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Layman’s Summary

Sea breezes are atmospheric flows that move air from the sea towards the land and primarily occur on the
shore. They form due to temperature differences that develop during the day, as the sea heats up more slowly
than land. The goal of this project is to study the solutions to a mathematical model describing sea breeze
flows in the Gulf of Carpentaria (Australia) and Calgary (Canada) under various physical conditions. The
model uses an ordinary differential equation to describe the horizontal velocity of the flow at different alti-
tudes. Using numerical methods, we computed the horizontal velocity of the flow for three types of external
forcing. For the Gulf of Carpentaria, we found that in the absence of any forcing, sea breezes do not occur.
Secondly, for a constant force, the entire flow moves at a constant speed everywhere. Lastly, with a forcing
term that increases with height, we found that the velocity also increases with height. Similarly, we computed
the horizontal velocity of breezes in Calgary. Because Calgary lies in the Northern Hemisphere, we found
that the winds flow in the opposite direction compared to those in the Gulf of Carpentaria. This difference
is caused by the Coriolis force, which results from Earth’s rotation. The Coriolis force causes winds to be de-
flected to the right in the Northern Hemisphere and to the left in the Southern Hemisphere, explaining the
opposite wind directions.
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Summary

Sea breezes are low-level atmospheric flows that move from the sea to land. They typically form during warm
days when the temperature difference between the land and sea surfaces becomes large enough. This tem-
perature difference occurs because seawater, having a higher heat capacity, heats up more slowly than land.
In this thesis, we study a nondimensional mathematical model that describes the horizontal velocity of sea
breezes in two regions: the Gulf of Carpentaria (Australia) and Calgary (Canada). The model was derived in
[4] by writing the Navier-Stokes equations in rotating spherical coordinates. After nondimensionalisation and
assuming a specific form of the solution, they obtained the nondimensional model. Furthermore, the model
was complemented by two homogeneous Dirichlet boundary conditions, representing the no-slip condition
at Earth’s surface and the presence of a thermal inversion layer. In [11], their work was extended by studying
the corresponding Sturm-Liouville problem for various mass density functions to determine the existence
and uniqueness of the solutions to the model.

Building on the work in [11], we analysed the solvability of the model and determined the numerical solu-
tions for two physically relevant mass density functions. These functions were chosen to ensure that zero is
not an eigenvalue. The Fredholm alternative then implies that the solution is unique. On the other hand,
if zero were an eigenvalue, then the Fredholm alternative implies that we could have an infinite number of
solutions, which is physically unrealistic.

For the first mass density function, the eigenvalue problem was written as the hypergeometric equation.
For the Gulf of Carpentaria (where β > 0), we proved analytically that zero is not an eigenvalue. However,
since the parameter β is negative for the Calgary region, we were unable to prove this analytically. Instead, we
demonstrated numerically that the eigenvalues closest to zero were λ807 = −828 and λ808 = 790, confirming
that zero is not an eigenvalue. Using the finite difference method, we then computed the velocity profiles
for three different forcing functions. We first considered the breezes in the Gulf of Carpentaria. In the first
case we assumed zero forcing, the result showed that in the absence of any forcing, sea breezes do not occur.
For the second case we assumed a non-zero constant forcing, resulting in a uniform velocity profile. Lastly,
with an increasing quadratic forcing function, the velocity increased quadratically with height, reaching its
maximum just below the thermal inversion layer. Similarly, we computed the velocity profiles for the Calgary
region. From these computations, we found that the breezes were flowing in the opposite direction and with
higher velocities. These differences arise due to the Coriolis force, which forms due to Earth’s rotation. This
force deflects winds to the right in the Northern Hemisphere and to the left in the Southern Hemisphere.
Furthermore, the Coriolis force is zero at the equator and grows with latitude, which explains the higher ve-
locities.

Finally, we considered the model for the second mass density function, which includes the weak effect the
boundaries have on the flow. For the Gulf of Carpentaria it was again proven analytically that zero was not
an eigenvalue, while for the Calgary region, the eigenvalues closest to zero were λ501 ≈−351 and λ502 ≈ 3030.
Similar to the first mass density function, we used the finite difference method to compute the velocity pro-
files. The results showed that the profiles were identical to those obtained with the first mass density function.
This similarity occurs because the two mass density function exhibit similar parabolic behaviour. Moreover,
the same forcing functions were used in both cases.
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1
Introduction

Sea breeze is a low-level atmospheric flow that moves from the sea to land [11]. Sea breezes typically form
during the day when the temperature difference between the land and sea surfaces becomes large enough
[6]. This usually happens during warm periods, since the sun heats the sea much more slowly than the land.
This difference in heating is due to the higher heat capacity of sea water (3.93 ·103 J kg−1 K−1) compared to
the much lower heat capacity of sand (0.80 · 103 J kg−1 K−1) [3] (for more information about other factors
that are relevant to this process, we refer the reader to [1, 13]). As a result, the warm ground heats the air
above it, making it warmer than the air over the sea surface. Consequently, the warm air rises, creating a
low-pressure area called a "thermal low" directly above the ground. This low-pressure area eventually leads
to the formation of additional high- and low- pressure regions, as can be seen in Figure 1.1. The resulting
pressure differences between these regions give rise to the sea breeze flow and the return flow, ultimately
leading towards the formation of the sea breeze circulation (see Figure 1.1) [13].

Figure 1.1: The sea breeze circulation, where L and H stand for low and high pressure areas respectively. The "thermal low" corresponds
to (1), the warm return flow to (5) and the (cool) sea-breeze flow to (2) (source: [13]).

To better understand these flows, researchers extensively use their mathematical formulations involv-
ing nonlinear partial differential equations. In particular, the authors of [4] studied the mechanism behind
the morning glory phenomenon, a cloud formation associated with the flow of nonlinear waves. Based on
the Navier-Stokes equations written in spherical coordinates, they derived a nondimensional mathematical
model to describe the behaviour of the phenomenon [4]. By assuming a specific form of the solution, they
were able to establish a model describing the horizontal velocity of sea breeze flows. In [11], their work was
extended by studying the corresponding Sturm-Liouville boundary value problem for various mass density
profiles. By applying the Sturm-Liouville theory, the author proved the existence and uniqueness of the solu-
tions to the original problem.

For this project, we build on the work in [11] by exploring other physically realistic possibilities for the mass
density functions. Specifically, we focus on functions for which zero is not an eigenvalue, as a zero eigenvalue
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2 1. Introduction

could imply that the solution is not unique. This would mean that the flow could be described by multiple
distinct velocity profiles, which is not physically realistic. By considering various mass density functions, we
aim to determine the eigenvalues of the Sturm-Liouville problem corresponding to the model of sea breeze
flows for the Gulf of Carpentaria and the Calgary region. Then by using numerical methods we compute the
solution to the model with various forcing functions, followed by a physical interpretation of the obtained
results.

The thesis is structured in the following way. In Chapter 2, we study the mathematical model of sea breeze
that was derived in [4]. In Chapter 3, we analyse the Sturm-Liouville problem corresponding to the model for
various mass density functions. Based on these results, we study the solutions to the original model. Finally,
in Chapter 4, we present our conclusions and suggest possible extensions for future work.



2
Model of Sea Breeze flow

This chapter provides an overview of the model of sea breeze flows and the relevant boundary conditions
that were derived in [4]. Section 2.1 focuses on the nondimensional model of breeze-like flows. In Section
2.2 the simplified model for the flows in the Gulf of Carpentaria will be examined. Finally, in Section 2.3, the
corresponding Sturm-Liouville problem of the simplified model will be studied.

2.1. The nondimensional model
To model atmospheric flows, the authors in [4] began with the Navier-Stokes equations formulated in rotat-
ing spherical coordinates. They then nondimensionalised the resulting equations, which yielded a model
for non-linear wave propagation in the atmosphere. By assuming a specific form of the solution (the exact
form of the solution is provided in [4]), they derived a nondimensional model of sea breeze flow. This model
describes the horizontal velocity of the flow, denoted by V0(z,Φ), and is given by:

ρσSV0 + 1

Re

∂

∂z

(
m(z)

∂V0

∂z

)
=−

{
cos2(α)+ sin2(α)

C

}
K (z,Φ), 0 < z < z0, (2.1)

where from [11]

• z corresponds to the height inside the air flow;

• ρ0(z) is the density function;

• S, α, C , σ= 2(sin2(α)+C cos2(α)
(1−C )sin(α)cos(α) , are the characteristics of the flow in the specific region,

• Re ≈ 105 is the Reynolds number;

• m(z) is the viscosity function;

• Φ is a parameter, corresponding to the direction of flow propagation and

• K (z,Φ) is the forcing term in the model.

However, Equation (2.1) alone is not enough to fully describe the sea breeze, as it does not specify the
behaviour of the flow at the boundaries. To complete the model, Equation (2.1) is complemented by two
boundary conditions. The first occurs at the ground (z = 0), where due to friction of the airflow with the
surface, the horizontal velocity of the sea breeze must be zero [4]

V0(0,Φ) = 0.

This condition is called the no-slip condition at the Earth’s surface [4].
The second boundary condition occurs due to the presence of a thermal inversion layer at z = z0 [4]. A

thermal inversion layer is a region in the atmosphere where the temperature increases with height instead
of decreasing. This thermal inversion layer corresponds to the warm return flow (see (5) in Figure 1.1) in the
sea breeze circulation, which starts at z0. As a result, the return flow and the sea breeze collide at z = z0,
cancelling the horizontal velocity of the breeze-like flow. Therefore, at the height z0, the horizontal velocity
of the sea breeze must also be zero [4]

V0(z0,Φ) = 0.

3



4 2. Model of Sea Breeze flow

2.2. Simplified nondimensional model

Figure 2.1: The Gulf of Carpentaria lies in
the northern part of Australia, and in the
figure, north corresponds to the upward
direction (source: [14]).

For the sea breeze flow in the Gulf of Carpentaria, Australia (see Figure
2.1), the parameters in Equation (2.1) take the following values [4, 11]:

C ≈ 0.97, S ≈−0.24, σ≈ 133 and α= 5π

4
.

Using these values, the model can be simplified to describe the flow prop-
agating in the south-west direction in the Gulf of Carpentaria [4]. Thus,
Equation (2.1) is written as:

βV0 − ∂

∂s

(
m̂(s)

∂V0

∂s

)
= k0(s,Φ), 0 < s < 1, (2.2)

with new parameters and variables given by [4]:

β=−σSRe > 0, s = 1∫ z0
0 ρ0(ξ)dξ

∫ z

0
ρ0(ξ)dξ,

m̂(s) = ρ0(s)m(s)

(
∫ z0

0 ρ0(ξ)dξ)2
, k0(s,Φ) = Re

{
cos2(α)+ sin2(α)

C

}K (s,Φ)

ρ0(s)
,

where k0 is the scaled forcing function.
Next, for the simplified model in Equation (2.2), it is assumed that the ρ0(z) and K (z,Φ) are continuous func-
tions (with Φ being a parameter), while m(z) is continuously differentiable [4, 11]. Furthermore, for every
fixed Φ (i.e., the direction of flow propagation is fixed), the boundary conditions for the simplified model
(2.2), can be written as homogeneous Dirichlet boundary conditions [4, 11]:

V0(0) = 0, V0(1) = 0. (2.3)

Thus the model, for which we are exploring possibilities of the mass density function m̂(s) is given by:
βV0 − d

∂s

(
m̂(s) dV0

d s

)
= k0(s), 0 < s < 1,

V0(0) = 0,

V0(1) = 0.

(2.4)

2.3. Corresponding Sturm-Liouville problem
The Fredholm alternative [8] characterises the solvability of a (nonhomogeneous) boundary value problem
depending on the eigenvalues of the corresponding Sturm-Liouville problem

L(u) =λu(x).

Theorem 1. [8] Consider the nonhomogeneous differential equation

L(u) = f (x), a < x < b,

subject to homogeneous boundary conditions. Then

• If λ= 0 is not an eigenvalue, then the nonhomogeneous problem has a unique solution.

• On the other hand, if λ = 0 is an eigenvalue, then the nonhomogeneous problem has either no solution
or infinitely many solutions.

If zero is an eigenvalue, then the problem has infinitely many solutions if the orthogonality condition∫ b

a
f (x)φh(x)d x = 0

is satisfied, where φh(x) corresponds to the homogeneous solution.



2.3. Corresponding Sturm-Liouville problem 5

To draw conclusions about the existence and uniqueness of solutions to Equation (2.4), the author in [11]
studied the corresponding Sturm-Liouville problem given by:

βV0 − d
d s

(
m̂(s) dV0

d s

)
=λV0(s), 0 < s < 1,

V0(0) = 0,

V0(1) = 0,

(2.5)

where m̂(s) does not change sign [11].
However, since the mass density function m̂(s) is unknown, the author used Sturm-Liouville theory [2, 7, 10]
to derive suitable forms of m̂(s) that transform Equation (2.5) into known Sturm-Liouville problems, such as
the Legendre equation. In [4], it was shown that if ρ0(z) and K (z,Φ) are continuous, and m(z) is continuously
differentiable, then the self-adjoint unbounded linear operator

L =β− ∂

∂s
(m̂(s)

∂

∂s
),

acting in L2(0,1) has discrete eigenvalues. Furthermore, the corresponding eigenfunctions form an orthonor-
mal basis. Using these eigenfunctions, it was also shown that all eigenvalues are positive when β > 0, since
λ1 >β, where λ1 is the smallest eigenvalue. By applying the Fredholm alternative, the authors concluded that
the solutions to the model (2.1) exist and are unique. However, in some regions β may be negative, which
could cause zero to be an eigenvalue. An example of such a region is the Calgary region, Canada (see Figure
2.2), where C ≈ 0.62, S ≈ 0.77, σ≈ 8.5 (so β< 0) with landlocked breezes flowing the in North-West direction
(α= π

4 ) [4]. In these cases, the Fredholm alternative is used to derive the orthogonality condition on the right-
hand side of the model (2.4) to ensure the existence of solutions [4, 11].

