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A B S T R A C T   

Background and objective: Long-term electrocardiogram monitoring comes at the expense of signal quality. During 
unconstrained movements, the electrocardiogram is often corrupted by motion artefacts, which can lead to 
inaccurate physiological information. In this situation, automated quality assessment methods are useful to in-
crease the reliability of the measurements. A generic machine learning pipeline that generates classification 
models for electrocardiogram quality assessment is presented in this article. The presented pipeline is tested on 
signals from varied acquisition sources, towards selecting segments that can be used for heart rate analysis in 
lifestyle applications. 
Methods: Electrocardiogram recordings from traditional, wearable and ubiquitous devices, are segmented in 10 s 
windows and manually labeled by experienced researchers into two quality classes. To capture the electrocar-
diogram dynamics, a comprehensive set of 43 features is extracted from each segment, based on the time-domain 
signal, its Fast Fourier Transform, the Autocorrelation function and the Stationary Wavelet Transform. To select 
the most relevant features for each acquisition source we employ both a customized hybrid approach and the 
state-of-the-art Neighborhood Component Analysis method and compare them. Support Vector Machines (SVM), 
Decision Trees, K-Nearest-Neighbors and supervised ensemble methods are tested as possible binary classifiers. 
Results: The results for the best performing models on traditional, wearable and ubiquitous electrocardiogram 
datasets are, respectively: balanced-accuracy: 89%, F1-score: 93% with the Fine Gaussian SVM model and 10 
features; balanced-accuracy: 93%, F1-score: 93% with the Fine Gaussian SVM model and 11 features; balanced- 
accuracy: 95%, F1-score: 86%, with the Fine Gaussian SVM model and 8 features. 
Conclusions: According to the results, our generic pipeline can generate classification models tailored to indi-
vidual acquisition sources, provided that a standard Lead I or Lead II is available. Such models accurately 
establish whether the electrocardiogram quality is good or bad for heart rate analysis. Furthermore, removing 
bad quality segments decreases errors in heart rate calculation.   

1. Introduction 

The electrocardiography (ECG) captures the electrical activity of the 
heart through a set of electrodes placed on the body surface. The elec-
trode placement relative to the heart (i.e. lead configuration) defines the 
expected morphology of the ECG waveform. Due to its stability and well- 
known properties (i.e. normal patterns and pathological deviations), the 

ECG is widely used for health monitoring. The ECG has been collected in 
portable devices ever since the Holter system was developed in the 
1940’s [1,2] and allows for long-term ECG monitoring. This system is 
widely used in intensive care units, cardiology wards and follow-up after 
disease onset. Recent technological advancements provide the capa-
bility for collecting ECG signals during longer periods, up to months [3]. 
Moreover, non-contact ECG devices (using capacitive coupled 
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electrodes) and radar-based heart rate (HR) monitors are now used for 
ubiquitous sensing [4]. Together, these technologies enable early 
anomaly detection and life-style monitoring with little hassle for the 
user. 

However, long-term wearable ECG monitoring comes at the expense 
of signal quality. ECG signals are usually contaminated with: 1) power 
line interference, 2) muscle activity (tremor), 3) baseline wander 
(respiration), and 4) motion-related artefacts (cf. Fig. 1). Such added 
noise results in deformed ECG morphology and increases the possibility 
of wrong medical conclusions if left untreated. Artefacts that are out of 
the frequency range of interest for ECG analysis, can be eliminated with 
adequate filtering. On the other hand, in-band noise, that overlaps with 
the ECG spectral components, can be difficult to address, especially 
when movements are unconstrained as in wearable and ubiquitous 
setups. While visual inspection can be performed to identify and remove 
corrupted segments, manual quality control is not scalable for long re-
cords. Therefore, automated algorithms are needed to aid for long-term 
ECG quality assessment. 

The ECG quality requirements depend on the objective of the anal-
ysis. For instance, in the case of morphology analysis aimed at detecting 
malfunctions in specific parts of the heart, the waveform of the whole 
ECG cycle should be intact, and several leads might be required for 
better diagnosis. On the other hand, HR and HR variability (HRV) 

Fig. 1. Common ECG signal artefacts: baseline wander; muscle tremor; contact 
loss of the sensors with the skin and motion artefacts. 

Table 1 
Summary of selected publications related to ECG signal quality assessment.  

Year Title Datasets [name, description, 
acquisition (traditional or 
holter/wearable/ubiquitous)] 

Processing methodology [approach (heuristic/ 
machine learning), description] 

Results [best 
performance 
metrics] 

2019 Artefact detection and quality assessment of 
ambulatory ECG signals [14]  

• SWEET (wearable)  
• PhysioNet/CinC Challenge 

2017 (wearable) 

ML 
Uses the posterior probabilities of RUSBoost model for 
detecting artefacts in ECG segments. 

Sensitivity = 96.6% 
Specificity = 84.8% 
AUC = 97.0% 
(Balanced Acc =
90.7%) 

2019 Signal Quality Assessment and Lightweight QRS 
Detection for Wearable ECG SmartVest System [16]  

• PhysioNet/CinC Challenge 
2014 (wearable) 

ML 
7 signal quality indices are used along with an SVM 
classifier. 

