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Abstract
Assessing speech intelligibility for individuals with
dysarthria is critical for understanding the severity
of motor speech disorders and evaluating speech
therapy interventions. Traditional subjective as-
sessments, while effective, are resource-intensive
and prone to bias, which highlights the need for
reliable objective measures. This study investi-
gates the applicability of MIKNN (Mutual Infor-
mation with K-Nearest Neighbors) as an objective
speech intelligibility measure for dysarthric speech,
by comparing objective intelligibility scores with
subjective ratings. Unlike its proven effective-
ness with neurotypical speech, the performance
of objective measures on atypical speech, such
as dysarthria, remains under-explored. The study
compares MIKNN with state-of-the-art measures,
including P-STOI and P-ESTOI, using the UA-
Speech dataset. Key challenges addressed in-
clude adapting MIKNN to handle the temporal and
spectral variability inherent in dysarthric speech.
The results demonstrate that while MIKNN offers
promising correlations with subjective scores, it is
outperformed by P-STOI and P-ESTOI.
Index Terms: MIKNN, dysarthria, dynamic time
warping, P-STOI, P-ESTOI

1 INTRODUCTION
Dysarthria is a motor speech disorder that is caused by
damage to the central or peripheral nervous system [1]. It
commonly occurs in individuals with neurological conditions
such as Cerebral Palsy (CP), Brain injury or Amyotrophic lat-
eral sclerosis (ALS). This results in affecting the respiration,
phonation, resonance, articulation and prosody [1] during
speech production, leading to articulation deficiencies, vowel
distortions, reduced loudness variation, hypernasality or
syllabification [2], [3], ultimately reducing the speech intel-
ligibility. The disorder occurs in various forms, including
spastic dysarthria (characterized by poor control of volume
of speech and slow rate of speech), athetoid dysarthria
(characterized by involuntary, irregular movements), and
mixed dysarthria (a combination of features from multiple
types) [4]. These variations in speech patterns introduce con-
siderable complexity when trying to automatically evaluate
its intelligibility .

Identifying speech disorders like dysarthria is crucial in
clinical practice because these conditions often are early in-
dicators of neurodegenerative diseases [5]. Tracking speech
characteristics like intelligibility and severity over time is vi-
tal for monitoring progression of the disease and evaluating
the impact of speech therapy [6]. The standard approach to
measure the intelligibility of dysarthric speech is based on
subjective listening tests, in which human evaluators assess
the speech to determine how well it is understood. How-
ever, this method is resource intensive and time consuming
and susceptible to subjective biases, such as the availability

of contextual cues [7]. These evaluations can be challeng-
ing, particularly for mild impairments, as distinguishing sub-
tle clinical features can be difficult even for experts. Further-
more, there is often overlap in the clinical characteristics of
various speech disorders, which complicates accurate diag-
nosis. Non-expert clinicians may find these assessments par-
ticularly challenging, and even among experts, the reliability
can be low [8]. Therefore, the need for automatic assessment
for dysarthric speech intelligibility arose.

In recent years, the use of machine learning and deep
learning in research on dysarthria has grown significantly,
with particular emphasis on automatic pathological speech
detection. Classic machine learning approaches rely on
machine learning models like SVMs, random forests, and
Gaussian mixture models, using features such as spectral,
cepstral, and articulatory characteristics. While these ap-
proaches demonstrated promising results on small datasets,
their generalization to larger, diverse populations was limited
due to biases in demographics, recording conditions, and
language [9]. Deep learning models, including CNNs and
LSTMs, have significantly improved performance by lever-
aging advanced feature representations. Multi-task learning
and self-supervised models like wav2vec 2.0 have shown
state-of-the-art results, outperforming classical methods.
However, challenges such as language dependency and
lack of clinical interpretability remain barriers to universal
application [3], [10].
Building on this progress in detecting pathological speech,
the focus has also been on assessing intelligibility —a critical
factor for understanding the severity and progression of
speech impairments. Methods for automatically assessing
the intelligibility of pathological speech are generally divided
into two main categories: blind and non-blind approaches.
Blind approaches aim to evaluate the intelligibility of
pathological speech without typical speech data as reference.
These methods often focus on analyzing acoustic features
such as jitter, shimmer, fundamental frequency, and formant
frequencies, which are thought to have a strong connection
to speech intelligibility. Non-blind approaches use the
intelligible speech data from typical speakers to assess
the intelligibility of pathological speech. These methods
commonly utilize features derived from automatic speech
recognition (ASR) systems trained on extensive datasets of
typical speech. Despite the potential of this technology, its
integration into standard clinical practice remains limited,
and even ‘methodologically rigorous‘ approaches often yield
disappointing results [3].

