the drop in oil prices.

e Low prices due to shale gas can reduce internal stability in rentier states.
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ABSTRACT

While the shale revolution was largely a US’ affair, it affects the global energy system. In this paper, we
look at the effects of this spectacular increase in natural gas, and oil, extraction capacity can have on the
mix of primary energy sources, on energy prices, and through that on internal political stability of rentier
states. We use two exploratory simulation models to investigate the consequences of the combination of
both complexity and uncertainty in relation to the global energy system and state stability. Our simu-
lations show that shale developments could be seen as part of a long term hog-cycle, with a short term
drop in oil prices if unconventional supply substitutes demand for oil. These lower oil prices may lead to
instability in rentier states neighbouring the EU, especially when dependence on oil and gas income is
high, youth bulges are present, or buffers like sovereign wealth funds are too limited to bridge the ne-

gative economic effects of temporary low oil prices.
© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The shale revolution was thus far largely an US’ affair, as out-
side of Northern America hardly any commercial exploitation of

In recent years, a spectacular rise in natural gas extraction ca-
pacity from unconventional resources has dramatically changed
the US' energy landscape, turning the country into a natural gas
exporter. This development is often referred to as the ‘shale gas
revolution’ and was made possible by the process of hydraulic
fracturing, or ‘fracking’. As a consequence of the shale gas re-
volution, US’ gas prices have dropped significantly, giving a com-
petitive advantage to the US’ industry. The spectacular rise in ex-
traction of shale oil resources only adds to that advantage.

* Corresponding author.
E-mail addresses: w.l.auping@tudelft.nl (W.L. Auping),
e.pruyt@tudelft.nl (E. Pruyt), sijbrendejong@hcss.nl (S. de Jong),
j.h.kwakkel@tudelft.nl (J.H. Kwakkel).

http://dx.doi.org/10.1016/j.enpol.2016.08.032

shale resources took place. This can be primarily explained by
institutional differences between the US and other countries
(Kuuskraa et al., 2013; Tian et al., 2014), as significant technically
recoverable shale resources can be found outside of North America
(Kuuskraa et al., 2013). Notwithstanding the fact that the shale
revolution has not spread across the world (Melikoglu, 2014), the
large-scale extraction of shale deposits has affected the global
energy system through LNG trading, which is still a minor part of
global natural gas trade (BP, 2015), and through substitution of
other, easier transportable primary energy sources. The impact of
the shale revolution on global energy markets is the starting point
of this research.

Research regarding the impact of the shale revolution mainly
focussed on direct extraction effects like the effects of shale gas

0301-4215/© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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drilling on the environment (e.g., Baranzelli et al., 2015; Jenner and
Lamadrid, 2013; Kargbo et al., 2010; Meng and Ashby, 2014;
Olmstead et al., 2013), the public support for shale gas and frack-
ing (e.g., Boudet et al., 2014; Jaspal et al., 2014; Perry, 2012), and
the impact on the local economy (e.g., Asche et al., 2012; Kinna-
man, 2011; Lee, 2015). In some research, the economic impact was
related to energy security (e.g., Jaspal et al., 2014; Richter and Holz,
2015; Victor et al., 2014). Others studied the impact of shale gas
exploration on energy prices, mainly for oil and gas (e.g., Asche
et al,, 2012; De Silva et al., 2016). Asche et al. (2012) acknowledged
that it would be interesting to look at the interplay with coal,
another primary energy source, which we do in this paper. How-
ever, to the best of our knowledge, more indirect consequences of
the shale revolution have not been investigated.

One of these potential indirect effects is the impact of the shale
revolution on intra-state stability of major oil and gas exporting
countries, also referred to as ‘rentier states’ (Mahdavy, 1970),
through changing oil and gas prices. Price fluctuations may have
consequences for the financial-economic stability of rentier states
due to the dependence on ‘resource rents’ (World Bank, 2011) for
supporting the economy and government spending. That is, fluc-
tuations in resource prices may influence the development of the
local economies in oil and gas exporting countries. In turn, wor-
sening economic conditions are known to have an impact on po-
pulation discontent, potentially leading to intra-state instability
(Collier and Hoeffler, 2004; Ross, 2004). Similar indirect effects
may occur due to structural changes in the global energy system
induced by climate mitigation policies. However, these effects are
complex and uncertain.

