
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Mega-Constellation
Design Optimisation
MSc Thesis
Vassili Tunjov

Mega-Constellation
Design Optimisation

by

Vassili Tunjov

to obtain the degree of Master of Science in Aerospace Engineering

at the Delft University of Technology,

to be defended publicly on Friday April 5, 2024 at 13:30.

Student number: 4548485
Project duration: January 1, 2023 – April 5, 2024
Thesis supervisors: Jian Guo TU Delft

Michael Khan ESA
Arnaud Boutonnet ESA

Cover image credits: Vera Gabets

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
This Master’s thesis is a collaborative effort between TU Delft and the Mission Analysis Section at
ESOC/ESA. It aims to develop methodologies and tools for mega-constellation design, supporting
future studies and mission analyses.

This work marks the culmination of my seven-year academic journey at TU Delft.

I am deeply grateful to Arnaud and Florian for their belief in me. Their initial internship offer at the
Mission Analysis Section proved invaluable. I extend my thanks to everyone I met there for making
it a formative experience. Special thanks to Michael, whose guidance extended beyond the thesis,
encompassing valuable career advice, his insights into other aspects of the field, and his entertaining
(though unmentionable here) jokes that helped lighten the mood.

My gratitude also extends to Amedeo and Lorenzo for their support during my ESOC internship.

Professor Jian, I am thankful for accepting me as your thesis supervisee.

Words cannot express my appreciation for the unwavering support of my dear friends. A special thank
you to Kate, a loyal and supportive friend who remained by my side despite all difficulties, you are truly
amazing. Ilya, my friend since arriving in Delft, this would have been impossible without you. Gleb,
your invaluable support - especially during the pandemic’s challenges - helped me persevere. Makars
and Arturs, a shout-out to you for the amazing House of Culture and everyone who was part of that
gang! Finally, thank you, Veronika, for coming to my life and supporting during the thesis’ final, the
most critical stages.

Kate, a loyal companion who stuck by me despite all difficulties, you are truly amazing. Ilya, my friend
since arriving in Delft, this would have been impossible without you. Gleb, your invaluable support
during the pandemic’s challenges helped me persevere.

I also want to thank my friends from Estonia (Oks, Evert, Alina K., Alina S., Maksim, Matvei, Dasha,
everyone from VitaTiim, and many more) who consistently believed in me, supported, and cheered me
up whenever I felt down.

Thanks everyone from Lindy Hop society who helped me ease the tough days of thesis work.

Looking back, I am amazed by how many people supported me throughout this challenging stage of
my life. While I cannot possibly acknowledge each and every one, I want you all to know how grateful
I am for your encouragement and belief in me during this journey.

Lastly, to my family: my sisters Maria, Marina, and Valentina, my brother Georgi, my dad, and especially
my mom, whose enduring support, especially at the beginning before I even moved to the Netherlands,
fuelled my determination. Thank you!

Vassili Tunjov
Delft, May 2024

iii

Summary
Given the rapid growth in popularity of mega-constellations for telecommunication purposes, this thesis
aims to identify methods for designing orbital layouts of such constellations. Traditional optimisation
methods for regularly sized constellations do not scale due to the number of satellites involved. There-
fore, this thesis investigates the design of mega-constellations and how to achieve an optimal layout
within a reasonable timeframe.

Initially, the figures of merit most commonly used in mega-constellation design were identified. The
most important figure of merit used in all types of missions, except for Earth observation, is visibility,
i.e., the number of satellites visible from a point on the ground. For Earth observation missions, the
revisit time is more relevant than visibility. Thus, the thesis focused onmission objectives where visibility
is the main figure of merit, such as Satcom, Satnav, IoT, etc. There is also more literature and data
available on such constellations, including Starlink, OneWeb, Project Kuiper, and others. Consequently,
two closely related figures of merit were selected for this study: minimum visibility and mean visibility.
The former ensures an N-fold uninterrupted coverage, while the latter provides a general metric of how
many satellites are visible over time. Also, the main focus was on Walker constellations as this is the
most common geometry used for mega-constellations.

The visibility computation begins with constellation propagation. Due to the large number of satellites
in a mega-constellation, existing tools used at ESOC, such as Godot, are insufficient. Therefore, a self-
written tool was developed, named mcdo (Mega-Constellation Design Optimisation), which utilises the
basic functionality of Godot and takes advantage of NumPy by applying vectorisation to notoriously
slow Python. This approach resulted in a decrease in computational time by a factor of 100x with
respect to godot.cosmos.BallisticPropagator.
Moreover, the visibility computation was accelerated with the utilisation of graphic processing units
(GPU) and simplifications such as North-South symmetry, longitude averaging, or estimating visibility
for a single time instance. Depending on the methods and simulation setups used, a reduction of
400x-120,000x in computational time was achieved for visibility computation.

Additionally, the parametric analysis of large Walker constellations yielded some valuable discoveries.
For instance, the number of planes P and phasing parameter F do not influence the mean visibility
but may have a significant effect on minimum visibility. This means that P and F can be omitted when
designing for the mean visibility. It was also revealed that the mean visibility curve scales linearly with
the number of satellites N, allowing to avoid propagation of very large constellations, and to scale up
the mean visibility curve from smaller constellations instead. Parametric analysis of other parameters
provided a general insight into their effect on visibility.

The improved computational efficiency of visibility computation for large Walker constellations enabled
the application of multi-shell constellation design. A case study was set up with a requirement of
uninterrupted coverage of 50 satellites over European latitudes (35-70 deg), assuming that all shells
were at the same altitude of 700 km with a goal to minimise N. The analysis revealed that for two- and
three-shell layouts, the minimum N was attained when higher-inclination shells had more satellites than
lower-inclination ones. Moreover, methods for design acceleration were discussed.

The building blocks method was proposed for designing mega-constellations with more than three
shells. This method starts from placing shells at high inclinations and then gradually lowers the incli-
nation of the subsequent shells. It takes advantage of visibility properties of Walker constellations: the
higher-inclination shells can cover both high and low latitudes, while the lower-inclination shells can
only cover low latitudes. This method reduces the computational time drastically: by a factor of 150x
for three-shell layouts and even more for larger numbers of shells.

The presented research offered valuable insights into initial phases of design of the orbital layout of
mega-constellations. The mcdo tool and the obtained results were already applied for internal projects
at ESA, demonstrating their relevance and usefulness.

v

Contents

Preface iii

Summary v

1 Introduction 1

2 Mega-Constellation Overview 5
2.1 Typical Geometries . 6

2.1.1 Walker Delta . 6
2.1.2 Walker Star (Streets-of-Coverage) . 7

2.2 Existing systems . 8
2.2.1 Iridium . 9
2.2.2 Starlink . 9
2.2.3 OneWeb. 10
2.2.4 Project Kuiper . 10
2.2.5 Spire . 11
2.2.6 Space Systems. 11
2.2.7 Kepler . 11
2.2.8 E-Space . 11

2.3 Previous Research. 13
2.4 Figures of Merit . 16

2.4.1 Visibility . 16
2.4.2 Revisit time . 17
2.4.3 Dilution of precision. 17
2.4.4 Positioning Accuracy . 18
2.4.5 Latency . 19
2.4.6 Signal-to-noise ratio . 19
2.4.7 Conclusion . 19

2.5 Summary and Conclusions. 19

3 Constellation Propagation 21
3.1 Dynamics. 21

3.1.1 Point-Mass (Keplerian Orbit) . 21
3.1.2 J2 Perturbation . 22

3.2 Keplerian to Cartesian . 24
3.3 Software Implementation and Vectorisation . 24
3.4 Verification. 26
3.5 Summary and Conclusions. 26

4 Coverage Estimation 29
4.1 Existing Methods . 30
4.2 Parallelised Visibility Computation . 33

4.2.1 Hardware Setup . 34
4.2.2 Software Implementation . 34

4.3 Verification. 37
4.4 Simplifications. 39

4.4.1 Walker Constellation Symmetry . 39
4.4.2 Walker Constellation Dynamics: Snapshot . 41

4.5 Parametric analysis . 42
4.5.1 Number of Planes and Phasing Parameter . 43
4.5.2 Number of Satellites. 46
4.5.3 Inclination . 47

vii

viii Contents

4.5.4 Minimum Elevation Angle and Altitude . 48
4.6 Summary and Conclusions. 50

5 Multi-shell Mega-constellation Design 53
5.1 Shell Permutation . 54

5.1.1 One shell . 55
5.1.2 Two shells . 55
5.1.3 Three shells . 58
5.1.4 Verification. 59

5.2 Permutation Acceleration . 60
5.2.1 Propagate each shell separately . 61
5.2.2 Apply simplifications . 62
5.2.3 Scale with N . 62

5.3 Shells Building Blocks . 63
5.4 Computational Time Comparison . 66

5.4.1 Constellation Propagation . 66
5.4.2 Visibility Computation . 66
5.4.3 Mega-Constellation Design. 69

5.5 Summary and Conclusions. 73

6 Conclusions 75

References 79

A Propagation Verification 85

B Parallel Computing 93
B.1 Sequential and Parallel Computing . 93
B.2 Types of Parallelism and Parallel Processing. 93
B.3 Multi-core Central Processing Units (CPU) . 95
B.4 Graphics processing units (GPU). 95

C Parametric Analysis 99
C.1 Number of Planes and Phasing Parameter . 99
C.2 Number of Satellites. 105
C.3 Inclination . 111
C.4 Minimum Elevation Angle and Altitude . 114

D Building Blocks 117

1
Introduction

Over the past decade, mega-constellations have emerged as a result of the rapid evolution of technol-
ogy and changing communications needs. These constellations consist of hundreds or even thousands
of small satellites in low Earth orbit (LEO). Compared to the traditional geostationary orbits (GEO) used
by most communications satellites and medium Earth orbits (MEO) used by all satellite-based naviga-
tion systems, the LEO orbits offer a number of advantages. These advantages include lower latency
and improved signal strength which results in higher data rates, enhanced positioning and increased
resilience against interference. Moreover, they are not only suitable for communications applications,
but also for other purposes that require high-resolution imagery and high signal-to-noise ratio (SNR) for
radio frequency transmissions. These include remote sensing, navigation, the Internet of Things, and
national security applications. The latter includes signal intelligence (SigInt), optical and radar recon-
naissance, or disaster monitoring, planning and relief [1]. Furthermore, the payload size of a spacecraft
in LEO can be significantly reduced compared to those in MEO or GEO without compromising perfor-
mance because of reduced link budget requirements.

The advantages of large LEO constellations have attracted the attention of both commercial companies
and governments. While businesses are intrigued by the commercial opportunities offered by large LEO
constellations, governments are seeking to use them for strategic purposes such as sovereign commu-
nications and navigation. This growing interest has led to an increasing number of mega-constellations
being deployed in LEO from only 3 commercial small satellites (with mass <500 kg) in 2012 to 2,402
smallsats in 2022 [2]. Although 76% of these launched satellites are operated by Starlink and OneWeb,
the number of smallsat operators grows as well despite a sharp decrease in 2020 due to Covid-19 pan-
demic [2].

The deployment of large-scale constellations presents unique engineering and technical challenges.
The design of these intricate systems covers various aspects, including orbital layout design, space-
craft design, system deployment, constellation operation and control, satellite disposal, and regulatory
requirements. To ensure scalability, resilience, and sustainability, while maintaining cost-effectiveness,
the design of mega-constellations necessitates optimisation. This involves factors such as the num-
ber of satellites, orbital parameters, payload size, and resource allocation in space and on the ground,
among others.

It is essential to recognise the inherent interdependence of the various aspects of mega-constellation
design. It is an iterative process where the optimal solution for one element may not translate directly
to the system as a whole.

The orbital layout design of a mega-constellation is a critical factor that directly influences its perfor-
mance and sustainability. The layout dictates the number and distribution of satellites, as well as the
altitude, inclination, and phasing of their orbits. The design process must consider various factors,
including the desired coverage area, data transmission requirements, and the operational lifespan of
the satellites. Consequently, determining the optimal orbital layout is crucial to ensure that the mega-
constellation delivers efficient and sustainable services that meet user requirements, while minimising
the number of satellites to be deployed and the environmental impact of the constellation.

1

2 1. Introduction

This optimised layout serves as a foundational element upon which the design of other subsystems
can be further refined, ultimately leading to a mega-constellation that effectively balances performance,
sustainability, and cost-effectiveness.

The task of determining an optimal layout for a mega-constellation is complicated by the extremely high
number of satellites involved. While there is no universally accepted definition of a mega-constellation,
it is generally agreed that a constellation with more than 100 satellites qualifies as such. However,
scalability can pose a problem; a method that works for a few hundred satellites may become compu-
tationally burdensome when the number increases to tens of thousands of satellites. This necessitates
the development of scalable methods that can be applied to the design of constellations with thousands
or even tens of thousands of satellites.

A literature survey on constellation design has been conducted. Analytical methods for continuous
global, regional, and zonal coverage employ the Streets-of-Coverage (SoC) concept studied by Lud-
ers [3], Ullock [4], Beste [5], and Rider [6]. Walker extensively studied Star and Delta layouts [7–9]
which are now the most commonly used layouts for mega-constellations. Ballard introduced Rosette
constellations [10] that are similar to Walker Delta. Furthermore, Rider and Adams [11], and Lang [12]
studied various layouts single- and multifold coverage. All these methods consider circular orbits in
LEO. However, methods for geosynchronous constellations [13] and constellations in elliptical orbits
[14, 15] also exist.

For regional or complex coverage requirements, some researchers explore mathematical approaches
using set and group theory [16–20]. Mortari introduced Flower constellations [21, 22], which were later
generalised to 2D [23], 3D [24], and 4D Flower constellations [25].

With the development of computational capabilities, semi-analytical methods became more popular
[26, 27]. Later, numerical optimisation algorithms were applied to constellation design for various appli-
cations such as GNSS [28], Earth observation [29–36], military [37], space situational awareness [38],
Internet-of-Things (IoT) [39], and other applications requiring global or regional coverage [40–45].

The aforementioned research papers involve “conventional” numbers of satellites, which usually do not
exceed a few tens. However, there is a noticeable lack of published studies focusing on the design
of orbital layouts for mega-constellations with only a few articles publicly available. Most published
research papers focus on utilising satellites in LEO for GNSS aplications [46–49] and involve no more
than 500 satellites. There is also one paper focusing on IoT [50] involving up to 1000 satellites. Finally,
one paper considers a constellation for global connectivity with more than 5000 satellites [51].

Private companies and governmental institutions often keep their design and optimisation process con-
fidential due to its potential value as a trade secret or even a military secret. Commercial companies,
in particular, may be influenced by their respective governments’ desire to utilise space systems for
military applications, as exemplified by the recent use of Starlink in Ukraine1. However, final layouts
can be found on the web as they are filed to the Federal Communications Commission (FCC) and
International Telecommunication Union (ITU), but motivation for certain design choices is typically not
specified there.

The existing academic research and publicly available data do not address aspects that are of interest
from a mission analysis perspective, such as how to design a mega-constellation consisting of thou-
sands of satellites given specific mission objectives and requirements. Therefore, the main research
question is formulated as follows:

How does selection of the mission objective affect the optimal design of mega-constellations?

To help answer it, the main question is divided in 3 subquestions where each subquestion will be
answered separately in consecutive order:

Subquestion 1: What are the figures of merit for evaluating mega-constellation design for different
mission objectives?

1https://www.reuters.com/business/aerospace-defense/pentagon-buys-starlink-ukraine-statement-2023-06-
01/, accessed 14 May 2024

https://www.reuters.com/business/aerospace-defense/pentagon-buys-starlink-ukraine-statement-2023-06-01/
https://www.reuters.com/business/aerospace-defense/pentagon-buys-starlink-ukraine-statement-2023-06-01/

3

The aim of answering this subquestion is to identify the mission objectives that justify the deployment of
mega-constellations and the corresponding figures of merit (FoM) that measure the performance of a
constellation layout. A FoM is a quantitative or qualitative metric that can be used to compare different
layouts and assess their suitability for a given mission objective. Since different mission objectives
may have different FoMs, a comprehensive list of FoM is compiled and mapped to the relevant mission
objectives.

Subquestion 2: How can the computational time of the optimisation problem be reduced?

This subquestion explores the methods that can be applied to reduce the computational time of the
optimisation problem. Due to the large number of satellites and the multiple parameters for the multi-
shell layout, the optimisation problem is expected to be computationally expensive and time-consuming.
Therefore, various techniques must be examined to facilitate the design process and make it more
efficient and scalable.

Subquestion 3: How can the defined figures of merit be optimised for a multi-shell constellation layout?

This subquestion investigates the behaviour of the defined figures of merit within the orbital layout
design of mega-constellations. In particular, the focus is on the multi-shell constellation layouts, which
consist of multiple orbits with different altitudes and inclinations. The advantages and disadvantages of
the multi-shell layout compared to the single-shell layout have to be analysed with respect to the FoM.

By answering these questions, scalable and reasonable (in terms of computational time) methods will
be found which would allow to get a better insight into mega-constellation design and create tools that
would help design a mega-constellation.

The research methodology begins with a review of the definition, existing and planned systems, and
published methods for mega-constellation orbital layout design. This includes an examination of the
design of other subsystems and the figures of merit (FoM) that are used to quantify mega-constellation
performance, as detailed in Chapter 2.

Following this, time-efficient methods of propagating and converting the orbits of satellites from Keple-
rian to Cartesian system are developed and verified, as presented in Chapter 3.

Next, methods that accelerate visibility computation are defined. This encompasses the development,
implementation, and verification of numerical visibility estimation methods by means of vectorisation
and massive parallelisation. Various types of simplifications are also introduced for visibility computa-
tion acceleration, along with a parametric analysis providing a comprehensive insight into the visibility
of a mega-constellation. This is discussed in Chapter 4.

The methodology then proceeds to analyse the effect of multiple shells in a mega-constellation on
visibility by applying it to a defined test mission scenario. Additionally, methods of accelerating the
optimisation process of multi-shell design are defined and analysed, including a novel method. The
new method is applied to improve constellation design described in [51]. This is explained in Chapter 5.

Finally, the conclusions drawn from the research and recommendations for further research are pre-
sented in Chapter 6.

2
Mega-Constellation Overview1

Before delving into the concept of a mega-constellation, it is essential to define what a constellation is.
This report adopts the definition provided by Wood [52]:

“A number of similar satellites, of a similar type and function, designed to be in similar, complementary,
orbits for a shared purpose, under shared control.”

However, there is no universally accepted definition of a mega-constellation. Various sources use
different criteria and terminology to describe such systems. For instance:

Airbus2: Mega-constellations are systems utilising hundreds to tens of thousands of satellites in Low
Earth Orbit (LEO) to deliver low latency broadband data services anywhere on the planet.

Arthur K. Lacombe [53]: A constellation that is composed of several hundreds and thousands of satel-
lites orbiting the Earth.

These definitions lack precision and consistency. Airbus appears to restrict mega-constellations to
communication services only, excluding other applications such as navigation, earth observation, or ISR
(intelligence, surveillance, reconnaissance). Additionally, neither Airbus nor Lacombe provide a specific
number of satellites that define a mega-constellation. This ambiguity extends to other terms used
interchangeably, such as non-geostationary orbit (NGSO) constellation, large-scale constellation, large
LEO constellation, LEO communication (navigation) constellation, or mega satellite network. None of
these terms imply a minimum number of spacecraft in a mega-constellation either.

Therefore, the list below will briefly discuss four potential ways to define a mega-constellation based
on the number of satellites it is comprised of.

1. Subjective Perception (>100 satellites)
This definition aligns with that from ESO but is highly subjective and can vary significantly from
one person to another.

2. Exceeding Literature Standards (>200 satellites)
Literature on constellation design presented in Chapter 1 only uses the term “constellation”. Thus,
a mega-constellation could be defined as a constellation with a number of satellites exceeding
that mentioned in the literature.

3. Beyond Software Capabilities (>1000 satellites)
From a mission analysis perspective, a mega-constellation could be defined as a constellation
with a number of satellites that existing software tools struggle to handle efficiently. The number
of 1000 satellites is based on values for STK3 and FreeFlyer4 with a large uncertainty margin.

1This chapter builds upon the literature study report with additional information and modifications tailored to this specific
report.

2https://securecommunications.airbus.com/en/meet-the-experts/mega-constellations-in-space-
revolutionising-satellite-industry, accessed 14 May 2024

3https://www.ansys.com/products/missions/ansys-stk, accessed 14 May 2024
4https://ai-solutions.com/freeflyer-astrodynamic-software/, accessed 14 May 2024

5

https://securecommunications.airbus.com/en/meet-the-experts/mega-constellations-in-space-revolutionising-satellite-industry
https://securecommunications.airbus.com/en/meet-the-experts/mega-constellations-in-space-revolutionising-satellite-industry
https://www.ansys.com/products/missions/ansys-stk
https://ai-solutions.com/freeflyer-astrodynamic-software/

6 2. Mega-Constellation Overview

4. Extremely Large Constellations (>10000 satellites)
This definition considers a number of satellites that is one order of magnitude higher than in the
previous definition.

For the purposes of this project, amega-constellation will be defined as a LEO satellite constellation with
more than 1000 satellites. However, it should be noted that the methods developed during the project
will also be applicable to smaller constellations, although these methods may not be the most accurate
solutions. This is primarily due to the fact that the simplifications and assumptions incorporated may
not provide accurate enough results for constellations of a smaller size.

This chapter begins by describing typical constellation geometries for mega-constellations in Section 2.1.
Furthermore, it provides an overview of both existing and planned systems that incorporate mega-
constellations for a variety of applications, as detailed in Section 2.2. Section 2.3 presents a survey of
published academic research on mega-constellations emphasising on methods relevant for this thesis.
Finally, Section 2.4 identifies and selects the figures of merit based on the literature review and publicly
available data on existing systems.

2.1. Typical Geometries
A mega-constellation typically comprises one or more layers, often referred to as shells. While there is
no rigid definition of a shell, it is generally characterised as a group of satellites within the same system,
orbiting at the same altitude and inclination in a circular orbit. Some entities further distinguish shells
by the frequency band (e.g. Project Kuiper [54]), implying that a shell consists of satellites at the same
altitude and inclination, operating within the same frequency band. However, for the purpose of this
thesis, a shell will be defined solely by its altitude and inclination.

Two prevalent types of geometries for mega-constellation shells are the Walker Delta and Walker Star
(Streets-of-Coverage), both studied and described by John Walker [7–9]. These geometries are de-
picted in Figure 2.1 and will be discussed in this section. There exist other less common constellation
configurations, such as the one used by Spire [55], which do not have specific names. However, due
to their infrequent applications, these configurations fall outside the scope of this project.

Figure 2.1: Walker Delta and Walker Star geometries typically used as mega-constellation shells [56].

2.1.1. Walker Delta
The Walker-Delta pattern is a symmetric constellation of T satellites with P planes each containing S
evenly distributed satellites with intervals of 360◦

/S. Ascending nodes of each plane are uniformly dis-
tributed along the equator such that the intervals between the nodes are 360

◦
/P . The three parameters

are defined such that T = P · S.

Phasing of satellites in adjacent planes is computed by multiplying F with 360
◦
/T . For Delta patterns,

F is an integer on interval [0, P − 1]. For example, in a constellation 60◦ : 30/5/2, F = 2 meaning that
phase difference between adjacent planes is 2 · (360◦/30) = 24◦.

2.1. Typical Geometries 7

The advantage of Walker-Delta constellation is that they have full symmetry in longitude which allows to
easily adjust latitudinal coverage by changing inclination of the constellation. This makes Delta patterns
a suitable geometry for large non-polar constellations.

2.1.2. Walker Star (Streets-of-Coverage)
The Walker Star configuration comprises N satellites, distributed across P nearly polar orbit planes,
each containing S satellites. This arrangement ensures continuous global coverage and is also known
as Streets-of-Coverage (SoC). Figure 2.2a provides a top view (from the North Pole) of the SoC con-
stellation. In this setup, half of the satellites move northward while the other half move southward at
any given time. The ascending nodes of satellites are contained in a region of only 180 degrees as
opposed to 360 degrees for Delta.

(a) North Pole view of SoC. (b) One-fold SoC. (c) Multi-fold SoC.

(d) Co-rotating planes interface. (e) Counter-rotating planes interface.

Figure 2.2: General concepts of Street-of-Coverage (SoC) constellation [57].

The half-width Cj of a Street of Coverage for a j-fold coverage, as illustrated in Figure 2.2b and Fig-
ure 2.2c, can be computed using the equation below [17]:

cosCj =
cos θ
jπ/S

(2.1)

The maximum distances between co-rotating planes (planes moving in the same direction, see Fig-
ure 2.2d) ∆Ωco and counter-rotating planes (planes moving in the opposite direction on seams, see

8 2. Mega-Constellation Overview

Figure 2.2e) ∆Ωcounter are given by these equations [17]:

∆Ωco = 2 arcsin
(
sin

θ + Cθ
j

2
/ sin i

)
(2.2)

∆Ωcounter = 2 arcsin
(
sin

π − Cθ
1 − Cθ

j

2
/ sin i

)
(2.3)

Assuming that inclination i is near-polar, i.e. 85◦ ≤ i ≤ 95◦, it can be approximated that sin i ≈ 1, which
simplifies the equations to

∆Ωco = θ + Cθ
j (2.4)

∆Ωcounter = π − Cθ
1 − Cθ

j (2.5)

A (near-)polar SoC constellation must satisfy the following condition as demonstrated by [57]:

jP (P − 1) ≤ N (2.6)

If θ is not known a priori, a minimum half-width angle ϑ can be computed with the following equation
[57]:

(P − 1) arcsin
(
sin

ϑ+ Cϑ
j

2
/ sin i

)
= arcsin

(
sin

π − Cϑ
1 − Cϑ

j

2
/ sin i

)
(2.7)

Equation (2.7) can be solved numerically using a numerical solver. This will provide the minimum
half-width angle required for continuous global coverage. It should be noted that an iterative process
may be required if P and S are not given as one will need to iterate through those to find the optimal
values. More commonly, θ is specified based on the altitude h and the minimum elevation angle εmin,
as determined by the project team for the mission requiring a mega-constellation. Consequently, the
task of a mission analyst would be to find the optimal values for P and S, with an aim to minimise N .

2.2. Existing systems
Numerous constellations are currently undergoing deployment or have plans for deployment in the near
future. These constellations provide a valuable resource for researchers, as they offer publicly acces-
sible data and can be utilised as benchmarks for verifying the accuracy of newly developed algorithms.

It is important to note that this section provides an overview of some of the mega-constellations projects
available. However, it is not an exhaustive list, mainly for two reasons. Firstly, due to the lack of infor-
mation available in English and in the public domain, it is not feasible to include all mega-constellations
in this section. Secondly, to maintain a reasonable size, this section has focused on the most notable
constellation designs. The constellations described below showcase diverse applications and orbital
layouts, offering an informative glimpse into the different designs and their unique features.

The dynamic nature of satellite constellation design presents a challenge for reporting accurate and
up-to-date information. In this work, data on existing and planned systems primarily stemmed from two
sources: the Federal Communications Commission (FCC) and the International Telecommunication
Union (ITU).

However, discrepancies may exist between data from these sources due to several factors.

• FCC filings: The complex and bureaucratic nature of FCC filings can make it difficult to navigate
and identify the most recent information.

• ITU filings: While generally more accessible, searching by company name in ITU filings is not
possible. Instead, reliance on call signs, which may not always be readily available, restricts
search options.

This section attempts to provide the most up-to-date information on mega-constellations as of January
2024. However, it should be noted that due to the aforementioned reasons, the information may be
outdated or differ from other sources.

2.2. Existing systems 9

2.2.1. Iridium
Iridium was one of the first operators of a relatively large constellation in LEO, before the emergence of
mega-constellations. Although its size is smaller thanwhat is commonly defined as a “mega-constellation”,
it was the largest LEO constellation at the time and remained so until the 2010s, when the demand for
higher data rates and lower latency increased. Iridium’s orbital layout does not seem to have any direct
influence on the design of current or planned systems, but it demonstrated the capabilities of Satcom
constellations in LEO and contributed to the rise of mega-constellations.

Initially, it was planned to have 77 satellites (hence, the name corresponding to number 77 in the
periodic table of the elements) [58]. However, later it was found that 66 satellites would be sufficient
to achieve the mission objective. The current layout or the Iridium constellation is shown in Table 2.1
[59]. In 2007, Iridium announced the development of a new generation of satellites called Iridium
NEXT. These satellites were designed to replace the first generation of Iridium satellites [60]. Despite
the upgrade, the orbital layout of the constellation remained unchanged, with the new satellites being
placed in the same orbits as their first-generation counterparts [60].

Table 2.1: Iridium / Iridium NEXT. Total 66 satellites [59].

Altitude [km] Inclination [deg] Planes Satellites per plane Total # of satellites
780 86.4 6 11 66

2.2.2. Starlink
Starlink is a satellite internet constellation developed by SpaceX that aims to provide high-speed inter-
net access to remote and underserved areas around the world. Starlink is the largest constellation in
orbit with 5,806 satellites launched as of January 2024 [61]. The initial plan for Starlink was to have two
generations of satellites, Gen1 and Gen2, each with their own distinct orbital layout designs [62–64].
However, the total number of satellites for the fully deployed system has changed over time.

Given the several years it takes to deploy the constellation, the spacecraft design continuously im-
proves. As a result, different generations of satellites may differ in design, capabilities, and technical
specifications. As of January 2024, it is planned to be around 30,000 satellites, down from the initial
plan of approximately 42,000 Gen1 and Gen2 satellites [65], although this number may vary as SpaceX
adjusts its constellation plans. Also, based on the ITU filing from 7 December 2023 [65], the latest filing
as of January 2024, the constellation will no longer distinguish between Gen1 and Gen2, but will consist
of a single design with a total of 29,988 satellites.

The orbital arrangement of the constellation is depicted in Table 2.2. The ultimate goal is to construct a
constellation that contains satellites in both Very Low Earth Orbit (VLEO) and Low Earth Orbits (LEO).
The constellation’s design includes shells that cover mid-latitudes with inclinations of 33-53 degrees,
and a shell of satellites in Sun-Synchronous Orbits (SSO), operating across Ku- and Ka-bands [64].
Notably, in addition to these shells, there are also shells with inclinations larger than SSO, which raises
intriguing questions regarding SpaceX’s motivations for placing satellites in these orbits.

Table 2.2: Starlink. Total 29,988 satellites [65].

Altitude [km] Inclination [deg] Planes Satellites per plane Total # of satellites
340 53.0 48 110 5,280

345 46.0 48 110 5,280

350 38.0 48 110 5,280

360 96.9 30 120 3,600

525 53.0 28 120 3,360

530 43.0 28 120 3,360

10 2. Mega-Constellation Overview

535 33.0 28 120 3,360

604 148.0 12 12 144

614 115.7 18 18 324

2.2.3. OneWeb
As of January 2024, OneWeb is the second-largest communication constellation, operating in a manner
similar to Starlink, with plans to deploy their constellation in two distinct phases. Below is a description
of these phases.

Phase 1
Phase 1 of OneWeb constellation was completed in April 20235. To achieve full global coverage, 588
satellites have been deployed while the other 60 have been put in parking obit as spares, according to
OneWeb [66]. Satellites are of smallsat class with a mass of 150 kg [67].

Table 2.3: OneWeb Phase 1. Total 588 satellites + 60 spare satellites [66].

Altitude [km] Inclination [deg] Planes Satellites per plane Total # of satellites
1200 87.9 12 49 588

Phase 2
Phase 2 constellation will be much larger compared to Phase 1. In addition to 648 deployed satellites,
some 6,372 satellites will be deployed in LEO at altitude of 1200 km [68]. Including Phase 1 satellites,
the constellation will consist of 3 shells with the same altitude but different inclinations as shown in
Table 2.4.

Table 2.4: OneWeb Phase 2. Total 6,372 satellites [68].