Figure 2.2: Geographical location of the Calgary region (marked in red), which is a landlocked region in southern Canada (source: Google
Maps).

In [11], the author considered model (2.4) with a quadratic mass density function m̂(s). Specifically, for
m̂(s) = (as +b)2, the corresponding Sturm-Liouville problem becomes{

−(as +b)2V ′′
0 (s)−2a(as +b)V ′

0(s)+βV0(s) =λV0(s), 0 < s < 1

V0(0) =V0(1) = 0.
(2.6)

This equation is related to the Legendre equation, meaning that it can be reduced to a differential equation
with constant coefficients. To obtain non-trivial eigenfunctions, the author showed that the eigenvalues λ
must satisfy the inequality

√
a2 +4(λ−β) < 0. By solving the differential equation, the author obtained ex-

plicit expressions for the eigenfunctions and eigenvalues. Based on the explicit formula for the eigenvalues,
it was concluded that all eigenvalues are positive when β ≥ 0. In this case, the author used the Fredholm
alternative to conclude that the solution to model (2.4) exists and is unique. However, when β< 0, the author
showed that zero could be an eigenvalue. In that case, the author derived an orthogonality condition1 for
k0(s) to ensure that the solution is unique.

1In [11], the author uses a different orthogonality condition than in Theorem 1. If zero is an eigenvalue and the forcing function k0(s) is
orthogonal to the eigenfunctions, then the solution exists and is unique.



6 2. Model of Sea Breeze flow

In [16], the authors built upon the work in [11] by investigating the differential equation with constant co-
efficients (as derived in [11]) with the same mass density function for both a linear and a general nonlinear
forcing term k0(s). For the linear case, they considered k0(s) = mV (s)+n, where m and n are nonzero con-
stants. For this forcing term, they derived explicit solutions and showed that the differential equation exhibits
semi-Ulam-Hyers stability. They then considered the nonlinear case, where they used Green’s functions and
the fixed-point theorem to prove that a solution to the model exists and is unique.
Motivated by the mentioned above results, we will aim to explore further possibilities for the mass density
function that would lead to unique solutions to model (2.4).



3
Methods and results

This chapter analyses the Sturm-Liouville problem (2.5) for two different mass density functions, denoted
by m̂(s). Based on this analysis, we draw conclusions about the existence and uniqueness of solutions to
model (2.4) for both the Gulf of Carpentaria and the Calgary region. For each mass density function we also
numerically determine the solution to the model for both regions, followed by a physical interpretation of the
results. Section 3.1 analyses the eigenvalue problem, which is reformulated as the hypergeometric equation.
Lastly, in Section 3.2, we study the eigenvalue problem for a physically relevant mass density function.

3.1. Hypergeometric equation
By introducing the mass density function as m̂(s) = s − s2, model (2.4) is written as:{

βV0(s)− d
d s

(
(s − s2) dV0

d s

)
= k0(s), 0 < s < 1

V0(0) =V0(1) = 0.
(3.1)

The corresponding Sturm-Liouville problem (2.5) is then given by:{
βV0(s)− d

d s

(
(s − s2) dV0

d s

)
=λV0(s), 0 < s < 1

V0(0) =V0(1) = 0.
(3.2)

This equation is equivalent to the hypergeometric equation1 with parameters α= 0 and γ= 0 [2]. To see this,
we rewrite Equation (3.2) as:

− d

d s

(
s(1− s)

dV0

d s

)
=µV0(s), (3.3)

where
µ=λ−β. (3.4)

This can be compared to the hypergeometric equation2 [2], which has the same homogeneous boundary
conditions

−(sα+1(1− s)γ+1V ′
0(s))′ =µsα(1− s)γV0(s) 0 < s < 1. (3.5)

From this comparison, it follows that the eigenvaluesµ of the hypergeometric equation satisfy Equation (3.4).
Consequently, the eigenvalues of the Sturm-Liouville problem (3.2) are expressed as

λn =µn +β for n ∈N.

However, since the spectrum and eigenfunctions of the hypergeometric equation have not been fully ex-
plored, an explicit formula for the eigenvalues µ and eigenfunctions are not (yet) known [2]. Therefore, we

1In [2], the authors use the parameters α and β. However, since the model already uses β, we replace it with γ in the hypergeometric
equation to avoid confusion.

2The eigenvalue of this equation is given by µ, while the eigenvalue of the model is given by λ.

7



8 3. Methods and results

use the finite difference method to numerically compute the eigenvalues µ and eigenfunctions of the hyper-
geometric equation. We begin by discretising the interval [0,1] using N interior points as illustrated in Figure
3.1.

s0 s1
. . . si

. . . sN sN+1

0 1

Figure 3.1: Discretisation of the domain [0,1] into discrete points si .

We define the grid points as si = i h, for 0 ≤ i ≤ N +1 with stepsize h = 1
N+1 , such that Vi = V (si ), m̂i =

m̂(si ) = si − s2
i . For simplicity we will write V0(s) =V (s) to avoid any confusion with the indices. Let yi be the

numerical approximation of V (si ) =Vi , then for 1 < i < N +1 the discretised model can be written as:{
− d

d s

(
(s − s2) d y

d s

)∣∣∣
i
=µyi , 0 < s < 1

y0 = yN+1 = 0.
(3.6)

To solve this equation, we apply central differences to approximate the derivates as shown in Equation (3.7).
Note that the local truncation error of the central difference approximation is of order O (h2) (see Appendix
A). This implies that the numerical method is consistent [15], meaning that the local truncation error tends
to zero as h → 0.
We define m̂i+ 1

2
= m̂( si+si+1

2 ) and m̂i− 1
2
= m̂( si+si−1

2 ) then applying central differences gives

−
m̂i+ 1

2

d y
d s |i+ 1

2
−m̂i− 1

2

d y
d s |i− 1

2

2 h
2

=µyi

Apply the central difference to the first derivatives.

−m̂i+ 1
2

yi+1 + (m̂i+ 1
2
+m̂i− 1

2
)yi −m̂i− 1

2
yi−1

h2 =µyi , for 1 < i < N .

(3.7)

For i = 1 we obtain:

−m̂ 3
2

y2 + (m̂ 3
2
+m̂ 1

2
)y1 −m̂ 1

2
y0

h2 =µy1

Since y0 = 0 we find:

−m̂ 3
2

y2 + (m̂ 3
2
+m̂ 1

2
)y1

h2 =µy1.

(3.8)

Similarly for i = N we get:

(m̂N+ 1
2
+m̂N− 1

2
)yN −m̂N− 1

2
yN−1

h2 =µyN . (3.9)

Thus, from the finite difference method we obtain the system Ay = µy, where A (an N ×N matrix) and y are
given by:

A =



m̂ 3
2
+m̂ 1

2
h2 −

m̂ 3
2

h2 0 0 0 0

−
m̂ 3

2
h2

m̂ 5
2
+m̂ 3

2
h2 −

m̂ 5
2

h2 0 0 0

0 −
m̂ 5

2
h2

m̂ 7
2
+m̂ 5

2
h2 −

m̂ 7
2

h2 0 0

0 0
. . .

. . .
. . . 0

0 0 0 −
m̂

N− 3
2

h2

m̂
N− 1

2
+m̂

N− 3
2

h2 −
m̂

N− 1
2

h2

0 0 0 0 −
m̂

N− 1
2

h2

m̂
N+ 1

2
+m̂

N− 1
2

h2


, (3.10)

yT = [
y1 y2 . . . yN

]T . (3.11)

By solving this eigenvalue problem and using that λn =µn +β, we obtain the eigenvalues λ and eigenvectors
of Equation (3.2). Furthermore, for the Gulf of Carpentaria we haveβCarpentaria ≈ 3.192·106 and for the Calgary



3.1. Hypergeometric equation 9

region we have βCalgary ≈−6.545 ·105. It should be noted that the nth eigenvector represents the values of the
nth eigenfunction at discrete points. The corresponding Python implementation is provided in Appendix D.1.

With the approximations for the eigenvalues λn , we examine the eigenvalue problem (3.2) for two specific
regions: the Gulf of Carpentaria and the Calgary region. It is important to note that the eigenfunctions for
both equations are the same, since the only difference is that the eigenvalues are shifted by β.

3.1.1. Gulf of Carpentaria
From [4], it follows that in the Gulf of Carpentaria, we have C ≈ 0.97, α= 5π

4 , σ≈ 133, S ≈−0.24, and therefore
βCarpentaria =−σSRe > 0. Using N = 2000 points in the finite difference method (see Section 3.1), we compute
the first 2000 eigenvalues of the Sturm-Liouville problem (3.2). By the Gershgorin circle theorem [15] (see Ap-
pendix C), we find that all eigenvalues are positive and that the smallest eigenvalue satisfies λ1 ≥βCarpentaria.
This theoretical lower bound is consistent with our numerical results as shown in Figure 3.2, where the small-
est eigenvalue is λ1 = 3192000.261076134. Since zero is not an eigenvalue, the Fredholm alternative [8] im-
plies that the solution to model (3.1) for the Gulf of Carpentaria exists and is unique for all forcing functions
k0(s).

(a) (b)

Figure 3.2: The numerical eigenvalues of the Sturm-Liouville problem (3.2) for the Gulf of Carpentaria. (b) Detailed view of the eigenval-
ues, showing that the eigenvalues are discrete.

Theorem 2. The solution to the boundary value problem in the Gulf of Carpentaria{
βV0(s)− d

d s

(
(s − s2) dV0

d s

)
= k0(s), 0 < s < 1

V0(0) =V0(1) = 0,

exists and is unique for all forcing functions k0(s), provided that β=βCarpentaria ≈ 3192000.

Proof. Suppose that λ= 0 is an eigenvalue, then the eigenvalue problem (3.2) is written as:

βV0(s)− d

d s

(
(s − s2)

dV0(s)

d s

)
= 0.

Multiplying both sides by V0(s) and integrating gives:∫ 1

0
βV 2

0 (s)d s −
∫ 1

0

d

d s

(
(s − s2)

dV0(s)

d s

)
V0(s)d s = 0

β

∫ 1

0
V 2

0 (s)d s − [
(s − s2)V ′

0(s)V0(s)
]1

0 +
∫ 1

0
(s − s2)(V ′

0(s))2 d s = 0.

Using the homogeneous Dirichlet boundary conditions we find:

β

∫ 1

0
V 2

0 (s)d s −0+
∫ 1

0
(s − s2)(V ′

0(s))2 d s = 0

β

∫ 1

0
V 2

0 (s)d s =−
∫ 1

0
(s − s2)(V ′

0(s))2 d s.
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Since (s−s2) ≥ 0 for 0 ≤ s ≤ 1, and (V ′
0(s))2 ≥ 0, it follows that the right-hand side is non-positive, which implies

that we have:

β

∫ 1

0
V 2

0 (s)d s ≤ 0. (3.12)

Using Equation (3.12) and that V 2
0 (s) ≥ 0, we find that 0 ≤ ∫ 1

0 V 2
0 (s) ≤ 0. But this means that

∫ 1
0 V 2

0 (s) = 0,
which in turn means that V0(s) = 0. Thus for λ= 0, we obtain the trivial solution, contradicting our assump-
tion that 0 was an eigenvalue. By applying the Fredholm alternative [8], we conclude that the solution to
Equation (3.2) exists and is unique for all forcing functions k0(s).

We now consider the solutions to model (3.1) with the mass density function m̂(s) = s− s2. It is important
to note that the mass density function m̂ is not the same as the density function ρ0. While ρ0 represents mass
per unit volume, the function m̂ describes the mass flux, defined as the amount of mass flowing per unit time
through a unit surface area. As shown in Figure 3.3, the mass density function reaches its maximum at the
midpoint and decreases towards the boundaries. This behaviour is similar to the velocity profile of laminar
flow in a closed pipe, where the velocity of the fluid is maximal in the centre and minimal near the walls [9].

Figure 3.3: The mass density function used in model (3.1).

To study the influence of the forcing term k0(s) on the velocity of sea breeze flows, we first solve the
homogeneous model equation using the finite difference method with N = 2000 points (see Appendix B.2),
which gives the system

By = b.

From Appendix A, it follows that the local truncation error of the finite difference method is of order O (h2),
which implies that the method is consistent. The resulting symmetric discretisation matrix B is invertible,
because its columns span RN (this is proven by the python implementation provided in Appendix D.2). Fur-
thermore, by applying the Gershgorin circle theorem [15] (see Appendix C), we find that the smallest absolute
eigenvalue3 satisfies λmin ≥βCarpentaria. This means that we have4

||B−1|| = 1

|λ|min
= 1

min
1≤i≤N

|λi |
≤C ,

where C is a constant (in this case we have that C = 1
βCarpentaria

) independent of h. Then [15] implies that the

method is stable and since it is also consistent, we conclude that the method is convergent.

The resulting velocity profile of the sea breeze, in the absence of a forcing term, is plotted in Figure 3.4.

3In this case all eigenvalues are positive.
4We use the natural matrix norm [15], which is defined as ||B || = max||w||=1

||Bw||. For symmetric matrices we have ||B || = |λ|max = max
1≤i≤N

|λi |
and ||B−1|| = 1

|λ|min
= 1

min
1≤i≤N

|λi | .
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Figure 3.4: The horizontal velocity of the sea breeze in the Gulf of Carpentaria when no forcing terms are present.

From the figure, it is clear that the horizontal velocity of the sea breeze flow is zero everywhere. Thus, in
the absence of a forcing term, sea breezes do not occur in the Gulf of Carpentaria. Physically, this result is to
be expected, since without a forcing term, the wind forces responsible for generating sea breezes are absent.