Both the global energy system and the relation between re-
source income and instability are highly complex and deeply un-
certain. Feedback effects add to dynamic complexity (Sterman,
2000). An example of a feedback effect in the global energy system
is the interaction between supply and demand which results in
resource price dynamics. On a country scale, decreasing resource
prices may lead to increasing unemployment and a reduction of
purchasing power, which may cause frustration among the po-
pulation and reduce internal stability. This feedback loop is closed
if state instability in turn affects resource extraction. Both the
global system and national systems are also characterised by ‘deep
uncertainty’ (Lempert et al., 2003). Situations are deeply uncertain
if they are characterised by important presently irreducible un-
certainties related to how issues could or should be modelled,
likelihoods of inputs and outcomes, and the desirability of out-
comes. To give examples: on a global scale, the strength of the
feedback effect between prices and demand is deeply uncertain,
while on a national scale, the influence of population discontent
on a country's polity is also deeply uncertain.

Complexity and uncertainty impede mental simulation of both
the global energy system and state stability (Sterman, 1994).
Quantitative simulation may enable one to deal with these issues
though. Since the 1950s, modelling and simulation approaches
have been developed and used to support policy-makers and de-
cision-makers addressing complex issues. Since the early 1990s
(Bankes, 1993), model-based methodologies and techniques have
been developed to simulate sets of models under deep
uncertainty.

In this paper, we use simulation models to explore the indirect
consequences of the shale revolution on the global energy system
and rentier state stability. For this purpose, we apply a ‘systems-of-
systems’ (DeLaurentis and Callaway, 2004) multi-model approach
for dealing with complexity and uncertainty. We use a global en-
ergy-mix model for supply, demand, and trade of, and substitution
between six primary energy sources to generate oil and gas price
scenarios. In these scenarios, the focus lies on price scenarios that
fall outside the scope of more traditional forecasts of energy prices

using a base-case (e.g., IEA, 2012). These scenarios are subse-
quently used as input for a country-stability model, focussing on
economic discontent (i.e., ‘greed’ in Collier and Hoeffler, 2004). As
such, the price scenarios are used for stress testing rentier state
country stability, more specific those in the vicinity of the Eur-
opean Union (EU). These countries are Algeria, Azerbaijan, Ka-
zakhstan, Qatar, Russia, and Saudi Arabia.

The setup of this paper is as follows. In Section 2, we explain
the use of Exploratory Modelling and System Dynamics in this
study, the model structures of the energy-mix model and the
country-stability model, and the metrics for choosing 14 price
scenarios. Based on these scenarios, we present the results on
country stability by taking Algeria and Russia as examples in
Section 3. Finally, we discuss the results of this approach in Section
4, and draw conclusions regarding the geopolitical consequences
of the shale revolution in Section 5.

2. Methods

In this research, we use an exploratory modelling scenario
approach. First, we simulate and investigate the consequences of
the shale revolution to generate global oil and regional gas price
scenarios. Second, a subset of these price scenarios is used to
stress-test intra-stability of rentier states in the vicinity of Europe.
In this section, we introduce this model-based scenario approach
(Section 2.1), as well as the modelling and simulation method
(Section 2.2), and the two models used in this research (Section
2.3). At the end of this section we explain the research setup in
more detail (Section 2.4).

2.1. Exploratory Modelling

‘Exploratory Modelling’ is a research methodology that uses
computational experiments to analyse deeply uncertain issues
(Bankes, 1993; Bankes et al., 2013; Kwakkel and Pruyt, 2013;
Lempert et al.,, 2003). It consists of a set of the development of
plausible quantitative simulation models and associated un-
certainties, the process of exploiting the information contained in
such a set through a large number of computational experiments,
the analysis of the results of these experiments, and the testing of
promising policies for policy robustness (Bankes, 1993).

In exploratory modelling, models are used to generate a wide
variety of what-if scenarios, which is an important use case of
simulation models (Oreskes et al., 1994). These what-if scenarios
are usually generated such that they comprehensively cover pre-
sently irreducible uncertainties. Exploratory modelling, therefore,
does not focus on generating a base case, but instead on gen-
erating a bandwidth of plausible futures, including the circum-
stances (i.e., ranges of specific uncertainties) for which these occur.