While blind and non-blind assessment methods focus on
developing new measures, the adaptation of existing intrusive
objective speech intelligibility measures (OIMs) from the
speech enhancement domain remains largely underexplored.
Similar to non-blind approaches, the intrusive OIMs require
typical speech data for reference. Recent research [11]
demonstrated promising results in assessing dysarthric
speech using the Short-Time Objective Intelligibility (STOI)
measure, a well-established intrusive OIM. This success has
inspired further exploration into adapting any other intrusive
OIM for evaluating dysarthric speech in this paper.



Notable examples of intrusive OIMs include the Speech
Intelligibility Index (SII), which evaluates the signal-to-noise
ratio across frequency bands, and the Speech Transmission
Index (STI), which measures modulation transfer functions
of the speech signal. However, many OIMs have signifi-
cant limitations. Such as their reliance on long-term statis-
tics, which fail to capture the fine-grained temporal distor-
tions often present in dysarthric speech and their inability to
account for the non-linear dependencies commonly observed
in pathological speech [12]. STOI and ESTOI addressed this
limitation by this limitation by incorporating short-term tem-
poral resolution [13]. Among the existing measures, MIKNN
(Mutual Information with K-Nearest Neighbors) stands out
as theoretically closest to STOI, offering a high-performing
alternative to assess dysarthric speech.

MIKNN is built based on information theory [14] and uses
the same speech representation as STOI but takes a differ-
ent approach to quantify distortion. Instead of relying on the
short-time correlation, MIKNN calculates the mutual infor-
mation between the clean and distorted temporal envelopes
using a non-parametric k-nearest neighbor estimator. This
shift allows MIKNN to capture both linear and non-linear de-
pendencies between signals, addressing a key limitation of
correlation-based methods. The development of MIKNN was
supported by the TaalPOST and KjemsITFS datasets, which
were also used during the development of STOI [13]. These
datasets are widely regarded as benchmarks for evaluating
OIMs. Their inclusion of diverse range of distortions, rang-
ing from stationary and fluctuating noise to reverberant condi-
tions, ensures robust evaluation across varied real-world sce-
narios. The shared use of these datasets highlights key align-
ments between MIKNN and STOI. Both metrics were devel-
oped and validated on identical data sources, enabling a di-
rect comparison of their performance. Additionally, the mu-
tual reliance on temporal envelope representations reinforces
the methodological similarity, while MIKNN’s information-
theoretic framework offers a more flexible and theoretically
grounded approach to evaluating intelligibility.

This exploration led to the formulation of the research
question: Investigating the Performance of MIKNN for
Objective Speech Intelligibility Assessment of Dysarthric
Speech. By applying MIKNN, this research aims to evalu-
ate its capability to handle dysarthric speech by comparing
its objective intelligibility scores with subjective scores ob-
tained from listening tests. Correlation analysis is conducted
to determine the relationship between MIKNN’s predictions
and subjective intelligibility scores. Finally, MIKNN’s per-
formance is compared to state-of-the-art measures, such as
STOI and ESTOI, to assess its relative effectiveness in the
pathological speech domain.
The remainder of this paper is organized as follows. Section
2 provides a detailed overview of the related work in OIMS
and pathological speech, highlighting key methodologies and
state-of-the-art measures that will be used for the compara-
tive analysis of MIKNN. Section 3 outlines the overview of
MIKNN, detailing how it uses information theory and knn
method. Section 4 explains the methodology used in this
study, including the personal contributions to the methodol-

ogy, the preprocessing steps for the data and the intelligibil-
ity assessment using MIKNN. Section 4 describes the exper-
imental setup and results, including the dataset used, evalu-
ation metrics, mapping function employed, and presents the
results and comparative analysis, evaluating MIKNN’s per-
formance against state-of-the-art measures like STOI and ES-
TOI. Section 6 provides a discussion of the findings, explor-
ing their implications, limitations, and potential areas for im-
provement. Finally, Section 7 concludes the paper by sum-
marizing the key contributions and outcomes of this study.