Altitude [km] Inclination [deg] Planes Satellites per plane Total # of satellites
1200 87.9 36 49 1764

1200 55.0 32 72 2304

1200 40.0 32 72 2304

2.2.4. Project Kuiper
Project Kuiper is a communications constellation planned by Amazon. It will consist of 3,230 satellites
operating in Ku- and V-band. The constellation is planned to consist of multiple shells three of which
will be regular Walker-Delta shells while the other two will consist of a large number of planes as shown
in Table 2.5.

Table 2.5: Project Kuiper. Total 3,230 satellites [54].

Altitude [km] Inclination [deg] Planes Satellites per plane Total # of satellites
590 33.0 782 1 782

610 42.0 1,292 1 1,292

630 51.9 1,156 1 1,156

5https://oneweb.net/resources/completing-constellation, accessed 14 May 2024

https://oneweb.net/resources/completing-constellation

2.2. Existing systems 11

2.2.5. Spire
Spire is an Earth observation constellation that uses 3U CubeSats called Lemur-2 and Lemur-3. These
are improved versions of the first generation satellites Lemur. They are more relevant for our analysis
because the constellation has a larger number of satellites than the first generation [55].

The constellation has 56 orbital planes with 32 satellites evenly distributed in each plane. A notable
feature of this constellation is that it does not follow the Walker shells pattern, which is uncommon
for such a large constellation. Moreover, none of the 32 orbital planes have the same inclination and
altitude simultaneously. The inclinations of the planes vary from 0

◦ to 98
◦ (SSO), and the altitudes

range from 300 km to 720 km. Additionally, 5 planes have eccentric orbits, which is also unusual for a
mega-constellation.

The orbital layout is not included in this report because it is too large to be displayed here. The interested
reader can refer to the ITU filing for this constellation [55].

2.2.6. Space Systems
Space Systems is a proposed constellation for IoT applications by SpinLaunch [69]. It will operate
in Ku-, Ka-, and V-bands. The constellation will have 1190 satellites that will not follow the Walker
patterns, but instead they will “use exactly the same orbit with different right ascensions so as to create
the appearance of a fixed line of satellites in the sky” [69].

Table 2.6: Space Systems. Total 1,190 satellites [69]

Altitude [km] Inclination [deg] Planes Satellites per plane Total # of satellites
830 55.0 1190 1 1,190

2.2.7. Kepler
Kepler Communications is a communications constellation that has a smaller size than comparable
communications constellations, only 140 satellites [70]. It operates in Ku-band (G2S and S2G), and it
has a distinctive feature of using optical inter-satellite links6.

Table 2.7: Kepler Communications. Total 140 satellites [70].

Altitude [km] Inclination [deg] Planes Satellites per plane Total # of satellites
600 90.0 7 20 140

Kepler Communications also plans to deploy the second constellation consisting of 360 satellites [71].

Table 2.8: Kepler Communications. Total 360 satellites [71].

Altitude [km] Inclination [deg] Planes Satellites per plane Total # of satellites
600 ± 50 89.5 12 30 140

2.2.8. E-Space
E-Space is an ambitious project aimed at launching a mega-constellation of over 300,000 CubeSats,
each weighing around 10 kg, to enable the application of Artificial Intelligence of Things7. What sets
this constellation apart is its unique design, which includes a collision capture mechanism that allows
the satellite to capture any object it collides with and then sacrificially de-orbit8. The project is the

6https://kepler.space/network/, accessed 14 May 2024
7https://www.e-space.com/pages/about, accessed 14 May 2024
8https://www.e-space.com/pages/sustainability, accessed 14 May 2024

https://kepler.space/network/
https://www.e-space.com/pages/about
https://www.e-space.com/pages/sustainability

12 2. Mega-Constellation Overview

brainchild of Alan Walker, the founder of OneWeb and O3b Networks, and promises to revolutionise
the satellite industry. There are 2 configurations of the constellation submitted to the ITU by Rwanda
Space Agency briefly described below.

First configuration
The complete configuration of the constellation submitted by Rwanda Space Agency to ITU [72] is
displayed in Table 2.9. It comprises 27 shells, one of which is equatorial with a single plane, while the
remaining 26 are scattered among inclinations ranging from 24 to 98 degrees. Each shell is made up
of 36 planes, separated in RAAN by 5 degrees, spanning a range of 180 degrees. Remarkably, each
plane consists of 360 satellites, spaced at phase intervals of 0.5 degrees, forming only half a circle (i.e.,
180 degrees).

Table 2.9: E-Space. First configuration. Total 337,320 satellites [72].

Altitude [km] Inclination [deg] Planes Satellites per plane Total # of satellites
550 0.0 1 360 360

553.6 24.0 36 360 12,960

557.2 27.0 36 360 12,960

560.8 30.0 36 360 12,960

564.4 33.0 36 360 12,960

568 36.0 36 360 12,960

571.6 39.0 36 360 12,960

575.2 42.0 36 360 12,960

578.8 45.0 36 360 12,960

582.4 48.0 36 360 12,960

586.0 51.0 36 360 12,960

589.6 54.0 36 360 12,960

593.2 57.0 36 360 12,960

596.8 60.0 36 360 12,960

600.4 63.0 36 360 12,960

604.0 66.0 36 360 12,960

607.6 69.0 36 360 12,960

611.2 72.0 36 360 12,960

614.8 75.0 36 360 12,960

618.4 78.0 36 360 12,960

622.0 81.0 36 360 12,960

625.6 84.0 36 360 12,960

629.2 87.0 36 360 12,960

632.8 90.0 36 360 12,960

636.4 93.0 36 360 12,960

640.0 96.0 36 360 12,960

643.6 98.0 36 360 12,960

2.3. Previous Research 13

Second configuration
The second proposed configuration is notably smaller than the first, yet it remains the largest of its
kind. It comprises seven shells, totalling 52,080 satellites [73]. Like the first configuration, the second
features one equatorial shell with a single plane, accompanied by inclined Walker constellations. Each
shell is designed to contain 240 satellites that are evenly distributed across 360 degrees in-plane, with
a phase angle separation of 1.5 degrees.

Table 2.10: E-Space. Second configuration. Total 52,080 satellites [73].

Altitude [km] Inclination [deg] Planes Satellites per plane Total # of satellites
580 0.0 1 240 240

580 33.0 36 240 8,640

587.2 54.0 36 240 8,640

594.4 66.0 36 240 8,640

601.6 72.0 36 240 8,640

608.8 88 36 240 8,640

616 98 36 240 8,640

2.3. Previous Research
This section provides a concise overview of prior research related to the design of mega-constellation
orbital layouts. It briefly presents the published work, the methodologies employed, and the mission
objectives and figures of merit.

Despite the scarcity of published research on the design of large LEO constellations, especially those
with more than 1000 satellites, this section presents the relevant research available.

He, Hugentobler 2018
He and Hugentobler [46] proposed a method to optimise a large LEO Walker constellation comprising
two or three shells at different altitudes for Satellite Navigation (SatNav) applications. However, they
only considered visibility as a figure of merit, neglecting other commonly used FoMs such as Geometric
Dilution of Precision (GDOP) or Precise Point Positioning (PPP). The total number of satellites ranged
from 80 to 160.

Ge et al. 2020
Ge et al. [47] also proposed a method to optimise a constellation for SatNav applications. They iden-
tified the best constellation configurations consisting of 1, 2, or 3 shells based on GDOP and PPP.
Instead of using numerical optimisers, they applied a grid search method. The total number of satel-
lites ranged from 120 to 240.

Ma et al. 2020
Ma et al. [48] presented another work on SatNav constellation optimisation. They used visibility and the
standard deviation of satellite distribution as FoMs. The aim was to maximise the number of satellites
in view and ensure uniform distribution across the globe. They used numerical optimisation techniques
such as mixed-integer non-linear programming. The number of satellites ranged from 100 to 200.

Arnas et al. 2021
Arnas et al. [25] present a methodology for designing satellite constellations with high temporal and
geometric symmetries, called 4D Lattice Flower Constellations (4D LFC).

This 4D LFC methodology is applicable to any number of satellites, even those placed at varying semi-
major axes, distinguishing it from 3D LFCs. The method, however, suggests that both the total number

14 2. Mega-Constellation Overview

of satellites and the number of satellites in each shell are predefined. It also assumes known incli-
nations for each shell. Essentially, this methodology aids in distributing satellites within shells and
in determining shell altitudes for missions or situations (such as interaction or interference with other
missions) where coordination between satellites at different semi-major axes is important.

The paper presents a method for an Earth Observation mission involving a constellation of 5,000 satel-
lites distributed across 5 Sun-Synchronous Orbit (SSO) shells at different altitudes, with 1,000 satellites
in each shell. Given the number of shells, their inclinations, and the numbers of satellites in each shell,
the paper shows how satellites in each shell can be distributed to minimise collision risk. The figure of
merit for this objective is the minimum distance between satellites.

The 4D LFC method is suitable for designing mega-constellations, but only when the number of shells
and satellites per shell are already determined. In such cases, the 4D LFC method can ensure collision
avoidance. However, this project aims to find the optimal values for these parameters, which are
essential inputs for the 4D LFC method. Therefore, this method is not applicable for the scope of this
project.

Kak, Akyildiz 2021
Kak and Akyildiz [50] presented a framework for designing large-scale CubeSat constellations for In-
ternet of Things (IoT) applications. The framework is scalable for up to 1000 satellites. They used a
numerical optimiser to find the optimal layout, and as figures of merit, they used coverage and con-
nectivity, i.e. the total number of Inter-Satellite Links (ISLs). However, coverage was estimated using
Voronoi regions and Delaunay triangulation. This coverage estimation method will be discussed in
detail in Section 4.1.

Jia et al. 2022
The work of Jia et al. [51] is particularly noteworthy as it will be partially used as a reference in this
project. They designed a mega-constellation comprising approximately 5,600 satellites.

The objective was to create a mega-constellation with uniform distribution of the number of satellites in
view, or N asset coverage as referred to in Jia’s work. A schematic overview of this method is described
below and summarised in Figure 2.4.

O

O

d

r

eR

eR d

Latitude zone

S

Figure 2.3: Latitude zone on Earth’s surface [51].

Step 1: Split the globe in m latitude zones (stripes) of areas Sk with a width of ∆δ =
π

m
. An example

of such a zone is shown in Figure 2.3. The number of shells is the same as the number of
latitude zones, and each shell is a Walker constellation. The inclination of each shell j that
has to reach latitude zone j is π

2
, π
2
−∆δ, π

2
− 2∆δ, . . . , π

2
−
(m
2

− 1
)
∆δ.

Step 2: For each shellCj with the total number of satellitesNCj
, compute the average density of SSPs,

D̄k,Cj
, in each latitude zone k. Start from the shell C1 with the highest inclination, i1 =

π

2
.

2.3. Previous Research 15

This will correspond to SSP density distribution in latitude as shown by the purple bar plots in
Figure 2.4. It can be seen that SSPs do not go beyond δmax,j = ±ij with ij = 90◦ − (j − 1)∆δ.

Step 3: Repeat Step 2 for the next shell Cj+1 with ij+1 = 90◦ − j∆δ.

Step 4: Sum densities for each shell as shown in Figure 2.4 by the green bar plots, D̄ =
∑m/2

j=1 D̄Cj . As
inclination decreases, higher-latitude zones remain unaffected by the lower-inclination shells.

Step 5: Repeat steps 2-4 until the last latitude zone k = m/2.

11,CD

13,CD

14,CD

1,m CD

22,CD

23,CD

22,m CD21,CD

32,CD
34,m CD31,CD

12,CD

2

1, mC
D

2

2, mC
D

The sub-satellite point density of
constellation Cm/2 in each latitude zone

The sub-satellite point density of
constellation C1 in each latitude zone

The sub-satellite point density of
constellation C2 in each latitude zone

21,
2
m

C
D

The sub-satellite point density of
constellation C3 in each latitude zone

32,
2
m

C
D

9090 0

90 90

90 2 2 90

0

0

0

1,
2
m
C

D

The sub-satellite point density of mixed
constellation C in each latitude zone

1,CD
,m CD

90 900

The sub-satellite point density of mixed
constellation C in each latitude zone

1,CD
,m CD

90 900

The sub-satellite point density of mixed
constellation C in each latitude zone

1,CD 2,CD 3,CD

4,CD

,
2
m

C
D

,m CD

90 900

The sub-satellite point density of mixed
constellation C in each latitude zone1,CD 2,CD

3,CD

,m CD

,
2
m

C
D

9090 0
Update C

Update C

Inclination: 90

Inclination: 90

Inclination: 90 2

Inclination:

Update C

Figure 2.4: Schematic approach of constellation design with uniform N asset coverage as presented by Jia et al. [51].

In essence, Jia’s method involves examining the distribution of sub-satellite points and “filling” the globe
with a selected number of shells to achieve uniform distribution. The “filling” process starts from higher
latitudes and goes towards the equator. This provides the uniform average distribution of satellites
which, in turn, corresponds to the uniform N asset coverage.

Jia also used inter-satellite links to estimate latency and incorporated collision avoidance in the constel-
lation design. However, these aspects are beyond the scope of the current project. For now, the focus
is only on the visibility computation, that is, the number of satellites in view (N asset coverage).

The final design will also be used for software verification, as shown in Section 4.3. This approach is an
effective means of verifying the tool due to the number of shells that comprise the mega-constellation
and the total number of satellites.

This design will also serve as a reference when a novel method for designing a uniform distribution
for a mega-constellation is introduced in Section 5.3. The new method will use the similar approach of
designing a mega-constellation by starting from high latitudes and going towards the equator. However,
only the number of satellites in view will be considered. The aim is to improve the N asset coverage of
Jia’s design by adjusting the orbital layout while preserving the same number of satellites.

16 2. Mega-Constellation Overview

2.4. Figures of Merit
The mission objectives necessitating large Low Earth Orbit (LEO) satellite constellations are derived
from an extensive literature review [25, 28–51, 74–80]. These objectives are categorised into four main
areas, as outlined below:

• Satellite communications (Satcom)
This objective aims to provide global broadband phone and internet access to remote and under-
served areas.

• Satellite navigation (Satnav)
This objective aims to provide space-based navigation and positioning system for terrestrial and
orbital users.

• Remote sensing
This objective includes all types of observation of emitted radiation at a distance (as opposed to
in-situ observations). It covers Earth observation for environmental and scientific purposes as
well as space-based intelligence, surveillance and reconnaissance (ISR).

• Internet of Things (IoT)
IoT overlaps with Satcom and aims to provide global coverage and connectivity for IoT devices.
The major difference between the IoT and Satcom is the amount of data that has to go through
satellites. IoT satellites have to handle much lower data rates, which means that their link budget
requirements are lower than those of Satcom. This, in turn, may affect the number of satellites,
their size, or their orbits (e.g. lower elevation angles may offer better coverage).

As shown from the existing methods in Section 2.3, there are multiple figures of merit used to evaluate
performance of a mega-constellation. These figures of merit will be summarised in this section.

2.4.1. Visibility
Visibility, defined as the number of satellites observable from a ground-based point, is typically the most
important Figure of Merit (FoM) when designing the orbital layout of a constellation. This importance is
underscored by both academic [46, 50, 51] and industrial [54, 62, 63, 66, 68, 69] sectors. This FoM is
applicable to all applications, with the exception of Remote Sensing (RS), where the primary interest
lies in revisit time.

For visibility, typically mission analysts are interested in two FoMs: mean visibility andminimum visibility.
The two are explained below.

• Mean visibility
This is how many satellites an observer will have in view on average. This FoM helps estimate
how satellites are distributed across the area of interest. Although averaging the visibility over
time does not show its variation, it can be assumed that the variance will be reasonably low,
making this FoM a good representation.

• Minimum visibility
This indicates the smallest number of satellites visible from a point on the ground. The minimum
visibility is of interest as it often pertains to the requirement of uninterrupted coverage by a specific
number of satellites, a condition that cannot be guaranteed by the average visibility.

Visibility is computed by the given satellite position and minimum elevation angle. It is depicted in
Figure 2.5 how it is determined whether a satellite is in view. The following condition must be met
(assuming no obstruction by terrain or buildings):

ε ≥ εmin (2.8)

where ε is the real elevation angle of the satellite with respect to the ground point while εmin is the
minimum elevation angle.

Furthermore, the Earth central angle can be expressed as

θ = arccos
(Re

Re + h
cos εmin

)
− εmin (2.9)

2.4. Figures of Merit 17

Figure 2.5: Coverage and visibility geometry of a satellite [50]. Note that the figure uses different notation for the minimum
elevation angle: in this report ε is used to denote the elevation while in the figure it is shown as δ. Also note that orbital altitude

h measure from Earth’s surface to the satellite while in the figure it is shown incorrectly.

Given the time constraints for this thesis and the importance of visibility computation in the design of
mega-constellation orbital layouts, visibility will be the primary FoM for this project.

2.4.2. Revisit time
Revisit time refers to the duration between successive observations of the same point on Earth by a
satellite (either single or comprising a constellation). This is a common figure of merit for Earth Obser-
vation (EO) missions or other Remote Sensing (RS) missions, such as space-based ISR. Numerous
authors have utilised revisit time as a FoM in their mission design [29, 31–34, 36, 37, 42, 43, 75, 78,
81].

For EO missions, the satellite’s field of view is typically quite narrow, especially when compared to
other objectives like broadband connectivity or IoT. To analyse the ground coverage by a large number
of satellites, a high-resolution grid of ground points would be necessary, complicating the analysis.
While there is an example of such a mission, Planet Labs, which has launched over 500 satellites9, all
other current mega-constellation projects are deployed (or planned) for applications other than Earth
Observation. Therefore, revisit time will not be a consideration within the scope of this thesis.

2.4.3. Dilution of precision
Dilution of Precision (DOP) is the quantitative FoM showing how the geometry of satellites affects
the positioning error. Shown in Figure 2.6 is the example of how positioning accuracy is influenced by
measurement errors and the geometry of the satellites. DOP is particularly relevant for global navigation
applications and was used by various authors for constellation [28, 76, 77] and mega-constellation
design [47–49].

(a) Position uncertainty region due to errors of measurements. (b) Example of the satellite geometry effect on positioning uncertainty.

Figure 2.6: Example of DOP on 2D surface [82].

9https://www.newspace.im/constellations/planet-labs, accessed 14 May 2024

https://www.newspace.im/constellations/planet-labs

18 2. Mega-Constellation Overview

DOP computation begins with the geometry matrix G [82]:

G =

a1 b1 c1 1

a2 b2 c2 1
...

...
...

...
an bn cn 1

 (2.10)

where ai, bi and ci represent the direction cosines of satellite position parameters and ones refer to the
clock error parameter.

The covariance matrix P of the error of the estimate is given by the following equation [82]:

P = σ2(GTG)−1 (2.11)

where σ2 is the variance of the measurements (prefit residuals).

DOP parameters are defined in matrix Q with x, y, z representing directions in 3D space and t repre-
senting time [82]:

Q = (GTG)−1 =

qxx qxy qxz qxt

qxy qyy qyz qyt

qxz qyz qzz qzt

qxt qyt qzt qtt

 (2.12)

The GDOP can then be calculated [82]:

GDOP =
√
qxx + qyy + qzz + qtt (2.13)

It is important to note that the calculation of GDOP implies that the parameters comprising the geometry
matrix G are derived from the positions of satellites that are in view. This means that GDOP inherently
includes visibility.

2.4.4. Positioning Accuracy
To determine positioning accuracy, an error metric can be used. For example, root mean square error
(RMSE) can be used to determine accuracy of position that is computed using either code or carrier-
based methods. Code and carrier-based positioning are used for GNSS applications only and require
additional data and simulations than just satellite propagation. While this provides additional infor-
mation about constellation performance, this also becomes much more time consuming in terms of
computational time. In this subsection concepts will only be introduced briefly. A more detailed guide
how the two are computed can be found in ESA handbook on GNSS data processing [82].

Code-Based Positioning (SPP)
Code-based positioning, also referred to as Standard Point Positioning (SPP) is a method of computing
receiver state based on single-frequency code pseudorange measurements. SPP method converges
very quickly to a final solution, requiring only a few iterations. However, it comes at a cost of relatively
low accuracy of a few meters. There does not seem to be any published research that uses SPP as a
figure of merit. This has likely to do with the low accuracy provided by SPP which negates the necessity
for a LEO constellation.

Carrier-Based Positioning (PPP)
Carrier-based positioning, or Precise Point Positioning (PPP), is a method of determining receiver state
based on dual-frequency carrier phase measurements. These can provide much an accuracy of a
few centimetres but require significantly more computational effort. Besides, PPP requires additional
considerations of precise satellite orbits and clocks, relativistic effects, atmospheric effects, antenna
biases and orientation, and Earth deformation effects. It can take tens of minutes to a few hours
for a PPP algorithm to converge. Thus, designing a mega-constellation layout using PPP can be
extremely time-consuming. There are, however, multiple published studies that aim to design a GNSS
constellation enhanced by LEO satellites [49, 83, 84].

2.5. Summary and Conclusions 19

2.4.5. Latency
In the context of constellation design, latency is defined as the time required for a signal to traverse
from one ground-based transmitter to another. LEO constellations can offer significantly lower latency
times compared to GEO-based communication systems and ground-based systems. Ground-based
internet systems rely on fiber optics, which incur a 50% higher delay due to a higher refraction index
and consequent slower speed of light [85]. Modelling latency requires the implementation of networking
algorithms and the allocation of ground gateways, thereby complicating the analysis.

Latency is typically used for network topology optimisation and is essential for optimising the network
infrastructure on the ground as well as for determining the optimal routing for signals in space. Although
the optimal routing will depend on the distribution of satellites (number of planes and satellites per
plane) within the constellation, latency as a FoM will be utilised when the number of satellites is more
or less established, i.e., in the later phases of the design. Numerous studies focus on latency in mega-
constellations, not only for communication services but also for Earth observation tasks such as disaster
monitoring and emergency response [86–89]. However, it is not used as a defining FoM for the orbital
layout of a mega-constellation.

2.4.6. Signal-to-noise ratio
The Signal-to-Noise Ratio (SNR) is a parameter that quantifies the clarity of the received signal. It is
defined as the ratio of the power of a signal to the power of the background noise. While this FoM is
particularly important, especially for SatCom, it is typically employed in link budget estimations. These
estimations, in turn, are used for payload optimisation and gateway allocation. Once these require-
ments are estimated, they can be passed on to mission analysts who will then utilise other FoMs, such
as minimum visibility.

SNR also accounts for the required data throughput, which may influence routing (and hence, latency)
as satellites have limited throughput capacity. This limitation implies that the signal would need to
be redirected, necessitating multi-path routing. Although this may influence the design of the orbital
layout, SNR is not used as the primary FoM, as shown by published studies that examine SNR [90–93].
Therefore, the orbital layout is not optimised based on the SNR. It is typically calculated beforehand and
used, for instance, to define the minimum visibility requirement, or SNR is computed once the orbital
layout is determined.

2.4.7. Conclusion
This section explored the typical figures of merit and applications for mega-constellations. However,
due to the time constraints of the thesis, it is not feasible to implement all of these. Consequently, only
a select few can be chosen for further analysis.

According to FCC filings from private companies [54, 62–64, 66, 68–71], visibility is the primary figure of
merit employed in the industry for the initial design of the orbital layout. One is typically interested in the
minimum visibility to ensure uninterrupted coverage. However, mean visibility gives a measure of the
“typical” service level, while minimum visibility ensures service availability even under less-than-ideal
conditions. Both these metrics together provide a comprehensive view of the coverage performance
of the constellation, making them of utmost interest in mega-constellation design.

2.5. Summary and Conclusions
This chapter presented an overview of existing mega-constellations systems and relevant scientific
research. From this, the typical figures of merit for mega-constellation design were identified. Mean
and minimum visibility were selected as the main focus FoMs for this thesis.

Key Takeaways
• Mega-constellations typically consist of one or multiple shells that are represented by Walker
Delta or Walker Star configurations

• Mean and minimum visibility (number of satellites in view from the ground) are the primary figures
of merit used in mega-constellation design

3
Constellation Propagation

Chapter 2 demonstrated that the analysis of a mega-constellation requires the orbit propagation for all
satellites. The challenge with such a large constellation lies in its sheer number of satellites. While
orbit propagation for small constellations only takes fractions of a second, it can increase to minutes, or
even tens of minutes, for mega-constellations with thousands of satellites. This dramatically impacts
computational efficiency, especially during optimisation processes involving thousands or millions of
design iterations.

The Godot1 library, currently in use at ESOC, is not well-suited for the very large constellations con-
sidered in this thesis. Not only is it cumbersome to define thousands of satellites in Godot, but their
propagation also consumes an excessive amount of computational time. Therefore, a more robust tool
is required, one that can define mega-constellations more efficiently and propagate them faster.

It is also important to note that merely propagating the satellites and determining their final positions is
insufficient. To ensure seamless coverage, the satellite orbits must be retrieved at relatively small time
intervals (e.g., 30 seconds or 60 seconds). This requirement implies that accurate numerical integrators
with adaptive step size are unsuitable for this task, because their efficiency would be reduced by the
fixed step size. Consequently, more efficient methods of propagating large constellations are needed.

This chapter will address the challenge of large constellation propagation by showing how computa-
tional time can be reduced. Section 3.1 describes the implementation of an analytical model that yields
an acceptably accurate result. The conversion to the reference system, which is further used for vis-
ibility computation, is presented in Section 3.2. Moreover, Section 3.3 shows how this model can be
optimised at the software level. Finally, software verification is presented in Section 3.4, where a com-
parison of accuracy and computational time for a fully vectorised analytical approach and numerical
method is also shown.

3.1. Dynamics
During the initial design phase, the accuracy requirements for satellites’ orbit propagation are relatively
lenient. There is no immediate need to implement high-fidelity models of spacecraft dynamics, as an
error margin of a few tens of kilometres is acceptable for visibility purposes. This flexibility allows for
the implementation of less accurate but significantly faster analytical propagation methods, thereby
reducing computational time considerably.

3.1.1. Point-Mass (Keplerian Orbit)
The simplest approach to implementing an analytical solution is through the use of a Keplerian orbit,
which assumes point-mass dynamics. This is achieved in Keplerian coordinates using the equations
outlined below to propagate a Keplerian orbit around a point-mass [94].

1https://godot.io.esa.int/, accessed 14 May 2024

21

https://godot.io.esa.int/

22 3. Constellation Propagation

The Keplerian state xKep at a given time instance ti is defined by six elements:

xKep = [a i e Ω ω θ]T (3.1)

In an analytical solution around a point-mass, the first five elements remain constant, with only the true
anomaly θ subject to change. The change in true anomaly can be computed by first calculating the
mean motion n [94]:

n =
dM

dt
=

√
µ

a3
(3.2)

Here, M represents the mean anomaly, which can be computed using the following formula [94]:

M = M0 + n(t− t0) (3.3)

The eccentric anomaly E can then be found using the equation [94]:

M = E − e sinE (3.4)

Finally, the true anomaly θ is computed with the equation [94]:

tan θ

2
=

(
1 + e

1− e

)1/2

tan E

2
(3.5)

If the orbit is assumed to be perfectly circular, this calculation can be simplified. In this case, the
eccentricity is equal to zero (e = 0), which results in all three anomalies being equal [94]:

θ = E = M (3.6)

This implies that the true anomaly of a spacecraft in a circular orbit can be simply computed with the
propagated time t and mean motion n [94]:

θ = θ0 + n(t− t0) (3.7)

3.1.2. J2 Perturbation
Among the various perturbations, the J2 perturbation is the most dominant for the altitude range that is
usually considered by projects involvingmega-constellations: 500-800 km. While atmospheric drag can
slow down a spacecraft at low altitudes, for the purpose of this study, it is assumed that satellites either
do not experience this effect or counteract it using thrusters. In other words, the effect of atmospheric
drag on satellite movement is considered negligible, even at low altitudes.

In a Walker constellation, all satellites experience the same perturbation, effectively cancelling out the
J2 effect. Despite this, the decision was made to implement the J2 effect due to its relevance in multi-
shell constellations. Unlike single-shell constellations, multi-shell constellations do not cancel out the J2
effect as different shells experience varying perturbations due to J2. Furthermore, the implementation
of the J2 effect is a straightforward and relatively quick process. Importantly, it has a negligible impact
on computational time, further justifying its inclusion as it poses no significant drawback.

The advantage of incorporating J2 perturbation is that it does not require numerical propagation and
can be computed analytically. However, certain assumptions must be made. When J2 perturbation is
added, it results in osculating semi-major axis a, eccentricity e, and inclination i if computed numerically.
For an analytical approach, one can assumemean values for these three elements that remain constant,
while the other three elements, the right ascension of the ascending node Ω, the argument of perigee
ω, and the true anomaly θ, will change due to J2 [94].

da

dt
=

di

dt
=

de

dt
= 0 (3.8)

3.1. Dynamics 23

The changes in the argument of periapsis ω and the longitude of the ascending node Ω due to J2
perturbation can be computed as follows [94]:

Ω = Ω0 +
dΩ

dt
(t− t0) (3.9a)

= Ω0 −
3

2
J2n

(
RE

a

)2 (
1− e2

)−2

cos i · (t− t0) (3.9b)

ω = ω0 +
dω

dt
(t− t0) (3.10a)

= ω0 +
3

2
J2n

(
RE

a

)2 (
1− e2

)−2

(2− 5

2
sin2 i) · (t− t0) (3.10b)

Due to change in ω, the true anomaly θ will shift as well [94]:

M = M0 +
dM

dt
(t− t0) (3.11a)

= M0 +
3

4
J2n

(
RE

a

)2 (
1− e2

)−3/2

(3 cos2 i− 1) · (t− t0) (3.11b)

In the case where the eccentricity is zero, e = 0, the following equations hold [94]:

Ω = Ω0 −
3

2
J2n

(
RE

a

)2

cos i · (t− t0) (3.12)

ω = ω0 +
3

2
J2n

(
RE

a

)2

(2− 5

2
sin2 i) · (t− t0) (3.13)

M = M0 +
3

4
J2n

(
RE

a

)2

(3 cos2 i− 1) · (t− t0) (3.14)

For circular orbits, where θ = M , the true anomaly θ is computed in the same manner as the mean
anomaly M [94]:

θ = θ0 +
3

4
J2n

(
RE

a

)2

(3 cos2 i− 1) · (t− t0) (3.15)

Figure 3.1 presents a comparison of the analytical and numerical propagation of point-mass + J2 dy-
namics. As previously discussed, the semi-major axis a, the eccentricity e, and the inclination i remain
constant in the analytical propagation, while they osculate in the numerical propagation. The longitude
of the ascending node Ω is assumed to be non-osculating but with a constant linear change rate. This
rate changes in the same manner as in numerical propagation as seen from Figure 3.1.

0 1 2 3 4 5
Time [Torb]

6768

6770

6772

6774

6776

6778

sm
a

[k
m

]

godot
mcdo

0 1 2 3 4 5
Time [Torb]

0.00000
0.00025
0.00050
0.00075
0.00100
0.00125
0.00150
0.00175

ec
c

[-]

godot
mcdo

0 1 2 3 4 5
Time [Torb]

49.96

49.97

49.98

49.99

50.00

in
c

[d
eg

]

godot
mcdo

0 1 2 3 4 5
Time [Torb]

1.75

1.50

1.25

1.00

0.75

0.50

0.25

0.00

ra
an

 [d
eg

]

godot
mcdo

Figure 3.1: Comparison of propagated Keplerian elements of analytical and numerical models with point-mass + J2 dynamics.

It is expected that this will lead to a certain degree of error in the final position compared to the more ac-
curate numerical propagation. However, a detailed discussion on this will be presented in Section 3.4.

24 3. Constellation Propagation

3.2. Keplerian to Cartesian
Furthermore, since visibility is computed based on satellite elevation with respect to the observation
point on the ground, one needs to compute the elevation. The elevation is defined as the angle above
the local horizon of the observation point. This angle can be computed by finding the angle between
two vectors: vector from Earth centre to the observation point and vector from the observation point to
the satellite.

The easiest way to compute the angle between the two is to have both vectors in Cartesian coordinates.
This, however, requires that satellite states are converted from Keplerian to Cartesian coordinates.
Namely, for visibility computation, there is no need to use the velocity, so retrieving Cartesian position
only would be sufficient. But it is a good practice, nevertheless, to get the full state vector of a spacecraft
because if more figures of merit are considered later, the velocity can be of use as well.

