
....

Nebu
A Topology-Aware Deployment System
for Reliable Virtualized Multi-Cluster
Environments
Jesse Donkervliet
Tim Hegeman
Stefan Hugtenburg

.

D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no

lo
gy

..

Nebu
A Topology-Aware Deployment System for Reliable

Virtualized Multi-Cluster Environments

by

Jesse Donkervliet
Tim Hegeman

Stefan Hugtenburg

in partial fulfilment of the requirements for the degree of

Bachelor of Science
in Computer Science

at the Delft University of Technology,
to be defended publicly on Tuesday July 8, 2014 at 2:00 PM.

Supervisor: Asst. Prof. dr. ir. A. Iosup TU Delft
V. van Beek MSc. ft. Bitbrains
Dr. ir. Martha Larson TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Summary

Petabytes of data are processed daily by distributed applications built upon Hadoop and MongoDB.
A significant fraction of these applications use cloud infrastructure to cope with this vast amount of
data. Commercial clouds use virtualized environments, but most distributed applications are designed
around the idea that they run on physical hardware. When this is no longer the case, guarantees for
an application’s reliability and performance no longer hold.

To remedy this issue, we design a powerful and comprehensive system called Nebu. Nebu is able
to provide information about the physical topology of the cloud to the distributed application and is
capable of automated virtual machine and application deployment. Nebu performs these tasks without
depending on any single distributed application or virtual machine manager. Instead, Nebu provides
efficient APIs that make it easy to provide compatibility with many popular distributed applications and
virtual machine managers.

We develop Nebu as an open source project using modern software engineering practices. In partic-
ular, we use the agile development method Scrum in combination with the Kanban scheduling system.
We apply iterative API design through the use of RAML and supporting UML diagrams. Because no ef-
fective methods for testing distributed applications have been developed, we use both unit testing and
manual testing. We also apply automated regression testing through the use of continuous integration.

Because there are no formal guidelines on how to validate distributed applications for the kind
we investigate in this work, we develop Nebu and perform real-world experiments with multiple dis-
tributed applications using an enterprise multi-cluster infrastructure. These experiments show that
Nebu enables applications to give guarantees about reliability without degrading their performance.

To increase Nebu’s usability, we provide extensions that offer compatibility with the distributed
applications Hadoop and MongoDB, and virtual machine manager VMware. Both the system and the
extensions to the system are developed in an enterprise environment. This holds good promise that
Nebu will be adopted by open-source communities, as well as the industry.

iii

Acknowledgements

This thesis would not have been concluded without the help provided by many people, a few of which
we would like to recognise here. First of all Alexandru Iosup and Vincent van Beek for their excellent
guidance and feedback on matters conceptual and technical. In addition we would like to thank them
for going through multiple iterations of this lengthy thesis. Secondly, Gjalt van Rutten for allowing us
to do this thesis at Bitbrains and helping us define the specifics of this project. Third, Otto Visser for
his endless supply of coffee and suffering through the drafts of the documents we produced for this
thesis. Finally we would like to thank everyone at Bitbrains and in the Parallel and Distributed Systems
group for their warm welcome in their midst and the feedback after the trial presentations.

v

Contents

Acknowledgements v

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Context. 1
1.2 Problem Statement . 1
1.3 Main Contributions . 2
1.4 Structure . 2

2 Problem Analysis 5
2.1 Overview . 5
2.2 System Requirements . 5

2.2.1 Critical Requirements . 5
2.2.2 Other Requirements . 7

3 Background 9
3.1 Overview . 9
3.2 Systems used by Nebu . 9

3.2.1 MongoDB . 9
3.2.2 Hadoop . 10
3.2.3 VMware . 10
3.2.4 OpenStack. 10

3.3 Related Work . 10
3.3.1 Hadoop Virtualization Extensions . 10
3.3.2 Mesos. 11
3.3.3 YARN . 11

4 Research, Design, and Development Processes 13
4.1 Overview . 13
4.2 Project Management Processes. 13
4.3 Research Processes . 14

4.3.1 User Study. 14
4.3.2 Research Survey in testing Distributed Systems 15

4.4 Design Processes . 15
4.4.1 Using RAML to handle Evolving APIs . 15
4.4.2 Changed Requirements . 16

4.5 Development Processes . 16
4.5.1 JIRA for Project and Issue Management . 16
4.5.2 Version and Quality Control . 17
4.5.3 Division of Labour . 17

4.6 Reflection . 18

5 Design of the Nebu System 19
5.1 Overview . 19
5.2 System Modularity . 19
5.3 User-System Interaction. 20
5.4 Design of a RESTful API . 21

5.4.1 Nebu RESTful API . 21
5.4.2 VM Manager RESTful API . 21

vii

viii Contents

5.5 Physical Topology Abstraction . 22
5.6 Placement Policies . 23

5.6.1 The Random Policy. 23
5.6.2 The Locality Policy . 24
5.6.3 The Replication Policy . 25
5.6.4 The Local-Remote Policy. 25

5.7 MongoDB Replication Policy . 26

6 Development of the Nebu System 29
6.1 Overview . 29
6.2 Product Description . 29

6.2.1 Nebu Common . 30
6.2.2 Nebu Core . 32
6.2.3 Nebu VMM Extension . 33
6.2.4 Nebu Application Extension . 35

6.3 Libraries and Development Tools utilised by Nebu 36
6.3.1 External Libraries used by the Nebu System 37
6.3.2 Development Tools used for the Nebu System. 39

6.4 Main Challenges . 40
6.4.1 Developing for Enterprise Environments . 40
6.4.2 Managing Scalable Distributed Systems . 41
6.4.3 Big Data Application Limitations . 41
6.4.4 VMware API Difficulties . 41
6.4.5 Lack of OpenStack Support . 42

7 Quality Assurance 43
7.1 Overview . 43
7.2 Unit Testing and Continuous Integration . 43

7.2.1 Testing Policy . 43
7.2.2 Testing Libraries . 44
7.2.3 Continuous Integration: Jenkins . 45

7.3 Code Analysis . 45
7.3.1 SonarQube . 45
7.3.2 Software Improvement Group . 46

8 Experimental Work 49
8.1 Overview . 49
8.2 Results . 50

8.2.1 Reliability Hadoop . 50
8.2.2 Performance Hadoop. 52
8.2.3 Reliability MongoDB . 52
8.2.4 Performance MongoDB . 53

8.3 Discussion. 53

9 Ongoing and Future Work 55
9.1 Overview . 55
9.2 New Functionality . 55

9.2.1 Authorisation System . 55
9.2.2 Fault Tolerance . 55
9.2.3 Hadoop Network-Storage Awareness . 56

9.3 Publication of the Nebu Code. 56
9.4 Process Improvements. 56

10Conclusion 57

Bibliography 59

A Orientation Report 61

Contents ix

B SIG Code Evaluation 81
B.1 Initial Evaluation . 81
B.2 Final Evaluation . 81

C Original Project Description 83

D Example Sonar Report 85

E Nebu RESTful API Specification 89
E.1 Nebu Core API . 89
E.2 Nebu VMM Extensions API . 89

List of Figures

1.1 Simplified overview of the ecosystem. 2
1.2 Reader map. 3

4.1 The Scrum methodology. 14
4.2 JIRA cumulative flow diagram. 17

5.1 Components in the Nebu system. 20
5.2 The Nebu core RESTful API. 22
5.3 The Nebu VMM RESTful API. 23
5.4 Generalised topology model. 24

6.1 Different projects placed in the ecosystem. 30
6.2 Package diagram for Nebu-common. 31
6.3 Class diagram of the topology classes in Nebu-common. 31
6.4 Package diagram of Nebu-core. 32
6.5 Class diagram for the provider package in Nebu-core. 33
6.6 Sequence diagram of the provider classes in Nebu-core. 34
6.7 Package diagram of Nebu-VMware. 36
6.8 Class diagram of the VMware interface. 36
6.9 Sequence diagram of starting a VM in Nebu-VMware. 37
6.10 Class diagram of the Nebu-App-Framework. 37
6.11 Class diagram of the Hadoop extension. 38
6.12 Sequence diagram for the main loop in the application framework. 38

7.1 Main code statistics. 46
7.2 Lines of code and comments in Nebu Core. 47

8.1 Replica distribution on HDFS. 51
8.2 Makespan for the Hadoop experiments. 52
8.3 Results of the YSCB benchmark on a MongoDB cluster. 53

xi

List of Tables

2.1 System requirements. 6

4.1 Description of the sprints in the project. 15
4.2 Information about the employees interviewed for this project. 15

6.1 vSphere permissions required to run Nebu. 35
6.2 External libraries used by Nebu. 39
6.3 Tools used in the development of Nebu. 40

7.1 Overview of Nebu testing libraries. 44
7.2 The metrics for the Java projects as reported by SonarQube. 45
7.3 The final metrics for the C++ projects as reported by SonarQube. 46

8.1 Properties of the VM image and applications used. 50
8.2 Parameters for the workloads used to test Hadoop. 50

10.1 Nebu system requirements and how they are satisfied. 58

xiii

1
Introduction

1.1. Context
With an increasing number of companies providing cloud solutions to the industry and individual, the
popularity of running applications in virtualized environments is on the rise. Similarly, distributed (big
data) applications are getting increasingly popular. While these two trends can be combined to run
distributed applications in a highly-scalable virtualized environment, there are several drawbacks for
the current state-of-the-art. In particular, the reliability and fault tolerance of data storage by the
system can no longer be guaranteed. Traditionally, fault tolerance mechanisms have been based on
the assumption that the failure of a single node in a system is not correlated with the failure of others.
In virtualized environments, this assumption no longer holds. Multiple virtual machines can be placed
on a single physical machine and will all fail simultaneously if the physical machine fails.

Bitbrains is a Dutch company providing cloud solutions to a variety of customers, and they are
facing the challenges of running distributed applications on their multi-cluster cloud infrastructure.
Applications hosted by Bitbrains include Hadoop and MongoDB, both of which feature distributed data
storage, with data replication as their primary means of fault tolerance. These applications spread
several replicas of the same data over multiple virtual machines. As the applications are not currently
aware of the virtualized environment, replicas of a chunk of data may end up on multiple virtual
machines on the same physical host. If the physical host fails, then data may become unavailable or
could even be lost. For enterprise customers serviced by Bitbrains, reliability is top priority and losing
data can be catastrophic.

1.2. Problem Statement
The challenge set out by Bitbrains is to improve the reliability of distributed applications in a virtualized
environment. To achieve this, Bitbrains is interested in developing a system that can utilise information
about the physical topology of their multi-cluster environment to make distributed applications aware
of the virtual environment, i.e., become “virtualization aware”. We define the physical topology as
the physical organisation of hosts to form racks and the grouping of racks into data centres. The
goal is to develop a generic system that can interface with various virtual machine managers and
distributed applications to prevent having to redevelop the solution every time customers demand a
new application. As a proof of concept, the solution should be able to interface with VMware and
OpenStack as virtual machine managers, and Hadoop and MongoDB as distributed applications.

The goals set by Bitbrains lead to the following research questions:

1. How to use physical topology information of a multi-cluster environment to improve the reliability
of virtualized applications?

2. How to validate the design of the final product for distributed applications?

1

2 1. Introduction

Middleware

Distributed Application

VM Manager

App-Extension

VMM-Extension

Figure 1.1: Simplified overview of the Nebu ecosystem, showing the three main components implemented by Nebu in grey.

1.3. Main Contributions
This thesis presents the Nebu project, an effort to improve the reliability of distributed applications
running in a virtualized environment. Nebu is a software ecosystem consisting of three “classes” of
applications. First of all, the Nebu core is a middleware application that operates between distributed
applications and virtual machine managers, and interfaces with both to achieve the goal of improved
reliability. Second, a virtual machine manager needs an extension to expose required information, such
as virtual machine and topology information, to the Nebu core. Third, a distributed application needs
an extension to use the information exposed by the Nebu core to improve its reliability.

The main contributions of this thesis are:

1. A user study through interviews that indicates what kind of functionality is required from the
system by engineers at Bitbrains. These interviews form the basis for the use cases that lead to
the API design presented in this thesis.

2. Nebu, a generic open source software ecosystem (visualised in Figure 1.1) to run distributed ap-
plications with virtualization awareness. This includes: (a) a generalised model for the physical
topology of multi-cluster environments; (b) two APIs for extending the ecosystem with additional
compatibility for virtual machine managers or distributed applications; and (c) an extensible ap-
plication deployer with customisable placement policies.

3. An efficient API for engineers and end-users to create a virtual cluster and deploy a distributed
application. Using Nebu’s API it is possible to launch a complete cluster in four calls, or retrieve
an overview of the physical topology in a single call. Currently the deployment of a complete
cluster is a labour-intensive task that can take several hours to complete.

4. An evaluation of the impact Nebu has on both the reliability and performance of multiple big data
platforms. Experimental evaluation is used to estimate the chance of failure in traditional settings,
without virtualization awareness. Failure injection is used to identify the effects of failure in both
traditional and virtualization aware scenarios.

1.4. Structure
This thesis is structured as follows: Chapter 2 gives a more detailed analysis of the problem as well
as a description of the system requirements. Chapter 3 provides background information and presents
related work. The processes used in this project, such as the usage of the Scrum methodology are
described in Chapter 4. The design of Nebu is covered in Chapter 5 and the development of the final
product is described in Chapter 6. Measures taken to increase the quality of the software, such as the
writing of testcode and the usage of code analysis tools, are described in Chapter 7. In order to verify
the final system, experimental work has been done. The results of these experiments can be found in
Chapter 8 of this thesis. Finally, the future of Nebu is described in Chapter 9. Figure 1.2 provides a
map guiding a reader through this thesis depending on the reader’s goals.

1.4. Structure 3

1

53

2

4

678

9

10

All content Extend Nebu

Deploy Nebu Research

Figure 1.2: A visual representation of the chapters the reader should read if they have a specific goal in mind. If a chapter has
no arrow of their colour exiting it, the “All content” arrow should be followed instead. For instance if the reader wants to deploy
Nebu, chapters 1, 2, 3, 5, and 10 should be read.

2
Problem Analysis

2.1. Overview
With the rapid adoption of cloud computing, distributed applications are increasingly deployed in virtu-
alized environments. However, most distributed applications were designed under the assumption that
they are deployed on physical hosts, i.e., every machine running the application is a unique physical
machine. This assumption is used in placement policies for various mechanisms, e.g., a fault tolerance
mechanism places data replicas on different machines under the assumption that when one hard drive
fails, other copies of the data are still available on other physical disks. In virtualized environments
the assumption of uniqueness does not hold; multiple virtual machines may be running on the same
hardware. As a result, multiple (or all) replicas of one piece of data may reside on the same physical
hard drive. If this hard drive fails, the data may no longer be available, despite the application’s fault
tolerance mechanisms.

At Bitbrains, customers can lease machines from a virtualized environment, and many customers use
these machines for distributed computing tasks. To prevent loss of data and to improve performance,
Bitbrains would like to provide their customers with extensions for popular distributed applications that
add VM-awareness. The goal of the project is to design an abstraction layer between VM managers
and distributed applications to stimulate VM-awareness in distributed applications independent of the
cloud it is running in. To demonstrate the applicability of this middle layer, extensions for MongoDB
and Hadoop will be written on the application side, and a VMware extension will be written on the
VM manager side. These application extensions improve the fault-tolerance and performance of a
virtualized deployment of their respective distributed application when used in combination with a VM
manager extension. The original problem description is included in Appendix C.

2.2. System Requirements
Throughout this project, system requirements have been identified before and during development.
These requirements are either derived from the research questions listed in Section 1.2, or obtained
through interviewing Bitbrains employees. Multiple requirements were changed or dropped during the
project. In this section only the most up-to-date requirements are described. For initial requirements
see the Orientation Report in Appendix A. For requirements that have been dropped or changed see
Section 4.4.2. Table 2.1 provides an overview of the system requirements. The remainder of this
section describes each Nebu requirement in detail.

2.2.1. Critical Requirements
Compatibility
Many distributed (big data) applications can be run in virtualized environments. Making these applica-
tions virtualization aware by providing them with physical topology information all works in a similar
manner. Therefore, implementing this for every distributed application is undesirable. To prevent this,
compatibility with applications should be defined in terms of an API that is offered to the application.
An application is considered compatible with the system if it utilises this API.

5

6 2. Problem Analysis

Critical Type Requirement
1 YES Compatibility System must define a generic

model of the physical topology in a
multi-cluster environment.

2 YES Compatibility System must define an API that is
extensible for other distributed applications.

3 YES Compatibility System must define an API that is
extensible for other virtual machine managers.

4 YES Deployment System is capable of automated virtual
machine deployment.

5 YES Deployment System is capable of configurable virtual
machine placement.

6 YES Topology awareness System provides information about the
location of virtual machines to distributed applications.

7 YES Usability System should be compatible with
enterprise environments.

8 NO Security System features a authorisation system that
ensures no other users can access data that is not their own.

9 NO Usability System should provide at least two
application extensions as a proof of concept.

10 NO Usability System should provide at least two
virtual machine manager extensions as a proof of concept.

Table 2.1: System requirements.

Multiple popular hypervisor or virtual machine manager (VMM) systems exists. These systems
can differ in design, but conceptually provide the same functionality. Examples of these systems are
VMware, OpenStack, and OpenNebula. Because multiple VMMs are commonly used, it is desirable that
Nebu is compatible with multiple popular virtual machine managers. As with the distributed applica-
tions, this compatibility should be defined in terms of an API. This API should be offered to Nebu by
the VMM. This API should be generic to ensure compatibility across hypervisors, but remain flexible
enough to perform tasks such as virtual machine deployment and placement.

Deployment
Deploying virtual machines is a labour intensive task. When dealing with distributed applications,
multiple virtual machines need to be deployed and configured for the application to work. To boost
the productivity of a Nebu user, Nebu should automate this deployment based on a user-specified
configuration. This allows the user to focus on more important tasks and leave the tedious task of
deploying and configuring multiple similar machines to Nebu.

Virtualisation awareness provides applications with the tools to increase their performance and fault-
tolerance. Improving these aspects consists of two major parts. First, the virtual machines should be
placed on physical hosts by some placement policy. Second, the application improves its performance
and fault-tolerance using the information about virtual machine placement. Depending on the type
of application or the application’s workload, different placement algorithms might be desirable for this
task. Because Nebu is unaware of the application’s properties and the properties of its workload,
Nebu should leave this up to the user and provide a method through which the VM placement can be
influenced.

Topology Awareness
Commercial clouds often lease virtual resources to their customers. Distributed applications that are
unaware of the fact that they are running in a virtual environment can experience difficulties when
providing guarantees for performance or fault-tolerance. Two machines that the application identifies
as independent might actually be placed on the same physical host. When this host crashes, both
machines go down. To provide distributed applications with the tools to prevent this, Nebu should
expose partial physical topology information to the application. It is the responsibility of the application
to make use of this information.

2.2. System Requirements 7

Usability
Running distributed applications on virtualized hardware is primarily done in commercial environments.
To provide compatibility with these environments, Nebu should support enterprise environments and
use external libraries that do the same.

2.2.2. Other Requirements
Security
Commercial clouds often have multiple tenants. All of these tenants are potential Nebu users and have
access to the functionality Nebu offers. However, it is undesirable for these users to be able to see and
modify deployments of other users. Nebu should provide an authorisation system where information
is available on a per-user basis.

Usability
Because Nebu functions as a middleware layer between virtual machine managers and distributed ap-
plications, it relies on these systems to show its potential. To provide a proof-of-concept for Nebu’s
capabilities and increase Nebu’s usability, extensions should be implemented for two distributed appli-
cations as well as extensions for two virtual machine managers.

3
Background

3.1. Overview
This section provides additional information needed to understand the details of the Nebu project.
First, Section 3.2 provides additional information on some typical systems used in virtualized distributed
computing. Second, Section 3.3 describes several state-of-the-art systems in resource management,
and virtualization awareness.

3.2. Systems used by Nebu
The Nebu system provides extensions for both distributed applications and virtual machine managers.
As a result, many external systems are involved in the project. To achieve requirements 9 and 10,
two distributed applications and two virtual machine managers have been selected to receive proof-of-
concept extensions. The two distributed applications selected for extension are MongoDB and Hadoop,
introduced in Section 3.2.1 and Section 3.2.2, respectively. VMware and OpenStack are two popular vir-
tual machine managers that have been considered for extension. They are introduced in Section 3.2.3
and Section 3.2.4, respectively.

3.2.1. MongoDB
MongoDB1 is a distributed document database, using a NoSQL-structure for information retrieval and
alteration. In contrast to the table-based model of SQL-databases, MongoDB utilises a dynamic JSON-
like document store. MongoDB has several features to support its use as a distributed application,
including replication and sharding. Replication is MongoDB’s fault tolerance mechanism used to ensure
high availability of data. By placing multiple copies of a single data set on multiple machines, data will
remain available even if a machine crashes or becomes otherwise unusable. Additionally, replication can
be used to spread data geographically and thus reduce latencies to applications deployed worldwide.
Sharding is a technique used by MongoDB to achieve horizontal scaling, i.e. spreading data and load
over multiple hosts. A single data set is split into shards and each shard is placed on a different
machine. Queries on the data set are redirected to the relevant shards through a query router and
results are then aggregated. Replication and sharding can be combined: a shard can be replicated to
multiple machines to form its own replica set.

