Shape based classification of seismic building structural types

Final presentation

Raphael Sulzer

Mentor #1: Dr. Pirouz Nourian

Mentor #2: Dr. Jan van Gemert

External Mentor: Dr. Michele Palmieri

Seismic building structural type

 Describes main load bearing structure of a building and therefore its behaviour under seismic load

• Motivation:

Important input for seismic risk assessment

• Problem:

Commonly <u>not available on large scale</u>

Aerial laser scan

Seismic building structural type

Objective

 Develop and implement a machine learning algorithm that can automatically classify seismic building structural types (SBSTs)

Research question

- Classification based on the geometric shape of a building
- Make use of a so-called shape descriptor
- To which extent is it possible to describe geometric similarities of buildings using Shape DNA?

$$\Delta f \coloneqq div (grad f)$$

Methodology

...come back to Shape DNA later

- Let's first implement the machine learning algorithm...
 - A supervised learning algorithm

Training samples

Training samples

$${height \choose area} = {6.70 \choose 57} \quad {height \choose area} = {13.25 \choose 110}$$

Feature based representation

Separate feature space

Support vector machine

Building with unknown type

$$\begin{pmatrix} height \\ area \end{pmatrix} = \begin{pmatrix} 4.90 \\ 50 \end{pmatrix} = x_1$$

$$\boldsymbol{w}^T \cdot \boldsymbol{x}_1 - d = -0.8 \quad \text{It's red!}$$

Evaluation

Evaluation

We already know its Type A

61 m²

$$\binom{height}{area} = \binom{6.20}{61}$$

Evaluation

Doing this many times with different buildings gives reliable measure of classification accuracy

$$x_2 = {height \choose area} = {6.20 \choose 61}$$

$$\boldsymbol{w}^T \cdot \boldsymbol{x}_2 - d = -0.55$$

Methodology

- ...come back to Shape DNA later
- Let's first implement the machine learning algorithm...

A supervised learning algorithm

Seismic building structural type

Training samples

Feature based representation

Local shape descriptor

Global shape descriptor

Shape DNA

"Can you hear the shape of a drum?"

Laplace - Beltrami operator continuous case on a sphere S

$$\Delta f \coloneqq div (grad f)$$

$$f: S \to \mathbb{R}$$

$$\Delta_{\mathcal{S}} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2}.$$

Helmholtz equation:

$$\Delta f = -\lambda f$$

Shape DNA

 Laplace-Beltrami spectra as 'Shape-DNA' of surfaces and solids [2]:

$$\Delta f = -\lambda f$$
 $A_{\cot} \mathbf{f} = -\lambda B \mathbf{f}, \quad \mathbf{f} := (f(\mathbf{p}_i))_{i=1}^n,$
where

$$A_{\cot}(i,j) := \begin{cases} \frac{\cot \alpha_{ij} + \cot \beta_{ij}}{2} & (i,j) \text{ edge,} \\ -\sum_{k \in N(i)} A_{\cot}(i,k) & i = j, \end{cases}$$

$$B(i,j) := \begin{cases} \frac{|t_1| + |t_2|}{12} & (i,j) \text{ edge,} \\ \frac{\sum_{k \in N(i)} |t_k|}{6} & i = j, \end{cases}$$

polygon mesh

Local shape descriptor

$$\binom{height}{area}$$

$$\binom{height}{area} \qquad \binom{4.70}{57} \approx \binom{4.65}{56}$$

Shape DNA

Training samples

Evaluation

We already know its Type A

6.20 m

61 m²

$$\binom{height}{area} = \binom{6.20}{61}$$

Classification w/ Shape DNA 93 %

Normalized confusion matrix SVM

Methodology

...come back to Shape DNA later

 Let's first implement the machine learning algorithm...

A supervised learning algorithm

Create building model

Create building mesh

Create building mesh

Classification

- 0.8

- 0.7

0.6

- 0.5

- 0.4

- 0.3

- 0.2

0.1

0.0

TUDelft

Classification

0.8

- 0.6

- 0.4

- 0.2

Conclusion – SBST classification

- Develop and implement a machine learning algorithm that can automatically classify seismic building structural types (SBSTs)
- Start simple...
 - Using the footprint area and year of construction of a building can identify the SBST with 77% accuracy on our dataset

Recommendations – SBST classification

- ...continue simple
- Add more types to the classification to classify every building in a city
- If necessary focus feature and/or classifier development on classes that achieve lowest accuracies at the moment

Conclusion – Shape DNA

- To which extent is it possible to describe geometric similarities of buildings using Shape DNA?
- Shape DNA describes the global shape of a building with a one-dimensional vector and, thus, can be used to measure geometric similarities of buildings
- **BUT:** only useful if relevant **local shape** features, such as the footprint area, **can not** be extracted, as they usually lead to better results

Recommendations – Shape DNA

 Try on different use case than SBST classification, such as roof type classification

 Continue investigation with synthetic building models with a distinct geometric shape to get more insight what Shape DNA can do

Bibliography

1. GEM Foundation [2017], 'Global earthquake model.

URL: https://www.globalquakemodel.org/

Geiß, C., Aravena Pelizari, P., Marconcini, M., Sengara, W., Edwards, M., Lakes, T. and Taubenboek, H. [2015], 'Estimation of seismic building structural types using multi-sensor remote sensing and machine learning techniques', ISPRS Journal of Photogrammetry and Remote Sensing 104, 175–188.

URL: http://www.sciencedirect.com/science/article/pii/S0924271614002007

End

Thank you for your attention!

Feature based representation

Feature based representation

Classification

Normalized confusion matrix LinearSVM