The Cartesian elements are computed as shown below [95].

1. Compute the semi-latus rectum p using the semi-major axis a and eccentricity e [95]:

p = a · (1− e2) (3.16)

2. Compute the radial distance R from the focus to the point on the orbit using the semi-latus rectum
p and true anomaly θ [95]:

R =
p

1 + e · cos θ
(3.17)

3. Compute the velocity components in the radial and transverse directions, Vr and Vϕ [95]:

Vr =

√
µ

p
· e · sin θ (3.18)

Vϕ =

√
µ

p
· e · (1 + cos θ) (3.19)

4. Compute the position components x, y and z in the orbital plane [95]:

x = R ·
(
cosΩ · cos(ω + θ)− sinΩ · sin(ω + θ) · cos i

)
(3.20)

y = R ·
(
sinΩ · cos(ω + θ) + cosΩ · sin(ω + θ) · cos i

)
(3.21)

z = R ·
(
sin(ω + θ) · sin i

)
(3.22)

5. Compute the velocity components Vx, Vy and Vz in the orbital plane [95]:

Vx = Vr · x− Vϕ ·
(
cosΩ · sin(ω + θ) + sinΩ · cos(ω + θ) cos i

)
(3.23)

Vy = Vr · y − Vϕ ·
(
sinΩ · sin(ω + θ)− cosΩ · cos(ω + θ) cos i

)
(3.24)

Vz = Vr · z + Vϕ ·
(
cos(ω + θ) · sin i

)
(3.25)

3.3. Software Implementation and Vectorisation
One of the main decisions in the software implementation of models for this project was the choice of
programming language. Python emerged as the preferred choice due to several compelling reasons:

1. Compatibility with Godot: Despite its limitations in handling large constellations, Godot is ex-
tensively utilised in the Mission Analysis Section. Its fundamental features, such as axes rotation,
state conversion, and state retrieval, are highly beneficial. Notably, Godot’s Python interface
allows users to tap into its core functionality, which is primarily written in C/C++. This feature fa-
cilitates the offloading of computational tasks to low-level languages, thereby retaining Python’s
advantages of readability, simplicity, and flexibility.

2. Ease of Development: Python is renowned for its ease of writing and learning, along with its
capability to integrate other languages seamlessly. It has a large and active developer community
that contributes numerous useful libraries and tools for a variety of purposes.

3.3. Software Implementation and Vectorisation 25

3. Popularity in the space exploration industry: Python’s widespread use in the space explo-
ration industry is an added advantage. This popularity implies that potential users of this software
are more likely to be familiar with Python.

Despite its versatility, Python has a notable limitation: it is an interpreted language. Unlike compiled
languages such as C/C++, Java, or Fortran, Python code is executed line by line by an interpreter, rather
than being converted into machine code by a compiler. This process introduces significant overhead,
reducing computation speed.

To enhance Python’s performance, particularly for iterative (for/while loops) and memory-intensive
(large arrays) operations, a solution needs to be found. Vectorisation presents itself as a viable op-
tion. This technique operates on entire arrays or matrices instead of individual elements, reducing the
number of loops and function calls. It also enables the use of optimised libraries, such as NumPy [96],
which implement vectorised operations in C.

By employing vectorisation, it is possible to substantially improve the speed and efficiency of Python
code. Furthermore, it enhances the conciseness and readability of the code.

NumPy allows to do various element-wise operations with just one line of code, e.g. element-wise array
multiplication would look like this:

1 ### Pure python implementation
2 a = [1, 2, 3]
3 b = [7, 8, 9]
4

5 product = len(a) * []
6

7 for i in range(len(a)):
8 product[i] = a[i] * b[i]
9

10 ### NumPy implementation
11

12 a = np.array([1, 2, 3])
13 b = np.array([7, 8, 9])
14

15 product = a * b

NumPy provides the capability to apply vectorisation not only to one-dimensional arrays but also to
multi-dimensional arrays. However, the feasibility of vectorisation is contingent upon the operation’s
compatibility with this process. In cases where vectorisation is not applicable, a high-level Python
implementation remains necessary.

As demonstrated in the equations presented in Section 3.1 and Section 3.2, vectorisation is applicable
in this context. Each equation corresponds to an individual satellite at a specific time epoch, indicating
no dependency on other satellites or time instances.

Numerical propagation in Godot for simple dynamics can be executed using the object for propaga-
tion of a massless spacecraft, called godot.cosmos.BallisticPropagator2. However, this
method is notably slower than analytical propagation, and setting up the simulation is quite cumber-
some. For the simulation setup, each satellite must be individually specified in the configuration file for
the godot.cosmos.Universe3, either manually or through a programmatic approach. This process
becomes particularly burdensome when propagating the orbits of thousands of satellites. For this the-
sis, the BallisticPropagator was implemented for verification. It will also be evaluated in terms
of computational time and accuracy.

As an alternative, the godot.core.astro.keplerPropagate4 function offers analytical point-
mass propagation in Godot. Its limitation lies in the fact that it accepts only 2D arrays as input, whereas
a 3D array input would be preferable for this thesis. Such 3D arrays would contain the state of each

2https://godot.io.esa.int/godotpy/api_reference/generated/godot.cosmos.BallisticPropagator.html, ac-
cessed 14 May 2024

3https://godot.io.esa.int/godotpy/api_reference/generated/godot.cosmos.Universe.html, accessed
14 May 2024

4https://godot.io.esa.int/godotpy/api_reference/generated/generated/godot.core.astro.keplerPropagate.
html, accessed 14 May 2024

https://godot.io.esa.int/godotpy/api_reference/generated/godot.cosmos.BallisticPropagator.html
https://godot.io.esa.int/godotpy/api_reference/generated/godot.cosmos.Universe.html
https://godot.io.esa.int/godotpy/api_reference/generated/generated/godot.core.astro.keplerPropagate.html
https://godot.io.esa.int/godotpy/api_reference/generated/generated/godot.core.astro.keplerPropagate.html

26 3. Constellation Propagation

satellite at every epoch, with dimensions of T × N × 6, where T represents the number of epochs,
N the number of satellites, and 6 the elements of the Keplerian state vector. Despite this, the use
of godot.core.astro.keplerPropagate necessitates Python for-loops, which adds computa-
tional overhead and reduces efficiency. This method, known as the non-vectorised implementation,
was initially employed in this study.

As a result, a software tool that propagates satellites positions was created as a Python module and
was given a name mcdo which stands for “Mega-Constellation Design Optimisation”. The analyti-
cal propagation model described in Section 3.1 and state conversion described in Section 3.2 were
implemented primarily using Python and NumPy. Basic functions from godot.core.astro5 and
godot.core.tempo6 are used for simulation setup.

Performance improvement of the vectorised implementation with respect to Godot and non-vectorised
implementation will be shown in Section 5.4. Specifically, the comparison with Godot utilises the
BallisticPropagator. This object propagates the state of a massless spacecraft for a given dy-
namical model. This work considers only Earth point-mass and J2 perturbation. For clarity, throughout
the context of constellation propagation, the use of word Godot will refer to BallisticPropagator
object, unless otherwise specified.

It is important to note that this comparison also encompasses state conversion (or retrieval in the case
of Godot). The computational time for these processes is calculated collectively due to the differing
implementation methods between the mcdo module and Godot. The mcdo module propagates states
of all satellites before converting the states to Cartesian, whereas Godot necessitates the propagation
of each satellite individually. Following this, Godot retrieves Cartesian states for each given epoch
before proceeding to the next satellite.

3.4. Verification
Verification is completed in order to confirm the correctness of propagation results. It can be seen from
Figure 3.2 that the positional error does not exceed 30 km over 15 full orbital periods which is a bit less
than 24 hrs for a = 6778 km (approximately 400 km altitude). Verification for more altitudes – up to
2000 km – is shown in Appendix A. Due to the fact that visibility computations will only depend on the
positions of the satellites, there is no need to analyse velocity. The difference in position is explained
by the fact that for analytical model, mean non-osculating values are used.

Figure 3.2 shows how osculating elements can differ. The argument of perigee and true anomaly
are not shown as they are undefined for a circular orbit. However, it is clearly seen that using mean
values yields acceptable results. Thus, the propagation of satellite orbits with the mcdo module can be
considered verified.

3.5. Summary and Conclusions
This chapter described how analytical method can be implemented for propagation ofmega-constellations
consisting of thousands of satellites with simple dynamics: point-mass and J2 effect. It also demon-
strated how NumPy can be utilised to accelerate notoriously slow Python performance by means of
vectorisation. Finally, the accuracy of this approach was discussed with respect to numerical propaga-
tion. It was shown that the analytical propagation introduces a positional error of up to 25 meters with
point-mass dynamics and up to 30 km with point-mass + J2 dynamics.

Key Takeaways
• Analytical approach for point-mass and J2 dynamics introduces a positional error of up to 25 km
with respect to numerical propagator in Godot

• Vectorisation can be applied to accelerate state propagation and conversion from Keplerian to
Cartesian

5https://godot.io.esa.int/godotpy/api_reference/generated/godot.core.astro.html, accessed 14 May 2024
6https://godot.io.esa.int/godotpy/api_reference/generated/godot.core.tempo.html, accessed 14 May 2024

https://godot.io.esa.int/godotpy/api_reference/generated/godot.core.astro.html
https://godot.io.esa.int/godotpy/api_reference/generated/godot.core.tempo.html

3.5. Summary and Conclusions 27

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 90.0 deg

s.m.a. = 6778 km

(a) Point-mass only.

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 90.0 deg

s.m.a. = 6778 km

(b) Point-mass + J2.

Figure 3.2: Positional error of analytical model with respect to numerical model (BallisticPropagator in Godot).

Limitations and Recommendations
• This tool is not applicable anymore if higher accuracy or higher model fidelity is required.
• CUDAjectory can be used for very fast numerical propagation with higher fidelity dynamics [97].

4
Coverage Estimation

In the domain of satellite constellation design, coverage refers to the geographical area on the Earth’s
surface that can be serviced by a satellite or a constellation of satellites at a given instant. Uninterrupted
(continuous) coveragewouldmean that the area can be serviced at any givenmoment, while interrupted
coverage implies that the coverage is not continuous (discontinuous) [18].

Coverage can be categorised into two types [18]:

1. Global Coverage
This refers to a scenario where the entire Earth’s surface is serviced by at least one satellite
from the constellation at all times. This is a critical requirement for systems such as the Global
Positioning System (GPS) or Satcom, which necessitate a global service.

2. Regional Coverage
This refers to a scenario where a specific geographical region on Earth is serviced by at least one
satellite from the constellation at all times. This is typically employed when the service is intended
for a specific region, such as a particular country or continent.

The process of designing a satellite mega-constellation to achieve optimal coverage is a complex task
that requires the consideration of numerous factors. These include the number of satellites, their re-
spective orbital parameters (such as altitude and inclination), and the overall configuration of the con-
stellation.

A significant challenge in the design of mega-constellations is the estimation of coverage, which is
known to be a computational bottleneck [50, 98]. This is primarily due to the extensive number of
satellites, grid points, and time instances that require evaluation for coverage. As the number of these
elements increases, the computational time grows rapidly.

This issue gets worse further when one aims for high-resolution coverage on the ground, as it results
in a significant increase in the number of grid points. Consequently, the computational demands for
coverage estimation in the design of satellite mega-constellations present a significant challenge that
requires further investigation and optimisation.

As discussed in Chapter 2, the coverage of a mega-constellation is estimated using visibility as the pri-
mary figure of merit. Consequently, this chapter is dedicated to the computation of visibility within the
context of mega-constellation design. Section 4.1 introduces existing methodologies and research con-
ducted on coverage estimation, with a particular emphasis on visibility. Section 4.2 then describes the
implementation of parallel computing principles for visibility computation acceleration. The verification
of this parallelised visibility computation is presented in Section 4.3. Upon successful implementation,
Section 4.4 discusses various simplifications that contribute to a reduction in computational time, along
with an analysis of their impact on accuracy. Finally, Section 4.5 presents a parametric analysis, illus-
trating the influence of parameter variation on the visibility of a mega-constellation.

29

30 4. Coverage Estimation

4.1. Existing Methods
Numerous methods have been proposed to enhance the efficiency of coverage computation. However,
these methods often involve simplifications that may lead to a decrease in accuracy, or they may be
too complex to implement within the thesis’ time constraints.

This report enumerates several methods previously introduced by researchers. However, it does not
delve deeply into the specifics of these methods, particularly those that were not utilised in this thesis.
Instead, the focus is on a newly introduced numerical method that has demonstrated a significant
performance improvement compared to non-optimised numerical methods.

Grid Point Method
The Grid Point method is the most straightforward approach to computing coverage. This method
involves applying a grid of points to the target area, typically selected uniformly in both longitudinal and
latitudinal directions. The grid resolution is determined based on the mission objective and accuracy
requirements. Once this is established, the visibility at each point is computed.

Visibility in the Grid Point method is calculated based on the satellite’s elevation from a given point
and its field of view. This implies that not only must the satellite be visible from the ground, but the
observation point must also be within the satellite’s field of view. Consequently, other parameters such
as the satellite antenna field of view and pointing offset must be considered, or reasonable assumptions
must be made. For this study, it is assumed that satellites always point in the nadir direction (towards
the Earth’s center). Another assumption is that satellites move in circular orbits, which means that the
field of view can be expressed equivalently to the minimum elevation angle, as illustrated in Figure 2.5.

The advantage of this method is its high accuracy, easy implementation, and universality. The grid
does not have to be uniform which allows to select any region of interest. However, this also the most
demanding approach in terms of computational time.

The time complexity of this method is O(T ·M ·N), where T is the number of time instances, M is the
number of grid points, and N is the number of satellites.

Latitude Stripe Method
The Latitude Stripe method [99] is a technique used to calculate the global coverage for a satellite
constellation. As its name implies, the method divides the target region into narrow latitude stripes. All
satellites are assumed to be in the same orbit. Thus, it allows to compute the coverage from each
satellite only in the first orbital period, and then simply “drift” it to obtain the coverage of each latitude
stripe. The method allows to obtain instantaneous coverage rate as well as accumulated coverage
rate.

While this method is noticeably faster than the Grid Point method, the disadvantage of this method
is that the output is averaged along longitude resulting in the mean visibility as a function of latitude.
While the mean visibility is deemed sufficient in many cases, for this project, we are also interested in
the minimum visibility (as outlined in Section 2.4), which cannot be computed with the Latitude Stripe
method.

The time complexity of this method is O(T ·Mlat ·N), where T is the number of time instances, Mlat is
the number of latitude stripes, and N is the number of satellites [99].

Voronoi Diagram
This method is based on Voronoi regions and Delaunay triangles. These are shown in Figure 4.1 [100].
Voronoi diagrams are a way of dividing surface into different regions based on a set of points. Each
point gets its own region, which consists of all the locations that are closer to that point than to any
other. As shown in Figure 4.1, all points within the highlighted red region are closer to vertex O than
any other vertex.

Delaunay triangulation is a technique closely related to Voronoi diagrams. It is a triangulation of a set
of points in the plane such that no point is inside the circumcircle of any triangle. The circumcircle
of a triangle is defined as the circle that passes through all three vertices of the triangle. Delaunay

4.1. Existing Methods 31

triangulationsmaximise theminimum angle of all the angles of the triangles in the triangulation, avoiding
skinny triangles.

Figure 4.1: Delaunay triangulation (left) and Voronoi regions (right) on spherical surface [100].

The connection between Voronoi diagrams and Delaunay triangulation is that the circumcenters of the
triangles in the Delaunay triangulation are the vertices of the Voronoi diagram. In the case of visibility
calculation, a sub-satellite point (SSP) is a vertex of a Delaunay triangle on Earth’s surface. Referring
to Figure Figure 4.2, SSPs of three satellites are represented by points A, B, and C. It is assumed that
all satellites cover the same area on the ground, which is a spherical cap with radius d. Point P is the
centre of the circumcircle around ∆ABC with radius r. Point P ′ is defined as the point that minimises
the maximum of the distances toA, B, and C. In other words, P ′ is the point that is as close as possible
to all three SSPs while keeping the furthest distance to any of them as small as possible. If P ′ is located
within ∆ABC, then P and P ′ are the same point. To ensure coverage of ∆ABC, it is necessary that
P ′ is covered, which implies d ≥ r [100].

This concept can be extended to a constellation, resulting in multiple triangles with radius rj . It is
only necessary to compute points P ′

j and radii rj to determine whether full coverage is achieved. If d
exceeds the maximum radius of all the triangles, then the target region is fully covered [100]:

d ≥ max{r1, r2, . . . , rn}

.

Figure 4.2: Circumscribed triangle [100].

The disadvantage of this method, however, is that it is only capable of determining whether the target
area is fully covered by single-fold coverage. This implies that this method will not provide insight into
the distribution of satellite visibility across latitude and longitude. However, given the analysis of large
Walker constellations, coverage of significantly more than just one satellite is expected. Therefore, this
method is not suitable for this project.

The time complexity of this method is O(T ·N), where T is the number of time instances and N is the
number of satellites. It can be noticed that there is no dependency on the grid points on the ground
[98].

32 4. Coverage Estimation

2D Map
This method of coverage estimation, proposed by Gong et al. [98], is based on 2D map analysis. It is
reported to be computationally faster than the one based on Voronoi diagrams, as shown in Figure 4.3,
and it can estimate multi-fold coverage. Moreover, it can be applied to multi-shell constellations by
computing the coverage performance of each shell separately and then stacking them together.

Figure 4.3: Computational performance comparison of 2D map-based method with other methods [98].

The method is developed specifically for Walker-Delta constellations and takes advantage of their sym-
metry. A detailed description of the method is not presented here, and interested readers can refer to
the original work [98].

The disadvantage of this method is that it can only be applied to Walker Delta constellations, due to
their symmetrical properties. The visibility of Walker Star constellations, which also comprise mega-
constellation shells, cannot be estimated as they are not symmetrical in longitude. Additionally, while
the gain in computational time is very significant, the underlyingmathematics appears quite complicated
and could take too long to implement. Given the time constraints of the project, it was decided not to
proceed with this method.

The time complexity of this method is O(Mlat ·N), where Mlat is the number of grid points in latitudinal
direction, and N is the number of satellites [98].

Selected Method: Grid Point
The decision to implement a purely numerical computation of visibility, based on grid points and satellite
positions at each time step, was driven by three primary factors:

1. Accuracy
Among the methods compared in Figure 4.3, this approach offers the highest level of accuracy.
While the latitude strip method provides an averaged visibility across longitude, Voronoi diagrams
only indicate if an area is entirely covered, and the 2D method assumes uniform satellite distri-
bution within a Walker constellation, the Grid Point method avoids any simplifying assumptions
within the calculations. This ensures accurate results even with higher fidelity models of constel-
lation propagation.

2. Universality
This method can be applied to any type of orbit, provided that the visibility computation is based
solely on the minimum elevation angle. It does not necessitate the satellites to have the same
Earth central angle (like Voronoi diagram method) or to be in a Walker constellation (like 2D Map
method), thereby allowing its application to other domains (e.g., Earth observation) and having
satellites at different altitudes.

3. Ease of Implementation
The calculation of visibility using this method is straightforward, simplifying software implementa-
tion and reducing development time.

4.2. Parallelised Visibility Computation 33

Furthermore, the implementation of this method in the mcdo module will be described. The angle γ

(refer to Figure 4.4) between two vectors, O⃗G and G⃗S, is computed from their dot product. The vector
O⃗G represents the position of a grid point G with respect to the Earth’s center O, while O⃗S represents
the position of a satellite S with respect to O.

G⃗S = O⃗S− O⃗G (4.1)

Furthermore, the angle γ is computed:

O⃗G · G⃗S = |OG| · |GS| · cos γ (4.2a)

γ = arccos O⃗G · G⃗S
|OG| · |GS|

(4.2b)

O

S

Gγ
local
horizon

ε

Figure 4.4: Schematic representation of elevation angle computation.

The elevation ε is then computed consequently:

ε = γ − 90◦ (4.3)

A satellite is considered in view (visible) if the following condition is met:

ε ≥ εmin (4.4)

This method allows for the visibility of each satellite to be determined independently of others. This
means that given the positions of a single grid point G and one satellite S, the visibility of S from G is
not influenced by, nor does it influence, other visibilities. This allows for each visibility estimation to be
performed independently. Given that all these estimations can be computed independently, it suggests
that these operations can be parallelised, implying that they can be executed simultaneously.

4.2. Parallelised Visibility Computation
As demonstrated in the preceding section, the Grid Point method for visibility computation is inherently
parallelisable. This parallelisation has the potential to significantly reduce computational time, thereby
allowing for better optimisation. More layouts can be analysed within a shorter timeframe if elevation
evaluations are executed concurrently.

However, typical CPUs have only a few cores (4 or 8), which limits the benefits of single-CPU paral-
lelisation. Therefore, alternative acceleration methods using multi-CPU and GPU are explored. These
hardware types are more suitable for the Single Instruction Multiple Data (SIMD) model, which is appli-
cable to the Grid Point method for visibility computation. Appendix B describes the concepts of parallel
computing and how they relate to the Grid Point method. This section focuses on the actual implemen-
tation of parallelised visibility computation and discusses the hardware and software choices made
during the development and implementation process.

34 4. Coverage Estimation

4.2.1. Hardware Setup
Computational speed depends not only on methods used but also on the hardware. Obviously, more
powerful hardware will reduce computational time. The problem, however, can be is that development
turns out to be more complex on such devices. Thus, selection of the hardware is a trade-off between
availability, development, and potential gain in computational time. Since the project is a collaboration
between TU Delft and ESOC, the author has access to resources of both. However, they operate in
different environments, thus, it is better to select just one.

TU Delft has a supercomputer with 11424 CPU cores and 204800 CUDA cores1. However, only 12%
of these resources are allocated to the aerospace engineering faculty. This means that around 1370
CPU cores and 24600 CUDA cores are shared among all the faculty researchers, including professors,
postdocs, PhDs, students and others. Students are usually limited to one CPU node with 48 cores
for up to 24 hours. Moreover, the waiting times after submitting jobs can range from seconds to days,
which reduces the efficiency of the work. Finally, the supercomputer uses the workload manager Slurm,
which requires some training (and time) before using it.

ESOC also has machines with multi-CPU and GPU capabilities. Most of the time, at least one machine
is available for running simulations with multiple cores, which means that there is no need to wait in a
queue. Additionally, there are several machines with low-end GPUs (NVIDIA Quadro P2000) that are
often idle. Although these GPUs are slower than high-end ones, they can be used for development and
testing. There is also a high-end GPU (NVIDIA Tesla V100) with 5120 cores that can be used for more
demanding tasks. The ability to run jobs immediately makes the development process more efficient.

Table 4.1: Computational resources available at ESOC.

mash2 mash6 masd1 masd2 dclb1 dclb3 dclb5
CPU 48 cores 64 cores 48 cores 112 cores 8 cores 8 cores 8 cores

GPU - - - 5120 cores 1024 cores 1024 cores 1024 cores

Therefore, it was decided that ESOC’s computational resources were to be used for this project. Namely,
machine dclb1 was primarily used for development and analysis as it showed to have sufficient re-
sources for the needs of the project. Machine masd2 was primarily used for benchmarking, and not
so much for computations. This is due to slower CPU on masd2, cumbersome data transfer between
machines, and high occupancy of this machine as it is used by other members of the section.

Table 4.2: Computational resources available at ESOC.

CPU GPU

dclb1 Intel(R) Xeon(R) W-2125 CPU
@ 4.00GHz NVIDIA Quadro P2000

masd2 Intel(R) Xeon(R) Platinum 8176
CPU @ 2.10GHz NVIDIA Tesla V100-PCIE-16GB

4.2.2. Software Implementation
The software for this project was primarily developed in Python. The motivation for this choice is dis-
cussed in Section 3.3. This section will provide a description of how the software was implemented
and why certain choices were made.

Figure 4.5 shows the general approach to coverage estimation, which is based on visibility computation.
This approach can be divided into four parts:

1https://doc.dhpc.tudelft.nl/delftblue/, accessed 14 May 2024

https://doc.dhpc.tudelft.nl/delftblue/

4.2. Parallelised Visibility Computation 35

3

Current approach: FFD (using Vectorisation + GPU)

Configure

constellation

Generate

initial states
Propagate

Convert

Keplerian to

Cartesian

Keplerian because analytical

Make a grid

of points

Upload to

universe

Retrieve

positions at

each epoch

Run only once

Run iteratively

Compute

visibility

Compute

cost function

Figure 4.5: Approach to optimisation process of a mega-constellation based on coverage estimation.

1. Constellation propagation
Constellation is configured and propagated analytically, with an option of J2 perturbation.

2. Retrieving positions of grid points
Given that the method is purely numerical, the points used for coverage estimation can be arbi-
trary. They do not have to form a uniformly distributed grid, nor do they need to be located on
the ground or be stationary (e.g., representing airborne aircraft). The retrieval of positions can
be implemented by the user. While there are helper functions in the software, they assume that
the points are stationary and rotate with the Earth. The positions must be in the ICRF reference
frame with the origin at the Earth’s centre.

3. Visibility computation
Visibility computation is largely delegated to the GPU. However, some tasks are still executed
on the CPU. This will be described in more detail in Section 4.2.2. For a large constellation and
high grid resolution, this is the most demanding task and constitutes the main bottleneck of the
optimisation process.

4. Cost function estimation
The cost function is defined by the user but is typically less demanding than visibility computations.
To be precise, cost function estimation is not a part of the mcdo module. Thus, it is entirely up to
the user how this function is computed.

As shown in Figure 4.5, a typical optimisation process would involve reconfiguring the constellation
by adjusting its parameters and then recomputing the visibility and cost function for the new layout.
If one assumes that the grid points and their positions remain unchanged for each iteration, then the
positions can be retrieved only once and stored in memory. All subsequent iterations would not require
recomputing point positions, as it is a quite time-consuming process.

The constellation propagation in mcdo, implemented using NumPy, is most efficient when all time
instances are propagated “in one go”, as this approach minimises the overhead associated with transi-
tioning between low-level C and Python. Therefore, in terms of computational time, it is more efficient to
propagate all satellites for the entire propagation period first, and then compute visibility. This is prefer-
able to computing visibility at each time step, which would necessitate the introduction of for-loops,
thereby reducing the efficiency of the code.

Consequently, a function was developed for the visibility computation in mcdo that accepts two arrays
– representing the positions of satellites and grid points – as input, and computes the visibility at each
grid point, i.e., the total number of satellites in view from each point at each time instance.

As depicted in Figure 4.6, both input arrays are three-dimensional, containing the positions of N satel-
lites (N′ = N− 1) and M grid points (M′ = M− 1). The output array, which can also be considered
three-dimensional with one dimension of length 1, stores the number of satellites P at each epoch. All
three arrays share a “Time” axis of length T, representing discrete time steps from 0 to T′ = T− 1.

Figure 4.7 illustrates the computation of visibility at each epoch t. For each grid point, an iteration over all
satellites is required. During each iteration, the elevation angle ε is computed as previously described. If

36 4. Coverage Estimation

xT′,0 yT′,0 zT′,0

xT′,1 yT′,1 zT′,1

...
...

...
xT′,N′ yT′,N′ zT′,N′

.

.

.

.

x1,0 y1,0 z1,0

x1,1 y1,1 z1,1

...
...

...
x1,N′ y1,N′ z1,N′

x0,0 y0,0 z0,0

x0,1 y0,1 z0,1

...
...

...
x0,N′ y0,N′ z0,N′

Tim
e

Sa
te
llit
es

(a) Input array of satellite positions

xT′,0 yT′,0 zT′,0

xT′,1 yT′,1 zT′,1

...
...

...
xT′,M′ yT′,M′ zT′,M′

.

.

.

.

x1,0 y1,0 z1,0

x1,1 y1,1 z1,1

...
...

...
x1,M′ y1,M′ z1,M′

x0,0 y0,0 z0,0

x0,1 y0,1 z0,1

...
...

...
x0,M′ y0,M′ z0,M′

Tim
e

Po
in
ts

(b) Input array of grid points positions

PT′,0

PT′,1

...
PT′,M′

. . .

. . .

...
. . .

P1,0

P1,1

...
P1,M′

P0,0

P0,1

...
P0,M′

Tim
e

Po
in
ts

(c) Output visibility array

Figure 4.6: Input and output

xt,0 yt,0 zt,0

xt,1 yt,1 zt,1

...
...

...
xt,N′ yt,N′ zt,N′

Sats

xt,0 yt,0 zt,0

xt,1 yt,1 zt,1

...
...

...
xt,M′ yt,M′ zt,M′

Points

Pt,0

Pt,1

...

Pt,M′

Visibility
ε ≥ εmin ? Sats in view

Figure 4.7: Calculation of number of satellites in view for a single time instance

a satellite is in view,+1 is added to the output array, i.e. Pi,j += 1. The colours in Figure 4.7 correspond
to the same grid points. The numbers Pi,j in the output array indicate the number of satellites in view at
the given time instance i and point j. A limitation of this approach is that it does not provide information
about which specific satellites are in view – only their count.

The evaluation is performed for each epoch, as illustrated in Figure 4.6c. A key advantage of this opera-
tion is that each evaluation is independent of the others, enabling parallel execution. This parallelisation
can significantly accelerate visibility computation as multiple processes perform this calculation simul-
taneously. In fact, such operations are called embarrassingly parallel as they have no dependence
one each other [101].

The primary computational gain for visibility computation was achieved by utilising a GPU, which is
an ideal candidate for embarrassingly parallel operations. The code was developed using the C/C++
CUDA API. However, given that the mcdo module is written in Python, an interface between the two
languages was necessary. For this purpose, pybind11was used, a C++module that provides seamless
interoperability between C++ and Python [102]. Figure 4.8 illustrates the visibility computation algorithm
and the type of hardware each subprocess is handled on. The functions depicted in blue are already
implemented in either CUDA or pybind11, and thus, cannot be modified.

The GPU kernel (indicated in yellow in Figure 4.8) was authored by the writer of this report as part of
this thesis work. For launching the CUDA kernel, a three-dimensional grid and block sizes were used,
with one dimension corresponding to the time axis, another to satellites, and the third to grid points.
This approach was chosen as it simplifies data indexing and the retrieval of corresponding values from
arrays. Understanding how this function was implemented helps in later analysis of computational time
and occurring phenomena.

1 // Number of blocks and threads

4.3. Verification 37

2 dim3 numBlocks(128, 128, 64);
3 dim3 threadsPerBlock(16, 16, 4);
4

5 // Launch kernel
6 VisibleSats<<<numBlocks, threadsPerBlock>>>
7 (dev_sats, dev_points, dev_visibility, N_steps, N_sats, N_points, min_elevation);

It is important to note that values for variables numBlocks and threadsPerBlock were based on ex-
perience of other developers2,3 and were not optimised further as the selected values showed already
a huge decrease in computational time which was considered sufficient for the purposes of this study.

Allocate
memory on

device

Create copy
of data on

host

Conversion
required?

Convert
data from
DP to SP

Copy input
data to
device

Compute
elevations

Copy output
data to host

Return
visibility

Yes

No
Handled on GPU

Handled on CPU Decision

Figure 4.8: Function computing visibility broken down into subprocesses.

Visibility computation is performed with single-precision (SP) floating points (FP32), as low-end GPUs
(such as Nvidia Quadro P2000) are designed to handle single-precision floating operations. They also
support double-precision (DP) operations with FP64, albeit less efficiently in terms of computational
time. A more detailed analysis of computational performance will be presented in Section 5.4. More
modern GPUs are capable of handling double precision more efficiently. However, the analysis showed
that the probability of an error is 10−5, which implies that 1 in 100, 000 visibility computations with FP32
will differ by 1 with respect to calculations with FP64. This means that one entry in the output array
(see Figure 4.6c) will be, for example, Pi,j = 9 or Pi,j = 11 for FP32 computation instead of Pi,j = 10 for
FP64. This is considered acceptable for the purpose of this thesis.