2 RELATED WORKS
The study in [11] is the primary work evaluating the perfor-
mance of a standard OIM for pathological speech intelligibil-
ity assessment. It proposes a novel approach that uses STOI
and ESTOI measures, adapted for pathological speech as P-
STOI and P-ESTOI. Their method addresses the limitations
of traditional intelligibility measures by employing dynamic
time warping (DTW) to align pathological speech signals
with reference representations. The authors also proposed
the new approach of constructing reference representations
from ‘multiple‘ healthy speakers. These reference represen-
tations are generated on an utterance-specific basis, using
DTW-based clustering and averaging across healthy speaker
templates in the one-third octave band domain, ensuring that
the reference signal captures the key characteristics of intel-
ligible speech. P-STOI quantifies temporal distortions, while
P-ESTOI incorporates spectral correlations, providing a com-
prehensive analysis of intelligibility.

Experimental evaluation across English (CP) and French
(ALS) datasets in [11] demonstrated that P-STOI and P-
ESTOI high Pearson correlation coefficients (as high as 0.95)
with subjective intelligibility scores, outperforming several
state-of-the-art feature-based approaches that were intro-
duced in [15]. The work in [11] represents a significant ad-
vancement in automatic pathological speech intelligibility as-
sessment by providing a robust framework for evaluating in-
telligibility in pathological contexts. The proposed method-
ology aligns closely with the research focus of this paper, on
enhancing the generalization of objective intelligibility met-
rics to atypical speech populations.

Other existing state-of-the-art objective intelligibility mea-
sures were proposed in [15]:

• Linear Prediction Residual Kurtosis(KLP ): evaluates
the shape of the residual signal obtained from linear pre-
diction (LP) analysis by calculating its kurtosis. Lower
kurtosis values suggest irregular, noise-like excitation
patterns, which are often linked to severe speech disor-
ders, while higher values are typical of normal speech.

• Standard deviation of the zeroth-order delta coefficient
(σ∆): captures variations in short-term speech dynamics
by analyzing the standard deviation of delta cepstral co-
efficients, which represent changes in spectral features
over time. It provides insights into how smoothly en-
ergy and spectral features change within a speech signal,
which can be disrupted in dysarthric speech.

• Voicing percentage (%V ): calculates the proportion of
voiced speech segments compared to the total utterance



duration. It reflects prosodic characteristics, as changes
in voicing are a key feature of intelligibility in dysarthric
speech.

• Fundamental frequency range (∆f0 ): assesses the range
of fundamental frequency (f0) variations, which are es-
sential for prosody and naturalness in speech. Reduced
pitch range or monotonic pitch patterns are common in
individuals with dysarthria

• Low-to-high modulation energy ratio (LHMR): ana-
lyzes the modulation spectrum of the speech signal by
comparing energy in low-frequency bands (below 4 Hz)
to that in higher-frequency bands. It captures rhythmic
aspects of speech, with deviations from typical modula-
tion patterns indicating potential intelligibility issues.

The P-STOI study [11] conducted a comparative analysis
of P-STOI and P-ESTOI to performances KLP , σ∆, %V ,
∆f0 , and LHMR from [15]. In this study, we will add
MIKNN to the comparative analysis.

3 OVERVIEW OF MIKNN
The MIKNN (Mutual Information with K-Nearest Neigh-
bours) is a speech intelligibility measure based on mutual in-
formation(MI). It was proposed in [14], where the prediction
of speech intelligibility based on information theory was in-
vestigated. MI is an information-theoretic measure that quan-
tifies the statistical dependency between two random vari-
ables, extending beyond linear relationships typically cap-
tured by correlation or signal-to-noise ratio (SNR). In the
context of speech intelligibility, MIKNN evaluates the de-
pendency between the temporal envelopes of clean and pro-
cessed speech in specific subband domains, making it partic-
ularly suitable for assessing nonlinear distortions. The KNN
method for MI estimation was formalized in [14], using prop-
erties of k-nearest-neighbor distances to estimate joint and
marginal entropy distributions.
The choice of the k parameter (defining the neighborhood
size) significantly impacts the accuracy of the MI estimation.
A balance between sampling errors and systematic estimation
error is taken into account for choosing k, to make the error
as small as possible.
The MI between two continuous random variables X and Y
is calculated as:

I(X,Y ) =

∫
X

∫
Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
dx dy (1)