Next, we assume that k0(s) is non-zero. Since

k0(s) = Re

{
cos2(α)+ sin2(α)

C

} K (s)

ρ0(s)
, (3.13)

we need to specify both the forcing function K (s) and the density function ρ0(s). To simplify for our calcula-
tions, we assume that the term K (s)

ρ0(s) represents wind forces. As an initial guess, we take K (s)
ρ0(s) = 1, which means

that forcing function k0 is constant and has the form

k0(s) = Re

(
cos2(α)+ sin2(α)

C

)
. (3.14)

The solution is computed using the finite difference method with N = 2000 points (see Appendix B.2), and
the result is plotted in Figure 3.5.

Figure 3.5: The horizontal velocity profile of the sea breeze in the Gulf of Carpentaria with a constant forcing function.

From the results, we see that in the presence of constant wind forcing, the horizontal velocity of the sea
breeze remains constant in the interval (0,1). It drops only zero at the boundaries due to the no-slip condition
and the thermal inversion layer. Physically, this does make sense, if the same force is applied everywhere to
the mass, then the whole mass would eventually move with the same speed.
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Lastly, we assume that K (s)
ρ0(s) = 5s2 + s +1, which means that the forcing function k0 is an increasing quadratic

function with the following form

k0(s) = Re

(
cos2(α)+ sin2(α)

C

)
(5s2 + s +1). (3.15)

Using the finite difference method with N = 2000 points (see Appendix B.2), the resulting velocity profile is
plotted in Figure 3.6.

Figure 3.6: The horizontal velocity of the sea breeze in the Gulf of Carpentaria for an increasing quadratic forcing function.

In Figure 3.6, we observe that the velocity of the sea breeze increases quadratically with height under the
influence of a quadratic forcing function. Due to the no-slip condition and the presence of a thermal inver-
sion layer, the velocity is zero at both boundaries. There are two reasons for the behaviour of this solution.
The first reason is that the forcing function k0 starts small and increases with height. Wind forces near the
ground are small, but they grow quadratically as the height increases. Since k0 is never zero, wind forces are
always present, which causes a jump in the velocity immediately after s = 0. The second reason is that the air
density is not constant, but decreases with height. Near the ground we have the heaviest air, meaning that the
weakest wind forces must push the heaviest mass, resulting in the slowest velocities for the sea breeze flow.
On the other hand, higher up in the atmosphere, we have the lightest air being pushed by the strongest wind
forces. As a result, the sea breeze flow reaches its maximal velocity just below the thermal inversion layer.

3.1.2. Calgary region
From [4], it follows that in the Calgary region, we have C ≈ 0.62, α= π

4 , σ≈ 8.5, S ≈ 0.77 and this means that
the parameter β is negative. In the same way as for the Gulf of Carpentaria (see Section 3.1.1), the first 2000
eigenvalues of the Sturm-Liouville problem (3.2) with β< 0 are plotted in Figure 3.7.
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(a) (b)

Figure 3.7: The numerical eigenvalues of the Sturm-Liouville problem (3.2) for the Calgary region. (b) Detailed view of the eigenvalues,
showing that the eigenvalues are discrete.

From the results, it follows that the smallest eigenvalue is λ1 =−654499.7389238656. However, Figure 3.7
also shows that we have both positive and negative eigenvalues, which is consistent with the Gershgorin cir-
cle theorem [15] (see Appendix C). As a consequence, it is possible that zero could be an eigenvalue, which
implies that an orthogonality condition must be satisfied for the existence of an infinite number of solutions
to the model. Since solutions do not exist unless the orthogonality condition is satisfied, and having an in-
finite number of solutions is not physically realistic, we examine whether zero is an eigenvalue. To do this
we focus on the region near zero in Figure 3.8. This figure shows that zero is not an eigenvalue; the closest
eigenvalues near zero are λ807 = −828 and λ808 = 790. By applying the Fredholm alternative, we therefore
conclude that the solution to model (3.1) for the Calgary region exists and is unique for all forcing functions.

Theorem 3. The solution to the boundary value problem in the Calgary{
βV0(s)− d

d s

(
(s − s2) dV0

d s

)
= k0(s), 0 < s < 1

V0(0) =V0(1) = 0,

exists and is unique for all forcing functions k0(s), provided that β=βCalgary ≈−654500.

Figure 3.8: A closer look at the numerical eigenvalues of the Sturm-Liouville problem (3.2) for the Calgary region.

Similarly to the Gulf of Carpentaria, we compute the solution to model (3.1) for the Calgary region in the
absence of a forcing term. The homogeneous solution is approximated using the finite difference method
with N = 2000 points (see Appendix B.2), which gives the system

By = b.
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Just as in the Gulf of Carpentaria, the method is consistent and yields an invertible symmetric discretisation
matrix (see Appendix D.2). However, unlike in the Gulf of Carpentaria, the method becomes unstable for Cal-
gary. This is because the condition number κ(B) grows as the stepsize h decreases (i.e. the number of points
increases), as shown in Table 3.1. The condition number of a matrix is defined as 5 κ(B) = ||B ||·||B−1|| = |λ|max

|λ|min
,

and a large value means that a small relative error in the right-hand side b may give a large relative error in
the approximated solution y [15]. For N = 2000 points, the condition number of the discretisation matrix for
Calgary is κCalgary ≈ 4232, while for the Gulf of Carpentaria it is κCarpentaria(B) ≈ 2.25. This large difference
means that unlike in the Gulf of Carpentaria, the stepsize cannot be taken too small. As for very small step-
sizes, the solutions become unreliable (chaotic) due to numerical instabilities. A possible explanation for this
numerical instability is that the model is analytically unstable in Calgary, where β< 0.

Table 3.1: The condition number of the discretisation matrices for the Gulf of Carpentaria and Calgary for various number of points N .

Number of points (N) Gulf of Carpentaria Calgary
10 1.0000279521588649 1.0001363416096736

100 1.0031013708338066 1.0153577055745402
1000 1.3129698069058668 828.4806498161958
2000 2.252506081429955 4232.278481012858

The behaviour of sea breezes in the absence of a forcing term is plotted in Figure 3.9.

Figure 3.9: The horizontal velocity of the sea breeze in the Calgary region when there are no forcing terms.

From Figure 3.9, it is clear that just like in the Gulf of Carpentaria, sea breezes do not occur if there is no
forcing term. So in the absence of external wind forces, sea breezes do not occur in the Calgary region.
Suppose now that K (s)

ρ0(s) = 1, which implies that the forcing function k0 is constant and takes the form

k0(s) = Re

{
cos2(α)+ sin2(α)

C

}
.

With the finite difference method with N = 2000 points, we compute the solution and the velocity profile is
plotted in Figure 3.10.

5We use that the matrix is symmetric to express the condition number in terms of the eigenvalues.
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Figure 3.10: The horizontal velocity profile of the sea breeze in the Calgary region with a constant forcing function.

The velocity profile under the influence of a constant forcing function remains uniform over the interval
(0,1) as shown in Figure 3.12. However, unlike sea breezes in the Gulf of Carpentaria, the breezes in Calgary
have negative velocity. These opposite flows result from the Coriolis force, which arises due to Earth’s rotation.
This force causes winds to be deflected to the right in the Northern Hemisphere and to the left in the Southern
Hemisphere, relative to the direction of propagation [12], as illustrated in Figure 3.11. Since Calgary lies in
the Northern Hemisphere and the Gulf of Carpentaria in the Southern Hemisphere, the Coriolis force acts in
opposite directions in the two regions, causing the sea breezes to flow in opposite directions.
Furthermore, comparing Figure 3.5 with Figure 3.10, we see that the magnitude of the velocity in the Calgary
region is greater than in the Gulf of Carpentaria. This difference in magnitude occurs because the Coriolis
force is weakest near the equator increases with latitude [5]. Since the Gulf of Carpentaria lies closer to the
equator than Calgary, the Coriolis force is weaker there, explaining the lower velocity.

Figure 3.11: The deflection of winds in the Northern and Southern hemisphere caused by Coriolis forces (source: [12]).

We now consider model (3.1) for the same increasing quadratic forcing function given by Equation (3.15).
Using the finite difference method with N = 2000 points (see Appendix B.2), the solution is plotted in Figure
3.12.
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Figure 3.12: The horizontal velocity profile of the sea breeze in the Calgary region for a quadratic forcing function.

From Figure 3.12, we see that the velocity profile exhibits behaviour similar to that of the sea breeze in the
Gulf of Carpentaria, where the horizontal velocity increases quadratically with height. The key differences are
that breezes in Calgary flow in the opposite direction (i.e., it has negative velocity) and flow faster than the
sea breezes in the Gulf of Carpentaria. These difference arise, because the Coriolis force acts in the opposite
direction in Calgary compared to the Gulf of Carpentaria.

3.2. Physically relevant mass density function
The flow of air is not homogeneous and consists out of layers. So if we take a vertical slice of the flow and
examine the mass flux, we find that the flux follows a cosine function. Thus, we assume that the physical
mass density function has the following form:

m̂(s) = cos(π(2s −1))+1. (3.16)

With this mass density function we write model (2.4) as:{
βV0(s)− d

d s

(
(cos(π(2s −1))+1) dV0

d s

)
= k0(s), 0 < s < 1

V0(0) =V0(1) = 0.
(3.17)

The eigenvalue problem corresponding to model (3.17) is then given by:{
βV0(s)− d

d s

(
(cos(π(2s −1))+1) dV0

d s

)
=λV0(s), 0 < s < 1

V0(0) =V0(1) = 0.
(3.18)

This equation is rewritten as:

− d

d s

(
(cos(π(2s −1))+1)

dV0

d s

)
=µV0(s), (3.19)

where like in Section 3.1, the eigenvalues λ of the eigenvalue problem (3.18) satisfy

λn =µn +β for n ∈N.

In the same way as Section 3.1, we compute the eigenvalues with the finite difference method with N = 2000
points (see Appendix B.1). With the numerical eigenvalues, we study the solvability of the model (3.17) for
the Gulf of Carpentaria and the Calgary region.

3.2.1. Gulf of Carpentaria
From [4], it follows that in the Gulf of Carpentaria, the parameter βCarpentaria = −σSRe is positive. The first
2000 eigenvalues of the eigenvalue problem (3.18) are computed using the finite difference method with N =
2000 points (see Appendix B.1), and the results are plotted in Figure 3.13. From the results it follows that
the smallest eigenvalue is λ1 = 3192000.0040119556, which agrees with the theoretical lower bound λ1 ≥
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βCarpentaria obtained via the Gershgorin circle theorem [15] (see Appendix C). Since zero is not an eigenvalue,
we conclude by the Fredholm alternative [8] that the solution to model (3.17) exists and is unique for all
forcing functions k0(s).

Figure 3.13: The numerical eigenvalues of Equation (3.18) for the Gulf of Carpentaria.

Theorem 4. The solution to the boundary value problem in the Gulf of Carpentaria{
βV0(s)− d

d s

(
(cos(π(2s −1))+1) dV0

d s

)
= k0(s), 0 < s < 1

V0(0) =V0(1) = 0,

exists and is unique for all forcing functions k0(s), provided that β=βCarpentaria ≈ 3192000.

Proof. Suppose that λ= 0 is an eigenvalue, then the eigenvalue problem (3.18) is written as:

βV0(s)− d

d s

(
cos(π(2s −1))+1)

dV0(s)

d s

)
= 0.

Multiplying both sides by V0(s) and integrating gives:∫ 1

0
βV 2

0 (s)d s −
∫ 1

0

d

d s

(
cos(π(2s −1))+1)

dV0(s)

d s

)
V0(s)d s = 0

β

∫ 1

0
V 2

0 (s)d s − [
cos(π(2s −1))+1)V ′

0(s)V0(s)
]1

0 +
∫ 1

0
cos(π(2s −1))+1)(V ′

0(s))2 d s = 0.

Using the homogeneous Dirichlet boundary conditions we find:

β

∫ 1

0
V 2

0 (s)d s −0+
∫ 1

0
cos(π(2s −1)+1)(V ′

0(s))2 d s = 0

β

∫ 1

0
V 2

0 (s)d s =−
∫ 1

0
cos(π(2s −1)+1)(V ′

0(s))2 d s.

Since cos(π(2s − 1)+ 1) ≥ 0 for 0 ≤ s ≤ 1, and (V ′
0(s))2 ≥ 0, we have that the right-hand side is non-positive,

which implies that we have:

β

∫ 1

0
V 2

0 (s)d s ≤ 0. (3.20)

Using Equation (3.20) and that V 2
0 (s) ≥ 0, we find that 0 ≤ ∫ 1

0 V 2
0 (s) ≤ 0. But this means that

∫ 1
0 V 2

0 (s) = 0, which
in turn means that V0(s) = 0. Thus for λ= 0, we obtain the trivial solution, contradicting our assumption that
0 was an eigenvalue. By applying the Fredholm alternative [8], we conclude that the solution to Equation 3.18
exists and is unique for all forcing functions k0(s).

Next, we study the solutions to model (3.17) with the mass density function m̂(s) = cos(π(2s −1))+1. The
overall behaviour of this function is similar to that discussed in Section 3.1.1, but with one key difference. Near
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the boundaries, this function changes more gradually compared to s − s2, as illustrated in Figure 3.14. This
occurs because the mass density function accounts for the fact that the factors causing the velocity to vanish
at the boundaries, extend slightly into the interior of the domain. In other words, the boundary conditions
exert a weak influence on the flow near the boundaries.

Figure 3.14: The physical mass density function used in model (3.17).