A typical distributed MongoDB database consists of three types of services: a set of shards (replica
sets), three configuration (config) servers, and one or more query routers. The shards are spread
over different data nodes, though multiple shards can co-exist on a single machine. The full collection
of shards in the database is managed by three config servers. The config servers store the cluster’s
metadata, i.e., they keep track of the mapping of the cluster’s data to the various shards in the database.
For fault-tolerance, having three config servers is recommended, to deal with hardware failures. Finally,
query routers are tasked with analysing queries and rerouting queries to the appropriate shards. Having
many query routers is recommended, as all queries must pass through a query router. Having too few
query routers can cause this step in execution to become a bottleneck.
1http://www.mongodb.org/

9

10 3. Background

3.2.2. Hadoop
Hadoop2 is an open source project by Apache that encompasses a stack of several distributed appli-
cations. First, it contains the Hadoop Distributed File System (HDFS) [1]. In contrast to the database
structure that MongoDB uses, HDFS operates on files and employs a master/slave architecture that
allows for file-system-like operations, e.g., opening, closing, and renaming files. Every file is split up
in blocks and every block is replicated a configurable amount of times. Like MongoDB, HDFS uses
replication of data to provide fault tolerance and high availability. The second component is YARN [2],
a resource manager and job scheduler. YARN is responsible for managing resources in a cluster and
can schedule distributed applications to use these resources. The third component of the Hadoop stack
is its implementation of the MapReduce framework [3]. Hadoop MapReduce runs on top of YARN and
HDFS to enable big data processing using the MapReduce programming model.

A typical Hadoop deployment consists of several services for HDFS and YARN. HDFS uses a Name-
Node as master and any number of DataNodes as slaves. YARN likewise uses a ResourceManager as
master and any number of NodeManagers as slaves. Slave nodes commonly run both a DataNode and
a NodeManager daemon, so that both the disk and compute resources of a node are utilised. Both
HDFS and YARN provide mechanisms for improving their robustness. However, these mechanisms are
not further explored in this thesis.

3.2.3. VMware
VMware3 is a software company that provides software for cloud management and virtual machine
management. VMware offers a large virtualization ecosystem with many layers of applications. At the
core is the hypervisor, known as VMware ESXi, which is responsible for running virtual machines on
physical hardware. Multiple ESXi hosts can be combined into a network that is managed by a vCenter
instance. Each network managed by such a vCenter instance is known as a Virtual Data Center (VDC).
VDCs can be combined to form the vCloud, an overarching system that enables end users to manage
their virtual machines through a graphical user interface.

3.2.4. OpenStack
Similarly to VMware, OpenStack4 also offers software that allows for virtualization management. This
open-source variant deploys a modular architecture, with Nova, or OpenStack compute, at its core.
Whereas Nova is responsible for the resource pools, other modules such as Swift and Neutron exist
with other responsibilities (storage and networking respectively). The OpenStack API has also been
made compatible with the well-known cloud provider Amazon’s Elastic Compute Cloud (EC2)5.

3.3. Related Work
Both distributed applications and virtualization have gained popularity in recent years. With companies
moving to “the cloud”, guaranteeing the reliability and performance of applications in virtualized envi-
ronments have been a hot topic in research. In this section some related work will be described and
compared to Nebu.

3.3.1. Hadoop Virtualization Extensions
To facilitate deploying Hadoop on top of VMware-based clouds, VMware has developed software known
as VMware Big Data Extensions as described in a white paper6. The software provides Hadoop with
information about the physical architecture underlying the virtual machines the application is running
on. To achieve this, VMware has extended the popular Hadoop MapReduce framework with the Hadoop
Virtualization Extensions to utilise the mapping of virtual to physical machines. This extension adds a
single layer to the Hadoop network topology that describes the physical nodes VMs are deployed on. In
addition, VMware has extended the block placement policy in HDFS to prevent it from placing multiple
replicas of the same block on a single physical host.

2http://hadoop.apache.org/
3http://www.vmware.com/
4https://www.openstack.org/
5https://aws.amazon.com/ec2/
6http://www.vmware.com/files/pdf/Hadoop-Virtualization-Extensions-on-VMware-vSphere-5.pdf

3.3. Related Work 11

VMware has made available an open source variant of their Big Data Extensions, known as Project
Serengeti. Although Project Serengeti offers some similar functionality to Nebu in the virtualization
awareness of Hadoop, the project is closely coupled to VMware and Hadoop. Nebu is designed from
scratch to be extensible with any virtual machine manager or distributed application.

3.3.2. Mesos
Apache Mesos [4] seems to offer similar functionality at first glance, by presenting itself as a platform
for sharing clusters between multiple distributed computing frameworks. Mesos requires computing
resources to be assigned to it, so that it can deploy distributed applications on these resources. Un-
like Nebu, Mesos will not interface with virtual machine managers to obtain additional resources. In
addition, Mesos does not have explicit support for virtualization awareness. Although both Mesos and
Nebu share the goal of running distributed applications in multi-cluster environments, Nebu is specifi-
cally targeted at virtualized environments.

3.3.3. YARN
YARN is another resource manager by Apache. As mentioned in Section 3.2.2, YARN is part of the
Hadoop project, and as such it is virtualization aware through the use of the Hadoop Virtualization
Extensions. Like Mesos, YARN does not obtain its own resources. Adding machines to a YARN setup
requires starting a YARN service on every machine. Nebu differs from YARN in that it obtains its own
resources from a virtual machine manager. In addition, Nebu implements virtualization awareness by
retrieving information about the physical topology it is running on. YARN requires an external system
to provide the topology information.

4
Research, Design, and Development

Processes

4.1. Overview
This section describes the process of Nebu’s development, which can be split in three main categories.
First, Section 4.2 describes some of the methods applied throughout the entirety of the project, such
as the application of the Scrum methodology. Second, Section 4.3 describes the research processes
utilised throughout this project, such as a survey on the use cases for the system through interviews.
Third, Section 4.4 describes the process of designing for the system, focusing on the design process
of the API. In addition, this section details some of the requirements that were changed during the
course of this project and how these changes were handled by the team. Fourth, Section 4.5 outlines
the different processes that concern development, such as the tools used to plan the individual sprints,
during the implementation phase of this project and the tools used to ensure that all team members
had a good overview of all the code that was written. Finally Section 4.6 reflects on the processes used
and lists new insights gained from using these processes.

4.2. Project Management Processes
Throughout this project the team has applied the Scrum methodology, wherein teams work in intervals,
known as sprints, with deliverables finished after every interval. This model of deliverables contrasts
sharply with the more traditional waterfall method wherein different stages of the product cycle can be
clearly defined. A project using the waterfall methodology starts with a design phase wherein the whole
system is designed, followed by a production phase and ending with a validation phase. Scrum, as a
form of agile development, advocates the use of short cycles consisting of these three phases instead.
This is visually summarised in Figure 4.1. When using Scrum validation plays a more prominent role in
the production process, ensuring that the final product matches the customers expectations.

For agile development to handle the frequent changes that are associated with it, communication is
an essential part of the process. Three different types of meetings occurred on a frequent basis. First,
the team met on a daily basis to inform one another about their current tasks and discuss what other
tasks needed to be picked up. Second, meetings with the external supervisor took place every week to
plan the next sprint in accordance with requests from the supervisor and issues as noted by the team.
Finally, meetings with the TU coach were more irregular. These meetings primarily took place during
the first and last three weeks of the project, discussing the orientation phase and the experimental
work and reports mostly.

The main timeline of this project can be summarised in a total of eight sprints, which are listed in
Table 4.1. Because the number of different tasks during the first two weeks was low, these weeks were
merged into one sprint. During this sprint, the team focused on orientation. Additionally, the team
conducted user studies to get a better understanding of the scope of the project. These user studies
are described in Section 4.3.1.

The second sprint started the design and development process. This sprint was also used for the

13

14 4. Research, Design, and Development Processes

Figure 4.1: The Scrum methodology visually represented.

setup of tools like Jenkins. Sprints 4 through 6 consisted of design and development iterations. Sprint
7 moved the focus to the evaluation of both code and design. This resulted in removal of multiple code
issues and cleaner code in general. Sprint 7 was also used to prepare for the experiments that took
place in sprint 8. Sprint 8 was the last sprint and focused on conducting experiments and analysing
the results. Finally, this sprint was also used to create the final deliverables.

By analysing Table 4.1, it becomes apparent that each of the sprints that focused on development
can roughly be split in three main tasks. These are 1. development of the VMware extension, 2. devel-
opment of the middleware, and 3. development of the application extension and system setup. These
three tasks will be further described in Section 4.5, which describes how JIRA was used to plan work
and how work was distributed among team members.

4.3. Research Processes
In preparation of this project an orientation of the current state of affairs was done on two levels. The
first is a small study on the current processes Bitbrains uses in the operation of Hadoop and MongoDB
in combination with VMware. This process, as well as the results, is detailed in Section 4.3.1. The
second is a research survey in distributed systems, including some previous work, which is described
in Section 4.3.2.

4.3.1. User Study
To establish a firm understanding of how Bitbrains currently manages its clusters and what their physi-
cal topology looks like, we conducted a small user study through the process of interviewing a number
of Bitbrains employees. The employees, excluding our external supervisor, interviewed for this process
are listed in Table 4.2. Each of these interviews was conducted in person and featured both specialised
questions aimed at the expertise of the interviewee and some general questions related to broader
concepts. In particular we interviewed people from a variety of categories. One visionary on a concep-
tual level, an engineer responsible for deploying clusters for customers, and an engineer responsible
for the hardware and dealing with VMware. The results of these interviews have formed the basis of
the design as presented in Chapter 5, and are further detailed in the orientation report that can be
found in Appendix A.

4.4. Design Processes 15

Number Week(s) Main activities Focus
1 1-2 Orientation in subject matter, Orientation, Research

survey, user studies.
2 3 Set-up Jenkins, get topology from VMware, Design, Development

pass topology through Nebu.
3 4 Convert topology to generic format, Design, Development

initial puppet-install, initial deployer.
4 5 Start VMs through VMware, query vSphere, Development

start Nebu-common in C++.
5 6 Add policies to the deployer, finish queries to vSphere, Design, Development

start MongoDB extension.
6 7 Policies support picking stores, vSphere offers stores, Design, Development

set-up DNS in the environment.
7 8 Add hooks for experiments, clean code for SIG review, Evaluation, Development

create the Hadoop extension.
8 9-10 Run experiments, Evaluation, Research

write final report and prepare presentation.

Table 4.1: Summary of the different sprints in the project, wherein week one corresponds to the week starting on the 21st of
April 2014.

Name Function description Years of employment
Jeroen van Nieuwenhuizen Engineer, Hadoop deployments 1

Bas Welman Platform engineer, handles everything up to VM level 3
Gjalt van Rutten CTO, deploying and implementing the technical vision 9

Table 4.2: Information about the employees interviewed for this project.

4.3.2. Research Survey in testing Distributed Systems
To determine the impact virtualization awareness has on characteristics such as performance and re-
liability, workloads to run on the distributed applications are chosen. Since no standards for testing
distributed applications exist and real-world workloads are scarce, synthetic workloads such as TeraSort
and WordCount are commonly used when benchmarking distributed systems. Previous work by Tim [5]
includes a survey on various big data benchmarks and describes the BTWorld use case for time-based
big data analytics. This work describes a complex real world workflow with a variety of MapReduce
queries run on Hadoop. Unlike benchmarks such as TeraSort, BTWorld stresses multiple resources in a
system and therefore provides a more complete assessment of the performance and reliability of a sys-
tem. This workload is also run using the Nebu system, the results of which are described in Chapter 8,
to determine what happens to the reliability of large complex workloads in real use cases.

4.4. Design Processes
Whereas the usage of the Scrum methodology prevents the creation of a detailed full system design
at the start of the project, it does mandate the existence of evolving design documents. For Nebu
most of the design can be captured in the public API exposed by the middleware and the VM manager
extensions, which are described in Chapter 5. The usage of a modelling language called RAML for
the evolving design documents of the APIs is described in Section 4.4.1. The API has been radically
changed from a basic version to the current more powerful version due to some changes to the initial
requirements. These changes and how they impacted our designs are described in Section 4.4.2.

4.4.1. Using RAML to handle Evolving APIs
To maintain a clear overview of the APIs offered by Nebu and the VMware extension, the RESTful API
Modelling Language (RAML)1 was used. RAML is built on YAML and JSON and offers a web interface
where developers can specify, look up, and try multiple versions of their RESTful APIs. For this project
both of the APIs have been fully documented in RAML, the first is the API exposed by Nebu to the

1http://raml.org/index.html

16 4. Research, Design, and Development Processes

application, the second is the API that virtual machine managers are required to provide. We choose
RAML to specify these RESTful APIs because of its ease-of-use and its ability to provide examples for
each API call. Examples of this documentation are shown in Section 5.4.

Although the web-based editor for RAML is limited, it does allow for simple prototyping of APIs. This
helped to quickly draft new additions to the APIs and to communicate changes among team members.
After a first version of the API had been implemented, it became apparent that some changes in
requirements meant this API would not be able to handle the requested operations. A new API could
quickly be drafted, designed, and implemented through the use of RAML.

4.4.2. Changed Requirements
The changes in the design of the API were caused by changes in the requirements of the final product.
Multiple requirements that were identified in the orientation phase of this project turned out to be
unfeasible or unnecessary. This section describes why these changes occurred, how these changes
were addressed, and how they impacted the design of the system.

No longer support Runtime Scheduling
Nebu’s initial system requirements included the scheduling of VMs at runtime, allowing users or ap-
plications to specify restrictions on where VMs can be placed. It became apparent that in the case
of VMware it is difficult to apply custom runtime scheduling. VMware will, through mechanisms of its
own, continuously move virtual machines across hosts. If Nebu were to apply runtime scheduling on
top of this, it would likely cause the two systems to clash, decreasing performance. Because the virtual
machine manager has a complete view of the multi-cluster environment, its virtual machine scheduler
is preferred over a custom scheduler located in the middle-ware layer. A possible work-around would
entail Nebu advising the virtual machine manager’s scheduler, rather than doing the scheduling itself.
Initially, the Nebu design included such a mechanism. It would give advice to the scheduler about
which machines to keep apart, and where to move virtual machines during a migration. However, the
use-case for this feature at Bitbrains was limited and therefore dropped in favour of more advanced
virtual machine deployment and placement.

Security Requirements
Nebu provides information about the physical topology to an engineer or customer. This information
concerns the virtual machines that are under control of the engineer or customer that uses Nebu. How-
ever, a single Nebu instance can serve multiple users. This introduces a security issue, wherein users
can access information that does not belong to their applications, unless some system of authorised
access is introduced into Nebu.

This requirement was introduced during Nebu development. It was not identified as a requirement
during Nebu’s initial system design because it was not yet known where a Nebu instance would run and
how many users it would be able to serve. Bitbrains informed the team that the result of this project
should be a working prototype, rather than a production-ready application. As the implementation of
such an authorisation system is a time-consuming operation that is not required for a working prototype,
this requirement was assigned low priority and is not implemented in the prototype.

4.5. Development Processes
During the implementation phase of this project, the Scrum methodology was applied, with weekly
sprints (as detailed in Table 4.1). Each Monday the team met with the external supervisor to plan the
work for that week. The results of this planning would be inputted into JIRA2, the process of which
is further detailed in Section 4.5.1. JIRA is a project management and issue-tracking tool also used
at Bitbrains. In addition to JIRA, which helped to enforce the Scrum methodology, the version control
system git was used to keep track of the code. The way the team uses git is described in Section 4.5.2.
Finally, the division of labour within the team is described in Section 4.5.3.

4.5.1. JIRA for Project and Issue Management
Engineers at Bitbrains use Kanban. Kanban is a software development workflow, in which tasks and
user stories move through a pipeline of states. Examples of these states are “To Do”, “In Progress”,
2https://www.atlassian.com/software/jira

4.5. Development Processes 17

Figure 4.2: A cumulative flow diagram showing the different states tasks have gone through in JIRA. PO-review is not visible in
the diagram because issues in this state were not tracked through JIRA.

“Task Completed”, “PO-review”, and “Done”. The team complemented the use of Scrum with the use
of the Kanban workflow. Since the team worked both at the university and at Bitbrains, it was not
feasible to have a physical whiteboard with the tasks, as is common practice at Bitbrains. Instead the
team opted to use a digital version of such an agile board, through use of JIRA.

At the start of every sprint, new tasks would be created in JIRA, split into smaller tasks that could
then be done by one person. These tasks, similar to how Bitbrains works with the whiteboards, go
through the states of the Kanban workflow. The accumulation of the tasks moving through these states
is visually summarised in the flow diagram in Figure 4.2.

The PO-review (Project Owner review) was done at the end of every sprint by showing the new
functionality to the supervisor and discussing its impact. Because this was done in an informal setting,
tasks were never put in the PO-review state in JIRA. The spikes that are visible for the tasks in the
Done state are caused by how the PO-review (not visible in the graph) was conducted, with all the
completed tasks moving to the Done state at the end of every sprint. On average, the team finished
nine tasks per week. This translates to three tasks per person, or roughly one and a half day for each
task.

4.5.2. Version and Quality Control
Nebu uses git3 for its version control. Git offers branching as a built-in feature. This allows for a main
branch that contains the stable version of the software, and multiple other branches that contain new
features that are being developed. The initial plan on how to use version control included a strict
merge request policy with the goal to increase code quality. This policy meant that only code that had
been reviewed by at least one other team member may be merged into the master branch. Other
methods that were used to increase code quality included SonarQube and code evaluation by SIG.
These methods are described in Section 7.3.1 and Section 7.3.2 respectively.

In practice, merge requests were only used when important features were introduced in the master
branch. Smaller features could be silently added to the master branch as long as it breaks none of
the available tests. Tests could always be silently added to the master branch. The main reason for
deviating from the original plan was because the merge-requests proved to be very time consuming,
and therefore not worth the effort for minor changes. The team felt that this time could be better spent
developing. In addition, reducing the number of code reviews improved overall development speed.

4.5.3. Division of Labour
During the project each of the team members took on a major part of the project as identified in
Section 4.2. Tim worked on the Nebu application extensions, Stefan worked on the Nebu-core project,
and Jesse worked on the Nebu VMM extension for VMware. Additionally, Tim also performed the setup
and management of external systems for both development and testing.

Besides these major tasks, each team member also took on smaller tasks on the side. These tasks

3http://git-scm.com/

18 4. Research, Design, and Development Processes

were usually assigned to the person who either had the most time to spent on the task, or was more
skilled in performing the task than the other members of the team. All team members also assisted
other members with their tasks on a frequent basis. This was primarily done to speed up the completion
of larger tasks.

4.6. Reflection
Although some deviations from the original plan have already been described in this chapter, this section
focuses on the evaluation of the final method of execution of the described processes. Firstly, the Scrum
methodology allows for more frequent feedback from the supervisor to keep the team on track. This
made it easier to focus on the requirements that matter most to Bitbrains. It was through one of these
feedback rounds that the supervisor mentioned Bitbrains prefers a properly working prototype with the
core features over a system with many half-implemented features.

Something that could be improved upon was the use of code evaluations. In the current setup,
merging code through the use of strict merge requests and code reviews prove to be too time con-
suming. For future projects, better tools could be used to accomplish efficient code reviews. Due to
the relatively low number of code of reviews that were conducted during this project, it was hard for
team members to make changes in code that was written by others. Code reviews would have ensured
that at least two members had seen all of the code improving not only code quality, but also ensuring
that at least one other member can extend the code if the original author is currently working on new
functionality.

5
Design of the Nebu System

5.1. Overview
One of the main requirements of Nebu, as described in Section 2.2, is that it can support many dis-
tributed applications and VM-managers. To provide this support, Nebu solely communicates with other
software through RESTful APIs. Nebu also uses a generic workflow, regardless of the application of
VM-manager that is used.

To be compatible with multiple distributed applications and virtual machine managers, Nebu uses a
modular design where it is completely independent of the distributed application and virtual machine
manager that are used. This modular design is further described and motivated in Section 5.2.

Nebu can perform automated virtual machine deployment and placement at the request of the user.
Section 5.3 gives a high-level description of how a user typically interacts with the system. This also
includes retrieving physical topology information. A more detailed view of this interaction is given in
Section 5.4, where Nebu’s generic and efficient APIs are described.

Because there is no formal standard on how the physical topology of a multi-cluster environment
should be organised, different multi-cluster environments can have different physical topologies to
accommodate various workloads and applications. Nebu represents information about the physical
topology of a multi-cluster infrastructure in a generic format, to be compatible with differences in
topology across multi-cluster environments. This format is described in Section 5.5.

For the automated placement of virtual machines, Nebu uses placement policies. These placement
policies provide mappings of the virtual machines to the physical host on which they are placed. Because
selecting the best placement policy is non-trivial and depends on the distributed application, this is left
up to the user. The different placement policies Nebu provides are described in Section 5.6.

MongoDB does not automatically use physical topology when this is provided. To allow MongoDB
to use this information, a MongoDB replication policy is designed and discussed in Section 5.7.

5.2. System Modularity
Because Nebu needs to be compatible with multiple distributed applications and virtual machine man-
agers, as described in Section 2.2, it uses a layered design. The objects in each layer are independent
of those in other layers. The Nebu core forms the middle layer, between the application extension layer
and the virtual machine manager layer. An overview of this design is shown in Figure 5.1. The multiple
layers communicate through RESTful APIs. When adding support for a new distributed application, an
extension needs to be added to the distributed application layer. This can happen without a system
reboot, as new distributed applications can just start conversing with the RESTful API. Similarly, when
support for a new VMM is added, an extension for this VMM needs to be added in the VMM layer. This,
however, does require a system reboot as Nebu can currently only talk to one virtual machine manager
at any given point in time.

The application extension communicates with the the Nebu core and is responsible for making
informed decisions for the application based on the information retrieved from the core.

The Nebu core provides an interface to both users and applications. The core has two main respon-
sibilities. First, it provides information about the physical topology of the multi-cluster infrastructure

19

20 5. Design of the Nebu System

VM Scheduling
Component

VM Deployment
Component

Virtual Machine Manager Extension

VM Topology
Manager

Nebu

Distributed Application

Application-Extension

VM Manager

Figure 5.1: The Nebu system, indicating the different layers and components required in the system, communicating through
RESTful APIs. The components in grey indicate components of the Nebu system.

on which the virtual machines are deployed. Second, it provides an interface through which users can
deploy distributed applications using topology-aware placement policies.