4.3. Verification
Verification was done in multiple steps:

1. Elevation angle computation with SP and DP, verified with Godot
For a single satellite and a single grid point, the elevation was computed at multiple epochs
for both single and double precision. It was verified that mcdo computes elevation angles with
acceptable accuracy for both precision types.

2. Visibility at one point with multiple satellites, verified with Godot
For a single grid point, the visibility of multiple satellites was computed using mcdo and Godot.
This verified that all satellites computed to be in view with Godot were also visible with mcdo
computation.

3. Visibility at multiple points, verified with Godot
The number of points was increased to ensure accurate computation across a set of points. This
was also verified with Godot.

4. Average and minimum visibility over propagation period, verified with [51] and [98]
Final verification of visibility computation for single and multi-shell constellation layouts was con-
ducted using prior research published by Jia [51] and Gong [98]. This verified that the visibility of
entire constellations over a globally distributed grid of points was correctly computed.

As depicted in Figure 4.9, the mean visibility computed by mcdo closely matches that computed by
Gong [98]. Minor variations between the curves can be attributed to slight misalignment of the back-
ground image, which occurred because the curves were superimposed on an image sourced from

2https://forums.developer.nvidia.com/t/how-to-choose-how-many-threads-blocks-to-have/55529, accessed
14 May 2024

3https://stackoverflow.com/questions/4391162/cuda-determining-threads-per-block-blocks-per-grid, ac-
cessed 14 May 2024

https://forums.developer.nvidia.com/t/how-to-choose-how-many-threads-blocks-to-have/55529
https://stackoverflow.com/questions/4391162/cuda-determining-threads-per-block-blocks-per-grid

38 4. Coverage Estimation

Gong’s work [98]. Additionally, the minimum visibility is similar to that of Gong, with some minor de-
viations due to differences in propagation settings and grid settings. Gong employed a higher fidelity
propagation model, a higher resolution grid, and a longer propagation period. Despite these differ-
ences, the final comparison shows that the results are remarkably similar, verifying the use of mcdo
for computation of visibility of single shells.

0 10 20 30 40 50 60
Latitude [deg]

0
2
4
6
8

10
12
14
16
18
20

Sa
te

llit
es

 in
 v

ie
w

[-]

Mean

396/18/1 (mcdo)
1584/72/37 (mcdo)

0 10 20 30 40 50 60
Latitude [deg]

0
2
4
6
8

10
12
14
16
18

Sa
te

llit
es

 in
 v

ie
w

[-]

Minimum

396/18/1 (mcdo)
1584/72/37 (mcdo)

Figure 4.9: Verification with 2D map method [98].

Jia’s [51] mega-constellation design can be used for verification of visibility computation for multiple
shells. Unfortunately, only the number of satellites N and planes P are specified for the final design,
while the phasing parameter F is omitted. As will be demonstrated in Section 4.5, F can significantly
impact visibility. Therefore, it is anticipated that the results may vary.

The comparison of visibility is shown in Figure 4.10. Unfortunately, the invariant colour choice in [51]
does not allow for a proper visual comparison. Nevertheless, it is noted that the number of satellites
in view is “18∼25, with little variation in the number of duplicates covered across global regions” [51].
It can be observed that visibility computed with mcdo is very close to the 18-25 range, with some
variations, possibly due to the unspecified F.

180 150 120 90 60 30 0 30 60 90 120 150 180
Longitude [deg]

90

60

30

0

30

60

90

La
tit

ud
e

[d
eg

]

18

19

20

21

22

23

24

25

Sa
ts

 in
 v

ie
w

(a) Visibility of final multi-shell mega-constellation layout presented in
[51] computed with mcdo.

(b) Visibility of final multi-shell mega-constellation layout presented in
[51].

Figure 4.10: Verification of visibility computation for multi-shell mega-constellations.
Propagation time T = 96.69 min. Grid resolution: 1◦ × 1◦.

It is important to clarify that the objective of this verification was to calculate the mean visibility over
time for the constellation presented in [51], given the same input conditions. The simulation period was
limited to a single orbital period, T = 96.69 min (same as in [51]). For a constellation comprising so
many shells, this duration is insufficient for the visibility to even out in the longitudinal direction. If the
simulation period were extended appropriately, there would be no variation in the longitudinal direction.

4.4. Simplifications 39

Despite the short propagation period and the colours being difficult to distinguish, the visibility numbers
of 18-25 satellites in view mentioned in [51] align with those obtained with mcdo. This comparison
allows to conclude that the result is acceptable and the visibility computation with mcdo is verified.

4.4. Simplifications
The computational time of visibility computation can be significantly reduced by applying simplifications.
Given the high number of satellites in similar orbits, it is anticipated that certain assumptions can be
made, which would greatly enhance the efficiency of calculations. Naturally, this will compromise ac-
curacy. Therefore, the objective of this section is to determine the extent to which simplifications can
be applied while staying within acceptable accuracy requirements.

4.4.1. Walker Constellation Symmetry
Walker constellations are known for their symmetry, as both planes and satellites within planes are
evenly distributed. This symmetry allows for the assumption that large Walker constellations exhibit
nearly identical distributions in the Northern and Southern hemispheres of the Earth. In the case of
planes, their even distribution in longitude suggests that similar effects are observed at all longitudes,
and only the latitude value is of significance.

North-South symmetry
North-South symmetry refers to the assumption that the coverage pattern in the Northern hemisphere
is identical to that in the Southern hemisphere of the Earth. This assumption is derived from the fact
that satellites constituting Walker constellations are evenly distributed within their respective planes.
Also, the planes are evenly distributed along longitude. This results in the same geometric distribution
of satellites in both hemispheres, which in turn implies that visibility of these satellites will also have the
same distribution on both sides of the equator. Note that it does not mean that the satellite positions
are mirrored with respect to the equator but rather that visibility statistics will be nearly identical for both
hemispheres.

180 150 120 90 60 30 0 30 60 90 120 150 180
Longitude [deg]

90

60

30

0

30

60

90

La
tit

ud
e

[d
eg

]

h = 600 km, i = 60 deg, N = 462 sats, P = 22 planes, F = 7

2

3

4

5

6

7

Nu
m

be
r o

f S
SP

s

(a) N = 462 sats, P = 22 planes, F = 7

180 150 120 90 60 30 0 30 60 90 120 150 180
Longitude [deg]

90

60

30

0

30

60

90

La
tit

ud
e

[d
eg

]

h = 600 km, i = 60 deg, N = 4620 sats, P = 60 planes, F = 27

25

30

35

40

45

50

55

60

Nu
m

be
r o

f S
SP

s

(b) N = 4620 sats, P = 60 planes, F = 27

Figure 4.11: Number of sub-satellites points across the globe for smaller and larger constellations for an arbitrary selected
epoch.

First, the distribution of satellites around the globe can be examined. Shown in Figure 4.11 are the
distributions of sub-satellite points of a large Walker constellation in geodetic coordinates. It can be ob-
served that the distribution of SSPs are identical around the equator. As if it is mirrored. This symmetry
holds for an even number of planes, while for an odd number of planes or satellites it is not mirrored.
However, the distribution is still similar.

Furthermore, instantaneous visibility for reference epoch t0 is plotted in Figure 4.12. It can also be
observed that North-South hemispheres have the same visibility distribution.

Finally, plotted in Figure 4.13 are visibility curves for selected longitudes at single time instance. It can
be seen that those are distributed very similarly which confirms that North-South symmetry is a valid
assumption for visibility computation of Walker constellations.

40 4. Coverage Estimation

180 150 120 90 60 30 0 30 60 90 120 150 180
Longitude [deg]

90

60

30

0

30

60

90

La
tit

ud
e

[d
eg

]

h = 600 km, i = 60 deg, N = 462 sats, P = 22 planes, F = 7

0

1

2

3

4

5

6

7

Sa
ts

 in
 v

ie
w

(a) N = 462 sats, P = 22 planes, F = 7

180 150 120 90 60 30 0 30 60 90 120 150 180
Longitude [deg]

90

60

30

0

30

60

90

La
tit

ud
e

[d
eg

]

h = 600 km, i = 60 deg, N = 4620 sats, P = 60 planes, F = 27

0

10

20

30

40

50

60

Sa
ts

 in
 v

ie
w

(b) N = 4620 sats, P = 60 planes, F = 27

Figure 4.12: Number of satellites in view at each point across the globe for smaller and larger constellations at h = 600 km,
i = 60 deg for reference epoch t0. Grid resolution: 1◦ × 1◦.

90 60 30 0 30 60 90
Latitude [deg]

0
1
2
3
4
5
6

Sa
ts

 in
 v

ie
w

[-]

h = 600 km, i = 60 deg, N = 462 sats, P = 22 planes, F = 7
long. = -90 deg
long. = 0 deg
long. = 90 deg

90 60 30 0 30 60 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

h = 600 km, i = 60 deg, N = 4620 sats, P = 60 planes, F = 27
long. = -90 deg
long. = 0 deg
long. = 90 deg

Figure 4.13: Visibility as a function of latitude for a number of selected longitude values.

Longitude averaging
Walker constellations, by definition, distribute their planes uniformly around the globe in the longitudinal
direction. This distribution allows for the assumption that visibility statistics over time will be consistent
at each meridian line, regardless of longitude, if points on a single meridian line are considered.

This assumption, combined with the North-South symmetry, allows to consider grid points at a chosen
longitude ranging only from 0 to 90 degrees. The range can be further reduced based on the mission
objective and requirements. However, this approach requires a sufficiently long propagation period to
identify potential coverage gaps. As a general guideline, a propagation time of 10 orbital periods is
recommended.

To verify the assumption of longitude averaging, comparisons were made between visibilities at various
longitudes. This was achieved using a grid of 120 points in the longitudinal direction (3◦ resolution) and
91 points in latitude (1◦ deg resolution). For each meridian line, the distribution of visibility4 over time
was computed. Additionally, for each latitude value, the mean value of each fraction was computed,
along with its variance.

Figure 4.14 depicts the visibility distribution with different colours corresponding to the numbers of
satellites in view. The black bars correspond to the maximum range over all 120 meridian lines, i.e.
difference between maximum and minimum values. A drastic drop in range can be observed when the
propagation period is increased from one orbital period to ten full orbital periods. This observation veri-
fies the assumption that a single meridian line can represent the entire globe, provided the propagation
period is sufficiently long.

4The term visibility distribution refers to the fraction of time that a specific number of satellites is in view.

4.4. Simplifications 41

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
im

e
[%

]

h = 600 km, i = 60 deg, N = 462 sats, P = 22 planes, F = 7, T = 5820.0 s

0

1

2

3

4

5

6

7

Sa
ts

 in
 v

ie
w

(a) N = 462 sats, T = 5820.0 s

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
im

e
[%

]

h = 600 km, i = 60 deg, N = 462 sats, P = 22 planes, F = 7, T = 58200.0 s

0

1

2

3

4

5

6

7

Sa
ts

 in
 v

ie
w

(b) N = 462 sats, T = 58200.0 s

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
im

e
[%

]

h = 600 km, i = 60 deg, N = 4620 sats, P = 60 planes, F = 27, T = 5820.0 s

0

10

20

30

40

50

60

Sa
ts

 in
 v

ie
w

(c) N = 4620 sats, T = 5820.0 s

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f t
im

e
[%

]

h = 600 km, i = 60 deg, N = 4620 sats, P = 60 planes, F = 27, T = 58200.0 s

0

10

20

30

40

50

60

Sa
ts

 in
 v

ie
w

(d) N = 4620 sats, T = 58200.0 s

Figure 4.14: Distribution of visibility in time. Black bars correspond to the maximum range.

4.4.2. Walker Constellation Dynamics: Snapshot
A non-obvious observation was made during visibility analysis. When propagated in time, it can be
seen that the global pattern of visibility does not significantly change. Instead, it rather drifts in Eastern
direction, as shown in Figure 4.15, i.e. it shifts in longitudinal direction while in latitudinal direction the
distribution stays more or less the same. Assuming that the whole pattern of the visibility does not
change over time, one can analyse visibility distribution at a single time instance like taking a snapshot.

180 150 120 90 60 30 0 30 60 90 120 150 180
Longitude [deg]

0

30

60

90

La
tit

ud
e

[d
eg

]

t = 2020-01-01T00:00:00.000000 TDB

0
10
20
30
40
50
60
70

Sa
ts

 in
 v

ie
w

(a) Visibility at t0.

180 150 120 90 60 30 0 30 60 90 120 150 180
Longitude [deg]

0

30

60

90

La
tit

ud
e

[d
eg

]

t = 2020-01-01T00:40:00.000000 TDB

0
10
20
30
40
50
60
70

Sa
ts

 in
 v

ie
w

(b) Visibility at t1 = t0 + 40 minutes.

Figure 4.15: Visibility of a mega-constellation at different epochs.

It was shown that due to symmetrical properties of largeWalker constellations, the latitude range from 0

42 4. Coverage Estimation

to 90 degrees can be used. For initial analysis, one can look at such snapshots of only one hemisphere.
It can be just visibility at t0 (initial state of the constellation) which means that the constellation does not
even need to be propagated.

For propagation period of T = 24 hours (∆t = 60 s) and the number of satellitesN = 4620 satellites, the
following analysis was conducted to measure influence on accuracy due to the snapshot simplification:

Step 1: Compute the mean visibility for each epoch (i.e. each snapshot)
For each epoch the mean visibility was computed as a function of latitude. This results in 1441
arrays, each corresponding to the mean visibility.

Step 2: Compute the minimum visibility for each epoch (i.e. each snapshot) For each epoch the
minimum visibility was computed as a function of latitude. This results in 1441 arrays, each
corresponding to the minimum visibility.

Step 3: Compute the standard deviation of mean visibility for all epochs
With the mean visibility computed at each epoch, it was computed how visibility function varies
by calculating the standard deviation. Based on 1441 epochs, the standard deviation was
computed at each latitude value.

Step 4: Compute maximum difference in minimum visibility
For each latitude it was computed what is the maximum difference in minimum visibility to esti-
mate how much minimum visibility can differ. Based on 1441 epochs, the maximum difference
was computed at each latitude value.

Figure 4.16 displays the standard deviations and maximum differences in minimum visibility for different
latitudes. The mean visibility has a low standard deviation, around 0.2 satellites, across all latitudes.
This means that snapshot simplification is a good approximation for the mean visibility, which is typically
a few tens of satellites.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Mean and minimum
mean
min

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

1

2

3

4

Sa
ts

 in
 v

ie
w

[-]

std(mean) and max diff. in min
std(mean)
maxD(min)

N = 4620 sats, i = 60 deg, P = 60 planes, F = 27

Figure 4.16: Analysis of visibility computation using snapshot simplification. Figure on the left shows mean and minimum
values for the full simulation (all epochs and grid points). Figure on the right shows the standard deviation of the mean visibility

and maximum difference in minimum visibility.

The minimum visibility has a higher variation as indicated by the maximum difference. This is partly
due to the fact that the minimum visibility is an integer number, so any fractional difference is rounded
up or down. Some latitudes have a constant minimum visibility over the entire propagation period, with
the maximum difference of zero. Others have a maximum difference of up to 3 satellites in view, which
may be significant or not, depending on the required fidelity of the analysis.

4.5. Parametric analysis
The visibility of a large Walker constellation is influenced by several parameters. These include the
parameters defining the Walker constellation itself, and an additional parameter that defines visibility -
the minimum elevation angle. To gain a deeper understanding of how these parameters affect visibility,
a parametric analysis was conducted. In this analysis, visibility was computed as a function of a single
parameter, while all other parameters were held constant.

This section presents the parametric analysis for the number of planes P , phasing parameter F , number

4.5. Parametric analysis 43

of satellites N , inclination i, and minimum elevation angle ε with altitude h. Given the assumption of a
circular orbit and the definition of visibility, h and ε can be expressed equivalently.

4.5.1. Number of Planes and Phasing Parameter
The number of planes P and the phasing parameter F influence the distribution of satellites within the
constellation, which in turn affects coverage. The number of planes P is intrinsically linked with F ,
meaning they cannot be considered separately. Only the combination of the two defines the layout of
satellites within the constellation. Therefore, it is interesting to examine how coverage is affected and
what the optimal P and F are for given i, N and h.

The initial aim was to examine all possible parameter combinations. However, this was not feasible
because each plane in aWalker constellation has the same number of satellites S, which implies thatN
must be a multiple of P . Finding N − P combinations was not easy to automate and required manual
adjustment. This was time consuming, so only 5 values of N were chosen. For each value Ni, a
variation of ±5 satellites was allowed, given the high number of satellites. Therefore, P and F were
analysed with only a few selected h-i-N combinations. Despite this limitation, this approach proved
efficient in reaching the conclusions discussed further.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60

Sa
ts

 in
 v

ie
w

[-]

Mean
P = 68
P = 70
P = 66
P = 20
P = 231
P = 30
P = 154

P = 42
P = 110
P = 55
P = 84
P = 60
P = 77

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60
Sa

ts
 in

 v
ie

w
[-]

Minimum
P = 68
P = 70
P = 66
P = 20
P = 231
P = 30
P = 154

P = 42
P = 110
P = 55
P = 84
P = 60
P = 77

N = 4620 sats, i = 60 deg, F/P = 0.5

Figure 4.17: Mean and minimum visibility for the given constellation as a function of P with a fixed F/P .

Another limitation was the number of values for F that could be analysed. By definition of a Walker
constellation, F must be an integer. This ensures that satellites of the first reference plane and the last
plane have the same phasing difference as all other adjacent planes. The value for F ranges from 1 to
P − 1. After this, satellites of adjacent planes align, and the relative positions for F = P are the same
as F = 0. However, since P can vary significantly for large constellations, so can F . To reduce the
number of simulations, it was decided that for each selected P , F would be expressed as a fraction
of P rather than an absolute value. Thus, the parameter F/P was selected as a representation of the
effect of phase on constellation coverage. The corresponding values from F/P = 0.1 to F/P = 0.9
with a step of 0.1 were analysed.

In the initial analysis, the mean and minimum visibility are plotted as functions of P , with all other
parameters held constant. Figure 4.17 illustrates the visibility for different layouts. The mean visibility
of a Walker constellation appears to be independent of the satellite distribution within the constellation.
However, the minimum visibility is significantly influenced by both P and F . Notably, Figure 4.17 reveals
noticeable drops (e.g. for P = 70 planes) in minimum coverage when the number of planes varies.
Similar plots corresponding to other values of N can be found in Appendix C.1.

The initial assumption was that for a large number of satellites, the phasing would not affect visibility
across longitude, as it would be smoothed out by the sheer quantity of satellites. This “smoothing-
out” effect was not expected to occur at very low or very high values of P , as this would imply large
gaps between satellite planes (for low P) or large gaps between satellites within one plane (for high
P). Therefore, it was initially hypothesised that P ≈

√
N would be an optimal or near-optimal solution,

ensuring an even distribution of satellites around the globe. An optimal phasing parameter was con-

44 4. Coverage Estimation

sidered to be F/P = 0.5, implying that satellites in adjacent planes cover the gaps between satellites
within the same plane.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Mean
F/P = 0.2 (F = 14)
F/P = 0.5 (F = 35)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Minimum
F/P = 0.2 (F = 14)
F/P = 0.5 (F = 35)

N = 4620 sats, i = 60 deg, P = 70 planes

Figure 4.18: Mean and minimum visibility for the given constellation as a function of F/P with a fixed P . The shaded region is
an example of the area under curve.

However, this assumption was disproven by the data in Figure 4.18, which shows a significant drop in
minimum visibility for F/P = 0.5. The only difference between the layouts in Figure 4.18 is the phasing
F between adjacent planes, clearly demonstrating the significant impact of this parameter on coverage.

To quantify this phenomenon, the area under the curve was calculated, as shown in Figure 4.18. The
visibility curve peaks at a latitude of approximatelyφpeak = i− 5◦ for the given inclination i and minimum
elevation angle ε. For non-polar constellations, the inclination is selected to optimise coverage not
only at the target latitude but also at adjoining latitudes. Thus, the coverage of the latitude range
i− 15 < φ < i+ 5 was analysed.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F/P [-]

500

550

600

650

700

750

800

850

900

Ar
ea

 u
nd

er
 c

ur
ve

 [s
q.

 u
ni

ts
]

N = 4620 sats, h = 600 km, inc = 60 deg

P = 68
P = 70
P = 66
P = 20

P = 231
P = 30
P = 154
P = 42

P = 110
P = 55
P = 84

P = 60
P = 77
mean

Figure 4.19: Area under visibility curve for different layouts.

This area was computed for various values of P and F/P . Figure 4.19 presents the area under the
curve for various layouts. Several observations can be made from this plot. Firstly, the mean visibility
appears to be unaffected by P and F/P , consistent with previous plots. However, this plot provides a
more general demonstration of this phenomenon. Secondly, the plot clearly shows that the minimum
visibility is highly dependent on the layout. Significant changes in minimum visibility can occur, as
exemplified in Figure 4.19 for N = 4620 satellites, P = 110 planes, and F/P = 0.8. A substantial drop
in the value of the area under the curve corresponds to low values of minimum visibility in the range of
interest. The plots, however, do not readily reveal a trend for the minimum visibility. Outliers appear to

4.5. Parametric analysis 45

emerge somewhat randomly, occasionally causing significant drops in the minimum visibility curve, as
demonstrated in the aforementioned example. This is also observed with other layouts which can be
found in Appendix C.1.

180 150 120 90 60 30 0 30 60 90 120 150 180
Longitude [deg]

0

30

60

90

La
tit

ud
e

[d
eg

]

t = 2020-01-01T00:00:00.000000 TDB

0
10
20
30
40
50
60
70

Sa
ts

 in
 v

ie
w

(a) F = 88.

180 150 120 90 60 30 0 30 60 90 120 150 180
Longitude [deg]

0

30

60

90

La
tit

ud
e

[d
eg

]

t = 2020-01-01T00:00:00.000000 TDB

0
10
20
30
40
50
60
70

Sa
ts

 in
 v

ie
w

(b) F = 44.

Figure 4.20: Visibility at reference epoch t0 for N = 4620 satellites, P = 110 planes, h = 600 km, i = 60◦.

To understand why these drops occur, visibility at t0 is plotted for N = 4620 and P = 110 with F = 88
and F = 44. Figure 4.20 presents two layouts where only F is varied. For F = 88, areas of very
high visibility and significantly lower visibility coexist at the same latitude. In contrast, for F = 44, the
visibility distribution is more uniform, with less variation in the number of visible satellites. The effect
of the phasing parameter F is illustrated in Figure 4.21, which clearly shows that while mean visibility
remains unaffected by F , the minimum number of satellites in view and the maximum range of visibility
are significantly influenced by the phasing parameter.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Mean and minimum
mean, F/P = 0.4 (F = 44)
min, F/P = 0.4 (F = 44)
mean, F/P = 0.8 (F = 88)
min, F/P = 0.8 (F = 88)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Maximum range
max range, F/P = 0.4 (F = 44)
max range, F/P = 0.8 (F = 88)

N = 4620 sats, i = 60 deg, P = 110 planes

Figure 4.21: Visibility variation. Effect of F on visibility.

The reason for such variation becomes evident when the sub-satellite points are plotted. Figure 4.22
demonstrates how satellite distribution is affected by F . However, it remains unclear how to select
optimal P and F to achieve a more uniform satellite distribution without constellation propagation.

When plotting mean and minimum visibility for various layouts in Figure 4.19, it can be observed that

46 4. Coverage Estimation

180 150 120 90 60 30 0 30 60 90 120 150 180
Longitude [deg]

90

60

30

0

30

60

90

La
tit

ud
e

[d
eg

]

h = 600 km, i = 60 deg, N = 4620 sats, P = 110 planes, F/P = 0.4

(a) F = 44

180 150 120 90 60 30 0 30 60 90 120 150 180
Longitude [deg]

90

60

30

0

30

60

90

La
tit

ud
e

[d
eg

]

h = 600 km, i = 60 deg, N = 4620 sats, P = 110 planes, F/P = 0.8

(b) F = 88

Figure 4.22: Sub-satellite points at reference epoch t0

the difference between the mean and minimum visibility is approximately 10%. This suggests that one
can assume the minimum visibility to be approximately 10% lower than the mean. A key advantage of
the mean visibility is its independence from P and F , as previously demonstrated.

Figure 4.19 also demonstrates that for a fixed N , there exists a P − F combination that ensures no
significant drops in minimum visibility if P is sufficiently high. Therefore, it can be assumed that for any
given N (±5 sats), optimal P −F values can be found such that the difference between the mean and
minimum visibility will be no more than 10%.

Given that constellation requirements are typically based on minimum visibility, a mission analyst could
apply a 10% margin to the requirement and design for mean visibility instead. This approach would
eliminate the dependence on P and F , while maintaining visibility close to the requirement. Initially,
the optimal i and N would need to be determined for each shell. Subsequently, P and F could be
optimised to enhance minimum visibility. This approach will be explored further in Chapter 5, which
discusses the multi-shell constellation design.

4.5.2. Number of Satellites
The number of satellites N was varied from 500 to 5000 satellites in a single shell. The analysis of
P and F revealed that the mean visibility remains unaffected by these parameters, and the minimum
visibility is approximately 10% lower than the mean when distributed uniformly. Consequently, for a
large Walker constellation with a number of satellites N , the focus was placed on the mean visibility to
avoid unfavourable combinations of P and F that could result in substantial gaps in minimum visibility.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 60 deg, = 30 deg

Figure 4.23: Parametric analysis, varying N .

Figure 4.23 shows that with changingN , the only parameter affected is the scaling of the mean visibility
function. The highest latitude at which satellites remain visible, as well as the latitude of peak visibility,
stay constant. Given that this is the mean visibility, it can be interpreted as if additional satellites form
an independent shell. As the previous subsection demonstrated that the distribution of satellites is
irrelevant for mean visibility, this comparison is valid. Since both shells are independent, it follows

4.5. Parametric analysis 47

that the sum of their means will be equal to the mean of their sum. This suggests that the visibility
distribution scales linearly with N .

Figure 4.24 presents the scaled visibility, where the visibility for a constellation with only N0 = 506
satellites was computed numerically. For all higher values ofNi, the visibility was simply scaled with the
ratio κi = Ni/N0. The scaled visibility curves match the propagated curves identically. The difference
between actual visibility and scaled visibility, shown in the right-hand plot of Figure 4.24, is negligibly
small, leading to the conclusion that the mean visibility can be computed by simply scaling the visibility
curve. This is also applicable to other layouts which can be found in Appendix C.2.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 60 deg, = 30 deg

Figure 4.24: Mean scaled visibility and error with respect to actual simulation

This effect allows to avoid propagating and computing an excessively high number of satellites in one
shell if the interest lies in the mean visibility. Instead, a shell with a lower number of satellites can be
propagated with subsequent visibility computation. This approach will significantly reduce computa-
tional time.

Additionally, this effect implies that if a mega-constellation is designed for mean visibility initially, there
is no need for repeated propagation of the constellation. Instead, the constellation can be propagated
just once with a fixed N0 and a set of i (e.g., ranging from 0 to 90 degrees), and then the visibility can
be simply scaled to a desired N to meet the requirement. Chapter 5 will discuss how this method can
be applied to constellation design and how the constellation design is affected by this method.

4.5.3. Inclination
The inclination is anticipated to influence visibility in a relatively predictable manner. Satellites cannot
go beyond latitude φ = i, which implies that visibility cannot extend beyond φ ≤ i + θ. Figure 4.25
depicts the visibility curves for various inclinations, with all other parameters held constant.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 4970 sats, = 30 deg

Figure 4.25: Parametric analysis, varying i.

The peak values for visibility are observed to decrease until approximately i = 45◦ and then increase
consistently. This can be explained by the higher concentration of satellites per unit surface area at low
inclinations compared to mid-latitudes, where the surface area is still significantly large but satellites are

48 4. Coverage Estimation

more dispersed. At higher inclinations, satellites reach higher latitudes where the planet’s surface area
is much smaller, resulting in an increase in the number of satellites per unit surface area. Appendix C.3
shows that this is observed for other layouts where N and εmin are varied.

At certain inclinations and minimum elevation angles, satellites cover the entire latitude range from 0
to 90 degrees. This is because satellites do not need to be directly over the pole to observe it, allowing
them to see the pole and even the opposite side of the globe (relative to the pole) from their respective
inclinations. This is why, among other reasons, Iridium andOneweb have their satellites at 86.9 degrees
and 87.9 degrees, respectively. This visibility feature helps to avoid significant congestion at the pole
and results in a lower probability of satellite collisions.

As previously discussed, the visibility distribution for higher inclinations also covers lower inclinations.
Therefore, in the case of a multi-shell constellation, it should be noted that the constellation design
should commence from higher inclinations and proceed downwards. This is because lower-inclination
shells are influenced by the higher inclination shells, while the reverse is not true. This will be discussed
in more detail in Chapter 5.

4.5.4. Minimum Elevation Angle and Altitude
The minimum elevation angle is an important factor in the design of mega-constellations as it directly
influences satellite visibility and hardware design. For example, a higher elevation angle means that a
smaller portion of the sky, and hence fewer satellites, are visible. Furthermore, the minimum elevation
angle requirement also drives the design of both the satellites and ground-based equipment such as
gateways or user terminals.

The minimum elevation angle and altitude are interconnected, as they both contribute to the Earth’s
central angle. As observed from Equation (2.9), there are two variables in the Earth’s central angle
equation. This implies that for the angle θ to remain constant, the altitude h and minimum elevation
angle εmin must change proportionally.

While this section will explore the influence of the minimum elevation angle and altitude on visibility of
mega-constellations, it is important to highlight that these parameters are not typically optimised during
the design phase of the orbital layout. Rather, they are predefined parameters. These parameters are
usually dictated by the constraints of hardware design or by regulatory requirements imposed by author-
ities such as the Federal Communications Commission (FCC) or the International Telecommunication
Union (ITU).

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Mean

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Minimum

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.0

0.2

0.4

0.6

0.8

1.0

Sa
ts

 in
 v

ie
w

[-]

Difference in mean

h = 600 km
 = 30.0 deg

h = 700 km
 = 33.98 deg

h = 800 km
 = 37.53 deg

h = 1200 km
 = 48.23 deg

Figure 4.26: Visibility for fixed θ and varying h and εmin. The rightmost image show the difference in mean visibility with
respect to the reference distribution: visibility at h = 600 km and εmin = 30 deg.

This is verified by the visibility curves depicted in Figure 4.26. If the angle θ remains constant, the
visibility curves show insignificant change. A slight difference in the mean visibility can be seen in
the rightmost image. However, these differences are considered negligible and do not contradict the
overall trend. These differences can be attributed to numerical error, the Earth’s oblateness, or varying
propagation periods when expressed in orbital periods (the propagation period was the same T = 24
hours for each layout, which means that the number of orbits differs for all layouts).

This can be plotted for θ as a function of h and εmin, as shown in Figure 4.27. This plot aligns well with
Figure 4.26, demonstrating that the values of h given in the example correspond closely to εmin. This
confirms the previous assertion that the two are proportional, and thus the parametric analysis can be
conducted on only one of them. For this report, h was held constant and εmin was varied.

4.5. Parametric analysis 49

0 10 20 30 40 50 60 70 80 90
min [deg]

400

600

800

1000

1200

1400

1600

1800

2000

h
[k

m
]

Contour plot for fixed values

0 deg1
de

g

2
de

g

3
de

g

4
de

g

5
de

g

6 d
eg

7 d
eg

8 d
eg

9 d
eg

10 deg

11
 de

g

12 deg
13 deg

14 deg
15

 de
g

16
 de

g
17

 de
g

18
 de

g

19
 de

g

20
 de

g

21
 de

g

22
 de

g

23
 de

g

24
 de

g

25
 de

g

Figure 4.27: Contour plot for θ as a function of h and εmin

Moreover, we can look at the visibility curves as functions of minimum elevation angles for a fixed h, as
shown in Figure 4.28 (more figures for other layouts can be found in Appendix C.4). It can be observed
that the visibility curve scales up with a decreasing elevation angle, which is expected as lower minimum
elevation allows more satellites to be observed from the ground. More notably, however, the peak value
of the visibility curve, along with the “bell”, shifts more towards the equator, peaking at lower latitudes
compared to higher εmin. This can be explained by the fact that grid points at lower latitudes start seeing
more satellites from higher latitudes, which increases their weight and shifts the distribution of visibility
to lower latitudes. Conversely, the higher latitude points decrease their weight as their field of view
expands to a lower number of satellites.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350

Sa
ts

 in
 v

ie
w

[-]

Mean
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 4970 sats, inc = 60 deg

Figure 4.28: Parametric analysis, varying εmin.