2.2. System Dynamics

System Dynamics (SD) is a modelling and simulation method to
describe, model, simulate, and analyse dynamically complex issues
or systems (Forrester, 1961; Pruyt, 2013; Sterman, 2000). The SD
approach was first proposed and developed by Jay W. Forrester in
the late 1950s. SD aims to provide a holistic and systemic view of
an issue under study and its interconnections to its environment,
and simulate and analyse the resulting system dynamics over
time. More specifically, SD is a method for modelling and simu-
lating dynamically complex systems or issues characterised by
feedback and accumulation effects (Sterman, 2000).

Together, feedback and accumulation effects generate dyna-
mically complex behaviour both inside SD models, and, so it is
assumed by System Dynamicists, in real systems (Pruyt, 2015).
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Using SD models can, therefore, be useful for dealing with complex
systems characterised by important feedback and accumulation
effects. SD modelling is mostly used to model core system struc-
tures or core structures underlying issues, to simulate their re-
sulting behaviour, and to study the link between the underlying
causal structure of issues and models and the resulting behaviour.
SD models, which are mostly relatively small and manageable, can
be used for experimental or exploratory purposes too.

There are many SD models regarding energy systems. Well-
known examples are the Limits to Growth studies (Meadows et al.,
1972), studies regarding national energy transitions (Naill, 1977,
1992; Sterman, 1981), power plant construction and electricity
generation (Ford, 1999), and externalities of energy economics
(Fiddaman, 1997), but there are also more recent examples (e.g.,
Chyong Chi et al., 2009; Osorio and van Ackere, 2016). In two cases
this included the use of SD for exploratory modelling and the
design of robust policies (Eker and van Daalen, 2015; Hamarat
et al,, 2013, 2014). While Hosseini and Shakouri (2016) used oil
price scenarios as input to an SD model, to our knowledge there
are no SD studies beyond our line of research in which energy
models are used to generate scenarios related to energy price
developments.

There are also SD models regarding social unrest. For example,
Wils et al. (1998) presented a model to simulate and assess the
development of internal and external pressure related to resource
use. Further, Anderson (2011) used an SD model for looking at the
effects of counterinsurgency policy in relation to public support
and other factors. Finally, Pruyt and Kwakkel (2014) simulta-
neously used three SD models to simulate the rise of activism,
extremism, and terrorism. In none of these models, however, ex-
ternal price scenarios were used for ‘stress testing’ state stability.

2.3. Model descriptions

In this research, we use two SD models. Scenarios developed
with the first model provide input for the second model (Fig. 1).
We now discuss these models on a high level of aggregation. A
more elaborate description of an earlier version of these models
can be found in Auping et al. (2014). Both models were extensively
verified and validated by means of partial model tests, unit checks,
sessions with experts and stakeholders, and extreme value tests. In
order to assess the effects of long delays in the system, such as
developments in extraction capacity in the energy-mix model or
demographic effects in the country-stability model, we simulated
both models for the time period between 2010 and 2050.

2.3.1. The energy-mix model

The energy-mix model is subdivided in 5 sub-models, which
are interlinked (Fig. 2). We look at the demand development,
supply development, prices of the different primary energy sour-
ces, costs development of the supply, and trade between the dif-
ferent regions. We included six primary energy sources (i.e., oil,
natural gas, coal, nuclear, biofuels, and other renewables), in line
with the definitions provided by the EIA (2015). The development
of demand, supply, and prices of the six energy sources are im-
portant given the feedback effects connecting supply and demand
through prices. The extraction costs sub-model is important for
simulating the effects of depletion on extraction costs and the

Shale gas and oil
extraction capacity

development of the costs of renewables. Finally, as a greater
availability of natural gas may lead to a larger share of LNG en-
tering global markets, it is important to consider trade between
the different regions of the tradable resources, in this case gas
(LNG), oil, coal, and biofuels. Trade of the two remaining primary
energy sources (i.e., nuclear and other renewables) is thus not
considered here.

In the model, 4 different regions are defined: Northern America
(i.e., US and Canada), Europe and adjacent regions (i.e., Europe,
non-European CIS, Middle East, and North Africa), the Far East (i.e.,
China, India, Japan, and South Korea), and the rest of the world.
The first two regions are grouped bearing the availability of
overland gas pipelines in mind. The Far East, which is presently a
major user of LNG (BP, 2015), is included as a separate region given
the fact that pipeline infrastructure to other regions is very lim-
ited. The effects of political instability on energy supply are not
considered in the energy-mix model. Furthermore, policy mea-
sures aimed at changing the composition of the energy mix are
considered only as a driver for the development of renewable
energy capacity.