The virtual machine manager (VMM) extension communicates directly with the VMM that is being
used for the deployment of virtual machines. It retrieves information about the virtual machines and
physical resources from the multi-cluster infrastructure. Examples of physical resources include physical
hosts, racks, data centres.

5.3. User-System Interaction
Any Nebu user is able to perform an automated deployment of a distributed application in a virtual
environment as specified by requirement 4 and 5, see Section 2.2. Because this could be any application
or virtual environment Nebu uses a generic workflow, regardless of the application or VM-manager that
is being used. To perform a deployment, a fixed sequence of steps need to be executed.

1. The user should create a new Nebu ‘app’. This forms a reference to the application the user
would like to deploy.

2. The user should inform Nebu what kind of VMs his app will use. This information consists of two
parts. The first part is the general information that Nebu will use to provide a deployment. This
information includes a name for the type of virtual machine, and an estimate of how resources
such as CPU, memory, disk and network are used by this VM. The second part is VMM-specific
information containing details for the virtual machine manager that is not relevant for the Nebu
core. The VMM extension that is used is free to specify the structure of this data.

3. The user specifies a placement policy and requests a deployment specification. This specification
creates a mapping of virtual machines to physical hosts. The specification is presented to the
user to allow them to make modifications if this is desirable.

4. The user starts the automated deployment based on the deployment specification. After this, the
deployment is complete and no further action is required.

Each deployment needs its own app in Nebu. This allows Nebu to perform multiple deployments
of multiple applications. The user does not have to specify what distributed application they want to
deploy. Instead, the user should start the corresponding application extension and provide it with the
app ID from Nebu core.

This approach has two main benefits. First, starting a new application extension process per de-
ployment makes scaling easy because each application extension only manages one application de-
ployment, and there is no system limit on how many application extensions can be started. Second,

5.4. Design of a RESTful API 21

the possibility to run Nebu core separately from the application extensions increases system security.
The Nebu core does not require access to the VMs it deployed. Only the application extension needs
access to these machines. This allows multiple users to access Nebu core without giving these users
access to each others virtual machines.

5.4. Design of a RESTful API
Nebu operates as middleware between the VM manager and the distributed application. To be able to
communicate to both sides, Nebu requires two RESTful APIs to be available. The first API is offered
by Nebu to the application extension. The second should be provided by the VM manager extension
to Nebu. These APIs and how they satisfy the requirements specified in Section 2.2 are described in
sections 5.4.1 and 5.4.2 respectively. For details about specific API calls please refer to Appendix E.

5.4.1. Nebu RESTful API
The Nebu RESTful API provides an interface to both distributed applications and the engineers that
manage these applications. Its main features are:

1. Generating deployment specifications.

2. Performing VM deployment and placement.

3. Providing information about the physical topology of the cloud to the application.

The Nebu API is an efficient API that allows the user to perform an automated deployment with
minimal effort compared to current techniques used by Bitbrains engineers. Each of the four major
steps described in Section 5.3 can be completed with a single API call. This means that a user that
performs all steps required for a complete distributed application deployment manually, which can take
half a day or more, can achieve the same result by calling just four Nebu functions.

Requirement 5 states that the placement of virtual machines should be configurable. However,
assigning each virtual machine to a physical host manually is labour intensive and defeats the purpose
of using Nebu to do the heavy lifting. To help users be more productive, Nebu allows users to specify
placement policies. These policies are predefined algorithms that Nebu can use to calculate a virtual
machine to physical host mapping. Such a mapping is called a deployment specification. The policies
Nebu uses to calculate these deployment specifications are described in Section 5.6. To keep users in
control, they can manually edit the deployment specification to their specific needs.

When the user is satisfied with a deployment specification, they can trigger a virtual machine de-
ployment. This deployment starts new virtual machines and places them according to the deployment
specification. This process is completed without further interaction from the user. This meets require-
ments 4 and 5 from the system requirements.

Finally, the API enables applications to ask for the physical topology of the cloud infrastructure. This
call is performed on a per-application basis. This allows the API to hide physical topology information
that is not relevant to the application. As an example, consider a multi-cluster infrastructure consisting
of two data centres. If an application can only be deployed in one of these data centres, the physical
topology of the other data centre is irrelevant. Providing physical topology information to applications
satisfied requirement 6.

Because this API is a RESTful API, it is easily extensible for distributed applications. The only
requirement is that at least one of the machines that run the distributed application can establish a
connection to the machine that runs Nebu. This satisfies requirement 2. An overview of the API is
shown in Figure 5.2.

5.4.2. VM Manager RESTful API
The VM Manager RESTful API provides an interface to the Nebu middleware. Its main features are:

1. Deployment and placement of virtual machines.

2. Providing physical topology information.

3. Providing virtual machine information.

22 5. Design of the Nebu System

Figure 5.2: The Nebu core RESTful API.

Each supported virtual machine manager must provide this RESTful API to the Nebu core. The overview
of the API is shown in Figure 5.3.

For Nebu to provide information about the psychical topology of the cloud infrastructure and perform
automated virtual machine deployment, it needs to communicate with a virtual machine hypervisor.
However, to make Nebu compatible with multiple hypervisors as indicated by requirement 3, the API
should be generic and minimal.

Satisfying requirements 4 and 5 require virtual machines to be deployed and placed on specific
physical hosts, respectively. Because a Nebu deployment specification always specifies on which phys-
ical host a VM should be placed, the API call to create a new virtual machine combines these two
functionalities. When the Nebu-core requests a new virtual machine to be deployed, it must specify
the physical host where the VM should be placed. This makes the API more efficient without losing
any functionality.

The VM hypervisor API enables Nebu to retrieve the complete physical topology of the multi-cluster
infrastructure. Unlike the API of the Nebu-core, this API retrieves the complete topology. The primary
reason for this behaviour is that Nebu can support multiple applications at the same time. These appli-
cations might require different topology information. In this design, this information can be retrieved
in a single call to the hypervisor extension, in stead of several separate calls. This information is then
cached by the Nebu-core. This reduces the load on the hypervisor extension. Retrieving physical
topology information is specified by requirement 6.

To allow the Nebu-core to manage its application deployments, it needs to be able to retrieve infor-
mation about the virtual machines it has deployed. The hypervisor extension provides this functionality
by offering an overview of all virtual machines in the multi-cluster, or detailed information about in-
dividual virtual machines. The administration that specifies which VM belongs to which application is
done by the Nebu-core. This reduces the load on the hypervisor extension.

5.5. Physical Topology Abstraction
Different cloud providers are likely to have different multi-cluster infrastructures. In addition, differ-
ent virtual machine managers will likely use different classes to represent these topologies. Nebu is
compatible with multiple VM-managers. It is therefore important for Nebu to be able to convert a VM-
managers specific topology representation to a generic representation that can be used throughout
Nebu. This section describes the format chosen to represent the topology and argues why it satisfies
requirement 1.

To model the physical topology a tree-like structure has been designed starting with a root or “cloud”
object representing the multi-cluster infrastructure as a whole. On the first level we find data centres,
which represent the next largest entity in the physical topology. In case of the Bitbrains topology,
three such data centres exist. Within a data centre the topology houses rack entities. These in turn

5.6. Placement Policies 23

Figure 5.3: The Nebu VMM RESTful API.

can contain stores and hosts. The stores contained in racks represent the network attached storage
in the topology, whereas the host entity can also contain stores to represent local storage. All of this
is visually represented in Figure 5.4. Each node in this topology forms a failure domain. This means
that when a node fails, only the children of that element will be affected by the failure. As an example,
consider a rack under heavy load. The load can strain the racks power supply and cause instability.
When this happens, only the nodes that are part of this rack are affected.

This tree like structure is very similar to other commonly used models, such as the model adopted by
Hadoop. Hadoop’s model also features data centres, racks and nodes, but does not distinguish between
different nodes. The nodes in Hadoop are all generic data nodes, whereas the model described above
allows for a distinction in hosts, network storage and local storage.

The model can easily be mapped to the physical topology that is in place at Bitbrains, since they
currently use three different data centres, wherein they have clusters containing blade servers and
storage units. These clusters can be mapped to the racks, the blades to hosts and the storage to the
applicable node type. The model is generic enough to cover other topologies as well, An example is
the DAS-41. The DAS-4 is a distributed supercomputer shared among Dutch universities and hosts a
variety of nodes. Each of the universities hosts its own site which can be mapped to data centres in
this model. Each of these sites consists of multiple racks that contain a variety of physical machines.
These can be mapped to racks and hosts respectively.

5.6. Placement Policies
One of Nebu’s main features is the placement of virtual machines onto physical hosts to improve the
performance and reliability of distributed applications. The deployer component bases its decisions on
the selected placement policy, of which Nebu currently supports four. These policies allow users to
configure the VM placement and reach some or multiple of these goals. The use of placement policies
is part of requirement 5. In this section we will further describe the different policies in terms of their
goals, their algorithms and their intuition.

5.6.1. The Random Policy
Intuition
The random policy provides a base line for the experimental work described in Chapter 8, since a random
policy does not offer any guarantees on performance or replication. In addition it is comparable to how

1http://www.cs.vu.nl/das4/home.shtml

24 5. Design of the Nebu System

Cloud

Data
Center

Rack

Node

CPU StorageCombined

Figure 5.4: Model of the topology as designed for the Nebu system.

a client might get virtual machines from commercial cloud providers such as Amazon EC2, which also
offers no guarantees on the placement of virtual machines.

Algorithm
The algorithm for this policy is by far the simplest and has been described in pseudocode in Algorithm
1. As can be seen, no stores are selected for the virtual machines. When deploying a virtual machine
without selecting a store, a random disk is selected by default.

Algorithm 1 Random Policy.

Input:
numVMs ← the number of VMs that need to be deployed.
hosts ← all the hosts available for deployment.

Output:
chosenHosts ← the hosts chosen to deploy the VMs on.
function deploy

for 𝑖 ← 1…numVMs do
index ←random() % size(hosts)
chosenHosts[𝑖] ← hosts[index]

end for
end function

5.6.2. The Locality Policy
Intuition
Reduction of network communication overhead, either by reducing the amount of traffic, or increasing
the throughput, can increase the performance of distributed applications. Virtual machine managers

5.6. Placement Policies 25

such as VMware offer certain mechanism to assist in the reduction of network communication. The
locality policy tries to place all the virtual machines as closely together as possible, even placing them
on the same hosts. In doing so, VMware can use in-memory transfer to transfer data between two
virtual machines on the same host. Although this policy can have a negative effect on an application’s
reliability, it probably improves performance.

Algorithm
The algorithm for this policy first determines where the other virtual machines of the current application
have already been launched (if any), before selecting the most used rack first. It then sorts the hosts
in that rack by number of virtual machines on them, filling them up with extra virtual machines as it
goes along. The policy also takes a configurable parameter in the form of the maximum number of
virtual machines that can be placed on a single host. The algorithm is described in pseudocode in
Algorithm 2.

Algorithm 2 Locality Policy.

Input:
numVMs ← the number of VMs that need to be deployed.
allRacks ← all the racks available for deployment.

Output:
chosenHosts ← the hosts chosen to deploy the VMs on.
function deploy

racks ← sort allRacks by VMs on rack, most VMs first
while numVMs > 0 do

rack ← racks.next()
hosts ← sort rack.getHosts() by VMs on host, most VMs first
while numVMs > 0 do

host←hosts.next()
while numVms > 0 and host.getNumVMs() < maxVmsPerHost do

chosenHosts ← chosenHosts ∪ {host}
NumVms ← NumVms −1

end while
end while

end while
end function

5.6.3. The Replication Policy
Intuition
The complete opposite of the locality policy is represented by the replication policy. Instead of placing
the virtual machines as close together as possible, it tries to divide the virtual machines as much as
possible. The policy is configured to spread the virtual machines on a rack-level, always choosing the
rack with the least virtual machines on it. In doing so, an attempt is made to change the smallest point
of failure from that of a physical host to that of a whole rack, an event that is far less likely to happen.

Algorithm
The algorithm for this policy is best described as choosing the rack with the least virtual machines,
followed by choosing the host with the least virtual machines. This is summarised in pseudocode in
Algorithm 3.

5.6.4. The Local-Remote Policy
Intuition
This final policy is inspired by the way Hadoop distributes its replicas and has been implemented to
synchronise well with this manner of distribution. When a mapper in Hadoop has to write a new block
of data it places the first copy on its own local host, but writes two duplicates to two remote hosts that
are close together. For instance, in a multi-cluster environment, a work node will place one copy locally

26 5. Design of the Nebu System

Algorithm 3 Replication Policy.

Input:
numVMs ← the number of VMs that need to be deployed.
allRacks ← all the racks available for deployment.

Output:
chosenHosts ← the hosts chosen to deploy the VMs on.
function deploy

while numVMs > 0 do
rack ← least used rack from allRacks
host ← least used host in rack
chosenHosts ← chosenHosts ∪ {host}
NumVms ← NumVms −1

end while
end function

and place two copies on another data centre. To facilitate this, the local-remote policy tries to create
a deployment in which two third of the virtual machines are in the same rack, and one third of the
virtual machines are in other remote racks. A virtualization aware Hadoop can profit from this, since
this distribution of virtual machines offers both reliability guarantees due to the spread over different
racks/data centres and a possible performance increase since two thirds of the machines are located
closely together.

Algorithm
The algorithm for this policy starts by calculating how many virtual machines it needs to add to the most
used rack, which is the rack that will contain the two thirds of the total number of virtual machines. The
other virtual machines will be added to other random racks. This algorithm is described in pseudocode
in Algorithm 4.

Algorithm 4 Local-Remote Policy.

Input:
numVMs ← the number of VMs that need to be deployed.
allRacks ← all the racks available for deployment.

Output:
chosenHosts ← the hosts chosen to deploy the VMs on.
function deploy

twoThirds ← ኼ
ኽ ⋅ numVms

fatRack ← most used rack from allRacks
for 𝑖 ← 1… twoThirds do

chosenHosts ← chosenHosts ∪ {least used host from fatRack}
end for
for 𝑖 ← 1… numVms - twoThirds do

host ← least used host not in fatRack
chosenHosts ← chosenHosts ∪ {host}

end for
end function

5.7. MongoDB Replication Policy
The Nebu extension for MongoDB is responsible for grouping available virtual machines into sets of three
to form replica sets. To achieve this, a policy for forming replica sets is present in the implementation
of the MongoDB extension. The policy is generic in that it can be used to deploy any distributed data
store that uses replication and allows external software to define the location of replicas.

5.7. MongoDB Replication Policy 27

Intuition
The Nebu MongoDB replication policy has at its core the goal that no two VMs in a replica set should
be on the same host or disk. It also uses several intuitive claims about the selection of VMs for a
replica set and how that selection impacts the possibilities for forming other replica sets thereafter.
First, whenever one third of the available virtual machines resides on a single rack, at least one of
those VMs must be included in the next replica set. This ensures that the fraction of VMs residing on
a single rack does not increase further. When not taking this into account, later replica sets may need
to be placed within a single rack, which increases the chance of them being on the same host or store.
Second, by choosing virtual machines that share hosts or stores with many other virtual machines, the
chances of having collisions in future replica sets is reduced.

Algorithm
Algorithm 5 provides pseudocode for how the MongoDB replication policy forms a single replica set,
given a list of available virtual machines and a list of racks. The algorithm first determines for each
rack the minimum amount of VMs that must be placed on it. Then it loops for all 3-combinations of
virtual machines and determines for each combination whether it complies with the main goal and the
first intuitive claim mentioned in the Intuition. In addition, it assign a “value” to each combination that
does comply based of the amount of future collisions it prevents (as per the second intuition). After
all combinations are evaluated, the combination of VMs with the highest value is chosen to become a
replica set.

Due to the complexity of the input of this algorithm, no complete analysis has been done on the
optimality of the output. As this policy is used only for a prototype extension for MongoDB, no time
was spent to provide this analysis. In practice, this algorithm has not failed to form distinct replica sets
where they were possible. For a production-ready implementation, a detailed analysis will be required.

Algorithm 5 Replication policy used in the Nebu MongoDB extension.

Input:
vmList ← list of virtual machines not part of replica set.
racks ← list of racks in the physical topology.

Output:
replSet ← replica set containing three VMs.
function formReplicaSet

oneThirds ← size(vmList) / 3
for all racks r do

vmsOnRack[r] ← amount of vms in vmList residing on rack r
minOnRack[r] ← floor(vmsOnRack[r] / oneThirds)

end for
for all 3-combinations V in vmList do

if V contains duplicate hosts or stores then
value[V] ← 0

else if V does not meet minimum no. VMs per rack then
value[V] ← 0

else
value[V] ← 1 + (no. VMs in vmList sharing a host or store with a VM in V)

end if
end for
replSet ← 3-combination V with highest value

end function

6
Development of the Nebu System

6.1. Overview
Nebu is a complex software system that consists of seven independent software projects. Together,
these projects span almost ten thousand lines of code. Additionally, many of the Nebu projects in-
terface with complex external systems such as Hadoop, MongoDB and VMware. Finally, Nebu must
be compatible with enterprise environments, which significantly restricts the technologies that can be
used by the system. For these reasons, the development of the system a challenging task.

In this chapter all parts of the system are described in detail. Section 6.2 describes the different
projects in the Nebu system and the relation of each part of the system with the system requirements,
which are described in Section 2.2. An overview of all system requirements is shown in Table 2.1. The
different external libraries and development tools used by and for Nebu are described in Section 6.3.
The technical difficulties encountered during the development are described in Section 6.4.

6.2. Product Description
For this thesis a total of seven projects have been implemented, three of which are written in the Java
programming language and four in C++. One of the projects, Nebu-common, is implemented in both
languages. The Nebu-common project provides the generic physical topology representation described
in Section 5.5. This representation meets requirement 1. Additionally, it increases the usability of the
product by making the topology representation available to both Java and C++ programmers. Nebu-
common is described in more detail in Section 6.2.1.

The other two Java projects are Nebu-core, and the Nebu VMM extension for VMware. These
projects are described in detail in Section 6.2.2 and Section 6.2.3 respectively. The Nebu-core project
provides an implementation of the extensible and efficient Nebu RESTful API. This API can be queried
by distributed applications and external users. It is described in detail in Section 5.4.1. This API meets
requirement 2. The Nebu VMM extension for VMware communicates directly with VMware and provides
an implementation of the extensible and efficient VM Manager RESTful API. This API is described in
Section 5.4.2. This API meets requirement 3. Additionally, this extension offers one of two extensions
specified in requirement 10.

When the Nebu-core is combined with a VMM extension, it is capable of providing distributed
applications with information about the physical topology of the cloud infrastructure, and inform these
applications where their virtual machines are located. It is also capable of performing automated virtual
machine deployments and virtual machine placements. These three capabilities meet requirements 6,
4, and 5 respectively.

The Nebu application extensions for Hadoop and MongoDB are implemented in C++. These projects
provide ways to answer the second research question as stated in Section 1.2. This validation is done
empirically through experiments, which are described in Chapter 8. These extensions also increase
the usability of the system and meet requirement 9. These extensions are described in detail in Sec-
tion 6.2.4. To increase system usability even more, a C++ application-framework is provided which
makes it easier for engineers to create an extension for other distributed applications in the future.

29

30 6. Development of the Nebu System

VM Scheduling
Component

Scheduler-Wrapper
VM Deployment

Component

Nebu VMware
VM Topology

Manager

Nebu core

Distributed Application

Nebu app MongoDB

VM Manager

Nebu app Hadoop

Figure 6.1: The Nebu system showing where the different projects are placed in grey.

The locations of the different projects in the software ecosystem are visually represented in Fig-
ure 6.1. As the figure depicts, the Nebu VMware project handles communication with both the deployer
as well as the topology section of VMware, as the design prescribes all operations should be available
in one API. In addition the scheduler wrapper has been marked as not implemented in accordance with
that which is described in Section 4.4.2. In addition OpenStack has been removed from the figure, as
no extension of this was created. For more information see Section 6.4.5.

6.2.1. Nebu Common
Examining the software ecosystem in Figure 6.1, it becomes clear that some of the data needs to
pass multiple layers from its source to its destination. For instance, topology information is provided
by the VM-manager extension, processed and passed along by Nebu-core and finally used by the
distributed application. The different classes that hold information on items such as physical hosts,
physical stores and virtual machines have therefore been placed in a library, called Nebu-common that
has been implemented in both C++ and Java.

Overview
The class diagram depicted in Figure 6.2 shows the different packages and the classes contained
in them that have been created in the Nebu-common library. It should be noted that this diagram
represents the Java version of the library. Whereas the C++ version offers similar classes (at least for
the topology related classes), not all code has been ported due to time constraints and lack of necessity
for this prototype.

An important package in this library is the interfaces package, which holds only two small inter-
faces. The first is the Identifiable interface, which mandates a class to have a getUniqueIden-
tifier() method that returns an ID of the object. Many classes, both in Nebu-common, -core, and
-VMware implement this interface for easy identification of an object. Similarly the IBuilder interface
is used to implement the builder pattern from software engineering. This pattern prescribes the usage
of builder classes, which can be configured by using withX() calls to pass parameters to the object
you want to build. This method allows you to use default values where none are specified, but also
make some parameters for a class mandatory, without either having many different constructors or
having constructors that can throw exceptions. These violate readability and general code standards
within software engineering respectively.

The second most important and most used interface is that of the XMLFactory which is in the
util.xml package. This interface prescribes the implementation of a toXML() and fromXML() method
to allow objects to be transformed into the XML-format that can be transmitted over the HTTP protocol

6.2. Product Description 31

Figure 6.2: Package diagram of the packages and classes in Nebu-common.

Figure 6.3: Class diagram of the topology classes in Nebu-common.

and is still human-readable. The topology package which contains classes that can hold information
on the physical topology of the network is the largest one and will be described in more detail below.