Similar to Section 3.1.1, we compute the solutions to model (3.17) for three different of the forcing func-
tion k0(s). We begin by computing the solution in the absence of a forcing function (k0(s) = 0) using the finite
difference method with N = 2000 points (see Appendix B.2), which gives the system By = b. Similar to Section
3.1.1, the matrix B is invertible (this is proven by the python implementation provided in Appendix D.4) and
||B−1|| has an upper bound independent of the stepsize h. Combined with the local truncation error of order
O (h2) (see Appendix A), this implies that the method is convergent.
The solution to the model in the absence of wind forces, is plotted in Figure 3.15.

Figure 3.15: The horizontal velocity profile of the sea breeze in the Gulf of Carpentaria when no forcing terms are present.

From the figure, we see that without external wind forces, sea breezes do not occur in the Gulf of Carpen-
taria.

Next, we consider the solution for the constant forcing function given by Equation (3.14). The velocity pro-
file is computed with the finite difference method (see Appendix B.2) with N = 2000 points and is plotted in
Figure 3.17.
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Figure 3.16: The horizontal velocity profile of the sea breeze in the Gulf of Carpentaria with a constant forcing function with the physical
mass density function.

From the results, we see that like in Section 3.1.1, the horizontal velocity is uniform under the effect of
constant wind forces. Since the mass of air will eventually move with the same speed, if we apply a constant
force.

Lastly, we consider the quadratic forcing function given by Equation (3.15). With this forcing function, we
compute the solution to the model with the finite difference method (see Appendix B.2). The resulting veloc-
ity profile is plotted in Figure 3.17.

Figure 3.17: The horizontal velocity of the sea breeze in the Gulf of Carpentaria for an increasing quadratic forcing function with the
physical density function.

The velocity profile under the quadratic forcing function grows quadratically with height. Similar to Sec-
tion 3.1.1, we have that this behaviour occurs because the forcing increases with height, while the air density
decreases. Consequently, the strongest forces act on the lightest air, resulting in the flow reaching its maximal
velocity just below the thermal inversion layer.

3.2.2. Calgary region
From [4], it follows that the parameter βCalgary is negative. In the same way as for the Gulf of Carpentaria, we
compute the first 2000 eigenvalues of the eigenvalue problem (3.18) with β < 0. The numerical eigenvalues
are then plotted in Figure 3.18.



20 3. Methods and results

(a) (b)

Figure 3.18: The numerical eigenvalues of Equation (3.18) for the Gulf of Carpentaria. (b) Detailed view of the eigenvalues, showing that
the eigenvalues are discrete and that zero is not an eigenvalue.

From the results, it follows that the smallest eigenvalue is λ1 = −654499.9959880443. However, similar
to Section 3.1.2, we have both positive and negative eigenvalues, which is consistent with the Gershgorin
circle theorem [15] (see Appendix C). For the same reasons as discussed in Section 3.1.2, we will determine
whether zero is an eigenvalue. To determine this, we zoom in on the eigenvalues closest to zero, as illustrated
in Figure 3.18b. This figure demonstrated that zero is not an eigenvalue; the eigenvalues closest to zero are
λ501 =−351.58482554 and λ502 = 3030.50962078. The Fredholm alternative then implies that the solution to
model (3.17) for the Calgary region exists and is unique for all forcing function k0.

Theorem 5. The solution to the boundary value problem in the Calgary region{
βV0(s)− d

d s

(
(cos(π(2s −1))+1) dV0

d s

)
= k0(s), 0 < s < 1

V0(0) =V0(1) = 0,

exists and is unique for all forcing functions k0(s), provided that β=βCalgary ≈−654500.

In the same manner as in Section 3.2.1, we compute the solution to model (3.17) for the Calgary region
using the three forcing functions introduced in Section 3.1. Figure 3.19 shows the solution in the absence of
a forcing function, Figure 3.20 displays the velocity profile under constant forcing, and Figure 3.21 illustrates
the resulting velocity under the quadratic forcing function. From these results, we observe that the solutions
are identical to those presented in Section 3.1.2. In the first case we have that in the absence of wind forces,
no sea breezes occur. In the second case, a constant forcing, leads to a constant velocity profile. Lastly, for
quadratic forcing we have the the velocity increases with height, as the forcing grows with height while the air
density decreases.

Similar to Section 3.1.2, the sea breezes in Calgary flow in the opposite direction compared to those in the
Gulf of Carpentaria. This difference in the direction occurs because the Coriolis force acts in the opposite
direction in the Northern Hemisphere and Southern Hemisphere [12]. Furthermore the breezes in Calgary
are also faster. This is due to the fact that the Coriolis force is zero at the equator and increases with latitude
[5].
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Figure 3.19: The horizontal velocity of the sea breeze in the Calgary region when there are no forcing terms.

Figure 3.20: The horizontal velocity profile of the sea breeze in the Calgary region with a constant forcing function.

Figure 3.21: The horizontal velocity profile of the sea breeze in the Calgary region with a quadratic forcing function.

The solutions are computed using the finite difference method (see Appendix B.2) with N = 2000 points,
which gives the system

By = b.
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From Appendix A we know that the central difference has a local truncation error of order O (h2), which
means that the method is consistent. But for the same reasons as for the Calgary region in Section 3.1.2,
we have that the method is no longer stable. The condition number grows as the number of points used
for the computation increases, as shown in Table 3.2. For N = 2000 points the condition number of the
discretisation matrix for Calgary is κCalgary ≈ 89083, while for the Gulf of Carpentaria it is κCarpentaria ≈ 11. The
large difference in the condition number means that unlike in the Gulf of Carpentaria, the stepsize for Calgary
cannot be taken arbitrarily small. As for small stepsizes, the solutions become unreliable due to numerical
instabilities. Similar to Section 3.1.2, we have that the numerical instability occurs, since the model itself is
analytically unstable in Calgary.

Table 3.2: The condition number of the discretisation matrices for the Gulf of Carpentaria and Calgary for various number of points N .

Number of points (N) Gulf of Carpentaria Calgary
10 1.0002126035398937 1.0010379467168815

100 1.02467050290846 1.1367746747050993
1000 3.5023303694390795 9576.849406564716
2000 11.017190523492697 89083.40155822318



4
Conclusion and discussion

In this project, we studied a mathematical model describing the horizontal velocity of sea breeze flows for
two physically relevant mass density functions. The behaviour of these functions is similar to the velocity
profile of laminar flow in a closed pipe, where the velocity of the fluid is maximal in the centre and mini-
mal near the walls. These functions were chosen to ensure that the solution to the model is unique, since
multiple solutions would not be physically realistic. The analysis was carried out for two regions: the Gulf
of Carpentaria (Australia) and the Calgary region (Canada). To confirm that the solutions to the model are
indeed unique, we showed that zero is not an eigenvalue of the corresponding Sturm-Liouville problem. For
the Gulf of Carpentaria, we proved this analytically, while for the Calgary region we demonstrated it numer-
ically. Thus, the existence and uniqueness of the solutions follow immediately from the Fredholm alternative.

Using the mass density function m̂(s) = s − s2 and three different forcing functions, we applied the finite
difference method to compute the velocity profiles of the breezes in the Gulf of Carpentaria. In the first
case, with no forcing function, no sea breeze occurs because the wind forces responsible for generating sea
breezes are absent. Secondly, under constant forcing, the velocity profile is constant, which makes physical
sense since a constant force acting on the air will eventually result in the flow moving with the same speed ev-
erywhere. Lastly, for an increasing quadratic forcing function, the velocity increases quadratically with height
and reaches its maximum just below the thermal inversion layer. This happens because the air density de-
creases with height, so the strongest forces act on the lightest air, while weaker forces push the heavier air
near the surface.

In a similar manner, we computed the velocity profiles of the sea breezes in Calgary for the same three forcing
functions. Although the overall behaviour is similar, the breezes in Calgary flow in the opposite direction. This
difference occurs due to the Coriolis force, which acts in opposite directions in the Northern and Southern
Hemispheres. Furthermore, the flows in Calgary are faster because the Coriolis force is zero at the equator
and increases with latitude.

To better account for the effects of the boundaries on the flow, we also considered a second mass density
function m̂(s) = cos(π(2s − 1))+ 1. With the same three forcing functions, we then computed the solutions
to the model. Surprisingly, the resulting velocity profiles were identical as those obtained with the previous
mass density function, both in shape and magnitude. This outcome is expected, as both mass density func-
tions exhibit similar parabolic behaviour and because the same forcing functions were applied in both cases.

To obtain more realistic results, future work could focus on deriving an explicit form of the forcing func-
tion K (s) by studying the effects of global winds, such as the trade winds, westerlies, or Hadley cells on the
formation of sea breezes. Furthermore, more realistic mass density functions could be obtained by deter-
mining realistic profiles for the air density and the viscosity in the two regions. Lastly, since the numerical
method introduces approximation errors, we recommend proving analytically that zero is not an eigenvalue
of the Sturm-Liouville problem corresponding to the model for the Calgary region (or any other region where
the parameter β is negative).

23





A
Local truncation error in central difference

The central difference approximates the derivative of a function as

d y

d x
|i = yi+1 − yi−1

2h
+O (h2). (A.1)

We will prove that the local truncation error of this method is of order O (h2). Using the Taylor expansion of
y(x) about the point xi we get:

yi+1 = yi +hy ′
i +

h2

2!
y ′′

i + h3

3!
y ′′

i +O (h4)

yi−1 = yi −hy ′
i +

h2

2!
y ′′

i − h3

3!
y ′′

i +O (h4).

Then plugging these in Equation (A.1) gives us:

1

2h
(yi +hy ′

i +
h2

2!
y ′′

i + h3

3!
y ′′

i +O (h4)− (yi −hy ′
i +

h2

2!
y ′′

i − h3

3!
y ′′

i +O (h4))) =
1

2h
(2hy ′

i +
h3

3
y ′′

i +O (h4)) =
y ′

i +O (h2).

(A.2)

Proving that the central difference has a local truncation error of order O (h2).
Thus in the case of the left hand-side of Equation (3.6) and writing m̂i = si − s2

i , we get:

− d

d s

(
(s − s2)

d y

d s

)∣∣∣
i
≈−

m̂i+ 1
2

d y
d s |i+ 1

2
−m̂i− 1

2

d y
d s |i− 1

2

h
. (A.3)

We will show that the local truncation error of central difference method is order O (h2) by using Taylor ex-
pansion of the functions. We expand the functions about the point si :

m̂i+ 1
2
= m̂i + h

2
m̂′

i +
h2

4
m̂′′

i +
h3

12
m̂′′′

i +O (h4)

m̂i− 1
2
= m̂i − h

2
m̂′

i +
h2

4
m̂′′

i −
h3

12
m̂′′′

i +O (h4)

y ′
i+ 1

2
= y ′

i +
h

2
y ′′

i + h2

4
y ′′′

i + h3

12
y ′′′′

i +O (h4)

y ′
i− 1

2
= y ′

i −
h

2
y ′′

i + h2

4
y ′′′

i − h3

12
y ′′′′

i +O (h4).

(A.4)
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Substituting these in the right hand-side of Equation (A.3) then gives:

− 1

h

{
(m̂i + h

2
m̂′

i +
h2

4
m̂′′

i +
h3

12
m̂′′′

i +O (h4))(y ′
i +

h

2
y ′′

i + h2

4
y ′′′

i + h3

12
y ′′′′

i +O (h4))−

(m̂i − h

2
m̂′

i +
h2

4
m̂′′

i −
h3

12
m̂′′′

i +O (h4))(y ′
i −

h

2
y ′′

i + h2

4
y ′′′

i − h3

12
y ′′′′

i +O (h4))
}

.

This simplifies to:

− 1

h

{
hm̂i y ′′

i +hm̂′
i y ′

i +O (h3)
}
=

−m̂i y ′′
i −m̂′

i y ′
i +O (h2) =

− d

d s
(m̂i

d y

d s

∣∣∣
i
)+O (h2).

(A.5)

The above proves that the central difference applied to Equation (A.3) has a local truncation error of order
O (h2).



B
Finite Difference Method

B.1. Eigenvalue problem
The eigenvalue problem corresponding to model (2.4) is given by:{

− d
d s

(
m̂(s) dV0

d s

)
= (λ−β)V0(s) =µV0(s), 0 < s < 1

V0(0) =V0(1) = 0.
(B.1)

For simplicity, we work with µV0(s) on the right hand-side for now. To compute the solution to this model,
we apply the finite difference method. We begin by discretising the interval [0,1] using N interior points as
illustrated in Figure B.1.

s0 s1
. . . si

. . . sN sN+1

0 1

Figure B.1: Discretisation of the domain (0,1) into discrete points si .

We define the grid points as si = i h, for 0 ≤ i ≤ N +1 with stepsize h = 1
N+1 , such that Vi = V (si ), m̂i =

m̂(si ). For simplicity we will write V0(s) =V (s) to avoid any confusion with the indices. Let yi be the numerical
approximation of V (si ) =Vi , then for 1 < i < N +1 the discretised model can be written as:{

− d
d s

(
m̂(s) d y

d s

)∣∣∣
i
=µyi , 0 < s < 1

y0 = yN+1 = 0.
(B.2)

To solve this equation we will apply central differences to approximate the derivates as shown in Equation
(B.3), and for simplicity we use m̂i . Furthermore, we define m̂i+ 1

2
= m̂( si+si+1

2 ) and m̂i− 1
2
= m̂( si+si−1

2 ).

−
m̂i+ 1

2

d y
d s |i+ 1

2
−m̂i− 1

2

d y
d s |i− 1

2

2 h
2

=µyi

Apply the central difference to the first derivatives.

−m̂i+ 1
2

yi+1 + (m̂i+ 1
2
+m̂i− 1

2
)yi −m̂i− 1

2
yi−1

h2 =µyi , for 1 < i < N .