2.3.2. Country-stability model

The country-stability model also consists of 5 interlinked sub-
models (Fig. 3). These sub-models group variables related to the
development of resources, the economy, the population, national
institutions, and instability. In this resources sub-model, the de-
velopment of the extraction of oil and gas is a function of en-
dogenous cost developments and exogenous energy price sce-
narios generated with the energy-mix model. The economy is in-
fluenced by resource income (i.e., resource prices times resource
extraction capacities), an exogenous economic growth factor
constant over the run time, and endogenous negative economic
effects of political instability. The economic sub-model also con-
tains modules for the available workforce and work, and for pur-
chasing power. When the amount of work available is lower than
the workforce, the rest of the workforce is unemployed. In this
way, male youth unemployment can be calculated, which is a well-
known factor causing frustration and internal instability (Cincotta
et al., 2003; Urdal, 2006).

The population sub-model contains an endogenous population
development structure within which fertility and mortality are a
function of GDP per capita, and the population aging chain is sub-
divided in 5-year cohorts. Next to the population composition, we
calculate the education level of the population both for the aver-
age population and the young population. We assume that rising
education levels increase the democratic expectations of the po-
pulation, although we treat the exact relation between education
and polity expectations as deeply uncertain.

In the institutions sub-model, we take the government type
into account following the ‘Polity IV’ scoring system (Marshall
et al.,, 2014). In the Polity IV score, countries’ polities are measured
between —10 (i.e., fully autocratic) and +10 (i.e., fully democratic).
Statistical analysis shows that autocracies are five times as stable
as countries with a polity score of 0, and that democracies are 10
times as stable as countries with a polity score of 0 (i.e., partial
democracies or anocracies) (Marshall et al.,, 2014). In our model,
the government type follows the expectations of the population
relative to the average educational level when internal tension is

Energy mix model

Initial capacities other
resources

Oilandgas
price scenarios

Country stability models

Country stability
scenarios

Fig. 1. Research design for this study, containing two SD models. The country-stability model is parametrised for six different countries. Model parameterisations also

includes other uncertainties besides the inputs shown in this figure.
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Fig. 2. Sub-system diagram (Morecroft, 1982; Sterman, 2000) of the energy-mix model. Sub-models are displayed in a rounded box. Important initial conditions are shown

in italics.

Youth unemployment and
decreasing purchasing power

decreases mortality

Exogenous and fertility

economic
growth
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Productivity of the
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affects the economy

Extraction capacity
makes resource rents
possible

Oil and gas

Economic development

fuel instability
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Institutional

legitimacy

Population qecl‘eqs_es

expectations instability
may influence Instability
institutions decreases

institutional
legitimacy

Disagreeing
Population population causes Instability
instability

Instability hampers.
economic growth

Instability hampers
resource extraction

»{ Resources

prices

Fig. 3. Sub-system diagram of the country-stability model. Sub-models are displayed in a rounded box. External trends and important initial conditions are shown in italics.

low, and becomes more autocratic when tension is high. The in-
stitutions sub-model further captures government legitimacy as
function of absence of violence, and government financial reserves
and expenditure. If financial expenditure is too high, and gov-
ernment debt becomes untenable, existing food and fuel subsidies
are cut. On the other hand, if there is abundant income, sovereign
wealth funds (Sovereign Wealth Fund Institute, 2013) may be
developed, which increase the resilience of the nation by acting as
a buffer for temporarily lower resource income.

Finally, the instability sub-model contains an ageing chain to
capture the level of frustration of citizens (i.e., those who support
the government, non-activist opposition, activist opposition, and
extremist opposition) in line with other SD models on instability

and terrorism (Anderson, 2011; Pruyt and Kwakkel, 2014; Ster-
man, 2000). Origins of frustration are, in this model, economic in
nature (e.g., unemployment, especially male youth unemploy-
ment, and purchasing power). This corresponds with the ‘greed’
aspect of state instability (Collier and Hoeffler, 2004). The size of
the security forces works as balancing factor for civil frustration
and instability. The ratio between the strength of the security
forces and the extremist cohort of the population is used as proxy
for the level of political unrest.

2.4. Research setup

First, we generated 1000 runs with the energy-mix model. The
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Table 1

Data for the year 2010 for resource turn-over, government type, youth un-
employment, and the size of the sovereign wealth funds for the seven rentier states
studied. These data functioned as initial conditions in the country-stability model.