The cache package implements a very simple in-memory caching mechanic for REST-calls or other
central storage of information in the application. If Nebu required data persistence, this class can simply
be extended to communicate with a database in which it can store its information (see Section 9.2.2).
Since this was no system requirement during this project, this feature has not been implemented yet.

The main package of this project nebu.common holds the VirtualMachine class, which holds
information on a virtual machine. The config package holds some simple containers for configuration
that can be read from XML to configure for instance the port an application should connect to or listen
on (something both Nebu-core and Nebu-VMware require), so that the parts of Nebu could be run on
different machines, and finally the util package holds some common static functions that for instance
perform null checks on arguments.

The Topology Information Containers
By far the largest package is the topology package, combined with the child package topol-
ogy.factories. These two packages are an implementation of the generic physical topology rep-
resentation described in Section 5.5. As the class diagram in Figure 6.3 illustrates, these classes are
all relatively simple containers. The builders for these classes have also been included in this more
detailed class diagram, to clearly show how the builder pattern has been implemented in these con-
tainer classes. In this analysis of the package however, only the actual data containers will be further
described, as the builders only serve as a way of constructing the actual containers.

Instead a PhysicalTopology class has been created that holds a PhysicalRoot and offers all of the

32 6. Development of the Nebu System

Figure 6.4: Package diagram of the packages and classes in Nebu-core.

topology altering operations (such as inserting or deleting PhysicalHost objects). The philosophy
behind this decision is that it can be guaranteed that links between two objects are always two-way,
i.e. if an object x believes y to be its parent, then y believes x to be its child. By making the topology
altering methods of the containers public, it is possible to set a parent of an object, without adding the
object to that parent as a child. In addition, the PhysicalTopology class contains some convenience
methods such as getCPUByID() to prevent manually crawling the entire topology every time you need
a specific host.

6.2.2. Nebu Core
The largest of all projects in Nebu is, as the name hints, Nebu-core. This project is located between
the application and VMM extensions and communicates with both. Additionally, it calculates new de-
ployment specifications and manages existing deployments.

Overview
The package diagram of Nebu-core in Figure 6.4 shows the packages in this project and how they
relate to one another. The rest.server package holds the classes responsible for the exposed
API, which will be discussed in more detail below. The deployer package and the corresponding de-
ployer.policies package hold implementations of the policies described in Section 5.6.

The containers package of Nebu-core holds the main data structures behind the API, namely
applications, vmtemplates and deployments which represent the three entities that can be queried
through the API. All four of these containers use a builder pattern and have XML factories to convert
them to and from XML for use in the API, hence the relation with the util.xml and interfaces
packages from Nebu-common.

Another main feature of Nebu-core, which is communication with the virtual machine manager API
is done by the rest.client package. A central class which uses the Singleton pattern is used to
perform the actual requests, which in turn provide CacheLoaders. These CacheLoaders are responsible
for saving the information obtained from the virtual machine manager API in the cache.

The implementation of the API
Nebu-core has been designed to allow easy extension in the future. Two packages are particularly
likely to be extended when new functionality is added. One being the deployer.policies package
as new policies are added to the system and the other being the rest package. As the policies are
mapped from the pseudocode presented in Section 5.6 to the Java classes shown in the package
diagram, we will focus here on the rest package and more specifically the rest.server package.
If more API calls need to be supported by Nebu, this is where an extension would have to be made.

To provide the API as specified in Section 5.4, several different provider classes have been created.
These classes are shown in the class diagram of Figure 6.5. The way this is set-up, has every class
be responsible for one part of the URI. For instance, the AppsProvider class handles the /app
part of the URI, whereas the AppProvider class handles the appID part. A full example of how
the URI parsed is also shown in the figure, indicated by the coloured arrows. By ensuring that each
class handles only one part of the URI, we not only adhere to the Single-Responsibility principle from
software engineering, but also ensure that error checking in the URI can be centralised. For instance

6.2. Product Description 33

Figure 6.5: Class diagram of the provider classes in Nebu-core, wherein the blue arrows indicate how the example URI is parsed.

returning an HTTP 404 code for an invalid application id can now be handled in the AppProvider,
rather than the check being performed in all of the other providers.

Each provider is given the data structures it requires to return the requested information or perform
the requests, but has no access to any other information. This was designed and implemented as such
with authorisation-regulated access in mind (see Section 9.2.1).

As an example of how HTTP requests are processed by the Nebu-core, a sequence diagram illus-
trating the methods that are called internally is presented in Figure 6.6. For the sake of readability, the
methods are displayed as being called directly on the required provider. In reality however, all of these
calls go through AppsProvider and then go to AppProvider etc. as required for the call to be handled.

6.2.3. Nebu VMM Extension
The Nebu-VMM extension for VMware is a project that provides Nebu compatibility for VMware. It is
built on top of vCloud and vSphere and offers the RESTful API from Section 5.4.2 to the Nebu-core.

vCloud is a VMware product that allows users to manage private virtual machines in a commercial
cloud. It allows users to manage virtual machines without giving the user access to the physical
hardware. Among other things, it is capable of deploying virtual machines, and setting up virtual
resources such as virtual networks and virtual storage devices. vCloud itself is built on top of vSphere.

vSphere is a management tool for a VMware cloud. It allows users to manage the complete VMware
infrastructure from the physical hardware to the virtual machines. Among other things, it provides
information about the physical topology of the multi-cluster environment in manages. vSphere features
a permission system that allows different users to view and modify different parts of the environment.
The vSphere permissions that are required to successfully run Nebu are shown in Table 6.1.

Overview
This section provides an overview of the project and describes the packages that together form the
Nebu VMware extension. A complete overview of the packages is shown in Figure 6.7. Because this
extension was written in Java, like the Nebu-common project, it can borrow some of its functionali-
ties. The VMTemplate, VmBootStatus and VirtualApplication classes inherit the Identifi-
able interface from Nebu-common. This interface ensures that objects from these classes are always
uniquely identifiable.

The converter package is responsible for translating objects from one representation to another.
More specifically, it is responsible for translating objects that are returned by the VMware APIs to objects
from Nebu-common. This includes virtual objects such as virtual machines, and physical resources such
as physical hosts, racks, data centres, and storage units.

34 6. Development of the Nebu System

Figure 6.6: Sequence diagram of the provider classes in Nebu-core.

The provider package consists of the classes that provide the RESTful API. These classes correspond
with the four major parts of the VMM API as specified in Section 5.4.2. For example, the VMTem-
plateProvider is responsible for all calls on /vmtemplates, the VirtualResourceProvider is
responsible for all calls made on /virt, etc.

VMware interface
The VMware extension uses APIs from vCloud and vSphere. Interactions with these APIs go through
the vcloud and vsphere package respectively. Which exact VMware APIs are used internally does not
matter for the external functionality and are susceptible to change. This could happen when a better
API becomes available, or one of the VMware APIs becomes deprecated. For this reason, the VMware
extension code does not directly interact with the vcloud and vsphere packages. In stead, this part of
the project is hidden behind an interface called ‘VMware’.

The VMware interface hides all calls to external APIs that are used. It defines the generic calls
that should be handled by VMware, regardless of the exact API that is used to handle these calls.
The implementation of the VMware interface is called ‘DefaultVMware’. It uses vCloud and vSphere to
handle calls made to VMware.

Because the interface hides all external communication, many classes call this interface. An example
is shown in the VMware class diagram shown in Figure 6.8. Many of the provider classes directly call
methods from the VMware interface. All interface methods only return types that are defined either in
Nebu-common or the VMware extension. The interface hides all objects from the external APIs. The
class that implements this interface is responsible for converting these objects, which is done by using
the converter package, described earlier in this section, described earlier in this section.

One of the calls made by the PhysicalTopologyProvider is ‘createVM’. A sequence diagram of this
call is shown in Figure 6.9. When a user wants to create a new virtual machine, they provide the
UUID of the VM template they want to use for deployment, and the physical host where the VM should
be placed. Objects that match these identifiers are retrieved through the VMware interface. These

6.2. Product Description 35

Entity Permission name
Datastore Allocate space
Resource Migrate powered off virtual machine
Resource Migrate powered on virtual machine
Scheduled Task Create tasks
Scheduled Task Modify task
Scheduled Task Remove task
Scheduled Task Run task
Virtual Machine Interaction Power off
Virtual Machine Interaction Power on
Datastore cluster Configure a datastore cluster

Table 6.1: vSphere permissions required to run Nebu.

are represented by the first two calls made by the PhysicalTopologyProvider. The third call shown in
the diagram initiates the creation of a new virtual machine. The VirtualMachine and the PhysicalHost
objects that were retrieved are passed as arguments. The deployment of the virtual machine is run in a
separate thread. The method returns an object that allows asynchronous monitoring of the deployment
and placement of the new virtual machines.

vCloud
The vcloud package is used by the DefaultVMware class. The package provides access to the vCloud
Director SDK through the VCloud class. This SDK is used to retrieve information about virtual machines,
virtual applications (groups of VMs) and VM templates. It is also used for the deployment of new virtual
machines. By using the vCloud SDK, a user that runs Nebu in combination with VMware is able to
monitor his virtual machines through both Nebu and the vCloud web interface.

vSphere
The vsphere package is also used by the DefaultVMware class. This package provides access to the VI
Java API. VI Java is an open-source API that communicates with vSphere. This API aims to be more
efficient than the official vSphere SDK by providing the same functionality with higher performance and
less lines of code.

This API is used to retrieve information about physical resources. This includes the complete physical
topology. It is also used to perform VM placement. After a virtual machine has been deployed by the
vCloud SDK, VI Java is used to move the machine to the correct physical host. It is also used to change
the network storage unit (called Datastore in vSphere) that is used by a virtual machine.

6.2.4. Nebu Application Extension
The application extensions are written in C++ and serve primarily as a proof of concept and as a refer-
ence for future extensions. The extensions make up three of the C++ projects, with the C++ version
of Nebu-common being the last. The core project for the application extensions is the Nebu-App-
Framework. This framework implements common functionality for any application extension, including
retrieving topology and virtual machine information. The framework also implements the main appli-
cation loop, while providing hooks for specific application extensions to perform custom actions.

Figure 6.10 depicts the classes in Nebu-App-Framework and shows the relations between them. The
Application and ApplicationHooks classes form the core of the framework. The Application class contains
a MainLoop function which periodically calls different components in the system. The ApplicationHooks
class contains a list of overridable functions that can be used by specific application extensions to add
custom functionality. This design allows for most of the common functionality to be placed in the app-
framework while still providing the flexibility to application extensions The execution of the main loop
is depicted in Figure 6.12.

Using the app-framework to write a specific application extension requires overriding the Applica-
tionHooks class and providing specific daemons for the application. An example of this is depicted in
Figure 6.11, which describes the extension written for Hadoop.

36 6. Development of the Nebu System

Figure 6.7: Package diagram of the packages and classes in Nebu-VMware.

Figure 6.8: Class diagram of the VMware interface and some providers in Nebu-VMware.

6.3. Libraries and Development Tools utilised by Nebu
As in any software project, some of the functionality that the system requires has already been imple-
mented by others and made available in the form of libraries. The external libraries that are used by
Nebu can be found in Section 6.3.1. Section 6.3.2 describes the same details for the tools used in the
development of Nebu.

6.3. Libraries and Development Tools utilised by Nebu 37

Figure 6.9: Sequence diagram of starting a VM in Nebu-VMware.

Figure 6.10: Class diagram of the Nebu-App-Framework.

6.3.1. External Libraries used by the Nebu System
Because the complete Nebu system consists of both Java and C++ code, some of the external func-
tionalities required two libraries. One for Java and one for C++. For instance, a library that provides
REST-client functionality is required in both the C++ and the Java code. The following list describes all
the libraries used in either C++ or Java, why these libraries were chosen, and how this deviates from
the original plan (if applicable).

Jersey Library that provides REST server and client functionalities and serves as the reference imple-
mentation of JAX-RS (JSR 311 & JSR 339). This library is used because it easy to configure and
is used in other projects like Apache ActiveMQ1 and Apache Camel2.

Grizzly Jersey needs an HTTP server to provide a RESTful API. Grizzly was chosen to provide this
functionality, because it is a simple web server library that is easy to integrate with Jersey.

Guice Although included in the original plan, as it promises a cleaner alternative to the factory-model
used for XML conversion, Guice was not used in the implementation. Guice provides dependency
injection to allow for clean production code and easy testing, but turned out to be a lot of work

1http://activemq.apache.org/
2http://camel.apache.org/

38 6. Development of the Nebu System

Figure 6.11: Class diagram of the Hadoop extension, with selected classes from Nebu-App-Framework.

Figure 6.12: Sequence diagram of the main loop in the Nebu application framework. Pre- and post-hooks exist for the re-
freshTopology, refreshDaemons, and deployDaemons, like depicted for refreshVMs. These calls are left out to keep
the diagram compact.

to set-up and the benefits were minimal at best. It has therefore been decided to not incorporate
Guice into the system.

Log4j An Apache library that provides logging functionality. Not only is Log4j the de facto standard
for logging in Java, but it also requires minimum set-up to get a fully working logging system.

vCloud Director SDK To communicate with VMware’s API, the official VMware SDK that provides a
Java interface to the vCloud REST API is used.

VI Java Library that provides a JAVA interface to the vSphere REST API. This library is used in favour
of the official VI SDK3. Whilst it provides the same functionality, it requires generally requires less
lines of code to achieve the same result. This makes the code more readable and maintainable.

restclient-cpp The C++ applications consume Nebu’s RESTful API through the restclient-cpp library.
Restclient-cpp is a small open source project, with very few features, but enough to suit the needs
of Nebu. An alternative with more support is Microsoft’s C++ REST SDK. However, this library
uses features of the C++ language that are not available on some enterprise operating systems,
as discussed in Section 6.4.1.

3https://www.vmware.com/support/developer/vc-sdk/

6.3. Libraries and Development Tools utilised by Nebu 39

Language Purpose Name & Website
Java HTTP Server Grizzly

https://grizzly.java.net
Java Dependency Injection Guice

https://code.google.com/p/google-guice
Java REST Jersey

https://jersey.java.net
Java Logging Log4j

http://logging.apache.org/log4j/2.x
C++ MongoDB mongo-cxx-driver

http://docs.mongodb.org/ecosystem/drivers/cpp/
C++ REST restclient-cpp

https://github.com/mrtazz/restclient-cpp
C++ XML TinyXML2

http://www.grinninglizard.com/tinyxml2/
Java VMware vCloud Director SDK

https://www.vmware.com/support/pubs/vcd_pubs.html
Java VMware vijava

http://vijava.sourceforge.net

Table 6.2: External libraries used by Nebu.

mongo-cxx-driver Setting up replica sets and sharding in MongoDB requires connecting to the Mon-
goDB database. Mongo-cxx-driver is the official wrapper for interaction with MongoDB in C++,
provided by 10gen.

TinyXML2 The XML used for communication by the Nebu middleware and C++ applications is parsed
in C++ using the TinyXML2 library. Through previous experiences this library was known to be
easy to use. Other libraries provide similar functionality, so there was no compelling reason to
invest time into learning their APIs.

6.3.2. Development Tools used for the Nebu System
The main toolset that was used for the Nebu system contains many common elements, such as an
IDE and a documentation tool. This section describes what tools have been used, how they have been
used and whether this deviated from the original plan as outlined by the orientation report. The tools
are also summarised in Table 6.3.

Eclipse IDE This IDE is a commonly used IDE in Java development and has been used by all team
members for the Java code. Unlike the original plan however, a large part of the C++ code has
also been written in the Eclipse IDE with the C/C++ plug-in. Eclipse has a complete suite of
language features available for C/C++.

Vim editor In addition to the Eclipse IDE, some team members who only made minor changes in the
C++ code still stuck with the vim editor. Vim is a popular terminal-based text editor for UNIX-like
systems and does not require an extensive setup like an IDE such as Eclipse.

Javadoc and Doxygen Javadoc is the de facto standard for documentation of Java code. Addition-
ally, The Eclipse IDE offers Javadoc support by default. Doxygen was used for the documentation
of the C++ code. Doxygen is a popular documentation tool that supports multiple program-
ming languages. Doxygen also support Javadoc-like documentation. This allows documentation
throughout Nebu to be consistent in style, independent of the programming language that is
used.

Maven Although not mentioned in the original plan, it became apparent that a software project man-
agement tool would be required. Two main tools exist for Java projects, Ant and Maven. The
team opted to choose the latter since the team has experience with Apache Maven and especially

40 6. Development of the Nebu System

Purpose Name & Website
Implementation Eclipse

http://www.eclipse.org/
Implementation Vim

http://www.vim.org/
Documentation Javadoc

http://www.oracle.com/technetwork/java
/javase/documentation/javadoc-137458.html

Documentation Doxygen
http://www.doxygen.org/

Building Apache Maven
http://maven.apache.org/

Building Automake
http://www.gnu.org/software/automake/

Table 6.3: Tools used in the development of Nebu.

for Java it is a very popular used option. All Java projects have a Project Object Model (POM) file
outlining the required libraries and installation process.

Automake A powerful toolset that allows the buildchain of a project to be configured for a certain
platform. This toolset was used for the C++ code, rather than the SCons toolset that MongoDB
uses. Whereas SCons offers similar functionality, the make buildchain is more commonly used
and better known to the team. Since the projects are independent of the MongoDB code, no
restrictions on the choice of buildchain exist.

6.4. Main Challenges
During Nebu development, multiple challenges have been encountered. This section describes the
most prominent challenges that were encountered and how these challenges were addressed.

6.4.1. Developing for Enterprise Environments
When developing software, the environment in which the software will run dictates what software and
tools are available and under what conditions the software must run. The Nebu project is aimed at
enterprise environments, like the environment deployed at Bitbrains, as specified by requirement 7 in
Section 2.2.1. For enterprises, server stability and software support are often more important than
having the newest technology available. In addition, security is often a high priority, especially when
customer data is involved.

One of the most popular operating systems Bitbrains provides to customers is CentOS. CentOS
is an enterprise-class Linux distribution with a focus on stability. Core components of the operating
system, such as the kernel and system libraries, are generally several years old to and are not patched
with additional features throughout the lifetime of the OS. Although this policy improves stability by
making support and version control more manageable, it also prevents software written for enterprise
environments from using new technology. For example, several C++ libraries that were initially used
by Nebu use the C++11 version of the C++ programming language. CentOS is bundled with a version
of the C++ runtime that offers no support for the C++11 implementation. This restricts the selection
of modern libraries that can be used for software in an enterprise environment.

Enterprise software is also subject to restrictions imposed by security measures, such as firewalls
and virtual LANs. Because Nebu performs operations on virtual machines in enterprise environments,
security was of importance even during the development and testing phases of Nebu. One of the
security measures we took was configuring firewalls in our cluster. Although configuring firewalls is
often relatively straightforward, it can be a time consuming process. In particular, Hadoop consists of
many services, each with its own set of ports and configurations. Due to one Hadoop service using
random ports for communication, without the option to specify a range, firewalls had to be disabled
altogether during the Hadoop experiments. For production environments, Hadoop may need to be
patched to allow it to function behind a firewall.

6.4. Main Challenges 41

6.4.2. Managing Scalable Distributed Systems
Nebu is designed to support automated deployment of distributed applications. Virtual machines can be
provisioned using the middleware, after which a Nebu- enabled application, such as Nebu-app-mongo,
is responsible for launching and configuring the distributed application. In this process automation and
scalability are key.

One of the main challenges in deploying a distributed system on newly deployed virtual machines
is managing the process from clean install to an operational application. This includes general system
management tasks, such as configuring the operating system and setting up DNS, but more importantly
it includes dynamically and programmatically deploying the application in a state that is ready for
use. The system management tasks are performed using a combination of Puppet4, and a dynamic
DNS solution for enabling hostname resolution. Puppet is a configuration management utility that
is commonly used for distributing software and launching services across multiple machines. The
deployment of the distributed application is done by Nebu and the required steps differ per application.
For Hadoop, Nebu generates configuration files and a file describing the topology. Nebu then uploads
these files to the virtual machines and starts the various Hadoop daemons. During runtime Nebu will
repeatedly upload new versions of the topology file to reflect changes in virtual machine locations.
For MongoDB, Nebu partitions the available virtual machines into replica sets, starts the appropriate
daemons, configures the replica sets, and enables sharding for the cluster.

6.4.3. Big Data Application Limitations
Taking advantage of the virtualization awareness provided by Nebu is mostly done in the application
layer. Thus, the effectiveness of Nebu depends on support from the application. For Hadoop, Nebu
hooks into the Hadoop Virtualization Extensions provided by VMware [6].

MongoDB does not have built-in support for physical topologies, and has several limitations that
inhibit dynamically restructuring a distributed MongoDB database. For example, moving a replica from
one host to another involves copying all data from one host in the replica set to the new host. In
a standard configuration of one MongoDB daemon per (virtual) machine, this could be as much as
copying a full disk from one machine to another. This makes dynamic repositioning of replicas slow
and impractical. Although it is possible to run multiple daemons on the same machines in different
replica sets, this solution requires more complex management and thus is less maintainable. Moving
a primary data servers incurs an ever bigger penalty; it triggers a new election in the replica sets, a
procedure which can take tens of seconds, during which all data accesses are disabled. This downtime
may not be acceptable for all applications, so Nebu does not use runtime reshuffling of data to prevent
triggering elections.

Another major limitation in MongoDB is found in its failover mechanisms. When a single node fails,
elections can take place in a replica set to chose a new primary server. With two nodes remaining, a
majority vote will eventually be reached and the database can resume normal operation. However, if
the primary and one secondary server in a replica set fail, it is no longer possible to reach a majority
vote as each node must assume there are three participants in the election. The replica set will become
unavailable and any query involving that replica set will fail. Bringing the database back online requires
bringing the nodes back online, manually reconfiguration of the replica set, and synchronising data
between members of the replica set to ensure consistency. In practice this means that having two
replicas of a replica set on the same physical host forms a single point of failure that can disrupt the
entire database.