Here, p(x,y) represents the joint probability density func-
tion of X and Y, while p(x) and p(y) are their marginal densi-
ties.
Input speech signals (clean and processed) are resampled to a
uniform sampling rate, typically 10 kHz, to capture a relevant
frequency range for intelligibility. The signals are divided
into overlapping frames, each windowed with a Hann func-
tion and zero-padded to ensure a consistent Fourier Trans-
form length. Discrete Fourier Transform (DFT) is done on
each frame and the DFT bins are grouped into one-third oc-
tave bands. These bands represent the temporal envelopes of
the clean and processed speech signals, denoted by X (clean)

and Y (degraded).
The intelligibility score of each one-third octave band is mea-
sured by means of MI.

dj = Î(Φxj
; Φyj

), (2)

where dj is the intermediate intelligibility measure of the jth
octave band, Î(.) is the estimated MI calculated using (1) and
Φx and Φy are the vectors of temporal envelopes of the clean
and processed signals. After calculating dj for all bands using
(2), the final intelligibility score (draw) is obtained by aver-
aging the MI values across all bands.
The unit of draw is nats. A normalized intelligibility score
(%) is computed by dividing the intelligibility score between
the test signal and the reference signal with the intelligibility
score obtained between the signal and itself. The implemen-
tation of MIKNN algorithm used in this paper was obtained
from the website of the developer mentioned in [14].

4 METHODOLOGY
This study adopts an extended approach to assessing patho-
logical speech intelligibility, heavily inspired by the study in
[11] which was also discussed in section 2 of this paper. The
primary objective of following a methodology similar to that
in [11] is to enable a fair and consistent comparative anal-
ysis of the performance of MIKNN against the established
measures (P-STOI and P-ESTOI). This section contains the
contributions made to this research method, and how the in-
telligibility assessment using MIKNN was carried out.

4.1 Contributions to the Methodology
Several key contributions were made to adapt the MIKNN
algorithm for pathological speech intelligibility assessment.
While the original MIKNN algorithm focuses on estimating
MI using a k-nearest neighbor (KNN) approach, this work
specifically utilizes the KNN-based MI estimation as its core
and introduces the following advancements:

1. Reorganization of algorithmic steps for better alignment
with P-STOI: Based on the recognition of similarities
in data representation between MIKNN and P-STOI ,
the MIKNN framework was adapted to align its data
processing approach with that of P-STOI. This ensures
compatibility with P-STOI’s efficient handling of patho-
logical speech data while retaining MIKNN’s mutual
information-based foundation.

2. Integration of dynamic time warping (DTW): To account
for temporal variability in pathological speech, DTW
was incorporated into the adapted MIKNN framework.
DTW dynamically aligns the time frames of the refer-
ence and test signals, enhancing the algorithm’s ability
to address temporal mismatches before MI estimation.

3. Simplification of the framework: Elements of the origi-
nal MIKNN framework that were not directly relevant to
the goals of this study were excluded. The ‘silent frame
removal‘ was omitted as it can significantly reduce the
duration of already short signals, potentially leaving in-
sufficient data for meaningful analysis. Silent frames,
characterized by minimal amplitude or energy, naturally



contribute less to DTW’s distance metric, thereby min-
imizing their impact. This inherent handling of silent
frames by DTW makes explicit removal redundant.

This restructuring was implemented to enhance the
MIKNN’s suitability for assessing speech intelligibility in
this specific context, laying the foundation for preprocessing
and reference signal construction, as described in subsequent
sections.

4.2 Data preprocessing
To assess pathological speech intelligibility, the input data un-
derwent a series of preprocessing steps to prepare the repre-
sentations for further analysis. These steps include extract-
ing the time-frequency (TF) representation, mapping it to a
1/3 octave band scale, and applying DTW for temporal align-
ment.

The speech signals were first converted into a TF repre-
sentation using a short-time Fourier transform (STFT). This
process involves segmenting the audio signal into overlap-
ping time windows and computing the Fourier transform for
each segment. The resulting TF representation captures the
spectral energy distribution across time, with each frame rep-
resenting a snapshot of the frequency content over a short in-
terval.

To achieve a meaningful acoustic representation, the TF
representation was mapped onto a 1/3 octave band scale. This
mapping compresses the frequency spectrum into bands that
approximate the human auditory system’s sensitivity to sound
frequencies. Specifically, the energy in each band was com-
puted by summing the squared magnitudes of the TF bins
corresponding to that band. This transformation reduces di-
mensionality and also make it well-suited for intelligibility
analysis.

