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Abstract

To bring down the number of traffic accidents and increase people’s mobility companies, such as Robot En-
gineering Systems (RES) try to put automated vehicles on the road. RES is developing the WEpod, a shuttle
capable of autonomously navigating through mixed traffic. This research has been done in cooperation with
RES to improve the localization capabilities of the WEpod.

The WEpod currently localizes using its GPS and lidar sensors. These have proven to be not accurate and
reliable enough to safely navigate through traffic. Therefore, other methods of localization and mapping
have been investigated. The primary method investigated in this research is monocular Simultaneous Local-
ization and Mapping (SLAM). Based on literature and practical studies, ORB-SLAM has been chosen as the
implementation of SLAM.

Unfortunately, ORB-SLAM is unable to initialize the setup when applied on WEpod images. Literature has
shown that this problem can be solved by adding depth information to the inputs of ORB-SLAM. Obtaining
depth information for the WEpod images is not an arbitrary task. The sensors on the WEpod are not capable
of creating the required dense depth-maps. A Convolutional Neural Network (CNN) could be used to create
the depth-maps.

This research investigates whether adding a depth-estimating CNN solves this initialization problem and
increases the tracking accuracy of monocular ORB-SLAM. A well performing CNN is chosen and combined
with ORB-SLAM. Images pass through the depth estimating CNN to obtain depth-maps. These depth-maps
together with the original images are used in ORB-SLAM, keeping the whole setup monocular.

ORB-SLAM with the CNN is first tested on the Kitti dataset. The Kitti dataset is used since monocular ORB-
SLAM initializes on Kitti images and ground-truth depth-maps can be obtained for Kitti images. Monoc-
ular ORB-SLAM’s tracking accuracy has been compared to ORB-SLAM with ground-truth depth-maps and
to ORB-SLAM with estimated depth-maps. This comparison shows that adding estimated depth-maps in-
creases the tracking accuracy of ORB-SLAM, but not as much as the ground-truth depth images.

The same setup is tested on WEpod images. The CNN is fine-tuned on 7481 Kitti images as well as on 642
WEpod images. The performance on WEpod images of both CNN versions are compared, and used in com-
bination with ORB-SLAM. The CNN fine-tuned on the WEpod images does not perform well, missing details
in the estimated depth-maps. However, this is enough to solve the initialization problem of ORB-SLAM. The
combination of ORB-SLAM and the Kitti fine-tuned CNN has a better tracking accuracy than ORB-SLAM with
the WEpod fine-tuned CNN. It has been shown that the initialization problem on WEpod images is solved as
well as the tracking accuracy is increased.

These results show that the initialization problem of monocular ORB-SLAM on WEpod images is solved by
adding the CNN. This makes it applicable to improve the current localization methods on the WEpod. Us-
ing only this setup for localization on the WEpod is not possible yet, more research is necessary. Adding this
setup to the current localization methods of the WEpod could increase the localization of the WEpod. This
would make it safer for the WEpod to navigate through traffic. This research sets the next step into creating a
fully autonomous vehicle which reduces traffic accidents and increases the mobility of people.
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1
Introduction

The amount of deaths worldwide due to road traffic accidents has risen over the course of 20 years (1990-
2010) by 46 % to 1.3 million yearly deaths [36]. This is the price that we to enjoy the advantages of driving.
Questions arise about the causes of these traffic accidents and if it is possible to lower this amount of deaths
while still keeping the advantages of transportation. Research has been done into the causes of these traffic
accidents. They concluded that the main causes of road traffic accidents are the drivers fault. According to a
recent report [53] 65 %, and even possibly up to 92.6 %, of fatal traffic accidents can be attributed to human
error.

A lot of effort has been put into reducing the number of fatal traffic accidents. Several methods to achieve
this have been found. One method of reducing the amount of deaths is by adding safety features to the car.
These reduce the chance of fatal injuries when a traffic accident has happened. Examples of these safety
features are for instance the addition of seat-belts, airbags or improving the shape and material of the frame.
This solutions do not not tackle the actual problem, but more reduces the severity of the consequences.

Another method of reducing the amount of deaths is by tackling the traffic accidents itself. Removing the
cause of these human errors would have a great impact on the amount of traffic accidents. Most of the traffic
accidents can be attribute to human error. Examples of these causes are inattention and fatigue. The human
errors can divided into four groups [49] : slips (misread road signs), lapses (fail to recall road just travelled),
mistakes (underestimate speed of oncoming vehicle) and violations (exceeding the speed limit).

A possible solution to these human failures is to support the human in the driving task. There are a lot of
advanced driver-assistance systems (ADAS) coming into the vehicle market. Examples are adaptive cruise
control, anti-lock braking systems, emergency braking systems and electronic stability control. Instead of
supporting the human while driving, replacing the human as a driver with a driving system is also a solution
to the problem. This driving system would for instance never get tired and is always attentive. Replacing the
human driver would also result in a lot of other advantages. For instance, the human that usually drives the
vehicle can now use its time in traffic to its advantage. The time inside the vehicle, usually wasted on driving,
can now be used to relax, study or work. Studies have shown that Americans spend an average of 50.6 minutes
per day driving [52] and Europeans even more then a hour per day [41]. Also does it give people without the
ability to drive the vehicle, for instance elders or children, the chance to safely use the vehicle to get to their
destination without being dependant on others.

In the car industry, there are a lot of companies implementing ADAS in their vehicles. They try to assist the
driver more and more by improving ADAS. These vehicles driving systems share the control with the human,
taking over more and more tasks over from the human. They climb their way through levels of automation
in driving defined by the SAE. Level 0 is total human control and level 5 is total control by the systems [26].
The explanation of the five levels can be found in figure 1.1. Another strategy that companies implement is
directly removing the human control. They immediately try to create a vehicle that fits in the forth level of
automation. Attempts of these level 4 automated vehicles are the Heathrow shuttles and Rotterdam Rivium
shuttles, which only drive on a dedicated lane without other traffic, or the Navya autonomous shuttle, capa-
ble of driving in between traffic in certain situations.
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2 1. Introduction

Figure 1.1: The SAE five stages of automation in driving with explanation [26].

Another company that works on fully automated vehicles is Robot Engineering Systems (RES). RES has de-
veloped the WEpod in collaboration with the TU Delft and other partners. The WEpod is a shuttle for 6
passengers capable of driving on its own and is depicted on the front page. The WEpod shuttle drives peo-
ple between the campus in Wageningen and the train station Ede-Wageningen. It is capable of driving in
between traffic with a speed of 25 km/h. The WEpod is used for a lot of research on new and improved meth-
ods of driving autonomously and comfortably. To be able to improve its autonomous driving capabilities,
research on different automated driving fields is done in collaboration with the TU Delft. Examples of these
automated driving research fields are path-planning, object-detection, decision-making and localization.

A WEpod shuttle uses a setup of different sensors to be able to sense its surroundings. It has 9 radars
divided around the vehicle. These radars sense in one plane the distance to objects and they estimate the
speed of the objects they sense. The WEpod has 6 lidars placed around the vehicle. Each lidar senses 3D
point distributed on four horizontal planes. Next to the radars and the lidars, also 9 cameras are distributed
around the outside of the vehicle. Internally is the vehicle equipped with a GPS and IMU unit and enough
CPU/GPU setups to provide enough computing power to process all the data.

All these sensors and computers on the WEpod are used to safely and autonomously drive in mixed traffic
on public roads. However, there are still challenges for the WEpod. One example is diverting from its pre-
determined path to drive around an obstacle. Currently it would detect the obstacle and stop. It would wait
until the obstacle moves so it can resume its path. It cannot overtake others by diverting its path around the
object in front of it. One of the reasons that it cannot do this is because of its poor localization performance.

The WEpod currently localizes itself inside a pre-built map of the area. This is implemented by a third party
named Ibeo. They do this by using the points obtained with the lidars and the GPS information. However,
this proves to have multiple downsides. Not only is it costly to pay Ibeo for each new map, the system also
does not preform robust enough using these sensors.

One of the reasons why the system of Ibeo does not preform robust enough is because localizing using
lidar sensor information proves to be inaccurate in certain scenarios. An example of such a situation is when
driving in a street with similarly shaped buildings on both sides. Distinguishing one building from the next
based on its shape in the lidar pointcloud is then very hard. Determining you location in such a street accu-
rately is not possible. Other downsides of using a map based on four plane lidar points is that is produces a
sparse distribution of points on the map and that the location of the road is not described on the map.
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Another reason why the system of Ibeo does not preform robust enough is because of the GPS. The GPS
suffers from different types of obstacles that block the GPS signals from the satellites. One type of objects that
block the GPS signals are leaves. This is caused by the water in the leaves blocking the GPS signals. Another
example of objects that block the GPS signal are large buildings. When driving through cities with a high
density of large buildings, no direct line of sight is available between the GPS satellites and the GPS unit. The
GPS unit only gets the signals reflected of the buildings, resulting in poor localization by the GPS. Dalip [4] has
mapped out the different effects of environmental parameters on GPS signals. He proved that localization by
GPS suffers from these signal blocking objects.

So the localization method of the WEpod needs to be improved to allow safe and flexible navigation
through mixed traffic. RES wants to be able to create there own maps of the surrounding to make them
independent of Ibeo. The process of creating a map of the surrounding and localizing yourself on this map is
called Simultaneous Localization And Mapping (SLAM). RES wants to use a SLAM method that takes sensor
data from the WEpod, creates a map of the surrounding environment and localizes itself on this map.

There has been a lot of research done into different SLAM methods. Preforming SLAM using different types
of sensors is an example. One of the sensors used to preform SLAM with is the radar. [44] is an example of
performing SLAM using radar sensors. Performing SLAM based on lidar sensors, comparable to the method
the WEpod localizes now, is also possible. The lidars can have different amount of planes in which they scan
with different densities. This results in different performances of lidar based SLAM systems. Finally another
sensor to do SLAM with is a camera. These vision-based methods use the image stream of a camera to esti-
mate a map of the surrounding and the path travelled by the camera. Vision-based SLAM methods that only
use the image-stream of one camera as an input are called monocular vision-based SLAM methods.

RES has chosen to investigate monocular vision-based SLAM. Localizing and building a map using the
lidars and GPS proves to not be adequate. It is assumed that preforming SLAM based on the radars would not
preform better than the lidar based localization and mapping. This because the radar returns similar sensor
data as the lidars, but than in less planes (only 1) and less dense. Vision-based SLAM however provides a
very different type of data then the lidar, much denser and not bound to certain planes. Vision-based SLAM
methods have been proven to work on datasets consisting of camera’s on a car driving on the road [39]. A
camera is also much cheaper than a lidar setup, resulting in cost benefits. So it would be ideal to be able to
preform SLAM using camera data by vision-based SLAM. There is no depth calculating setup available on the
WEpod, so the localization investigation of RES is focused on monocular vision-based SLAM.

Monocular vision based SLAM algorithms can be divided into two parts [59], the tracking part and the
mapping part. The tracking part estimates the pose of the new image and the mapping part creates and con-
stantly optimizes the surrounding map. The existing monocular vision-based SLAM methods can be divided
based on their working. They can be direct or feature-based and sparse or dense. Direct methods do the
tracking part by minimizing a photometric error directly calculated from the intensity differences between
images. Feature-based methods first extract features from the images and do the tracking part by minimizing
a reprojection error of these feature points. They can also be classified as sparse or dense methods, based
on the density of points used to create the map. Some methods select certain points from the image and use
only these to create the map (sparse methods), while others try to use as many points as possible to create
the map, creating a much denser map (dense methods).

During a literature study done in cooperation with RES, four state of the art monocular vision-based SLAM
algorithms have been investigated to choose one for this thesis [59]. The state of the art monocular vision-
based SLAM algorithms that where investigated are: Large Scale Direct SLAM (LSD-SLAM) [9], ORB-SLAM
[39], Direct Sparse Odometry (DSO) [10] and Semi-direct Visual Odometry (SVO) [17]. From the conclusion
of the literature study it can be taken that ORB-SLAM is the most suitable of the four as it preforms better
than the rest. The implementation of monocular ORB-SLAM is also openly distributed within ORB-SLAM2
[40], together with the source code. So ORB-SLAM is investigated as an option for monocular vision-based
SLAM algorithm on data from the WEpod.

ORB-SLAM on data from the WEpod has been tried out during an internship at RES [58],. Unfortunately
this internship proved that the performance of ORB-SLAM on WEpod data was nowhere near the perfor-
mance of monocular ORB-SLAM on data from the Kitti dataset [20]. The Kitti dataset consists among others
of images from a camera on a driving car. Initializing a starting scene to preform the tracking and mapping
from is to difficult. Even though ORB-SLAM has a more robust initializing method than the other state of the
art monocular vision-based SLAM methods [59]. ORB-SLAM tries to initialize using either the fundamental
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matrix, which works well in non-planar scenes with high parallax, or using the homography matrix, which
works well in planar scenes with low parallax. Both initialization methods do not pass the test ORB-SLAM
uses to check if the initialization is correct, resulting in ORB-SLAM trying to initialize over and over again.

This initialization problem is a problem that not only occurs on the WEpod data. The authors of many
SLAM algorithms have tried to tackle this problem. A set of 2D points that describe a 3D scene are used for
initialization. Using 3D points for this initialization would be easier. These 3D points can be obtained by
adding depth information as an input to ORB-SLAM [59]. Adding depth information makes the initialization
of the starting scene a lot easier. During the internship at RES [58], it has been proven that indeed adding
depth information to the inputs of ORB-SLAM solves the initialization problem.

The depth information required can be supplied using different methods. One common way is adding a
depth-map to the input. This depth-map can be obtained by using for instance infrared sensors (like with
the Kinect) or by linearly interpolating between the lidar points from a 64-plane lidar. Another method of
obtaining the depth information is by supplying stereo images. By finding stereo matches of points in the
stereo images, depth can be estimated and thus is the initialization problem much easier.

Unfortunately, the WEpod does not have a stereo camera setup on-board, and neither does it have other
sensors which makes it possible to achieve a dense depth map of the images. It does have lidars and radars
estimating depth, but these are much too sparse to obtain a dense enough depth-map for ORB-SLAM. It
would also be to costly to adapt the sensory setup of the vehicle. Therefore, the depth information must
come from monocular images.

Obtaining depth from monocular images is not an easy task. Obtaining depth from one image stream can
be done with structure-from-motion algorithms. They treat the different images trough time as ‘stereo’ pairs,
finding stereo matches between them. Using these stereo matches, they try to estimate the pose difference
between the two images, inertly estimating the depth of the stereo matched points. This however is very
similar to how ORB-SLAM algorithms treat the input image stream. They also try to estimate the depth of
points in the image using such a method, and this proves to not be accurate enough. So another method of
estimating the depth in monocular images is needed.

Hoiem [25], and Liu [33], have tried to estimate the depth in an image based on manually defined features
and probabilistic graphical models. These methods are heavily based on assumptions about the surrounding
environment in the images, making them far from robust and not applicable for estimation of a depth-map
of a road scene.

Using convolutional neural networks (CNN’s) to estimate the depth in an image is also a possibility, that out-
preforms the previous methods. The rise in computational power of the last years has boosted the capabilities
and research in neural networks. A lot of research has been done in solving automated driving problems with
neural networks, such as object-detection, path-planning and even depth-map estimation of images. Using
a CNN would make it even possible to achieve a cooperation between these CNN’s doing different things in
the vehicle, they could possibly easily share information with each other. A CNN that estimates depth in a
single image has been proven to be possible, as multiple people have created networks doing this. Examples
of these depth-estimating CNN’s can be found in chapter 2.

To be able to use depth estimating CNN’s, groundtruth depth-maps, stereo images or accurate pose in-
formation is necessary. The pose information from the WEpod is not accurate enough to use with a depth
estimating CNN setup, if it was this whole research would not be necessary. There is also no stereo image
setup available on the WEpod. There is a separate stereo sensor available, the Multisense S21. However this
cannot easily be used to fine-tune depth estimating CNN as the CNN would than be fine-tuned on data from
a different camera than it would predict on. This would not necessary mean that it would preform good as
the camera’s would not only look from different perspectives but they also have different intrinsic parameters,
field of views and could react different to different lighting circumstances.

The stereo camera setup however can be used to obtain groundtruth depth-maps of the WEpod images.
This can be done by placing the stereo camera setup above the WEpod camera facing the same direction such
that the view of both cameras overlap as much as possible. The transition between both the camera frames
(the left camera of the stereo camera and the WEpod camera) can be estimated using stereo calibration. Then
enough information is present to project the depth points seen by the stereo camera setup to the WEpod
camera image, creating a depth-map of the WEpod images. See for more explanation chapter 3.

Another possibility of fine-tuning the depth estimating CNN of CNN-SLAM for prediction of WEpod im-
ages is by using a different but similar dataset. Such a dataset is the Kitti dataset [20]. It consists of images
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from a camera fixed on a car and lidar points from a 64-plane lidar. The car drives around in different types
of road scenes, from dense cities to open highways in Germany. The dense lidar point cloud can be used to
create a depth-map of the images, which then can be used for fine-tuning the depth estimating CNN. This
depth estimating CNN fine-tuned on Kitti data can be used to predict the depth in WEpod images.

This means that the depth estimating CNN can be used to estimate the depth in the monocular images.
The CNN setup of CNN-SLAM is one of the largest depth estimating CNN’s but also the best performing.
Therefore the CNN of CNN-SLAM will be used to estimate the depth in the images and this depth can then be
passed into ORB-SLAM. This setup is depicted in figure 1.2, showing that this setup is still monocular, even
though ORB-SLAM is not running in a monocular mode.

Figure 1.2: Diagram showing how the CNN can be added with a monocular vision-based SLAM algorithm (ORB-SLAM2 here as example),
while keeping the whole system monocular. The images from the camera stream go into the CNN to estimate its depth-map. This depth-
map is then together with the image forwarded as inputs for ORB-SLAM2.