Due to the limited time available for the project, there was no time to extend the core of MongoDB
with topology awareness or to fix the failover issues. Instead, Nebu works around these restrictions
by using topology information during deployment. Nebu guarantees that no two virtual machines on
the same host are present in the same replica set.

6.4.4. VMware API Difficulties
The Nebu virtual machine manager (VMM) extension for VMware communicates with the vCloud REST
API. This creates compatibility between Nebu and vCloud. Engineers or customers that create their
virtual machines using vCloud can use Nebu in the same environment they use for manual VM deploy-
ment.

4http://puppetlabs.com

42 6. Development of the Nebu System

Nebu requires knowledge about the physical machines underneath the virtual machines. The vCloud
API that is used can provide this information through a so-called ‘admin extension’. Unfortunately, this
admin extension does not feature fine-grained control on what permissions become available to the
user. This means that to use this feature, Nebu needs full administrator permissions on the vCloud
instance that is used. During Nebu’s development, these permissions were not available.

To solve this, the Nebu VMM extension for VMware requires a second API to be available. It uses
the VI Java5 library to communicate to vSphere and hereby bypasses the vCloud interface. vSphere
features a much more advanced permission system than vCloud, and offers a more complete view of
the multi-cluster infrastructure. The Nebu VMware extension requires a set of vSphere permissions
which are shown in Table 6.1.

6.4.5. Lack of OpenStack Support
Although originally planned, the OpenStack extension for Nebu has not been implemented for this
thesis. With the VMware API proving quite difficult to work with and with no easily accessible OpenStack
deployment to validate the extension on, there simply was not enough time for the team to implement
the OpenStack extension. Setting up an OpenStack deployment in itself is a nontrivial task and with no
help readily available from experts, which are available for VMware in the form of Bitbrains engineers,
the set-up itself would already have taken at least one full week for one person. Regardless, if the API
as prescribed for virtual machine managers is provided by OpenStack, it can be integrated into Nebu
without further changes.

5http://vijava.sourceforge.net/

7
Quality Assurance

7.1. Overview
Nebu has been designed to be modular and be compatible with other distributed applications and virtual
machine managers now and in the future. As is the case for any project of this scale, code quality is
important to guarantee maintainability and readability. As Nebu is likely to be further developed by
other engineers, and therefore to become a long-lasting software project, measures have been taken
to increase code quality. To guarantee this code quality, Nebu’s source code is thoroughly tested with
the help of unit testing and continuous integration through Jenkins. These measures are described in
Section 7.2. The code is also continuously inspected by a code analysis tool called SonarQube. More
about SonarQube and other code analytics performed and how they helped to improve Nebu source
code can be found in Section 7.3.

7.2. Unit Testing and Continuous Integration
As a project grows, new features are rapidly added, leading not only to an increase in functionality,
but also to a decrease in readability and maintainability. A countermeasure that can be taken to
help maintainability is the development of a proper test suite containing automated tests. When new
features are added, these tests can show whether any previous functionality is broken by the additions.
Section 7.2.1 describes the policy that the team applied during the project. Sections 7.2.2 and 7.2.3
detail what testing libraries have been used and how continuous integration was set-up to automatically
run the tests.

7.2.1. Testing Policy
The orientation report describes Test-Driven Development (TDD) and how this can be applied to this
project. In TTD the policy is to first write a suite of test-cases with stub implementations, only to see the
test cases fail. Then, after the full test-suite has been written, the actual implementation of production
code is allowed to start. We planned on applying a strategy not unlike this one for this project, with one
person writing test code for a certain feature and another independently implementing it. Unfortunately
we had to abandon this idea in an early stage of development, as it was unfeasible to apply in this
project.

The main issue we encountered is the usage of the VMware API, as well as other frameworks. As
it is crucial to mock these APIs to create a clean testing environment, that means that at the time
of writing the tests you already need to know what methods are going to be called of these APIs.
If the test-code and production-code are written by different team members, both need significant
understanding of any external API that is used. This means doing work twice. Using this test driven
development methodology would be a very time-consuming operation for this project and as time for
actual implementation was already short, the idea was abandoned.

Testing in general was included in the process to a point where most projects now have an extensive
test-suite. Especially the Nebu-common library is thoroughly tested, since it forms the basis for the

43

44 7. Quality Assurance

Language Purpose Name Website
C++ Mocking googlemock http://code.google.com/p/googlemock/
C++ Unit Testing googletest http://code.google.com/p/googletest/
Java Unit Testing Jersey Test-Framework https://jersey.java.net/
Java Unit Testing JUnit http://junit.org/
Java Mocking Mockito http://code.google.com/p/mockito/
Java Mocking PowerMockito https://code.google.com/p/powermock/

Table 7.1: Overview of Nebu testing libraries.

other Java projects, in that it contains many of the data containers. If new features were to be added
to this common library, the tests could clearly show if any of the old functionality has been broken. The
only two projects currently lacking in a thorough test-suite are the application extensions. Since these
are very small projects that are tightly coupled with the application and rely heavily on a number bash
scripts, testing these projects is a complex task that yields few benefits. Simply running the code will
already expose any bugs relatively quickly and the amount of time that would have gone into setting
up a proper testing environment for these projects was better spent testing the app-framework as this
forms the basis for both of the application extensions.

Whereas many different unit tests have been written, no automated system wide integration tests
have been written. Although a very time-consuming operation, the scripts that currently exist to manu-
ally test the communication between different components could have been expanded upon to feature
at least a single test that would test everything from creating an application to launching a distributed
application on a virtual machine. The automatic verification through this test would have been prob-
lematic however due to restrictions on where the different components can currently run to be able to
contact the VMware API.

7.2.2. Testing Libraries
To thoroughly test the Nebu source code, multiple testing libraries have been used. This section
describes the libraries that were used and why they were used. An overview of all testing libraries can
be found in Table 7.1.

JUnit The de facto standard for unit tests in Java. JUnit allows programmers to specify test cases that
validate the results of individual methods.

Mockito A mocking library for Java. Allows users to mock objects to enable testing in isolated testing
environments. This way expensive or privileged methods can be mocked (for instance interaction
with VMware), to test how the code handles these requests.

PowerMockito A mocking library for Java that is built on top of Mockito. It allows users to mock
methods that cannot be mocked by traditional Mockito, such as final or static methods and con-
structors. Mocking these methods is normally not recommended, but for testing purposes this is
sometimes required. Classes or methods might have to be final to prevent extension by third-
parties, whilst mocks of these classes or methods are required for testing purposes. This library
is used if no other ways of testing a class were available.

Jersey Test-Framework A library that allows unit-testing for Jersey REST client- and server appli-
cations. This library is used because Nebu uses Jersey to implement REST APIs.

googletest A testing framework for C++ written by Google. Due to operating system restrictions
(see Section 6.4.1), Nebu can not use the latest version of the library, 1.7. Instead, version 1.6
is used and bundled with Nebu.

googlemock Googlemock is a C++ mocking library written by Google to integrate with the googletest
framework. It provides both mocking and extended assertions for writing tests. Nebu test code
uses googlemock extensively to write unit tests. Like googletest, Nebu is bundled with version
1.6 of googlemock to support CentOS.

7.3. Code Analysis 45

Metric Nebu-common Nebu-Core Nebu-VMware Total Java
Lines 4122 6096 4373 15591

Lines of Code 1931 3335 2094 7360
Comment % 32 26 34 28

Duplicated Lines % 0 0 0 0
Number of tests 311 237 198 746
Line coverage % 87 73 86 80

Issues 1 14 9 24

Table 7.2: The metrics for the Java projects as reported by SonarQube.

7.2.3. Continuous Integration: Jenkins
The creation of test code alone is not enough to have simple checks of whether or not new functionality
breaks older code. To verify whether this is case, one needs to actually run the test suite as well. For this
purpose a continuous integration server deploying Jenkins 1 has been set-up. The git repositories used
for Nebu are configured to notify Jenkins every time new code enters the repository, triggering a build
in Jenkins. This ensures that every time new functionality appears on the repository, regression testing
in the form of the unit tests is automatically run and results can be seen on the server. Installation of
the Jenkins server in itself is simple, as this is all well documented. Some of the Jenkins’ plug-ins the
team required were slightly more complicated to set-up.

To make the testing environment as realistic as possible, Jenkins was deployed on a virtual machine
in Bitbrains’ enterprise multi-cluster environment. Just like the virtual machines that Nebu is likely to
be deployed on, Jenkins is also running on a CentOS 6.5 image. This allowed for easy testing with
older versions of the libraries, as these were the newest ones available on Jenkins.

7.3. Code Analysis
Whereas an extensive test suite can help to improve maintainability and help to quickly see if new code
breaks old features, static code analysis can help to improve maintainability, but also to more easily
expand existing code. Not only can code analysis help to give a clear overview of the current state of
the code, it can also help to find issues in the code. For this purpose a SonarQube-installation has been
deployed, of which we describe the installation and results in Section 7.3.1. In addition every Bachelor
thesis group has been permitted to submit their code for analysis by the Software Improvement Group
(SIG), of which we describe the comments and our response in Section 7.3.2.

7.3.1. SonarQube
To keep track of the current state of the code we deployed a tool called SonarQube2 that can report
on commonly-used metrics in code analysis. It does not only show simple code metrics such as Lines
of Code (LOC), but also more complex metrics such as average complexity per method, code coverage
and duplication across projects.

All software developed for this project has been submitted to regular analysis, the final results of
which are summarised in Tables 7.2 and 7.3. Note that the lines of code mentioned in the tables
and figures do not include the test code. For an example of an report by SonarQube, please refer to
Appendix D. As the analysis shows, some of the projects still contain what SonarQube labels “issues”.
The issues that remain are relatively minor however, including issues such as “3 is a magic number”
and “avoid commented-out lines of code” (reported for pseudocode). Three of the main statistics (LOC,
line coverage and issues) are visually represented for easy comparison in Figure 7.1.

From both the tables and the figure it becomes quite apparent that the applications indeed suffer
from very low coverage (that is 0%) due to their lack of tests as explained in Section 7.2.1. It also
becomes clear that as the size of the project increases, so generally does the number of issues, though
Nebu-core still hosts only 11 issues, of which none are labelled as ”Blocking” or ”Critical” by SonarQube.

As SonarQube has been analysing the the source code from early in the development stage, it is also
capable of reporting changes in code over time. Figure 7.2 shows the lines of code and percentage of

1http://jenkins-ci.org/
2http://www.sonarqube.org/

46 7. Quality Assurance

Metric Nebu-common-cpp -app-framework -mongo -hadoop Total C++
Lines 2238 1034 434 432 4138

Lines of Code 1246 598 257 251 2362
Comment % 15 18 2.3 1.2 13

Duplicated Lines % 0 0 0 0 0
Number of tests 155 57 0 0 212
Line coverage % 79 73 0 0 60

Issues 0 0 0 0 0

Table 7.3: The final metrics for the C++ projects as reported by SonarQube.

Figure 7.1: Comparison of three main statistics for all projects. The projects are alphabetically ordered on the horizontal axis.
The vertical axis represents the number of issues (note the log scale). The size of each circle indicates the lines of code in each
project and the colour indicates the coverage, where fully red equals 100%.

comments over time for the Nebu-common library implemented in Java. As can be seen, the percentage
of comments has been relatively constant throughout the project, indicating that new source code was
already well commented when committed to the server.

Another metric worth exploring is the ratio of testcode compared to production code, but unfor-
tunately SonarQube has no tools to provide this metric. When excluding commented lines, a rough
estimate made using a word count utility yields a ratio of production-code:test-code of 1:1.2. SIG rec-
ommends a ratio of at least 1:1, which is less than the estimate value of the combined Nebu projects.

7.3.2. Software Improvement Group
The Software Improvement Group (SIG) is a company that translates detailed technical findings con-
cerning software systems into actionable advice for upper management. SIG performs static analysis
on the Nebu source code two times. The first time to provide feedback to the development team on
what can be improved. The second time to confirm that this feedback is taken in consideration and to
evaluate the final quality of the code. Feedback from SIG can be found in Appendix B.

SIG awards point on a ranking wherein five stars is the maximum. The points awarded are based
on items such as the presence of testcode, the amount of code duplication, module coupling, and
other metrics indicating good readability, maintainability and testability. In the initial feedback, the
implementation scored four out of five stars, indicating the code was already up to high standards.
The main issues reported by SIG were duplication among the different C++ projects and the module
coupling with classes like VirtualMachine carrying too much responsibility and being used too much.

The first issue, that of duplication, has been resolved by the introduction of the App framework, that
removes all duplication from the two projects (as the most recent SonarQube measurements indicate
in Table 7.3). The module coupling has also been addressed, by moving the Builder classes, which
were inner classes of all the objects they build, to separate classes as suggested by SIG. In addition

7.3. Code Analysis 47

Figure 7.2: Lines of code (blue) and percentage of comments (red) over time for the Java version of the Nebu-common library.

the builders were rewritten to follow a similar inheritance pattern as the containers classes to further
reduce duplication. These and other points of refactoring resulted in a very positive second round of
feedback from SIG, in which they remark that from their observations it is clear the recommendations
of the initial evaluation were addressed properly in the rest of the development.

8
Experimental Work

8.1. Overview
To validate the system, Bitbrains provided access to part of their multi-cluster environment for con-
ducting experiments. Table 8.1 shows information on the virtual machine image, as well as the version
of MongoDB and Hadoop that were used in the experiments. For these experiments two racks have
been provided, within the same data centre, both of which are in a live production environment. All
experiments have been conducted using eighteen virtual machines as data nodes for Hadoop and data
servers for MongoDB. In addition a name and resource node in the case of Hadoop and three config
servers and a queryrouter for MongoDB have been used.

The main focus of the experiments is to validate Nebu as a solution to the issue of reliability of
distributed applications in a virtualized environment, as set out by the first research question. To this
end, the reliability and performance of both Hadoop and MongoDB are tested using the various policies
provided by Nebu.

For Hadoop, a subset of the HiBench benchmark suite [7] has been used to test both the reliability
and performance. Only the TeraSort and WordCount benchmarks worked with the latest version of
Hadoop, so these were both run. For reliability purposes the choice of workload is not highly relevant, as
the Hadoop replication policy does not distinguish between different types of data blocks. Result data in
any form or shape will therefore be treated in the same manner, which means small differences are to be
expected between the different workloads as far as duplication spreads are concerned. For performance
analysis there are few workloads available from real world scenarios, it is therefore common for Big Data
research to focus on synthetic workloads, such as WordCount and TeraSort described here. However,
previous work on the BTWorld use case [5] is used to validate that the reliability of the system does
not degrade when taxed with a complex, real-world workload. The key parameters of each benchmark
is summarised in Table 8.2.

The sizes of the workloads used for WordCount and TeraSort are of such magnitude that two
important criteria can be met. Firstly, as each virtual machine has only 4GB of memory and each node
will store 10GB, it is impossible for the machine to fully fit the data into memory. This ensures that
data locality and in memory transfers can actually affect the efficiency of operations. Secondly, as the
data is split into blocks of 128MB and each block is replicated trice, each node will hold on average
240 blocks of data. This is a sufficiently large number to see differences in the number of physical
hosts that share the same data. Whereas larger data sets might have offered even larger and perhaps
clearer differences in these numbers, the fact that the experiments run in a production environment
limits the amount of resources (both physical resources and time) available for experimentation. In this
set-up experiments already had to be carefully planned and communicated so that any alarms raised
at Bitbrains due to heavy loads on the system would not be a cause for concern.

To analyse the influence of topology awareness, three levels of awareness are tested; no aware-
ness (NA), rack awareness (RA), and VM awareness (VA). In addition, three placement policies are
tested to identify how they influence the reliability and performance of the system.

The performance of MongoDB is tested using the Yahoo! Cloud Serving Benchmark (YCSB) [8].
The YCSB consists of multiple common workloads in cloud applications, and is used for benchmarking

49

50 8. Experimental Work

Property Value
Operating System CentOS 6.5

Memory size 4 GB
Storage capacity 128 GB

Hadoop 2.4.0
MongoDB 2.6.3

Table 8.1: Properties of the Virtual Machine image and the versions of the Hadoop and MongoDB.

Benchmark Size Mappers Reducers
WordCount 180 GB 720 360
TeraSort 200 GB 800 400
BTWorld 100 GB Varying Varying

Table 8.2: Parameters for the workloads used to test Hadoop.

database systems. The goal of these experiments is to identify performance penalties when adding
virtualization awareness to the deployment of MongoDB. Due to the time-consuming task of manually
setting up a sharded replicated MongoDB cluster, only one policy was tested. The setup tested is a
deployment using the Locality policy (six hosts, three virtual machines per host). For the experiment
without virtualization awareness, three virtual machines on a single host were combined to form a
replica set. For the virtualization aware experiment, Nebu spread the replicas over different hosts.

For all of the experiments the Ganglia Monitoring System1 was also set-up to monitor metrics, such
as CPU load, memory usage, network transfer, and I/O transfer. Ganglia specialises in monitoring
distributed systems, with nodes posting information to a central server that can aggregate and display
the information. Unfortunately the graphs obtained from Ganglia offer few new insights other than
being evidence to the high network speeds Bitbrains can support between different hosts. The resulting
graphs have therefore been excluded from this report.

8.2. Results
In this section, the results of the various experiments are discussed. The reliability and performance
tests for Hadoop are described in Section 8.2.1 and Section 8.2.2, respectively. For MongoDB, the
reliability and performance are described in Sections 8.2.3 and 8.2.4.

8.2.1. Reliability Hadoop
To demonstrate the effects of topology-awareness on the reliability of Hadoop, the locations of repli-
cas have been monitored throughout the execution of the HiBench benchmark. The fsck command
provided by HDFS was used in three-minute intervals to record the exact placement of each block and
each replica. Analysis of the replica placement revealed that no replicas were moved throughout the
experiments after initial placement. To provide comprehensive results, only the snapshots at the end of
both the WordCount and TeraSort benchmarks are presented in this section. These snapshots describe
the largest amount of blocks and are thus statistically the most meaningful.

The results of the replica placement analysis are depicted in Figure 8.1. Three aspects deserve
explicit mentioning. First, the differences between the WordCount and TeraSort results is small. For
example, the figures show that for the Locality policy without topology awareness roughly 0.7% and
1.0% of blocks are placed on a single host after the WordCount and TeraSort experiments, respectively.
Second, the results show that the rack-aware HDFS in general places two replicas on the same host more
often than HDFS without any topology awareness. For the experiments with the Locality policy, the
rack-aware HDFS places two replicas on the same host less frequently. Finally, during the virtualization
aware experiments not a single block had two replicas placed on the same host.

Similar results were seen throughout the execution of the BTWorld workload (not depicted). Due
to time and resource constraints, this benchmark was only run once using an altered Locality policy to
spread the load over the two available racks. Although six hosts were used with three virtual machines
each, as per the default Locality policy, these six hosts were spread over two racks. This change does

1http://ganglia.sourceforge.net/

8.2. Results 51

 0

 20

 40

 60

 80

 100

NA RA VA NA RA VA NA RA VA

Fr
a
ct

io
n
 o

f
b

lo
ck

s
in

 H
D

FS
 [

%
]

Deployment Policy

All replicas on three hosts
All replicas on two hosts
All replicas on one host

LocalityLocal:RemoteRandom

(a) Replica distribution for WordCount experiments.

 0

 20

 40

 60

 80

 100

NA RA VA NA RA VA NA RA VA

Fr
a
ct

io
n
 o

f
b

lo
ck

s
in

 H
D

FS
 [

%
]

Deployment Policy

All replicas on three hosts
All replicas on two hosts
All replicas on one host

LocalityLocal:RemoteRandom

(b) Replica distribution for TeraSort experiments.

Figure 8.1: Replica distribution on HDFS after each experiment. Each bar corresponds to a single placement policy with a
specified level of topology awareness and depicts what fraction of blocks have their three replicas stored on one, two or three
physical hosts. The topology awareness levels are: no awareness (NA), rack awareness (RA), and virtualization awareness (VA).

not impact the effect of single host failure. Like the HiBench experiments with virtualization awareness,
no blocks were detected with two replicas on the same physical host throughout the BTWorld workload.

52 8. Experimental Work

 0

 500

 1000

 1500

 2000

Random Local:Remote Locality

M
a
ke

sp
a
n
 [

s]

Deployment Policy

No Awareness
Rack Aware

VM Aware

(a) Makespan for WordCount on 180 GB input.

 0

 500

 1000

 1500

 2000

 2500

Random Local:Remote Locality

M
a
ke

sp
a
n
 [

s]

Deployment Policy

No Awareness
Rack Aware

VM Aware

(b) Makespan for TeraSort on 200 GB input.

Figure 8.2: Makespan for the execution of the WordCount and TeraSort benchmarks on 18 nodes.

8.2.2. Performance Hadoop
Figure 8.2 depicts the makespan for the WordCount and TeraSort experiments. In general, the results
do not vary significantly between topology awareness levels. The single exception to this trend is
the rack-aware TeraSort using the Random placement policy. The rack-aware run took about 36%
longer to complete. For the Locality policy, providing virtualization awareness decrease the makespan
of WordCount and TeraSort by 8.9% and 13%, respectively, when compared to the baseline without
any virtualization awareness. Rack awareness also caused a decrease in makespan when using the
Locality policy, despite all nodes being contained in a single rack for this experiment. Finally, the
only experiment where virtualization awareness caused a decrease in performance is the WordCount
running on Hadoop deployed by the Local:Remote policy. In this case a 9% increase in makespan was
observed.

The performance of the BTWorld use case was recorded as well. However, no baseline could be set
due to the intensity and duration of the workload, so no comparison can be made.

8.2.3. Reliability MongoDB
As the placement of replicas in a MongoDB cluster is determined at the time of deployment, running
benchmarks will not reveal relevant information regarding the reliability of MongoDB in a virtualized
environment. To gain insight into the effects of node failure on a MongoDB cluster, failure injection
was used on a live deployment of MongoDB. After inserting records into a sharded replicated cluster,
numerous combinations of MongoDB daemons were killed. This process led to the following conclusions
on the reliability of MongoDB, associated with four types of failure:

1. Removing secondary nodes does not impact the availability of the cluster.

2. Removing a primary node leads to unavailability of data until a secondary node of the same replica
set is promoted to primary. This is an automated process that usually completes within a minute.