Accuracy = 96.4% 

2018 SQI Quality Evaluation Mechanism of Single-Lead 
ECG Signal Based on Simple Heuristic Fusion and 
Fuzzy Comprehensive Evaluation [9]  

• Physionet/Cinc Challenge 
2011 (traditional)  

• Physionet/Cinc Challenge 
2017 (wearable) 

Heuristic 
Fuzzy comprehensive evaluation using four quality 
indexes: R peak detection match, QRS power 
spectrum distribution, kurtosis, and relative power of 
the baseline. 

Accuracy = 94.7% 
Sensitivity = 90.3% 
Specificity = 93.0% 
(Balanced Acc =
91.7%) 

2018 An automated ECG signal quality assessment 
method for unsupervised diagnostic systems [19]  

• Allengers virgo EEG kit 
(traditional)  

• Bioradio wireless physiology 
monitor (wearable)  

• MIT-BIH arrhythmia 
(traditional) 

ML 
Unsupervised learning model based on wavelets along 
with statistical features computed on low frequency 
and high frequency spectral bands. 

Accuracy = 95.7% 
Sensitivity = 97.5% 
Specificity = 92.0% 
(Balanced Acc =
94.7%) 

2017 Quality Assessment of Ambulatory ECG Using 
Wavelet Entropy of the HRV Signal [17]  

• Recordings obtained from 
ambulatory patients 
(wearable) 

ML 
Wavelet entropy of RR intervals along with an SVM 
classifier. 

Accuracy = 95.0% 
Sensitivity = 92.5% 
Specificity = 97.5% 
(Balanced Acc =
95.0%) 

2015 Electrocardiogram signal quality assessment using 
an artificially reconstructed target lead [13]  

• Physionet/Cinc Challenge 
2011 (traditional)  

• High resolution ECG from 
DAY hospital [20] 
(traditional) 

Heuristic 
Energy-concavity index: energy and concavity of ECG. 
Correlation based quality index: correlation between 
ECG leads generated by a neural network. 

Accuracy = 93.6% 
Sensitivity = 92.4% 
PPV = 94.8% 

2015 Quality estimation of the ECG using cross- 
correlation among leads [18]  

• Physionet/Cinc Challenge 
2011 (traditional) 

ML 
Cross-covariance matrix among different leads. 
Classification based on the eigenvalues. 

Accuracy = 92.7% 
Specificity = 95.5% 
AUC = 91.0% 

2015 Signal-Quality Indices for the Electrocardiogram and 
Photoplethysmogram: Derivation and Applications 
to Wireless Monitoring [10]  

• Ambulant hospital database 
(wearable) 

Heuristic 
Template matching: correlation between QRS 
complex and QRS template (based on averaging all 
detected QRS complexes on a window). 

Sensitivity = 94.0% 
Specificity = 97.0% 
(Balanced Acc =
95.5%) 

2012 Automatic motion and noise artefact detection in 
Holter ECG data using empirical mode 
decomposition and statistical approaches [11]  

• 5-lead ECG recordings 
(traditional) 

Heuristic 
Mean value, standard deviation, entropy of 
normalized first-order intrinsic mode function of Raw 
ECG. 

Accuracy = 96.6% 
Specificity = 94.7% 
Sensitivity = 96.6% 
(Balanced Acc =
95.6%) 

2012 QRS detection-based ECG quality assessment [12]  • Physionet/Cinc Challenge 
2011 (traditional) 

Heuristic 
Empty lead detection, spike detection, number of lead 
crossing points, and stability of the QRS detection. 

Accuracy = 91.6%  
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analysis mainly requires clean R-peaks and a single lead recording will 
usually be enough. Our work is aimed at tackling quality issues per-
taining HR and HRV analysis for lifestyle and wellbeing applications. 

Approaches to address the artefact problem in previous literature can 
be categorized into three main classes: 1) denoising the whole signal 
using various signal processing techniques [5], 2) identifying low 
quality segments and excluding them from further analysis, or 3) 
combining the previous two approaches in order to identify noisy ECG 
segments and denoise them [6]. In this work, we focus on the second 
approach. 

The ECG signal quality problem has been broadly explored in the 
literature, especially after the Physionet/Computing in Cardiology 
(CinC) [7,8] challenge in 2011. Table 1 provides a summary of selected 
publications in the field of ECG signal quality assessment. All solutions 
concern binary quality assessment, i.e. good or bad quality. The pro-
posed solutions either utilize statistical and signal processing techniques 
to characterize the signal, combined with heuristic hard thresholds 
[9–13], or use diverse signal descriptors (i.e. signal features) coupled 
with machine learning (ML) pipelines to provide a holistic signal quality 
score [14–18]. It can be noted that in most cases, only one ECG dataset 
was used for developing a solution. Moreover, none of these works 
explored ubiquitous ECG signals. 

In this work, we study the possibility of a unified framework to cater 
for varied signal acquisition sources (cf. Fig. 2), by proposing a ML 
pipeline that can generate binary classification models capable of 
accurately classifying the signal quality of ECG segments acquired from 
traditional, wearable, and ubiquitous devices. The presented pipeline 
consists of a generic feature space to characterize the ECG quality, along 
with two alternative methods for feature selection and an array of 
classification algorithms that are trained on the selected features to-
wards finding the best performing solution. All resulting models attained 
an acceptable performance, with balanced accuracies (BAcc)2 [21] 
above 87%. MATLAB R2018a functions and toolboxes were used 
throughout the work. 

The remaining sections of this paper are structured as follows: Sec-
tion 2 presents the methods and summarizes the main steps of the pro-
posed pipeline; Section 3 includes the results from the feature selection, 
training and validation of classification algorithms, and the test of each 
model on new data from three different datasets. A use case for the 
quality indicators is also presented. Results are discussed in Section 4, 
and conclusions are drawn upon Section 5. 