To summarize, the current localization method of the WEpod is not robust enough to allow safe and flexi-
ble navigation through mixed traffic. To improve the localization of the WEpod, the monocular vision-based
SLAM algorithm ORB-SLAM [39] has been investigated. Unfortunately, ORB-SLAM fails to initialize the start-
ing scene when run with WEpod images. It thus fails to perform SLAM on WEpod data. It has been shown
that the problem of not initializing the starting scene can be solved by adding depth-maps of the images to
the input of ORB-SLAM [58], [59]. The WEpod however does not have any sensors capable of creating an
accurate and dense enough depth-map of its images.

Therefore, the goal of this thesis is to create and add a depth estimating CNN to ORB-SLAM. This addition
of a depth estimating CNN to a monocular vision-based SLAM algorithm should improve the tracking accu-
racy when using input images from the WEpod. The depth estimating CNN needs to be fine-tuned such that
it can estimate the depth in WEpod images.

The depth estimating CNN of CNN-SLAM [31] is suited to tackle this challenge. The authors have trained
and tested its performance on the NYU dataset, which consist of indoor scenarios. The performance of the
CNN needs to be tested on a dataset of road scenarios. The Kitti dataset is used, as it includes 64-plane lidar
data that makes it easy to create accurate depth-maps. The CNN is fine-tuned on the Kitti dataset and then
predicts on Kitti images.

The depth-maps for the WEpod images can be created using a stereo setup. These depth-maps can be
used to fine-tune the CNN. The performance of the CNN fine-tuned and predicting on WEpod images can be
compared with the performance of the CNN fine-tuned and predicting on Kitti images.

It is also interesting how the CNN performs when it is fine-tuned on Kitti images and predicts WEpod
images, cross-domain. This could make the training of the CNN much less of a hassle, making fine-tuning for
each similar dataset unnecessary. One trained CNN could possibly be used for many more applications with-
out needing retraining, for instance one CNN can be used for multiple vehicles. Therefore the performance
of the CNN fine-tuned on Kitti images and predicting WEpod images is compared to the performance of the
two previous setups.

The addition of the depth estimating CNN on ORB-SLAM is first investigated on the Kitti dataset. Monoc-
ular ORB-SLAM does initialize on images from the Kitti dataset. The effect of adding depth information,
ground-truth and estimated with the CNN can be investigated This can be done by comparing the tracking
accuracy of ORB-SLAM only on Kitti images, with ORB-SLAM on Kitti images together with depth-maps from
the lidar points and together with depth-maps estimated using the CNN.

Then the addition of the depth estimating CNN on ORB-SLAM with WEpod images can be investigated.
The tracking accuracy of ORB-SLAM only on WEpod images can be compared to ORB-SLAM on WEpod im-
ages and the corresponding depth-maps estimated with the CNN.

The scientific work related to this thesis can be found in chapter 2. Chapter 3 describes the methods and
setups used. The experiments and their results are presented in chapter 4. These results are interpreted and
discussed in chapter 5. Chapter 5 also concludes if this research has been successful in solving the initializa-
tion problem of ORB-SLAM with a depth-estimating CNN.





2
Related Work

2.1. Introduction
As described in the introduction, the localization capabilities of the WEpod need to be improved. This can be
done with monocular SLAM methods. However, even the state of the art methods have trouble initializing on
WEpod images. In order to perform SLAM with the camera’s from a WEpod, a monocular vision-based SLAM
method need to be improved. Especially the initialization needs to become much more robust. As found dur-
ing my internship [58], my literature study [59] and by many state of the art SLAM methods [8] [55] [17] [40],
this can be done by adding depth information to the inputs. A monocular vision-based SLAM method needs
to be chosen to work with. The are multiple methods in existence. For this research, a well-performing, state
of the art and openly available monocular vision-based SLAM method is needed. In section 2.2 the working
of state of the art monocular vision-based SLAM methods is explored so one can be chosen in the end of this
chapter.

A method to obtain the depth information needs to be found. This is a considerable challenge as the WEpod
does not have any sensors that can accurately and densely estimate the depth in its images. Using structure-
from-motion algorithms is a conventional way of obtaining the depth-map from an image stream. How these
algorithms try to estimate depth from images is comparable with how SLAM methods estimate the pose.
Therefore, depth-maps estimated by structure from motion algorithms will probably not improve the SLAM
methods. It will encounter the same challenges. Other depth estimating methods need to be explored.

Another way of depth estimation is for instance done by [25] and [33]. They define probabilistic graph-
ical models and try to manually define features in the images. Using these features and models, they try to
estimate the depth in images. This proves to be very limited, as these methods are heavily dependent on
assumptions about the surrounding environment in the images. This makes them far from robust and not
applicable for depth estimation in the WEpod.

In this thesis a convolutional neural network (CNN) is used to estimating depth in images. Due to the
rise in computational power over the last couple of years, research and uses for convolutional neural net-
works has exploded. CNN’s are used for many different types of tasks within autonomous vehicles. Examples
of these tasks are object-detection, path-planning and end-to-end driving with one network [2]. This end-
to-end driving is done by letting the network take camera images as inputs which it maps to inputs for the
motors, steering etc. As CNN’s are already used in autonomous vehicles, using a CNN for depth estimation
of images would fit nicely with the other CNN’s. This would allow cooperation between CNN’s in the feature.
Examples of depth estimating CNN’s are investigated in section 2.3. This makes it possible to choose a depth-
estimating CNN to work with in this thesis in the end of this chapter.

The addition of a depth estimating CNN to a SLAM network is not completely new. It has been done before
in the CNN-SLAM [51] algorithm, which unfortunately has not been openly shared. The depth estimating
component of CNN-SLAM [31] is investigated as an optional CNN to use in this thesis in section 2.3. CNN-
SLAM shows that adding a depth estimating CNN to monocular SLAM does indeed improve the mapping
capabilities of SLAM for indoor scenarios. They only use the depth estimating network to estimate the depth
in the keyframes, which are only used for the creating the map. The CNN is not used on all frames to improve
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the tracking accuracy. Furthermore, it has not been proven that the same concept works with outdoor road
scenery images. In this thesis a depth estimating CNN will be used on all the frames to improve the initializa-
tion and tracking performance.

The concept of this thesis will also be investigated on another dataset than the WEpod images. This is done
because there are no groundtruth depth-maps of the WEpod images suitable to perform SLAM with available.
Also does monocular SLAM without CNN not initialize on the WEpod images. When SLAM together with the
depth-estimating CNN does initialize on WEpod images, its tracking accuracy cannot be compared to see if
it has improved. The fact that it would initialize is an improvement itself, but a quantitative measure would
be nice. Therefore, the KITTI dataset [20] is used to compare the tracking accuracy of monocular SLAM with-
out depth-estimating CNN to monocular SLAM with depth-estimating CNN and to SLAM with images and
groundtruth depth-maps.

The KITTI dataset has an odometry dataset, which is used in this thesis. It consists of 22 sequences,
combined covering 39.2 km of different types of roads in Germany in a frequency of 10 fps. Each sequence
contains not only color and gray scale stereo images, but also Velodyne 64-plane lidar scanner data, and
GPS/IMU localization information. The exact placement of the sensor can be found on their site [19]. The
ground truth pose information is obtained using the GPS/IMU data, which is projected into the coordinate
system of the left camera. The 64-plane lidar points can be used to obtain ground-truth depth-maps of the
images, see section 3.3.

2.2. Vision-based SLAM
SLAM stands for Simultaneous Localization and Mapping. Vision-based SLAM algorithms aim to estimate
the six degree pose ( translation and rotation) of a camera and create a map of the surrounding environment,
using images. SLAM has been an active research field for a few decades already [54]. There was a big boost
lately due to the increase in computation power and its application in new fields such as robotics, drones and
automated driving. Vision-based SLAM is a very cheap way of doing SLAM in comparison to other options
such as using lidar data. A 64 plane lidar is a factor 100 more expensive than a camera.

A lot of people have investigated the SLAM problem. This resulted in the creation of different SLAM al-
gorithms using different types of inputs. A lot of these different SLAM methods can be found on different
websites created for the cataloging and comparing of the different SLAM methods. Examples of such sites
are the KITTI dataset site [19] (provides performance comparisons) and the OpenSLAM site [3] (listing SLAM
algorithms from before 2015). Unfortunately, not all SLAM algorithms are openly available for research pur-
poses as some are used for consumer products. Monocular vision-based SLAM are especially interesting
because of the sensory limitations of the WEpod.

Four state of the art monocular vision-based SLAM methods are LSD-SLAM [9], ORB-SLAM [39], Semi-
direct Visual Odometry (SVO) [17] and Direct Sparse Odometry (DSO) [10]. These four methods resemble
different ways monocular vision-based SLAM algorithms work. These four methods are able to make large
scale maps of urban locations instead of only small indoor scenes. There are however many other SLAM
methods, for example some other high scoring monocular SLAM methods from the KITTI site [19] are: FVO
[42], PMO [13] and FTMVO [38].

All well performing real-time SLAM methods [9], [39], [17], [10], [40] use keyframes. Instead of using all the
frames from the image stream to create the map, they try to filter out a select few frames that contain as much
different information as possible. Each SLAM algorithm has their own way of determining when to select a
frame as a keyframe. This is usually based on the distance travelled from the last keyframe or the amount
of new information in the frame. The keyframes usually consist of the image, the inverse of the estimated
depth, the variance of the estimated depth and the pose of the keyframe. The redundant frames are usually
used to update the points on the last keyframe. Using keyframes allows real-time performance of the SLAM
algorithms. The algorithms can keep up with the image stream from the camera. Another tactic to achieve
real-time performance is multi-threading the pose estimation part and the mapping part.

Monocular vision-based SLAM methods can be divided into two types based on how they extract the nec-
essary information from an image. They can either use the whole image, called direct methods, or by first
extracting certain features from the image, called feature-based methods. The difference between direct and
feature-based methods is clearly depicted in figure 2.1, adopted from the paper of LSD-SLAM [9].
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Figure 2.1: Example of the difference between feature-based and direct SLAM. Obtained from the LSD-SLAM paper [9].

Feature based methods create an intermediate representation of the image by extracting a set of keypoints
from the images or by searching line segments. This intermediate representation is fed into a geometric
model based on a geometric error, they are more robust against geometrical noise. These types of SLAM
methods use optimization methods like bundle adjustment [12]. ORB-SLAM is an example of a feature based
SLAM method. It extracts ORB points from the images for the fast extraction and view orientation invariance.

Direct methods do not use an intermediate representation of the image, but directly use the image in a
photometric model. This is optimized by Gauss-Newton optimization methods. A photometric model, based
on photometric calibration as in [11], consists of pixel-wise attenuation factors V describing the vignette (the
effect where the light brightness changes from the center to the outside of the image), the exposure time t ,
and a camera response function G which maps the irradiance image B (the amount of energy on each pixel)
to the intensity of the pixel I : I (x) = G(tV (x)B(x)) [11]. G and V can be found by performing photometric
calibration with the camera. The details of the calibration can be found in the paper [11]. LSD-SLAM [9] and
DSO [10] are examples of direct methods. They use the photometric model to account for lens attenuation,
gamma correction and exposure times and thus being more robust against noise for these parts.

SVO [17] is a special case, they call themselves semi-direct. They use a photometric model and use the
intensity all over the image. However instead of using all this information, they choose a sparse set of points
distributed over the highest intensity gradients (edges and corners) all over the image. They then refine these
points using bundle adjustment, trying to get the best sides of both feature based and direct methods.

Another way of categorizing the monocular SLAM methods is by looking at the density of the map created.
Dense SLAM methods try to create a dense as possible map. LSD-SLAM [9] is an example of a dense monocu-
lar SLAM method. The methods that create sparser maps are categorized as sparse SLAM methods. They use
a sparse independent set of points for the creation of the map where usually the relative position of points
is disregarded. Examples of sparse SLAM algorithms are ORB-SLAM [39] and DSO [10]. SVO [17] is again an
odd one out, calling themselves semi-dense. They use a subset of the pixels in an image together with their
connectivity information (the fact that they are edges or corners) to create the map.

The inner working of monocular SLAM algorithms can be split up into four parts:

• The initialization part kicks off the algorithms by initializing the map and the starting pose.

• The tracking part kicks in which estimates the pose of each frame and sends the keyframes to the map-
ping part.

• The mapping part creates the map using the keyframes

• The loop-closure part tries to detect loop closures and relocalizes when tracking failed.

Each part is examined slightly more in the following paragraphs.
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The initialization part of the SLAM algorithms is done with the first few frames. An initial pose and map
needs to be found to start SLAM, which then starts improving and elaborating the poses and map. During
the initialization, only 2D matched points in two images are known. The pose transformation between two
images and the depth of the points in the images are unknown. If two of these three things are known, the last
one can be calculated. For instance: if the 2D points in images are correctly matched and the pose between
the images is known, then the depth can easily be calculated. The initialization is such a challenge because
two of the three thing are unknown and need to be estimated. Later on in the SLAM process the algorithms
has a map full of points with a known 3D position. These map points can be found in the new images and
used to estimate the pose and the depth of new points. However, no known map points are available dur-
ing the initialization. A common, basic way of initializing is by starting off with a keyframe with a random
depth and a large variance. LSD-SLAM [9] is one of the algorithms that starts this way, claiming that after
a few keyframes with enough translational camera movement, it will converge to the right values. However,
[10], [17] and [39] all report problems with this way of initialization of LSD-SLAM. Therefore, ORB-SLAM [39]
initializes differently by implementing two ways of initialization and choosing the best one.

The tracking part of the SLAM algorithms estimates the pose from the new frame to the previous frame
[17] or keyframe [9]. This can be done for instance by minimizing a variance-normalized photometric error
[9] [10], by using image to model alignment (minimizing the intensity differences of pixels of the points) [17]
or by minimizing the geometric error of matched feature points in images [39]. The tracking part also decides
if the frame is used as a keyframe. It estimates depth in keyframes from the pose calculations .

The mapping part of the SLAM algorithms takes the keyframes and creates the map. This map is created
by optimizing the poses of the keyframes and the points in the keyframes. The image points in the keyframes,
together with the poses of the keyframes make it possible to project the image points to the 3D space to create
the map. The keyframes are first optimized using spatial regularization and outlier removal [7]. Then they are
added to a graph that represents the map. The poses and points of the keyframes in this graph are then opti-
mized using Pose Graph Optimization [29] or bundle adjustment [12]. A common tactic [39] [10] is to create
a lot of keyframes to be able to do robust and accurate tracking, and then to marginalize these keyframes to
keep the computational cost of the optimization’s low. An important note to make when looking at monoc-
ular SLAM is that as they do not get any depth information, the scale of the map is a free parameter. The
absolute scale of the map cannot be estimated and thus tends to drift.

The loop-closure and relocalization part of the SLAM algorithms constantly tries to detect loop-closures
and tries to relocalize when tracking is lost. By trying to detect loop-closures, monocular vision-based SLAM
algorithms try to solve the problem of scale drift. They compare the current frames to the keyframes from the
map, trying to find frame matches. When a match is found between the frame and a keyframe, the scale and
poses of the current frame and the keyframes inside the loop can be adjusted. Relocalization after loosing
track of the poses is usually done in the same way.

Improvements on the vision-based SLAM algorithms have been made by stepping away from the monocular
limitation and using stereo images [8] [55] [17] [40] or depth-maps [40] as inputs. With these extra inputs, they
can extract depth information to obtain the absolute scale of the map. The depth information is also used
with the initialization, which is no longer a complicated issue with the depth information. The performance
of the versions with the depth information improved compared with the monocular versions.

2.3. Depth estimating CNN’s
A convolutional neural network (CNN) is a type of neural network suited for working on images. Images can
be of hundreds by hundreds of pixels. This means that they live in a feature space of hundred thousands of
features. Passing images to neural networks consisting of fully connected layers would mean that the network
would need billions of weights to actually do something useful. The convolutional part of CNN’s makes them
useful when the data is not location specific in the image, the CNN’s are location invariant in image space.

A CNN can consist of a combination of convolutional layers, ReLU layers, pooling layers and other layers
such as fully connected layers. Especially the convolutional layers result in needing a lot less of parameters
by taking advantages of certain characteristics of images. The filters of these convolutional layers can for
instance recognize a certain shape in the image by convolution.
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A great explanation of Convolutional Neural Networks is given in the course notes of the Stanford course
‘CS231n Convolutional Neural Networks for Visual Recognition’ of Fei Fei Li, Justin Johnson and Serana Young
[15]. Methods for creating an intuition of how a certain CNN works can be found in [21], [50], [56], [47], [48],
and [37]. There has been proven that CNN’s are the go to type of neural network when working on images
[45]. Other interesting research into the working of CNN’s themselves are attempts to fool them [22], show
that they learn correspondences in between images [35] and show that CNN’s can outperform humans in
classification tasks [27].

An interesting depth estimating CNN is the one used in CNN-SLAM [51]. The depth estimating CNN itself
is explained in [31]. CNN-SLAM uses its CNN to estimate the depth-maps of the keyframes in the SLAM sys-
tem. They use this depth-map together with the keyframes to perform more robust and accurate SLAM. The
result of the SLAM system is combined with the result of a separate semantic segmentation estimating CNN
to create semantic segmented maps. The CNN is based on the ResNet-50 CNN [24], with a self designed de-
coder. This is a very large but well performing network compared to other depth estimating networks. The
whole setup has been used for indoor scenes, but not for outdoor road scenes. On the indoor scenes, they
report better performance than monocular LSD-SLAM [9] and ORB-SLAM [39], but they did not report if and
how they have dealt with the independent scaling variable in the monocular SLAM maps.

Other interesting depth estimating CNN’s are the ones that learn unsupervised. This can be done by
training on stereo images [18]. Only the left image is used for the forward pass, after which points of the left
image are projected to the right image to obtain a loss function based on the reprojection error.

Another way of training a depth estimating CNN in an unsupervised way is by combining it during train-
ing with a pose estimating CNN [57]. The pose estimating CNN is used to estimate the pose difference of the
next and previous frame in the camera sequence. The current frame is passed through the depth estimating
CNN to obtain the estimated depth. Using the estimated depth and the pose difference, points from the cur-
rent frame can be projected to the next and previous frames. From these projections, a photometric error is
calculated and used as the error to be minimized in the loss function.