3. Removing a majority of the nodes in a replica set, including the primary node, leads to unavail-
ability of data and requires manual restoration of the cluster. Any query attempting to access the
lost data is stalled or fails to complete.

4. Removing all nodes in a replica set leads to unavailability and loss of data, unless at least one of
the lost nodes can be restored.

Failures of the first two types in the list do not significantly hinder the operation of a MongoDB cluster,
and can occur regardless of virtualization awareness. The third and fourth type of failure, however,
require human attention to keep the data accessible. The likelihood of these failures occurring given a
single physical host failure can be estimated through simulation. For a deployment using the Locality
policy (six hosts, three VMs per host), these simulations reveal that for a single host failure the chance
of a type 4 failure is 0.74% (std. dev.: 0.012), while the chance of a type 3 failure is 22% (std. dev.:
0.050). Although the simulation is a simple loop of a random generated placement of replicas, the
used code is available upon request. During experiments, Nebu did not place multiple replicas of the
same set on a single host, so only type 1 and 2 failures could have occurred.

8.3. Discussion 53

 0

 2000

 4000

 6000

 8000

 10000

 12000

Read Update Read+Update

T
h
ro

u
g

h
p

u
t

[o
p

s/
s]

Types of Operations

No Awareness
Virtualization Aware

(a) Throughput in operations per second for various ar-
tificial workloads.

 0

 2

 4

 6

 8

 10

Read Update Read+Update

A
v
e
ra

g
e
 L

a
te

cn
y
 [

m
s]

Types of Operations

No Awareness
Virtualization Aware

(b) Average latency per operation for various artificial
workloads.

Figure 8.3: Results of running a subset the YSCB benchmark on a MongoDB cluster deployed using the Locality policy with 18
data servers. All workloads were run three times with one million operations per run. Averages are reported.

8.2.4. Performance MongoDB
Figure 8.3a depicts the throughput for a read-only, an update-only and a combined workload. For the
read-only workload the throughput of the virtualization-aware deployment is 19% lower than the de-
ployment without awareness. For the update-only and combined workloads, virtualization awareness
improves the performance slightly, respectively with 2.0% and 1.4%. Figure 8.3b depicts the average
latency of operations during execution of the workloads. The difference is again largest for read op-
erations, with an increase of 23% when adding virtualization awareness. Update latency decreases by
2.0%, while the combined workload reveals an increase of 6.5% when adding virtualization awareness.

8.3. Discussion
The experiments for Hadoop validate the claim that Nebu can improve the reliability of Hadoop with-
out degrading performance. Throughout all virtualization-aware experiments there was not a single
block that had multiple of its replicas stored on the same physical host, whereas this did occur for
all experiments with rack-awareness or without any topology awareness at all. This can be intuitively
explained by the fact that there were at least three physical hosts used for each experiment, which
means that there was always a viable placement of replicas without them residing on the same host.
The generally poorer placement of a rack-aware Hadoop can also be explained intuitively. When placing
replicas without any topology awareness, Hadoop can pick three random nodes to place its data on.
Rack-awareness adds the restriction that the second and third replica must be placed in a different rack
than the first replica, and thus these two replicas are placed in the same rack when only two racks are
available. This limits the possible options for placement, increasing the chance of having two replicas
end up on the same host.

The performance experiments are not as conclusive as the reliability experiments, but do not point
towards a loss in performance when adding virtualization awareness. The makespan differences when
adding virtualization awareness range from an increase of 9% to a decrease of 13%. The experiment
closest to VMware’s experiments in the Hadoop Virtualization Extensions white paper [6] is the ex-
periment using the Locality policy. Although this experiment did not span two racks, the colocation
of multiple virtual machines on the same host allows for increased data locality. The makespan de-
crease of 9% and 13% for WordCount and TeraSort, respectively, rival the 13% decrease in makespan
observed by VMware.

The evaluation for MongoDB is less valuable, as no changes have been made to the operation of
a MongoDB cluster. Nebu adds the ability to deploy MongoDB clusters automatically and it does so
using information about the physical topology. Simulations of the reliability of MongoDB reveal that
nearly one in four single host failures lead to the inaccessibility of a manually configured MongoDB
cluster, when the virtual machines are placed according to the Locality policy. Using the same policy,
Nebu is able to prevent this scenario altogether by ensuring that multiple replicas of the same replica
set are spread over multiple hosts. The performance of MongoDB decreased for read operations when
switching from a manual to an automated, virtualization-aware deployment. However, the chosen

54 8. Experimental Work

manual configuration is assumed to be the ideal case for performance, as the primary servers are
spread evenly over different physical hosts. It is likely that different manual or randomised placements
of replicas achieve different performance. Evaluation of the performance using different placement is
left as future work.

Overall, the experiments reveal that Nebu greatly improves reliability of both Hadoop and MongoDB
by preventing a single host failure from impacting the availability of the system. The performance
evaluation is incomplete due to the difficulties in evaluating distributed systems. However, the observed
performance loss is insignificant when considering the benefits of keeping data safe. Customers at
Bitbrains, and enterprises in general, tend to prioritise reliability over performance, as failure can be
catastrophic for business operations.

These experiments were run in a production environment. Despite the relatively low load from
other customers at the time of running the experiments, it may have influenced the results, so more
experiments need to be done before definitive claims about the performance can be made. Under
higher load, or with a larger portion of hardware available for experiments, shared I/O like network
and hard disk accesses may become a more apparent bottleneck.

9
Ongoing and Future Work

9.1. Overview
This section is split into three major parts. First, Section 9.2 describes new functionalities that should
be implemented in future versions of Nebu. Second, Section 9.3 describes how the Nebu source
code will be open sourced, and a community can be formed to further develop Nebu. Third, process
improvements are described for future projects in Section 9.4.

9.2. New Functionality
The Nebu project is designed to grow over time and support many applications and virtual machine
managers. This section describes the features that need to be implemented to turn Nebu into a
production-ready application. This excludes extensions for applications or virtual machine managers
that are not yet supported. Nebu does not rely on these extensions to be production ready.

9.2.1. Authorisation System
As described in Section 4.4.2, the authorisation system is a requirement that was introduced during
development, rather than the orientation phase. Because Nebu can serve multiple users at the same
time, it is important that each user can only access their own information. Currently, Nebu does not
have an authorisation system, which means that every user can potentially obtain information about
the virtual machines of other users. To be called production ready, Nebu must feature an authorisation
system. However the structure of the API and implementation makes the introduction of authorisation-
based access simple.

As all API requests focus around applications in the Nebu system and all requests internally go
through the AppsProvider class (see Section 6.2.2), this is the only place where authorisation verification
would be required. Other than this a login URI would have to be provided, as well as permanent storage
of user credentials.

9.2.2. Fault Tolerance
Nebu provides information to other distributed applications which allow them to improve their reliability
and fault-tolerance. However, Nebu itself currently has no built-in fault-tolerance mechanism.

To provide Nebu with fault tolerance, two main features need to be added. First, a database
should be introduced to provide Nebu with persistent storage. This prevents data loss in case of node
failure. Second, a communication system should be introduced between multiple Nebu instances.
Using multiple Nebu instances at the same time increases the availability of the system in case of node
failure.

Fault tolerance is not required for Nebu to become production ready. Nebu is currently only used for
the initial deployment and placement of distributed application. It does not perform actions during the
runtime of these applications. For this reason, persistent data about these applications is not required.

55

56 9. Ongoing and Future Work

9.2.3. Hadoop Network-Storage Awareness
Nebu’s Hadoop extension provides information about the physical topology to Hadoop. Hadoop can au-
tomatically improve performance when supplied with physical topology information. However, Hadoop
assumes that the virtual machines use local disks, which might not be the case in a commercial cloud.
To further improve Hadoop’s performance in a virtual environment, network-storage awareness must
be built into Hadoop.

Although this feature is part the Hadoop extension, and not of the Nebu-core, the addition of this
feature is important to make Nebu production ready, because this extension provides proof of Nebu’s
capabilities and contributions.

9.3. Publication of the Nebu Code
Although the work the team has done on Nebu for the thesis is now finished and a working prototype
has been delivered, the possibility for Nebu to gain new functionality remains. It has been agreed with
Bitbrains that the software written for Nebu will be open sourced through the popular open source
code portal GitHub. The working prototype of the Nebu system, including all of the different projects,
will be released there with accompanying documentation and a reference to this thesis.

The documentation will describe how Nebu can be installed and deployed in a virtualized environ-
ment, including a description of where the different components should be placed. In addition, short
‘ReadMe’ files will be provided for the individual projects, outlining how a new placement policy can be
added to the Nebu-core framework, or how the App-framework can be used to easily integrate other
distributed applications into Nebu. The RAML specifications for both of the APIs will also be publicised,
so that developers for other virtual machine managers have a clear overview of what the API needs to
offer to be integrated with Nebu.

With the code publicised other developers can provide patches and new functionality to Nebu, which
will go through a pull request mechanism supported by GitHub. Developers will submit their new code
for examination by a contributor (in this case either a member of the team, or possible a Bitbrains
engineer if they continue Nebu’s development), after which the code can either be merged into the
main branch, or be rejected specifying why it is not good enough to be merged into the project. This
way quality can be maintained, whilst also providing sufficient opportunity for other developers to
contribute to the project.

9.4. Process Improvements
In general, the processes described in Chapter 4 proved to be effective. There are not a many things
that the team would like to change. For future projects, however, we will make sure to start the
experiments at an earlier stage. In this project, the experiments started in the 8th week of the 10-
week project. However, the first week of experiments got lost due to system permission problems that
obstructed our software from working properly in the enterprise environment. Additionally, multiple
experiments failed and needed to be restarted. This consumed a significant amount of time.

The team overcame these issues during the final weeks of the project. The planning was constructed
in such a way that other tasks could be rescheduled and time was made available to properly perform
the experiments.

10
Conclusion

Petabytes of data are processed daily by distributed applications built upon Hadoop and MongoDB. A
significant fraction of these applications run in virtual environments using cloud infrastructure to cope
with this vast amount of data. Many commercial clouds use virtualized environments. When distributed
applications are run in virtualized environments, the reliability and fault tolerance of data storage by the
application can no longer be guaranteed. Traditionally, fault tolerance mechanisms have been based
on the assumption that the failure of a single node in a system is not correlated with the failure of
others. In virtualized environments, this assumption no longer holds.

The research questions posed at the start of this thesis, can now be answered as follows:

1. To improve reliability of virtualized applications, we design and develop Nebu, a topology-aware
deployment system for reliable virtualized multi-cluster environments. Nebu fetches topology
information from virtual machine managers, and provides this information to distributed appli-
cations. Two distributed applications, MongoDB and Hadoop, have been extended to use this
topology information in their placement strategies, to guarantee reliability without loss of perfor-
mance. In addition, Nebu allows automated deployment of a complete cluster of virtual machines
for a distributed application in only four API calls, whereas this deployment is currently done man-
ually, which is a labour intensive tasks. This deployment is done through user-specified policies,
to attain the goal of performance and/or reliability.

2. To validate the design of the final product, experiments have been conducted in a real-world
production environment. These experiments show that the Nebu system can help applications
provide reliability whilst seemingly not degrading performance. The introduction of virtualisation
awareness has been shown to ensure that data duplication uses the maximum number of hosts
for its placement.

The main contributions outlined of the Nebu system and the work done for this thesis can be
summarised as follows:

1. A user study through interviews of Bitbrains employees, as reported in the orientation report.

2. Nebu, a generic software ecosystem to run distributed applications with virtualization aware-
ness as described in Chapters 5 and 6. An overview of how Nebu fulfils the requirements from
Section 2.2 is given in Table 10.1.

3. An efficient API for engineers and end-users to create a virtual cluster and deploy a distributed
application, as described in Chapter 5.

4. An evaluation of the impact Nebu has on both the reliability and performance of multiple big data
platforms. Both experimental and statistical evaluation is described in Chapter 8.

57

58 10. Conclusion

Critical Requirement met Description
1 YES YES Nebu provides a generic physical topology model in Section 5.5.
2 YES YES Nebu provides compatibility for new distributed

applications through its RESTful API.
See Section 5.4.1.

3 YES YES Nebu provides compatibility for new virtual machine
managers through its RESTful API.
See Section 5.4.2.

4 YES YES Nebu core and Nebu VMM extensions provide this feature
as part of their respective APIs.
See Section 5.4.1 and Section 5.4.2.

5 YES YES Nebu allows users to select from multiple
placement policies and configure deployment specifications by hand.
See Section 5.6.

6 YES YES Nebu core and Nebu VMM extensions provide this feature
as part of their respective APIs.
See Section 5.4.1 and Section 5.4.2.

7 YES YES Nebu is developed in an enterprise environment and solely
uses external libraries that also run in this environment.
See Section 6.4 and Section 6.3.1.

8 NO NO Nebu does not feature an authorisation system.
See Section 9.2.1.

9 NO YES Nebu provides extensions for MongoDB and Hadoop.
See Section 6.2.4.

10 NO PARTIALLY Nebu provides an extension for VMware.
See Section 6.2.3.

Table 10.1: Nebu system requirements and how they are satisfied.

Bibliography

[1] D. Borthakur, The hadoop distributed file system: Architecture and design, Hadoop Project Website
11, 21 (2007).

[2] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T. Graves, J. Lowe,
H. Shah, S. Seth, et al., Apache hadoop yarn: Yet another resource negotiator, in Proceedings of
the 4th annual Symposium on Cloud Computing (ACM, 2013) p. 5.

[3] J. Dean and S. Ghemawat, Mapreduce: simplified data processing on large clusters, Communica-
tions of the ACM 51, 107 (2008).

[4] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and I. Stoica,
Mesos: A platform for fine-grained resource sharing in the data center, in Proceedings of the 8th
USENIX conference on Networked systems design and implementation (2011) pp. 22–22.

[5] T. Hegeman, B. Ghit, M. Capota, J. Hidders, D. Epema, and A. Iosup, The btworld use case for
big data analytics: Description, mapreduce logical workflow, and empirical evaluation, in Big Data,
2013 IEEE International Conference on (IEEE, 2013) pp. 622–630.

[6] VMWare, inc, Hadoop Virtualization Extensions on VMware vSphere 5, http://www.vmware.com
(2014).

[7] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, The hibench benchmark suite: Characterization
of the mapreduce-based data analysis, in Data Engineering Workshops (ICDEW), 2010 IEEE 26th
International Conference on (IEEE, 2010) pp. 41–51.

[8] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, Benchmarking cloud serving
systems with ycsb, in Proceedings of the 1st ACM symposium on Cloud computing (ACM, 2010)
pp. 143–154.

59

http://www.vmware.com

A
Orientation Report

61

Orientation Report

Jesse Donkervliet, Tim Hegeman, Stefan Hugtenburg

July 21, 2014

Summary

Bitbrains is a Dutch IT company that provides cloud solutions to a variety of customers, such as the
Dutch bank ING. Many of these customers run distributed applications such as the processing framework
Hadoop, or the database MongoDB on top of the virtualized environment presented by VMware. Since
these applications are not virtualization aware, data replicas can still be placed on the same host. This
can lead to a degradation of both performance and reliability. Our project involves creating software that
offers virtualization awareness to distributed applications. VMware has already created an extension for
HDFS that allows it to use information on the physical topology. However, this solution only works for
the HDFS/VMware combination and not for other applications such as MongoDB.

We have conducted interviews with multiple people at Bitbrains, which have resulted in several
requirements to the system. These requirements can be described as placement suggestions to the VM
manager before deployment, influence the scheduler of the VM manager at runtime, and the forwarding
of topology information to the distributed applications. To fulfil these requirements we will create a
middleware platform, that communicates with both the distributed application and the VM manager.
The APIs used between these extensions and the middleware will be RESTful, which is a web-based
standard for APIs. To keep our code portable, Java will be used as the main programming language. To
keep our code maintainable, we will use test-driven development and continuous integration.

1 Introduction

Bitbrains is a company that specialises in providing cloud solutions to a variety of customers, among which
are the Dutch bank ING and the Dutch insurance company Nationale Nederlanden. Many of these customers
use distributed computing frameworks, such as Hadoop, or other forms of distributed applications, such as
MongoDB. These applications run in virtualized environments through the use of VMware. Bitbrains is
interested in increasing virtualization awareness in these distributed applications, so that caveats such as
replication on the same physical host can be avoided. This report summarises the orientation phase of this
project, during which we familiarise ourselves with the field and investigate what libraries, APIs, etc. are
best suited for our product.

We will provide a product that functions as a middleware layer that allows distributed applications to
become virtualization aware. This virtualization awareness provides applications with data-placement and
scheduling policies that aim to realise a specified level of fault-tolerance and performance in a virtualized
environment. To demonstrate the generality of our middleware we will provide extensions for two distributed
applications and two virtual machine managers. The first application that we incorporate in our product
is MongoDB [1], a distributed document-based database. On the other side of our middleware we will
connect to VMware [2], a platform that provides virtualization services. Both of these systems are used
by Bitbrains and the rest of the industry and both systems will require a small wrapper/extension that
allows for interaction with our middleware. The second pair of applications that will be added are HDFS,
Hadoop’s [3] Distributed File System, and OpenStack [4], an open-source virtualization platform.

In this orientation report we summarise the results of the orientation phase of this project as follows:
first in Section 2 we give some more detailed information on the applications that we will extend and on
similar products in this field. Section 3 discusses some related work and existing solutions for the problem

1

described earlier. Section 4 focuses on the requirements gathering for this project, including a description
of the various interviews we have conducted as well as the main requirements we identify. Section 5 then
describes our chosen approach based on these requirements, including what language and tools we will use.
Finally Section 6 details what quality guarantees we will provide and how these are verified.

2 Background

In this section we will further describe the applications that our product will incorporate, two at each side of
the middleware. On one side we find two distributed applications: MongoDB and HDFS, which are further
detailed in Sections 2.1 and 2.2 respectively. On the other side of the middleware we find two virtualization
platforms: VMware and OpenStack which are described in respectively Section 2.3 and Section 2.4.

2.1 MongoDB

MongoDB is a distributed document database, using a NoSQL-structure for information retrieval and al-
teration. In contrast to the table-based model of SQL-databases, MongoDB utilises a dynamic JSON-like
document store they call BSON. MongoDB has several features to support its use as a distributed applica-
tion, including replication and sharding. Replication is used to ensure high availability of data, by placing
multiple copies of a single data set on multiple machines. Additionally, replication can be used to spread
data geographically and thus reduce latencies to applications deployed worldwide [5]. Sharding is used by
MongoDB for horizontal scaling. A single data set is split into shards and each shard is placed on a different
machine. Queries on the data set are redirected to the relevant shards through a query router and results
are then aggregated.

A typical distributed MongoDB database consists of three types of services: a set of shards (replica sets),
three configuration (config) servers, and one or more query routers. The shards are spread over different
data nodes, though multiple shards can co-exist on a single machine. The full collection of shards in the
database is managed by three config servers. The config servers store the cluster’s metadata, i.e., they keep
track of the mapping of the cluster’s data to the various shards in the database. For fault-tolerance, having
three config servers is recommended, to deal with hardware failures. A cluster with a single server can
be fully operational. Finally, query routers are tasked with analysing queries and rerouting queries to the
appropriate shards. Having many query routers is recommended, as all queries must pass through a query
router, thus having too few query routers can cause this step in execution to become a bottleneck.

2.2 The Hadoop Distributed File System (HDFS)

HDFS is the distributed file system that is the underlying architecture of the well-known MapReduce frame-
work Hadoop. In contrast to the database structure that MongoDB uses, HDFS deploys a master/slave
architecture that allows for file-system-like operations, e.g., opening, closing, and renaming files. Every file
is split up in blocks and every block is replicated a configurable amount of times. The replication process,
including the placement of the replicas, is configurable, although a default policy exists that replicates each
block three times. In this policy one replica is placed on the local node of the writer and two more are
placed on different nodes in one remote rack. Whereas this policy does not spread the replicas evenly over
different racks, it does reduce network bandwidth usage since only two rather than three different racks are
used. In addition it maintains both read performance and data reliability, since the chance of rack failure is
far smaller than that of node failure.

A typical HDFS deployment consists of a single NameNode and a number of DataNodes, usually one
DataNode per node in a cluster. The NameNode takes the role of master and is responsible for the regulation
of client access to the files as well as the maintenance of the file system namespace. The DataNodes on the
other hand manage the storage that is attached to the node they are running on. They must then allow
clients to actually perform the requested read/write operations. In addition, they take instructions from the
NameNode with respect to block removal and duplication.

2

2.3 VMware

VMware is a software company that provides software for cloud management and virtual machine manage-
ment. VMware offers a large virtualization ecosystem with many layers of applications. At the core is the
hypervisor, known as VMware ESXi, which is responsible for running virtual machines on physical hardware.
Multiple ESX hosts can be combined into a network that is managed by a vCenter instance. Each network
managed by such a vCenter instance is known as a Virtual Data Center (VDC). VDCs can be combined to
form the vCloud, the overarching system responsible for managing all VMs in a company’s private cloud.
Bitbrains has deployed a vCloud across their three clusters, which are situated in three physical data centres.
They have grouped their servers into two VDCs, whereby each VDC consists of servers spread over all three
of Bitbrains’ physical clusters. This setup has a greatly reduced chance of a VDC becoming unavailable
compared to a setup of one VDC per physical cluster.