2. Methods 

2.1. Datasets and annotations 

Three different ECG datasets are employed in this work (cf. Table 2): 
Wearable ECG (wDS), Non-contact ECG (ccDS), and Physionet ECG 
(phyDS). To establish a quality ground truth, the ECG was manually 
labeled by several annotators with experience in ECG processing. To 
achieve a fine-grained quality assessment, the ECG time series was 
divided into small segments of 10 or 15 s, and each was individually 
labeled. Table 2 provides a summary of the ECG datasets used in this 
work. It should be noticed that phyDS includes pathological patterns (e. 

Fig. 2. Proposed ML pipeline for the quality evaluation of ECG signals from diverse acquisition sources. * Resampling with anti-aliasing filter.  

Table 2 
ECG Datasets: protocol, acquisition setup, data contents and quality classes.  

Dataset Protocol Acquisition 
setup 

Original 
data 
contents 

Quality classes 

wDS 12 subjects were 
asked to 
perform 
everyday tasks 
under controlled 
and 
uncontrolled 
conditions. 

Wearable ECG 
from Health 
Patch (imec- 
Leuven, 
Belgium); lead 
II; 256 Hz. 

9693 
segments, 
each with 
10 s 

Label 1: good 
quality; clear QRS 
complex. (4724 
segments) 
Label 0: bad 
quality; unclear 
QRS complex due 
to noise. (4969 
segments) 

ccDS 109 subjects at 
diverse 
scenarios such 
like sitting on an 
office chair, car 
seat while 
driving, and 
lying over bed 
mattress. 

Capacitive 
coupled ECG 
sensors 
(ccECG) from 
the work of 
Miller [22] 
UnoVis dataset 
[23]; 512 Hz. 

9910 ECG 
segments, 
each with 
15 s 

Label 1: good 
quality; clear 
ccECG, which can 
be used be used 
for HR 
estimations. 
(1937 segments) 
Label 0: bad 
quality; no ccECG 
or ccECG with 
noise, which 
affects HR 
estimations. 
(7973 segments) 

phyDS Standard 12- 
lead ECG 
recordings, 
acquired by 
medical 
professionals 
with varied 
degrees of 
experience and 
under diverse 
acquisition 
conditions. 

Standard 12- 
lead ECG from 
the open 
source 
database of 
2011 
Physionet 
challenge [8]; 
lead II; 500 Hz. 

1307 of 
ECG 
segments, 
each with 
10 s 

Label 1: good 
quality; QRS 
complexes are 
identifiable. 
(1017 segments) 
Label 0: bad 
quality; QRS 
complexes are 
unidentifiable. 
(290 segments)  

2 Balanced accuracy: a performance metric for unbalanced datasets, that is 
equal to (sensitivity + specificity)/2. 
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g. atrial fibrillation, atrial fluttering), in this case abnormal beats that 
maintain a detectable R-peak are still labeled as good quality segments. 

2.2. Preprocessing 

The preprocessing step consists of resampling, segmentation, 
filtering, and normalization of the ECG signals. A frequency of 256 Hz is 
considered an acceptable acquisition frequency when targeting HR/ 
HRV applications [24,25] and is also the lowest sampling frequency 
among datasets. In the case of ccDS and phyDS, data was down sampled 
using the MATLAB function decimate, which incorporates an 
anti-aliasing filtering step based on a Chebyshev type 1 low pass filter of 
order 8. The segmentation used for quality annotation is maintained. 
Though, to exclude the influence of segment size from the analysis, in 
the case of ccDS, the last 5 s of each segment are discarded. Each 
resulting 10-s segment is independently processed in the following steps. 
The filtering procedure consists of a zero-phase 3rd order Butterworth 
band-pass filter, with 0.5 Hz and 40 Hz cut-off frequencies (MATLAB 
function zerophase). This allows to detrend (low pass) and denoise (high 
pass) the ECG waveform, while preserving the information in the fre-
quency band of interest. Lastly, the amplitudes of the ECG signals are 
normalized in the minimum-maximum range within each segment ac-
cording to Eq. (1), where ynorm represents the normalized segment, y 
represents the original segment, and t is the number of samples. 

ynorm(t) =
y(t) − min(y)

max(y) − min(y)
, t ∈ {0, .., 10} s (1)  

2.3. Training, validation and testing data splits 

Each of the original datasets is randomly split (cf. Fig. 2) into 
training/validation (80% of the segments) and testing (20% of the 
segments) subsets. The training/validation subset is employed in finding 
the features that are most relevant for the classification problem, and in 
training and validating a set of models using 5-fold cross-validation 
[26]. The best performing classification models are then tested on the 
testing subset (not used in previous steps), to attain the final unbiased 
performance metrics. 

2.4. Performance evaluation 

The performance of the classification models, is reported in terms of 
statistical metrics commonly used for binary classification problems, 
namely: accuracy (Acc), sensitivity (Sen), specificity (Spe), precision 
(Prec) and F1-score (F1) [27]. Since two of the datasets (i.e. ccDS and 
phyDS) are unbalanced in terms of the number of good and bad seg-
ments, the BAcc metric [21], expressed in Eq. (2), is employed for 
choosing the best performing models. 