(B.3)

For i = 1 we obtain:

−m̂ 3
2

y2 + (m̂ 3
2
+m̂ 1

2
)y1 −m̂ 1

2
y0

h2 =µy1

Since y0 = 0 we find:

−m̂ 3
2

y2 + (m̂ 3
2
+m̂ 1

2
)y1

h2 =µy1.

(B.4)
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Similarly for i = N we get:

(m̂N+ 1
2
+m̂N− 1

2
)yN −m̂N− 1

2
yN−1

h2 =µyN . (B.5)

Thus, we from the Finite Difference Method we obtain the system Ay =µy, where A (an N×N matrix) and
y are given by:

A =



m̂ 3
2
+m̂ 1

2
h2 −

m̂ 3
2

h2 0 0 0 0

−
m̂ 3

2
h2

m̂ 5
2
+m̂ 3

2
h2 −

m̂ 5
2

h2 0 0 0

0 −
m̂ 5

2
h2

m̂ 7
2
+m̂ 5

2
h2 −

m̂ 7
2

h2 0 0

0 0
. . .

. . .
. . . 0

0 0 0 −
m̂

N− 3
2

h2

m̂
N− 1

2
+m̂

N− 3
2

h2 −
m̂

N− 1
2

h2

0 0 0 0 −
m̂

N− 1
2

h2

m̂
N+ 1

2
+m̂

N− 1
2

h2


, (B.6)

yT = [
y1 y2 . . . yN

]T . (B.7)

By solving this eigenvalue problem and using that λ=µ+β, we obtain the eigenvalues λ and eigenvectors
of Equation (3.2). Furthermore, for the Gulf of Carpentaria we haveβCarpentaria ≈ 3.192·106 and for the Calgary
region we have βCalgary ≈−6.545 ·105. It should be noted that the nth eigenvector represents the values of the
nth eigenfunction at discrete points. The corresponding Python implementation for m̂(s) = s− s2 is provided
in Appendix D.1 and the implementation for m̂(s) = cos(π(2s −1))+1 is given in Appendix D.3.

B.2. Boundary value problem{
βV0(s)− d

d s

(
m̂(s) dV0

d s

)
= k0(s), 0 < s < 1

V0(0) =V0(1) = 0.
(B.8)

To compute the solution to this model, we will use the Finite Difference method. To start we begin by dis-
cretising the interval [0,1] by using N interior points, as seen in Figure B.1. We define the grid points as si = i h,
for 0 ≤ i ≤ N +1 with stepsize h = 1

N+1 , such that Vi =V (si ), m̂i = m̂(si ) and ki = k(si ).
For simplicity we will write V0(s) = V (s), k0(s) = k(s) to avoid any confusion with the indices. Let yi be the
numerical approximation of V (si ) =Vi , then for 1 < i < N +1 the discretised model can be written as:{

βyi − d
d s

(
m̂(s) d y

d s

)∣∣∣
i
= ki , 0 < s < 1

y0 = yN+1 = 0.
(B.9)

To solve this equation we will apply central differences to approximate the derivates as shown in Equation
(B.10), and for simplicity we use m̂i . Furthermore, we define m̂i+ 1

2
= m̂( si+si+1

2 ) and m̂i− 1
2
= m̂( si+si−1

2 ).

βyi −
m̂i+ 1

2

d y
d s |i+ 1

2
−m̂i− 1

2

d y
d s |i− 1

2

2 h
2

= ki

Apply the central difference to the first derivatives.

βyi +
−m̂i+ 1

2
yi+1 + (m̂i+ 1

2
+m̂i− 1

2
)yi −m̂i− 1

2
yi−1

h2 = ki , for 1 < i < N .

(B.10)

For i = 1 we obtain:

βy1 +
−m̂ 3

2
y2 + (m̂ 3

2
+m̂ 1

2
)y1 −m̂ 1

2
y0

h2 = k1

Since y0 = 0 we find:

βy1 +
−m̂ 3

2
y2 + (m̂ 3

2
+m̂ 1

2
)y1

h2 = k1.

(B.11)
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Similarly for i = N we get:

βyN +
(m̂N+ 1

2
+m̂N− 1

2
)yN −m̂N− 1

2
yN−1

h2 = kN . (B.12)

Thus, we obtain the system By = b. Where A (an N ×N matrix), y and b are given by:

B =



β+
m̂ 3

2
+m̂ 1

2
h2 −

m̂ 3
2

h2 0 0 0 0

−
m̂ 3

2
h2 β+

m̂ 5
2
+m̂ 3

2
h2 −

m̂ 5
2

h2 0 0 0

0 −
m̂ 5

2
h2 β+

m̂ 7
2
+m̂ 5

2
h2 −

m̂ 7
2

h2 0 0

0 0
. . .

. . .
. . . 0

0 0 0 −
m̂

N− 3
2

h2 β+
m̂

N− 1
2
+m̂

N− 3
2

h2 −
m̂

N− 1
2

h2

0 0 0 0 −
m̂

N− 1
2

h2 β+
m̂

N+ 1
2
+m̂

N− 1
2

h2


, (B.13)

yT = [
y1 y2 . . . yN

]T
, b = [

k1 k2 . . . kN
]T . (B.14)

Solving this system yields the solution to the model equation. The corresponding Python implementation to
numerically compute the solution for m̂(s) = s − s2 is provided in Appendix D.2. The Python implementation
for the solution when m̂(s) = cos(π(2s −1))+1) is provided in Appendix D.4.





C
Gershgorin circle theorem

After using the finite difference method to obtain the solution to model (2.4) we obtain the system By = b,
where the discretisation matrix B is given by (see Appendix B.2):

B =



β+
m̂ 3

2
+m̂ 1

2
h2 −

m̂ 3
2

h2 0 0 0 0

−
m̂ 3

2
h2 β+

m̂ 5
2
+m̂ 3

2
h2 −

m̂ 5
2

h2 0 0 0

0 −
m̂ 5

2
h2 β+

m̂ 7
2
+m̂ 5

2
h2 −

m̂ 7
2

h2 0 0

0 0
. . .

. . .
. . . 0

0 0 0 −
m̂

N− 3
2

h2 β+
m̂

N− 1
2
+m̂

N− 3
2

h2 −
m̂

N− 1
2

h2

0 0 0 0 −
m̂

N− 1
2

h2 β+
m̂

N+ 1
2
+m̂

N− 1
2

h2


. (C.1)

Theorem 6 (Gershgorin circle theorem [15]). The eigenvalues of a general N ×N matrix A are located in the
complex plane in the union of circles given by

|z −ai i | ≤
N∑

j ̸=i
j=1

|ai j |, wher e z ∈C.

Note that the matrix is symmetric, which implies that the eigenvalues are real. Using the Gershgorin circle
theorem, we find that the eigenvalues are in the interval given by

β+
m̂ 1

2

h2 ≤λ≤β+
m̂ 1

2

h2 +
2m̂ 3

2

h2

β≤λ≤β+
2m̂ j+ 1

2

h2 +
2m̂ j− 1

2

h2 for 1 < j < N

β+
m̂N+ 1

2

h2 ≤λ≤β+
m̂N+ 1

2

h2 +
2m̂N− 1

2

h2 .

(C.2)

If β is positive, then it is clear that the Gershgorin circle theorem implies that all eigenvalues are positive.
Furthermore, we have that the lower bound for the smallest eigenvalue is then given by λmin ≥ β. Since the
matrix B is symmetric this then implies that ||B−1|| = 1

|λ|min
= 1

λmin
≤ 1

β . So we see that ||B−1|| has an upper
bound independent of h, using [15] it follows that the method is stable.
On the other hand, if β is negative, then the Gershgorin circle theorem does not give information about the
lower bound for the smallest absolute eigenvalue. Since β is negative, we have that interval in which we can
find the eigenvalues, contains both positive and negative values. Thus, in the case that β< 0, the Gershgorin
circle theorem does not provide an upper bound for ||B−1||, and it does not exclude the possibility that zero
is an eigenvalue.
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D
Implementation in Python

The code used that is used to compute the eigenvalues, the numerical solutions, and that the discretisation
matrices are invertible can be found in this Appendix. It should be noted that actual comments are given by
###, while uncommented code is only given by a single #.

D.1. Eigenvalues and eigenfunction of the Hypergeometric equation
1 ### Import area
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.linalg import eigh_tridiagonal ### Function computes eigenvalues of

tridiagonal matrix more efficiently
5

6

7 def FDM_Hypergeometric(h):
8 """
9 Description

10 Function that computes the solution of the Hypergeometric equation (SL-Problem)
using the Finite difference method ,

11 since this is a SL-Problem , this translates to finding the eigenvalues and
eigenvectors of the problem.

12 To compute the derivatives , the central difference approximation has been used ,
with error O(h^2).

13 For the numerical implementation we did NOT write out the term of the form d/dx[f(x
)g(x)], and for the discretization

14 have left it in this form in order to preserve symmetry of the discretization
matrix.

15

16 The problem we are solving is L[y(x)] = mu * y(x)
17 For our model we have instead L[y(x)] = (lambda - beta) y(x)
18 We are interestsed in the eigenvalue lambda of OUR model , so lambda = mu + beta
19

20 The domain of this SL-Problem is: 0 < x < 1,
21 With homogeneuous Dirichlet Boundary conditions: V(0) = V(1) = 0.
22

23 The result of the FDM gives Av = mu*v, where A is a SYMMETRIC tridiagonal matrix ,
which is of the form:

24 [[M U X]
25 [L M U]
26 [X L M]],
27 where M: Main diagonal , U: Upper diagonal , L: Lower diagonal , X: zeroes.
28

29 For N interior points A is a N x N Matrix.
30 NOTE: Since A is a symmetric tridiagonal matrix we can use the eigh_tridiagon

function , which is much faster than the numpy linalg solver.
31 NOTE: eigh_tridiagon(maindiagonal entries , offdiagonal entries), where since A is

symmetric it does not matter if we use upper or lower diagonal
32 NOTE: eigh_tridiagon returns the sorted eigenvalues (from smallest to highest) and

the NORMALIZED eigenvectors , where the eigenvectors are the columns of the returned
matrix

33



34 D. Implementation in Python

33

34 N: The number of interior points used in the discretization
35 h: Stepsize
36 p1(x) = x - x^2: The coefficient in front of the v_i ’s
37 eigenvalues: List of ordered eigenvalues from smallest to largest
38 eigenvectors: Matrix containing the normalized eigenvectors as columns , where

column i corresponds to eigenvalue i
39 """
40 ### Create the empty diagonals of the discretization matrix ,
41 ### where the upper and lower diagonals are one size smaller than the main diagonal
42 mainDiagonal = np.zeros(N)
43 upperDiagonal = np.zeros(N-1)
44 lowerDiagonal = np.zeros(N-1)
45

46 ### Next we fill in the values of the diagonal entries , for this we use a for loop
47 ### NOTE: x_i = i*h
48 ### NOTE: Python start counting from i=0, so when assigning the values to the

diagonals we substract 1 from the index
49 for i in range(1, N+1):
50 ### Take the value of x at a half index as the average of the point before and

after
51 x_for = ((h*i) + (h*(i+1))) / 2 # x_(i + 1/2) = (x_i + x_i+1) / 2
52 x_bac = ((h*i) + (h*(i-1))) / 2 # x_(i - 1/2) = (x_i + x_i -1) / 2
53

54 ### NOTE: When assiging values to the lower diagonals we need to subtract
anothe -1 from the index ,

55 ### so we have for the lowers i-2, since the entries of the lower only appear
after equation i=2.

56 if i == 1: # Equation with BC at x=0 (FIRST EQUATION)
57 mainDiagonal[i-1] = (p2(x_for) + p2(x_bac)) / h**2 # For y_1
58 upperDiagonal[i-1] = -p2(x_for) / h**2 # For y_2
59 ### No lower diagonal entry in row 1 Since y_0 = y(-1) = 0
60 if i == N: ### Equation with BC at x = 1 (LAST EQUATION)
61 mainDiagonal[i-1] = (p2(x_for) + p2(x_bac)) / h**2 # For y_N
62 lowerDiagonal[i-2] = -p2(x_bac) / h**2 # For y_N -1
63 ### No upper diagonal entry in row N, since y_N+1 = y(1) = 0
64 else: ### Equations corresponding to interior points
65 mainDiagonal[i-1] = (p2(x_for) + p2(x_bac)) / h**2 # For y_i
66 upperDiagonal[i-1] = -p2(x_for) / h**2 # For y_i+1
67 lowerDiagonal[i-2] = -p2(x_bac) / h**2 # For y_i -1
68

69 ### From the discretization we obtain the system Av = mu*y, i.e. eigenvalue/vector
problem

70 ### Thus the solutions of the EVP are the EW’s and EV ’s
71 eigenvalues , eigenvectors = eigh_tridiagonal(mainDiagonal , upperDiagonal) #

Computes the EV and EW
72 return eigenvalues , eigenvectors
73

74

75 def p2(x):
76 """
77 Description
78 Coefficient which is present in the discretization using FDM:
79 [-p_i +1/2 * y_i+1 + (p_i +1/2 + p_i -1/2) * y_i - p_i -1/2 * y_i -1] / h^2 = mu * y_i
80 """
81 ### Coeff for the case that we set both parameters to 0
82 return x - x**2
83

84

85 def plot_EF_Hypergeometric(eigval , eigvec , j, region):
86 """
87 Description
88 Plots the eigenfunction corresponding to the j-th eigenvalue
89 eigval: List of ordered eigenvalues
90 eigvec: Matrix containing the normalized eigenvectors as columns in the same order

as the eigenvalues
91 j: Index of eigenvalues and eigenvectors
92

93 NOTE: The boundary values have NOT yet been added to the eigenfunction values!
94 """
95 eigenfunction = eigvec[:, j] ### J-th column is jth eigenvector
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96 eigenfunction = np.concatenate (([0] , eigenfunction , [0])) ### Add the BC to the
start and end of the vector