The figures show that the visibility curves for various minimum elevation angles scale non-linearly. This
scaling is linked to the visibility cone, as observed from a ground-based observation point. As the
minimum elevation angle decreases, the visibility cone expands, thereby capturing more satellites.
Interestingly, this scaling also corresponds to the Earth’s central angle. This correlation is logical, as
the ground area, expressed by the Earth’s central angle, is 2θ, as seen from Figure 2.5. This suggests
that the maximum visibility scales in a similar manner to θ with changing εmin.

However, we cannot use the exact formula for θ, as it corresponds to an angle, while our interest lies
in the number of satellites in view. If this equation is scaled with a scaling coefficient C1, as provided
by Equation (4.5), to match the peak visibility value for the reference εmin, ref = 30◦, the scaled curve
shows behaviour similar to the numerical data (see Figure 4.29).

yscaled = C1 ·

(
arccos

(Re

Re + h
cos εmin

)
− εmin

)
(4.5)

Despite this, the difference in values remains significant for εmin, ref < 30◦. Therefore, it is not recom-

50 4. Coverage Estimation

mended to use this exact formulation of the equation.

There could be several reasons for this discrepancy. Firstly, satellites are not evenly distributed in the
sky, implying that the number of satellites in view does not scale linearly with θ. Secondly, the simulation
involves dealing with a 3D Earth model rather than a 2D one, adding complexity to the analysis. A more
detailed quantitative analysis of this phenomenon is beyond the scope of this project, but it could serve
as an intriguing topic for future research.

0 10 20 30 40 50 60
Min. elevation [deg]

0
50

100
150
200
250
300
350

Pe
ak

 v
al

ue

N = 4970 sats, i = 60 deg
y-axis scaled

Figure 4.29: Peak visibility value as a function of minimum elevation angle εmin

While the observations made may not seem particularly noteworthy, this analysis provides valuable
insights into how visibility changes with variations in h or εmin. Such insights could prove beneficial for
mission analysts in the design of mega-constellation missions as it would allow to adjust parameters
more efficiently in the process.

4.6. Summary and Conclusions
This chapter showed provided an overview of existing methods for visibility computation, and selected
one for this thesis: Grid Point method. This method relies on elevation angle of satellites with re-
spect to grid points on the ground. The advantage of this method is its versatility and straightforward
implementation. The disadvantage of this method is its time complexity. However, this can be over-
come by utilising GPUs due to the embrassingly parallel nature of this method. Visibility computation
augmented by GPUs was implemented in the mcdo tool and verified with Godot and other methods pro-
posed by other researchers. Furthermore, simplifications for largeWalker constellations were analysed
that accelerate visibility computation without compromising accuracy too much. North-South symmetry,
longitude averaging, and snapshot simplifications were considered, and their accuracy and limitations
were analysed. Finally, a parametric analysis of large Walker constellations was conducted to see the
effect of parameters defining a Walker constellation on mean and minimum visibility.

Key Takeaways
• Embarrassingly parallel nature of the selected Grid Point method allows for GPU utilisation which
substantially accelerates visibility computation

• Using data in FP32 format is sufficient for visibility computation
• This computation method can be applied to any number of satellites and any grid resolution but
memory limitations must be considered

• Simplifications:

– North-South symmetry is always used for Walker constellations due to their symmetry
– Longitude averaging (grid points on a single meridian line) is accurate if the propagation

period is sufficiently long (at least 10 full orbital periods is recommended)
– Snapshot simplification does not require propagation but does require a grid over the entire

globe
• Parametric analysis of large Walker constellations:

4.6. Summary and Conclusions 51

– P and F do not affect mean visibility but may have a significant effect on minimum visibility
– The minimum visibility is generally 5-10% lower than the mean visibility
– The visibility of a shell spans from the equator and peaks at latitude values slightly below the

inclination value
– Mean visibility scales linearly with the total number of satellites
– Altitude and minimum elevation angle can be expressed equivalently via a single parameter:

Earth central angle

Limitations and Recommendations
• Implementation of visibility computation provides only the number of satellites in view without
mentioning what exact satellites are visible at each grid point.

• Current implementation assumes that the satellite antenna is pointing nadir and its field of view
can be express equivalently with the minimum elevation angle. In the future, satellite’s field of
view and antenna pointing offset can be included.

• Visibility can be expressed as a continuous function of latitude, inclination, and Earth central angle
with the use of an interpolator.

• The tool can also be used for Earth observation but this would require a very fine grid due to a
very narrow camera/sensor angle of EO satellites payload.

5
Multi-shell Mega-constellation Design

Building on our understanding of large Walker constellations that form mega-constellations, it is of
interest to explore efficient strategies for their combination. The primary objective is to minimise the
cost function within a reasonable timeframe.

Insights from Chapter 4 show that the average visibility remains unaffected by the number of planes
P and the phasing parameter F . Consequently, the strategy adopted is to first focus on the average
visibility and subsequently optimise the minimum visibility. This implies that in the initial phase of the
optimisation process, P and F will not be considered as design variables.

Generalisingmethods for constellation design optimisation can be challenging. Therefore, it is helpful to
define a test case for design and optimisation. For this project, we will focus on a constellation intended
for broadband connectivity, which would need to provide coverage in Europe. The requirements for this
study case are summarised in Table 5.1 and explained below.

Table 5.1: Requirements for a study case.

Parameter Requirement Rationale
Latitude 35-70 deg Europe latitudes

Sats in view Minimum: 50 at all times Large number that will help test the limits of the
mcdo tool and methods

Altitude 700 km Avoid atmosphere drag, avoid overly populated
region of 700-950 km, easier spacecraft disposal

Min. elev.
angle 30 deg Typical value for broadband mega-constellation

systems

The visibility requirement is to maintain at least 50 satellites in view at any given moment (minimum vis-
ibility) within the latitude band between 35 and 70 degrees, corresponding to Europe. The requirement
of 50 satellites stems from the fact that fulfilling this requirement will necessitate several thousands of
satellites. This will help in testing the mcdo tool and new methods, pushing them to their limits with
such a high number of satellites.

As demonstrated in Section 4.5, the minimum visibility is typically 10% lower than the average visibility.
Consequently, it is decided to transform the minimum visibility requirement into an average visibility
requirement, setting it at an average of 55 satellites in view. Due to this approach of the effects of P
and F on the design will be avoided. Once the optimal shells are identified, P and F for each shell can
be optimised based on the minimum visibility requirement. Due to the time constraints of this thesis,
finding optimal P and F is left as a recommendation for the future work.

The minimum elevation angle and altitude are considered fixed and are thus not subject to optimisation.
The altitude is set at 700 km, and the minimum elevation angle is 30 degrees. These are typical

53

54 5. Multi-shell Mega-constellation Design

values for broadband constellations. While the altitudes shown in Section 2.2 are slightly lower (Kuiper,
Starlink, Kepler) or substantially higher (OneWeb), the rationale for a 700 km altitude is to avoid highly
populated altitudes occupied by other large constellations and avoid altitudes above 700 km up to 950-
1000 km, which are densely populated with Earth observation satellites. Additionally, a lower altitude
decreases orbital decay time and facilitates easier spacecraft disposal.

Mega-constellation optimisation can involve various cost functions, incorporating different parameters
typically dictated by customer requirements. This requires finding a method to integrate these param-
eters in a way that aligns with customer needs and requirements. However, the specific customer
preferences are unknown. Hence, only one parameter is considered in the cost function.

For this project, the cost function is defined as the total number of satellites in the mega-constellation,
denoted as Ntot. This definition is chosen because:

• The launch and manufacturing costs of all satellites constitute the largest portion of the total cost
[103]. Therefore, reducing the number of satellites by a few hundreds will significantly lower the
expenses.

• It is a single objective, meaning that there is no need to deal with weights for other objectives or
to compute a Pareto front.

• It is a very descriptive and easy-to-understand parameter, providing clear insight into the optimi-
sation process.

This chapter introduces methods for optimising mega-constellations through the simple permutation of
shells, as detailed in Section 5.1. Additionally, Section 5.2 elaborates on the acceleration of the optimi-
sation process to decrease computational time and allow to find more optimal solutions. Subsequently,
Section 5.3 presents a novel approach to mega-constellation design that is based on visibility require-
ments. Lastly, Section 5.4 provides an analysis of the computational time associated with the various
methods and setups utilised in this project.

5.1. Shell Permutation
The most direct approach to finding the optimal solution involves iterating through all possible combina-
tions. Given that the developed method of visibility computation enables faster calculations, there is no
immediate need to apply mathematical optimisation algorithms. This suggests that shells at different
inclinations with varying numbers of satellites can simply be selected and permuted collectively. This
method will henceforth be referred to as the permutation method.

The assumption is made that all shells are positioned at the same altitude of 700 km. This assump-
tion is based on the likelihood that the altitude of satellites is predetermined by payload or regulatory
requirements. In reality, the altitude separation between shells can be relatively small, for instance, 10
km but for the initial analysis this difference is considered negligible. This altitude difference is observed
in constellations such as Kuiper (initial design) and Starlink while OneWeb positions all shells at the
same altitude. Thus, this assumption is considered valid.

To estimate how the number of possible combinations, and consequently the computational time, will
scale, an initial examination of the number of layouts for each individual shell j can be conducted. Since
all permutations of N and i are considered, this is equivalent to:

nj = len(Nrange, j) · len(irange, j) (5.1)

The number of possible combinations can be computed as follows:

nCr =
n!

r!(n− r)!
(5.2)

where r represents the number of shells and n is defined by Equation (5.1). It can be observed that if
r is increased, then nCr grows drastically, especially if one aims for sufficiently high resolution (which
implies that ∆N and ∆i should be sufficiently low). This can escalate very quickly, and examples will
be demonstrated in the following subsections.

5.1. Shell Permutation 55

5.1.1. One shell
Before exploring the design of multi-shell constellations, the feasibility of a single-shell solution is ex-
amined. Based on the parametric analysis presented in Section 4.5, the inclination and the number of
satellites for a single shell are estimated and shown in Table 5.2.

Table 5.2: Setup for initial one-shell constellation design.

Parameter Min. value Max. value Increment Total
values

Inclination i 60 deg 71 deg 1 deg 12

Number of sats
N

9, 000 sats 11, 000 sats 100 sats 21

Total one-shell layouts 252 layouts

• Number of steps: T = 1441
Propagation period of t = 24 hours with an increment ∆t = 60 seconds

• Number of points: M = 10, 920
Grid of points with 120 points in longitudinal direction (3 deg resolution) and 91 points in latitudinal
direction (1 deg resolution)

Figure 5.1 shows that a single-shell constellation is highly inefficient, as it provides excessive coverage
in the latitude range of 40 to 68 degrees. Themean visibility reaches 150 satellites in view at 58 degrees
latitude, which is 2.7 times more than the requirement. A typical visibility curve has a “bell” shape with a
“tail”, which suggests that using multiple shells can reduce the peak and flatten the curve, thus meeting
the requirement more closely and optimising the constellation design.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

25

50

75

100

125

150

Sa
ts

 in
 v

ie
w

[-]

i = 64 deg, N = 10201 sats, P = 101 planes, F = 80
Mean
Min
Requirement (mean)
Requirement (min)

Figure 5.1: Visibility for one-shell mega-constellation.

5.1.2. Two shells
Drawing from the parametric analysis in Section 4.5, we can estimate the initial range for both shells
to achieve the desired visibility. Consequently, the search ranges for N and i are set to the values
shown in Table 5.3. For inclination, there is no need to exceed this inclination as it would result in
unnecessary overcrowding of satellites at high latitudes, while the coverage requirement is up to 70
degrees. For the same reason, the lower bound of inclinations is set: shells with an inclination of 35
degrees are expected to have a visibility peak at approximately 30 degrees latitude, which is outside the
target service area. As for the number of satellites, the parametric analysis showed that for the given
constellation parameters, namely h, εmin, and inclination range, this is a sufficient number of satellites,
especially for an initial estimate.

• Number of steps: T = 1441
Propagation period of t = 24 hours with an increment ∆t = 60 seconds

56 5. Multi-shell Mega-constellation Design

Table 5.3: Setup for initial two-shell constellation design.

Parameter for
each shell Min. value Max. value Increment Total

values
Inclination i 35 deg 80 deg 5 deg 10

Number of sats
N

3000 sats 6000 sats 500 sats 7

Total two-shell layouts 2, 415 layouts

• Number of points: M = 10, 920
Grid of points with 120 points in longitudinal direction (3 deg resolution) and 91 points in latitudinal
direction (1 deg resolution)

From the given ranges and Equation (5.2), it is possible to compute the number of possible combina-
tions. The inclination range includes 10 values, while the range forN includes 7 values, yielding n = 70
combinations of r = 2 shells. Substituting these numbers for both shells into Equation (5.2), it is found
that 70C2 = 2415 two-shell constellation layouts over which it is necessary to iterate.

It should be noted that for the first iteration, the search grid is relatively coarse to maintain a reasonable
computational time. Based on the results of this iteration, it will be possible to estimate the search
range for subsequent iterations. This search will be refined to find a more optimal solution.

2500 3000 3500 4000 4500 5000 5500 6000 6500
Number of satellites [-]

45

50

55

60

65

70

75

In
cli

na
tio

n
[d

eg
]

Two-shell constellations satisfying requirements

N = 9487 sats
N = 9445 sats
N = 9445 sats

Figure 5.2: Two-shell constellation layouts satisfying requirements. One point represents a shell. Two shells comprising the
same mega-constellation are connected by a dashed line.

The mega-constellations satisfying the requirements with 55 satellites in view on average are shown
in Figure 5.2. Each point in Figure 5.2 corresponds to one shell. Shells within the same constellation
share the same colour and are connected by a dashed line. Since the interest lies in the lowest number
of satellites, all layouts with N > 9500 sats have been filtered out.

From Figure 5.2, it can be observed that the inclination range is selected correctly, and the optimiser
does not tend to exceed the selected range. However, with the number of satellites, it can be seen that
the black line lies on the boundary of the range for N . Thus, it would be of interest to see the behaviour
of N if the bounds of the range for N are extended.

Figure 5.3 provides an illustration of the visibility for two-shell layouts that meet the specified require-
ment. From this, several observations can be made.

Firstly, the visibility curves intersect the requirement line at a latitude significantly higher than the upper
bound φ = 70◦. This suggests that enhancing the resolution for the inclination range could improve the
current solution, as this would cause the visibility curves to shift to the left.

Secondly, it is noticeable that the visibility curve only touches the requirement line at the upper and lower
latitude bounds. In between these bounds, it significantly exceeds the visibility, sometimes by more
than twice the requirement. This indicates that the constellation is overdesigned. Therefore, increas-
ing the resolution and expanding the search bounds could help reduce this overdesign, consequently

5.1. Shell Permutation 57

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100
Sa

ts
 in

 v
ie

w
[-]

Total mean, N = 9487 sats
Total min.
N = 3481 sats, i = 50.0 deg
N = 6006 sats, i = 70.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 9445 sats
Total min.
N = 3969 sats, i = 50.0 deg
N = 5476 sats, i = 70.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 9445 sats
Total min.
N = 3969 sats, i = 70.0 deg
N = 5476 sats, i = 55.0 deg

Figure 5.3: Visibility of two-shell constellation layouts satisfying requirements. Dark-grey line dashed line represents the
requirement for average visibility and light-grey for minimum visibility.

decreasing the number of satellites in the constellation.

Refining and broadening the search range results in the two-shell layouts shown in Figure 5.4. The
search range for this figure is presented in Table 5.4. This resulted in the total of 5.33 · 106 two-shell
layouts, which could not be fully analysed within a reasonable timeframe if fully propagated. Therefore,
a simplification of longitude averaging was applied for the design.

Table 5.4: Setup for two-shell constellation design with one meridian line simplification.

Parameter for
each shell Min. value Max. value Increment Total

values
Inclination i 35 deg 80 deg 1 deg 46

Number of sats
N

1000 sats 8000 sats 100 sats 71

Total two-shell layouts 5, 331, 745 layouts

• Number of steps: T = 1441
Propagation period of t = 24 hours with an increment ∆t = 60 seconds.

• Number of points: M = 91
91 points in latitudinal direction (1 deg resolution) lying on a single meridian line.

If all layouts with the number of satellites N > 8600 are excluded, a clear trend emerges: shells with
higher inclinations are populated with a greater number of satellites, while shells with lower inclinations
have fewer satellites. This can be attributed to the fact that shells at higher inclinations also cover
lower latitudes, while the “bell” of the visibility curve remains approximately the same, i.e., the width
and height are more or less consistent. This is clearly illustrated in Figure 4.25, where the only variable
parameter is i. Constellations at inclinations 30◦ ≤ i ≤ 70◦ produce very similar visibility curves, except
that the “tail” becomes lower (on y-axis) with increasing inclination.

1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
Number of satellites [-]

40

45

50

55

60

65

70

In
cli

na
tio

n
[d

eg
]

Two-shell constellations satisfying requirements

Figure 5.4: Two-shell constellation layouts satisfying requirements. Labels with total numbers of satellites removed for
readability purposes. The layouts shown have the total number of satellites Ntot < 8600.

58 5. Multi-shell Mega-constellation Design

Figure 5.5 presents six mega-constellation layouts with the minimum Ntot. Now, the minimum number
of satellites is Ntot = 8, 242 satellites, which is 1959 satellites fewer than the single-shell layout. This is
already a very significant decrease in Ntot which highlights the advantage of multi-shell design.

It can be observed that the distribution of satellites within shells, as well as the inclinations of shells,
are very similar, resulting in a small difference in Ntot. From this, it can be noted that the visibility curve
flattens out at latitudes lower than 50 degrees, indicating a more efficient design. The higher latitudes
are still largely overserviced, leading us to assume that adding a third shell could be beneficial in further
reducing the number of satellites. This will be analysed in the subsequent section.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 8378 sats
Total min.
N = 1406 sats, i = 42.0 deg
N = 6972 sats, i = 66.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 8288 sats
Total min.
N = 1482 sats, i = 42.0 deg
N = 6806 sats, i = 66.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 8371 sats
Total min.
N = 1482 sats, i = 42.0 deg
N = 6889 sats, i = 66.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 8324 sats
Total min.
N = 1600 sats, i = 43.0 deg
N = 6724 sats, i = 66.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 8242 sats
Total min.
N = 1681 sats, i = 43.0 deg
N = 6561 sats, i = 66.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 8367 sats
Total min.
N = 1806 sats, i = 43.0 deg
N = 6561 sats, i = 66.0 deg

Figure 5.5: Visibility of two-shell constellation layouts satisfying requirements. Dark-grey line dashed line represents the
requirement for average visibility and light-grey for minimum visibility.

5.1.3. Three shells
Building on the results from the two-shell constellation design, the next step is to proceed to three-shell
constellations. As demonstrated earlier, the number of all possible layouts grows very rapidly if the
number of shells is increased. If for r = 2 shells, the number of combinations was C ≈ 4.96 · 106, then
for r = 3 with the same resolution, this number becomes C ≈ 5.80 · 109, i.e., three orders of magnitude
larger. Therefore, the steps of ∆i = 1◦ and∆N = 100 sats must be increased to achieve a reasonable
computational time. Due to the fact that the interest is in layouts with Ntot < 8242 satellites (as the aim
is to improve two-shell design), all layouts with the total number of satellitesNtot > 8300 were discarded.
The search range provided in Table 5.5 for three-shell design yields a total of C ≈ 81.3 · 106 various
shell combinations to be iterated over.

Due to the exceedingly high number of layouts that required analysis, the “snapshot” simplification was
applied. This means that only the initial states of mega-constellations were analysed. It was assumed
that the accuracy is sufficient. Additionally, the final results are verified with a full-time simulation with
24 hours of propagation time.

Table 5.5: Setup for three-shell constellation design with snapshot simplification.

Parameter for
each shell Min. value Max. value Increment Total

values
Inclination i 35 deg 80 deg 1 deg 46

Number of sats
N

1000 sats 8000 sats 200 sats 36

Total three-shell layouts 755, 514, 120 layouts
Only with Ntot ≤ 8300 sats 81.3 · 106 layouts

5.1. Shell Permutation 59

• Number of steps: T = 1
Snapshot simplification applied, considering only initial states of satellites.

• Number of points: M = 10, 920
Grid of points with 120 points in longitudinal direction (3 deg resolution) and 91 points in latitudinal
direction (1 deg resolution).

The results are presented in Figure 5.6. It can be observed that the trend closely resembles the two-
shell design: a greater number of satellites are allocated to higher inclinations, while the number of
satellites per shell decreases with decreasing inclination. The reason for this is the same as that of
the two-shell layout: higher-inclination shells cover lower latitudes, while lower-inclination shells leave
higher latitudes uncovered.

1000 1500 2000 2500 3000 3500 4000 4500
Number of satellites [-]

35

40

45

50

55

60

65

70

75

In
cli

na
tio

n
[d

eg
]

Three-shell constellations satisfying requirements

Figure 5.6: Three-shell constellation layouts satisfying requirements. Labels with total numbers of satellites removed for
readability purposes. The layouts shown have the total number of satellites Ntot < 7800.

Most importantly, the total number of satellites is now significantly reduced. Specifically, the minimum
is now Ntot = 7629 sats, while the two-shell layouts shown in Figure 5.5 have the lowest Ntot = 8242
sats, which is 613 satellites more compared to the three-shell design. It was not possible to obtain a
lower Ntot with a step of ∆N = 200 sats. However, Figure 5.7 illustrates how flat the visibility curve
becomes for the lowest obtained number of satellites. This indicates that there is little to no overdesign
in the layout and leads to the conclusion that the total number of satellites cannot be further decreased.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7776 sats
Total min.
N = 1406 sats, i = 40.0 deg
N = 2401 sats, i = 54.0 deg
N = 3969 sats, i = 70.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7778 sats
Total min.
N = 1600 sats, i = 40.0 deg
N = 2209 sats, i = 54.0 deg
N = 3969 sats, i = 70.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7783 sats
Total min.
N = 1600 sats, i = 40.0 deg
N = 2401 sats, i = 55.0 deg
N = 3782 sats, i = 71.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7755 sats
Total min.
N = 1806 sats, i = 41.0 deg
N = 1980 sats, i = 55.0 deg
N = 3969 sats, i = 70.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7629 sats
Total min.
N = 1806 sats, i = 42.0 deg
N = 2401 sats, i = 57.0 deg
N = 3422 sats, i = 72.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7742 sats
Total min.
N = 1980 sats, i = 43.0 deg
N = 1980 sats, i = 58.0 deg
N = 3782 sats, i = 71.0 deg

Figure 5.7: Visibility of three-shell constellation layouts satisfying requirements. Dark-grey line dashed line represents the
requirement for average visibility and light-grey for minimum visibility.

5.1.4. Verification
This subsection provides a brief verification of the “winner” layouts for both two- and three-shell constel-
lation layouts. For verification purposes, a full propagation period of T = 24 hours was applied. The

60 5. Multi-shell Mega-constellation Design

grid size was set at 91x120, corresponding to a 1-degree resolution in the latitudinal direction and a
3-degree resolution in the longitudinal direction.

For the two-shell design, Figure 5.8 depicts that the distribution remains consistent, with minor differ-
ences in minimum visibility which align with the expectations for the employed method.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Nu
m

be
r o

f s
at

el
lit

es
 in

 v
ie

w

One meridian
Total mean, N = 8242 sats
Total min.
N = 1681 sats, i = 43.0 deg
N = 6561 sats, i = 66.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Nu
m

be
r o

f s
at

el
lit

es
 in

 v
ie

w

Full
Total mean, N = 8242 sats
Total min.
N = 1681 sats, i = 43.0 deg
N = 6561 sats, i = 66.0 deg

Figure 5.8: Verification of two-shell mega-constellation design. Visibility on the left is computed using one meridian line
simplification, visibility on the right is computed with a full simulation (T = 24 hr, grid resolution is 1x3 deg).

In the case of the three-constellation design, as shown in Figure 5.9, the mean visibility of the fully
propagated model aligns with that of the design obtained using snapshot simplification. However, the
minimum visibility is slightly but noticeably lower. This discrepancy can be attributed to the reduced
accuracy resulting from the use of simplifications. Nonetheless, this is not a significant issue as the min-
imum visibility can be improved later by adjusting P and F for all shells as was previously demonstrated
in Section 4.5.1.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Nu
m

be
r o

f s
at

el
lit

es
 in

 v
ie

w

Snapshot
Total mean, N = 7629 sats
Total min.
N = 1806 sats, i = 42.0 deg
N = 2401 sats, i = 57.0 deg
N = 3422 sats, i = 72.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Nu
m

be
r o

f s
at

el
lit

es
 in

 v
ie

w

Full
Total mean, N = 7629 sats
Total min.
N = 1806 sats, i = 42.0 deg
N = 2401 sats, i = 57.0 deg
N = 3422 sats, i = 72.0 deg

Figure 5.9: Verification of three-shell mega-constellation design. Visibility on the left is computed using snapshot simplification,
visibility on the right is computed with a full simulation (T = 24 hr, grid resolution is 1x3 deg).

Therefore, it can be confirmed that the two- and three-shell layout optimisation produces layouts that
are sufficiently accurate for study purposes, verifying the use of these methods for multi-shell design
optimisation.

5.2. Permutation Acceleration
This section is dedicated to methods for accelerating the constellation design process, which was de-
tailed in the Section 5.1, encompassing the approach, requirements, parameters, and optimiser be-
haviour. The objective of this section is to introduce methods that reduce computational time without
significantly sacrificing accuracy.

It should be noted that some of the methods outlined in this section have already been employed in
Section 5.1 to speed up the constellation design process. This was a conscious decision, as the aim
of that section was to examine the impact of the number of shells on the total number of satellites, as
well as the distribution of satellites among shells.

5.2. Permutation Acceleration 61

5.2.1. Propagate each shell separately
Permutation can be significantly accelerated by propagating each shell of a mega-constellation individ-
ually, rather than collectively, and subsequently combining them. This method’s effectiveness stems
from the computation of visibility. For a given set of grid points, visibility can be computed separately
for each constellation shell, and then summed up. This approach yields the same result as simultane-
ous propagation and visibility computation for all elements. A visual example for a three-shell mega-
constellation is shown in Figure 5.10. Figure 5.10a shows the setup for computing visibility when three
shells are combined initially and then propagated while Figure 5.10b shows how the same result can
be obtained if three shells are propagated separately and only final results are superimposed.

Shell 1

Shell 2

Shell 3

Mega-
constellation Propagate Compute

visibility Save data MC_ThreeShells_
Visibility.csv

(a) Algorithm of propagation and computing visibility of a three-shell mega-constellation.

Shell 2 Propagate Compute
visibility Save data

Shell 1 Propagate Compute
visibility Save data

Shell 3 Propagate Compute
visibility Save data

Shell_1_Visibility.csv

Shell_2_Visibility.csv

Shell_3_Visibility.csv

MC_ThreeShells_
Visibility.csv

(b) Algorithm of propagation and computing visibility of three shells separately.

Figure 5.10: Comparison of two methods of computing multi-shell mega-constellation visibility.

This approach greatly reduces the number of propagations and visibility computations. Each shell can
be propagated separately for a given range of parameters, and the visibility files can be stored and
reopened later to compute the mean and minimum visibility for each mega-constellation. This method
is much more efficient than propagating each mega-constellation individually, as reading pre-computed
data is faster than propagating and computing the visibility of constellations.

To enhance computational efficiency, a database can be established to store visibility files for each shell.
These files can be readily retrieved by the tool for subsequent use, resulting in significant time savings
through file reuse. Over time, the database will accumulate visibility files, leading to a reduction in the
number of new computations required as pre-computed data becomes readily available. However, it
is crucial to ensure that visibility arrays for addition or comparison correspond to the same set of grid
points, simulation period T , and time step∆t. As demonstrated in Figure 4.6c, these parameters define
the output array. Furthermore, memory limitations must be considered, as individual visibility arrays
can consume significant memory resources (e.g., a visibility array with M = 32, 760 points with T = 24
hours and ∆t = 60 seconds would require approximately 180 MB).

An example of three-shell design is shown in Section 5.1.3. Given the ranges, only n = 1656 shells
need to be propagated and stored, instead of propagating 81 · 106 layouts.

If the focus is only on the mean visibility, pre-computing and storing these mean values can significantly
reduce computational time. This allows for the efficient analysis of a larger number of shells or finer
value ranges. However, there is a caveat: computing the mean visibility in advance implies that the
minimum visibility would be less accurate.

As shown previously, for a constellation, the mean of a sum is the sum of means. This does not hold
true for the minimum value, because the minimum of a sum is not the same as the sum of minimums.
Despite this, an acceptable estimate of the minimum visibility can still be obtained, albeit with lower ac-
curacy. The expected difference between mean and minimum visibility was described in Section 4.5.1.

62 5. Multi-shell Mega-constellation Design

5.2.2. Apply simplifications
Section 4.4 discussed the simplifications that can be applied to accelerate the computation of a Large
LEO Walker constellation’s visibility and how it affects the accuracy of computations compared to non-
simplified calculations. These simplifications can also be applied to multi-shell constellation design.
However, it should be noted that they can decrease the accuracy of computation, especially if the
focus is on the minimum visibility rather than the mean. The mission analyst would need to decide to
what extent the accuracy can be lowered in exchange for a decrease in computational time.

Once the simplifications are applied and optimal layouts are found, the mega-constellation design can
be verified by propagating a few layouts without simplifications to see whether the visibility results differ
from those of the simplified assessment. As shown previously, the mean visibility is not significantly
affected by the simplifications if the simulation setup is chosen appropriately (e.g. a sufficiently long
propagation period for the single meridian simplification or a sufficiently large number of grid points
for the snapshot simplification). However, the minimum visibility may differ by a few satellites. For
example, for the layout shown in Figure 4.16 with N = 4620 satellites, this difference is 4 satellites.

It should also be kept in mind that the minimum visibility can be improved later when optimal values
for the number of planes P and the phasing parameter F are found. More optimal P and F values will
smooth out the minimum visibility curve and prevent very large drops in minimum visibility.

5.2.3. Scale with N
As demonstrated in Section 4.5, visibility scales linearly with the number of satellites N . This provides
an alternative method to accelerate constellation design by scaling visibility curves, rather than propa-
gating constellations and computing those. For given inclination and latitude ranges, mean visibilities
can be loaded into an array. This array, representing mean visibility as a function of inclination and
latitude, contains mean visibility for a fixed altitude h and a reference number of satellites Nref.

The process can proceed in the same way with permuting shells. However, instead of propagating
them or loading files with visibility, mean visibility can be accessed from the array for the required
inclination. This visibility is then multiplied by a factor of the satellite ratio κ, which represents the
number of satellites in a shell Nshell divided by the reference number of satellites in the array Nref:

κ =
Nshell

Nref
(5.3)

These mean visibilities are then summed to obtain the figure of merit. This process must be performed
for a fixed altitude h and minimum elevation angle ε. If shells at different altitudes are desired, multiple
arrays can be used.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7778 sats
N = 1600 sats, i = 39.0 deg
N = 2209 sats, i = 54.0 deg
N = 3969 sats, i = 70.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7783 sats
N = 1600 sats, i = 40.0 deg
N = 2401 sats, i = 55.0 deg
N = 3782 sats, i = 71.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7755 sats
N = 1806 sats, i = 42.0 deg
N = 1980 sats, i = 55.0 deg
N = 3969 sats, i = 70.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7789 sats
N = 1980 sats, i = 42.0 deg
N = 2209 sats, i = 57.0 deg
N = 3600 sats, i = 72.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7742 sats
N = 1980 sats, i = 43.0 deg
N = 1980 sats, i = 57.0 deg
N = 3782 sats, i = 71.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

20

40

60

80

100

120

Sa
ts

 in
 v

ie
w

[-]

Total mean, N = 7629 sats
N = 1806 sats, i = 42.0 deg
N = 2401 sats, i = 57.0 deg
N = 3422 sats, i = 72.0 deg

Figure 5.11: Constellation design with the method of scaling N .