BAcc =
Sen + Spe

2
(2) 

The BAcc includes information about the sensitivity and specificity 
on a single value, hence, providing a better understanding of the clas-
sification errors than Acc. 

2.5. Multidimensional feature space 

A diverse set of descriptive features is put together to describe the 
signal quality of ECG segments. The ECG characteristics are investigated 
using the properties of the time-domain signal, the frequency-domain 
signal from the Discrete Fourier Transform (DFT), the multiresolution 
frequency-domain signal from the Stationary Wavelet Transform (SWT), 
and the time-series behavior as depicted by the Autocorrelation Func-
tion (ACF). After extraction, the features are normalized in the min-max 
range within the whole dataset, to reduce the computation time in the 
following steps. 

Time domain signal analysis: The morphological differences be-
tween a good and a bad quality ECG segment are depicted in Fig. 3. It is 
noticeable that different ECG acquisition setups present different arte-
facts. To characterize these behaviours, 6 features are derived from the 
ECG segments: 1) mean (mean_raw); 2) standard deviation (std_raw); 3) 
kurtosis (kurt_raw); 4) skewness (skew_raw); 5) median absolute devi-
ation (mad_raw.); 6) approximate entropy (apen_raw). 

Discrete Fourier Transform (DFT) analysis [28]: The DFT converts 
the signal form the time domain to the frequency domain, revealing the 
spectrum of its frequency components. The mean HR can be derived 

Fig. 3. ECG segments (10 s) in the time domain. a) good quality segment from 
wDS; b, c, and d) bad quality segments from wDS, phyDS, and ccDS, 
respectively. 

Fig. 4. ECG segments after applying the FFT. These frequency-domain de-
pictions correspond to the time-domain segments in Fig. 3 a) spectrum of a good 
quality segment from wDS; b, c, and d) spectrum of bad quality segments from 
wDS, phyDS, and ccDS, respectively. 
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from the frequency of the highest peak in the spectrum of a clean ECG. 
In this work, the Fast Fourier Transform (FFT) algorithm [29] is 

applied on each pre-processed ECG segment using the MATLAB function 
fft. The output amplitude is normalized and converted to a single sided 
spectrum and truncated in the range 0–40 Hz. As illustrated in Fig. 4, 
when artefacts are introduced the spectrum of the ECG segment is 
affected in diverse ways. To quantify the different spectral components, 
6 features are extracted: 1) mean (mean_fft); 2) maximum value 
(max_fft); 3) standard deviation (std_fft); 4) kurtosis (kurt_fft); 5) 
skewness (skew_fft); 6) approximate entropy (ent_fft). 

Stationary Wavelet Transform (SWT) analysis [30–32]: the SWT 
can be pictured as a filter bank, where the input signal is passed 
repeatedly through a low pass filter (LPF) (i.e. the scaling filter) and a 
high pass filter (HPF) (i.e. the wavelet filter), with each filtering step 
constituting a level of decomposition. The filter impulse response is 
modulated by the mother wavelet function, that has a specific shape. It is 
worth mentioning that in the SWT, the wavelet function and the number 
of decomposition levels are application dependent. The output of the 
HPF (i.e. the detail coefficient) is in the range [Fmax/2, Fmax][Fmax/2, 
Fmax], where Fmax is the maximum frequency of interest (i.e. the 
Nyquist frequency), and the output of the LPF is (i.e. the approximation 
coefficient) is in the range [0, Fmax/2]. Since half of the signal fre-
quencies are removed, according to Nyquist theorem, half of the samples 
are redundant and can be discarded by down sampling the signal by a 
factor of 2. However, in the SWT algorithm, no samples are discarded 
[33], hence it is shift invariant. At the next decomposition level, the 
previously obtained approximation coefficients can be further decom-
posed by applying the LPF and the HPF again, each having half the 
cut-off frequency. The main advantage of the SWT over DFT is that it 
captures, in the same output, both the frequency and time domain 

information. On a clean ECG, each level of decomposition will depict the 
ECG waves (PQRST) on that frequency range. 

The Daubechies wavelets are recurrent in ECG processing literature 
because of their structural similarity to the QRS complex [34,35] and its 
ability to capture changes in signals [36]. Therefore, the Daubechies 
wavelet of order 6 is used in this work. The SWT is performed using the 

Fig. 5. SWT decomposition showing the wavelet detail coefficients up to level 6. These four decompositions correspond to the time-domain segments in Fig. 3 a) 6 
levels of decomposition of a good quality segment from wDS; b, c, and d) 6 levels of decomposition of a bad quality segment from wDS, phyDS, and ccDS, 
respectively. 

Fig. 6. ACF of the ECG segments with a maximum lag of 2560 samples. These 
ACF depictions correspond to the time-domain segments in Fig. 3 a) ACF of a 
good quality segment from wDS; b, c, and d) ACF of bad quality segments from 
wDS, phyDS, and ccDS, respectively. 
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MATLAB function swt (with ‘db6’ wavelet and 6 levels decomposition), 
covering a frequency range from 2 to 128 Hz. Fig. 5 demonstrates how 
different acquisition conditions result in different SWT outputs at 
different frequency ranges. To describe each wavelet level, 4 features are 
extracted: 1) mean of the absolute value (mean_swt_level); 2) standard 
deviation (std_swt_level); 3) median absolute deviation (mad_swt_level); 
4) approximate entropy (apen_swt_level). 