2.4 OpenStack

Similarly to VMware, OpenStack also offers software that allows for virtualization management. This open-
source variant deploys a modular architecture, with Nova, or OpenStack compute, at its core. Whereas Nova
is responsible for the resource pools, other modules such as Swift and Neutron have other responsibilities
(storage and networking respectively). The OpenStack API has also been made compatible with the well-
known cloud provider Amazon’s Elastic Compute Cloud (EC2) [6]. Whereas Bitbrains has no deployment of
OpenStack and due to their VMware-certified status will have no such deployment for the foreseeable future,
the choice for OpenStack comes from the wide use in the rest of the industry as well as it’s compatibility
with Amazon’s EC2.

3 Existing Solutions

In this section, we analyse some existing for virtualization awareness (Section 3.1), deploying applications on
a set of resources (Section 3.2), and testing the influence of our solution on various distributed applications
(Section 3.3).

3.1 Virtualization Awareness

To the best of our knowledge, only one solution for providing virtualization awareness to distributed appli-
cations exists. This solution is further described in this section.

Hadoop Virtualization Extensions To facilitate deploying Hadoop on top of VMware-based clouds,
VMware has developed software known as VMware Big Data Extensions as described in a white paper [7].
The software provides Hadoop with information about the physical architecture underlying the virtual ma-
chines the application is running on. To achieve this, VMware has extended the popular Hadoop MapReduce
framework with the Hadoop Virtualization Extensions to utilise the mapping of virtual to physical machines.
This extension adds a single layer to the Hadoop network topology that describes the physical nodes VMs
are deployed on. In addition, VMware has extended the block placement policy in HDFS to prevent it from
placing multiple replicas of the same block on a single physical host.

VMware has made available an open source variant of their Big Data Extensions, known as Project
Serengeti. This project is strongly coupled with both VMware and Hadoop, which limits its use as a generic
solution for virtualization awareness. As Serengeti was not designed with additional applications or virtual
machine managers in mind, extending the project would likely be time-consuming and require substantial
changes to existing code to create a simple, generic interface. Project Serengeti also lacks support for vCloud,
a part of the VMware software stack used extensively at Bitbrains. As a result, the parts of Serengeti related
to VMware will not be used during our project. The Hadoop extensions, however, will be reused. These
extensions are part of the Apache Hadoop distribution as of version 2.2.

3

Table 1: State-of-the-art MapReduce benchmarks and use cases.
Queries/Jobs Workload Diversity Data Set Data Layout Data Volume

MRBench [9] business queries high TPC-H relational data 3 GB
N-body Shop [10] filter and correlate data reduced N-body simulations relational data 50 TB

DisCo [11] co-clustering reduced Netflix [12] adjacency matrix 100 GB
MadLINQ [13] matrix algorithms reduced Netflix [12] matrix 2 GB
ClueWeb09 [14] web search reduced Wikipedia html 25 TB

GridMix [15], PigMix [16] artificial reduced random binary/text variable
HiBench [17], PUMA [18] text/web analysis high Wikipedia binary/text/html variable

WL Suites [19] production traces high - - -
BTWorld [20] P2P analysis high BitTorrent logs relational data 14 TB

3.2 Resource Management

Resource managers for distributed applications are more widespread, with Apache Mesos and YARN being
popular choices. The applicability of both of these resource managers is discussed in this section.

Mesos Apache Mesos [8] presents itself as a platform for sharing clusters between multiple distributed
computing frameworks. Mesos requires computing resources to be assigned to it, so that it can deploy
distributed applications on these resources. It will then offer these resources to the various applications
that are deployed by Mesos, and these applications are able to either accept or reject the resources they are
offered.

Although Mesos is flexible in its resource allocation, it requires support from the deployed applications
to function. In addition, Mesos can not contact a virtual machine manager to launch additional virtual
machines for use by applications. Mesos also lacks virtualization awareness, and as a result the information
on physical locations is not available to deployed applications. Adding these missing features to a system as
complex as Mesos requires a significant amount of redesigning and refactoring. This has led to the decision
that designing a virtualization aware system from scratch will require less time and leads to a better design.

YARN YARN is another resource manager by Apache. YARN is part of the Hadoop project, and
as such it is virtualization aware through the use of the Hadoop Virtualization Extensions. YARN does
require an external program to provide it with topology information (a mapping from machines to locations
in the physical topology). Like Mesos, YARN does not obtain its own resources. Adding machines to a
YARN setup requires starting a YARN service on every machine. Another limitation of YARN is that
it requires the applications it deploys to run in a YARN “container”. This means that each application
has to be designed specifically for YARN and must be written in Java. For this project, we will support
YARN/Hadoop as an application and use its resource management to run YARN-enabled applications with
virtualization-awareness.

3.3 Testing Distributed Systems

In previous work [20], we have compared state-of-the-art MapReduce workloads and benchmarks for prop-
erties such as workload diversity, data volume, and application. When testing Hadoop, these workloads can
be used to simulate the load that Hadoop may experience in a production environment. The characteristics
of several state-of-the-art workloads are summarised in Table 1 (taken from previous work).

Of particular interest to this project are the high diversity workloads. Customers at Bitbrains have many
different queries that they need to run on their data, and as a result a benchmark focusing on a single aspect
can not cover the needs of all customers. By testing with high diversity workloads, we are more likely to
cover the different aspects of the workloads that Bitbrains faces. From the comparison made in Table 1 it
follows that the most relevant (and easiest to access) workloads are thus the HiBench [17]/PUMA [18], WL
Suites [19] and BTWorld [20] workloads. For testing we will be using both HiBench and BTWorld, excluding
others due to time constraints and similarities with the two we have chosen.

For MongoDB, benchmarking options are not as well explored and documented. One of the only
widespread benchmarks for MongoDB is the Yahoo Cloud Serving Benchmark [21]. The benchmark con-

4

Table 2: Basic information about the employees interviewed for this project.
Name Function description Years of employment

Jeroen van Nieuwenhuizen Engineer, Hadoop deployments 1
Bas Welman Platform engineer, handles everything up to VM level 3

Gjalt van Rutten CTO, deploying and implementing the technical vision Since the start

sists of a data generator and a set of workload descriptions based on common use cases for databases like
MongoDB. Based on these descriptions, common workloads can be simulated for various database sizes.

4 Requirements

For the process of requirements gathering we have mainly focused on interviewing Bitbrains employees with
varying specialities, since they are best equipped to inform us of how Bitbrains runs its operations and what
features in our platform they would benefit from most. The resulting requirements and the main results of
these interviews will be described in this section as follows: we summarise the results of these interviews in
Section 4.1 and give a list of the requirements in Section 4.2.

4.1 Interviews

To get a clear view of the way Bitbrains is currently deploying their distributed applications on their infras-
tructure and what they would like to achieve, we have spoken with three of their employees, in addition to
our external supervisor. The basic information about each of these employees in summarised in Table 2.

Through our interview with Jeroen we learned that Bitbrains offers virtual machines in both a Platform-
as-a-Service (PaaS) and Infrastructure-as-a-Service (IaaS) manner, though so far only PaaS has been used by
customers. For their PaaS products Bitbrains is responsible for the configuration of the software running on
the virtual machines. Every customer gets their own separate configuration, manually installed by Bitbrains
engineers. Any virtual machines used for Hadoop can not be easily physically relocated, since they are
linked to the physical hard drive they are working with. When asked whether Bitbrains had any workloads
or traces we could use to see if our system improves over the current system, Jeroen informed us that they
have used TeraSort in the past. He would however also be interested in having access to traces or workload
specifications, so he is going to contact customers about the possibilities thereof. There are currently few
MongoDB deployments in place, which means that for MongoDB there are currently no workloads available
from Bitbrains.

The interview with Bas focused more on the infrastructure in place at Bitbrains, from the connection
between different data centres to the connection between CPU and storage within the same rack. The
most relevant item discussed during this interview is the VMware deployment Bitbrains currently has. The
deployment runs an instance of vCloud on top of two instances of vCenter. Due to limitations imposed by
the implementation of vCenter, all data centres have at least one rack that belongs to the first vCenter and
at least one that belongs to the second. They are currently running vCenter 5.1, but will be upgrading to
5.5.1 as soon as it is available. As a result, compatibility should be considered for the implementation of the
VMware extension.

Our final interview, with the CTO of the company Gjalt van Rutten, was perhaps the most illustrating
interview. Whereas the interview with Jeroen had left us with the impression that moving virtual machines
would be unwanted behaviour, Gjalt informed us that it is definitely possible, but just a costly operation.
In addition, Hadoop could also be deployed to nodes with shared storage, which would allow rescheduling of
the computational nodes while keeping the storage location static. This opened up the project to be more
similar to the initial project idea, including scheduling decisions of VM placement. Gjalt was rather clear
on the kind of system he would like to see for Bitbrains, with users being allowed to specify policies for
deployment of the VMs and the management thereafter.

5

4.2 Requirements

The middleware is located between the VM manager and the distributed applications that run on the virtual
machines. The APIs that are provided to both sides allow the middleware to perform three main tasks.

The first of these tasks is virtual machine deployment. In this phase, a user wants to set up a specified
number of VMs to run a distributed application. By specifying the user’s priorities in terms of fault tolerance
and performance, the middleware layer can provide suggestions to the VM manager on how the total number
of virtual machines should be distributed over the available physical data centres.

The second task is the scheduling of virtual machines at runtime. When virtual machines are placed in
a cloud, the middleware is able to relocate VMs within the cloud to use different physical CPUs or storage
units. This relocation is done based on numerous policies which can be specified by the application.

The last task of the middleware is the presentation of parts of the physical hardware topology to the
distributed application. By showing applications on what physical hardware its VMs are running, the
applications can select a better relocation policy or modify internal behaviour to improve performance,
provide sufficient replication, etc.

Below we present an initial list of formal requirements for the middleware layer. Additionally, we provide
an initial list of formal requirements for the MongoDB extension. This extension will be used to demo the
potential of our final product.

Deployment

• Middleware should accept user provided policies that specify how VMs should be placed during
deployment.

Scheduling

• Middleware can relocate virtual machines at runtime based on a number of policies which can be
selected by the distributed application.

Topology

• Middleware should retrieve topology changes from the VM manager when these occur.

• Middleware should communicate topology changes to distributed applications when these are
detected.

• Middleware should inform distributed applications which of its virtual machines are running on
the same physical CPU and/or storage units.

MongoDB

• Data replication is set up automatically.

• Primary replicas are placed on separate physical disks to ensure load balancing during write-
intensive operations.

5 Approach

In this section we will describe our approach to the project, starting with the development methodology as
described in Section 5.1. In Section 5.2 we present a broad overview of our system design. An initial version
of the API of our application is introduced Section 5.3. Finally, the programming languages and tools we
will use for the project are specified in Sections 5.4 and 5.5 respectively.

6

VM Scheduling
Component

Scheduler-Wrapper

VM Deployment
Component

Deployment-Wrapper

VM Topology
Manager

Topology-Wrapper

Middleware

Distributed Application

Application-Extension

VM Manager

Figure 1: A broad overview of the system architecture.

5.1 Development Methodology

During the software development phase, the team will be applying agile development methods. In particular,
the Scrum development framework will be used. Alternatives we have considered include the waterfall
methodology and XP, extreme programming.

We have opted not to use the waterfall method due to its rigid and inflexible nature. For this project
we foresee having to cope with design changes, which is difficult and time-consuming once implementation
has started in the waterfall method. Throughout the project we will be designing multiple APIs, i.e.,
the interface we provide to distributed applications and the interface we require from VM managers. In
practice, the design of an API often has to go through multiple revisions to accommodate new requirements,
incorporate new insights in the problem, etc. For example, Google recommends writing an API draft of at
most two pages and improving on it in iterations.

On the other hand, agile methods feature an iterative approach to software development, and are flexible
enough to alter the design of a product throughout a project. As a result, using an agile method enables us
to focus on the core of the product during initial stages, and add more functionality as the project progresses.
It also allows us to keep a list of features that are not required for a functional product, but would increase
its usefulness if implemented. These features can be prioritised based on the client’s demands to ensure
the final product contains the most requested and most valuable features that could be implemented in the
limited timeframe.

Our choice for Scrum over XP as the preferred agile method is mainly based on experience of the team
working with Scrum. On top of this, extreme programming is less suitable for small teams due to its strict
requirements on code reviewing and testing, i.e., using pair programming. Due to the limited time available
for this project, we prefer being able to work in parallel to ensure we cover more features. Section 6 contains
more detail on how we will ensure sufficient quality using our chosen methodology.

5.2 System overview

Our software will be placed in an existing system with two major, relevant components or domains: the
distributed application and the VM manager. To achieve the abstraction between distributed applications
and VM managers, our system will add extensions to both sides. In our initial design we considered designing
a single API for communication between the two domains. Scheduling and deployment would have been
implemented in the VM manager extension. One of the main advantages of this design is the possibility to

7

integrate all of the software we write into existing software, that is, there is no external application that needs
to run on some machine. Another advantage is that there is only a single layer of additional communication.
The major disadvantage of the extension-only approach is that different VM manager extensions will have
significant overlap in the deployment and scheduling implementation. Sharing code between extensions will
result in an unmaintainable project, and thus the design does not allow for easy extension to additional VM
managers.

After several iterations our system design still has one extension per domain (distributed or VM man-
ager), but adds a middleware layer between the two domains as illustrated in Figure 1. Both distributed
applications and VM managers will communicate with the middleware layer through APIs, as discussed in
Section 5.3. The middleware contains a scheduler that places VMs based on user-specified placement policies.
In addition, the middleware retrieves topology information from the VM manager and forwards this data to
the distributed application. One advantage of this design is the possibility for common features, such as the
scheduler, to be implemented independent of the underlying VM manager. Additionally, in our design the
distributed application and VM manager do not communicate directly, which reduces security risks for the
cloud operator. A downside to the middleware approach is having to design and maintain multiple APIs.
This could also be interpreted as an advantage; changing one of the APIs has impact on fewer extensions,
thus adding features to the software requires a smaller investment.

5.3 Initial API

Since we will develop our product in an iterative manner, no full system specification and design has been
thought up yet. As recommend by Google in their lecture on designing APIs [22], we instead present an
initial API design here, which will be implemented during the first sprint(s) of this project. During this
development we will continuously change this API to reflect the latest wishes of the customer, thus keeping
the development process highly flexible. In this section of the report we will give a broad overview of the
structure we have chosen for our software in Section 5.2 as well as the initial version of the API in Section 5.3.
We also specify which programming languages and tools we will use in Sections 5.4 and 5.5 respectively.

The API our middleware will expose to the distributed applications will take the form of a REST
API [23]. A REST API is a generic format commonly used in web-based services that should satisfy the
following requirements:

• A base Universal Resource Identifier (URI) should be defined through which the API can be accessed.

• The data should be returned in some Internet format, such as JSON or XML.

• The following four HTTP methods should be implemented by the API: GET, PUT, POST and
DELETE. These methods are for retrieving, storing, updating and deleting data respectively.

• The return data should contain URIs or part thereof that can be used to access further information
where appropriate.

As many of the current services and public APIs are RESTful, implementing this standard will provide a
framework users of our API will already be familiar with. In addition, two of our group members have expe-
rience with the implementation of such an API from an earlier project at the Delft University of Technology.

As described in Section 4.2, our middleware provides three main services: 1. virtual machine placement
during setup, 2. virtual machine scheduling during run time, and 3. providing physical topology information
to distributed applications. The initial version of the API provides basic functionality for each of these three
services. For the placement of virtual machines a method will be provided that takes a placement policy
and a number of VMs. It returns a distribution of VMs over available physical data centres. The scheduling
of virtual machines at run time will enable distributed applications to request its VMs to be placed either
on the same or different physical machines. The topology of the physical infrastructure will be available to
distributed applications. Applications can use this information to create a map for each of its VMs to a
physical machine. The full initial version of the API is described in Appendix A.

8

Table 3: Libraries and development and process tools chosen for this project.
Tool Purpose

BibTeX References in LaTeX documents.
Doxygen Documentation of non-Java languages.

EclEmma Visualisation of test coverage.
Eclipse Implementation in Java.

Git Version control of code and documentation.
Guice Allows for a cleaner alternative to the factory-model.

JavaDoc Documentation of Java code.
Jenkins Continuous integration.
Jersey RESTful client/server in Java.
JIRA Scrum-planning tool
JUnit Testing of Java code.
Jukito Combination of JUnit, Mockito and Guice.
LaTeX Process documentation.

Mockito Mocking of objects for testing.
Vim Implementation in other languages (e.g. C++).

5.4 Programming languages & Libraries

Because our software is used by distributed applications and virtual machine hypervisors, which can run
on numerous different platforms, code portability is an important factor. To this end, we choose Java as
the main language for our code. Java runs on the Java Virtual Machine and is portable between Linux,
Windows, OS X, and other systems. Initially, the product will work with MongoDB and VMware. VMware
provides a Java API by default, which is an additional reason to start with Java. In general, however,
distributed applications and VM hypervisors can be written in any language. We use the native language of
the application or hypervisor for its respective extension. In the case of MongoDB, this will be C++.

Using existing libraries and frameworks can save time and effort during the development of a software
product. Because our product will include an extension for VMware, we use of the VMware vSphere Java
API. This API takes care of networking and allows the programmer to retrieve information about the physical
network and the virtual infrastructure. For portability reasons, communication with the middleware layer
will happen through the use of RESTful APIs. More specifically, we will use the Jersey library for both
the client and server connections in our applications. Not only is Jersey quite commonly used, it is also the
reference implementation of JAX-RS (Java API for RESTful Web Services) provided by Oracle. Since we
have no previous experience with any Java-based REST client/server and a lot of support and documentation
is available for Jersey, we have chosen to use this library.

5.5 Tools usage

In order to develop a product of this size, both development and process tools can help to keep an overview of
the tasks at hand. In order to easily keep track of the increasing number of lines of code, a good IDE and some
version control software can be very insightful. Similarly planning tools such as the agile-orientated JIRA
can help to provide a clear overview of the current ToDo-list. In Section 5.5.1 we describe the development
tools we will use in this project, whereas Section 5.5.2 will focus on the process tools. A summary of the
tools and libraries we will use is presented in Table 3, and a list of all tools and libraries mentioned in this
report, including their website is presented in Table 4.

9

Table 4: The tools and libraries mentioned in this report and their website.

Tool Website
BibTeX http://www.bibtex.org

CircleCI https://circleci.com/

Doxygen http://www.stack.nl/~dimitri/doxygen/

EasyMock http://easymock.org/

EclEmma http://www.eclemma.org/

Eclipse https://www.eclipse.org/

Git http://git-scm.com

Guice https://code.google.com/p/google-guice/

JavaDoc http://www.oracle.com/technetwork/java/javase/documentation/javadoc-137458.html

Jenkins http://jenkins-ci.org/

Jersey https://jersey.java.net/

JIRA https://www.atlassian.com/software/jira

JUnit http://junit.org/

Jukito http://jukito.arcbees.com/

LaTeX http://www.latex-project.org/

Mockito https://code.google.com/p/mockito/

NetBeans https://netbeans.org

Planbox https://www.planbox.com

SVN http://subversion.apache.org/

TestNG http://testng.org

Vim http://www.vim.org

5.5.1 Development tools

As has been previously described in Section 5.4, we will develop the largest part of our code in Java. For this
part of the code, we will use the Eclipse IDE. Eclipse is both commonly used for Java and is an IDE we have
experience with. The alternative in the form of NetBeans has been considered, but since we have experience
with Eclipse, we believe this will allow for a smoother workflow and switching to the similar but slightly
different NetBeans would hold no advantages. In contrast to an extensive IDE such as Eclipse, the alternative
of Vim has also been considered. Vim is a command-line text editor that offers many development features
for those that are used to its somewhat peculiar set of shortcuts. The downside is that for large projects it
is quite difficult to keep a clear overview of all code. For small extensions such as that to MongoDB that
will not be written in Java, Vim will be used.

In addition to an IDE, we will also require version control to easily keep track of code changes. Version
control systems manage changes in code and/or documents, and provide a central location to store the code
and documents. We choose Git as our version control tool. Our project team has experience with both Git
and SVN, and both version control systems are commonly used in academia and industry. As we are using
an agile development method, a working version of the product, preferably with new features, should be
presentable at the end of every sprint. To maintain a stable version of the product, branched development
can be a huge benefit. This allows for a main branch that contains the proven to be stable version of the
software, with new features being developed in separate branches. Because Git has built-in support for
branch-based development, it is preferred over SVN which offers a very primitive branching system which
involves manually creating the folders for branches and merging them afterwards.

Given that the core of our application is written in Java, many testing frameworks are available. Out of
the different options the team has the most experience with JUnit, as this was also the basis of the Software
Quality & Testing course. TestNG has slightly more features, such as group-based testing. We still choose
for JUnit due to it’s native support in Eclipse and our previous positive experience with this framework. We

10

will however extend JUnit with use of Mockito that allows for use of mocked objects that can for instance
take the place of files in testing. Not only is Mockito more advanced than some of the other frameworks that
allow for mocking, such as EasyMock, the team also has experience with Mockito through the aforementioned
course. In addition the usage of Guice, a Google library that allows for so-called injections. This allows
one to write cleaner tests and production code, by eliminating the factory-model. Jukito is a library that
combines JUnit, Mockito and Guice which sounds very promising and will be tried by the team. Finally we
will use an Eclipse plug-in called EclEmma that allows one to easily inspect what code and what branches
have been tested. Other tools exist for this, but this plug-in allows one to see the results either as an overlay
in the editor, or as a separately generated directory of HTML files, which is sufficient for us to keep an
overview of the test coverage.

5.5.2 Process Tools

In addition to the tools required for the development, we are also using a planning tool to keep track of our
planning. JIRA is an online tool that allows for an overview of the current work, as well as some scrum-
oriented features. One of these features is the scrum board which mimics the structure of ToDo, Work in
Progress, Done that is often done with sticky notes on a white board. Though an analogue version of this
system, might be more intuitive and more easily accessible, it does require us to be at the same physical
location every day in order to access the board. Since our time is divided between Bitbrains and the Delft
University of Technology, a digital version is more practical for us. Planbox is an alternative to JIRA that
we have previously used for a university project and has been considered for this project as well. It too offers
support for agile development methods, with support for iterations in the form of sprints combined with a
backlog. However, we have ultimately chosen for the use of JIRA, since Bitbrains is also using this tool.
This allows our supervisor to also have easy access to our planning tool.