97 x_as = np.linspace(0, 1, N+2)
98

99 plt.title(" Eigenfunction for $\\ lambda$" + str(j) + "=" + str(eigval[j]) + "\n"
100 + "(" + region + ")")
101 plt.plot(x_as , eigenfunction)
102 plt.xlabel ("x")
103 plt.ylabel ("V_0(x)")
104 plt.grid()
105 plt.show()
106

107

108 ### NOTE: Uncomment code below to plot multiple eigenfunctions in a single plot
109 eigenfunctions = []
110 for index in range(N):
111 eigenfunctions.append(np.concatenate (([0] , eigvec[:, index], [0])))
112 plt.title(" First five (numerical) eigenfunctions $\\phi_n(x)$")
113 for i in range (10):
114 plt.plot(x_as , eigenfunctions[i], label=fr’$\phi_{i}(x)$’)
115 plt.xlabel ("x")
116 plt.ylabel ("$\\ phi_n(x)$")
117 plt.legend ()
118 plt.grid()
119 plt.show()
120

121

122 def plot_EW_Hypergeometric(eigval , region):
123 index_axis = range(N)
124 plt.title(" Numerical eigenvalues $\\ lambda_n$" "\n" + "(" + region + ")")
125 plt.plot(index_axis , eigval , ’*’, alpha = 0.5, label = "Numerical eigenvalues",

color=’red ’, zorder = 3)
126 plt.xlabel ("n")
127 plt.ylabel ("$\\ lambda_n$ ")
128 plt.grid()
129 plt.legend ()
130 plt.show()
131

132

133 def close_to_zero(eigval):
134 closest_indices_to_zero = np.argsort(np.abs(eigval))[:2]
135 closest_elements = eigval[closest_indices_to_zero]
136 print(closest_elements)
137

138

139

140 ### Work space
141 ### Default number of points is 2000
142 h = 1/2000
143 N = int ((1/h) - 1)
144 print (" Number of interior points =", N)
145

146 EW, EV = FDM_Hypergeometric(h) # Computes the eigenvalues and eigenvectors (
eigenfunctions)

147

148 ### Check if the vectors span whole of R_n , so they form a basis for the solution space
149 ### Uses that the EF are already independent and checks if They span the solution space

,
150 ### so in other words check if EF form a basis
151 ### NOTE: Should be faster since we don ’t need to compute the DET of large matrix
152 ### NOTE: This property of teh EF is not used in the report
153 rank = np.linalg.matrix_rank(EV)
154 if rank == EV.shape [1]: # Rank of matrix == number of pivots
155 print ("The eigenfunctions form a basis for the solution space .")
156 else:
157 print ("The eigenfunctions do not form a basis .")
158

159

160 ### Check orthogonality of eigenfunction
161 # EF1 = EV[:, 421]
162 # EF2 = EV[:, 421]



36 D. Implementation in Python

163 # print(np.dot(EF1 , EF2))
164

165 ### Beta values = -sigma * S * R_e
166 beta_GulfCar = -133 * -0.24 * 10**5 # Value of beta in the Gulf of Carpentaria , beta >

0
167 beta_Calgary = -8.5 * 0.77 * 10**5 # Value of beta in the Calgary region , beta < 0
168

169 ### Plot the EW and EF of the EVP , NOT THE EW OF THE MODEL
170 # print(min(EW))
171 # plot_EF_Hypergeometric(EW , EV, 0, "No region ")
172 # plot_EW_Hypergeometric(EW , "No region ")
173

174

175 ### Compute the eigenvalues for the EVP of model in the project , where lambda = mu +
beta

176 ### Here mu is the eigenvalue of the SL-problem
177 EW_model_GulfCar = EW + beta_GulfCar
178 EW_model_Calgary = EW + beta_Calgary
179

180

181 ### Plot the eigenvalues and eigenfunction for the Gulf of Carpentaria
182 ### NOTE: The eigenfunction are the still the same , only the EW are different
183 print (" Smallest eigenvalues =", min(EW_model_GulfCar))
184 plot_EF_Hypergeometric(EW_model_GulfCar , EV, 0, "Gulf of Carpentaria ")
185 plot_EW_Hypergeometric(EW_model_GulfCar , "Gulf of Carpentaria ")
186

187

188 ### Plot the eigenvalues and eigenfunction for the Calgary region
189 ### NOTE: The eigenfunction are the still the same , only the EW are different
190 print (" Smallest eigenvalues =", min(EW_model_Calgary))
191 plot_EF_Hypergeometric(EW_model_Calgary , EV, 0, "Calgary Region ")
192 plot_EW_Hypergeometric(EW_model_Calgary , "Calgary Region ")
193 close_to_zero(EW_model_Calgary)

D.2. Solutions to the Hypergeometric model
1 # Import area
2 import numpy as np
3 import matplotlib.pylab as plt
4 from scipy.sparse.linalg import spsolve
5 from scipy.linalg import solve_banded
6 import scipy
7

8 """
9 In this program we compute the solutions of the the model in Hypergeometric form , which

is an ODE given by
10 b*y - [m_hat * y’]’ = 0, by using the Finite difference method.
11 Thus we are solving a BVP with y(0) = y(1) = 0.
12

13 We do this by two different approaches.
14 1. We do not work out the derivative
15 2. We fully work out the derivative , such that the Equation also contains a first order

derivative
16

17 NOTE: m_hat is chosen such that the model EVP was transformed into the Hypergeometric
equation ,

18 with parameters alpha , gamma = 0.
19 NOTE: Actual comments are given by ###, the commented code is given by a single #
20 """
21

22

23 def FDM_Model_Hypergeometric_1(h, b, region):
24 """
25 Description
26 NOTE: Version 1 which computes the solution by NOT WORKING OUT THE DERIVATIVES ,

into the form
27 y’’ + y’ + y = D and solving it in the form as shown.
28 We do this to make sure the discretisation matrix A will be symmetric.
29
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30 Function computes the solution to the model equation (BVP), using the Finite
difference method.

31 We approximate the derivatives with the Central Differences.
32

33 The domain of this SL-Problem is: 0 < x < 1,
34 With homogeneuous Dirichlet Boundary conditions: V(0) = V(1) = 0.
35

36 The result of the FDM gives Av = RHS , where A is a SYMMETRIC TRIDIAGONAL matrix ,
which is of the form:

37 [[M U X]
38 [L M U]
39 [X L M]],
40 where M: Main diagonal , U: Upper diagonal , L: Lower diagonal , X: zeroes.
41 From FDM we have that the matrix only contains three nonzero diagonals
42

43 For N interior points we have that A is a N x N matrix.
44

45 For equation i we get that the discretisation gives:
46 b*y_i + (1/h^2) * (-m_(i+1/2) * y_(i+1) + (m_(i+1/2) + m_(i-1/2)) * y_i - m_(i-1/2)

* y_(i-1)) = RHS_i
47 The coefficients in front of the y_j are put in the diagonals of the discretisation

matrix.
48 After FDM we obtain the system Ay = d, we then solve this for the vector y, where d

is the zero vector
49

50 Returns a vector which is the solution of Ay = d
51 This vector represents the function values of the solution to the ODE
52 NOTE: This vector does not contain the values at x=0 and x=1 YET! so we need to add

them !!!
53

54 N: Number of interior points
55 h: Stepsize
56 m_hat_hypergeometric: Mass density function for this model
57 b: Beta value
58 d: RHS of the system Ay = d
59 y: Vector containing the function values of the solution at the internal gridpoints
60 k0: The "normalized" forcing term
61 """
62 ### Create the empty diagonals of the discretization matrix ,
63 ### where the upper and lower diagonals are one size smaller than the main diagonal
64 mainDiagonal = np.zeros(N)
65 upperDiagonal = np.zeros(N-1)
66 lowerDiagonal = np.zeros(N-1)
67

68 ### Forcing Term
69 d = np.zeros(N) # RHS of the sytem Ay = d after applying FDM
70

71 ### Next we compute the diagonal entries and plug them in the diagonals
72 ### NOTE: x_i = i*h, where h = 1 / (N+1)
73 ### NOTE: Python start counting from i=0, so when assigning the values to the

diagonals we substract 1 from the index
74 for i in range(1, N+1):
75 ### Take the value of x at a half index as the average of the point before and

after
76 x_for = ((h*i) + (h*(i+1))) / 2 # x_(i + 1/2) = (x_i + x_i+1) / 2
77 x_bac = ((h*i) + (h*(i-1))) / 2 # x_(i - 1/2) = (x_i + x_i -1) / 2
78

79 ### NOTE: When assiging values to the lower diagonals we need to subtract
anothe -1 from the index ,

80 ### so we have for the lowers i-2, since the entries of the lower only appear
after equation i=2.

81 if i == 1: # Equation with BC at x=0 (FIRST EQUATION)
82 mainDiagonal[i-1] = b + (m_hat_Hypergeometric(x_for) + m_hat_Hypergeometric

(x_bac)) / h**2 # Coeff for y_1
83 upperDiagonal[i-1] = -1 * m_hat_Hypergeometric(x_for) / h**2 # Coeff for

y_2
84 ### No lower diagonal entry in row 1 Since y_0 = y(0) = 0
85 if i == N: # Equation with BC at x = 1 (LAST EQUATION)
86 mainDiagonal[i-1] = b + (m_hat_Hypergeometric(x_for) + m_hat_Hypergeometric

(x_bac)) / h**2 # Coeff for y_N
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87 lowerDiagonal[i-2] = -1 * m_hat_Hypergeometric(x_bac) / h**2 # Coeff for
y_N -1

88 ### No upper diagonal entry in row N, since y_N+1 = y(1) = 0
89 else: # Equations corresponding to interior points , so all 1 < i < N
90 mainDiagonal[i-1] = b + (m_hat_Hypergeometric(x_for) + m_hat_Hypergeometric

(x_bac)) / h**2 # Coeff for y_i
91 upperDiagonal[i-1] = -1 * m_hat_Hypergeometric(x_for) / h**2 # Coeff for

y_i+1
92 lowerDiagonal[i-2] = -1 * m_hat_Hypergeometric(x_bac) / h**2 # Coeff for

y_i -1
93

94 d[i-1] = k0(i*h, region) # Assigns the values of the forcing term k0 to the
RHS vector

95

96 ### Puts the values in a vector and turns them into the diagonals of the matrx
97 mainDiagonalMatrix = np.diag(mainDiagonal)
98 upperDiagonalMatrix = np.diag(upperDiagonal , 1)
99 lowerDiagonalMatrix = np.diag(lowerDiagonal , -1)

100 A = mainDiagonalMatrix + upperDiagonalMatrix + lowerDiagonalMatrix #
Discretisation matrix

101

102 ### Compute the condition number of the matrix (TAKES LONG)
103 ### NOTE: Important for symmetric matrices we take the maximal absolute value !!! so

|L|_max and not |L_max |!!!
104 eigenwaarden = np.linalg.eig(A)[0]
105 conditionNumber2 = np.linalg.cond(A)
106 print (" Condition number (other method) =", conditionNumber2)
107

108 ### Check symmetry and Stability of the method
109 ### NOTE: The norm of the inverse increases as h->0, so unsure if there exist some

constant that is
110 ### always bigger than the norm of the inverse matrix.
111 print (" Matrix is symmetric =", scipy.linalg.issymmetric(A))
112 NormInverse_A = 1 / np.min(np.abs(eigenwaarden)) # Since A is symmetric
113 print (" Smallest absolute EW =", np.min(np.abs(eigenwaarden)))
114 print ("||A^-1|| =", NormInverse_A)
115

116 ### Check if matrix is invertible , by checking if columns of matrix span R^n
117 ### We do this by checking the rank of the matrix
118 rank = np.linalg.matrix_rank(A)
119 if rank == A.shape [0]: # If number of pivots is equal to N of the NxN matrix ,

columns are independent
120 print ("The columns of the matrix span R^n, hence the matrix is invertible ")
121 else:
122 print (" Columns do not span R")
123

124

125 ### Matrix A is symmetric and tridiagonal so we can use more efficient function to
solve Ay = d

126 # y = np.linalg.solve(A, d) # Slower method
127 # y = spsolve(A, d) # Faster method
128

129 ### Band method (fastest method)
130 diagonals = np.zeros((3, N))
131 diagonals[0, 1:] = upperDiagonal
132 diagonals[1, :] = mainDiagonal
133 diagonals[2, :-1] = lowerDiagonal
134 y = solve_banded ((1,1), diagonals , d)
135

136 # print ("A =", A)
137 # print ("y = ", y)
138

139 ### Add the two boundary values at x=1 and x=0 to the solution values
140 y = np.concatenate (([0], y, [0]))
141 return y
142

143

144 def m_hat_Hypergeometric(x):
145 """
146 Description
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147 The mass density function that was used to transform the model EVP into the
Hypergeometric Equation.