DTW was employed to align the 1/3 octave band represen-
tations of speech signals from different speakers. DTW min-
imizes the distance between two sequences by non-linearly
aligning their frames, allowing for differences in speaking
rates and durations. A simple Euclidean distance metric was
used as the local cost function for alignment. This step en-
sured that the pathological speech signals were temporally
aligned with the reference signals, enabling frame-by-frame
comparisons for intelligibility evaluation.

4.3 Reference Signal Construction
Since MIKNN requires comparison between dysarthric
speech and a clean reference, we construct an utterance-
dependent reference representation: For each utterance be-
ing evaluated, a healthy speaker is chosen at random from
the pool of available 13 healthy speakers in the dataset. The
one-third octave band representation of the selected healthy
speaker ( lets denote it with X) is aligned to the represen-
tations of all other healthy speakers using DTW. This pro-
cess ensures that frames from different speakers are mapped
to corresponding points in time, even if their speaking rates
differ. For every frame in X, we extract all frames that DTW
maps to it from the representations of the other speakers. The
collected frames for each point in X are averaged to create a
single reference frame that represents the corresponding seg-
ment. The complete reference template for the utterance is

formed by concatenating all the averaged reference frames.
This ensures that the reference template has the same length
as the initial selected speaker’s representation X. In this way,
a reference template was created for each word (utterance)
provided in the dataset. By including all healthy speakers,
the reference captures a broader range of speech patterns,
accounting for natural variations in pronunciation, speaking
rate, and acoustic characteristics. This ensures that the ref-
erence template is not biased toward the any single healthy
speaker, making it more robust and representative of general
”healthy” speech.

4.4 Intelligibility assessment
1. Compute the time-frequency representation of the sig-

nals.

2. Apply 1/3 octave band decomposition to break the
speech signals into 15 frequency bands. This represen-
tation captures the speech signal in frequency bands that
align with human auditory perception.

3. Use DTW to align the one-third octave band repre-
sentation of the test utterance with the reference tem-
plate. Use Euclidean distances as the local scoring met-
ric during alignment to match corresponding frames ef-
fectively.

4. Compute the normalized intelligibility score using the
k-nearest neighbour method proposed in the MIKNN al-
gorithm for the estimation of MI between the aligned
dysarthric speech signal and the aligned reference tem-
plate.

5. The objective intelligibility score (d) for each subject is
considered as the mean of the scores computed in step 3
of all utterances.

5 EXPERIMENTAL SETUP AND RESULTS
5.1 Database
For this research, the publicly available ‘Dysarthric Speech
Database for Universal Access Research (UA-Speech)‘ made
by University of Illinois [16] was used. The speech data was
recorded using an 8-channel microphone array, and sampled
at 16kHz. For the objective intelligibility assessment, the
recordings of the 5th channel were used. This choice was
made to maintain consistency with the P-STOI experiments
in [11]. The normalized version of the speech data was uti-
lized, where the files were scaled to fully utilize the dynamic
range, ensuring consistent amplitude levels and improving the
quality of intelligibility evaluations.

Each participant read 765 utterances in total, with 455
distinct words, including three repetitions of 155 words for
training and testing, and 300 uncommon words to enhance
phonetic diversity. Subjective listening tests were performed
to assess the speech intelligibility and obtain score for each
pathological speaker. Based on the mean subjective intelligi-
bility scores, each speaker was then classified into one of four
intelligibility categories: very low (0– 25%), low (26–50%),
mid (51–75%) and high (76–100%). Recordings from 13 age-
matched healthy speakers were provided in the database, and



are considered for clean reference speech signals in the ex-
periments in this paper . Ten spastic dysarthric speakers (7
males, 3 females) are the subjects; Table 1 shows their sub-
jective intelligibility scores.

Table 1: Demographics of the ten spastic dysarthric speakers

5.2 Value of k-nearest parameter
The k-value used in these experiments was set to 10, which is
the minimum recommended value by the original authors of
the MIKNN algorithm. Using k = 10 ensures a balance be-
tween statistical reliability and computational efficiency. It is
important to note that selecting a larger k-value is not advis-
able in this context due to the short length of the utterances
in the dataset. Choosing larger k could reduce the sensitiv-
ity of the mutual information estimation, especially when the
data size is limited. This makes k = 10 an optimal choice for
these experiments.