6 Quality Guarantees

In this section we talk about the quality of both the process and the code. In Section 6.1 we talk about the
type of documentation we use in the code and why. In Section 6.2 we talk about the way we write and run
tests. In Section 6.3 we will discuss the evaluation of the quality of our code, and how we guarantee the
quality of our reports and documents.

6.1 Documentation

Two different types of documents will be required for this project, the first being documentation of the
process, including this document, the second being code documentation. All documents related to the
process will be produced in LaTeX, supplemented with BibTeX when references are a part of the report.
For these documents the version control system Git will also be used.

For our project, we choose to use JavaDoc and Doxygen for documentation. The reason for using JavaDoc
is that it is the de facto standard for documentation generation in Java. Doxygen is one of the most popular
documentation generation tools available for C++ and numerous other programming languages like C and
Python. Our product relies heavily on extensions for both the supported applications and the virtual machine
hypervisors. This software can be written in any language, and therefore requires a flexible documentation
generation tool. We choose either the standard deployed by the software-package or Doxygen if there is no
standard, to generate documentation for the extensions.

6.2 Testing

As new functionalities are added to a product, it is always important to verify that existing functionality is
not broken during the latest update. To this end a test suite containing both unit tests an integration tests
can be a great help. To evaluate our code, we use test-driven development. With test-driven development,

11

unit-tests are written before the code that should be tested. This allows us to specify the working of our
code through the tests that are initially based on an API. These tests often take the form of user stories: ”I
am X and if I do Y, then Z will happen”. The use of a test-driven development approach leads to spending
less time on debugging code, and to more modular and extensible code in general. Additionally, we want
our code to be well-thought-out and ensure that all team members have a large understanding of the code.
To this end, the unit-tests for a certain part of the product code are written by a different team member
than the actual product code.

Simply writing the tests is of course not sufficient for them to be useful, since tests also need to be run
to get any data out of it. A continuous integration server with hooks into Git allows you to have the tests
run automatically on every push to the server. We will use this hook to run our unit tests using mocks after
every push. Jenkins is a commonly used example of such a continuous integration platform and is also the
one we will be using for this project. Though we have some experience with CircleCI as well, Jenkins is more
commonly used and provides all the required features. Testing in a live environment will be done at the end
of every sprint, outside of the continuous integration tools.

6.3 Evaluation

Because we want to deliver a high-quality product to our customer, we evaluate both our code and documents
carefully before delivery. To this end, we use multiple methods.

All documents we deliver are written using an iterative method. This means all sections are both read
and edited multiple times by more than one team member. This method has the following benefits:

• All team members are aware of document contents.

• Section contents are refined and reflect the accurate opinion of the team.

At the end of the development process, we use benchmarking techniques to evaluate the performance of
our software. Because Bitbrains provides IaaS and PaaS services to other commercial companies, obtaining
real-world representative workloads is a non-trivial task. The performance evaluation will consist of running
real-world workloads, if these can be obtained from Bitbrains’ customers, or using benchmarking tools like
TeraSort and Yahoo Cloud Serving Benchmark for Hadoop and MongoDB respectively.

References

[1] MongoDB, inc, “MongoDB.” http://www.mongodb.com, April 30 2014.

[2] VMWare, inc, “VMWare.” http://www.vmware.com, April 30 2014.

[3] The Apache Software Foundation, “Welcome to Apache Hadoop.” http://hadoop.apache.org/, April
30 2014.

[4] OpenStack, “OpenStack: Open Source Cloud Computing Software.” https://www.openstack.org,
April 30 2014.

[5] MongoDB, “Datacenter Awareness.” https://www.youtube.com/watch?v=1XmizTfw5a8, October 4
2012.

[6] Amazon Web Services, inc, “Amazon Elastic Compute Cloud (EC2).” https://aws.amazon.com/ec2/,
April 30 2014.

[7] VMWare, inc, “Hadoop Virtualization Extensions on VMware vSphere 5.” http://www.vmware.com,
April 23 2014.

12

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. Katz, S. Shenker, and I. Stoica,
“Mesos: A platform for fine-grained resource sharing in the data center,” in Proceedings of the 8th
USENIX conference on Networked systems design and implementation, pp. 22–22, 2011.

[9] K. Kim, K. Jeon, H. Han, S.-g. Kim, H. Jung, and H. Y. Yeom, “MRBench: A Benchmark for MapRe-
duce Framework,” in ICPADS, 2008.

[10] S. Loebman, D. Nunley, Y.-C. Kwon, B. Howe, M. Balazinska, and J. P. Gardner, “Analyzing massive
astrophysical datasets: Can Pig/Hadoop or a relational DBMS help?,” in Cluster, pp. 1–10, IEEE, 2009.

[11] S. Papadimitriou and J. Sun, “Disco: Distributed co-clustering with map-reduce: A case study towards
petabyte-scale end-to-end mining,” in ICDM, pp. 512–521, IEEE, 2008.

[12] “Netflix prize.”

[13] Z. Qian, X. Chen, N. Kang, M. Chen, Y. Yu, T. Moscibroda, and Z. Zhang, “MadLINQ: large-scale
distributed matrix computation for the cloud,” in EuroSys, pp. 197–210, ACM, 2012.

[14] “The ClueWeb09 Dataset.”

[15] “The GridMix Hadoop Benchmark.”

[16] “The PigMix benchmark.”

[17] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The Hibench Benchmark Suite: Characterization
of the MapReduce-based Data Analysis,” in ICDEW, pp. 41–51, IEEE, 2010.

[18] F. Ahmad, S. Lee, M. Thottethodi, and T. Vijaykumar, “PUMA: Purdue MapReduce Benchmarks
Suite,” tech. rep.

[19] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The Case for Evaluating MapReduce Performance
Using Workload Suites,” in MASCOTS, pp. 390–399, IEEE, 2011.

[20] T. Hegeman, B. Ghit, M. Capota, J. Hidders, D. Epema, and A. Iosup, “The btworld use case for big
data analytics: Description, mapreduce logical workflow, and empirical evaluation,” in Big Data, 2013
IEEE International Conference on, pp. 622–630, IEEE, 2013.

[21] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmarking cloud serving
systems with ycsb,” in Proceedings of the 1st ACM symposium on Cloud computing, pp. 143–154, ACM,
2010.

[22] J. Bloch, “How to design a good api and why it matters,” in Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications, pp. 506–507, ACM,
2006.

[23] M. Masse, REST API design rulebook. O’Reilly Media, Inc., 2011.

[24] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext
transfer protocol–http/1.1,” 1999.

13

A Preliminary Design

A.1 User-Stories

The main requirements that a user of the system will actually notice are most clearly presented in so-called
user stories. These stories describe what the results of an action will be for a certain user. Unfortunately
many of the other requirements or design decisions can not be represented in the same format that easily,
since they do not really involve a user in the classic sense of the word. Instead some of the functions that
the distributed application should be able to use have been described in scenario format.

The user-stories that describe the behaviour as presented to the user can be summarised as follows:

Name User-Policy
I am a user,
When I start deployment,
Then I can specify policies for VM placement before and after deployment.
Name User-Deployment
I am a user,
When I start deployment,
Then the system will advise me on which clusters to use.
Name User-Running
I am a user,
When my system has been deployment,
Then the system will relocate my tasks over compute and storage nodes within the same cluster.
Name Application-Transfer
I am an application,
When I am deployed,
Then I can deny and request VM transfer through the policy specified by the user.

Whereas more scenarios will be developed as new features are picked to be implemented, a few scenarios
that result in the API described in Appendix A.3 are given here:

Given a MongoDB deployment,
When I request the collection all my VMs,
Then I get a list of virtual UUIDs.
Given a MongoDB deployment,
When I request the information of an running VM,
Then I get the physical and virtual UUID as well as the current performance statistics.
Given a MongoDB deployment,
When I request the information of a non-existing VM,
Then I get an error response indicating this is not possible.
Given a MongoDB deployment,
When I request the information of an existing physical machine,
Then I get a list of VMs running on this machine.
Given a MongoDB deployment,
When I request the information of a non-existing physical machine,
Then I get an error response indicating this is not possible.
Given a MongoDB deployment,
When I require a number of VMs combined with requirements in the form of policy,
Then I get a list of VMs fulfilling these requirements.

14

A.2 Generalised Topology

One of the tasks of the middleware is to generalise the physical topology to ensure that the distributed
applications get the same topology format regardless of the VM manager that is running. The generalised
topology we have chosen matches that of HDFS to a certain extent, taking the form of a tree. The root
of the tree represents the cloud, with data centres as its children. Each data centre contains many racks
and every rack houses computation, storage and possibly combined nodes. This topology tree is visually
represented in Figure 2.

Cloud

Data Center

Rack

Node

CPU StorageCombined

Figure 2: The generalised topology our middleware will use.

15

A.3 API

The initial version of the API that is able to fulfil all scenarios described in Appendix A.1 is described in
Tables 5 and 6. The codes referred to in the last column of both tables are the traditional HTTP status
codes [24].

Table 5: API exposed by the middleware to the distributed applications.
Type URL Parameters Request Body Response Codes
GET /vms/ - - vUUIDs [String] 200

500
GET /vms/:vUUID/ - - pUUID String 200

vUUID String 404
cpu load Integer 500

io load Integer
mem load Integer

net load Integer
GET /phys/pUUID/ - - vUUIDs [String] 200

404
500

GET /deployment/ - - vUUIDs [String] 200
500

Table 6: API exposed by the VM-manager extensions to the middleware.
Type URL Parameters Request Body Response Codes
GET /vms/ - - vUUIDs [String] 200

500
GET /vms/vUUID/ - - pUUID String 200

vUUID String 404
500

GET /topology/ - - topology Tree-Object 200
500

16

B Planning

Even though we will use the agile scrum methodology to continuously update the planning, an initial planning
with some important dates has been made. The implementation phase will start 5th May 2014. No new
features will be implemented after 16th June 2014. The entirety of the initial planning has been summarised
in a Gantt chart on the next pages. Week 23 and 24 have been left empty on purpose. This time will primarily
be spent on incorporating additional features and requirements that could be added in later sprints. It also
allows for troubleshooting of unforeseen general issues.

17

B
SIG Code Evaluation

B.1. Initial Evaluation
[Aanbevelingen] De code van het systeem scoort 4 sterren op ons onderhoudbaarhei-

dsmodel, wat betekent dat de code bovengemiddeld onderhoudbaar is. De hoogste score
is niet behaald door een lagere score voor Duplication en Module Coupling.

Voor Duplicatie wordt er gekeken naar het percentage van de code welke redundant is,
oftewel de code die meerdere keren in het systeem voorkomt en in principe verwijderd zou
kunnen worden. Vanuit het oogpunt van onderhoudbaarheid is het wenselijk om een laag
percentage redundantie te hebben omdat aanpassingen aan deze stukken code doorgaans
op meerdere plaatsen moet gebeuren. In dit systeem is er bijvoorbeeld duplicatie te vinden
tussen de ’topologyManager’-classen die geimplementeerd zijn binnen de componenten
’Nebu-app-hadoop’1 en ’Nebu-app-mongo’. Ook tussen de verschillende ’Builder’-classen
is duplicatie te vinden. Het is aan te raden om dit soort duplicaten op te sporen en te
verwijderen.

Voor Module Coupling wordt er gekeken naar het percentage van de code wat relatief
vaak wordt aangeroepen. Normaal gesproken zorgt code die vaak aangeroepen wordt
voor een minder stabiel systeem omdat veranderingen binnen dit type code kan leiden tot
aanpassingen op veel verschillende plaatsen. In dit systeem wordt de class ’VirtualMachine’
op ruim 56 verschillende plaatsen aangeroepen. Daarnaast is deze class vrij fors. Het lijkt
erop alsof deze class twee verschillende type functionaliteit bevat, het is een representatie
van een ’VirtualMachine’ en bevat de code voor een builder van dit object. Om zowel de
grootte als het aantal aanroepen te verminderen zouden deze functionaliteiten gescheiden
kunnen worden, wat er ook toe zou leiden dat de afzonderlijke functionaliteiten makkelijker
te begrijpen, te testen en daardoor eenvoudiger te onderhouden worden.

Over het algemeen scoort de code bovengemiddeld, hopelijk lukt het om dit niveau te
behouden tijdens de rest van de ontwikkelfase. De aanwezigheid van test-code is in ieder
geval veelbelovend, hopelijk zal het volume van de test-code ook groeien op het moment
dat er nieuwe functionaliteit toegevoegd wordt.

B.2. Final Evaluation
[Hermeting] In de tweede upload zien we dat zowel de omvang van het systeem als de

score voor onderhoudbaarheid licht is gestegen. Wat betreft de Duplicatie zien we een flink
afname in gedupliceerde code in het C++ gedeelte van het project. De introductie van het
’Nebu-app-framework’ lijkt dan ook geholpen te hebben om de gezamenlijke functionaliteit
te centraliseren. Ook voor de Module Coupling zien we een stijging in de score, het afsplitsen
van de verschillende ’Builder’ classen lijkt ook hier een positieve invloed te hebben gehad.
Als laatste zien we bij zowel het C++ als het Java gedeelte niet alleen een stijging in de
hoeveelheid productie code, maar ook een stijging in de hoeveelheid test-code.

1This message has been redacted to replace the work-in-progress name of the project with the name of the final project

81

82 B. SIG Code Evaluation

Uit deze observaties kunnen we concluderen dat de aanbevelingen van de vorige eval-
uatie goed zijn meegenomen in het ontwikkeltraject.

C
Original Project Description

Bitbrains is a service provider that specialises in enterprise level managed hosting and financial risk
calculation. The majority of the business comes from the banking and insurance industry with cus-
tomers like: ING, Nationale-Nederlanden, Aegon, Ahold, and other large enterprises. Bitbrains uses
VMware virtualization to manage the large multi tenant environment that hosts all the customer ser-
vices. Some of the software packages used by Bitbrains customers depend on distributed data stor-
age. One of the systems used for this is MongoDB. Most of the currently available distributed data-
platforms like Hadoop and MongoDB are not designed with Infrastructure Virtualization in mind. The
problem with this is that these platforms can not handle situation where multiple Virtual Machines
(VMs) are running on the same Physical server. For Hadoop in general this still is an open issue
(https://issues.apache.org/jira/browse/HADOOP-8468). VMware created a solution for this problem
by introducing Hadoop Virtualization Extensions (HVE) (https://www.vmware.com/files/pdf/Hadoop-
Virtualization-Extensions-on-VMware-vSphere-5.pdf). This however is not a general solution that can
be used for other distributed data-platforms. We would like to develop a more general solution for this
problem by implementing a software layer that can deliver virtualization information (network topology,
physical location of VMs, etc.) to distributed data-platforms to help them with task scheduling, data
replication and data distribution. As a proof of concept we would like to implement this software layer
to improve MongoDB so that it can run on a VMware managed cloud. In order to implement this proof
of concept three parts of software need to be created: 1, VMware adapter; 2, API that can deliver
platform information to data-platforms; 3, replication and scheduling policies for MongoDB that use
the platform information provided by 2. If time allows it we also plan to implement Hadoop extensions
to show the wide applicability of the model.

83

D
Example Sonar Report

85

1. Diva: VMware Extension
This chapter presents an overview of the project measures. This dashboard shows the most important measures

related to project quality, and it provides a good starting point for identifying problems in source code.

1.1. Report Overview

Static Analysis

Dynamic Analysis

Coding Rules Violations

1.2. Violations Analysis

Lines of code
2,094
8 packages
28 classes
173 methods
0.0% duplicated lines

Comments
34.3%
1,091 comment lines

Complexity
2.3
14.0 /class
391 decision points

Code Coverage
86.2%
198 tests

Test Success
100.0%
0 failures
0 errors

Rules Compliance
99.5%

Violations
9

Most violated rules
Methods should not have too many
parameters

1

Constant names should comply with
a naming convention

1

Methods should not be too complex 1
Magic Number 1
Unused Imports 5

Sonar PDF Report Diva: VMware
Extension

1

Most violated files
PhysicalTopologyProvider 1
VMStartTask 1
VirtualResourceProvider 1
VmBootStatus 1
VSphere 1

Most complex files
VSphere 114
DefaultVMware 57
VCloud 50
VirtualResourceProvider 36
PhysicalTopologyProvider 18

Most duplicated files
No duplications

Sonar PDF Report Diva: VMware
Extension

2

E
Nebu RESTful API Specification

E.1. Nebu Core API
Detailed information about each API call is provided below. The PUT And DELETE calls that are shown
in Figure 5.2 exist Only for experimental purposes and are not used in production. No further detail
Will be provided for these calls.

/app Allows users to create new applications and retrieve the list of existing applications. When
creating a new application, users should specify the placement policy that should be used.

/app/{uuid} Allows users to retrieve descriptions of existing applications and update their placement
policies.

/app/{uuid}/vmtemplates and /app/{uuid}/vmtemplates/{templateid} provide the same
functionality for VM templates as /app and /app{uuid} respectively provide for applications.
Nebu uses VM Templates to specify the type of VM the user wants to use. This information in-
cludes some general information like resource load, and some VMM specific information such as
which VM image to use and where to find it.

/app/{uuid}/deployment and /app/{uuid}/deployment/{templateid} provide the same
functionality for deployment specifications as /app and /app{uuid} respectively provide for
applications.

/app/{uuid}/deployment/{deploymentid}/start starts the deployment with id deploymen-
tid for the application with id uuid. This includes starting the virtual machines, placing them
on the correct physical hosts, connecting them to the correct storage devices.

/app/{uuid}/virt gets a list of virtual machines that belong to the application with id uuid.

/app/{uuid}/virt/{vmid} gets a description of the virtual machine with ID vmid.

/app/{uuid}/phys gets physical topology information for the application with ID uuid. Rather than
the complete physical topology of the cloud, this call returns that part of the physical topology
where this application is allowed to place virtual machines. Where an application can place VMs
is determined by the VM templates that are provided.

E.2. Nebu VMM Extensions API
This API is kept very generic to provide high compatibility. Every basic virtual-machine management
system should be able to implement this API. More detail about each API call is provided below.

/virt Retrieves a list of all virtual machines visible to the virtual machine manager.

/virt/{uuid} Allows Nebu to get information about a specific virtual machine and remove the virtual
machine when it is no longer needed.

89

90 E. Nebu RESTful API Specification

/phys Exposes the physical topology of the cloud. This physical topology should be expressed in
Nebu’s physical topology format. Nebu uses a generic representation for physical topology for
compatibility reasons. This representation is discussed in Section 5.5.

/phys/{uuid}/createVM Allows the user to create a new virtual machine. The uuid is the unique
identifier of the physical host where the virtual machine should be placed. The call has additional
parameters that specify the VM template to use, network storage the virtual machine should use,
and the hostname the new machine should have. This call returns an SHA hash that allows for
status monitoring. See /status/{sha}.

/vmtemplates/{uuid} Updates an existing VM template, or creates a new template. The VM tem-
plate consists of the VMM specific information that the user provided when creating a VM template
through the Nebu core API. This template contains whatever information the VMM needs to suc-
cessfully deploy a new virtual machine. The format of this information can be specified by the
virtual machine manager that is used.

/vmtemplates/{uuid}/phys retrieves a subset of the physical topology that contains all physical
hosts and network storage devices that are available to virtual machines of the specified template.

/status/{sha} Allows Nebu core to monitor the status of new virtual machines that are being
deployed.

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Context
	Problem Statement
	Main Contributions
	Structure

	Problem Analysis
	Overview
	System Requirements
	Critical Requirements
	Other Requirements

	Background
	Overview
	Systems used by Nebu
	MongoDB
	Hadoop
	VMware
	OpenStack

	Related Work
	Hadoop Virtualization Extensions
	Mesos
	YARN

	Research, Design, and Development Processes
	Overview
	Project Management Processes
	Research Processes
	User Study
	Research Survey in testing Distributed Systems

	Design Processes
	Using RAML to handle Evolving APIs
	Changed Requirements

	Development Processes
	JIRA for Project and Issue Management
	Version and Quality Control
	Division of Labour

	Reflection

	Design of the Nebu System
	Overview
	System Modularity
	User-System Interaction
	Design of a RESTful API
	Nebu RESTful API
	VM Manager RESTful API

	Physical Topology Abstraction
	Placement Policies
	The Random Policy
	The Locality Policy
	The Replication Policy
	The Local-Remote Policy

	MongoDB Replication Policy

	Development of the Nebu System
	Overview
	Product Description
	Nebu Common
	Nebu Core
	Nebu VMM Extension
	Nebu Application Extension

	Libraries and Development Tools utilised by Nebu
	External Libraries used by the Nebu System
	Development Tools used for the Nebu System

	Main Challenges
	Developing for Enterprise Environments
	Managing Scalable Distributed Systems
	Big Data Application Limitations
	VMware API Difficulties
	Lack of OpenStack Support

	Quality Assurance
	Overview
	Unit Testing and Continuous Integration
	Testing Policy
	Testing Libraries
	Continuous Integration: Jenkins

	Code Analysis
	SonarQube
	Software Improvement Group

	Experimental Work
	Overview
	Results
	Reliability Hadoop
	Performance Hadoop
	Reliability MongoDB
	Performance MongoDB

	Discussion

	Ongoing and Future Work
	Overview
	New Functionality
	Authorisation System
	Fault Tolerance
	Hadoop Network-Storage Awareness

	Publication of the Nebu Code
	Process Improvements

	Conclusion
	Bibliography
	Orientation Report
	SIG Code Evaluation
	Initial Evaluation
	Final Evaluation

	Original Project Description
	Example Sonar Report
	Nebu RESTful API Specification
	Nebu Core API
	Nebu VMM Extensions API