Autocorrelation Function (ACF) analysis [37]: The ACF measures 
the self-similarity of a signal, and is used in finding periodic patterns. 
This is done by calculating the correlation between the original signal 
and a shifted copy of itself for a set of time lags. The ACF of a normal ECG 
will present a correlation degradation as the time lag increase, related to 
the small, but continuous tuning of the cardiac activity overtime. 

Previous ECG literature used a maximum time lag of 250 ms to 
measure the beat-to-beat autocorrelation [14]. In this work, we set the 
maximum time lag to be the segment length (MATLAB function acf [38], 
with a maximum time lag of 2560 samples), see Fig. 6. This enables the 
evaluation of important ACF characteristic in an averaged form. To 
capture relevant information, 7 features are derived from the ACF: 1) 
amplitude (Fpmax) and 2) location (Fploc) of the first local maximum; 
3) amplitude (fm_amp) and 4) location (fm_loc) of the first local mini-
mum; 5) abscissa of the first zero-crossing (Fzloc); 6) zero-crossing rate 
(Zcr); 7) standard deviation of zero-point to zero-point intervals 
(Zxistd). 

2.6. Feature selection 

In this work, a customized hybrid method and the Neighborhood 
Component Analysis (NCA) are employed in selecting the most relevant 
features, and their results are compared. The subsets of features result-
ing from each feature selection method, are used to train/validate and 
test the predictive models. 

2.6.1. Hybrid method 
In this approach three methods with different characteristics are 

used consecutively to select the best feature subset. The first two are 
filter methods (i.e. features that are not relevant according to some 
metric are filtered out of the subset), and the last one is a wrapper 
method (i.e. a classifier is trained with different subsets of features, and 
the best performing subset is chosen). Such combination minimizes the 
selection bias, presented when using each of the methods alone. 

Wilcoxon signed-rank test (WSRt): a non-parametric test that 
statistically verifies whether two samples come from different pop-
ulations. The test tries to disprove the null hypothesis (H0) that the 
differences (X) between pairs of observations from two related samples 
follow a symmetric distribution around zero (i.e. come from populations 
with similar median), at a given significance level defined as the p-value 
(i.e. the probability of the occurrence of H0). When H0 holds, Eq. (3) is 
true, and one can conclude that the two samples are not significantly 
different. 

H0 : P(X > 0)=P(0>X) (3) 

For each feature, the MATLAB function signrank is used to test a 
sample of observations corresponding to bad quality segments, against a 
sample of observations corresponding to good quality segments. Each 
pair of observations comes from the same dataset, and the sample is 
randomly chosen from within the observations in the training set. A 
significance threshold of p = 0.01 is used for rejecting H0. When H0 
holds, good and bad quality samples are not statistically different, and 
the feature under evaluation is excluded. 

Correlation-based feature selection (CFS) [39]: an optimal feature 
set contains entries that are highly correlated with the target class (i.e. 
relevant) and uncorrelated with each other (i.e. non-redundant). To find 
the optimal feature subset, CFS calculates the merit (Sn) of a series of 
subsets consisting of n features according to Eq. (4), where n is an integer 
varying from 1 to N (total number of features after WSRt), rff is the mean 

value of the feature-to-feature Pearson’s correlation coefficients, and rcf 

is the mean value of the feature-to-class Pearson’s correlation co-
efficients within each n-feature subset [39]. 

Sn =
n × rcf

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
n + n(n − 1)×rff

√ (4) 

In this work, greedy forward selection is used as the search strategy 
to find the best subset of features. Starting from a null subset, each 
possible feature is iteratively added to the subset. The feature resulting 
in the highest Sn is kept, and the procedure is repeated with the 
remaining features. The merits Sn are then ranked, and the subset with 
the highest merit is selected. 

Recursive feature elimination with Support Vector Machines 
(SVM-RFE) [40] and cross-validation: finds the best subset of features 
by considering the performance of a linear SVM,3 when iterating over an 
array of candidate feature subsets. 

A backward search strategy is implemented, that starting with the 
whole set of features (N′

) produces candidate subsets of n features 
(n ∈ {1, …N′

}, where N′ is the total number of features elected by CFS). 
Each n-feature subset is obtained by randomly and iteratively elimi-
nating one feature from the n+1 subset. The SVM is trained and vali-
dated using a 5-fold cross-validation scheme, on all possible n-feature 
subsets. The best performing subset is the one that minimizes the loss 
function (α) in Eq. (5), and will be the basis for the next backward search 
iteration. 

α=

(

1 −
Sen + Spe

2

)

(5) 

Considering all best performing n-feature candidate subsets, the 
overall best feature set is the one that yields the highest BAcc, obtained 
according to Eq. (6). 

BAcc= 100 − (α× 100) (6) 

The MATLAB functions sequentialfs and cvpartition are used to 
implement the SVM-REF method. 

2.6.2. Neighborhood Component Analysis 
NCA is a non-parametric approach used for dimensionality reduction 

[41]. It attributes a measure of importance (i.e. a weight) to each 
feature, after maximizing the expected accuracy of a leave-one-out 
classification4, based on a stochastic nearest-neighbor method [41]. 
The closer the weight is to zero, the less important the corresponding 
feature is. A regularization parameter (λ) is applied to scale the feature 
weights and assist in the detection of relevant features. This value is 
selected as the one producing the least classification error, after a 5-fold 
cross validation is ran for each λ within the empirical interval of 
[0 : 1.05 : 20]/length(trainingdataset). Since the algorithm is not deter-
ministic, to ensure robust results the NCA procedure is repeated 100 
times with the same data input. The weight of each feature is then taken 
as the median value over the 100 repetitions. The MATLAB function 
fscnca is used here for implementing the NCA-based feature selection. 