An interesting idea is presented in [6] to split the depth-estimating CNN into two CNN’s. The first CNN takes
the image as an input and estimates the depth on a coarse level. The second CNN takes the image and the
coarse depth as inputs and uses these to estimate the depth on a much finer level. The idea behind this is that
the coarse CNN filters are smaller but the layers are deeper, while the filters of the fine CNN are slightly larger
to incorporate more spatial information but the layers are not as deep as it already knows the rough depth.
Unfortunately does this method not improve the result, they report comparable, and even slightly worse,
results compared to the depth estimating CNN’s above. In their results, it can be seen that the addition of
the fine CNN only improves the result in the metrics slightly while the difference in the depth-maps visually
is huge. The fine CNN creates much sharper edges and corners, but also apparently introduces additional
errors, resulting in only a very slight improvement in the metrics.

2.4. Conclusion
A monocular vision-based SLAM method for this thesis needs to be chosen. The state of the art monocular
vision-based SLAM method ORB-SLAM [39] has been chosen. ORB-SLAM has proven to be one of the best
performing state of the art monocular SLAM methods [59], has the code openly available for research pur-
poses and has an improved method of initializing. Its implementation in the openly available ORB-SLAM2
code [40] is used in this thesis, as in ORB-SLAM2 it is also possible to add depth-maps of the images to the
inputs.

As for the depth-estimating CNN used for this thesis, the CNN of CNN-SLAM [31] has been chosen. It
is the best performing depth estimating CNN of the ones described here [59]. Even though it does not use
skip-connections and others do, it still performs better. It has also been shown that this network works well
in cooperation with SLAM on indoor scenarios. This network is substantial larger than the other depth es-
timating networks. It still fits on the GPU used in this thesis, so this is not a problem. It’s setup is openly
available together with the the parameters it gained when training on the indoor NYU dataset.

By combining the depth estimating CNN of CNN-SLAM with the monocular version of ORB-SLAM2, an at-
tempt has been made to improve the tracking accuracy of the monocular version of ORB-SLAM2. Monocular
vision-based SLAM will be improved with a depth estimating CNN. The whole setup will be kept monocular.
It will improve the tracking accuracy on outdoor road scenery images. This has not been done before.
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Methods

The current localization method of the WEpod needs to be improved. This can be done by using the monoc-
ular version of ORB-SLAM, an algorithm that creates a map and localizes itself on this map using one camera.
The working of ORB-SLAM is explained in depth in section 3.1. Monocular ORB-SLAM has been proven to
work using road scenery images from the Kitti dataset, by the authors of ORB-SLAM [40] and in our experi-
ments.

However, when monocular ORB-SLAM is applied to images from the WEpod camera, the algorithm does
not work as well. This has been proven during my internship with the WEpod [58] and can be seen in our
experiments. The algorithm fails to initialize the surrounding scene and constantly keeps on trying to reini-
tialize. Something about the WEpod images is different compared to Kitti images, causing this initialization
problem. The exact reason why the initialization fails, is not the scope of this thesis. The goal of this thesis is
to find a solution to the initialization problem such that ORB-SLAM can be used to improve the localization
of the WEpod.

The methods used to achieve this goal are explained in this chapter. First the working of ORB-SLAM
itself is investigated in section 3.1. Then the working of the depth-estimating CNN is explained in section
3.2. Ground-truth depth-maps are required for the fine-tuning of the CNN. The way these are obtained is
explained in section 3.3. In section 3.4, the method of determining the hyper-parameters for fine-tuning can
be found. Finally the overall approach of this thesis is elaborated in section 3.5.

3.1. ORB-SLAM
ORB-SLAM [39] is a sparse, feature-based SLAM method that utilizes a bundle adjustment method. It is able
to perform monocular vision-based SLAM in real-time. As the name suggests, it is based on ORB [43] features.
These provide fast extraction and matching while being view orientation invariant. ORB-SLAM consists of
three parts: Tracking, Local Mapping and Loop closing. An overview can be seen in figure 3.1. Each part is
ran on a different thread. The working of these three treads are explained further on.

All the optimization’s in ORB-SLAM are done using the Levenberg-Marquardt algorithm of g2o [29]. The
place recognition part contains a bag of words [16] description of the keyframes. The global map is cre-
ated based on the covisibility graph. The covisibility graph has a node for each keyframe and edges between
keyframes with at least 15 of the same map points. For the loop closure, also an essentials graph is created
from the covisibility graph which consists of the same amount of nodes (one for each keyframe) but only the
edges which have a high covisibility (more than 100 shared points).

Map Initialization
The map needs to be initialized based on the estimated pose between the first two frames. ORB-SLAM rec-
ognizes this as a difficult task and decides to compute two geometric models, one which works better with
planar scenes, assuming for instance that it is looking at a wall, and one which works better with non-planar
scenes. Only if one of these two result in a good enough configuration, a initial map is created.

The first step is to obtain the ORB matches as points x between the current frame Fc and the reference
frame Fr : xc ↔ xr . The previous frame is used as the reference frame. If not enough matches are found (this
threshold can be set as a setting in ORB-SLAM), it is tried again with the next frame set.
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Figure 3.1: ORB-SLAM system overview which shows the three threads: Tracking, Local Mapping and Loop Closing, and there steps. Also
the steps of the place recognition and contents of the map are shown. [39]

If enough ORB matches are found, initialization is attempted using two different models. One of these
models is based on the homography and the other is based on the fundamental matrix. The homography Hcr

and fundamental matrix Fcr are computed in parallel. The homography is computed using normalized DLT
[23] with 4 points for a certain number of iterations. Equation 3.1 shows how the homography relates points
in the reference frame to the current frame.

xc = Hcr xr (3.1)

The fundamental matrix is computed using an eight-point algorithm [23] with 8 points for the same amount
of iterations as when calculating the homography. Equation 3.2 shows how the fundamental matrix relates
points in the reference frame to points in the current frame.

xT
c Fcr xr = 0 (3.2)

For each iteration of each model M , a score SM is calculated based on the symmetric transfer errors
d 2
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r , M) [23]. How this score is set up can be seen in equation 3.3. The iteration of each

model with the highest score is kept. To be able to deal with outliers, they set an outlier rejection threshold
TM for each model. They use for the homography model TM = 5.99 and for the fundamental matrix model
TM = 3.84.
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Where:

ρM (d 2) =
{

TM −d 2 if d 2 < TM

0 if d 2 = TM
(3.4)

If no model with enough inliers is found, the process is restarted with the next frame. Otherwise the score of
the best version of both models are compared according to equation 3.5.

RH = SH

SH +SF
(3.5)

In the case where RH >= 0.45, a planar scene with low parallax is assumed. The homography model is
used to retrieve eight motion hypotheses with the method of Faugeras and Lustman [14]. The eight hypothe-
ses are directly triangulated. They check if there is one motion hypotheses with significantly more points with
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parallax from both cameras with low reprojection errors compared to the other motion hypotheses. If there
is no solution that significantly stands out from the other motion hypotheses, the whole process is restarted
with the next frame.

In the case where RH < 0.45, a non-planar scene with high parallax is assumed. The fundamental matrix
model is used to to create the essentials matrix with the calibration matrix K (Er c = K T Fr c K ). This essential
matrix is used with the singular value decomposition method [23] to obtain 4 motion hypotheses. These
motion hypotheses are then directly triangulated. They check if there is one motion hypotheses with with
significantly more points with parallax from both cameras with low reprojection errors compared to the other
motion hypotheses. If there is no solution that significantly stands out from the other motion hypotheses, the
whole process is restarted with the next frame.

Finally, with the best hypothesis, full bundle adjustment (see the appendix from [39] for details) is per-
formed to obtain the initial map.

Tracking
The tracking part tries to find the pose difference between the previous frame and the new frame. It also
decides if a new keyframe will be created or not. If it has lost track, it calls the place recognition module to
attempt to find its place back in the global map. It takes the new frame, finds ORB point matches with the
previous frame and then optimizes the pose of the new frame using motion-only bundle adjustment [39].
The keyframes with overlapping points are obtained by using the guess of the pose and the co-visibility graph
of the past keyframes. The points of these keyframes are repojected to the new frame and matched. Using
these matches, the pose is estimated more precisely. Then the choice is made to create a new keyframe or not.

The ORB points extracted from the current frame in the tracking part are used throughout the whole algo-
rithm. They are extracted as FAST corners at eight scale levels with a scale factor of 1.2. The amount of
corners extracted can be set in the settings, they use 1000 for image resolutions from 512x384 till 752x480 and
more for larger images (for 1241x376 Kitti images they use 2000). The scale levels are divided into grid, trying
to get 5 (or more if necessary to obtain the correct amount of features) FAST corners from each cell in the
grids. This creates a evenly distribution of FAST corners over the frame. The resulting FAST corners are then
described using the ORB descriptor.

Now that ORB points are extracted from the current frame, tracking can be done based on the last frame
position. They initialize the pose of the current frame assuming that the camera has a constant velocity and
do a guided search of map points in the last frame. If not enough corresponding map points are found, the
search region is increased. When enough have been found, these matches are used to optimize the pose.

They create a local map as a set of keyframes. This set consists of the keyframes which have the same
points as the current frame, together with all the neighbors to these keyframes. The keyframe with the most
corresponding points with the current frame is set as the reference keyframe. Each point in this map is pro-
jected to the current image frame and multiple things are checked: if it lays within the image, if its viewing
direction from the current frame is less than 60 degrees from the mean viewing direction of the point, if the
distance from the camera center to the point is within the scale invariance region of the map point. Then
these points are compared with the unmatched ORB features of the current frame to find extra matches.
Then one last optimization is done using all the map points in the frame.

The only task left for the tracking thread is to decide if the frame should become a keyframe or not. ORB-
SLAM has the strategy to create a lot of keyframes to be more robust to tricky camera movements (especially
rotations). Later on they discard redundant keyframes through culling to be able to keep the computational
cost of mapping low. The criteria for a frame to be accepted as a keyframe are:

• The frame must be at least 20 frames from the last global relocalization, to insure a good relocalization.

• The local mapping thread must be idle. If it has been more than 20 frames from the last keyframe
insertion, the local mapping thread is stopped to be able to insert the keyframe and then restarted with
the new keyframe.

• The frame must contain at least 50 points. This is necessary for good tracking.

• The amount of corresponding points between the frame and its reference keyframe (the keyframe with
the most corresponding points) must be less than 90 % of the frames points.
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Local Mapping
The local mapping thread takes the new keyframes and uses local bundle adjustment to optimize the local
map around the keyframe. The still unmatched ORB points in the keyframe are compared to the points in
the keyframes that it connects to in the covisibility graph. The matched points are culled to keep the best
points. Also the keyframes are culled to remove the redundant keyframes, keeping the computational costs
low. Culling is a process of removing a part of the set while keeping the amount of information in the set as
high as possible.

When a new keyframe is created, the co-visibility graph is updated with a new node and the edges are set
according to the shared points. The whole keyframe is then represented using bag of words. The new points
in the keyframe must be visible in at least 3 of the 4 next keyframes and in at least 25 % of the keyframes it
is predicted to appear in. Otherwise the point is culled, also if the point is at any time visible in less than 3
keyframes, it will be culled.

The new points that are about to be added to the map are triangulated. They are checked based on positive
depth, parallax, reprojection error and scale consistency. The point is projected to connecting keyframes
to find extra matches, after which it is added to the map. The just added keyframe with all its connected
keyframes and their points is optimized with local bundle adjustment based on the other keyframes (which
are not optimized, but remain fixed).

To keep the bundle adjustment computation low, the redundant keyframes are culled. They are discarded
when more then 90 % of the points can be found in at least three other keyframes in the same or finer scale.
They keep the keyframes that see the points with the most accuracy.

Loop Closing
Each time a new keyframe is added, the loop closing threads checks for loop closures. If a loop closure is
found, a similarity transformation is set up to map out the drifts along the loop and the loop is aligned while
merging duplicate points. Then a pose graph optimization over the similarity constraints is performed.

To obtain a set of loop closure candidates, the keyframe is represented as a bag of words vector. The
similarity score between the keyframe and its neighbors in the co-visibility graph is computed. The lowest
score is saved. For all other keyframes in the recognition database, the similarity score is computed. If the
score of a keyframe in the recognition database is higher that the lowest score of the neighbors, the keyframe
is considered a loop closure candidate. The candidate is only used if three consecutive possible candidates
are found.

The similarity transform is calculated to obtain the drift error of the three translations, three rotations
and one scale factor. If the similarity is supported by enough points, the similarity is optimized and more
correspondences are searched. It is optimized again and again the amount of inliers is checked. If it is enough,
the loop closure is accepted.

When a loop closure is accepted, all the transformation matrices of the keyframes are adjusted using the
similarity transformation to align the loop. The duplicate points of the keyframes are fused and the edges
in the covisibility graph are updated. The map needs to be optimized again, but only the part regarding the
loop, so pose graph optimization is done over the essential graph.

Adding depth information
In the second version of ORB-SLAM, ORB-SLAM2 [40], the algorithm can also take stereo images or depth-
maps as inputs. The stereo images or depth-maps are used to represent some of the ORB points as stereo
points consisting of the coordinates in the left image and the vertical position in the (imaginary) rectified
right image. These stereo points are then used as extra information in the optimization algorithms.

3.2. CNN setup
The CNN of CNN-SLAM [31] has been chosen to be used as the depth estimating CNN for this research. It
is one of the best performing depth-estimating CNN’s and it’s implementation is openly available for use.
It does not incorporate skip-connections as in [57], but it will prove that the performance of the CNN of
CNN-SLAM outperforms depth estimating CNN’s with skip connections such as [57]on the Kitti dataset. This
network is larger than the other depth estimating CNN’s, but this does not pose a problem as it fits on the
GPU used for training. Fine-tuning will take longer than the other depth estimating CNN’s.

The network architecture of the depth estimating CNN can be seen in figure 3.2. It consists of a com-
bination of multiple convolutional layers, batch normalization layers, relu layers and a pooling layer. The
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Figure 3.2: The network architecture of the depth estimating CNN used in this research, CNN-SLAM’s CNN [31]. The which cubes show
the intermediate sizes of the output from the previous set of layers for an example input image of 304x228x3. It is based on the ResNet-
50 network [24], employing the same encoder. The decoder is designed by the authors of CNN-SLAM’s CNN using their own designed
up-sampling blocks, which can be seen in figure 3.3. The encoder consists of sequences of convolutional layers sometimes followed by
batch normalization layers and ReLU layers. The same basic setup of layers repeats itself, always with a small local skip-connection.
These are depicted in the architecture with the blue and purple icons, explained at the bottom of the image. They are either with layers
in the skip connection (the purple icon) or without layers in the skip connection (the blue icon). The resulting output is about half the
resolution of the input. This image is obtained from [31].

Figure 3.3: The up-sampling projection of the authors from [31], following the same icon meaning as in figure 3.2.

output depth-map is about half the size of the input image, and will be resized to the size of the input image
afterwards. The network has an encoder-decoder style. The encoder ‘encodes’ the information into a feature
representation, and the decoder decodes this feature representation into the depth image. It’s encoder is the
encoder from Resnet-50 [24] and the decoder is constructed by chaining multiple of the upsampling blocks
designed by the authors of the CNN. The setup of the upsampling blocks can be seen in figure 3.3.

The authors have shared a predicting-only implementation of this network together with the set of learned
parameters that resulted from their training on the NYU dataset [46]. This means that the fine-tuning setup
needs to be created from the shared predicting setup.

For this research, the network has been setup in Tensorflow [1]. The authors have defined two different
batch-normalization layers, one for during training and one for during predicting. In the implementation
used in this research, one batch-normalization layer has been used during training and prediction. This
improved the result.

For training, the network takes a folder with the images, a folder with the ground-truth depth-maps as
images, a scale between the depth-map values and the depth in meters and the size of the images. The
images and depth-maps are read using Tensorflow and divided into batches. The depth is scaled to meters.
This is all done while keeping in mind that the image and depth-map pairs stay together. These batches are
used to obtain the new input for the placeholders in the network each forward and backward pass. The same
setup is used for predicting. The only difference is that the ground-truth depth is not used for training, but to
evaluate the result of the forward pass.
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Figure 3.4: Examples of images from the NYU dataset, together with the ground-truth depth-map and the depth-map estimated by the
CNN trained on the NYU dataset.

The loss function used by the authors of the CNN of CNN-SLAM [31] is the reverse Hubler function. The
loss function implemented during this thesis is the L2 loss. The L2 loss is compared to the reverse Hubler loss
in section 4.2. It will prove that the network fine-tunes better with the L2 loss then the reverse Hubler loss.
See the determination of the hyper-parameters section, 3.4, for more details.

The network has been setup with the Adam optimizer [28] together with an exponentially decaying learn-
ing rate in an end-to-end matter. The network has not been trained from scratch with randomly initialized
parameters. The parameters are initialized as the parameters from the original network trained on the indoor
NYU dataset. This means that the network just needs to fine-tune the parameters to estimate on the new
dataset instead of starting from scratch. This results in much faster training times.

The set of learned parameters that resulted from the authors training on the NYU dataset have been
loaded into the network and then the network has predicted depth on images from the NYU dataset. Two
examples of images together with the ground-truth depth and the estimate depth can be seen in figure 3.4.

The network needs images with a ground-truth depth-maps to fine-tune on. How these have been created
can be found in sections 3.3. There are also multiple hyper-parameters that need to be chosen. The process
of choosing this set of hyper-parameters for the fine-tuning can be found in section 3.4.

3.3. Preparing depth-maps for fine-tuning
Ground-truth depth-maps are needed for the fine-tuning of the network. However, obtaining these ground-
truth depth-maps is not trivial. Otherwise the network would not be needed in the first place. The network is
going to be fine-tuned on images from the Kitti dataset and on images from the WEpod, thus depth-maps of
both these types of images are needed.