5.3. Shells Building Blocks 63

This method is applied to a three-shell design shown in Section 5.1.3, and the best layouts are pre-
sented in Figure 5.11. It can be seen that the “winner” layout with Ntot = 7629 sats is precisely like
that in Figure 5.6 obtained with applied “snapshot” simplification. Shells are placed almost at the same
inclinations with the same number of satellites.

This method significantly accelerates the process due to the reduced amount of data that needs to be
loaded and stored. The compact size of the visibility array allows it to be stored in the Random Access
Memory (RAM) rather than disk memory (such as a hard drive or SSD) which is considerably faster.
However, a limitation exists in the form of the size of the RAM, which does not allow full visibility arrays
to be loaded into memory. Therefore, only the mean visibility is considered to maintain the size of the
array at a sufficiently low level.

The downside of this method is that the minimum visibility is not computed and one can only assume
that the minimum visibility will be approximately 90% of the mean visibility. This method would not
be suitable if the primary requirement is the minimum visibility. However, as mentioned before, the
minimum visibility also depends on P and F and this method would work for large constellations.

Additional improvements can be made by having continuous values for inclination i and latitude φ, for
which an interpolator could be applied. This is illustrated in Figure 5.12, where the mean visibility is
plotted as a function of latitude and inclination. Continuous values also facilitate the application of a
numerical optimiser, which usually performs better with continuous functions. Therefore, by using an
interpolator, mean visibility becomes a continuous function that can be used for numerical optimisation.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60
70
80
90

In
cli

na
tio

n
[d

eg
]

Interpolated 3D plot of visibility

0
5
10
15
20
25
30
35
40
45
50

Sa
ts

 in
 v

ie
w

[-]

Figure 5.12: Interpolated mean visibility as a function of latitude and inclination.
Simulation setup: N = 992 sats, h = 700 km, εmin = 30 deg

Note: P and F are not specified because they are not relevant for mean visibility.

5.3. Shells Building Blocks
Section 5.1 demonstrated the necessity of maintaining the visibility curve as close as possible to the
requirement in order to minimise the number of satellites. Deviating from this approach results in an
overdesign, leading to increased costs and decreased efficiency. As illustrated in Figure 5.7, expand-
ing the target latitude band would no longer fulfil the requirement with the current N , necessitating
additional shells to maintain a flat visibility curve that satisfies the requirement. Adding another shell
drastically increases the number of combinations and, hence, computational time, as was demonstrated
by Equation (5.2). Therefore, there is a need to either increase the step in the number of satellites and
inclination or devise a different method for designing with more than three shells.

An approach called building blocks was developed where the target latitude band can be divided into
sub-bands, each of a given width and containing two or three shells. These parameters, width and num-
ber of shells, would serve as design parameters defined by the mission analyst. Each band would be
filled up to satisfy the requirement. The design process begins with higher latitudes as it was observed
that in multi-shell designs lower inclination shells have no impact on higher latitudes. The approach is
summarised below, and Figure 5.13 will be used as an example.

Step 1: Select width of latitude sub-ranges ∆φ and number of shells ri per sub-range i

64 5. Multi-shell Mega-constellation Design

As shown in Section 5.1 and Section 5.2, depending on the target latitude band width, the
optimal number of shells can be different. Thus, it would be up to a mission analyst to deter-
mine these parameters, based on requirements and computational resources available. In the
example shown in Figure 5.13, latitude sub-range width is ∆φ = 12 degrees, and the number
of shells is ri = 2. This results in 3 sub-ranges for the target latitude band of 35-70 degrees.

Step 2: Start with the sub-range at highest latitude
It was demonstrated that the higher inclination shells are not affected by lower inclination shells
as the latter cannot satisfy requirements for higher latitudes. This is why the highest sub-range
should be optimised first.

Step 3: Permute shells and find a layout with lowest N
In each sub-range the optimisation process would be the same as shown in Section 5.1 and any
acceleration techniques from Section 5.2 could be applied. Visibility from higher sub-ranges
would be added as those shells contribute as well.

In case there are multiple layouts with the same N , one can apply the following approach:

Step 3a: Compute area under visibility curve for lower sub-ranges
This is a quantitative metric to estimate how much each layout contributes to the
lower latitude sub-ranges.

Step 3b: Select the layout with highest area
Since all layouts in question satisfy the requirements and have the sameN , i.e. the
same value for the cost function, we can select the one that contributes the most to
visibility at lower latitudes making it require fewer satellites.

Step 4: Repeat for all sub-ranges
The process continues from higher inclination shells to lower inclinations, filling each sub-band
until completion as shown in Figure 5.13.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
20
40
60
80

100
120

Sa
ts

 in
 v

ie
w

[-]

Requirement

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
20
40
60
80

100
120

Sa
ts

 in
 v

ie
w

[-]

N = 1550 sats, i = 76.0 deg
N = 3100 sats, i = 66.0 deg
Total mean, N = 4650 sats
Requirement

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
20
40
60
80

100
120

Sa
ts

 in
 v

ie
w

[-]

N = 600 sats, i = 52.0 deg
N = 1300 sats, i = 53.0 deg
Total mean, N = 6550 sats
Requirement

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
20
40
60
80

100
120

Sa
ts

 in
 v

ie
w

[-]

N = 0 sats, i = 35.0 deg
N = 1350 sats, i = 40.0 deg
Total mean, N = 7900 sats
Requirement

 = 12 deg

Figure 5.13: Shells building blocks example. Note that this example does not demonstrate the optimal layout as parameters
were arbitrarily selected for demonstration purposes.

In Figure 5.14, it can be observed that the total number of satellites is very close to Ntot = 7629 sats
obtained with simple permutation of 3 shells (see Figure 5.7 and Figure 5.11). Also, N and i of each
shell are close to those obtained with previous methods. This method may require some iterations
and tuning of ∆φ and ri. However, given the savings in computational time, this method proves to be
suitable for multi-shell mega-constellation design.

It can be noticed that for ∆φ = 19 deg and ∆φ = 23 deg, there are “shells” with zero satellites. Even

5.3. Shells Building Blocks 65

though, the input was to have ri = 2 shells per sub-range, which would lead to 4 shells in total, the
algorithm found that 3 shells is more optimal than 4.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
20
40
60
80

100
120

Sa
ts

 in
 v

ie
w

[-]

 = 12 deg, N = 7900 sats
N = 1550 sats, i = 76.0°
N = 3100 sats, i = 66.0°
N = 600 sats, i = 52.0°
N = 1300 sats, i = 53.0°

N = 0 sats, i = 35.0°
N = 1350 sats, i = 40.0°
Total mean
Requirement

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
20
40
60
80

100
120

Sa
ts

 in
 v

ie
w

[-]

 = 17 deg, N = 8000 sats
N = 2400 sats, i = 60.0°
N = 3200 sats, i = 75.0°
N = 100 sats, i = 60.0°
N = 2000 sats, i = 44.0°

N = 0 sats, i = 35.0°
N = 300 sats, i = 37.0°
Total mean
Requirement

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
20
40
60
80

100
120

Sa
ts

 in
 v

ie
w

[-]

 = 19 deg, N = 7700 sats
N = 2300 sats, i = 57.0°
N = 3500 sats, i = 72.0°
N = 0 sats, i = 50.0°

N = 1900 sats, i = 42.0°
Total mean
Requirement

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
20
40
60
80

100
120

Sa
ts

 in
 v

ie
w

[-]

 = 23 deg, N = 7700 sats
N = 2300 sats, i = 54.0°
N = 3900 sats, i = 70.0°
N = 0 sats, i = 35.0°

N = 1500 sats, i = 40.0°
Total mean
Requirement

Figure 5.14: Shells building blocks with different ∆φ.

This method was applied to improve Jia’s mega-constellation design [51] that was used for verification
in Section 4.3 and shown in Figure 4.10. For the same propagation period, the building blocks method
was used with the final result provided in Table 5.6 with Ntot = 5700 satellites as compared to Jia’s
Ntot = 5686 satellites.

Figure 5.15 illustrates a comparison with Jia’s design, which consists of 45 shells. Although their de-
sign clearly provides more homogeneous mean visibility, the design obtained with the building blocks
method achieves better minimum visibility due to its more uniform distribution of satellites. Moreover,
this can serve as a good first-order estimate for the total number of satellites. Jia’s layout, consisting of
45 shells each comprisingmultiple planes, could pose significant challenges for real-life implementation.
Thus, it is more feasible to have only 8 shells.

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

25

30

35

40

Sa
ts

 in
 v

ie
w

[-]

Mean, N = 5686 sats, Jia
Min, Jia
Mean, N = 5700 sats, Tunjov
Min, Tunjov
Requirement

Figure 5.15: Comparison with Jia’s design [51].

The current method suggests more uniform distribution of satellites which means that the minimum
visibility is significantly higher compare to that of Jia’s. Thus, this method can be used as a good initial
estimate for the number of satellites required in a constellation. This method is also relatively fast
allowing for a high number of shells. A more detailed analysis of computational time will be presented

66 5. Multi-shell Mega-constellation Design

in Section 5.4.

Table 5.6: Jia’s design improvement. N = 5700 sats

Inclination [deg] Num. of sats Num. of planes
85.0 1300 26

73.0 1000 25

63.0 900 25

50.0 900 25

39.0 700 25

27.0 500 20

15.0 300 15

2.0 100 10

5.4. Computational Time Comparison
This section will summarise the gain in computational performance achieved through the proposed
methods. The computational time was determined by executing the tool ten times consecutively with
identical input, and subsequently calculating the average. A preliminary run was performed for the
visibility computation to exclude the GPU initialisation time, which can take a few seconds.

5.4.1. Constellation Propagation
The comparison of computational time solely for propagation is depicted in Figure 5.16. The vectorised
implementation of analytical propagation outperforms BallisticPropagator from Godot by nearly
a factor of 100x. Compared to the non-vectorised version of mcdo (analytical), the speed-up is less
pronounced, but still is around a factor of 20x. As the number of satellites increases significantly, the
computational time growth goes from linear to non-linear after N = 8, 000 satellites. This is likely due
to the memory requirements surpassing the available RAM, necessitating access to the considerably
slower disk memory. It is expected that similar effects would be observed with a lower N value if the
number of steps were increased. However, this was not tested due to the time constraints of the thesis.

102 103 104

Num. of sats [-]

10 1

100

101

102

103

Ti
m

e
[s

]

Constellation propagation, T = 24 hr, dt = 60 s (1441 steps)
mcdo non-vect.
mcdo vect.
godot

Figure 5.16: Computational time comparison for various propagation methods. BallisticPropagator object from Godot was
used for comparison

5.4.2. Visibility Computation
In the computation of visibility, several factors influence the computational time. These factors can be
broadly categorised into three groups: the computational method, the hardware, and the input param-
eters.

Three methods for visibility computation will be compared in terms of computational time: Godot, mcdo
vectorised, and mcdo parallelised (i.e. accelerated by a GPU). Among these, the emphasis is on

5.4. Computational Time Comparison 67

parallelised computation as it offers the maximum reduction in computational time.

Godot does not have direct functionality for global visibility computation. Thus, as a workaround one
can define ground points manually and distribute them over the globe using uni.frames.addPoint1.
The elevation angles of satellites defined and propagated with BallisticPropagator are computed
and compared against the minimum elevation angle εmin. This process, however, is highly inefficient,
which will be shown later in the section.

Given that hardware is typically a fixed factor, the methods can be varied and the following input pa-
rameters can be examined to see how they affect computational time:

• Number of satellites (N)
• Number of time epochs (T)
• Number of grid points (M)
• Floating point precision (single vs. double)

The grid point method essentially involves a for-loop that iterates through all values ofN , T , andM . The
total number of elevation evaluations, which would be equal to N · T ·M , can be examined. However,
to understand the effect of a given parameter on computational time, only one parameter will be varied
at a time.

Table 5.7: Setup for comparison of visibility computational time

Method Num. of steps Num. of points Num. of sats

Godot T = 1441
M = 31 · 12 = 372

(resolution 3 deg in lat.
direction, 30 deg. in long.)

N ranging 1− 40

mcdo vect.
T = 1441 (full propagation)

and T = 1 (snapshot
simplification)

M = 10920 (full
propagation) and M = 91

(one meridian line
simplification)

N ranging
25− 1600

mcdo paral. T ranging 1− 1441 M ranging 132− 32760
N ranging
5− 6400

The setup for visibility computation, as shown in Table 5.7, was used. It is important to note that if only
one parameter is varied, the other two parameters are set to their maximum values. For instance, if T
is varied, then M and N are set to 32760 and 6400, respectively. This approach was adopted to push
the hardware to its limits and observe the effect on computational time.

105 106 107 108 109 1010 1011 1012

Evaluations [-]

10 2
10 1
100
101
102
103
104
105
106
107

Ti
m

e
[s

]

Var: Sats, P2000, SP
Var: Steps, P2000, SP
Var: Points, P2000, SP
mcdo_vectorised, DP

Var: Sats, P2000, DP
Var: Steps, P2000, DP
Var: Points, P2000, DP
Godot

Figure 5.17: Comparison of computational time for various visibility computation methods.

1https://godot.io.esa.int/godotpy/api_reference/generated/generated/godot.model.frames.Frames.html#
godot.model.frames.Frames.addPoint, accessed 14 May 2024

https://godot.io.esa.int/godotpy/api_reference/generated/generated/godot.model.frames.Frames.html#godot.model.frames.Frames.addPoint
https://godot.io.esa.int/godotpy/api_reference/generated/generated/godot.model.frames.Frames.html#godot.model.frames.Frames.addPoint

68 5. Multi-shell Mega-constellation Design

Figure 5.17 presents a comparison of various visibility computation methods in terms of computational
time. It is evident that even with a low-end GPU installed on dclb1 (see Table 4.1) , the computational
time can be reduced by two to three orders of magnitude compared to non-parallelised computation,
i.e., computation handled solely by a CPU. Furthermore, it is observed that variations in N , T , and M
influence the computational time, even when the number of evaluations remains constant. Possible
reasons for this difference will be discussed later in this section.

Furthermore, a comparison of computational time between double precision (DP) and single precision
(SP) calculations is presented in Figure 5.18, focusing on two devices as outlined in Table 4.2. The
computational time differs between the two types of floating precision. However, the difference is less
pronounced for the high-end GPU compared to the low-end GPU. This can be attributed to the fact that
the Tesla V100 is better optimised for calculations with double floating precision [104] compared to the
Quadro P2000 [105]. According to their specifications, the number of floating operations per second
(FLOPS) for the P2000 is 32 times lower for DP, while for the V100, it is only two times lower.

106 107 108 109 1010 1011 1012

Evaluations [-]

10 3

10 2

10 1

100

101

102

103

Ti
m

e
[s

]

Var: Sats, dclb1, SP
Var: Steps, dclb1, SP
Var: Points, dclb1, SP

Var: Sats, dclb1, DP
Var: Steps, dclb1, DP
Var: Points, dclb1, DP

(a) dclb1

106 107 108 109 1010 1011 1012

Evaluations [-]

10 3

10 2

10 1

100

101

102

103

Ti
m

e
[s

]

Var: Sats, masd2, SP
Var: Steps, masd2, SP
Var: Points, masd2, SP

Var: Sats, masd2, DP
Var: Steps, masd2, DP
Var: Points, masd2, DP

(b) masd2

Figure 5.18: Computational time comparison with different hardware setups

As depicted in Figure 5.18b, for masd2, for a low number of evaluations with varying satellites and
points, DP calculations are observed to be faster than SP. This may seem counter-intuitive at first.
However, this is likely due to the fact that not all operations are handled by the GPU, as illustrated in
Figure 4.8. Certain operations, such as data copying and floating point conversion, are managed by
the CPU. The CPU paired with the V100 is significantly less powerful than the one working with the
P2000 (see Table 4.2), which leads to an overhead for a low number of evaluations. Consequently,
for a low number of evaluations, using DP would be faster on masd2, albeit not significantly, because
the acceleration is negated by the DP-to-SP conversion. As the number of evaluations increases, the
computational time for SP becomes lower than that for DP.

It was shown that the computational time scales differently if we vary different parameters, namely the
number of steps T , satellites N or pointsM . The explanations for this can lie in the amount of memory
allocated for the visibility computation, which can be expressed by Equation (5.4)

Mem. = T · (3 ·N · sfloat + 3 ·M · sfloat + P · suint) (5.4)

106 107 108 109 1010 1011 1012

Evaluations [-]

106

107

108

109

1010

1011

M
em

or
y

al
lo

ca
te

d
[b

its
]

Var: Points, masd2, SP
Var: Points, masd2, DP
Var: Steps, masd2, SP
Var: Steps, masd2, DP
Var: Sats, masd2, SP
Var: Sats, masd2, DP

Figure 5.19: Allocated memory for visibility computation.

5.4. Computational Time Comparison 69

where s is the size of a single data value with subscript float corresponding to floating point size (32
or 64 bits) and uint to unsigned integer size (32 bits).

Since it was mentioned that SP is sufficient for this type of calculation, only SP, which has the same
size as uint, i.e. s = sfloat = suint, can be considered. This allows Equation (5.4) to be reduced to the
following:

Mem. = T · s · (3N + 4M) (5.5)

It can be observed that the memory allocated scales linearly with T , which also coincides with computa-
tional time (especially that of masd2). The same can be seen for points and satellites. This is especially
clearly seen when looking at the plot shown in Figure 5.19 for memory allocated and comparing it to
computational time on masd2 shown in Figure 5.18b. Due to the high latency of GPUs (for memory
access), the amount of memory and size of arrays affect the computational time.

Another explanation for the observed scaling and dependence on the number of evaluations is that
memory access is not ideally coalesced. This increases computational time as GPU threads do not
access memory in the most efficient way. Some threads in the warp have to wait for others to finish
computation before they can access new memory cells. However, this was not optimised in this project
and is left as a recommendation for future work.

5.4.3. Mega-Constellation Design
In contrast to the previous subsections that focused on individual computational tasks, specifically
propagation and visibility computation, this section examines the combined computational times of
these tasks. Additionally, this section explores the multi-shell design and the performance increase
due to the application of methods that were discussed in the previous sections of this chapter.

Single Iteration of Visibility Computation
This section begins with a single iteration of the visibility computation of a large single-shell constellation.
This iteration includes:

• Analytical propagation (point-mass + J2)
• Visibility computation

The following setup is used:

• CPU: Intel(R) Xeon(R) W-2125 CPU @ 4.00GHz
• GPU: NVIDIA Quadro P2000
• Input: N = 6400 sats, T = 1441 steps, M = 32760 points
• Precision: DP for propagation, SP for visibility computation

1 10 100 1,000 10,000 100,000 1,000,000
Performance gain [x]

Parallelised
 (snapshot)

Parallelised
 (one meridian)

Parallelised
 (full)

Vectorised
 (snapshot)

Vectorised
 (one meridian)

Performance gain w.r.t vectorised mcdo full propagation (one iteration)

120,367 x

4,373 x

415 x

1,590 x

242 x

Figure 5.20: Performance gain for various methods.

70 5. Multi-shell Mega-constellation Design

Performance comparison will be shown with respect to vectorised mcdo implementation2. This refer-
ence simulation includes the full propagation time, all propagation points, and all satellites. Subse-
quent simplifications and accelerations are applied to assess their impact on computational time. The
results presented in Figure 5.20 show that the GPU-accelerated computation with snapshot simplifi-
cation demonstrates a considerable reduction in computational time, up to five orders of magnitude,
without compromising accuracy significantly.

Figure 5.20 illustrates the performance gains achieved through the methods developed in this project.
Simplifications prove effective in reducing calculation time, even for CPU-based computations. How-
ever, the utilisation of GPUs further enhances computational efficiency, yielding substantial time sav-
ings.

Snapshot simplification is an important contributor to computational speed, benefiting both vectorised
computation and CPU-based calculations. This method saves a significant amount of time not only on
visibility computation but also on propagation, which becomes quite time-consuming when the number
of satellites and steps are high.

Multi-shell Design: Permutation
Furthermore, it is of interest to compare the aforementionedmethods for multi-shell constellation design,
which can involve thousands or even millions of iterations. Section 5.2 already showed that multi-shell
design can be done by saving files with visibility for individual shells and then combining them. This
subsection compares computational time for reopening files and propagation (which includes constel-
lation propagation and visibility computation), along with other methods discussed in Section 5.2 and
Section 5.3. The parameters used in comparison are presented in Table 5.8.

Table 5.8: Setup for comparison of visibility computational time

Parameter Min. value Max. value Increment Total
values

Inclination i 30 deg 80 deg 2 deg 26

Number of
sats N

2, 000 sats 8, 000 sats 300 sats 21

Total two-shell layouts 148, 785 layouts

The result shows that there will be 546 unique shells that will be combined into two-shell constellations,
which then will be evaluated against the requirement. It also implies that only 546 files will be saved (as
they are reused for both shells), enabling an estimate of memory requirements for each method used.
Although not directly related to constellation design, considering memory limits might be important as
each hardware setup has its own limitations.

It is crucial to note that the goal here is not to find the optimal layout, as it was thoroughly addressed
in Section 5.1.

Table 5.9 shows the comparison and corresponding speed-up factors between propagation and file
reopening. It can be seen that the propagation and visibility computation take very long even with one
meridian simplification. For this reason, a smaller range was considered for full propagation and prop-
agation with one meridian simplification applied, resulting in a total of 2, 145 two-shell layouts (∆i = 10
deg and ∆N = 500 sats). It can be seen, however, that file reopening is much faster for all simplifi-
cations considered. File reopening offers a very significant gain. Thus, it is recommended to use this
approach for mega-constellation design.

It is important to remember that file reopening still requires propagations to compute data. However,
this is not a big issue because the number of single-shell layouts that need to be computed is much
lower than two-shell layouts.

2Godot is not used in performance analysis anymore because it is not optimised for mega-constellation design, and almost
any self-written software for this purpose generally outperforms Godot.

5.4. Computational Time Comparison 71

There are some notable observations with regard to one meridian simplification shown in Table 5.9.
The meridian simplification is only 2x faster than full propagation, while file reopening is faster by a
factor of 166x. This was not expected initially, but possible reasons are provided below.

1. Constellation propagation time (without visibility computation) is the driving factor of total com-
putational time. The two methods require the same constellation propagations, which become
the driving factor of computational time. Visibility computation, in this setup, is not significantly
affected by reducing the number of points, especially with a low number of satellites. This aligns
with Figure 5.18, which shows that varying the number of points may not always reduce the com-
putational time by a large margin.

2. Output files are considerably smaller (by a factor of 360x), resulting in faster opening and pro-
cessing. While snapshot files are smaller by a factor of 4x, computational time differs by a factor
of 2.5x, likely due to overhead when opening files from disk memory.

Table 5.9: Setup for comparison of visibility computational time.

Simplification Propagation File reopening Speed-up

Full 3.44 · 106 s
(projected time based on

smaller range)

30, 102 s 114 x

One meridian 1.55 · 106 s
(projected time based on

smaller range)

181.0 s 8, 577 x

Snapshot 10, 919 s 72.22 s 151 x

Scaling with N 3.18 s

Also, Table 5.9 illustrates that scaling withN offers a significant gain in computational time, as expected
due to how CPU memory is handled, as was previously discussed in Section 5.2.

Multi-shell Design: Building Blocks
Finally, this subsection compares the building blocks method with the permutation method. The focus
of this analysis is on the number of combinations. Given that the same methods can be employed
for visibility computation in both the building blocks method and permutation methods, the relative
difference in computational time remains consistent regardless of the chosen method.

The setup shown in Table 5.10 was used for comparison.

Table 5.10: Setup for comparison of computational time using the building blocks method.

Parameter Values Increment
Subrange 1

Target latitude 51 to 70 deg -

Inclination 51 to 80 deg 1 deg

N per shell 0 to 4000 sats 100 sats

Total two-shell layouts 706, 266 layouts

Subrange 2

Target latitude 35 to 51 deg -

Inclination 35 to 61 deg 1 deg

N per shell 0 to 4000 sats 100 sats

72 5. Multi-shell Mega-constellation Design

Total two-shell layouts 524, 800 layouts

Total
Target latitude 35 to 70 deg 19 deg

Total two-shell layouts 1, 231, 066 layouts

Applying the same resolution for the search grid, namely the same ∆i and ∆N , for a three-shell layout
over the entire target latitude range, the total number of layouts is computed as shown in Table 5.11.

Table 5.11: Setup for comparison of computational time using the permutation method for three-shell design.

Parameter Values Increment
Target latitude 35 to 70 deg -

Inclination 35 to 80 deg 1 deg

N per shell 0 to 4000 sats 100 sats

Total three-shell layouts 1, 116, 304, 540 layouts
Only with 7000 ≤ Ntot ≤ 8000 sats 182, 849, 954 layouts

The result shows that the number of layouts that have to be iterated over is much higher for a three-
shell permutation due to its lower efficiency (e.g. all 3 shells can be at i < 40 deg). In this particular
example, the computational time is reduced by a factor of 190 regardless of the method used for visibility
computation. This reduction is already based on the assumption that the approximate total number of
satellites is known, and bounds for lower and upper values are set. If this assumption is not considered,
the difference becomes even more pronounced, growing to a factor of 1, 161.

Lastly, it is compared how Jia’s design improvement was achieved through the application of the build-
ing blocks method, resulting in the configuration of 8 shells at various inclinations (refer to Table 5.6).

Table 5.12 shows that the building blocks method can allow for a multi-shell design with a relatively
large number (more than three) of shells, while keeping the computational time reasonably low. Simply
permuting such a high number of shells would have been impractical or necessitated unreasonably
extensive computational resources, which would have made it impossible to find such a design. This
confirms the usefulness of the building blocks method.

Table 5.12: Comparison of building blocks and permutation methods for improving Jia’s design [51].

Parameter Values Increment
Building blocks

Target latitude 0 to 90 deg 23 deg

Number of subranges 4 -

Shells per subrange 2 -

Inclination see Appendix D 1 deg

N per shell 0 to 2000 sats 100 sats

Total eight-shell layouts 765, 450 layouts

Computational time 8.18 seconds

Permutation

5.5. Summary and Conclusions 73

Target latitude 0 to 90 deg -

Inclination 0 to 90 deg 1 deg

N per shell 0 to 2000 sats 100 sats

Total eight-shell layouts 4.347 · 1021 layouts

Estimated computational time 4.647 · 1016 seconds

As shown in Table 5.12, the improvement of Jia’s design with the building blocksmethod takes only a few
seconds. This compares to a non-optimised where a simple permutation method would be applied. The
permutation method would likely require an unreasonable amount of time or computational resources,
making the search for the optimal layout impractical. Fortunately, the building blocks method, combined
with the previously described visibility computation methods, offers a framework for time-efficient and
straightforward mega-constellation optimisation.

5.5. Summary and Conclusions
This chapter analysed multi-shell mega-constellation design for a defined study case requiring several
thousands of satellites which allowed to push the mcdo tool and to its limits. Two- and three-shell
layouts were compared to a single-shell layout in terms of visibility distribution and the minimum number
of satellites required. The analysis showed that multiple shells distributed the visibility more uniformly
than a single shell by flattening the visibility curve and reducing the total number of satellites.

Furthermore, this chapter analysed how the multi-shell design can be accelerated. Three approaches
were identified: storing visibility arrays for individual shells, applying simplifications, and scaling the
mean visibility of a reference constellation with N .

A novel method was proposed for mega-constellations requiring more than three shells. The method
works by dividing the target latitude range into sub-ranges and applying permutation method to each
sub-range starting from the highest latitude sub-range.

Finally, a comprehensive analysis of computational performance was carried out for the mcdo tool and
newly developed methods. It showed that even with a low-end GPU visibility computation time can
be decreased by a factor up to 120,000x with respect to non-simplified CPU-only computation while
maintaining acceptable accuracy. Also, it was shown that multi-shell design can be accelerated to
complete in a few seconds.

Key Takeaways
• Higher-inclination shells cover both higher and lower latitudes and thus tend to have more satel-
lites than lower-inclination ones.

• Multiple shells at different inclinations allow to bring the visibility curve closer to the requirement
making the target latitudes less overserviced.

• Storing visibility files for each shell in a database allows to reduce the number of simulations (and
hence computational time) in the course of the use of the software.

• The building blocks method can be applied to any visibility requirement and any latitude band
making it a very efficient tool for multi-shell mega-constellation design.

Limitations and Recommendations
• If the method of scaling the visibility curve with N is applied, then the minimum visibility cannot
be computed directly, and an assumption for that must be applied.

• P and F were not subject to optimisation in this thesis, but it would make an interesting topic for
the future research.

6
Conclusions

This thesis significantly advances the analysis and design of large satellite constellations. The novel
tool mcdo developed within the thesis allows the optimisation of mega-constellations. It achieves this
via several methods:

a) Utilisation of vectorisation for analytical constellation propagation which leads to an acceleration
by a factor of up to 100x with respect to BallisticPropagator in Godot.

b) Accelerated visibility computation, specifically utilising GPUs for parallelising visibility computa-
tions and simplifications derived from the analysis of large Walker constellations (these come on
top of the vectorisation effect). This leads to an acceleration by a factor of up to 120,000x.

Utilising these tools, the thesis thoroughly examines large Walker constellations, revealing valuable
insights into their visibility characteristics. Subsequently, multi-shell constellations are optimised, min-
imising the number of satellites needed for specific visibility requirements. Furthermore, a novel design
method is proposed specifically for complex multi-shell constellations, expanding their design potential.

The thesis makes significant contributions to the field of large satellite constellation design and analysis.
This work allows for building efficient, high-performing constellations that can effectively meet the grow-
ing demands of the space industry. It paves the way for future advancements, laying the groundwork
for a future interconnected with reliable space networks.

This thesis was conducted with the primary objective of developing optimisation methods for the orbital
layout of mega-constellations, with a particular emphasis on the complexity of multi-shell constellation
design, that is, how to combine shells with different orbital parameters for the given mission objective
and requirements.

This is formulated by the main research question:

How does selection of the mission objective affect the optimal design of mega-constellations?

There are three sub-questions to the main question:

Subquestion 1: What are the figures of merit for evaluating mega-constellation design for different
mission objectives?

In Chapter 2, a comprehensive review of existing systems and research outlined the key objectives of
mega-constellations, including satellite communications (Satcom), satellite navigation (Satnav), remote
sensing (RS), and the internet of things (IoT). While certain constellations, such as Planet Labs or Spire,
cater to remote sensing applications, the majority aim at global navigation or communication services.
Satcom constellations, in particular, operating at low altitudes (up to 1,200 km) with a high number of
satellites (more than 1,000 sats), were of interest.

The thesis identified figures of merit (FoMs)most commonly used in the design of themega-constellation
orbital layouts. These are Visibility, Revisit Time, Dilution of Precision, Precise Point Positioning, La-
tency, and Signal-to-Noise Ratio.

75

76 6. Conclusions

Visibility was chosen as the primary focus among all the listed FoMs, because it plays a crucial role in
most mega-constellation designs, except for remote sensing where revisit time is more important. Two
related FoMs that are commonly used in industry and scientific literature to measure the visibility are
mean and minimum visibility which show the mean and minimum numbers of satellites, respectively,
that are visible from a given grid point or a range of points on the ground over time.

However, visibility is also the main bottleneck in designing mega-constellations, because it involves
a large number of satellites and ground grid points. Therefore, finding ways to speed up the visibility
computation was of interest.

Subquestion 2: How can the computational time of the optimisation problem be reduced?

To estimate the selected FoMs, the constellation needs to be propagated over time. Chapter 3 showed
that the propagation of a large number of satellites was improved using an analytical approach and
vectorisation. This achieved a 100x speed-up compared to Godot (BallisticPropagator with point-
mass and J2 dynamics) and a 20x speed-up compared to a non-vectorised implementation of the
analytical model. The positional accuracy was up to 25 km per 24 hr propagation period in LEO, which
was acceptable for this study.