2.7. Classification: algorithms, training and validation 

A set of supervised ML algorithms is employed for binary quality 
classification on each feature subset. The hyperparameters of the models 
are tuned over a finite range of possibilities, and each model is weighted 
on the training data. Three elementary classifiers were exploited in this 
work, plus ensemble methods: 

3 SVM (cf. chapter II.G) is a deterministic classifier, widely used in machine 
learning related to its robustness and simplicity.  

4 Leave-one-out classification: attributes a class to a single observation based 
on the consensus of the observations within its neighborhood. 
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• k-Nearest-Neighbors (KNN): uses the majority vote of k closest 
training observations in order to assign another observation to a class 
[42]. The hyperparameter k is bounded to the number of classes in 
the problem. The MATLAB function fitcknn is used to train the KNN 
models. Table 3 lists the hyperparameter configuration in the KNN 
models.  

• Support Vector Machine (SVM): finds the optimal hyperplane, 
serving as the decision boundary to separate different classes of ob-
servations [43]. The hyperparameters include the kernel function, 
scale, order, offset, and the box constraint. The MATLAB function 
fitcsvm is used to train the SVM models. Table 3 lists the hyper-
parameter configuration in the SVM models.  

• Decision Trees [44]: a divide-and-conquer model that uses a tree-like 
scheme. The leaf nodes represent the constraints on the feature 
values, leading to an end node that attributes the constrained 
observation to a class. The hyperparameters include the split crite-
rion and the maximum number of splits. The MATLAB function 
fitctree is used to train Fine, Medium, and Coarse decision trees 
models, with Gini’s diversity index as that split criterion, and a 
maximum number of splits equal 100, 20, and 4, respectively.  

• Ensemble learning methods [45]: combine several weak learning 
methods into one ensemble predictor, yielding a higher performance 
predictor. The MATLAB function fitcensemble was used to train 
Boosted, Bagged, and RUSBoosted trees as well as Subspace KNN 
models, all of which using number of learning cycles equal 30. 

To understand if the trained classification models were generalizable 
across datasets, the one achieving the overall highest performance was 

applied on the testing subsets of the two remaining datasets. 

2.8. Use case 

The final objective of employing our quality indicator is to decrease 
the errors when calculating HR. To test the usability of the proposed 
algorithm towards such end, three 10-min ECG segments, with variable 
signal quality, were extracted from each dataset (wDS, ccDS, and 
phyDS). For each 10-s window in the three segments, the mean HR es-
timate was calculated based on R-peaks found by the Pan-Tompkins QRS 
detection algorithm [46], while the mean HR ground truth was calcu-
lated based on manually detected R-peaks. HR estimates (E) were 
compared to the ground truth HR (T), based on the root mean squared 
error (RMSE), normalized by the number of 10-s ECG windows (n), as 
depicted in Eq. (7). For each of the three datasets, the RMSE was first 
calculated on the whole set of windows, and afterwards on a reduced set 
of windows, after discarding those classified as low-quality by the best 
performing algorithm. Both values are compared to understand if the HR 
error decreases after discarding low quality sections from the 
calculation. 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Ti − Ei)
2

n

√

(7)  

3. Results 

3.1. Feature selection 

The hybrid method and the NCA were used independently towards 
feature selection. The results for the feature selection based on the 
hybrid method are presented in Table 4. The computation times for the 
hybrid method were 4.18 min, 4.81 min, and 0.38 min, respectively for 
the wDS, ccDS, and phyDS. 

For the NCA-based feature selection, all features with median 
weights higher than 0.5 were selected. The results of NCA on the three 
datasets are presented in Fig. 7. The computation times for the NCA- 
based feature selection were 156.69 min, 157.25 min, and 21.07 min, 
respectively for wDS, ccDS, and phyD. 

3.2. Classification 

For the three ECG dataset, each of the 19 classification models 
considered in this work were trained on three subsets of features: those 
resulting hybrid feature selection, the NCA-based subset, and the full set 
of 43 features. The results concerning the best performing models, as 
established on the testing partition of each dataset, are graphically 
illustrated in Fig. 8 and numerically summarized in Table 5. 

The model with highest overall performance among those developed 
on a feature subset (Fine Gaussian SVM with the ccDS-NCA feature 
subset) was applied to features extracted on wDS and phsDS testing 
partitions, resulting on 0.49 and 0.48 BAcc, respectively. 

3.3. Use case 

When considering the HR estimates for all 10-s windows on each 10- 
min segment from wDS, ccDS, and phyDSm, the resulting RMSEs are 

Table 3 
Models and hyperparameters for SVM and KNN.  