Country Oil and gas Polity Unemployment, youth  Sovereign
income (% IV male (% of male labor  wealth fund
of GDP)* score®  force ages 15-24)° (% of GDP)4

Algeria 45 2 19.1 47

Azerbaijan 63 -7 17.0 67

Kazakhstan 37 -6 4.8 48

Qatar 40 —10 11.0 90

Russia 29 4 16.9 11

Saudi Arabia 67 -10 23.6 160

¢ Author's own calculations: defined here as (resource prices [$/bbtu] x re-
source extraction capacity [bbtu/year])/GDP [$/year].

> Marshall et al. (2016).

¢ World Bank (2016).

4 Sovereign Wealth Fund Institute (2013).

model was integrated with the Runge-Kutta 4 numerical integra-
tion method with automatically adjusted step size. Sampling of the
118 uncertainties happened with Latin Hypercube (LH) sampling
(McKay et al., 1979), assuring that each run covers a different part
of the total uncertainty space. While 1000 runs may seem rather
limited given the large number of uncertainties, it proved suffi-
cient for the goal of this research, which was to generate a limited
number of sufficiently different energy price scenarios, and not to
exhaustively explore the complete behavioural space of the en-
ergy-mix model.

We selected eight scenarios representing plausible, yet ex-
treme, situations in terms of the energy mix from the 1000 runs.
Each scenario represents an internally consistent, plausible future
for how energy mix, absolute and relative regional demand shares,
and energy prices may evolve between 2010 and 2050. The se-
lection criteria for these scenarios (Table 2) were chosen to max-
imise the bandwidth of potential significant demand fluctuations,
leading to a relatively broad selection of price scenarios. To extend
this bandwidth further, we also included the 3 scenarios with the
most volatile oil price dynamics.

Second, 100 separate cases created with the country-stability
model with the same integration method as used for the energy-
mix model. These cases were parametrised using LH sampling for
60 general and 13 country specific uncertainties. A selection of
important country specific uncertainties can be found in Table 1.
Again, the number of runs may seem limited given the number of
uncertainties. It proved sufficient, however, for the goal of this part
of the research, which was to look at the impact of different

Table 2

energy price scenarios across potential development paths of
rentier states. Finally, for each of the 100 cases, we tested the ef-
fects of the oil and gas prices represented by the eight scenarios,
together with two dynamic price scenarios representing a mod-
erately decreasing and increasing oil and gas price, and a reference
scenario representing a constant oil and gas price. Therefore, in
total 1100 runs were performed per country.

Mathematically, this research setup can be described with E as
the ensemble of cases generated with energy-mix model f, and
with F. as the ensemble of cases generated with country-stability
model g for country c:

Eypy = [ﬁ,m(;‘l' £) ... f1000,1<1>1(;‘1000- t)] (1)

gl,sl,c,I(PI(j}P t) glOO,sl,c,I(PI(j}wo’ t)
Foxpr = : : ,

81, 1,c,l<131(371' t) E100,5; 1,c,KPI(y160 t) %)

where the number of elements in Egp is 1000, fp (¥t) is the
function describing outcome KPI in model parameterisation X; for
model run index i, and te[ 2010,2050] with time step At = 0.25.
For the country-stability model, the number of elements in F, yp; is
100 runs for 11 different oil and gas price scenarios (s;,...,S;7)- The
model parameterisations are LH samples of the uncertainty space
Us of the energy-mix model, and uncertainty space U, of the
country-stability model:

LH]OOO( Uf) = [551 . ;‘1000]- 3)

LH]OO( Ug) = [371 }7100]‘ 4
The volatility of a run v; is determined here as part of all runs’

volatilities V:

V=[v Viooo | = [ Lymcn L1000 MCTigoo | (5)

where the length L; and the mean crossing rate mcr; of a curve

describing the oil price behaviour are:

2050-at
Lf = i,Oilprice(Xi‘ t+At) _f;,Oilpn'ce(Xi‘ t)"
£=2010 (6

Metrics for selecting oil and gas price scenarios from the energy-mix model runs. Only energy-mix model generated

scenarios are numbered.