3.3.1. Kitti depth-maps
In the Kitti dataset, files containing the 64-plane lidar points are supplied together with the images. These
points can be used to create the depth-maps for the undistorted images. The lidar points are in 3D space
in the frame of the 64-plane lidar. These points are transformed to the 3D world frame of the camera using
equation 3.6 where x is the point in the lidar frame, x ′ is the point in the camera frame, R the rotation matrix
from the lidar frame to the camera frame and T is the translation vector from the lidar frame to the camera
frame expressed in the lidar frame.

x ′ = R ∗ (x −T ) (3.6)
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Figure 3.5: An example image and its sparse depth-map created by projecting 3D points from the 64-plane lidar to the image. The
colormap flows from the lowest depth as blue and the furthest depth as purple.

Figure 3.6: An example image and its dense depth-map created by the linearly interpolating projected 3D lidar points from a 64-plane
lidar. The image has been cropped to a height of 228 to only contain the area that the lidar points cover.

All the points that lay behind the camera are removed. The points left over, those in front of the camera, are
projected to the camera image frame using the intrinsic camera matrix K . This is done using equation 3.7
where x ′′ is the point in the image coordinates.

x ′′ = K ∗x ′ (3.7)

The intrinsic camera matrix is created using the focal lengths in both directions ( fx and fy ) and the center of
the camera in the image coordinates (cx ,cy ), see equation 3.8.

K =
 fx 0 cx

0 fy cy

0 0 1

 (3.8)

The points behind the camera are filtered out because these would project falsely to the image frame. The
points in front of the camera correctly project inside or outside the image. The points that lay inside the
image are color code based on their depth in the camera world frame. An example of the resulting sparse
depth-map is shown in figure 3.5.

This sparse depth-map is filled in to create a dense depth-map, where each pixels has a depth value. This
is done by filling in the lidar points to horizontal lines. The pixels in between the points of the same line are
filled in through linear interpolation. Then the space vertically between the lines is filled in through linear
interpolation. The lidar points only reach to about the middle of the images. The top half without the lidar
point coverage is cropped out, leaving an image height of 228 pixels. An example is shown in figure 3.6. To
convert the depth-map to an image, the depth values are scaled such that a depth of 50 m maps to the maxi-
mum value of the image encoding (255). Any depth values greater then 50 m are set to 50 m.
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3.3.2. WEpod depth-maps
Ground-truth depth data of WEpod images is needed for fine-tuning. The ground-truth depth-maps are also
needed to evaluate the performance of the network. The WEpod itself has no way of creating depth-maps
for its images with its current sensor setup. It is however possible to temporarily add a sensor to the WEpod
that estimates the depth. This depth can then be transformed to the WEpod images. This is done using a
Multisense S21 stereo camera setup.

The S21 has been placed inside the WEpod in such a way that its view overlaps as much as possible with
the WEpod camera facing forwards. It is placed inside the WEpod with its left camera center about 30 cm
above and about 20 cm behind the camera. Is is also placed facing straight forward, just as the WEpod camera.
The exact rotation and translation values between the S21 and the WEpod camera will be estimated later
on. The WEpod images can be matched to the corresponding S21 images using the timestamps of both the
images.

With the S21 fixed to the WEpod in the described position, it can be used to record data. The S21 creates
different outputs using both the left en right images. Two of these outputs have been recorded while the WE-
pod drove around: the left image and the estimated depth-map of this left image. The estimated depth-maps
are saved as grayscale images, with the depth thresholded at 50 m. Any depth larger then 50 m is set to 50 m.
This recording has been done at 1 fps. Recording data any faster would not only put extra stress on the writing
of the images to a disk, it would also not be necessary as the images would be very similar to each other.

The depth points need to be projected to the WEpod image to actually use the recorded depth. To do this,
the rotation R and translation T between the S21 frame and the WEpod camera frame are necessary. Both R
and the T have been estimated using stereo calibration. This is done by recording and undistorting multiple
images with both the camera’s of a checkerboard at multiple different positions. Each time, the calibration
board is fully visible in both the images. In each of the images, the coordinates of the corners in the checker-
board are searched using the OpenCV function ‘findChessboardCorners()’. When all the coordinates of the
corners in all the images of both camera’s are combined, the R and T can be estimated. This is done through
an optimization that projects all the points from one camera frame to the other camera frame and the other
way around using an R and T . The reprojection error can be used to adjust R and T until the estimated R and
T are optimized. This is done using the OpenCV function ‘stereoCalibrate()’. The result can be sanity checked
as R should be close to the identity matrix and T should be around the values estimated during placement of
the S21 in the WEpod.

The points in the depth-map can be projected to the WEpod image by first projecting the point to the 3D
S21 frame. This is done using the intrinsic camera matrix of the S21 left camera by multiplying the result of
the OpenCV function ‘undistortPoints()’ with the depth to obtain the XYZ coordinates in the 3D S21 frame.
These points in the 3D S21 frame (X S ) can then be transformed to the 3D WEpod frame (X W ) using the R and
T :

X W = R ∗ (X S −T ) (3.9)

The points in the 3D WEpod frame can be projected into the WEpod image frame using the intrinsic camera
matrix in the OpenCV function ‘projectPoints()’. Thus obtaining for this pixel in the image the depth value
(the Z value of point in the 3D WEpod frame).

However, this cannot be done for every pixel in the WEpod image. The pixel might not be covered by
the S21 camera, or the S21 could not estimate the depth of the point. The S21 calculates depth using stereo
matching. It matches the points in the images of both its camera’s and estimates the depth from the disparity
of the point. If no match of a pixel could be found, due to for instance collusion or lack of texture, the depth
of this pixel remains unknown. In the depth-map of the WEpod images, the unknown values are set to exactly
0. This because no depth of exactly 0 could exist in the image and this way these value can easily be filtered
out during the fine-tuning of the CNN. During the fine-tuning, only the known values of the depth-map of
the WEpod images are used.

3.4. Determining the hyper-parameters
There are multiple hyper-parameters in the network that need to be set for the fine-tuning. The exact value
of these hyper-parameters influences the time needed for fine-tuning and the performance of the network.
Setting a good combination of hyper-parameters can result in a fast and robust network that does not overfit.

Determining the value for the hyper-parameters is done by looking at the progress of the validation loss
during the fine-tuning. The validation loss is the loss value calculated on a separate set of images that the
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Figure 3.7: The change of loss values through epochs for different learning rates. [15]

network did not use for training, the validation set. This validation loss value indicates among others overfit-
ting. When the validation loss starts to rise while the training loss lowers or stays the same, it is very possible
that the network is starting to overfit to the training images.

The hyper-parameters in the network that have been experimented with during this thesis are the initial
learning rate, the learning rate decay rate, the amount of epochs per decay and the loss function. The initial
learning rate determines the value how much the weights are changed during fine-tuning. The decay rate to-
gether with the amount of epochs per decay determine how fast the learning rate goes down through epochs.
The loss function chosen determines how different values of the error influence the weights.

3.4.1. Initial learning rate
The learning rate is used to change the value of the weights based on the gradient of the weights. The gradi-
ents of the weights are multiplied with the learning rate and then added to the weights. The initial learning
rate is the learning rate set at the beginning of the fine-tuning. The AdamOptimizer lowers this learning rate
through the epochs during fine-tuning.

A lower learning rate would mean that one would take smaller ‘steps‘ during the optimization of the
weights, increasing the time that it takes to learn. Lowering the learning rate increases the risk of the the
optimization getting stuck in a local minimum instead of a global minimum. A higher learning rate results in
less time needed to learn. However a learning rate that is to high results in the optimization not reaching the
minimum of the error because it steps over the minimum.

Determining if a learning rate is to high or to low can be done by looking at the change of the validation
loss during fine-tuning. A low learning rate results in a slowly descending validation loss, while a high learning
rate results in a fast descending validation loss that can get stuck at a certain level. When the learning rate
is way to high, the validation loss even starts to rise as the large steps force it to go towards worse weights. A
learning rate that is just right results in a validation loss that drops fast but also keeps on dropping, reaching
the lowest loss value. This is depicted in figure 3.7.

The original authors of [31] have trained the network on the NYU dataset using a training rate of 10−2. As
we only fine-tune it, a lower initial learning rate is suitable, so learning rates below the 10−2 will be examined.
1
3 ×10−3 will be examined because this value tends to be used a lot as an initial learning rate for training CNN’s
that work on images.

3.4.2. Learning rate decay rate
The decaying of the learning rate during the fine-tuning is done as a lower learning rate later on during the
fine-tuning is preferable. This makes it possible to optimize closer towards the minimum of the error. A high
learning rate in the beginning is preferable to quickly close in on the minimum of the error. The high learning
rate in the beginning also helps skip over local minimums. Decaying the learning rate too fast results in the
optimization getting stuck in a local minimum.
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Decaying the learning rate is done in the AdamOptimizer [28] by setting two hyper-parameters: the
amount of epochs per decay and the decay rate. The amount of epochs per decay determines when exactly
the learning rate value drops. The decay rate is a value between 0 and 1 that determines the scale with which
the learning rate is dropped. The AdamOptimizer is setup in such a way that each time the amount of epochs
have passed, the learning rate is multiplied with the decay rate. This results in an exponential decay of the
learning rate.

The network with only be fine-tuned, meaning that it will not process a lot of epochs. Choosing a high
amount of epochs per decay would not make sense, as the learning rate would then hardly decay. Also does
the resulting decay of the learning rate depend on the combination of the amount of epochs per decay and
the decay rate. So it does not make sense to vary both these hyper-parameters a lot. The amount of epochs
per decay will be hardly varied and the decay rate will be adjusted to the best setting with this amount of
epochs.

3.4.3. Loss functions
The L2 loss function has been used as it is a fairly basic and often used loss function. The L2 loss function
calculates the loss using the difference vector x between the vector of depth values predicted by the network
y and the vector of ground-truth depth values y ′: xi = y ′

i − yi for each depth pixel i . The L2 loss function,
shown in equation 3.10, calculates the loss as following where n is the amount of values in the vectors y and
y ′.

L2 loss = 1

n

√
n∑

i=1
x2

i (3.10)

The authors of the CNN of CNN-SLAM [31] used a different loss, the reverse Huber loss. Itis also called the
berHu loss. This loss function is not used often and appears to be an interesting choice. Its original Huber loss
is used more often. They do report an increase in performance with the berHu loss. The berHu loss function
is a combination between the L1 loss function and the L2 loss function. The berHu loss is equal to the L1
loss (basic norm), but when this L1 loss exceeds a certain threshold c, it switches to the L2 loss. It is shown in
equation 3.11.

berHu loss =


1
n

∑n
i=1 |xi | ∑n

i=1 |xi | ≤ c

1
n

√∑n
i=1 x2

i

∑n
i=1 |xi | > c

(3.11)

For the value of the threshold c, the original authors use 20% of the maximum per-batch error, see equation
3.12.

c = 1

5
maxi (|xi |) (3.12)

A more clear representation of the the berHu loss function can be seen in figure 3.8. It shows the berHu loss
for a 1 dimensional error x and c = 10. The authors claim that the berHu loss outperforms the L2 loss in their
case because it penalizes the high error value more with the L2 loss, and because the L1 loss keeps the impact
of the low error values high enough. They also claim that the L1 part of the berHu loss results in a higher
derivatives for the low error value’s than the L2, which results in a better performance of the berHu loss.

The fine-tuning of the network with the berHu loss will be compared with the fine-tuning of the network with
the L2 loss. It would not make sense to compare the validation loss, as the way this loss is calculated changes.
Therefore fine-tuning with both loss functions will be compared using the metrics for comparing depth maps
defined in section 4.1.2.

3.5. Overall approach
The scientific community constantly tries to improve vision-based SLAM algorithms. One of the approaches
to improve vision-based SLAM algorithms is adding depth information [40], [8], [55]. This depth information
can be added to the inputs of ORB-SLAM as either sets of stereo images or depth-maps of the images. The
improvement of the tracking accuracy of ORB-SLAM when ground-truth depth-maps of the images are added
to the input is shown in the experiments.

Fortunately, the Kitti dataset has 64-plane lidar information which can be used to create depth-maps of
the images. These are used as ground-truth depth-maps in this thesis. The process of creating these depth-
maps from the 64-plane lidar points can be found in section 3.3. Unfortunately, the WEpod is not equipped
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Figure 3.8: The berHu loss for a 1 dimensional error x and c = 10, within the range [−10,10] it is equal to the linear L1 loss, outside of this
range it transfers to an quadratic L2 function.

with a 64-plane lidar. It is also not equipped with any other sensory setup that can used to create dense
ground-truth depth-maps of its images. So it is not possible to try out ORB-SLAM with WEpod images to-
gether with their ground-truth depth-maps.

The improvement of the tracking performance of ORB-SLAM on WEpod images needs to be kept monocu-
lar. This means that the only input can be a stream of images from one camera. It needs to be kept monocular
as the WEpod is not equipped with sensors able to estimate depth-maps for the images. There are however
ways to estimate the depth-map of a WEpod images that uses only the image. The depth estimating convo-
lutional neural network (CNN) part of CNN-SLAM [31] is an example. It is used in this thesis. This network
estimates the depth-map of an input image, using only this image. It does need to be fine-tuned.

The CNN has originally been trained on the NYU dataset, which consists of images of indoor scenes. The
network cannot estimate the depth in outdoor road scenery images as it has never seen any examples of
these images. It can be trained to be able to estimate depth of outdoor road scenery images by training it
on the same type of outdoor road scenery images. This training does not need to be done from scratch. The
parameters of the network trained on the NYU dataset can be used as an initial starting point. The value of
these parameters probably are already close the value they need to be to estimate the depth in the outdoor
road images. The network only needs to be fine-tuned on the road scenery images. This is much faster then
training the network from scratch.

As there is a way to create ground-truth depth-maps for Kitti images, the network can be fine-tuned on
images from the Kitti dataset. The resulting depth-maps have been evaluated and compared to the results of
the NYU dataset trained network, as can be seen in section 4.5. Before the fine-tuning on the Kitti dataset can
be done, the hyper-parameters for fine-tuning need to be determined. The process of finding the values of
these hyper-parameters is described in section 3.4 and the hyper-parameters themselves can be found in the
experiments. These hyper-parameters are used throughout the whole thesis for each instance of fine-tuning.

The fine-tuned network can be added to ORB-SLAM, while keeping the whole setup monocular. This
setup is depicted in figure 3.9. The images are fed into the depth estimating CNN. The resulting depth-map
is fed into ORB-SLAM together with the image. ORB-SLAM estimates the trajectory, which it does in a non-
monocular way. The whole setup together remains monocular. The resulting trajectory performance of this
setup on Kitti sequences has been evaluated in section 4.6. The resulting trajectory accuracy can be compared
to the trajectory accuracy of monocular ORB-SLAM and the trajectory accuracy of ORB-SLAM on images
together with ground-truth depth-maps.

This same combination of CNN and ORB-SLAM can also be used on WEpod images. In section 4.7, the
network fine-tuned on Kitti data is used to estimate the depth-maps of WEpod images. Networks trained on
one dataset predicting images from other datasets do not always tend to perform well. The performance of
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Figure 3.9: Diagram showing how the CNN can be added with a monocular vision-based SLAM algorithm (ORB-SLAM2 here as example),
while keeping the whole system monocular. The images from the camera stream go into the CNN to estimate its depth-map. This depth-
map is forwarded together with the image as inputs for ORB-SLAM2.

the Kitti fine-tuned network on the WEpod images however can be improved by making the images from the
WEpod more similar to the Kitti images. This has been done by adjusting the height of the horizon in the
images to the same height of the horizon in Kitti images.

It is also possible to fine-tune the network on WEpod images, see section 4.8. The ground-truth depth does
need to be obtained, which can be done using the Multisense S21 stereo camera setup. The depth-map of the
S21 can be projected to the WEpod images to obtain depth-maps. For details on how this is done, see section
3.3. These depth-maps do suffer from the same disadvantages as stereo depth, such as the inability to esti-
mate the depth in case of occlusion or low-texture surfaces. Unfortunately can the images and depth-maps of
the S21 stereo setup not be recorded fast enough with the equipment available to create ground-truth depth
to run ORB-SLAM on.

There are two ways of estimating depth in WEpod images, with the CNN fine-tuned on Kitti images or
fine-tuned on WEpod images. Both versions of the depth-estimating CNN have been added to ORB-SLAM,
see section 4.9. The tracking performance of the ORB-SLAM on WEpod images together with the depth-maps
estimated by this network can be compared to the tracking performance of ORB-SLAM on only WEpod im-
ages. This could show that the tracking performance monocular ORB-SLAM on WEpod images has been
improved by adding a depth estimating CNN.

To summarize, the tracking accuracy of ORB-SLAM on WEpod images needs to be improved to be able to
use it in the WEpod. The whole setup needs to be kept monocular. This could is by adding a depth estimating
CNN to ORB-SLAM. The estimated depth-maps are fed together with the images into ORB-SLAM. ORB-SLAM
can use this depth information to improve its tracking performance.

To investigate if adding depth information to ORB-SLAM indeed improves the tracking performance, im-
ages with ground-truth depth-maps are added to the inputs of ORB-SLAM. This is done with images from the
Kitti dataset as it has a way of obtaining ground-truth depth. Also does ORB-SLAM actually initializes on only
the Kitti images making it a better comparison. The ground-truth depth-maps are replaced with the output
of the CNN to see how this changes the tracking performance ORB-SLAM.

Finally ORB-SLAM on WEpod images with the depth estimating CNN is compared to ORB-SLAM on only
the WEpod images. This shows if the depth estimating CNN indeed improves the tracking performance. This
would keep the whole setup monocular and applicable to be used on the WEpods.



4
Experiments & Results

The autonomous vehicle named WEpod is not capable of localizing itself robustly and accurately enough to
ensure safe navigation through traffic. Monocular vision-based SLAM is investigated as a solution to improve
its localization. The SLAM algorithm used is ORB-SLAM. It is investigated if the tracking accuracy of monoc-
ular ORB-SLAM is improved by adding a depth estimated CNN. This CNN can estimate the depth in images,
which ORB-SLAM can use to more accurately and robustly perform SLAM.