148 """
149 return (x - x**2)
150

151

152 def k0(x, region):
153 """
154 Description
155 The forcing term which is on the RHS of the simplified model (written in terms of s

)
156 These are just some trivial guesses!
157 """
158

159 if region == "Carpentaria ":
160 ### Forcing Term (Gulf of Carpentaria)
161 # res = R_e * ((np.cos(alpha_Gulfcar))**2 + (np.sin(alpha_Gulfcar))**2 /

C_Gulfcar) * 0 # No forcing
162 # res = R_e * ((np.cos(alpha_Gulfcar))**2 + (np.sin(alpha_Gulfcar))**2 /

C_Gulfcar) * 1 # Constant forcing
163 res = R_e * ((np.cos(alpha_Gulfcar))**2 + (np.sin(alpha_Gulfcar))**2 /

C_Gulfcar) * (5*x**2 + x + 1) # Quadratic forcing
164 elif region == "Calgary ":
165 ### Forcing Term (Gulf of Carpentaria)
166 # res = R_e * ((np.cos(alpha_Calgary))**2 + (np.sin(alpha_Calgary))**2 /

C_Calgary) * 0 # No forcing
167 # res = R_e * ((np.cos(alpha_Calgary))**2 + (np.sin(alpha_Calgary))**2 /

C_Calgary) * 1 # Constant forcing
168 res = R_e * ((np.cos(alpha_Calgary))**2 + (np.sin(alpha_Calgary))**2 /

C_Calgary) * (5*x**2 + x + 1) # Quadratic forcing
169 return res
170

171

172 ### Work space
173 """
174 Default stepsize we have used is 1/2000
175 """
176 h = 1/2000 # Stepsize
177 N = int ((1/h) - 1) # Number of interior points
178 R_e = 10**5 # Reynolds number for the model
179 print (" Number of interior points =", N)
180

181 ### Beta values = -sigma * S * R_e
182 beta_GulfCar = -133 * -0.24 * 10**5 # Value of beta in the Gulf of Carpentaria , beta >

0
183 beta_Calgary = -8.5 * 0.77 * 10**5 # Value of beta in the Calgary region , beta < 0
184 # print(beta_GulfCar)
185 # print(beta_Calgary)
186

187

188 ### Parameter values
189 sigma_Gulfcar = 133
190 C_Gulfcar = 0.97
191 S_Gulfcar = -0.24
192 alpha_Gulfcar = np.pi * 5 / 4 # Breeze propagating in SW -Direction
193

194 sigma_Calgary = 8.5
195 C_Calgary = 0.62
196 S_Calgary = 0.77
197 alpha_Calgary = np.pi / 4 # Breeze propagating in NW -Direction
198

199 ### Computes the solutions with different variations of FDM
200 ### NOTE: Uncomment the line for which you want to compute the solution for the region
201 sol = FDM_Model_Hypergeometric_1(h, beta_GulfCar , "Carpentaria ") # Solves ODE in the

original form as the model
202 # sol = FDM_Model_Hypergeometric_1(h, beta_Calgary , "Calgary ")
203

204 x_as = np.linspace (0,1,N+2)
205 plt.plot(x_as , sol)
206 plt.title(" Horizontal velocity of the sea breeze flow in the Gulf of Carpentaria ")
207 # plt.title (" Horizontal velocity of the sea breeze flow in the Calgary region ")
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208 plt.xlabel (" Height (s)")
209 plt.ylabel(r’$V_0(s)$’)
210 plt.grid()
211 plt.show()
212

213 ### Plot the mass density function
214 plt.plot(x_as , m_hat_Hypergeometric(x_as))
215 plt.title("Mass density function for the hypergeometric model")
216 plt.xlabel (" Height (s)")
217 plt.ylabel(r’$\hat{m}(s)$’)
218 plt.grid()
219 plt.show()

D.3. Eigenvalues of the model with a physical mass density function
1 # Import area
2 import numpy as np
3 import matplotlib.pyplot as plt
4 from scipy.linalg import eigh_tridiagonal # Function computes eigenvalues of

tridiagonal matrix more efficiently
5

6

7 def FDM_Physical(h):
8 """
9 Description

10 Function that computes the solution of the Equation with a physical mass density
funtion (SL-Problem) using the Finite difference method ,

11 since this is a SL-Problem , this translates to finding the eigenvalues and
eigenvectors of the problem.

12 To compute the derivatives , the central difference approximation has been used ,
with error O(h^2).

13 For the numerical implementation we did NOT write out the term of the form d/dx[f(x
)g(x)], and for the discretization

14 have left it in this form in order to preserve symmetry of the discretization
matrix.

15

16 The problem we are solving is L[y(x)] = mu * y(x)
17 For our model we have instead L[y(x)] = (lambda - beta) y(x)
18 We are interestsed in the eigenvalue lambda of OUR model , so lambda = mu + beta
19

20 The domain of this SL-Problem is: 0 < x < 1,
21 With homogeneuous Dirichlet Boundary conditions: V(0) = V(1) = 0.
22

23 The result of the FDM gives Av = mu*v, where A is a SYMMETRIC tridiagonal matrix ,
which is of the form:

24 [[M U X]
25 [L M U]
26 [X L M]],
27 where M: Main diagonal , U: Upper diagonal , L: Lower diagonal , X: zeroes.
28

29 For N interior points A is a N x N Matrix.
30 NOTE: Since A is a symmetric tridiagonal matrix we can use the eigh_tridiagon

function , which is much faster than the numpy linalg solver.
31 NOTE: eigh_tridiagon(maindiagonal entries , offdiagonal entries), where since A is

symmetric it does not matter if we use upper or lower diagonal
32 NOTE: eigh_tridiagon returns the sorted eigenvalues (from smallest to highest) and

the NORMALIZED eigenvectors , where the eigenvectors are the columns of the returned
matrix

33

34 N: The number of interior points used in the discretization
35 h: Stepsize
36 m_hat_physical = cos(x): The coefficient in front of the v_i ’s
37 eigenvalues: List of ordered eigenvalues from smallest to largest
38 eigenvectors: Matrix containing the normalized eigenvectors as columns , where

column i corresponds to eigenvalue i
39 """
40 ### Create the empty diagonals of the discretization matrix ,
41 ### where the upper and lower diagonals are one size smaller than the main diagonal
42 mainDiagonal = np.zeros(N)
43 upperDiagonal = np.zeros(N-1)
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44 lowerDiagonal = np.zeros(N-1)
45

46 ### Next we fill in the values of the diagonal entries , for this we use a for loop
47 ### NOTE: x_i = i*h
48 ### NOTE: Python start counting from i=0, so when assigning the values to the

diagonals we substract 1 from the index
49 for i in range(1, N+1):
50 ### Take the value of x at a half index as the average of the point before and

after
51 x_for = ((h*i) + (h*(i+1))) / 2 # x_(i + 1/2) = (x_i + x_i+1) / 2
52 x_bac = ((h*i) + (h*(i-1))) / 2 # x_(i - 1/2) = (x_i + x_i -1) / 2
53

54 ### NOTE: When assiging values to the lower diagonals we need to subtract
anothe -1 from the index ,

55 ### so we have for the lowers i-2, since the entries of the lower only appear
after equation i=2.

56 if i == 1: # Equation with BC at x=0 (FIRST EQUATION)
57 mainDiagonal[i-1] = (m_hat_physical(x_for) + m_hat_physical(x_bac)) / h**2

# For y_1
58 upperDiagonal[i-1] = -m_hat_physical(x_for) / h**2 # For y_2
59 ### No lower diagonal entry in row 1 Since y_0 = y(-1) = 0
60 if i == N: # Equation with BC at x = 1 (LAST EQUATION)
61 mainDiagonal[i-1] = (m_hat_physical(x_for) + m_hat_physical(x_bac)) / h**2

# For y_N
62 lowerDiagonal[i-2] = -m_hat_physical(x_bac) / h**2 # For y_N -1
63 # No upper diagonal entry in row N, since y_N+1 = y(1) = 0
64 else: # Equations corresponding to interior points
65 mainDiagonal[i-1] = (m_hat_physical(x_for) + m_hat_physical(x_bac)) / h**2

# For y_i
66 upperDiagonal[i-1] = -m_hat_physical(x_for) / h**2 # For y_i+1
67 lowerDiagonal[i-2] = -m_hat_physical(x_bac) / h**2 # For y_i -1
68

69 ### Method 1 for computing EW and EV, where at the end we sort from smallest to
largest

70 ### NOTE: Use this if Method 2 is not convergin
71 # mainDiagonalMatrix = np.diag(mainDiagonal)
72 # upperDiagonalMatrix = np.diag(upperDiagonal , 1)
73 # lowerDiagonalMatrix = np.diag(lowerDiagonal , -1)
74 # A = mainDiagonalMatrix + upperDiagonalMatrix + lowerDiagonalMatrix
75 # eigenvalues , eigenvectors = np.linalg.eig(A)
76 # idx = np.argsort(eigenvalues.real)
77 # eigenvalues = eigenvalues[idx]
78 # eigenvectors = eigenvectors [:, idx]
79

80 ### Method 2 for computing the EW and EV
81 ### From the discretization we obtain the system Av = mu*y, i.e. eigenvalue/vector

problem
82 ### Thus the solutions of the EVP are the EW’s and EV ’s
83 eigenvalues , eigenvectors = eigh_tridiagonal(mainDiagonal , upperDiagonal) #

Computes the EV and EW
84 return eigenvalues , eigenvectors
85

86

87 def m_hat_physical(x):
88 """
89 Description
90 Coefficient which is present in the discretization using FDM:
91 [-p_i +1/2 * y_i+1 + (p_i +1/2 + p_i -1/2) * y_i - p_i -1/2 * y_i -1] / h^2 = mu * y_i
92 NOTE: Here we use a physical mass density function of form cosine
93 """
94 y = np.cos(np.pi * (2*x-1)) + 1
95 return y
96

97

98 def plot_EF_Hypergeometric(eigval , eigvec , j, region):
99 """

100 Description
101 Plots the eigenfunction corresponding to the j-th eigenvalue
102 eigval: List of ordered eigenvalues
103 eigvec: Matrix containing the normalized eigenvectors as columns in the same order

as the eigenvalues
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104 j: Index of eigenvalues and eigenvectors
105

106 NOTE: The boundary values have NOT yet been added to the eigenfunction values!
107 """
108 eigenfunction = eigvec[:, j] # J-th column is jth eigenvector
109 eigenfunction = np.concatenate (([0] , eigenfunction , [0])) # Add the BC to the

start and end of the vector
110 x_as = np.linspace(0, 1, N+2)
111

112 plt.title(" Eigenfunction for $\\ lambda$" + str(j) + "=" + str(eigval[j]) + "\n"
113 + "(" + region + ")")
114 plt.plot(x_as , eigenfunction)
115 plt.xlabel ("x")
116 plt.ylabel ("V_0(x)")
117 plt.grid()
118 plt.show()
119

120

121 ### NOTE: Uncomment code below to plot multiple eigenfunctions in a single plot
122 eigenfunctions = []
123 for index in range(N):
124 eigenfunctions.append(np.concatenate (([0] , eigvec[:, index], [0])))
125 plt.title(" First five (numerical) eigenfunctions $\\phi_n(x)$")
126 for i in range (5):
127 plt.plot(x_as , eigenfunctions[i], label=fr’$\phi_{i}(x)$’)
128 plt.xlabel ("x")
129 plt.ylabel ("$\\ phi_n(x)$")
130 plt.legend ()
131 plt.grid()
132 plt.show()
133

134

135 def plot_EW_Hypergeometric(eigval , region):
136 index_axis = range(N)
137 plt.title(" Numerical eigenvalues $\\ lambda_n$" + "\n" + "(" + region + ")")
138 plt.plot(index_axis , eigval , ’*’, alpha = 0.5, label = "Numerical eigenvalues",

color=’red ’, zorder = 3)
139 plt.xlabel ("n")
140 plt.ylabel ("$\\ lambda_n$ ")
141 plt.grid()
142 plt.legend ()
143 plt.show()
144

145

146 def close_to_zero(eigval):
147 closest_indices_to_zero = np.argsort(np.abs(eigval))[:2]
148 closest_elements = eigval[closest_indices_to_zero]
149 print(closest_elements)
150

151

152

153 ### Work space
154 ### Default number of points is 2000
155 h = 1/2000
156 N = int ((1/h) - 1)
157 print (" Number of interior points =", N)
158

159 EW, EV = FDM_Physical(h) # Computes the eigenvalues and eigenvectors (eigenfunctions)
160

161

162 ### Check if the vectors span whole of R_n , so they form a basis for the solution space
163 ### Uses that the EF are already independent and checks if They span the solution space

,
164 ### NOTE: Should be faster since we don ’t need to compute the DET of large matrix
165 ### NOTE: This property of teh EF is not used in the report
166 rank = np.linalg.matrix_rank(EV)
167 if rank == EV.shape [1]: # Rank of matrix == number of pivots
168 print ("The eigenfunctions form a basis for the solution space .")
169 else:
170 print ("The eigenfunctions do not form a basis .")
171
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172 ### Check orthogonality of eigenfunction
173 # EF1 = EV[:, 421]
174 # EF2 = EV[:, 421]
175 # print(np.dot(EF1 , EF2))
176

177 ### Beta values = -sigma * S * R_e
178 beta_GulfCar = -133 * -0.24 * 10**5 # Value of beta in the Gulf of Carpentaria , beta >

0
179 beta_Calgary = -8.5 * 0.77 * 10**5 # Value of beta in the Calgary region , beta < 0
180

181 ### Plot the EW and EF of the EVP , NOT THE EW OF THE MODEL
182 # print(min(EW))
183 # plot_EF_Hypergeometric(EW , EV, 0, "No region ")
184 # plot_EW_Hypergeometric(EW , "No region ")
185

186

187 ### Compute the eigenvalues for the EVP of model in the project , where lambda = mu +
beta

188 ### Here mu is the eigenvalue of the SL-problem
189 EW_model_GulfCar = EW + beta_GulfCar
190 EW_model_Calgary = EW + beta_Calgary
191

192

193 ### Plot the eigenvalues and eigenfunction for the Gulf of Carpentaria
194 ### NOTE: The eigenfunction are the still the same , only the EW are different
195 print (" Smallest eigenvalues =", min(EW_model_GulfCar))
196 plot_EF_Hypergeometric(EW_model_GulfCar , EV, 0, "Gulf of Carpentaria ")
197 plot_EW_Hypergeometric(EW_model_GulfCar , "Gulf of Carpentaria ")
198

199

200 ### Plot the eigenvalues and eigenfunction for the Calgary region
201 ### NOTE: The eigenfunction are the still the same , only the EW are different
202 print (" Smallest eigenvalues =", min(EW_model_Calgary))
203 plot_EF_Hypergeometric(EW_model_Calgary , EV, 0, "Calgary Region ")
204 plot_EW_Hypergeometric(EW_model_Calgary , "Calgary Region ")
205 close_to_zero(EW_model_Calgary)

D.4. Solution to the model with a physically relevant mass density func-
tion

1 # Import area
2 import numpy as np
3 import matplotlib.pylab as plt
4 from scipy.sparse.linalg import spsolve
5 from scipy.linalg import solve_banded
6 import scipy
7

8 """
9 In this program we compute the solutions of the the model in physical form , which is an

ODE given by
10 b*y - [m_hat * y’]’ = 0, by using the Finite difference method.
11 Thus we are solving a BVP with y(0) = y(1) = 0.
12

13 We do this by two different approaches.
14 1. We do not work out the derivative
15 2. We fully work out the derivative , such that the Equation also contains a first order

derivative
16

17 NOTE: Actual comments are given by ###, the commented code is given by a single #
18 """
19

20

21 def FDM_Model_Physical(h, b, region):
22 """
23 Description
24 NOTE: Version 1 which computes the solution by NOT WORKING OUT THE DERIVATIVES ,

into the form
25 y’’ + y’ + y = D and solving it in the form as shown.
26 We do this to make sure the discretisation matrix A will be symmetric.
27
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28 Function computes the solution to the model equation (BVP), using the Finite
difference method.