Scenario number Scenario metric

Definition

Reference scenario
Moderate decreasing price
Moderate increasing price
Highest coal share

Highest gas share

Highest oil share
Highest biofuels share

Volatile scenario

N O U b W N =

Volatile scenario

-]

Volatile scenario

Prices for run where: f(x;,2050)=max
Highest other renewables share Prices for run where: f(x;2050)=max
Prices for run where: f(x;,2050)=max

Prices for run where: f(x;,2050)=max

Constant oil and gas prices

Prices are 30% lower in 2050 compared to 2010
Prices are 30% higher in 2050 compared to 2010
Prices for run where: f(x;,2050)=max( Eyelqtive coal share)

Erelative gas share)
Erelative other renewables share)

Erelative oil share)

_ A A=

Erelative biofuels share)

Prices for run where: f(x;t)=max(V)
Prices for run where: f(x,-,t):max( V/{ \/36})
Vs

Prices for run where: f(x,-,t):max( V/{ Vsgr 57})
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1 if(f;',oilprice()? ) fOllP”Ce )
mer= f ilprice X t
% /\[ Olpdt< | ;éo]:

0 else @)

with f o p;ice(t) as the mean value of a curve. For every scenario,
we used the oil and gas prices of the corresponding run index.
The impact of oil and gas prices on country stability is largely a
one way process. However, as instability impacts the development
of GDP and resource extraction capacity, this effect is reinforcing.
Some other, minor feedback effects exist between stability and
economy. Examples are the effects of population size on the fer-
tility and mortality levels, which may cause a deadlock situation
with high population growth and too little economic develop-
ment. Another example is the effect of immigration on the work-
force, and the effect of the available workforce on immigration. A
last example occurs when the regime is susceptible to the dis-
crepancy between on the one hand the democratic expectations of
the population, and on the other hand the present polity. However,
instability may again counteract this development if the govern-
ment reacts in a more autocratic way to a crisis in the country.
Resource prices may influence countries’ economies in many,
potentially counteracting, ways. For example, price increases have

(a)

45000 ~

37500 -

30000 A

Oil price ($/bbtu)

a positive effect on government finances, and create more em-
ployment, but they have an adverse effect on purchasing power of
the population. It depends on the specific conditions in a country
whether the positive or the negative effects will be dominant.

3. Results

In this section, we discuss the results generated with both the
models. In Section 3.1, we analyse the oil price dynamics gener-
ated with the energy-mix models, followed by the selection of the
eight oil and gas price scenarios. In Section 3.2, we analyse the
effects of these scenarios on rentier state stability as simulated
with the country-stability model.

3.1. Effects on global energy markets

The oil price dynamics (Fig. 4) generated with the energy-mix
model show an initial dip for all runs. Analysis of this dip reveals a
clear connection to the overcapacity due to the US’ shale revolu-
tion. While the depth of the dip differs greatly between runs, it
shows that, based on the assumptions underpinning the model, it
is impossible to not have a temporary decrease in oil prices. The
more direct causes of the dip lie in substitution effects. The
abundant supply of natural gas finds its way into the global energy
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Fig. 4. 1000 runs for the energy-mix model (a), the 500 runs with most oscillatory volatile behaviour (b), and the 500 runs with least oscillatory volatile behaviour (c).
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market by substituting other primary energy sources. For those
energy sources that allow for accumulation of over-production,
such as in the case of oil, there can be a more significant long-term
price effect than with natural gas alone.

Besides the initial dip, however, the dynamics show a wide
variety of behaviours. Roughly half the runs primarily show os-
cillatory volatile behaviour. Oscillatory volatile behaviour is mea-
sured here by the number of times each time series crosses its own
mean value combined with the length of the line. Using this
measure, runs that are primarily characterised by oscillatory vo-
latile behaviour and runs with long-term increasing oil prices are
classified differently, even if the runs with long-term increasing oil
prices are characterised by oscillatory behaviours too. Runs that
are primarily characterised by this behaviour represent those si-
tuations in which the oil price periodically oscillates between re-
latively low oil prices, roughly half or even less of the 2010 price
level and high levels like the 2010 level.

The volatile runs resemble to ‘hog cycles’ (Hanau, 1928). The
periods between the ups and downs are thus related to the delay
time for new extraction capacity development, which is found to
be generally between eight and fifteen years (MinesQC, 2016). This
is consistent with the observed periodicity in the volatile runs.
Similar dynamics are not found for the gas price, as massive ac-
cumulation of overproduction of gas is assumed to be too ex-
pensive. Consequentially, gas prices show far less long-term vo-
latility. Such dynamics are found for many openly traded re-
sources, but it could be argued that due to OPEC's market power in
last decades, hog cycles were less of a problem in the oil market.