This chapter explains the experiments done during this research and reports the results. The experiments
can be divided into two types; evaluating ORB-SLAM’s tracking accuracy on different inputs and fine-tuning
plus evaluating the depth-estimating CNN. The first section of this chapter,4.1, explains the exact setup of
both types of experiments together with the metrics used for evaluation of both the types of experiments.

Certain hyper-parameters need to be determined for fine-tuning, section 3.4. These hyper-parameters are
determined by experimenting with different values and evaluating the performance. This process is further
explained in section 3.4. The experiments and results are presented in section 4.2.

The other sections describe the goal of each experiment and presents the results. The ORB-SLAM with
CNN setup is tested on the Kitti dataset. This gives the chance to investigate the actual difference in tracking
accuracy better. The tracking accuracy of ORB-SLAM together with a depth-estimating CNN can be com-
pared to monocular ORB-SLAM and ORB-SLAM with ground-truth depth-maps. The evaluation of monocu-
lar ORB-SLAM on Kitti images is presented in section 4.3. The evaluation of ORB-SLAM on Kitti images with
ground-truth depth-maps is presented in section 4.4. The results of the fine-tuning of the CNN are shown in
section 4.5. The performance of ORB-SLAM together with the CNN is evaluated in section 4.6.

There are two choices for fine-tuning the depth-estimating CNN for the WEpod images. First, using the CNN
fine-tuned on the Kitti images to predict the depth in WEpod images, see section 4.5. The WEpod images need
to be be altered to become more similar to the Kitti images. The process of altering the WEpod images and
the performance of the depth-estimating CNN fine-tuned on Kitti images on WEpod images are explained in
section 4.7.

The second option is to fine-tune the CNN on WEpod images. The depth-maps for fine-tuning are ob-
tained with the S21 stereo sensor, as explained in section 3.3. The experiment concerning this fine-tuning is
presented together with the results in section 4.8. Both these depth-estimating CNN’s can be used together
with ORB-SLAM. The tracking accuracy of ORB-SLAM with each CNN is evaluated in the final section of this
chapter, section 4.9. With this evaluation, it can also be concluded if the addition of a depth-estimating CNN
to ORB-SLAM indeed improves the tracking accuracy.

To summarize, the experiments are:

• Determine the hyper-parameters for fine-tuning.

• Evaluate the tracking accuracy of ORB-SLAM on only Kitti images.

• Evaluate the tracking accuracy of ORB-SLAM on Kitti images with ground-truth depth.

• Fine-tune the CNN on Kitti data.

25
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Figure 4.1: An overview of the ORB-SLAM setup in ROS, showing all the other nodes that communicate with the ORB-SLAM node. The
publisher node sends the images and depthmaps to the ORB-SLAM node, which sends the estimated pose to the calculate error node.
The publisher node also sends the groundtruth pose to the calculate error node, which calculates the error metrics.

• Evaluate the tracking accuracy of ORB-SLAM with the CNN on Kitti images.

• Predict depth in WEpod images with the CNN fine-tuned on Kitti data.

• Fine-tune the CNN on WEpod data.

• Evaluate the tracking accuracy of ORB-SLAM with the CNN fine-tuned on Kitti data and ORB-SLAM
with the CNN fine-tuned on WEpod data.

4.1. Experimental setup
Two types of experiments are done multiple times under different circumstances. One is evaluating the track-
ing accuracy of ORB-SLAM on different amounts and types of inputs. The other is fine-tuning the depth-
estimating CNN on different datasets and evaluating its depth-estimating performance.

The ORB-SLAM experimental setup is explained in section 4.1.1. Here the following is explained: all the
changes that have been made to the code of ORB-SLAM2, how the algorithm’s ROS node together with other
self-written ROS nodes are setup, how the evaluation of the tracking accuracy takes place and which metrics
are used for this evaluation.

The depth-estimating CNN experimental setup is explained in section 4.1.2. The settings during the fine-
tuning are presented together with how the fine-tuning is done in tensorflow. The way of evaluating the depth
estimating performance of the CNN is explained together with the metrics used for this evaluation.

4.1.1. ORB-SLAM experimental setup
The ORB-SLAM2 code comes with different executables that make use of the ORB-SLAM system in different
ways. The implementation of ORB-SLAM in ROS is used. ROS is an environment that makes it possible to
easily share information between different ‘sub-programs’ called nodes. Within ROS, it is easy to see exactly
what information is shared to which node, useful for debugging. The sharing of information between ROS
nodes is done through topics. A node can publish information to such a topic, and other nodes can subscribe
to the topic to receive the information.

An overview of the ROS nodes used for the ORB-SLAM experiments can be seen in figure 4.1. Three nodes
work together to calculate the error that evaluates the tracking accuracy of ORB-SLAM: the publish node,
the ORB-SLAM node and the error node. Both the publish node and the error node have been created from
scratch. The ORB-SLAM node is an adjusted version of either the RGBD or the Mono node shared in the code
of ORB-SLAM2.

The publish node takes the arguments shown in table 4.1. The images and depth maps need to be sorted
alphabetically in the folders. This is done by giving them ascending numbers as names. The node starts at the
*s*’th image in the image folder. It publishes each image, corresponding depthmap and ground-truth pose to
separate topics with a frequency of *h* Hz. When it has published the *f*’th image in the image folder, it stops
publishing.

ORB-SLAM either needs to be run in monocular or rgbd mode. The corresponding ORB-SLAM node
(Mono or RGBD) is used. The Mono node subscribes to the image topic and uses these images. The RGBD
node subscribes to both the image and the depth-map topic and uses both the image and the depth-map to
preform SLAM. The system code of ORB-SLAM has been altered for this purpose.
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Argument Description
h The frequency with which the images needs to be published

image folder The folder containing the images that need to be published.
depth folder The folder containing the depth maps that need to be published.

pose file A .txt file containing the ground-truth poses.
s The node begins to publish the images from this number forward.
f The node stops to publish the images from this number forward.

Table 4.1: The arguments for the publisher node with their description.

It is undesirable to let ORB-SLAM relocalize or use its loop closing capabilities as it would use its global map
for these function. The tracking accuracy is being evaluated and not this global map. When ORB-SLAM loses
track of where it is, it has failed for the rest of the path and no relocalizing is allowed. To prevent ORB-SLAM
from relocalizing and finding loop closures two functions have been set to always return false: LoopClos-
ing::DetectLoop() in line 103 of LoopClosing.cc and Tracking::Relocalization() in line 1341 of Tracking.cc.

The estimated pose of each frame needs to be extracted from the ORB-SLAM node. Code that does this
is added to the Tracking::GrabImageRGBD() and Tracking::GrabImageMonocular() functions in Tracking.cc.
These have been set up such that they both return the Twc matrix. The Twc matrix is the homogeneous trans-
formation matrix from ORB-SLAM’s world frame to the estimated camera frame. This Twc matrix is returned
through different functions until it is returned to the RGBD or Mono node. In the RGBD or Mono node the
rotation matrix part of Twc is calculated to quaternions ([q0, q1, q2, q3]) using ORB-SLAM’s converter. These
are then calculated to the Euler angles (roll: φ , pitch: θ, yaw: ψ) using equations 4.1, 4.2, 4.3.The euler an-
gles are combined with the x, y and z values of the transformation part of Twc into a pose message. This
pose is defined in the world frame of ORB-SLAM. ORB-SLAM’s world frame is the camera frame of the first
image tracked. The pose message is sent to the calculate error node to be compared to the ground-truth pose.
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The node calculating the error subscribes to the ground-truth pose topic and the estimated pose topic. Each
ground-truth pose that it obtains is stored inside a list for later use. When a estimated pose by ORB-SLAM is
obtained, the corresponding ground-truth pose is obtained by matching the earlier set identification number
of both the poses.

The monocular estimated poses have a free scaling parameter because monocular SLAM is unable to
estimate this factor. Therefore, these poses are scaled such that the euclidean distance between the first two
poses of the estimated trajectory and ground-truth trajectory are equal.

Both poses are transformed and projected to the same 2D frame. These poses consist of a longitudinal
coordinate x, a lateral coordinate y and the yaw ψ. Projection to a 2D plane contains these three parameters,
which are important for the localization of the WEpod. The height, roll and pitch are irrelevant as these don’t
describe the location on the road. Both the poses are saved into lists. The setup ends when the ORB-SLAM
node and the publisher node have sent their last poses. Then the trajectory error can be calculated over these
saved poses with the metrics described in the following paragraphs.

Four different metrics and a combination of these metrics are used to compare the tracking accuracy of
ORB-SLAM. One of these metrics is the positional error Epos (equation 4.8). It represents the average eu-
clidean distance between each ground-truth pose and the corresponding estimated pose. This metric is very
interesting for the WEpod. It shows how much your estimation is off after for instance a corner. For the com-
parison of the trajectory accuracy this metric is not interesting. The metric is heavily depend on the position
in time when an error is made. A rotational error made in the beginning has a far greater influence than a
rotational error made in the end.
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Therefore, three other metrics are used; the longitudinal error Ex (equation 4.5), the lateral error Ey (equa-
tion 4.6) and the rotational error Ea (equation 4.7). These metrics compare the average velocity (the difference
over the last time step) of the poses. The rotational and translational performances are evaluated separately
as vision-based SLAM methods tend to perform very different for rotational and translation trajectories. The
translational error has also been split into a longitudinal error Ex and a lateral error Ey to be able to investigate
the difference in performance of both movements separately.

Finally there is also the combined error Ecom (equation 4.4). It represents one value indicating the in-
crease or decrease of performance. The combined error consists of a weighted combination of the longi-
tudinal error, the lateral error and the rotational error. The positional error is left out on purpose as it is
less interesting for the comparison of the tracking accuracy. The weights normalizes the different errors and
scales the errors based on their importance’s. Each error is normalized by dividing it by its average value over
all the experiments. The weight on the longitudinal error is multiplied by two and the the weight on the rota-
tional and lateral error is multiplied by four. This is done because during driving an error in the longitudinal
direction is much less severe than a lateral or rotational error.

The rotational error takes the angles in degrees and the others take the position in meters. All the metrics
are scaled by the fraction of poses ORB-SLAM has estimated. For instance if ORB-SLAM initialized after 13
frames, lost tracking after 126 frames and the total path consisted of 150 frames, the metrics are scaled by
the total amount of frames N divided by the amount of estimated frames n: 150

113 = 1.33. If less than 1% of the
frames have been estimated by ORB-SLAM, the trajectory prediction has been seen as failed and all the errors
are set to a their set maximum value of 100. No metric can exceed a value of 100, resulting in a combined
error of 1000.
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The setup is used on images from two datasets; the Kitti dataset and the WEpod dataset. Five different se-
quences have been taken from each to be used as the input image streams. This is done to compare the
tracking performance when taking different corners and straight roads. A top view of the paths of the five
sequences from the Kitti dataset can be seen in figure 4.2 and from the WEpod dataset can be found in figure
4.3.

The results of ORB-SLAM are not very consistent. When running ORB-SLAM on the same sequence of
images under the same circumstances, it can perform very good one time and terrible the next time. This is
because ORB-SLAM uses a lot of optimization methods such as bundle adjustment. Comparing the results of
one run is not enough to be certain that improvement has occurred.

Therefore, each sequence is run 20 times and the 95 % confidence interval of the mean is used for com-
parison. The mean µ itself is calculated by taking the average error over N runs (N = 20). This can be seen
in equation 4.9, where Ei is the error for run i . The standard deviation σ is also needed and calculated as in
equation 4.10. The 95 % confidence interval IE of the mean is calculated using the Z0.95 = 1.960 value (equa-
tion 4.11).
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Figure 4.2: The five top views of the sequences used from the Kitti dataset (from their sequence 00). Each sequence start at the red and
green axis (bottom of the images). Their is a straight sequence (C), a left turn (D), a right turn (B), a left then right turn (A) and a right
then left turn (E).

Figure 4.3: The five top views of the sequences used from the WEpod dataset. Each sequence start at the red and green axis (bottom of
the images). Their is a right turn (A), a right then left turn (B), a left turn (C), a totally straight path (D) and a straight path with a parked
truck passing (E).
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4.1.2. Depth-estimating CNN experimental setup
The depth estimating CNN of CNN-SLAM [31] is used in this research. A detailed description of the net-
work can be found in section 3.2. The authors have shared an forward passing only implementation of this
network trained on the NYU dataset [46] in Tensorflow [1]. A new implementation with the original shared
implantation as inspirational source. The network is implemented in Tensorflow.

The only difference between the layers shared by [31] and the layers used in this research is the batch
normalization layers. The authors used two different versions of these layers; one for training and one for
predicting. This however proved to worsen the performance. The network in this research only uses the
training version of the batch normalization layer. The other layers in the network are all kept the same.

The hyper-parameters have been set as described in section 4.2. The dropout parameter did not make
much difference and has not been experimented with in section 4.2. The dropout parameter has been set
to 0.5, as this is also the value the original authors used. Their is only one dropout layer in the end of the
network, thus the exact value of the dropout rate does not have a great influence. It is good to not just set it to
1, as this could result in the network overfitting.

The ground-truth images from the WEpod are created using a stereo setup and thus do not contain the
depth for each pixel, section 3.3. The unknown pixels have been given a depth of 0, as nothing else can have a
depth of exactly 0. The ground-truth depth is also capped at 50 m. Every depth above 50 m has been set to 50
m. This has been done because the depthmaps are saved as images, meaning that the depth is saved scaled
to an integer in the 0 to 255 range. This means that a maximum depth must be defined and set to scale to the
255 pixel value.

If this maximum depth is to large, a lot of accuracy is lost because the scaled value is rounded to the
nearest integer. If the maximum depth is to small, the network would not learn to estimate the depth beyond
this range and the resulting estimated depthmaps would be useless. The maximum depth value of 50 m is
assumed to be large enough to result in useful depthmaps (during driving, the most useful information is
within 50 m for the WEpod) and small enough to keep a good accuracy.

The loss function used is the L2 loss function, section 4.2. It is adjusted to fit the ground-truth depth im-
ages explained above. First the output of the network is scaled bi-linearly to the size of the input image and
ground-truth depthmap. This implementation of the loss function filters out the pixels with a groundtruth
depth values of 50 m and smaller than 1m. The pixels left over are used to calculate the L2 loss.

The image and ground-truth depthmap combinations used for the fine-tuning of the network have been
split up randomly into three groups: The training group consists of 85 % of the images, the validation group
consists of 10 % and the testing group consists of 5 % . The training group is used to train on. The validation
group is a group of images the network has never seen before. The performance of the network on the vali-
dation group is used to choose the hyper-parameters with (section 4.2). The testing group consists of images
the network never has seen before and which not have been used to shape the hyper-parameters with. The
testing group is used to determine the performance of the network.

7481 Kitti images from different sequences have been divided over the three groups for the fine-tuning.
642 WEpod images have also been divided into the three groups for fine-tuning. The fine-tuning has been
done on a Nvidia geforce GTX 1080 Ti with 12 Gb memory. Fine-tuning was done with batch-sizes of 8 for
the Kitti images and 4 for the WEpod images. Using larger batch-sizes was not possible due to the size of the
memory space.

The depth estimating performance is determined using four metrics. Three of the metrics are also used by
the original authors of the network [31] and others [5] [6] [30] [32] [34]. The four metrics are: RMSE (equation
4.12), RMSE(log ) (equation 4.13), the absolute relative difference (ar d) (equation 4.14) and the squared rel-
ative difference (sr d) (equation 4.15). The first three are from [31] and the last one is from [6]. They have been
calculated over all the pixels where the ground-truth depth value is greater then 1 and smaller than 50. The
estimated depthmap has first been resized bi-linearly to the same size as the input images and ground-truth
depthmaps. In the metric equations n is the amount of pixels, d∗

i is the groundtruth depth value of pixel i
and di is the estimated depth value of the pixel i .
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4.2. Determining the hyper-parameters
Before the depth-estimating CNN can be fine-tuned, its hyper-parameters need to be determined. An expla-
nation of the hyper-parameters that need to be set can be found in section 3.4. The main goal of the following
experiments is to find a set of hyper-parameters that ensures that the network fine-tunes in a fast and robust
way without overfitting. This is done by comparing the progress of the validation loss during fine-tuning with
different values for of the hyper-parameters. The other hyper-parameters are kept constant, making sure that
the the difference of the validation loss is due to the change of the one hyper parameter.

The hyper-parameters that have been experimented with are; the initial learning rate, the learning rate
decay rate, the amount of epochs per decay and the loss function. The initial learning rate determines how
much the weights are changed for the first epoch during fine-tuning. The decay rate together with the amount
of epochs per decay determines how fast the learning rate goes down through epochs being processed. The
loss function chosen determines how the error that the network makes influences its weights.

4.2.1. Initial learning rate
Different learning rates have been examined: 10−2, 1

3 ×10−3, 10−3, 10−4, 10−5, 5×10−6 and 10−6 . The network
has been setup for fine-tuning according to section 4.1.2. The network has been fine-tuned for 5 epochs. This
is long enough to show the difference between the different learning rates. The amount of epochs per decay
is set to 1 and the decay rate is set to 0.9, which are often used values. The loss used here is the basic L2 loss,
further described in section 3.4.3. The L2 loss on the validation dataset is shown in figure 4.4.

Increasing the learning rate from 10−6 till 10−4 decreases the time needed for the fine-tuning, as the val-
idation loss goes down faster (figure 4.4). When increasing the learning rate higher then 10−4, the validation
loss does drop faster, but it also stops dropping much earlier. This results in a higher loss after 5 epochs. The
initial learning rate value of 10−4 is considered to be the most suitable and will be used from here on.
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Figure 4.4: The validation L2 Loss of different learning rates (10−2, 1
3 ×10−3, 10−3, 10−4, 10−5, 5×10−6 and 10−6). The model has been

trained for 5 epochs with these different learning rates, an amount of epochs per decay of 1 and a decay rate of 0.9.
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4.2.2. Learning rate decay rate

The network will only be fine-tuned, meaning that it will not process a lot of epochs. Choosing to decay the
learning rate after a high number of epochs would not make sense. The learning rate would then hardly de-
cay. The speed of the learning rate decay depends on the combination of the scale that decays the learning
rate each time (decay rate) and the amount of epochs in between the decay steps (epochs per decay). Two
values of the amount of epochs per decay have been examined: 0.5 and 1. For the decay rate, a wider spec-
trum has been chosen to examine if quickly lowering the learning rate could prove positive. The decay rates
examined are: 0.2, 0.5, 0.7 and 0.9. The resulting validation L2 loss through the epochs for all the 8 possible
combinations can be seen in figure 4.5.