Model Hyperparameter Model Hyperparameter 

Linear SVM BoxConstraint: 1/ 
KernalScale: Auto 
KernalFunction: Linear 
PolynomialOrder: NA 

Fine KNN Distance: Euclidean 
DistanceWeight: Equal 
Exponent: NA/ 
NumNeighbors: 1 

Quadratic 
SVM 

BoxConstraint: 1/ 
KernalScale: Auto 
KernalFunction: 
Polynomial 
PolynomialOrder: 2 

Medium 
KNN 

Distance: Euclidean 
DistanceWeight: Equal 
Exponent: NA/ 
NumNeighbors: 10 

Cubic SVM BoxConstraint: 1/ 
KernalScale: Auto 
KernalFunction: 
Polynomial 
PolynomialOrder: 3 

Coarse 
KNN 

Distance: Euclidean 
DistanceWeight: Equal 
Exponent: NA/ 
NumNeighbors: 100 

Fine Gaussian 
SVM 

BoxConstraint: 1/ 
KernalScale: 2 
KernalFunction: 
Gaussian 
PolynomialOrder: NA 

Cosine 
KNN 

Distance: Cosine 
DistanceWeight: Equal 
Exponent: NA/ 
NumNeighbors: 10 

Medium 
Gaussian 
SVM 

BoxConstraint: 1/ 
KernalScale: 7.9 
KernalFunction: 
Gaussian 
PolynomialOrder: NA 

Cubic KNN Distance: Minkowski 
DistanceWeight: Equal 
Exponent: 3/ 
NumNeighbors: 10 

Coarse 
Gaussian 
SVM 

BoxConstraint: 1/ 
KernalScale: 31 
KernalFunction: 
Gaussian 
PolynomialOrder: NA 

Weighted 
KNN 

Distance: Euclidean 
DistanceWeight: 
SquaredInverse 
Exponent: NA/ 
NumNeighbors: 10  

Table 4 
Results of the hybrid feature selection for the wDS, ccDS, and phyDS.  

Dataset Wearable ECG (wDS) Non-contact ECG (ccDS) Physionet ECG (phyDS) 

Method WRSt CSF SVM-REF WRSt CSF SVM-REF WRSt CSF SVM-REF 

# of selected features 39 11 7 40 12 7 31 12 10 
Final subset apen_swt_1; apen_swt_2; std_swt_3; std_swt_5; 

apen_swt_5; Fploc; fz_loc 
mean_fft; max_fft; kurt_fft; skew_fft; 
mad_swt_3; mad_swt_5; fz_loc 

mean_raw; apen_raw; std_fft; skew_fft; ent_fft; 
mad_swt_1; mean_swt_2; Fpmax; fm_amp; fz_loc  
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Fig. 7. NCA feature weights across 100 iterations for each dataset: a) wDS, b) ccDS and c) phyDS. The green boxes indicate the selected features. Features described 
as DWT respect in fact to SWT. 
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1.88, 3.53, and 5.54 beats per minute (bpm), respectively. When 
considering only HR estimates for windows with good quality ratings, the 
resulting RMSEs were 0.69, 1.54, and 1.87 bpm, respectively for wDS, 
ccDS, and phyDS. 

4. Discussion 

The proposed feature space (43 features) covers a wide range of ECG 
dynamics. However, utilizing the full feature space is not always 
necessary to achieve acceptable results. Feature selection is therefore 
applied to find the best trade-off. The minimal impact of feature elimi-
nation on the classification performance is well illustrated in Table 4: 
and Fig. 7. When it comes to the hybrid method, the features are selected 
in a complete data driven manner and the method is deterministic. In 
this case, the user may still decide to rely on the feature subsets resulting 
from the WRSt, CFS or SVM-RFE steps. On the other hand, the NCA al-
gorithm produces a ranking of the feature weights, allowing for flexible 
cut-off threshold setting. However, the NCA requires a high computation 
time (up to 157 min), compared to 5 min in the case of the hybrid 
method. This high computation time is due to the 100 repetitions of the 
procedure, to account for the nondeterministic behaviour of NCA algo-
rithm. Thus, different users are free to opt for the method that better fits 
their requirements. 

All feature families (i.e. raw, FFT, SWT, and ACF) were represented 
in the final feature subsets, but only 28 features were included at least 
once. Within the same selection method (i.e. hybrid or NCA), the final 
feature subsets appear to be inconsistent across datasets, which is ex-
pected due to the differences in ECG morphology and artefacts across 
different datasets. The feature fz_loc was among the features selected by 

the hybrid method for all datasets. Concerning NCA, std_swt_3, std_swt_4, 
and fm_amp were among the features selected on all datasets. The 
selected features, within the same dataset, were also inconsistent, which 
can be traced back to the different analytical nature of the selection 
methods. Overall, the SWT-based features appeared to be important in 
all ECG datasets, but this is especially noticeable and consistent across 
feature selection methods in the case of wDS. The remaining two data-
sets may be more challenging to model, related to inclusion of patho-
logical patterns (phyDS) and impactful artefacts related to loss of contact 
(ccDS), resulting in higher variability related to the features that may 
characterize them. 

The best performing classifiers presented BAccs above 87% in the 
training/validation and testing phases (cf. Table 5). Out the 9 best 
performing models, 8 belong to the SVM family, with different hyper-
parameters. In the case of ccDS, the classification models presented 
highest BAccs (92–96%) but low precision (66–79%), which may be 
attributed to the highly unbalanced classes, with large number of bad 
segments. The models with most stable performances respected the wDS 
case (BAcc 91–93%, Prec/Spe>88%). The phyDS, being an unbalanced 
dataset, with higher number of good segments, and including ectopic 
beats resulted in lowest BAcc scores (87–90%). 

A model trained on one dataset is not generalizable to the other 
datasets, as depicted by the poor performance (BAcc<50%) of the 
overall best performing model on the remaining data sets (wDS and 
physDS). 

The use case shows that discarding low quality windows flagged by 
the quality indicators, substantially decreases the RMSE when calcu-
lating HR based on the input from an automated QRS detection method. 