The runs with the least oscillatory volatile behaviour mostly
show oil prices staying at a price level similar to the 2010 level or
rising prices. The rising prices are caused mainly by a combination
of continuously rising demand and rising resource extraction
costs. Finally, for a last set of runs, the shale revolution leads to
permanently lower price levels. This behaviour occurs when de-
coupling - of energy demand and the size of the economy — out-
grows economic growth.

We selected eight runs as price scenarios for the second step of
the analysis by using the metrics listed in Table 2. The result of this
step for both the oil and the gas price is visible in Fig. 5. By
choosing both extreme energy mix scenarios and volatile scenar-
ios, we covered the dynamic behaviour space of all runs relatively
well. Finally, the figure shows that the oil price is more volatile
than the gas price in all scenarios.
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3.2. Effects on rentier states

Fig. 6 shows for how many of the 100 cases per country the
state stability improved for all time steps (i.e., desirable) or on
average (i.e., mostly desirable), or deteriorated for all time steps
(i.e., undesirable) or on average (i.e., mostly undesirable) com-
pared to a constant oil and gas price.

All six countries in the analysis become more stable when oil
prices increase over time. The importance of the oil price can be
explained by the fact that only Qatar receives an equal amount of
income from gas extraction, while having the opportunity to ex-
pand that share of resource income. All other countries earn
considerably more resource income from oil. All countries ex-
perience more internal instability when oil prices decrease over
time.

Especially Algeria and Russia are vulnerable to the effects of the
shale revolution, which causes in any case at least a periodic
downturn in oil prices. In both countries, the partial democracy is
less stable than the more autocratic regimes of Azerbaijan, Ka-
zakhstan, Qatar, and Saudi Arabia. Further, the causes for vulner-
ability of Russia and Algeria are quite different. In the case of Al-
geria, it is especially male youth unemployment, combined with a
very young population, which makes the country vulnerable.
Russia, on the other hand, has a more aged population, but has —
compared to the size of the economy - a relatively modest so-
vereign wealth fund. Russia thus lacks the options to survive one
or more prolonged periods of low oil prices.

Although, the other countries analysed in this study are less
vulnerable due to either limited youth unemployment (e.g., Ka-
zakhstan and Qatar), or the more significant size of their sovereign
wealth fund (e.g., Azerbaijan, Qatar, and Saudi Arabia), they are
certainly not immune to the effects of a prolonged downturn in oil
prices. The austerity measures in Saudi Arabia (Kerr, 2015), the
downgrade of Azerbaijan's credit rating (Agayev, 2016), and the
massive currency devaluation in Kazakhstan (Farchy, 2015) are
illustrative of the difficulties these countries already experience.
However, their overall resilience may prove to be higher than that
of Algeria and Russia.

4. Discussion
This research was originally performed in 2013. Earlier versions

of the work reported here (De Jong et al., 2014) were presented at
the Dutch Ministry of Foreign affairs in the autumn of 2013, and at
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Fig. 5. Selected oil (a) and gas (b) price scenarios.
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Fig. 6. Effects of the price scenarios on state stability of Algeria (a) and Russia (b).

the NATO headquarters in the spring of 2014. The attendees of
these presentations found the idea of potentially decreasing oil
prices hard to accept, and rather believed that they would con-
tinue to rise. Recent price developments, however, corroborate the
results we presented in this paper. The belief that oil prices would
continue to rise are consistent with the ‘fixed-stock’ paradigm
regarding resource availability, which is in contrast to the ‘op-
portunity costs’ paradigm underlying our energy-mix model (Til-
ton, 1996). As opposing paradigms can be seen as a form of deep
uncertainty, it fits our line of research to not oppose ideas like
these, but rather to include alternative perspectives and look at
our findings as plausible futures, which may inform the develop-
ment of more robust policies.

The scenarios we generated only provide a limited view on the
future of energy prices, as the simulation models used in this re-
search are necessarily simplifications of reality. One example of
such a limitation is the fact that we disregarded the existence of
strategic reserves in our model. When these are taken into ac-
count, the price dynamics, especially the initial shale induced dip,
may be delayed over time. This could explain why the real de-
crease in oil prices only happened from the second half of 2014 on,
instead of immediately as in our simulation results.