Some combinations get stuck in certain local minimums, figure 4.5. These are the combinations that
lower the learning rate very fast, such a decay rate of 0.2 or 0.5. It appears that the combinations that lower
the learning rate the slowest result in the lowest validation loss. These are thus the best to use. Between these
combinations, no apparent difference can be seen, so they are examined into further detail for more epochs.
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Figure 4.5: The validation L2 Loss of different decay rates (dr: 0.2, 0.5, 0.7 and 0.9) combined with different amount of epochs per decay
(epd: 1 and 0.5). The model has been trained for 5 epochs with these different decay rates and a learning rate lr of 10−4.

The amount of epochs per decay has been set to 1 and no other values are examined. From figure 4.5 it can be
concluded that the combinations that result in about the same decay of the learning rate result in the same
validation loss through the epochs. As the amount of epochs per decay is kept constant, the decay rate is
varied. The decay rates examined this time are: 0.8, 0.85, 0.9, 0.95 and 0.99. To see the difference after more
epochs, the network is now fine-tuned for 25 epochs. The resulting validation L2 loss through the epochs for
these different decay rates can be seen in figure 4.6.

It can be seen in figure 4.6 that the difference in validation loss between the different decay rates only
becomes visible after about 10 epochs. The validation loss eventually stays at a certain value for each decay
rate. The higher the decay rate, the slower the learning rate decays and the lower the eventual value is. Only
between 0.95 and 0.99 is no real difference. They both stagnate at the same validation loss. Based on these
results, the decay rate of 0.95 together with a 1 epoch per decay rate is used from now on.
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Figure 4.6: The validation L2 Loss of different decay rates (dr: 0.8, 0.85, 0.90, 0.95 and 0.99). The model has been trained for 25 epochs
with these different decay rates, an epoch per decay of 1 and a learning rate lr of 10−4.

loss lr epd dr # epochs RMSE log RMSE abs rel diff squared rel diff
L2 0.0001 1 0.95 25 3.97 0.22 0.17 1.05

berHu 0.0001 1 0.95 25 4.50 0.25 0.20 1.38
berHu 0.01 7 0.9 25 5.16 0.29 0.25 2.07

L2 0.0001 1 0.95 50 3.98 0.22 0.16 1.03

Table 4.2: Comparison of the performance of the network fine-tuned on the Kitti dataset with the L2 loss and the hyper-parameters
found above for 25 epochs, the berHu loss and the hyper parameter found above for 25 epochs, the berHu loss and the hyper-parameters
from [31] for 25 epochs and the L2 loss with the hyper-parameters found above for 50 epochs

4.2.3. Loss function
The fine-tuning the network with the reverse Huber (berHu) loss is compared with fine-tuning of the network
with the L2 loss. The evaluation is done using the metrics for comparing depth-maps defined in section 4.1.2.
The metrics are averaged over all the validation images. Four different settings are used for comparison. The
first one uses the L2 loss, the rest of the hyper-parameters set to the values found above and for 25 epochs.
The second one is using the berHu loss with the rest of the hyper-parameters set to the values found above
and for 25 epochs. Then also the berHu loss with the hyper-parameters set to the same values as the author
used is fine-tuned for 25 epochs. Finally also the best performing one is fine-tuned for 50 epoch to test if
fine-tuning for 25 epochs is enough. The results can be seen in table 4.2.

The L2 loss results in better performance than the berHu loss. Even though this is opposite of the findings
of the authors of the CNN. This could be because of the different datasets consisting of images from different
sceneries. The NYU dataset is an indoor dataset with much lower depth values. The Kitti dataset is an outdoor
dataset that consist of much larger depth values. The table also shows that the settings found above result in
better performance than the settings from the authors of the network. It shows that fine-tuning for more than
25 epochs does not result in better performance, so it is not needed to fine-tune the network any further after
25 epochs. A summery of the hyper-parameters used for this thesis can be found in table 4.3.

Hyper parameter Value
Learning rate 10−4

Amount of epochs per decay 1
Decay rate 0.95

Amount of epochs 25

Table 4.3: The summery of the hyper-parameters used for fine-tuning the depth estimating network.
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4.3. Monocular ORB-SLAM on only Kitti images
The performance of monocular ORB-SLAM on Kitti images is investigated in this experiment using the met-
rics described in section 4.1.1. First will be recapped why ORB-SLAM on Kitti images is investigated while the
goal is to improve ORB-SLAM on WEpod images.

Monocular ORB-SLAM on WEpod images does not initialize and no trajectory is estimated. This results
in undefined values of the tracking accuracy metrics. If ORB-SLAM with the depth estimating CNN would
initialize, its tracking accuracy would be better then the monocular attempts. This would mean that the
tracking accuracy has improved. However, it would only prove that the initialization problem is solved. If
and how much the actual tracking performance has improved remains unanswered. Therefore, it is desirable
to compare the tracking accuracy of ORB-SLAM with and without the estimated depth-maps on a different
dataset. Such a dataset is the Kitti dataset on which ORB-SLAM does initialize and thus its tracking accuracy
can be compared. This experiment sets the base-line to compare the other tracking accuracy metrics of ORB-
SLAM on Kitti data with. ORB-SLAM is run according to the experimental setup described in section 4.1.1 on
the five selected sequences of Kitti images, 20 times per sequence.

4.3.1. Results
The tracking accuracy of monocular ORB-SLAM on the Kitti images is shown in table 4.4. The mean µ and
standard deviation σ of each error metric on each sequence are presented. A somewhat more clear repre-
sentation for comparison is presented in the sub-figures of figure 4.7. In these figures the mean and 95 %
certainty interval is presented for error metric and each sequences of Kitti images.

The results between the different sequences vary a lot, see table 4.4. For instance, the sequence containing
a left turn has relative very high errors on each metric. The straight sequence containing no turns performs
better then the others on each metric. This is more clearly visible in the sub-figures of figure 4.7. The ‘left
turn’ sequence not only has the highest error of the sequences, but also has the largest 95 % certainty interval
of the mean. This indicates that the performance of ORB-SLAM on the ‘left turn’ sequence of the Kitti images
varied a lot throughout the runs.

This relatively bad and unreliable result of the ‘left turn’ sequence is present in the longitudinal error, Ex .
Also the ‘right turn’ sequence resulted in a high variation in performance in the longitudinal error. In the
yaw error Ea , not only the ‘left turn’ sequence performs badly with a high variance, the ‘left-right’ sequence
also performs relatively badly. However, it does not have a high variance. In the combined error, Ecom , the
difference between the ‘left turn’ sequence and the others is also visible. The ‘left-right’ sequence stands
out because of its poor performance due to poor performance in Ea . Another difference that stands out is
between the longitudinal error Ex and the lateral error Ey . The error in the lateral direction is smaller than
the error in the longitudinal direction for each sequence. Not only is the mean of the lateral error substantially
smaller, also is the variance is smaller.

The base-line has been set. These results can be used to show the change in performance when adding
depth-information to the inputs. These results also already show the difference in ORB-SLAM’s tracking accu-
racy between different sequences of Kitti images. The next step is to investigate how the addition of ground-
truth depth-maps to the inputs of ORB-SLAM affect the tracking accuracy.

Error metric
Sequence

Right-Left Left-Right Left Straight Right

Ecom
µ 2.145 10.941 20.946 1.917 3.776
σ 0.184 0.912 14.443 0.19 2.94

Ex
µ 0.284 0.301 1.522 0.491 0.640
σ 0.063 0.072 3.910 0.066 0.907

Ey
µ 0.022 0.046 0.094 9·10−3 0.040
σ 9·10−3 3·10−3 0.223 1·10−3 0.041

Ea
µ 0.167 2.615 4.127 0.070 0.146
σ 0.020 0.278 1.416 0.014 4·10−3

Epos
µ 37.348 40.672 52.758 35.391 40.126
σ 6.513 2.685 11.190 0.765 13.750

Table 4.4: The tracking accuracy of monocular ORB-SLAM on the five different sequences from the Kitti image set. The error metrics and
how there mean µ and standard deviation σ are described in section 4.1.1.
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Figure 4.7: The tracking accuracy of monocular ORB-SLAM on Kitti images. The average value and 95 % certainty interval of each metric
is shown for each sequence.



36 4. Experiments & Results

4.4. ORB-SLAM on KITTI images with lidar depthmaps
This experiment verifies that adding depth information to ORB-SLAM improves the tracking accuracy. This is
necessary for a fair comparison. It cannot be done on WEpod data, as no ground-truth depth-maps applica-
ble for use with ORB-SLAM are currently available. For the Kitti dataset however, ground-truth depth-maps
can be create with the 64-plane lidar data, as done in section 3.3.

The tracking accuracy of ORB-SLAM on images together with their ground-truth depth-maps is evaluated.
It gives the possibility to compare its results it with others. For instance, comparing the tracking accuracy of
ORB-SLAM with estimated and with ground-truth depth-maps. This is done in the experiment in section 4.6.
The quality of the estimated depth-maps is lower that the quality of the ground-truth depthmaps. It can be
shown what the influence is of this quality drop of the depth-maps on the tracking accuracy of ORB-SLAM.

Therefore this experiment. ORB-SLAM has been ran with the Kitti images and corresponding ground-
truth depthmaps according to the experimental setup described in section 4.1.1. All five the selected se-
quences from Kitti have been ran 20 times.

4.4.1. Results
The tracking accuracy of ORB-SLAM on the Kitti images together with the ground-truth depth-maps is shown
in table 4.5. The mean µ and standard deviation σ of each error metric are presented. The results are pre-
sented next to the result of monocular ORB-SLAM from section 4.3 in figure 4.8. In this figure, the results of
this experiment are added to figure 4.7.

Again the ‘left turn’ and ‘left-right’ sequences result in relatively higher errors then the other sequences.
Especially in the longitudinal error Ex , the yaw error Ea and in the positional error Epos . Remarkable is the
disappearance of the clear performance difference between the longitudinal error Ex and the lateral error
Ey . With the added ground-truth depth information, the lateral error is quite comparable to the longitudinal
error. On some sequences (for instance ‘right-left’) is the longitudinal error about twice the lateral error and
on other sequences (for instance ‘left-right’) is the lateral error much higher than the longitudinal error. One
is not always better then the other. Also the variance of these errors are much more comparable, also showing
differences both ways dependent on the sequence.

The addition of the ground-truth depthmaps has mostly resulted in improvement in the tracking accu-
racy. The errors are smaller compared to the monocular version errors. Especially in the longitudinal error,
Ex , and the positional error, Epos , has the addition of ground-truth depthmaps resulted in much smaller
errors. In the yaw error, Ea , is the difference much smaller but still there. In the lateral error, Ey , is this dif-
ference not clearly there as on some sequences the addition of ground-truth depth-maps resulted in higher
lateral errors.

With these results, it has been proven that adding depth information to the inputs of ORB-SLAM does
indeed improve the tracking accuracy. However, this setup is not monocular anymore and not applicable for
the WEpod. Therefore, a CNN is going to be used to estimate the depth in the images. Before the CNN can
be used to perform on Kitti images, it needs to be fine-tuned on Kitti images. This is the goal of the next
experiment.

Error metric
Sequence

Right-Left Left-Right Left Straight Right

Ecom
µ 1.586 10.936 13.279 0.794 2.764
σ 0.148 0.076 0.514 0.055 0.171

Ex
µ 0.051 0.028 0.140 0.049 0.066
σ 0.026 4 ·10−3 0.168 0.012 0.018

Ey
µ 0.025 0.073 0.029 0.014 0.054
σ ·10−3 1 ·10−3 5 ·10−3 1 ·10−3 4 ·10−3

Ea
µ 0.15 2.114 3.688 0.038 0.144
σ 0.022 2 ·10−3 0.047 3 ·10−3 9 ·10−3

Epos
µ 5.089 2.384 13.753 1.782 3.701
σ 2.972 0.628 14.476 0.860 1.323

Table 4.5: The tracking accuracy of ORB-SLAM on the five different sequences from the Kitti image set together with the ground-truth
depth-maps described in section 3.3. The error metrics and how there mean µ and standard deviation σ are described in section 4.1.1.
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Figure 4.8: The tracking accuracy of ORB-SLAM on only the Kitti images (red) and on Kitti images together with ground-truth depth-
maps of these images (green) . The average value (middle, widest line) and 95 % certainty interval (upper and bottom smaller lines) of
each metric is shown for each sequence.
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4.5. Fine-tuning the CNN on KITTI images
The CNN used in this thesis is trained on the NYU dataset. This dataset consists of indoor scenery images
and depth-maps. It needs to be fine-tuned on the Kitti dataset so it can estimate the depth in Kitti images.

This fine-tuning has been done using 7481 images and ground-truth depth-maps from different Kitti se-
quences. The ground-truth depth-maps have been created according to section 3.3 and the fine-tuning has
done with the setup described in section 4.1.2. The parameters of the CNN have been initialized as their value
in the original NYU trained version. The fine-tuning has been done with the hyper-parameters set as those
found in section 4.2.

Only the training set of the images have been used to train on. The calculating of the performance has
been done by letting the fine-tuned network estimate the depth in the testing image set. These are images it
has never seen before, to rule out overfitting. The estimated depth-maps of these testing images have been
compared to the ground-truth depth-maps according to the metrics described in section 4.1.2.

4.5.1. Results
The performance of the depth-estimating CNN fine-tuned on Kitti images can be seen in table 4.6. The av-
erage values of each metric over all the images in the testing set have been presented. Also the performance
of the original network is shown. These values have been obtained from the original paper [31]. The squared
relative difference metric was not reported in this paper.

The network fine-tuned on Kitti images performs comparable to the original network from the paper, see
table 4.6. The log RMSE and absolute relative difference metrics are about the same. The network fine-tuned
on Kitti images only performs ever so slightly worse then the network on NYU images. On the RMSE metric,
a big difference was noticeable. This difference is caused since the RMSE metric is not relative to the scale of
the depth estimated. The NYU images are of indoor scenarios where a typical depth value is about 5 meters,
while a typical depth value of Kitti images is 30 meters. A typical depth value in the Kitti images is about 6
times as big as in the NYU images. This scale difference is taken into account by dividing the RMSE of the
network fine-tuned on Kitti images by 6. The result is comparable to the RMSE of the network trained on
NYU images. Table 4.6 shows the scaled RMSE value and between brackets the original value.

Examples of the resulting depth-maps are provided. In figure 4.9, the estimated depth-maps by the CNN
before fine-tuning and after fine-tuning are shown to state the difference fine-tuning makes. In figure 4.10,
three more examples of the estimated depth-maps are shown. These are three images of different road sce-
narios from the testing set of images. These images have not been used to train on.

The image is figure 4.9 show that the fine-tuning is necessary and improves the result. The estimated
depth-map from before fine-tuning shows ‘ghostly’ objects, not-existent patterns and it misses the overall
ground-plane. This clear ground-plane is visible in estimated depth image from the fine-tuned network. In
this images, the different cars, poles and signs are visible. This shows that the network has detected these
obstacles. Also no more ‘ghostly’ objects that are not present in the original image are visible. The maximum
depth in this image is 50 m.

Figure 4.10 shows that the network performs well for different types of images. The left image consists
of a scene with not a lot of obstacles. The middle image consists of a road with more obstacle on the side:
differently orientated cars, trees and houses. The right image shows a car crossing an intersection in front
of the camera. On all these different images, the network is able to recognize the different objects as being
closer and correctly estimates which object is closer by.

It is possible to do ORB-SLAM on image with depth information from the CNN fine-tuned on Kitti images
while keeping the whole setup monocular. The depth-estimating CNN can be added to ORB-SLAM and the
resulting tracking accuracy can be compared to that of monocular ORB-SLAM and ORB-SLAM with ground-
truth depth-maps. This is done in the next experiment.

RMSE [m] log RMSE [m] abs rel diff [m] squared rel diff [m]
Original network [31] 0.573 0.195 0.127 -

Kitti fine-tuned network 0.661 (3.965)* 0.219 0.167 1.054

Table 4.6: The performance of the depth-estimating CNN fine-tuned on Kitti images. The network estimated the depth in the testing set
of images, which it has never seen before, and the results are compared with the ground-truth through the metrics described in section
4.1.2. The average of each of these metrics is presented together with the results from the original authors which trained it on the NYU
dataset [31]. *The presented value is divided by 6 to account for the scene scale difference. The original value is presented between the
brackets.
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(a)

(b)

(c)

(d)

(e)

Figure 4.9: a: An example input image from the Kitti testing group. b: the depth image estimated by the CNN without fine-tuning, so
only trained on the NYU dataset. c: the depth image estimated by the CNN fine-tuned on the Kitti training set. d: the ground truth depth
image corresponding to this image. e: The input image with the depth as the color (blue to purple = close to far).

Figure 4.10: Top: Three different input images from the testing Kitti image set. Middle: The resulting output depth image from the CNN
fine-tuned on the Kitti training set. Bottom: The groundtruth depth image.
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4.6. ORB-SLAM on KITTI images with CNN estimated depthmaps
The CNN fine-tuned on the Kitti images can now be combined with ORB-SLAM. The images are passed into
the depth estimating CNN and into ORB-SLAM together with the estimated depth-map. ORB-SLAM does
calculate the trajectory based on images and their depth-map but the whole setup is still monocular. This
experimental setup is the same as described in section 4.1.1. Again all the 5 selected sequences from the Kitti
dataset are ran 20 times each.