The physionet/Cinc Challenge 2011 data (i.e. phyDS) was employed 

Fig. 8. Balanced accuracy scores of the best performing models on the testing partition for each ECG dataset using: all features, NCA, and Hybrid method 
feature subsets. 

Table 5 
Evaluation metrics for the best performing models on the testing partition of each ECG dataset. The differences between each pair of models (All-NCA, All-hybrid, NCA- 
hybrid) developed on each dataset are always statistically significant (p«0.01) .a  

Dataset Feature set Model Cross-Validation BAcc [mean, std] BAcc Sen Spe Prec F1 Acc Computation time [s] 

wDS All features Bagged Trees 0.93, 0.01 0.93 0.93 0.92 0.92 0.92 0.93 6.18 
NCA Fine Gaussian SVM 0.93, 0.01 0.93 0.95 0.91 0.91 0.93 0.93 4.09 
Hybrid Fine Gaussian SVM 0.91, 0.01 0.91 0.93 0.88 0.88 0.91 0.91 4.04 

ccDS All features Quadratic SVM 0.95, 0.01 0.96 0.99 0.94 0.79 0.88 0.95 11.50 
NCA Fine Gaussian SVM 0.95, 0.01 0.95 0.98 0.93 0.76 0.86 0.94 3.31 
Hybrid Fine Gaussian SVM 0.92, 0.01 0.92 0.95 0.88 0.66 0.78 0.90 4.02 

phyDS All features Medium Gaussian SVM 0.89, 0.02 0.90 0.91 0.90 0.97 0.94 0.93 0.20 
NCA Medium Gaussian SVM 0.88, 0.01 0.87 0.90 0.84 0.95 0.92 0.92 0.13 
Hybrid Fine Gaussian SVM 0.87, 0.02 0.89 0.90 0.88 0.96 0.93 0.90 0.16  

a Based on ROC comparisons using DeLonge test for paired designs, with the r-package: pROC. 
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here in order to establish a benchmark with previous literature. When 
comparing the performance of our models on phyDS (Acc = 90–93%) to 
the results presented by Ref. [13,14,18] (Acc = 91.6–93.6%, cf. Table 1), 
we verify that our models have comparable performance. The remaining 
methods presented in Table 1 cannot be directly compared to our work 
as they use different datasets, though, they provide a guideline for the 
expected quality assessment performance in wearable data. Thus, we 
can conclude that our results are within the expected range for wearable 
data. 

4.1. Limitations 

The proposed pipeline, at its current state, is limited by the following 
factors:  

• Sampling frequency dependency: some of the extracted features are 
dependent on the ECG sampling frequency. This was overcome by 
resampling the input ECG signals to the lowest sampling frequency 
across datasets (256 Hz).  

• Normalization of the extracted features: as shown in Fig. 2, all 
extracted features undergo a normalization step before the feature 
selection and the classification steps over the whole dataset. This is 
important to enhance computation time in the coming steps. How-
ever, this limits the application of the proposed pipeline to offline 
applications.  

• Binary-class vs. multi-class: the current work separates the low- 
quality ECG segments from those of high quality, which may leave 
out some nuances. Especially relevant if the objective was to estimate 
mean HR, in which case the quality requirements would be lower, or 
if the objective was morphology analysis, in which case the re-
quirements would be higher. For the current objective of estimating 
instantaneous HR and HRV, more classes would not provide added 
value.  

• ECG lead configuration: only ECG Lead I and Lead II signals were 
explored in this work. 

• Pathological patterns: although ECG beats with pathological mor-
phologies were presented in the some of the phyDS ECG segments, no 
sensitivity analysis towards ectopic beats was performed, which 
limits the use of the proposed solution to lifestyle applications (e.g. 
activity and wellbeing tracking). 

4.2. Future work 

A thorough evaluation of the capabilities of each feature to detect 
specific kinds of artefacts, could enrich the understanding of the ECG 
and the effects of noise at a more fundamental level. Testing the pro-
posed pipeline using different medical signals (e.g. body impedance) 
will be performed in a future research. 

5. Conclusion 

A generic pipeline for generating automatic ECG signal quality in-
dicators, targeting lifestyle applications, was presented and evaluated. 
Unlike other state-of-the-art solutions presented in previous literature, 
we propose a generic framework that can be used on diverse ECG 
datasets to train classification models in order to assess ECG quality. 
Moreover, with this framework we managed to obtain a high performing 
classifier for non-contact ECG, something that was not addressed in 
previous work. The models attain a high performance when tested on 
data from the same acquisition source. Though, they are not generaliz-
able across different acquisition sources. 

Declaration of competing interest 

None Declared. 

Acknowledgment 

The authors would like to express their gratitude to Patrick Van Der 
Heijden and Dwaipayan Biswas for helping in the wearable data 
collection, Ivan Dario Castro Miller for providing us with the annotated 
non-contact data, Andrejs Fedjajevs and his team for providing us with 
the annotated PhysioNet 2011 data, and Jonathan Moeyersons and his 
team for providing us with the annotated data for the SWEET study. 

References 

[1] J. Gawłowska, J. Wranicz, J. “Norman, “Jeff“ holter (1914-1983), Cardiol. J. 16 (4) 
(2009) 386–387. 

[2] H.F. Macinnis, The clinical application of radioelectrocardiography, Can. Med. 
Assoc. J. 70 (5) (1954) 574–576. 
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