A further limitation of our research can be found in the fact that
we did only very rudimentarily take climate and energy policies
into account. Exploring our results, we found that decoupling of
economic growth and energy demand has, ceteris paribus, a pro-
found negative effect on energy price levels. Again, especially oil

prices are vulnerable to these developments. As decoupling due to
increased energy efficiency is arguably at the core of climate mi-
tigation policies, it is to be expected that these policies will, similar
to the shale revolution, have a profound effect on long-term state
stability. As emission targets may also provide a structural change
in the global energy system, this may be a far longer-lasting effect
than the surge in previously unconventional energy sources.
Therefore, countries less vulnerable to periodically lower oil prices
due to well-developed sovereign wealth funds, but highly de-
pendent on income from oil and gas, may be especially vulnerable
to climate mitigation policy developments. Saudi Arabia is a good
example of such a rentier state. These countries should urgently
start up a transition process of economic reconversion. Further
research with a similar research methodology could increase
knowledge about secondary effects similar to those of climate and
energy policies.

The country-stability model is, just like the global energy-mix
model, a simplification of reality. While much research exists that
argues that economic factors as discussed in this paper are re-
levant and important for understanding the onset of internal in-
stability, there are other factors, not considered here, which may
either mitigate or reinforce this effect. An example of a mitigation
factor may be nationalism, potentially induced by interstate war.
An example of reinforcing factors may be grievance related issues
like ethnic diversity, combined with a government that only re-
presents a part of the ethnic groups in a country.
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5. Conclusions and policy implications

In this paper we investigated potential indirect effect of the US’
shale revolution on state stability of rentier states. To this purpose,
we built and used two SD simulation models, one for the global
energy mix consisting of six primary energy sources, and one to
assess the impact of oil and gas prices on intra-state stability. The
SD models were used to explore the consequences of uncertainties
combined with the complexity and non-linear behaviour char-
acterising both energy markets and state stability.

We found that the shale revolution has a periodic negative
effect on oil prices in any simulated case. These lower prices can be
part of a hog cycle in the energy market, where periods with re-
latively low oil prices alternate with periods with relatively high
oil prices. An example of such a high price period is the pre-2014
period, while current price levels are an example of a period with
low prices. If indeed the oil price will behave in this way, then it is
to be expected that the price level will stabilise only when supply
and demand balance. After this moment, the price may remain
rather stable for a number of years, until the effect of under-
development of new extraction capacity generates under-capacity
in supply. At that moment, the accumulation of oil on the market
will decrease and lead to increasing price levels. The long-term gas
price will then behave, if the market remains structured as it is
currently, in a less volatile way.

As the surge in shale extraction capacity depended on the
period with high prices, and the high price levels were in-
compatible with the amount of new capacity that became avail-
able, the shale revolution can be explained as an early warning
indicator and partial cause of the 2014-2015 drop in energy prices.
This is in itself an indirect effect, as the volatility of oil prices can
be explained by a systematic difference between oil trade and gas
trade: a surplus of oil is accumulated, while a surplus of natural
gas supply is mostly flared. The urge for natural gas suppliers to
partly substitute oil demand for their surplus is thus very high.

Low oil prices caused by the shale revolution can have a pro-
found impact on state stability. This effect is caused by the nega-
tive economic effects of reduced price levels, which in turn affect
male youth unemployment levels and purchasing power. These
are underlying causes for population discontent and political in-
stability. Buffers like sovereign wealth funds and immigration
workers increase the resilience of countries to these
developments.

We found that between the six countries investigated in our
research, especially Russia and Algeria are vulnerable to lower oil
price levels due to the shale gas boom. The partial democratic
(‘anocratic’) polity of these countries increases their vulnerability.
Not all causes are shared by these countries, however, as for Al-
geria the high male youth unemployment and the youth bulge are
detrimental, while for Russia the limited size of the sovereign
wealth funds as part of the GDP is problematic to politically sur-
vive periodic low oil prices. The other countries were found to be
less vulnerable to the lower price effects, mostly as their buffer
capacity is larger and their polity more stable (Azerbaijan, Ka-
zakhstan, Qatar, and Saudi Arabia).

The policy implications of these conclusions pertain mostly to
the security and international relations domains. We believe,
however, that indirect consequences of energy policies should be
taken into account in the design of these energy policies. The in-
creased turmoil around Europe's borders is already a difficult
policy problem. While this has no direct link to energy policies in
itself, the plausibility of energy price related unrest does mean
that investment in measures for dealing with these circumstances,
both militarily and non-militarily, should be taken sooner rather
than later.
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