4.6.1. Results
The tracking accuracy of ORB-SLAM on Kitti images with the estimated depth-maps is shown in table 4.7.
The mean µ and standard deviation σ of each error metric on each sequence are presented. In figure 4.11
the mean and 95 % certainty interval is presented for each error metric and each sequences. The tracking
accuracy of ORB-SLAM on Kitti images with the estimated depth-maps is presented together with the track-
ing accuracy of ORB-SLAM on Kitti images with ground-truth depth-maps, and the tracking accuracy of the
monocular ORB-SLAM.

The ‘left turn’ and ‘left-right’ appear to again be the ones where the errors are substantial higher. The ‘right-
left’ sequence this time also shows higher errors, especially on the positional orientated error metrics. On the
longitudinal error Ex , the lateral error Ey and the positional error Epos is the performance on the ‘right-left’
sequence worse then on the other sequences.

The longitudinal error Ex and the lateral error Ey show a clear difference. On each sequence is the mean
of the longitudinal error higher then the mean of the lateral error. Also is the variance of the longitudinal error
is higher then the variance of the lateral error.

The performance on these metrics of ORB-SLAM with the depth estimating CNN falls in between the per-
formance of monocular ORB-SLAM and the performance of ORB-SLAM with ground-truth depth-maps. On
a few sequences some metrics perform better then ORB-SLAM with ground-truth depth-maps. An example is
the yaw error Ea on the ‘left turn’ sequence. Here ORB-SLAM with the CNN outperforms ORB-SLAM with the
ground-truth depth-maps. ORB-SLAM with the CNN sometimes also performs worse than the monocular
version. For instance with the longitudinal error Ex on the ‘left-right’ sequence. The variance of ORB-SLAM
with the CNN usually lays in between the variance of monocular ORB-SLAM and ORB-SLAM with ground-
truth depth-maps.

This experiment has shown that over all the addition of the depth estimating CNN to monocular ORB-
SLAM does improve the tracking accuracy on the Kitti images. The question remains if this is also the case
on WEpod images. To be able to test this out, a depth estimating CNN that is capable of estimating the depth
in WEpod images is necessary. In the following experiment, it is investigated how the depth-estimating CNN
fine-tuned on Kitti images performs on WEpod images.

Error metric
Sequence

Right-Left Left-Right Left Straight Right

Ecom
µ 16.748 11.246 13.835 1.552 3.712
σ 18.711 2.125 5.944 0.726 2.254

Ex
µ 0.813 0.136 0.272 0.129 0.145
σ 1.157 0.143 0.196 0.102 0.215

Ey
µ 0.319 0.082 0.100 0.024 0.070
σ 0.467 0.024 0.094 0.014 0.055

Ea
µ 0.629 2.405 2.880 0.087 0.173
σ 0.422 0.581 1.452 0.115 0.105

Epos
µ 16.402 8.524 9.975 5.355 5.724
σ 14.145 5.388 8.815 2.980 2.894

Table 4.7: The tracking accuracy of ORB-SLAM on the five different sequences from the Kitti image set together with the estimated depth-
maps by the CNN from the experiment in section 4.5. The error metrics and how there mean µ and standard deviation σ are described
in section 4.1.1.



4.6. ORB-SLAM on KITTI images with CNN estimated depthmaps 41

right-left left-right left turn straight right turn
0

5

10

15

20

25

30
Combined_error_Ecom

(a) The combined error Ecom

right-left left-right left turn straight right turn
0

1

2

3

4

5

6

7
x_error_Ex

(b) The longitudinal error Ex

right-left left-right left turn straight right turn
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
y_error_Ey

(c) The lateral error Ey

right-left left-right left turn straight right turn
0

1

2

3

4

5
yaw_error_Ea

(d) The yaw error Ea

right-left left-right left turn straight right turn
0

10

20

30

40

50

60
Positional_error_Epos

(e) The positional error Epos

Figure 4.11: The tracking accuracy of ORB-SLAM on only the Kitti images (red), on Kitti images together with the CNN estimated depth-
maps (blue) and on Kitti images together with ground-truth depth-maps of these images (green) . The average value (middle, widest
line) and 95 % certainty interval (upper and bottom smaller lines) of each metric is shown for each sequence.
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4.7. Predicting depth in WEpod images with the KITTI fine-tuned CNN
A CNN that predicts the depth in WEpod images is needed to add it to ORB-SLAM. This means that the depth
estimating CNN needs to be able to estimate depth-maps of the WEpod images. It is possible that the CNN
fine-tuned on the Kitti images can be used to estimate the depth in WEpod images. This is possible because
both the Kitti images and the WEpod images are both of outdoor road scenery. Estimating the depth in WEpod
images could save a lot of effort fine-tuning the depth estimating CNN on WEpod images. This could indicate
that one depth estimating CNN version can be used on similar images from different datasets.

The WEpod images however do differ from the images from the Kitti dataset. They have been recorded
with different camera’s, which have different intrinsic parameters and distortion effects. The images all have
been undistorted, but this can never be done perfectly. There still exists some slight distortion differences.
The images also have different aspect ratio’s and sizes. Even though the images are both from outdoor road
scenarios, they have been recorded on different roads with different surroundings in different countries.

The CNN fine-tuned on Kitti images has been used to predict the depth in images from the WEpod, at
their original size and aspect ratio. As shown in figure 4.12 and as expected, the network is not able to create
realistic depth-maps for these images.

Figure 4.12: Left: The input WEpod image. Right: The resulting output depth image form the CNN trained with L2 loss, trained for 25
epochs with lr0.0001epd1dr0.95.

Multiple things are changed to see how the performance of this network can be improved. First of all are the
WEpod images cropped to the aspect ratio of Kitti images and then resized to the same size. The images have
been cropped such that the horizon stays in the center of the images. This improves the resulting depth-
maps. The resulting depth-maps after only cropping to the aspect ratio of Kitti images can be seen in figure
4.13. The resulting depth-maps after cropping and then resizing to the same size can be seen in figure 4.14.
Next the images have been cropped and resized such that the horizon is placed at the same height as it is in
the Kitti images. This really improved the resulting depth-maps, see figure 4.15.

Figure 4.13: Left: The WEpod images cropped to the same aspect ratio as the Kitti images with the horizon in the middle. Right: The
resulting estimated depth image.
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Figure 4.14: Left: The WEpod images cropped to the same aspect ratio as the Kitti images with the horizon in the middle and resized to
the same size. Right: The resulting estimated depth image.

Figure 4.15: Left: The Wepod images cropped to the same aspect ratio, with the horizon at the same height and resized to the same size
as the Kitti images. Right: The resulting estimated depth image.
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The network fine-tuned on the Kitti dataset is used to predict 5 different sets of WEpod images. Each
set consists of the same 642 WEpod images, cropped and resized in different ways. From these images, also
ground-truth depth-maps are created using the S21 stereo setup as described in section 3.3.

The first set of images consists of the images cropped such that the horizon is about in the same height as
in the Kitti images. For the second set of images, the images are corrected for the pitch angle of the camera.
The horizon now stays at the same height, even when going over a speed bump. The third set of images are
corrected for the pitch and roll angles of the camera. In this set the horizon is always on the same height and
even always at the same angle as in the Kitti dataset, even when while taking a corner the vehicle slightly leans
to one side. Two more sets are created by applying a Gaussian filter on the images, filtering out noise from the
camera. This creates a total of five different sets. The performance of the depth-estimating network on these
six sets can be compared to choose one way of preparing the WEpod images for the depth-estimating CNN.

The performance of the depth-estimating CNN fine-tuned on Kitti images and predicting the depth in the
five different types of WEpod images is shown in figure 4.8. In this table, all four the metrics defined in section
4.1.2 are presented for each instance.

The cropping of the images based on the current pitch value does not increase the performance of the net-
work. For a select amount of images, those for instance taken when going over a speed bump, does the
cropping based on the pitch value increase the performance of the network. However, the performance on
the other images apparently worsens. The rotating of the images based on the roll value worsens the perfor-
mance of the network and the Gaussianing of the images to remove the noise does not appear to have any big
effect.

The performance of the depth-estimating CNN fine-tuned on Kitti images and predicting on WEpod im-
ages has been investigated for different ways of preparing WEpod images to the size of Kitti images. This
CNN could be added to monocular ORB-SLAM on WEpod images. It is also possible to fine-tune the network
on WEpod images. The performance of the network fine-tuned on WEpod images is investigated in the next
experiment.

Fine-tuned on Predicted on RMSE log RMSE abs rel diff squared rel diff
KITTI KITTI 3.983 0.216 0.163 1.034
KITTI WEpod 7.084 0.336 0.264 2.282
KITTI WEpod C 6.978 0.386 0.391 2.930
KITTI WEpod RC 8.245 0.433 0.442 4.634
KITTI WEpod GC 6.979 0.386 0.392 2.934
KITTI WEpod GRC 7.155 0.390 0.389 2.937

Table 4.8: Resulting metrics KITTI fine-tuned, predicted on KITTI and on WEpod. G = Gaussianed with 5x5 and sigma 1, R = rotated to
compensate the roll angle, C = cropped to compensate for the pitch angle

4.8. Fine-tuning the CNN on WEpod images
Another way of creating a CNN that can estimate the depth in WEpod images is by fine-tuning the network
directly on WEpod images. The ground-truth depth-maps of WEpod images can be created with the S21
stereo setup as described in section 3.3. The network can directly be fine-tuned on images from the WEpod,
the same dataset of images it needs to predict on. This CNN fine-tuned on WEpod can also be combined with
ORB-SLAM as in figure 1.2.

The network is fine-tuned on the training set of the 642 WEpod images together with the corresponding
ground-truth depth-maps. The fine-tuning has been done using the same hyper-parameters as found in
section 4.2 and the parameters have been initialized as the value’s that they have after fine-tuning on the Kitti
dataset. The performance of the CNN fine-tuned on WEpod images is evaluated with the testing set of the
642 WEpod images. All according to the setup described in section 4.1.2.

4.8.1. Results
The resulting performance of the depth-estimating CNN fine-tuned on WEpod images is shown in table
4.9. The CNN is used to predict the WEpod images from the testing set and the resulting depth-maps are
compared to the ground-truth depth-maps. The average value of each metric over all the estimated WEpod
depth-maps in the testing set is reported in the table. Also the best results from the experiments described in
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sections 4.5 and 4.7 are shown for easy comparison.
It can be seen in table 4.9 that the performance of the WEpod fine-tuned network is not better. It is even

slightly worse then the performance of the network fine-tuned on the Kitti images on WEpod images. The
performance of the Kitti fine-tuned network on Kitti images is about twice as good as the performance of the
WEpod fine-tuned network on WEpod images. Further investigation has been done into the resulting depth
images. One example can be seen in figure 4.16.

From figure 4.16 it is clear that the network is not performing well. It misses all detail in the image, ab-
stracting the depth up until no obstacles are recognizable in the image. Only the basic pattern of the depth-
map getting deeper and deeper toward the middle-top of the image is present in the estimated depth image.
Each estimated depth image from the network is about the same. The network has learned to create a basic
abstract depth-map without any detail as a solution. Also is the road directly in front of the WEpod not cov-
ered by the ground-truth depthmaps. The network thus did not learn to estimate the depth here correctly.
These detail-less solutions do not perform terrible: only slightly worse than the Kitti fine-tuned network on
WEpod images and only about twice as worse as the Kitti fine-tuned network on Kitti images (table 4.9).

Two networks have been created that estimate the depth in WEpod images, one with many details and one
without any details. These can be combined separately with ORB-SLAM. The tracking accuracy of both com-
binations can be compared to each other to see if this detail is necessary. This is done in the next experiment.

Fine-tuned on Predicted on RMSE log RMSE abs rel diff squared rel diff
KITTI KITTI 3.983 0.216 0.163 1.034
KITTI WEpod 7.084 0.336 0.264 2.282

WEpod WEpod 7.698 0.401 0.371 3.700

Table 4.9: Resulting metrics KITTI fine-tuned, predicted on KITTI and on WEpod. C = cropped to pitch.

Figure 4.16: Top: An example input image from the WEpod testing group. Middle: the depth image estimated by the CNN fine-tuned on
the WEpod images. Bottom: The input image with the log of the depth value determining the color, ranging from blue (close) to purple
(far).
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4.9. ORB-SLAM on WEpod images with CNN estimated depthmaps
There are two versions of the CNN that estimate the depth in WEpod images. Both have been combined
with ORB-SLAM and the tracking accuracy can be compared. ORB-SLAM estimates the trajectory of WEpod
images with estimated depth-maps. The whole system (ORB-SLAM + CNN) is still monocular, it only takes
the images as inputs. ORB-SLAM together with the CNN’s in this experiment are setup as described in sec-
tion 4.1.1. This experiment has been ran on the five selected sequences from the WEpod data, 20 times per
sequence.

4.9.1. Results
The tracking accuracy of ORB-SLAM with estimated depth-maps from the CNN fine-tuned on Kitti images
is shown in table 4.10. The tracking accuracy of ORB-SLAM with estimated depth-maps from the CNN fine-
tuned on WEpod images is shown in table 4.11. The mean µ and standard deviation σ of each error on each
sequence are presented. The difference between both versions is visible in figure 4.17.

ORB-SLAM with the network fine-tuned on Kitti images outperforms ORB-SLAM with the network fine-
tuned on WEpod images. On almost all the metric and sequence combinations does the Kitti fine-tuned
version achieve lower errors and variances. Only in the positional error metric Epos with the ‘right turn’ and
‘left turn’ sequence and in the lateral error metric Ey with the ‘straight pass’ metric does the WEpod fine-
tuned version achieve lower errors then the Kitti fine-tuned version.

Error metric
Sequence

right left straight pass straight right-left

Ecom
µ 2.798 8.346 10.276 6.012 2.194
σ 1.251 0.715 3.298 1.142 0.345

Ex
µ 0.146 0.547 0.987 0.476 0.123
σ 0.067 0.045 0.343 0.085 0.016

Ey
µ 0.041 0.112 0.148 0.088 0.037
σ 0.028 0.017 0.079 0.027 9 ·10−3

Ea
µ 0.242 0.766 0.563 0.393 0.131
σ 0.181 0.079 0.197 0.104 0.015

Epos
µ 15.395 23.252 29.657 15.102 8.567
σ 4.914 4.082 10.188 3.186 3.418

Table 4.10: The tracking accuracy of ORB-SLAM on the five different sequences from the WEpod image set together with the estimated
depth-maps by the CNN fine-tuned on Kitti images from the experiment in section 4.5. The error metrics and how there mean µ and
standard deviation σ are described in section 4.1.1.

Error metric
Sequence

right left straight pass straight right-left

Ecom
µ 3.843 33.339 10.817 10.06 46.134
σ 1.897 36.154 2.215 2.443 19.869

Ex
µ 0.225 1.600 1.517 1.150 6.717
σ 0.163 1.923 0.453 0.350 3.434

Ey
µ 0.061 0.344 0.101 0.107 0.500
σ 0.045 0.568 0.044 0.049 0.430

Ea
µ 0.265 4.860 0.862 0.864 2.607
σ 0.177 8.764 0.191 0.371 1.476

Epos
µ 7.952 17.068 37.708 25.363 32.181
σ 1.716 7.836 10.505 9.175 20.550

Table 4.11: The tracking accuracy of ORB-SLAM on the five different sequences from the WEpod image set together with the estimated
depth-maps by the CNN fine-tuned on WEpod images from the experiment in section 4.8. The error metrics and how there mean µ and
standard deviation σ are described in section 4.1.1.
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Figure 4.17: The tracking accuracy of ORB-SLAM together with the depth estimating CNN fine-tuned on Kitti (red) or WEpod (blue)
images, with the five WEpod sequences as inputs. The average value and 95 % certainty interval of each metric is shown for each
sequence.
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5.1. Discussion
The WEpod is a self-driving vehicle that needs to improve its localizing capabilities. It localizes using GPS and
lidar information. This is not robust and accurate enough to safely navigate through the traffic. The monoc-
ular vision-based SLAM algorithm ORB-SLAM is investigated as a localizing method addition to the existing
methods in the WEpod. Monocular ORB-SLAM on WEpod images failed to initialize and thus to perform
SLAM. Therefore, the goal of the experiments was to investigate if the addition of a depth estimating Convo-
lution Neural Network (CNN) to monocular ORB-SLAM on WEpod images improves its tracking accuracy.

ORB-SLAM has a special way of initializing compared to other state of the art monocular SLAM methods.
ORB-SLAM tries to initialize the surrounding scene with the fundamental matrix and the homography. They
give both initialization methods a score and if one of the scores is high enough, initialization is done. If no
initialization method scores high enough, initialization is tried again with a new frame. Monocular ORB-
SLAM on different sequences of the WEpod images (5 sequences, 20x each) failed to initialize throughout 99
from the 100 runs. The purpose of this thesis is not to investigate why monocular ORB-SLAM fails on WEpod
images, but how to get ORB-SLAM working on WEpod images.

The fact that the state of the art monocular SLAM methods do not initialize as robustly as desirable has
been acknowledged by the scientific community. The authors of the monocular SLAM methods came forth
with upgraded versions. They improved the initialization and results of their SLAM methods by added depth-
information to the inputs. This depth information can be obtained by using other methods.

The WEpod does not have sensors that make it possible to create dense and accurate depth-maps of its
images and these cannot be added. This means that another way of obtaining depth-maps of the images is
necessary. This thesis research investigates the possibility of using a depth-estimating CNN to estimate the
necessary depth information.

Adding a depth-estimating CNN to ORB-SLAM has been investigated first with images from the Kitti dataset.
This was done as monocular ORB-SLAM initializes on the Kitti dataset. It makes it possible to better com-
pare the tracking accuracy of monocular ORB-SLAM with the methods described in this thesis. Monocular
ORB-SLAM on Kitti images acts as the baseline for the other methods on the Kitti dataset.

It is noticeable that monocular ORB-SLAM has more trouble with the cornering sequences then the straight
sequence, especially in the variance of its results. It has been observed that ORB-SLAM tends to have diffi-
culty with rotational movements. It would appear that ORB-SLAM has much more trouble with the sequences
with left turns then the right turns. There are multiple possible causes: First of all, it could be a coincidence
as the algorithm does not treat them different. It is possible that it coincidental was harder to find and match
features in the sequences with the left turns. Secondly, a right turn is sharper then a left turn as the car was
driving on the right side of the road. More different sequences with left and right turns would need to be
examined to be able to conclude anything on these possible causes.