5.3 Mapping
The evaluation of intelligibility scores in this study is
grounded in comparing the normalized objective score (d)
that is produced from Section 4, with the subjective scores.
It is important to note that d quantifies the intelligibility of
speech in an objective manner, representing the percentage
of information retained in the signal. In contrast, subjective
measures, such as the word correct score (WCS), capture hu-
man perception and understanding of speech. This distinction
highlights the need for additional processing to align objec-
tive metrics with subjective evaluations. In [14], it is explic-
itly mentioned that d is not directly equivalent to the WCS
and suggests use of a mapping function.

Accordingly, a logistic mapping function is used, consis-
tent with prior literature, [17] and [18]. This approach has
also been explicitly used with MIKNN intelligibility scores
in [12]. The mapping function, expressed as:

f(d) =
100

1 + ea(d−b)
(3)

serves as a tool to quantify the strength of the relationship
between the d and the subjective intelligibility scores. Here,

a is the slope and b is the midpoint, and these parameters are
optimized to minimize the mean squared error between p and
f(d).

Without the mapping function, the correlation coefficients
that will be used in the subsequent analysis, might fail to cap-
ture the non-linear relationship between objective and sub-
jective measures, resulting in misleading performance evalu-
ations.

5.4 Evaluation metrics
• Pearson’s Correlation Coefficient (R): quantifies the

strength and direction of the linear relationship between
the predicted intelligibility scores and subjective listen-
ing test results.

• Spearman’s Rank Correlation Coefficient (Rs): assesses
the monotonic relationship between predicted and sub-
jective scores, making it suitable for non-linear but
monotonic dependencies.

• p-values: indicate the statistical significance of the cor-
relation coefficients, representing the probability that the
observed correlations occurred by chance. A smaller p-
value (p < 0.05) indicates higher confidence in the va-
lidity of the correlation.

5.5 Comparative analysis of MIKNN with
state-of-the-art measures

Figure 1 illustrates that MIKNN exhibits a moderate lin-
ear relationship between its mapped scores and the subjec-
tive scores. This indicates that MIKNN captures intelligi-
bility to some extent. However, its performance is notably
weaker compared to P-STOI and P-ESTOI. The gentler slope
of MIKNN’s regression line, combined with the greater dis-
persion of its scatter points from the line, reflects higher vari-
ability in its predictions and reduced consistency in aligning
with subjective intelligibility ratings.

Figure 1: Scatter plot of the intelligibility scores. The vertical axis
is the ’mapped objective intelligibility scores’ and horizontal axis is
the ’subjective intelligiblity scores’. The respective Pearson correla-
tion coefficients (r) for each measure are shown. Each line represents
the linear fit corresponding to the respective measure, with the slope
and alignment of the lines indicating the strength of correlation be-
tween the subjective and objective scores.



Table 2 reports the performance of the MIKNN, along
with other state-of-the-art measures (that were discussed in
section 2) on the UASpeech dataset. MIKNN values were
computed as part of this study. The values for P-STOI,
P-ESTOI, KLP , σ∆, %V , ∆f0 , and LHMR were taken
from prior studies in [11] and [15]. The same parameters
used for the time-frequency (TF) analysis in P-STOI and
P-ESTOI were applied in this study. Specifically, a Hamming
window of 32 ms with a 50% overlap was employed.

Table 2: Performance of MIKNN and other state-of-the-art mea-
sures. Bold text indicates significant correlations (p < 0.05). R indi-
cates the Pearson correlation coefficient and Rs indicates Spearman
correlation coefficient.

While MIKNN is outperformed by P-STOI and P-ESTOI,
it is important to note that it demonstrates a significantly
stronger correlation with subjective scores compared to KLP ,
σ∆, %V , ∆f0 , and LHMR. This highlights its potential as a
promising metric for intelligibility assessment.
Moreover, this opens up the possibility of developing an en-
hanced measure that builds upon MIKNN’s approach to as-
sess dysarthric speech. A similar methodology has been
demonstrated by [15], where a composite measure combining
KLP , σ∆, %V , ∆f0 , and LHMR was shown to composite
measure was shown to be a reliable indicator of dysarthric
word intelligibility [15]. Then adapting such a strategy for
MIKNN could further enhance its utility in this domain.