The visibility computation was also optimised in Chapter 4. Because of its “embarrassingly parallel”
nature, GPUs could be used to speed up the visibility computation by two to three orders of magnitude,
i.e. 100x-1000x faster (depending on the hardware used). It was found that using single floating
precision (SP) was enough for the visibility computation and had the probability of an error of 10−5

compared to double floating precision (DP). This was beneficial because GPUs, especially low-end
ones, are optimised for operations with SP values. However, the CPU working with the GPU can affect
the computational time because it handles some operations such as data copying or DP-SP conversion.

From the survey of the mega-constellation systems, it was found that almost all of them used Walker
constellation layouts. Therefore, some simplifications derived from Walker constellation symmetry and
dynamics could be applied. North-South symmetry simplification is the assumption that satellites in
Northern and Southern hemisphere are distributed in the same manner. This simplification was usu-
ally applied by default. Longitude averaging reduced the computational time but still required a full
propagation. Snapshot simplification was an observation made during the analysis that allowed to
avoid propagating satellites and just look at their initial states. Applying these simplifications together
with using a GPU could accelerate the visibility computation by a remarkable factor of 120,000x while
maintaining a sufficient accuracy.

A parametric analysis was performed and it revealed that the mean visibility did not depend on P and F .
However, they could affect the minimum visibility significantly because satellites could form a pattern
that left gaps with very low visibility, i.e. they were distributed non-uniformly. Therefore, P and F were
removed from the optimisation process if the FoM was the mean visibility which reduced the number
of design variables and accelerated optimisation process.

It was also shown that the visibility curve scaled linearly with N, which allowed to propagate a smaller
constellation and then just multiply it by a desired factor. It was observed that the minimum visibility
was typically around 10% lower than the mean visibility if satellites were distributed uniformly. This
assumption could be used during the constellation design.

All of this showed that the visibility computation could be accelerated by using vectorisation (software
acceleration), GPUs (hardware acceleration), and knowledge of Walker constellation properties (sim-
plifications). These methods could be used later in the constellation design.

Subquestion 3: How can the defined figures of merit be optimised for a multi-shell constellation layout?

The new methods for the faster visibility computation, that can be used for multi-shell constellation
design, are presented in Chapter 5. A case study for a broadband mega-constellation over Europe
latitudes (35 to 70 deg) was conducted where the number of shells was varied from one to three. It
showed that higher-inclination shells had more satellites if all shells were nearly at the same altitude, in
case of two- and three-shell layouts. The number of satellites per shell decreased with lower inclination.

Propagating each multi-shell constellation layout was much less efficient than propagating individual
shells, storing them on disk memory, and then adding them by reopening stored arrays. This was

77

much faster because reopening files required much less computational effort than complex simulations
involving both CPU and GPU resources. This operation alone increased the performance by a factor
of 100x-8,500x. However, this required enough disk memory space for data storage.

Scaling the visibility withN increased the performance even more because the data would be uploaded
to RAM, which was much faster than disk memory. This method was 20x faster than the fastest method
for shell permutation (reopening files + snapshot simplification). However, this method cannot be used
to compute the minimum visibility. Therefore, this method can be used for the mean visibility computa-
tion, with the possibility of heuristically estimating the minimum visibility based on the mean value.

A new method called building blocks was developed. The main principle is that for mega-constellations
that need coverage of a wide latitude band, we can split the target band into smaller sub-bands. In
each sub-band, the permutation method with a selected number of shells can be applied. The design
should start from higher inclinations and move towards the equator. This is because higher-inclination
shells have higher visibility at higher latitudes, but they also cover lower latitudes, while lower-inclination
shells do not cover higher latitudes.

This method is much faster than the permutation method: a factor of 150x compared to a three-shell
design using the permutation method. For the study case, the final results are also consistent with the
permutation method. This confirms that this approach can be used for multi-shell mega-constellation
design.

This method was also used to improve the visibility of a mega-constellation presented by Jia et al. [51]
that has 5,686 satellites distributed over 45 shells covering the whole globe from 0 to 90 deg latitudes.
Their average visibility is very uniform over time, but the variations in visibility are very large, resulting in
very low minimum visibility. The building blocks method was used to propose an alternative design with
the same number of satellites. Without any optimisation of P and F, it already increased the minimum
visibility by 5-10 satellites for a constellation with 5,700 satellites distributed over 8 shells.

Although prior research has been conducted and various mega-constellation systems have been both
deployed and proposed, there remains a notable absence of a comprehensive methodology for their
design optimisation in public domain. This thesis addresses this gap by providing a framework for mega-
constellation design optimisation. Furthermore, this thesis presents the development of a software
tool that can be used for such studies by engineers and researchers. This tool, in conjunction with
the methodologies proposed in this report, allows for efficient mega-constellation design, significantly
reducing computational time to mere seconds.

Recommendations for the future work are highlighted in the end of each chapter. The two most relevant
improvements that can be applied to the current framework are following:

a) Find optimal values for the number of planes P and phasing parameter F (for each shell) to
maximise minimum visibility

b) Use Earth’s central angle instead of altitude h and minimum elevation angle εmin

In conclusion, this report summarises results of an extensive research on characteristics of mega-
constellations and their behaviour when the visibility as a figure of merit is considered. The mcdo
tool, observations made and methods developed have been already applied to internal ESA projects
indicating the relevance and demand for the outcomes of this research project.

References
[1] Mark Roberts, Christoph Beischl, and Sa’id Mosteshar. “Small satellite constellations: national

security implications”. In: Handbook of Small Satellites: Technology, Design, Manufacture, Ap-
plications, Economics and Regulation. Springer, 2020, pp. 863–883.

[2] BryceTech. Smallsats by the Numbers. accessed 14 May 2024. July 2023. URL: https://
brycetech.com/reports/report-documents/Bryce_Smallsats_2023.pdf.

[3] R David Luders. “Satellite networks for continuous zonal coverage”. In:ARS Journal 31.2 (1961),
pp. 179–184.

[4] MH Ullock and AH Schoen. “Optimum polar satellite networks for continuous earth coverage”.
In: AIAA Journal 1.1 (1963), pp. 69–72.

[5] David C Beste. “Design of satellite constellations for optimal continuous coverage”. In: IEEE
Transactions on Aerospace and Electronic Systems 3 (1978), pp. 466–473.

[6] L Rider. “Analytic design of satellite constellations for zonal earth coverage using inclined circular
orbits”. In: Journal of the Astronautical Sciences 34 (1986), pp. 31–64.

[7] John Gerard Walker. Circular orbit patterns providing continuous whole earth coverage. Tech.
rep. Royal Aircraft Establishment Farnborough (United Kingdom), 1970.

[8] John Gerard Walker. Coverage Predictions and Selection Criteria for Satellite Constellations.
Tech. rep. ROYAL AIRCRAFT ESTABLISHMENT FARNBOROUGH (ENGLAND), 1982.

[9] John G Walker. “Satellite constellations”. In: Journal of the British Interplanetary Society 37
(1984), p. 559.

[10] Arthur H Ballard. “Rosette constellations of earth satellites”. In: IEEE transactions on aerospace
and electronic systems 5 (1980), pp. 656–673.

[11] WS Adams and L Rider. “Circular polar constellations providing continuous single or multi-
ple coverage above a specified latitude”. In: Journal of the Astronautical Sciences 35 (1987),
pp. 155–192.

[12] Thomas J Lang. “Symmetric circular orbit satellite constellations for continuous global coverage”.
In: Astrodynamics 1987 (1988), pp. 1111–1132.

[13] John M Hanson and William Burley Higgins. “Designing good geosynchronous constellations”.
In: Journal of the Astronautical Sciences 38 (1990), pp. 143–159.

[14] John E Draim. “A common-period four-satellite continuous global coverage constellation”. In:
Journal of Guidance, Control, and Dynamics 10.5 (1987), pp. 492–499.

[15] G Rondinelli, A Cramarossa, and F Graziani. “Orbit control strategy for a constellation of three
satellites in TUNDRA orbits”. In: Astrodynamics 1989 (1990), pp. 697–708.

[16] GV Mozhaev. “Problem of continuous coverage of the Earth and kinematically regular satellite
systems”. In: Kosm. Issled. 11.1 (1973), pp. 59–69.

[17] Yuri Ulybyshev. “Near-polar satellite constellations for continuous global coverage”. In: Journal
of spacecraft and rockets 36.1 (1999), pp. 92–99.

[18] Yuri Ulybyshev. “Satellite constellation design for continuous coverage: short historical survey,
current status and new solutions”. In: Proceedings of Moscow Aviation Institute 13.34 (2009),
pp. 1–25.

[19] Yuri Ulybyshev. “Geometric analysis and design method for discontinuous coverage satellite
constellations”. In: Journal of Guidance, Control, and Dynamics 37.2 (2014), pp. 549–557.

[20] Yury N Razoumny. “Fundamentals of the route theory for satellite constellation design for Earth
discontinuous coverage. Part 1: Analytic emulation of the Earth coverage”. In: Acta Astronautica
128 (2016), pp. 722–740.

79

https://brycetech.com/reports/report-documents/Bryce_Smallsats_2023.pdf
https://brycetech.com/reports/report-documents/Bryce_Smallsats_2023.pdf

80 References

[21] Daniele Mortari, Matthew P Wilkins, and Christian Bruccoleri. “The flower constellations”. In:
Journal of Astronautical Sciences 52.1 (2004), pp. 107–127.

[22] Marina Ruggieri et al. “The flower constellation set and its possible applications”. In: ACT Final
report, Aridana 5 (2006), p. 4108.

[23] Martín E Avendaño, Jeremy J Davis, and Daniele Mortari. “The 2-D lattice theory of Flower
Constellations”. In: Celestial Mechanics and Dynamical Astronomy 116 (2013), pp. 325–337.

[24] Jeremy J Davis, Martín E Avendaño, and Daniele Mortari. “The 3-D lattice theory of flower
constellations”. In: Celestial Mechanics and Dynamical Astronomy 116 (2013), pp. 339–356.

[25] David Arnas, Daniel Casanova, and Eva Tresaco. “4D Lattice flower constellations”. In: Ad-
vances in Space Research 67.11 (2021), pp. 3683–3695.

[26] Gerard Maral et al. “Low earth orbit satellite systems for communications”. In: International Jour-
nal of satellite communications 9.4 (1991), pp. 209–225.

[27] Erick Lansard, Eric Frayssinhes, and Jean-Luc Palmade. “Global design of satellite constel-
lations: a multi-criteria performance comparison of classical walker patterns and new design
patterns”. In: Acta Astronautica 42.9 (1998), pp. 555–564.

[28] F Dufour et al. “Constellation design optimization with a DOP based criterion”. In: 14th Int. Sym-
posium On Space Fligt Dynamics. 1995.

[29] William A. Crossley and Edwin A. Williams. “Simulated annealing and genetic algorithm ap-
proaches for discontinuous coverage satellite constellation design”. In: Engineering Optimiza-
tion 32 (3 2000), pp. 353–371. ISSN: 0305215X. DOI: 10.1080/03052150008941304.

[30] T A Ely, W A Crossley, and E A Williams. Satellite Constellation Design for Zonal Coverage
Using Genetic Algorithms 1, pp. 207–228.

[31] Kai Xie et al. “LEO space-based radar constellation design using a genetic algorithm”. In: Insti-
tute of Electrical and Electronics Engineers Inc., 2006. ISBN: 0780395824. DOI: 10.1109/ICR.
2006.343500.

[32] Miguel A Nunes. “Satellite constellation optimization method for future earth observation mis-
sions using small satellites”. In: Advances in the Astronautical Sciences 146 (2013), pp. 159–
179.

[33] Hongrae Kim and Young Keun Chang. “Mission scheduling optimization of SAR satellite con-
stellation for minimizing system response time”. In: Aerospace Science and Technology 40 (Jan.
2015), pp. 17–32. ISSN: 12709638. DOI: 10.1016/j.ast.2014.10.006.

[34] Yunjoong Kim et al. “Optimum design of an SAR satellite constellation considering the revisit
time using a genetic algorithm”. In: International Journal of Aeronautical and Space Sciences
18 (2 June 2017), pp. 334–343. ISSN: 20932480. DOI: 10.5139/IJASS.2017.18.2.334.

[35] Xin Luo et al. “Constellation design for earth observation based on the characteristics of the
satellite ground track”. In: Advances in Space Research 59 (7 Apr. 2017), pp. 1740–1750. ISSN:
18791948. DOI: 10.1016/j.asr.2017.01.010.

[36] Nicholas H. Crisp, Sabrina Livadiotti, and Peter C. E. Roberts. “A Semi-Analytical Method for Cal-
culating Revisit Time for Satellite Constellations with Discontinuous Coverage”. In: (July 2018).
URL: http://arxiv.org/abs/1807.02021.

[37] Douglas J Pegher and Jason A Parish. Optimizing coverage and revisit time in sparse military
satellite constellations: A comparison of traditional approaches and genetic algorithms. Tech.
rep. NAVAL POSTGRADUATE SCHOOL MONTEREY CA, 2004.

[38] A T Takano and BGMarchand.AAS 11-543OPTIMALCONSTELLATIONDESIGNFORSPACE
BASED SITUATIONAL AWARENESS APPLICATIONS. 2011.

[39] Zhicheng Qu et al. “LEO Satellite Constellation for Internet of Things”. In: IEEE Access 5 (Aug.
2017), pp. 18391–18401. ISSN: 21693536. DOI: 10.1109/ACCESS.2017.2735988.

[40] M. Asvial, R. Tafazolli, and B. G. Evans. “Genetic hybrid Satellite Constellation design”. In: Amer-
ican Institute of Aeronautics and Astronautics Inc., 2003. ISBN: 9781624100932. DOI: 10.2514/
6.2003-2283.

https://doi.org/10.1080/03052150008941304
https://doi.org/10.1109/ICR.2006.343500
https://doi.org/10.1109/ICR.2006.343500
https://doi.org/10.1016/j.ast.2014.10.006
https://doi.org/10.5139/IJASS.2017.18.2.334
https://doi.org/10.1016/j.asr.2017.01.010
http://arxiv.org/abs/1807.02021
https://doi.org/10.1109/ACCESS.2017.2735988
https://doi.org/10.2514/6.2003-2283
https://doi.org/10.2514/6.2003-2283

References 81

[41] Irene A. Budianto and John R. Olds. “Design and deployment of a satellite constellation using
collaborative optimization”. In: Journal of Spacecraft and Rockets 41 (6 2004), pp. 956–963.
ISSN: 15336794. DOI: 10.2514/1.14254.

[42] Matthew P. Ferringer and David B. Spencer. “Satellite constellation design tradeoffs using
multiple-objective evolutionary computation”. In: Journal of Spacecraft and Rockets 43 (6 2006),
pp. 1404–1411. ISSN: 15336794. DOI: 10.2514/1.18788.

[43] Matthew P. Ferringer, Ronald S. Clifton, and Timothy G. Thompson. “Efficient and accurate
evolutionarymulti-objective optimization paradigms for satellite constellation design”. In: Journal
of Spacecraft and Rockets 44 (3 2007), pp. 682–691. ISSN: 15336794. DOI: 10.2514/1.26747.

[44] I. Meziane-Tani et al. “Optimization of small satellite constellation design for continuous mutual
regional coverage with multi-objective genetic algorithm”. In: International Journal of Compu-
tational Intelligence Systems 9 (4 July 2016), pp. 627–637. ISSN: 18756883. DOI: 10.1080/
18756891.2016.1204112.

[45] Xiaohui Wang et al. “Design of agile satellite constellation based on hybrid-resampling parti-
cle swarm optimization method”. In: Acta Astronautica 178 (Jan. 2021), pp. 595–605. ISSN:
00945765. DOI: 10.1016/j.actaastro.2020.09.040.

[46] Xingchi He and Urs Hugentobler. “Design of Mega-Constellations of LEO Satellites for Position-
ing”. In: vol. 497. Springer Verlag, 2018, pp. 663–673. ISBN: 9789811300042. DOI: 10.1007/
978-981-13-0005-9_54.

[47] Haibo Ge et al. “LEO constellation optimization for LEO enhanced global navigation satellite
system (LeGNSS)”. In: Advances in Space Research 66 (3 Aug. 2020), pp. 520–532. ISSN:
18791948. DOI: 10.1016/j.asr.2020.04.031.

[48] Fujian Ma et al. “Hybrid constellation design using a genetic algorithm for a LEO-based navi-
gation augmentation system”. In: GPS Solutions 24 (2 Apr. 2020). ISSN: 15211886. DOI: 10.
1007/s10291-020-00977-0.

[49] Jing Liu et al. “Design optimisation of low earth orbit constellation based on BeiDou Satellite
Navigation System precise point positioning”. In: IET Radar, Sonar and Navigation 16 (8 Aug.
2022), pp. 1241–1252. ISSN: 17518792. DOI: 10.1049/rsn2.12257.

[50] Ahan Kak and Ian F. Akyildiz. “Designing Large-Scale Constellations for the Internet of Space
Things with CubeSats”. In: IEEE Internet of Things Journal 8 (3 Feb. 2021), pp. 1749–1768.
ISSN: 23274662. DOI: 10.1109/JIOT.2020.3016889.

[51] Lu Jia et al. “Design of Mega-Constellations for Global Uniform Coverage with Inter-Satellite
Links”. In: Aerospace 9 (5 May 2022). ISSN: 22264310. DOI: 10.3390/aerospace9050234.

[52] Lloyd Wood. “Satellite Constellation Networks: The path from orbital geometry through network
topology to autonomous systems”. In: Internetworking and Computing over Satellite Networks
(2003), pp. 13–34.

[53] Arthur K Lacombe. “Mega-Constellations: Technical Aspects”. In: Promoting Productive Coop-
eration Between Space Lawyers and Engineers. IGI Global, 2019, pp. 114–140.

[54] Kuiper Systems LLC. TECHNICAL APPENDIX Application of Kuiper Systems LLC for Authority
to Launch and Operate a Non-Geostationary Satellite Orbit System in V-band and Ku-band
Frequencies. SAT-LOA-20211104-00145. FCC, 2021.

[55] INC. SPIRE GLOBAL. ITU Satellite Network Filing: LEMUR-2-3. Notice ID: 120545231, Submis-
sion Reference Number: USA2020-33727. 2020. URL: https://www.itu.int/ITU-R/space/
asreceived/Publication/DisplayPublication/23797.

[56] Israel Leyva-Mayorga et al. “NGSO Constellation Design for Global Connectivity”. In: (Mar.
2022). URL: http://arxiv.org/abs/2203.16597.

[57] S. Huang, C. Colombo, and F. Bernelli-Zazzera. “Multi-criteria design of continuous global cov-
erage Walker and Street-of-Coverage constellations through property assessment”. In: Acta
Astronautica 188 (Nov. 2021), pp. 151–170. ISSN: 00945765. DOI: 10.1016/j.actaastro.
2021.07.002.

https://doi.org/10.2514/1.14254
https://doi.org/10.2514/1.18788
https://doi.org/10.2514/1.26747
https://doi.org/10.1080/18756891.2016.1204112
https://doi.org/10.1080/18756891.2016.1204112
https://doi.org/10.1016/j.actaastro.2020.09.040
https://doi.org/10.1007/978-981-13-0005-9_54
https://doi.org/10.1007/978-981-13-0005-9_54
https://doi.org/10.1016/j.asr.2020.04.031
https://doi.org/10.1007/s10291-020-00977-0
https://doi.org/10.1007/s10291-020-00977-0
https://doi.org/10.1049/rsn2.12257
https://doi.org/10.1109/JIOT.2020.3016889
https://doi.org/10.3390/aerospace9050234
https://www.itu.int/ITU-R/space/asreceived/Publication/DisplayPublication/23797
https://www.itu.int/ITU-R/space/asreceived/Publication/DisplayPublication/23797
http://arxiv.org/abs/2203.16597
https://doi.org/10.1016/j.actaastro.2021.07.002
https://doi.org/10.1016/j.actaastro.2021.07.002

82 References

[58] Kris Maine, Carrie Devieux, and Pete Swan. “Overview of IRIDIUM satellite network”. In: Pro-
ceedings of WESCON’95. IEEE. 1995, p. 483.

[59] Carl E Fossa et al. “An overview of the IRIDIUM (R) low Earth orbit (LEO) satellite system”.
In: Proceedings of the IEEE 1998 National Aerospace and Electronics Conference. NAECON
1998. Celebrating 50 Years (Cat. No. 98CH36185). IEEE. 1998, pp. 152–159.

[60] Iridium Communications. Iridium NEXT: In Review. accessed 14 May 2024. 2023. URL: https:
//www.iridium.com/blog/iridium-next-review/.

[61] JonathanMcDowelll. Jonathan’s Space Pages, Starlink Statistics. accessed 14May 2024. 2023.
URL: https://planet4589.org/space/con/star/stats.html.

[62] Space Exploration Holdings LLC. SpaceX Non-Geostationary Satellite System. Attachment A:
Technical Information To Supplement Schedule S. SAT-MOD-20190830-00087. FCC, 2019.

[63] Space Exploration Holdings LLC. SpaceX V-band Non-Geostationary Satellite System. Attach-
ment A: Technical Information To Supplement Schedule S. SAT-LOA-20170726-00110. FCC,
2017.

[64] Space Exploration Holdings LLC. SpaceX Gen2 Non-Geostationary Satellite System. SAT-LOA-
20200526-00055. FCC, 2020.

[65] MARVELSPACECOMMUNICATIONSCO.USASAT-NGSO-MVLS. Notice ID: 123520186, Sub-
mission Reference Number: USA2023-65024. Dec. 2023.

[66] OneWeb. OneWeb Non-Geostationary Satellite System (LEO) Phase 1: Modification to Autho-
rized System. SAT-MPL-20200526-00062, A Technical Information to Supplement Schedule S.
FCC, 2020.

[67] OneWeb. OneWeb Satellites and partners OneWeb and Airbus transform space industry with
world’s first high-volume satellite production facility in Florida. accessed 14 May 2024. 2020.
URL: https://oneweb.net/resources/oneweb-satellites-and-partners-oneweb-and-
airbus-transform-space-industry-worlds-first.

[68] OneWeb.ONEWEBNON-GEOSTATIONARYSATELLITESYSTEM (LEO) PHASE 2: AMENDED
MODIFICATION TO AUTHORIZED SYSTEM ATTACHMENT B Technical Information to Sup-
plement Schedule S. SAT-MPL-20210112-00007. FCC, 2021.

[69] SN Space Systems Ltd. SN Space Systems Limited Non-Geostationary Orbit Satellite System.
SAT-PDR-20211104-00147. FCC, 2021.

[70] Kepler Communications Inc.Schedule S Technical Report. Phase 1. SAT-PDR-20161115-00114.
FCC, 2016.

[71] Kepler Communications Inc. Application for Market Access Authority for a Non-Geostationary
Satellite Orbit System in Ka- and Ku-band Frequencies. Phase 2. SAT-LOA-20200526-00059.
FCC, 2020.

[72] MARVEL SPACE COMMUNICATIONS CO. ITU Satellite Network Filing: CINNAMON-217. No-
tice ID: 121545225, Submission Reference Number: RRW2021-42538. 2021.

[73] MARVEL SPACE COMMUNICATIONS CO. ITU Satellite Network Filing: CINNAMON-937. No-
tice ID: 121545224, Submission Reference Number: RRW2021-42537. 2021.

[74] Cuiqin Dai, Guimin Zheng, and Qianbin Chen. “Satellite constellation design with multi-objective
genetic algorithm for regional terrestrial satellite network”. In: China Communications 15 (8 Aug.
2018), pp. 1–10. ISSN: 16735447. DOI: 10.1109/CC.2018.8438269.

[75] Nozomi Hitomi and Daniel Selva. “Constellation optimization using an evolutionary algorithm
with a variable-length chromosome”. In: vol. 2018-March. IEEE Computer Society, June 2018,
pp. 1–12. ISBN: 9781538620144. DOI: 10.1109/AERO.2018.8396743.

[76] Chen Zhang et al. “LEO constellation design methodology for observing multi-targets”. In: Astro-
dynamics 2 (2 June 2018), pp. 121–131. ISSN: 2522-008X. DOI: 10.1007/s42064-017-0015-
4.

[77] Deng Pan et al. “LEO Constellation Optimization Model with Non-uniformly Distributed RAAN
for Global Navigation Enhancement”. In: vol. 497. Springer Verlag, 2018, pp. 769–778. ISBN:
9789811300042. DOI: 10.1007/978-981-13-0005-9_63.

https://www.iridium.com/blog/iridium-next-review/
https://www.iridium.com/blog/iridium-next-review/
https://planet4589.org/space/con/star/stats.html
https://oneweb.net/resources/oneweb-satellites-and-partners-oneweb-and-airbus-transform-space-industry-worlds-first
https://oneweb.net/resources/oneweb-satellites-and-partners-oneweb-and-airbus-transform-space-industry-worlds-first
https://doi.org/10.1109/CC.2018.8438269
https://doi.org/10.1109/AERO.2018.8396743
https://doi.org/10.1007/s42064-017-0015-4
https://doi.org/10.1007/s42064-017-0015-4
https://doi.org/10.1007/978-981-13-0005-9_63

References 83

[78] Tian Jiao Zhang et al. “Restricted constellation design for regional navigation augmentation”. In:
Acta Astronautica 150 (Sept. 2018), pp. 231–239. ISSN: 00945765. DOI: 10.1016/j.actaast
ro.2018.04.044.

[79] Hang Woon Lee et al. “Satellite constellation pattern optimization for complex regional cover-
age”. In: Journal of Spacecraft and Rockets 57 (6 2020), pp. 1309–1327. ISSN: 15336794. DOI:
10.2514/1.A34657.

[80] Huijiang Wang and Shengzhou Bai. “A versatile method for target area coverage analysis with
arbitrary satellite attitude maneuver paths”. In: Acta Astronautica 194 (May 2022), pp. 242–254.
ISSN: 00945765. DOI: 10.1016/j.actaastro.2022.02.008.

[81] Tania Savitri et al. “Satellite Constellation Orbit Design Optimization with Combined Genetic
Algorithm and Semianalytical Approach”. In: International Journal of Aerospace Engineering
2017 (2017). ISSN: 16875974. DOI: 10.1155/2017/1235692.

[82] JaumeSanz Subirana, JoséMiguel Juan Zornoza, andManuel Hernández-Pajares.GNSSData
Processing. Vol. 1: Fundamentals and Algorithms (ESA TM-23/1, May 2013). ESA Communi-
cations, 2013. ISBN: 978-92-9221-886-7.

[83] Yuehao Teng, Xiaolin Jia, and Ge Peng. “LEO navigation augmentation constellation design
and precise point positioning performance analysis based on BDS-3”. In: Advances in Space
Research (2023).

[84] Ju Hong et al. “GNSS rapid precise point positioning enhanced by low Earth orbit satellites”. In:
Satellite Navigation 4.1 (2023), pp. 1–13.

[85] F ea Poletti et al. “Towards high-capacity fibre-optic communications at the speed of light in
vacuum”. In: Nature Photonics 7.4 (2013), pp. 279–284.

[86] Zeqi Lai, Hewu Li, and Jihao Li. “Starperf: Characterizing network performance for emerg-
ing mega-constellations”. In: 2020 IEEE 28th International Conference on Network Protocols
(ICNP). IEEE. 2020, pp. 1–11.

[87] Zeqi Lai et al. “Spacertc: Unleashing the low-latency potential of mega-constellations for real-
time communications”. In: IEEE INFOCOM 2022-IEEE Conference on Computer Communica-
tions. IEEE. 2022, pp. 1339–1348.

[88] Mark Handley. “Using ground relays for low-latency wide-area routing in megaconstellations”.
In: Proceedings of the 18th ACM Workshop on Hot Topics in Networks. 2019, pp. 125–132.

[89] Gaofeng Pan et al. “Latency versus reliability in LEO mega-constellations: Terrestrial, aerial, or
space relay”. In: IEEE Transactions on Mobile Computing (2022).

[90] Ali J Alqaraghuli, Hussam Abdellatif, and Josep M Jornet. “Performance analysis of a dual ter-
ahertz/ka band communication system for satellite mega-constellations”. In: 2021 IEEE 22nd
International Symposium on a World of Wireless, Mobile and Multimedia Networks (WoWMoM).
IEEE. 2021, pp. 316–322.

[91] Channasandra Ravishankar et al. “Next-generation global satellite systemwithmega-constellations”.
In: International journal of satellite communications and networking 39.1 (2021), pp. 6–28.

[92] Haoge Jia et al. “Uplink interference and performance analysis for megasatellite constellation”.
In: IEEE Internet of Things Journal 9.6 (2021), pp. 4318–4329.

[93] Niloofar Okati and Taneli Riihonen. “Coverage and rate analysis of mega-constellations under
generalized serving satellite selection”. In: 2022 IEEE Wireless Communications and Network-
ing Conference (WCNC). IEEE. 2022, pp. 2214–2219.

[94] J.R. Wertz. Mission Geometry: Orbit and Constellation Design and Management. Spacecraft
Orbit and Attitude Systems. Springer Dordrecht, 2002. ISBN: 978-0-7923-7148-9.

[95] Karel F Wakker. Fundamentals of astrodynamics. TU Delft Library, 2015.
[96] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020),

pp. 357–362. DOI: 10.1038/s41586-020-2649-2. URL: https://doi.org/10.1038/s41586-
020-2649-2.

https://doi.org/10.1016/j.actaastro.2018.04.044
https://doi.org/10.1016/j.actaastro.2018.04.044
https://doi.org/10.2514/1.A34657
https://doi.org/10.1016/j.actaastro.2022.02.008
https://doi.org/10.1155/2017/1235692
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

84 References

[97] Márton Geda, Florian Renk, and Ron Noomen. “Massive Parallelization of Trajectory Propaga-
tions Using GPUs”. In: (2019).

[98] Yupeng Gong, Shijie Zhang, and Xuan Peng. “Quick coverage analysis of mega Walker Con-
stellation based on 2D map”. In: Acta Astronautica 188 (2021), pp. 99–109.

[99] Maocai Wang et al. “Application of latitude stripe division in satellite constellation coverage to
ground”. In: International Journal of Aerospace Engineering 2016 (2016).

[100] Guangming Dai et al. “Analysis of satellite constellations for the continuous coverage of ground
regions”. In: Journal of Spacecraft and Rockets 54.6 (2017), pp. 1294–1303.

[101] Maurice Herlihy et al. The Art of Multiprocessor Programming. Morgan Kaufmann Publishers
Inc., 2020. ISBN: 9780124159501.

[102] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – Seamless operability be-
tween C++11 and Python. https://github.com/pybind/pybind11. 2017.

[103] Osoro B Ogutu and Edward J Oughton. “A techno-economic cost framework for satellite net-
works applied to low earth orbit constellations: Assessing starlink, oneweb and kuiper”. In: arXiv
preprint arXiv:2108.10834 (2021).

[104] Nvidia. NVIDIA TESLA V100 GPU ACCELERATOR. The Most Advanced Data Center GPU
Ever Built. accessed 14 May 2024. 2018. URL: https : / / images . nvidia . com / content /
technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf.

[105] TechPowerUp. NVIDIA Quadro P2000. Quadro P2000 Specs. accessed 14 May 2024. 2024.
URL: https://www.techpowerup.com/gpu-specs/quadro-p2000.c2931.

[106] Massive GPU Parallelisation for Cislunar Debris Mitigation Analyses. IAC-22,A6,IP,12,x68521.
73rd International Astronautical Congress (IAC), 2022.

[107] David Culler, Jaswinder Pal Singh, and Anoop Gupta. Parallel Computer Architecture: A Hard-
ware/Software Approach. Morgan Kaufmann Publishers Inc., 1999. ISBN: 978-0-08-057307-6.

[108] Milind Girkar and Constantine D Polychronopoulos. “Extracting task-level parallelism”. In: ACM
Transactions on Programming Languages and Systems (TOPLAS) 17.4 (1995), pp. 600–634.

[109] Roger Espasa and Mateo Valero. “Exploiting instruction-and data-level parallelism”. In: IEEE
micro 17.5 (1997), pp. 20–27.