The Kitti dataset is chosen as 3D lidar points from a 64-plane lidar are included. These 3D points have been
used to create ground-truth depth-maps. These depth-maps make it possible to not only evaluate the per-
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formance of the depth-estimating CNN on Kitti images with, but also to perform ORB-SLAM on Kitti im-
ages with ground-truth depth-maps. The tracking accuracy of ORB-SLAM on Kitti images with ground-truth
depth-maps has been compared to the tracking accuracy of monocular ORB-SLAM.

On almost every sequence and for every error does ORB-SLAM on images with ground-truth depth-maps
achieve a lower average error and variance. Adding the ground-truth depthmaps seem to especially help with
the estimation of the longitudinal movement. The average error in the lateral and angular directions does
not appear to improve much. This could be because there is very little angular and lateral movement in com-
parison to the longitudinal movement in the sequences. Also, it is known that monocular vision-based SLAM
performs relatively good for lateral movements. There is less room for improvement. The variances of the
errors have consistently improved. It can be concluded that adding ground-truth depth-maps to the inputs
of ORB-SLAM does increase the tracking accuracy.

The next step is evaluating the tracking accuracy of ORB-SLAM together with a depth-estimating CNN on
Kitti images. A well-performing depth-estimating CNN that has been proven to work well in cooperation
with SLAM has been chosen. This network has been trained on images of indoor scenarios, thus it needs to
be fine-tuned on the Kitti images. The hyper-parameters used for the fine-tuning of the network have been
chosen empirically by comparing the results of networks trained differently. This does not ensure that this set
is the absolute best, but it does give enough reason to assume that with this set, the network trains adequately.

The network has been fine-tuned on the Kitti images and gives adequate results on different types of
Kitti images. The results on these images are comparable to the results that the authors mentioned on the
original dataset. There are some aspects of the ground-truth depth-maps that the CNN has inherited from
the ground-truth data. The ground-truth depth-maps have been created using lidar points. This results in
certain parts of the ground-truth depth-maps where the depth is not correctly known, such as the spaces in
between the points. This problem could partly be solved by linear interpolating the points. However, other
problems still exist in the ground-truth depth-maps.

One of these problems is that the windows of cars are missed. The lidars ‘looks through’ the windows and
senses the depth behind the windows. The shiny polish of the cars also reflect the lidar beams. The network
however does not learn these faults in the ground-truth depth-maps, cars are actually detected very well.

A fault in the ground-truth depth-maps that the network does learn is the falsely stretched out objects in
the top-middle of the images. The lidars have a limited range in which they can sense depth. This results in
the top middle patch of the images being uncovered. The lidar beams pointing in this direction go off into the
horizon without returning. While creating the ground-truth depth-maps, these unknown pixels have been
filled up by copying the depth from the highest known point beneath the unknown pixel. This has created
stretched out objects in the top-middle of the images, which have been learned by the depth-estimating CNN.
However, it is not assumed to be a big problem because this only effects a very small portion of the image.

The CNN fine-tuned on Kitti images can now be combined to ORB-SLAM on Kitti images. This setup is still
monocular and benefits from the advantages of depth information. The performance in the tracking accuracy
metrics are usually in between the performance of monocular ORB-SLAM and ORB-SLAM with the ground-
truth depth-maps. In some cases it performed worse than the monocular ORB-SLAM and also some cases
where it performed better then ORB-SLAM with ground-truth depth-maps. This kind of slight inconsistency
lays inherently in the way ORB-SLAM works. ORB-SLAM is heavily based on optimization algorithms, which
can result in very different outcomes with even a slight variation in the starting values. From these results it
can be concluded that adding a depth-estimating CNN to monocular ORB-SLAM on Kitti images does indeed
improve the tracking accuracy.

With this knowledge, the ORB-SLAM with depth estimating CNN setup can be tested on WEpod images. The
depth-estimating CNN for this network can be created in multiple ways. Two of these versions have been
investigated in this research as these two are the most obvious. One network that has been investigated is the
network fine-tuned on Kitti images. This network would need to perform on WEpod images.

The usage of a CNN cross-dataset, fine-tuning on one dataset and predicting on another, is not guaran-
teed to work. The images from different datasets describe different scenarios, have been taken with different
camera and have been processed differently. The images from the Kitti and WEpod datasets are assumed
to be very similar. Both are from road scenarios from north-west Europe and both have been undistorted.
Investigation into how the WEpod images can be prepared for the Kitti fine-tuned network has been done.
They could need to be resized to the Kitti size and can be passed through Gaussian filter to remove noise.
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The WEpod images need to be cropped and resized to the same aspect ratio and size as the Kitti images.
The network has only seen images from this size and aspect ratio and thus has not learned to be robust
against differently sized images. With this cropping, the horizontal field of view of the images has not taken
into account. As many horizontal information as possible has been kept in the WEpod images by taking the
total width and adjusting the height cropped such that the aspect ratio is correct. From the experiments, it
is clearly shown that this process of cropping and re-sizing to the right aspect ratio and size increases the
quality of the estimated depth-maps.

The height of the horizon in the images matters a lot. The images where first cropped such that the
horizon was in the middle. The network did not perform well on these images. When the images where
cropped such that the horizon was at the same height as in the Kitti images, the result improved. This gives
reason to believe that the depth-estimating CNN could learn a transformation between the images and the
3D-world, especially for the ground-plane. This ground-plane is something constant in each image and could
be a basic starting point for the CNN.

Based on the previous findings, more investigation into the position of the horizon has been done. It
was noticeable that that the performance of the network would drop when the WEpod would drive over a
speed-bump as the horizon would shift. The WEpod records its roll and pitch angle with a IMU, thus it was
possible to account for this. The cropping of the WEpod images has been done based on the pitch angle and
the image has been rotated based on the roll angle. This way the horizon would always be on the same place
in the images.

The cropping of the image based on the pitch angle hardly made any difference. Even though the es-
timated depth of the images affected by speed-bumps did appear to improve, the impact overall was not
noticeable in the metrics. This could be because the results on the other images became slightly worse. The
rotating of the image to account for the roll angle did not improve the result, it even worsened the result. This
could be because there would be small sections of the image that would be black due to the rotating of the
image or because the roll angle values from the WEpod are not accurate enough.

The WEpod images have also been passed through a Gaussian filter before being fed into the depth-
estimating CNN. This Gaussian filter filtered out the noise in the WEpod images, which are originally quite
noisy. Surprisingly, this did not appear to have an affect on the performance of the network. This shows that
the network does not concentrate on the small details, but more on the greater picture. It probably tries to
find larger objects such as cars, trees, poles and houses. Then it estimates the depth of these larger objects
and adds them to a basic ground-plane depth-map. It could do some kind of averaging, and thus filtering out
the noise inherently in its process.

The performance of the depth-estimating CNN fine-tuned on Kitti is the best on the WEpod images that
have been cropped to the same aspect-ratio and re-sized to the size of Kitti images without accounting for
pitch and roll. The performance on WEpod images is worse than on Kitti images, but this makes sense. This
performance has been compared to the other option: fine-tuning the depth-estimating CNN on WEpod im-
ages.

Obtaining the necessary data for the fine-tuning on WEpod images came with some challenges as the ve-
hicle does not have suitable sensors. The WEpod has temporary been outfitted with a S21 Multisense stereo
setup to obtain depth information that could be projected to the images. This is far from a practical solution
to use consistently on the WEpod, but it did serve its purpose to obtain a dataset. The set of WEpod images
with depth-maps that was possible to obtain during the period of this thesis research consists of 642 images,
much less then the 7481 images used from the Kitti dataset. The images and depth-maps from the WEpod
are all from one sequence in one area.

When the depth-estimating CNN is fine-tuned on these WEpod images something interesting happens.
The performance according to the metrics is certainly not bad. It performs slightly worse the the Kitti fine-
tuned version but not horrible. However, the depth images estimated by the network miss all detail. Ap-
parently the images trained upon are too similar. This results in the network finding a generic solution that
works quite well for all images. It does not pay any attention any more to the details of for instance where a
car exactly starts and ends. It is interesting to see if these abstract depth images are enough to initialize and
improve the ORB-SLAM tracking accuracy.

Both the networks, fine-tuned on Kitti and on WEpod images, have been used in cooperation with ORB-
SLAM on the WEpod sequences. The result is positive, ORB-SLAM manages to initialize almost immediately
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with the help of either network. The tracking accuracy of ORB-SLAM together with the CNN fine-tuned on
Kitti images is better then of ORB-SLAM together with the CNN fine-tuned on the WEpod images. However,
both versions lost tracking relatively quickly when compared to ORB-SLAM with the depth-estimating CNN
on Kitti images. The problem appears to be that there still seems to be a scale drift over time. The tracking
accuracy of ORB-SLAM with a depth-estimating CNN on WEpod images is quite worse then on Kitti images.
There is still a gap between the tracking accuracy of ORB-SLAM on Kitti images and on WEpod images but it
has been made much smaller.

The research done in this thesis has opened up a lot of other interesting research possibilities. The result-
ing combination of ORB-SLAM with a depth-estimating CNN still has a lot of room for improvements. First
of all is it possible to improve the performance of the network fine-tuned on WEpod images. This can be done
by using not only a larger set of images, but also a more diverse set of images. The network can be fine-tuned
on more images taken from different scenarios in different environments. This will force the network to not
learn this one basic abstract representation of the depth-maps but it will learn to pay more attention to the
details.

Obtaining such a dataset of WEpod images together with ground-truth depth-maps is quite challenging.
Another possibility of increasing the performance of the depth-estimating CNN on WEpod images is by look-
ing further into the differences between WEpod and Kitti images. The performance of the Kitti fine-tuned
CNN performing on WEpod images can be increased by making the WEpod images more similar to the Kitti
images. This can only be done up to a certain extent as the Kitti images and WEpod images are from different
countries, with different road layout, housing, nature etc.

Another possibility of increasing the performance of the depth-estimating CNN is by fine-tuning it on
a mix of WEpod images and Kitti images. This way it can learn to create detailed depth images because of
the Kitti images and learn the WEpod image type and scenarios because of the WEpod images. It would be
interesting to investigate if this would result in better prediction of the WEpod images and influences the pre-
diction of the Kitti images.

The setup of ORB-SLAM with the CNN could be extended to include other algorithms that can provide more
information to ORB-SLAM to improve the tracking accuracy. Especially when the addition would be a neural
network, it would give more possibilities. The two CNN’s can be fused together into a smaller version. Such a
cooperation between the CNN’s could be one where they share the image encoding part and each have their
own decoder part. They could also share information throughout each couple of layers and provide each
other with useful information. This could improve the outcome of both networks.

An example of a CNN that could be added to ORB-SLAM and the depth-estimating CNN is a pose-estimating
CNN. This pose-estimating CNN could use the images together with depth information from the depth-
estimating CNN to estimate the pose between two images. This pose could then be used as a starting value
for the optimization algorithms of ORB-SLAM. Such a pose estimating CNN already exists, such as in [57].

Other localizing algorithms based on GPS and lidar data on the WEpod could also be incorporated to work
together with ORB-SLAM. The estimated pose from these algorithms can be used to set the starting value for
optimization’s within ORB-SLAM and constraints for the outcome of these optimization’s. These constraints
could be set based on the total scale of the scene, forcing ORB-SLAM to keep the same scale and eliminat-
ing the scale-drift problem that is still present in the depth-estimating CNN and ORB-SLAM combination on
WEpod images.

The goal of improving the tracking accuracy of ORB-SLAM together with the depth-estimating CNN on WE-
pod images has been achieved. It has been proven that adding the depth-estimating CNN to monocular
ORB-SLAM improves its tracking accuracy and that it solves the issue of monocular ORB-SLAM not initializ-
ing on WEpod images. This setup can be used together with the existing localization methods on the WEpod
to improve the localization. This setup of ORB-SLAM with the network can not be used as the only localiza-
tion method for the WEpod as it does not yet perform good enough. Multiple possibilities of improving this
setup have been presented. This setup sets the next step for the WEpod being able to provide mobility to
those who cannot drive and preventing human error caused traffic accidents.
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5.2. Conclusion
This master thesis research has been done in cooperation with Robot Engineering Systems, a company that
develops the WEpod. The WEpod is a self-driving vehicle capable of driving in mixed traffic. The WEpod is
developed with the goal to improve the lives of many people. It’s purpose is to bring the mobility benefit of a
vehicle to people that are incapable of driving. Self-driving vehicles such as the WEpod can bring down the
amount of road accidents that occur due to human errors.

The WEpod currently localizes itself on a pre-built map using GPS signals and lidar points. Unfortunately
is the performance of these two not good enough. The WEpod is unable to safely navigate in between traffic
or to plan for instance an overtake. The GPS signals can get interrupted or reflect off big objects. The 4-
plane lidar localization algorithm is not robust enough due to the sparse and abstract representation of the
surrounding it senses. The pre-built map is also created by a third-party and quite expensive. Therefore
research is done into other methods of localization and mapping.

One of the solutions investigated for this localization problem is SLAM methods, especially monocular
SLAM methods. There is a vision-based requirement because the costs of a camera is much smaller then
the cost of for instance a 64-plane lidar. Unfortunately do state of the art monocular SLAM algorithms not
perform adequate enough on images from a WEpod camera. The algorithms fail to initialize the surrounding
scene correctly and thus result in a non existing tracking accuracy. This is where this thesis research fits in.
The goal is to improve the tracking accuracy of the state of the art monocular SLAM algorithm ORB-SLAM,
while keeping the whole setup monocular.

The initialization problem of monocular SLAM algorithms is a recognized problem. People have solved it
by adding depth information to the inputs of the SLAM algorithm. The WEpod does not have any sensors
equipped that can estimate the depth in its images. Therefore, the addition of ground-truth depth-maps to
the inputs of ORB-SLAM has been investigated on the Kitti dataset. It can be concluded that the addition
of depth-maps to ORB-SLAM does improve the tracking accuracy of ORB-SLAM. The WEpod sensors cannot
create the depth-maps necessary, so a different solution needs to be found to obtain the depth-maps.

The possible solution investigated in this research is the use of a depth estimating Convolutional Neural
Network (CNN). This CNN estimates the depth in monocular images and creates corresponding depth-maps.
These depth-maps combined with the original image can be fed into ORB-SLAM to performs SLAM on. The
network was originally trained on the NYU dataset which consists of indoor images and needs to be fine-
tuned on images of road scenarios.

Fine-tuning has been done on data from the Kitti dataset, which consists of road scenarios. This CNN has
been combined with ORB-SLAM. The tracking accuracy of this setup is better then monocular ORB-SLAM
and worse then ORB-SLAM with ground-truth depth-maps. This shows that the addition of a depth estimat-
ing CNN to monocular ORB-SLAM does indeed improve the tracking accuracy. This whole setup also is still
monocular as it only uses 1 camera image stream.

The CNN needs to be fine-tuned on a diverse set of images and depth-maps. Obtaining enough diverse
depth-maps for the WEpod during this research was not possible. It was possible to obtain a relative small
set of images with depth information and the CNN has been fine-tuned on this set. The network performed
poorly as the set was not diverse enough. The CNN created basic abstract depth-maps without detail that
did result in relatively good metrics. The CNN fine-tuned on Kitti images performed better on WEpod images
than the CNN fine-tuned on WEpod images.

Both CNN’s, fine-tuned on Kitti data and on WEpod data, have been combined with ORB-SLAM on WE-
pod images. Adding the CNN fine-tuned on Kitti data results in a better tracking accuracy then adding the
CNN fine-tuned on WEpod data. Both do initialize correctly. This shows that adding a depth-estimating CNN
solves the initialization problem and improves the tracking accuracy. It can also be concluded that the CNN
does not need to be fine-tuned on the same dataset it performs on. Adding a CNN fine-tuned on a different
dataset then predicting on can still improve the tracking accuracy of monocular ORB-SLAM.

This setup of a monocular SLAM method together with a depth-estimating CNN can be combined with the
current localization methods of the WEpod. This could improve the robustness of the localization. The WE-
pod could navigate through the traffic more safely with this improved localization. This opens up a wide
aspect of research possibilities by making it possible to for instance overtake objects. The improved local-
ization adds to the development of the WEpod into the mobility supplying and safer self-driving vehicle it is
destined to be.
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The performance of monocular SLAM with the CNN is not robust and accurate enough to be the only
localization method of the WEpod. It could be improved in multiple ways which could make this possible.
One way of improving the setup is improving the result of the CNN. By fine-tuning the CNN on a larger and
more diverse WEpod dataset, the quality of the estimated depth-maps can increase. The tracking accuracy of
ORB-SLAM together with the CNN can also be improved by adding pose information. This pose information
can be used as the starting values for the optimization algorithms in ORB-SLAM. The pose information can
come from GPS data or a pose estimating CNN. There exist CNN’s that estimate the pose difference between
two images by using the images and the depth-maps. These depth-maps are already available through the
depth-estimating CNN.

The use of the depth estimating CNN within the WEpod could also have many other benefits other then
localization. A few examples of tasks done by the WEpod that could benefit from depth information are
object-detection, scene segmentation and lane detection. The depth-estimating CNN could cooperate eas-
ily with the other networks by sharing information, resulting in improved performances of both the networks.

The goal of this thesis was to improve the tracking accuracy of monocular ORB-SLAM on WEpod images by
adding a depth-estimating CNN. Monocular ORB-SLAM fails to initialize on only WEpod images. It has been
proven that the addition of a depth-estimating CNN does indeed improve the tracking accuracy of monoc-
ular ORB-SLAM. The initialization problem on WEpod images is solved. This setup of ORB-SLAM with the
CNN can be used to improve the robustness and accuracy of the localization of the WEpod. With this added
accuracy and robustness in localization, the WEpod can navigate more safely in between traffic. It sets the
next step in developing self-driving vehicles that not only improve the mobility of those that cannot drive,
but also prevent traffic accidents caused by human error.
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