29 We approximate the derivatives with the Central Differences.
30

31 The domain of this SL-Problem is: 0 < x < 1,
32 With homogeneuous Dirichlet Boundary conditions: V(0) = V(1) = 0.
33

34 The result of the FDM gives Av = RHS , where A is a SYMMETRIC TRIDIAGONAL matrix ,
which is of the form:

35 [[M U X]
36 [L M U]
37 [X L M]],
38 where M: Main diagonal , U: Upper diagonal , L: Lower diagonal , X: zeroes.
39 From FDM we have that the matrix only contains three nonzero diagonals
40

41 For N interior points we have that A is a N x N matrix.
42

43 For equation i we get that the discretisation gives:
44 b*y_i + (1/h^2) * (-m_(i+1/2) * y_(i+1) + (m_(i+1/2) + m_(i-1/2)) * y_i - m_(i-1/2)

* y_(i-1)) = RHS_i
45 The coefficients in front of the y_j are put in the diagonals of the discretisation

matrix.
46 After FDM we obtain the system Ay = d, we then solve this for the vector y, where d

is the zero vector
47

48 Returns a vector which is the solution of Ay = d
49 This vector represents the function values of the solution to the ODE
50 NOTE: This vector does not contain the values at x=0 and x=1 YET! so we need to add

them !!!
51

52 N: Number of interior points
53 h: Stepsize
54 m_hat_hypergeometric: Mass density function for this model
55 b: Beta value
56 d: RHS of the system Ay = d
57 y: Vector containing the function values of the solution at the internal gridpoints
58 k0: The "normalized" forcing term
59 """
60 ### Create the empty diagonals of the discretization matrix ,
61 ### where the upper and lower diagonals are one size smaller than the main diagonal
62 mainDiagonal = np.zeros(N)
63 upperDiagonal = np.zeros(N-1)
64 lowerDiagonal = np.zeros(N-1)
65

66 ### Forcing Term
67 d = np.zeros(N) # RHS of the sytem Ay = d after applying FDM
68

69 ### Next we compute the diagonal entries and plug them in the diagonals
70 ### NOTE: x_i = i*h, where h = 1 / (N+1)
71 ### NOTE: Python start counting from i=0, so when assigning the values to the

diagonals we substract 1 from the index
72 for i in range(1, N+1):
73 ### Take the value of x at a half index as the average of the point before and

after
74 x_for = ((h*i) + (h*(i+1))) / 2 # x_(i + 1/2) = (x_i + x_i+1) / 2
75 x_bac = ((h*i) + (h*(i-1))) / 2 # x_(i - 1/2) = (x_i + x_i -1) / 2
76

77 ### NOTE: When assiging values to the lower diagonals we need to subtract
anothe -1 from the index ,

78 ### so we have for the lowers i-2, since the entries of the lower only appear
after equation i=2.

79 if i == 1: # Equation with BC at x=0 (FIRST EQUATION)
80 mainDiagonal[i-1] = b + (m_hat_physical(x_for) + m_hat_physical(x_bac)) / h

**2 # Coeff for y_1
81 upperDiagonal[i-1] = -1 * m_hat_physical(x_for) / h**2 # Coeff for y_2
82 ### No lower diagonal entry in row 1 Since y_0 = y(0) = 0
83 if i == N: # Equation with BC at x = 1 (LAST EQUATION)
84 mainDiagonal[i-1] = b + (m_hat_physical(x_for) + m_hat_physical(x_bac)) / h

**2 # Coeff for y_N
85 lowerDiagonal[i-2] = -1 * m_hat_physical(x_bac) / h**2 # Coeff for y_N -1
86 ### No upper diagonal entry in row N, since y_N+1 = y(1) = 0
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87 else: # Equations corresponding to interior points , so all 1 < i < N
88 mainDiagonal[i-1] = b + (m_hat_physical(x_for) + m_hat_physical(x_bac)) / h

**2 # Coeff for y_i
89 upperDiagonal[i-1] = -1 * m_hat_physical(x_for) / h**2 # Coeff for y_i+1
90 lowerDiagonal[i-2] = -1 * m_hat_physical(x_bac) / h**2 # Coeff for y_i -1
91

92 d[i-1] = k0(i*h, region) # Assigns the values of the forcing term k0 to the
RHS vector

93

94 ### Puts the values in a vector and turns them into the diagonals of the matrx
95 mainDiagonalMatrix = np.diag(mainDiagonal)
96 upperDiagonalMatrix = np.diag(upperDiagonal , 1)
97 lowerDiagonalMatrix = np.diag(lowerDiagonal , -1)
98 A = mainDiagonalMatrix + upperDiagonalMatrix + lowerDiagonalMatrix #

Discretisation matrix
99

100 ### Compute the condition number of the matrix (TAKES LONG)
101 ### NOTE: Important for symmetric matrices we take the maximal absolute value !!! so

|L|_max and not |L_max |!!!
102 eigenwaarden = np.linalg.eig(A)[0]
103 conditionNumber2 = np.linalg.cond(A)
104 print (" Condition number (other method) =", conditionNumber2)
105

106 ### Check symmetry and Stability of the method
107 ### NOTE: The norm of the inverse increases as h->0, so unsure if there exist some

constant that is
108 # ### always bigger than the norm of the inverse matrix.
109 print (" Matrix is symmetric =", scipy.linalg.issymmetric(A))
110 NormInverse_A = 1 / np.min(np.abs(eigenwaarden)) # Since A is symmetric
111 print (" Smallest EW =", eigenwaarden [0])
112 print ("||A^-1|| =", NormInverse_A)
113 # print (" Determinant A =", np.linalg.det(A))
114

115 ### Check if matrix is invertible , by checking if columns of matrix span R^n
116 ### We do this by checking the rank of the matrix
117 rank = np.linalg.matrix_rank(A)
118 if rank == A.shape [0]: # If number of pivots is equal to N of the NxN matrix ,

columns are independent
119 print ("The columns of the matrix span R^n, hence the matrix is invertible ")
120 else:
121 print (" Columns do not span R")
122

123

124 ### Matrix A is symmetric and trDidiagonal so we can use more efficient function to
solve Ay = d

125 # y = np.linalg.solve(A, d) # Slower method
126 # y = spsolve(A, d) # Faster method
127

128 ### Band method (fastest method)
129 diagonals = np.zeros((3, N))
130 diagonals[0, 1:] = upperDiagonal
131 diagonals[1, :] = mainDiagonal
132 diagonals[2, :-1] = lowerDiagonal
133 y = solve_banded ((1,1), diagonals , d)
134

135 # print ("A =", A)
136 # print ("y = ", y)
137

138 ### Add the two boundary values at x=1 and x=0 to the solution values
139 y = np.concatenate (([0], y, [0]))
140 return y
141

142

143 def m_hat_physical(x):
144 """
145 Description
146 Coefficient which is present in the discretization using FDM:
147 [-p_i +1/2 * y_i+1 + (p_i +1/2 + p_i -1/2) * y_i - p_i -1/2 * y_i -1] / h^2 = mu * y_i
148 NOTE: Here we use a physical mass density function of form cosine
149 """
150 y = np.cos(np.pi * (2*x-1)) + 1
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151 return y
152

153

154 def k0(x, region):
155 """
156 Description
157 The forcing term which is on the RHS of the simplified model (written in terms of s

)
158 These are just some trivial guesses!
159 """
160

161 if region == "Carpentaria ":
162 ### Forcing Term (Gulf of Carpentaria)
163 # res = R_e * ((np.cos(alpha_Gulfcar))**2 + (np.sin(alpha_Gulfcar))**2 /

C_Gulfcar) * forcing(x) / rho(x) # Original
164 # res = R_e * ((np.cos(alpha_Gulfcar))**2 + (np.sin(alpha_Gulfcar))**2 /

C_Gulfcar) * 0 # No forcing
165 # res = R_e * ((np.cos(alpha_Gulfcar))**2 + (np.sin(alpha_Gulfcar))**2 /

C_Gulfcar) * 1 # Constant forcing
166 res = R_e * ((np.cos(alpha_Gulfcar))**2 + (np.sin(alpha_Gulfcar))**2 /

C_Gulfcar) * (5*x**2 + x + 1) # Quadratic forcing
167 # res = 5*x**2 + x + 1
168 elif region == "Calgary ":
169 ### Forcing Term (Gulf of Carpentaria)
170 # res = R_e * ((np.cos(alpha_Calgary))**2 + (np.sin(alpha_Calgary))**2 /

C_Calgary) * forcing(x) / rho(x) # Original
171 # res = R_e * ((np.cos(alpha_Calgary))**2 + (np.sin(alpha_Calgary))**2 /

C_Calgary) * 0 # No forcing
172 # res = R_e * ((np.cos(alpha_Calgary))**2 + (np.sin(alpha_Calgary))**2 /

C_Calgary) * 1 # Constant forcing
173 res = R_e * ((np.cos(alpha_Calgary))**2 + (np.sin(alpha_Calgary))**2 /

C_Calgary) * (5*x**2 + x + 1) # Quadratic forcing
174 return res
175

176

177 def RHS(x):
178 """
179 Description
180 The right hand side of the model , which we use to check if the RHS and HomSol are

orthogonal ,
181 in case of Calgary.
182 NOTE: If you want to check the orthogonality set k0 == 0 (the in the function above

) for Calgary , to obtain Hom_Sol
183 """
184 AAHH = R_e * ((np.cos(alpha_Calgary))**2 + (np.sin(alpha_Calgary))**2 / C_Calgary)

* (5*x**2 + x + 1) # Quadratic k0
185 # AAHH = np.zeros(N+2) + R_e * ((np.cos(alpha_Calgary))**2 + (np.sin(alpha_Calgary)

)**2 / C_Calgary) * 1 # Constant k0
186 return AAHH
187

188

189 ### Work space
190 """
191 Default stepsize we have used is 1/2000
192 For Calgary we must use small less than 1/100 since condition number jumps up hard
193 """
194 h = 1/2000 # Stepsize
195 N = int ((1/h) - 1) # Number of interior points
196 R_e = 10**5 # Reynolds number for the model
197 print (" Number of interior points =", N)
198

199 ### Beta values = -sigma * S * R_e
200 beta_GulfCar = -133 * -0.24 * 10**5 # Value of beta in the Gulf of Carpentaria , beta >

0
201 beta_Calgary = -8.5 * 0.77 * 10**5 # Value of beta in the Calgary region , beta < 0
202 # print(beta_GulfCar)
203 # print(beta_Calgary)
204

205

206 ### Parameter values
207 sigma_Gulfcar = 133
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208 C_Gulfcar = 0.97
209 S_Gulfcar = -0.24
210 alpha_Gulfcar = np.pi * 5 / 4 # Breeze propagating in SW -Direction
211

212 sigma_Calgary = 8.5
213 C_Calgary = 0.62
214 S_Calgary = 0.77
215 alpha_Calgary = np.pi / 4 # Breeze propagating in NW -Direction
216

217 ### Computes the solutions with different variations of FDM
218 ### Uncomment the line for the region for which you want to compute the solution
219 sol = FDM_Model_Physical(h, beta_GulfCar , "Carpentaria ") # Solves ODE in the original

form as the model
220 # sol = FDM_Model_Physical(h, beta_Calgary , "Calgary ")
221

222 x_as = np.linspace (0,1,N+2)
223 test = RHS(x_as)
224 plt.plot(x_as , sol)
225 plt.title(" Horizontal velocity of the sea breeze flow in the Gulf of Carpentaria ")
226 # plt.title (" Horizontal velocity of the sea breeze flow in the Calgary region ")
227 plt.xlabel (" Height (s)")
228 plt.ylabel(r’$V_0(s)$’)
229 plt.grid()
230 plt.show()
231

232 ### Plot the mass density function
233 plt.plot(x_as , m_hat_physical(x_as))
234 plt.title(" Physical mass density function ")
235 plt.xlabel (" Height (s)")
236 plt.ylabel(r’$\hat{m}(s)$’)
237 plt.grid()
238 plt.show()
239

240 ### Check if forcing function and homogeneous solution are orthogonal to each other
241 ### RHS: k0 function
242 ### NOTE: For this set k0==0 to obtain the homogeneous solution of the model
243 ### NOTE: It appears that yes they are orthogonal in all cases for Calgary
244 ### we do not look at Gulf since EW are clearly nonzero
245 # print (" InnerProduct =", np.inner(sol , test))
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