[110] Michael J Flynn. “Very high-speed computing systems”. In: Proceedings of the IEEE 54.12
(1966), pp. 1901–1909.

[111] Alfred Spector and David Gifford. “The space shuttle primary computer system”. In: Communi-
cations of the ACM 27.9 (1984), pp. 872–900.

[112] Iddo Hanniel and Kirk Haller. “Direct rendering of solid cad models on the gpu”. In: 2011 12th In-
ternational Conference onComputer-AidedDesign andComputer Graphics. IEEE. 2011, pp. 25–
32.

[113] Dennis C Jespersen. “Acceleration of a CFD code with a GPU”. In: Scientific Programming
18.3-4 (2010), pp. 193–201.

[114] Tai-Sung Lee et al. “GPU-accelerated molecular dynamics and free energy methods in Am-
ber18: performance enhancements and new features”. In: Journal of chemical information and
modeling 58.10 (2018), pp. 2043–2050.

[115] Wikipedia. Flynn’s taxonomy. accessed 14 May 2024. 2023. URL: https://en.wikipedia.
org/wiki/Flynn%27s_taxonomy.

[116] Ryosuke Okuta et al. “CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations”. In:
Proceedings of Workshop on Machine Learning Systems (LearningSys) in The Thirty-first An-
nual Conference on Neural Information Processing Systems (NIPS). 2017. URL: http : / /
learningsys.org/nips17/assets/papers/paper_16.pdf.

[117] Robert A. Dalrymple. 560.602 GPU/CPU Programming for Engineers. Class 13. GPU Memory.
John Hopkins University. 2014.

[118] John Nickolls et al. “Scalable Parallel Programming with CUDA: Is CUDA the parallel program-
ming model that application developers have been waiting for?” In: Queue 6.2 (2008), pp. 40–
53.

https://github.com/pybind/pybind11
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://www.techpowerup.com/gpu-specs/quadro-p2000.c2931
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy
https://en.wikipedia.org/wiki/Flynn%27s_taxonomy
http://learningsys.org/nips17/assets/papers/paper_16.pdf
http://learningsys.org/nips17/assets/papers/paper_16.pdf

A
Propagation Verification

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 90.0 deg

s.m.a. = 6978 km

(a) Point-mass only.

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 90.0 deg

s.m.a. = 6978 km

(b) Point-mass + J2.

Figure A.1: Positional error of analytical model with respect to numerical model for a = 6978 km.

85

86 A. Propagation Verification

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 90.0 deg

s.m.a. = 7178 km

(a) Point-mass only.

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 90.0 deg

s.m.a. = 7178 km

(b) Point-mass + J2.

Figure A.2: Positional error of analytical model with respect to numerical model for a = 7178 km.

87

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 90.0 deg

s.m.a. = 7378 km

(a) Point-mass only.

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30
r [

km
]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 90.0 deg

s.m.a. = 7378 km

(b) Point-mass + J2.

Figure A.3: Positional error of analytical model with respect to numerical model for a = 7378 km.

88 A. Propagation Verification

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 90.0 deg

s.m.a. = 7578 km

(a) Point-mass only.

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 90.0 deg

s.m.a. = 7578 km

(b) Point-mass + J2.

Figure A.4: Positional error of analytical model with respect to numerical model for a = 7578 km.

89

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 90.0 deg

s.m.a. = 7778 km

(a) Point-mass only.

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30
r [

km
]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 90.0 deg

s.m.a. = 7778 km

(b) Point-mass + J2.

Figure A.5: Positional error of analytical model with respect to numerical model for a = 7778 km.

90 A. Propagation Verification

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 90.0 deg

s.m.a. = 7978 km

(a) Point-mass only.

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 90.0 deg

s.m.a. = 7978 km

(b) Point-mass + J2.

Figure A.6: Positional error of analytical model with respect to numerical model for a = 7978 km.

91

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 90.0 deg

s.m.a. = 8178 km

(a) Point-mass only.

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30
r [

km
]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 90.0 deg

s.m.a. = 8178 km

(b) Point-mass + J2.

Figure A.7: Positional error of analytical model with respect to numerical model for a = 8178 km.

92 A. Propagation Verification

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0.000

0.005

0.010

0.015

0.020

0.025

r [
km

]

inc = 90.0 deg

s.m.a. = 8378 km

(a) Point-mass only.

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 0.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 10.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 20.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 30.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 40.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 50.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 60.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 70.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 80.0 deg

0 5 10 15
Time [Torb]

0

5

10

15

20

25

30

r [
km

]

inc = 90.0 deg

s.m.a. = 8378 km

(b) Point-mass + J2.

Figure A.8: Positional error of analytical model with respect to numerical model for a = 8378 km.

B
Parallel Computing

This section provides a brief introduction to the concepts of parallel computing and their application
to visibility computation. Additionally, a discussion on the implementation and comparison with non-
parallelised computation is presented. Finally, the limitations of this implementation are outlined, along
with potential resolutions and workarounds.

B.1. Sequential and Parallel Computing
Sequential computing involves the decomposition of tasks into a series of instructions that are executed
sequentially. While this approach is straightforward and easy to implement, it can be inefficient for a
large number of tasks, leading to long computation times. Figure B.1a illustrates the fundamental prin-
ciple of sequential computing. Instructions or problems can be reiterated, but the underlying principle
remains constant: the execution of new tasks commences only upon the completion of previous tasks.

(a) Sequential computing. (b) Parallel computing.

Figure B.1: Comparison of sequential and parallel computing [106].

In contrast, parallel computing enables the simultaneous execution of tasks, significantly enhancing
throughput, particularly for large tasks or datasets. The basic principle is shown in Figure B.1b. How-
ever, it necessitates meticulous task management and coordination. Implementation can be more
complex as certain tasks may be interdependent or require shared resources. While parallel comput-
ing may appear better than sequential computing, this is not always the case, as not all tasks are
parallelisable and may necessitate sequential implementation regardless. It is important to understand
whether a task can be parallelised and, if so, how it can be subdivided into multiple sub-problems or
sub-instructions for simultaneous execution.

There are different types of parallel computing and also different types of parallelism which are dis-
cussed in the next section.

B.2. Types of Parallelism and Parallel Processing
This subsection provides a brief overview of the types of parallelism and parallel processing. While
the terms parallelism and parallel processing are often used interchangeably, this report distinguishes

93

94 B. Parallel Computing

between the two.

Parallelism refers to the level at which computation is performed and includes 4 categories:

• Bit-level parallelism
This form of parallel computing achieves parallelism by increasing the processor’s size [107]. For
instance, the addition of two 16-bit integers would need two instructions from an 8-bit processor,
whereas a 16-bit processor would only require one instruction.

• Instruction-level parallelism
This form of parallel computing executes multiple instruction sequences concurrently [107]. For
example, modern CPUs often employ this type of parallelism to improve performance.

• Task-level parallelism
This form of parallel computing executes tasks (also referred to as instructions or functions), which
can be part of a larger application or program, in parallel [108]. These tasks can be executed
independently or at least partially independently with synchronisation at some point. An example
of this would be a web server handling multiple requests.

• Data-level parallelism
This form of parallel computing executes instructions on multiple data points simultaneously [109].
This is often used in operations such as matrix multiplication where the same operation (multipli-
cation and addition) is performed on different data points.

Parallel processing is referred to the categorisation introduced by Flynn’s taxonomy [110]. This is a
classification of architectural models for achieving parallelism. This includes 4 categories which are
listed below and visually represented in Figure B.2.

• SISD (Single Instruction stream, Single Data stream)
SISD is the simplest computer architecture where a single instruction is executed for a single
data point. These operations are performed sequentially. Multiple instructions or data points
would imply that those would have to be broken down in individual parts, and then operations
would be performed one after other.

• SIMD (Single Instruction stream, Multiple Data streams)
This architecture model implies a single instruction performed on multiple data points simultane-
ously. If there is more than one instruction, then they would have to be executed sequentially.
This architecture is commonly used in vector processing as well as graphics.

• MISD (Multiple Instruction streams, Single Data stream)
In a MISD architecture model multiple instructions are applied to the same data point simulta-
neously. This is a lesser used type of parallel computing architecture, compared to SIMD and
MIMD, as there are not many applications requiring such a model. Typically, MISD is used for
redundancy and fault tolerance in systems where a single error can be critical (e.g. Space Shuttle
mission [111]).

• MIMD (Multiple Instruction streams, Multiple Data streams)
MIMD architecture allows to execute multiple instructions on multiple data streams simultane-
ously. This is another common type of architecture used in parallel computing for such things
as CAD [112], CFD [113], molecular dynamics [114], and others. This, however, also requires
sophisticated programming techniques allowing to coordinate and synchronise all sub-tasks.

From this taxonomy, it is evident that the visibility computation with the Grid Point method is a SIMD-
like operation, with a single instruction to compute the elevation angle applied to multiple data points,
namely observation points and satellites. The elevation angle between each observation point and
satellite can be computed independently, which facilitates the parallelisation of this task.

Typical hardware utilising SIMD architecture model are multi-core central processing units (CPU) and
graphics processing units (GPU). Both types of hardware can be employed for visibility computation.
However, each comes with its own set of advantages and disadvantages, which will be explored in the
subsequent subsections.

B.3. Multi-core Central Processing Units (CPU) 95

D
A
TA

 P
O

O
L

INSTRUCTION POOL

PU

SISD

(a) SISD
D

A
TA

 P
O

O
L

INSTRUCTION POOL

PU

PU

PU

PU

SIMD

(b) SIMD

D
A
TA

 P
O

O
L

INSTRUCTION POOL

PU PU

MISD

(c) MISD

D
A
TA

 P
O

O
L

INSTRUCTION POOL

PU

PU

PU

PU

PU

PU

PU

PU

MIMD

(d) MIMD

Figure B.2: Visual representation of Flynn’s taxonomy [115]. PU stands for processing unit.

B.3. Multi-core Central Processing Units (CPU)
Unlike single-core CPUs, multi-core CPUs comprise multiple cores capable of executing operations in
parallel. The primary advantage of multi-core CPUs lies in their architecture, characterized by a large
cache and low latency as shown in Figure B.31. This architecture facilitates the distribution of parallel
processes across cores, as each core can execute code previously run on a single core. This not only
simplifies the implementation of parallel computing but also reduces development time, which can be
particularly advantageous for short-term projects like this MSc thesis project.

Figure B.3: CPU and GPU architectures schematic.

In terms of cost, the price range for computers with multi-core CPUs can vary widely depending on the
number of cores and other specifications. As of 2023, the price for computers with 50+ cores typically
falls within the high-end range with prices reaching thousands of euros2.

B.4. Graphics processing units (GPU)
A Graphics Processing Unit (GPU) is a specialised electronic circuit that was initially designed for im-
age processing and graphics acceleration. GPUs are especially useful for operations that can be paral-
lelised very easily with little or no effort [101]. The architecture of GPUs designed for parallel processing
also found its use in scientific computing in operations that can be done in parallel such as e.g. vector or
matrix operations [116]. They can also be used in astrodynamics for tasks such as planetary protection
and defense, with tools like CUDAjectory being developed for this purpose [97].

GPU architecture
GPUs and CPUs are designed with different goals in mind, which is reflected in their architecture. Com-
pared to CPUs, GPUs, with their hundreds or thousands of smaller, specialised cores, are designed

1https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html, accessed 14 May 2024
2https://www.tomshardware.com/reviews/best-performance-cpus,5683.html, accessed 14 May 2024

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.tomshardware.com/reviews/best-performance-cpus,5683.html

96 B. Parallel Computing

for high throughput as seen in Figure B.3. They are better in performing multiple parallel computing
operations, particularly when the same operation is being performed on many data elements simulta-
neously. This makes them ideal for tasks that involve large datasets and require the same operations
to be performed on each data element, such as image or video processing, scientific simulations, and
machine learning.

GPU memory types
GPUs have various types of memory, including register, shared, constant, local, and global. The size
and latency of each memory type can vary depending on the specific GPU model and architecture.
These memory types can be seen in Figure B.4 showing them within a typical GPU architecture.

Figure B.4: Typical GPU memory types [117].

From smallest to largest in size and lowest to highest in latency, they are listed below [117].

• Register
The smallest and fastest memory type, used to hold data being processed by the GPU.

• Shared
Slightly larger and slower than register memory, shared among threads in a warp.

• Constant
Larger and slower than shared memory, it is read-only and holds data that does not change during
kernel execution.

• Texture
Texture memory is read-only memory type which holds the texture data that used for 3D models.
It is optimised for efficient access to 2D arrays while accessing 1D arrays sometimes can be more
efficient with global memory.

• Local
Local memory is private to each thread and used when there is not enough register memory. It is

B.4. Graphics processing units (GPU) 97

larger in size than register and shared memory but it comes at a cost of being significantly slower.
• Global
The largest and slowest memory type, it is the main memory for the GPU and holds data being
processed and the computation results.

In the context of visibility computation, one has to deal with large data arrays, which have to be stored
in global memory as this is the only memory type that can accommodate such arrays. Register memory
will be used for storing data of intermediate calculations such as vector difference, dot product of two
vectors, cosine of angle between two vectors, etc.

CUDA API
The CUDA API is a software layer provided by Nvidia that allows developers to use the power of Nvidia
GPUs directly [118]. It supports development in C/C++, providing very low-level control of GPUs, which
is crucial for optimising performance and efficiency. The CUDA API provides a comprehensive set of
programming constructs, libraries, and runtime support to help developers achieve high performance
with their applications.

CUDA is available in Python as well. However, CUDA programming in C/C++ is more common, and
much more information and documentation is available on these languages. Thus, C/C++ interface will
be used for this project.

C
Parametric Analysis

C.1. Number of Planes and Phasing Parameter

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

Sa
ts

 in
 v

ie
w

[-]

Mean
P = 40
P = 20
P = 80
P = 18
P = 89
P = 25
P = 64

P = 32
P = 50
P = 39
P = 41
P = 34
P = 47

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

Sa
ts

 in
 v

ie
w

[-]
Minimum

P = 40
P = 20
P = 80
P = 18
P = 89
P = 25
P = 64

P = 32
P = 50
P = 39
P = 41
P = 34
P = 47

N = 1600 sats, i = 60 deg, F/P = 0.2

(a)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

Sa
ts

 in
 v

ie
w

[-]

Mean
P = 40
P = 20
P = 80
P = 18
P = 89
P = 25
P = 64

P = 32
P = 50
P = 39
P = 41
P = 34
P = 47

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 40
P = 20
P = 80
P = 18
P = 89
P = 25
P = 64

P = 32
P = 50
P = 39
P = 41
P = 34
P = 47

N = 1600 sats, i = 60 deg, F/P = 0.5

(b)

Figure C.1: Mean and minimum visibility for given constellations as function of P with a fixed F/P .

99

100 C. Parametric Analysis

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20
Sa

ts
 in

 v
ie

w
[-]

Mean
P = 40
P = 20
P = 80
P = 18
P = 89
P = 25
P = 64

P = 32
P = 50
P = 39
P = 41
P = 34
P = 47

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 40
P = 20
P = 80
P = 18
P = 89
P = 25
P = 64

P = 32
P = 50
P = 39
P = 41
P = 34
P = 47

N = 1600 sats, i = 60 deg, F/P = 0.8

(c)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

25

30

Sa
ts

 in
 v

ie
w

[-]

Mean
P = 51
P = 50
P = 52
P = 20
P = 130
P = 25
P = 104

P = 31
P = 84
P = 40
P = 65
P = 49
P = 53

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

25

30

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 51
P = 50
P = 52
P = 20
P = 130
P = 25
P = 104

P = 31
P = 84
P = 40
P = 65
P = 49
P = 53

N = 2600 sats, i = 60 deg, F/P = 0.2

(d)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

25

30

Sa
ts

 in
 v

ie
w

[-]

Mean
P = 51
P = 50
P = 52
P = 20
P = 130
P = 25
P = 104

P = 31
P = 84
P = 40
P = 65
P = 49
P = 53

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

25

30

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 51
P = 50
P = 52
P = 20
P = 130
P = 25
P = 104

P = 31
P = 84
P = 40
P = 65
P = 49
P = 53

N = 2600 sats, i = 60 deg, F/P = 0.5

(e)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

Sa
ts

 in
 v

ie
w

[-]

Mean
P = 60
P = 50
P = 72
P = 20
P = 180
P = 30
P = 120

P = 40
P = 90
P = 45
P = 80
P = 59
P = 61

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 60
P = 50
P = 72
P = 20
P = 180
P = 30
P = 120

P = 40
P = 90
P = 45
P = 80
P = 59
P = 61

N = 3600 sats, i = 60 deg, F/P = 0.2

(f)

Figure C.1: Mean and minimum visibility for given constellations as function of P with a fixed F/P .

C.1. Number of Planes and Phasing Parameter 101

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

Sa
ts

 in
 v

ie
w

[-]
Mean

P = 60
P = 50
P = 72
P = 20
P = 180
P = 30
P = 120

P = 40
P = 90
P = 45
P = 80
P = 59
P = 61

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 60
P = 50
P = 72
P = 20
P = 180
P = 30
P = 120

P = 40
P = 90
P = 45
P = 80
P = 59
P = 61

N = 3600 sats, i = 60 deg, F/P = 0.5

(g)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

Sa
ts

 in
 v

ie
w

[-]

Mean
P = 60
P = 50
P = 72
P = 20
P = 180
P = 30
P = 120

P = 40
P = 90
P = 45
P = 80
P = 59
P = 61

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 60
P = 50
P = 72
P = 20
P = 180
P = 30
P = 120

P = 40
P = 90
P = 45
P = 80
P = 59
P = 61

N = 3600 sats, i = 60 deg, F/P = 0.8

(h)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60

Sa
ts

 in
 v

ie
w

[-]

Mean
P = 68
P = 70
P = 66
P = 20
P = 231
P = 30
P = 154

P = 42
P = 110
P = 55
P = 84
P = 60
P = 77

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 68
P = 70
P = 66
P = 20
P = 231
P = 30
P = 154

P = 42
P = 110
P = 55
P = 84
P = 60
P = 77

N = 4620 sats, i = 60 deg, F/P = 0.2

(i)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60

Sa
ts

 in
 v

ie
w

[-]

Mean
P = 68
P = 70
P = 66
P = 20
P = 231
P = 30
P = 154

P = 42
P = 110
P = 55
P = 84
P = 60
P = 77

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 68
P = 70
P = 66
P = 20
P = 231
P = 30
P = 154

P = 42
P = 110
P = 55
P = 84
P = 60
P = 77

N = 4620 sats, i = 60 deg, F/P = 0.5

(j)

Figure C.1: Mean and minimum visibility for given constellations as function of P with a fixed F/P .

102 C. Parametric Analysis

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60

70
Sa

ts
 in

 v
ie

w
[-]

Mean
P = 75
P = 125
P = 45
P = 73
P = 77
P = 74
P = 76

P = 37
P = 152
P = 58
P = 97
P = 194
P = 29

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60

70

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 75
P = 125
P = 45
P = 73
P = 77
P = 74
P = 76

P = 37
P = 152
P = 58
P = 97
P = 194
P = 29

N = 5625 sats, i = 60 deg, F/P = 0.2

(k)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60

70

Sa
ts

 in
 v

ie
w

[-]

Mean
P = 75
P = 125
P = 45
P = 73
P = 77
P = 74
P = 76

P = 37
P = 152
P = 58
P = 97
P = 194
P = 29

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60

70

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 75
P = 125
P = 45
P = 73
P = 77
P = 74
P = 76

P = 37
P = 152
P = 58
P = 97
P = 194
P = 29

N = 5625 sats, i = 60 deg, F/P = 0.5

(l)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60

70

Sa
ts

 in
 v

ie
w

[-]

Mean
P = 75
P = 125
P = 45
P = 73
P = 77
P = 74
P = 76

P = 37
P = 152
P = 58
P = 97
P = 194
P = 29

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

60

70

Sa
ts

 in
 v

ie
w

[-]

Minimum
P = 75
P = 125
P = 45
P = 73
P = 77
P = 74
P = 76

P = 37
P = 152
P = 58
P = 97
P = 194
P = 29

N = 5625 sats, i = 60 deg, F/P = 0.8

(m)

Figure C.1: Mean and minimum visibility for given constellations as function of P with a fixed F/P .

C.1. Number of Planes and Phasing Parameter 103

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F/P [-]

0

50

100

150

200

250

300

Ar
ea

 u
nd

er
 c

ur
ve

 [s
q.

 u
ni

ts
]

N = 1600 sats, h = 600 km, inc = 60 deg

P = 40
P = 20
P = 80
P = 18

P = 89
P = 25
P = 64
P = 32

P = 50
P = 39
P = 41

P = 34
P = 47
mean

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F/P [-]

200

250

300

350

400

450

500

Ar
ea

 u
nd

er
 c

ur
ve

 [s
q.

 u
ni

ts
]

N = 2600 sats, h = 600 km, inc = 60 deg

P = 51
P = 50
P = 52
P = 20

P = 130
P = 25
P = 104
P = 31

P = 84
P = 40
P = 65

P = 49
P = 53
mean

(b)

Figure C.2: Area under curve for different layouts.

104 C. Parametric Analysis

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F/P [-]

700

750

800

850

900

950

1000
Ar

ea
 u

nd
er

 c
ur

ve
 [s

q.
 u

ni
ts

]

N = 5625 sats, h = 600 km, inc = 60 deg

P = 75
P = 125
P = 45
P = 73

P = 77
P = 74
P = 76
P = 37

P = 152
P = 58
P = 97

P = 194
P = 29
mean

(c)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
F/P [-]

400

450

500

550

600

650

700

Ar
ea

 u
nd

er
 c

ur
ve

 [s
q.

 u
ni

ts
]

N = 3600 sats, h = 600 km, inc = 60 deg

P = 60
P = 50
P = 72
P = 20

P = 180
P = 30
P = 120
P = 40

P = 90
P = 45
P = 80

P = 59
P = 61
mean

(d)

Figure C.2: Area under curve for different layouts.

C.2. Number of Satellites 105

C.2. Number of Satellites

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 0 deg, = 10 deg

(a)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 30 deg, = 10 deg

(b)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 60 deg, = 10 deg

(c)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 90 deg, = 10 deg

(d)

Figure C.3: Parametric analysis, varying N .

106 C. Parametric Analysis

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 0 deg, = 30 deg

(e)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 30 deg, = 30 deg

(f)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 60 deg, = 30 deg

(g)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 90 deg, = 30 deg

(h)

Figure C.3: Parametric analysis, varying N .

C.2. Number of Satellites 107

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

25

50

75

100

125

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

25

50

75

100

125

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 0 deg, = 50 deg

(i)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
5

10
15
20
25
30

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
5

10
15
20
25
30

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 30 deg, = 50 deg

(j)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
5

10
15
20
25
30

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
5

10
15
20
25
30

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 60 deg, = 50 deg

(k)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

25

50

75

100

125

Sa
ts

 in
 v

ie
w

[-]

Mean
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

25

50

75

100

125

Sa
ts

 in
 v

ie
w

[-]

Minimum
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506

h = 600 km, inc = 90 deg, = 50 deg

(l)

Figure C.3: Parametric analysis, varying N .

108 C. Parametric Analysis

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]
Mean (scaled)

N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 0 deg, = 10 deg

(a)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200

Sa
ts

 in
 v

ie
w

[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 30 deg, = 10 deg

(b)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175

Sa
ts

 in
 v

ie
w

[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 60 deg, = 10 deg

(c)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 90 deg, = 10 deg

(d)

Figure C.4: Scaled visibility, varying N .

C.2. Number of Satellites 109

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 0 deg, = 30 deg

(e)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 30 deg, = 30 deg

(f)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 60 deg, = 30 deg

(g)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 90 deg, = 30 deg

(h)

Figure C.4: Scaled visibility, varying N .

110 C. Parametric Analysis

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

25

50

75

100

125
Sa

ts
 in

 v
ie

w
[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 0 deg, = 50 deg

(i)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
5

10
15
20
25
30

Sa
ts

 in
 v

ie
w

[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025
N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 30 deg, = 50 deg

(j)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
5

10
15
20
25
30

Sa
ts

 in
 v

ie
w

[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 60 deg, = 50 deg

(k)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

25

50

75

100

125

Sa
ts

 in
 v

ie
w

[-]

Mean (scaled)
N = 4970
N = 4489
N = 3969
N = 3481
N = 3025

N = 2500
N = 1980
N = 1482
N = 992
N = 506 (real)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0.020
0.015
0.010
0.005
0.000
0.005
0.010
0.015
0.020

Sa
ts

 in
 v

ie
w

[-]

Error (wrt real)

N = 4970
N = 4489
N = 3969

N = 3481
N = 3025
N = 2500

N = 1980
N = 1482
N = 992

h = 600 km, inc = 90 deg, = 50 deg

(l)

Figure C.4: Scaled visibility, varying N .

C.3. Inclination 111

C.3. Inclination

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 506 sats, = 10 deg

(a)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 1980 sats, = 10 deg

(b)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 3481 sats, = 10 deg

(c)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 4970 sats, = 10 deg

(d)

Figure C.5: Parametric analysis, varying i.

112 C. Parametric Analysis

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
5

10
15
20
25
30

Sa
ts

 in
 v

ie
w

[-]
Mean

inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
5

10
15
20
25
30

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 506 sats, = 30 deg

(e)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60
70
80
90

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60
70
80
90

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 1980 sats, = 30 deg

(f)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 3481 sats, = 30 deg

(g)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 4970 sats, = 30 deg

(h)

Figure C.5: Parametric analysis, varying i.

C.3. Inclination 113

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

5

10

15

20

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 506 sats, = 50 deg

(i)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

10

20

30

40

50

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 1980 sats, = 50 deg

(j)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60
70
80

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60
70
80

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 3481 sats, = 50 deg

(k)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

25

50

75

100

125

Sa
ts

 in
 v

ie
w

[-]

Mean
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0

25

50

75

100

125

Sa
ts

 in
 v

ie
w

[-]

Minimum
inc = 0.0 deg
inc = 10.0 deg
inc = 20.0 deg
inc = 30.0 deg
inc = 40.0 deg

inc = 50.0 deg
inc = 60.0 deg
inc = 70.0 deg
inc = 80.0 deg
inc = 90.0 deg

h = 600 km, N = 4970 sats, = 50 deg

(l)

Figure C.5: Parametric analysis, varying i.

114 C. Parametric Analysis

C.4. Minimum Elevation Angle and Altitude

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150

Sa
ts

 in
 v

ie
w

[-]
Mean

 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 992 sats, inc = 0 deg

(a)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60
70

Sa
ts

 in
 v

ie
w

[-]

Mean
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60
70

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 992 sats, inc = 30 deg

(b)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Mean
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
10
20
30
40
50
60

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 992 sats, inc = 60 deg

(c)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150

Sa
ts

 in
 v

ie
w

[-]

Mean
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 992 sats, inc = 90 deg

(d)

Figure C.6: Parametric analysis, varying εmin.

C.4. Minimum Elevation Angle and Altitude 115

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]

Mean
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 3025 sats, inc = 0 deg

(e)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Mean
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200
225

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 3025 sats, inc = 30 deg

(f)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200

Sa
ts

 in
 v

ie
w

[-]

Mean
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
25
50
75

100
125
150
175
200

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 3025 sats, inc = 60 deg

(g)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]

Mean
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400
450

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 3025 sats, inc = 90 deg

(h)

Figure C.6: Parametric analysis, varying εmin.

116 C. Parametric Analysis

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
100
200
300
400
500
600
700

Sa
ts

 in
 v

ie
w

[-]
Mean

 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
100
200
300
400
500
600
700

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 4970 sats, inc = 0 deg

(a)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400

Sa
ts

 in
 v

ie
w

[-]

Mean
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350
400

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 4970 sats, inc = 30 deg

(b)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350

Sa
ts

 in
 v

ie
w

[-]

Mean
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
50

100
150
200
250
300
350

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 4970 sats, inc = 60 deg

(c)

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
100
200
300
400
500
600
700

Sa
ts

 in
 v

ie
w

[-]

Mean
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

0 10 20 30 40 50 60 70 80 90
Latitude [deg]

0
100
200
300
400
500
600
700

Sa
ts

 in
 v

ie
w

[-]

Minimum
 = 0.0
 = 10.0
 = 20.0
 = 30.0
 = 40.0
 = 50.0
 = 60.0

h = 600 km, N = 4970 sats, inc = 90 deg

(d)

Figure C.7: Parametric analysis, varying εmin.

D
Building Blocks

Table D.1: Setup for comparison of computational time using the building blocks method.

Parameter Values Increment
Subrange 1

Target latitude 67 to 90 deg -

Inclination 67 to 90 deg 1 deg

N per shell 0 to 2000 sats 100 sats

Total two-shell layouts 116, 403 layouts

Subrange 2

Target latitude 44 to 67 deg -

Inclination 44 to 76 deg 1 deg

N per shell 0 to 2000 sats 100 sats

Total two-shell layouts 225, 456 layouts

Subrange 3

Target latitude 21 to 44 deg -

Inclination 21 to 53 deg 1 deg

N per shell 0 to 2000 sats 100 sats

Total two-shell layouts 225, 456 layouts

Subrange 4

Target latitude 0 to 21 deg -

Inclination 0 to 30 deg 1 deg

N per shell 0 to 2000 sats 100 sats

Total two-shell layouts 198, 135 layouts

Total
Target latitude 0 to 90 deg 23 deg

Total two-shell layouts 765, 450 layouts

117

	Preface
	Summary
	1 Introduction
	2 Mega-Constellation Overview
	2.1 Typical Geometries
	2.1.1 Walker Delta
	2.1.2 Walker Star (Streets-of-Coverage)

	2.2 Existing systems
	2.2.1 Iridium
	2.2.2 Starlink
	2.2.3 OneWeb
	2.2.4 Project Kuiper
	2.2.5 Spire
	2.2.6 Space Systems
	2.2.7 Kepler
	2.2.8 E-Space

	2.3 Previous Research
	2.4 Figures of Merit
	2.4.1 Visibility
	2.4.2 Revisit time
	2.4.3 Dilution of precision
	2.4.4 Positioning Accuracy
	2.4.5 Latency
	2.4.6 Signal-to-noise ratio
	2.4.7 Conclusion

	2.5 Summary and Conclusions

	3 Constellation Propagation
	3.1 Dynamics
	3.1.1 Point-Mass (Keplerian Orbit)
	3.1.2 J2 Perturbation

	3.2 Keplerian to Cartesian
	3.3 Software Implementation and Vectorisation
	3.4 Verification
	3.5 Summary and Conclusions

	4 Coverage Estimation
	4.1 Existing Methods
	4.2 Parallelised Visibility Computation
	4.2.1 Hardware Setup
	4.2.2 Software Implementation

	4.3 Verification
	4.4 Simplifications
	4.4.1 Walker Constellation Symmetry
	4.4.2 Walker Constellation Dynamics: Snapshot

	4.5 Parametric analysis
	4.5.1 Number of Planes and Phasing Parameter
	4.5.2 Number of Satellites
	4.5.3 Inclination
	4.5.4 Minimum Elevation Angle and Altitude

	4.6 Summary and Conclusions

	5 Multi-shell Mega-constellation Design
	5.1 Shell Permutation
	5.1.1 One shell
	5.1.2 Two shells
	5.1.3 Three shells
	5.1.4 Verification

	5.2 Permutation Acceleration
	5.2.1 Propagate each shell separately
	5.2.2 Apply simplifications
	5.2.3 Scale with N

	5.3 Shells Building Blocks
	5.4 Computational Time Comparison
	5.4.1 Constellation Propagation
	5.4.2 Visibility Computation
	5.4.3 Mega-Constellation Design

	5.5 Summary and Conclusions

	6 Conclusions
	References
	A Propagation Verification
	B Parallel Computing
	B.1 Sequential and Parallel Computing
	B.2 Types of Parallelism and Parallel Processing
	B.3 Multi-core Central Processing Units (CPU)
	B.4 Graphics processing units (GPU)

	C Parametric Analysis
	C.1 Number of Planes and Phasing Parameter
	C.2 Number of Satellites
	C.3 Inclination
	C.4 Minimum Elevation Angle and Altitude

	D Building Blocks