6 DISCUSSION
This study has presented the results of evaluating MIKNN
for objective speech intelligibility assessment of dysarthric
speech. Several aspects of the methodology and results de-
serve further discussion, particularly regarding experimental
conditions, dataset constraints, and factors affecting the per-
formance of MIKNN.
The length of the utterances used for MIKNN plays a crit-
ical role in the reliability of intelligibility scores. Short ut-
terances may fail to provide sufficient temporal and spectral
information for accurate alignment and intelligibility estima-
tion, which could lead to less robust correlations with sub-
jective scores. Ensuring that future datasets include longer
utterances across multiple utterances from the same speaker
could address this issue. The idea of aggregating results was

omitted because [11] mentioned that repeated frames can af-
fect intelligibility. This limitation was particularly relevant
here due to the already limited number of frames in the a
speech representation and the reliance of the KNN method
on sufficient and diverse neighbor data for accurate mutual
information estimation.
A major limitation of this study is the small size of the dataset
used. The UA-Speech database, while valuable, includes only
16 spastic dysarthric speakers, out of which some subjects’
data is unavailable. This restricts the generalizability of the
findings, particularly across other types of dysarthria, such
as athetoid or mixed dysarthria. Moreover, the lack of pub-
licly available, diverse datasets for dysarthric speech remains
a significant barrier to advancing research in this field [3].
Another factor that could influence the performance of
MIKNN is the construction of utterance representations. This
study employed a reference-based approach, where the ut-
terance representations were derived from a pool of healthy
speakers. Selecting the initial reference represenation might
affect the computation of the intelligibility scores. To investi-
gate this, the process needs to be repeated with different ini-
tial reference represenations [11].
While the experiments in this study used k = 10 based on the
MIKNN’s restriction to not have the k < 10, it is worth not-
ing that varying k could significantly affect the results. The
limitation to not conduct experiments with various k-values is
due to the short length of the utterances. Futher experiments
should systematically explore the impact of different k-values
on both Pearson and Spearman correlation coefficients, which
may help optimize MIKNN for different speech datasets.
Future work should focus on addressing the methodological
constraints discussed here. Exploring variations in k-values,
ensuring sufficient utterance lengths, expanding dataset size
and diversity, and refining reference template construction are
the key steps.

7 RESPONSIBLE RESEARCH
The database [16] utilized for this study has been specifi-
cally developed for advanced research in automatic speech
recognition (ASR) for people with neuromotor disabilities.
Ethical considerations were an integral part of the creation
and use of this dataset. The 19 participants with Cerebral
Palsy were recruited through rehabilitation centers and per-
sonal networks, ensuring their voluntary participation. To
protect participant privacy, personally identifiable informa-
tion was excluded from the dataset. The dataset files were
only made available on request. The intended use of the cor-
pus and the research institution/university name and institu-
tional email address was asked before the access was made
available. Informed consent was obtained prior to recording
and participants were informed of the purpose of the study
and how their data would be used in research. Participants
were required to provide explicit consent for their data to be
shared; those who declined are not included in the dataset’s
distribution. For example, subject M06 did not approve the
redistribution of his data, hence his data was no longer in the
dataset that can be accessed now.
The dataset represents a diverse group of speakers in terms of



age, gender, and severity of dysarthria. This inclusivity en-
sures that ASR systems trained on the dataset are more rep-
resentative of real-world scenarios. However, it is acknowl-
edged that biases could still arise due to the specific focus
on cerebral palsy, which may limit generalizability to other
forms of dysarthria.

8 CONCLUSIONS
This study investigates the performance of MIKNN for the
objective assessment of dysarthric speech intelligibility. It
addresses the research gap of using existing intrusive objec-
tive speech intelligibility measures from the speech enhance-
ment domain for dysarthric speech assessment. By utilizing
mutual information, MIKNN captures both linear and non-
linear dependencies in speech signals, offering a theoretically
grounded approach to intelligibility evaluation. The research
compares MIKNN to P-STOI or P-ESTOI and other state-of-
the-art metrics, analyzing its correlation with subjective intel-
ligibility scores. Key methods of this work include adapting
MIKNN for pathological speech, integrating dynamic time
warping for temporal alignment, and optimizing the prepro-
cessing pipeline for intelligibility evaluation, using the UA-
Speech database. The findings revealed that while MIKNN
does not outperform P-STOI or P-ESTOI, it demonstrates
stronger correlations than several other feature-based mea-
sures KLP , σ∆, %V , ∆f0 , and LHMR. MIKNN shows sig-
nificant correlation with subjective scores which highlights
its potential as a complementary tool for dysarthric speech
intelligibility assessment.
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