
Optimal Regression Trees via Dynamic Programming
Optimization techniques for learning Regression Trees

Mim van den Bos1

Supervisor(s): Dr. E. Demirović1, Ir. J.G.M. van der Linden1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 20, 2023

Name of the student: Mim van den Bos
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Koos van der Linden, Burcu Özkan

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Decision trees make decisions in a way inter-
pretable to humans, this is important when ma-
chines are increasingly used to aid in making high-
stakes and socially sensitive decisions. While
heuristics have been used for a long time to find
decision trees with reasonable accuracy, recent ap-
proaches find fully optimal trees. Due to the com-
putational hardness of finding fully optimal deci-
sion trees, it is only practically possible to find
shallow trees for a limited dataset size. However,
continuous algorithmic improvements keep push-
ing the scale of feasible solutions. Dynamic Pro-
gramming approaches promise to find scalable op-
timal decision trees but need to be adapted for dif-
ferent objectives, such as regression. We com-
bine and adapt the algorithmic techniques of two
Dynamic Programming methods, creating a new
method that improves the scalability of optimal re-
gression trees. This new method often achieves an
order of magnitude speed improvement over a pre-
vious state-of-the-art method.

1 Introduction
Decision trees are a machine learning (ML) model that is nat-
urally interpretable by humans. It is possible to follow the
branches of the tree to the leaf that makes the decision. In-
terpretable models are important when making decisions in
high-stakes areas such as healthcare and criminal justice, and
unlike popular belief are not necessarily worse than black-box
models that cannot be fully explained [1].

Classically, decision trees are constructed greedily by iter-
atively finding branches, based on a heuristic metric such as
gini impurity or information gain [2]. A heuristic optimizes
the metric locally when finding the next branch but does not
optimize a metric globally for the whole tree.

A different way of finding a decision tree is by optimizing a
global metric, thereby creating an optimal decision tree. Op-
timal decision trees fit the dataset better and generalize better
to new data [3]. Optimality can also be especially impor-
tant to guarantee fairness over the data [4]. Finding an op-
timal decision tree is NP-hard [5], but with novel methods
to optimize this process and advances in computing power,
it becomes possible for increasingly large datasets. The use
of larger datasets allows the application of optimal decision
trees to a wider range of problems.

We can use a decision tree to assign a numerical value to an
instance of a problem. In that case, we speak of a regression
problem. A global metric a decision tree can optimize for
regression is the Mean Squared Error (MSE). When the MSE
is optimal for a decision tree it is an optimal regression tree.
This paper focuses on finding these. A different problem that
we can solve with decision trees is classification. A metric
we can use for this is the number of misclassifications, and
when it is optimal they are optimal classification trees.

MurTree [6] is a recent algorithm showing optimal classifi-
cation trees can be found faster using dynamic programming,

caching, and counting. MurTree is a scalable approach for bi-
nary classification trees but only discusses how to generalize
this approach to other models of decision trees like multi-
classification, regression, anytime behavior, and more. They
do not make these generalizations and do not show that these
generalizations would perform as well as or better than the
state-of-the-art in those areas.

Van der Linden et al. [7] generalize the optimization tech-
niques presented in MurTree by providing a framework they
call STreeD. This framework can optimize any separable ob-
jective. An objective is separable when that objective can be
optimized for subtrees independent of the whole tree. They
present necessary and sufficient conditions to use a cost func-
tion in the framework. Furthermore, they provide an imple-
mentation for several objectives and compare these to other
methods in that domain. However, while they do provide a
reference implementation of the MSE cost function, they do
not explicitly show that it is separable, and they do not show
how their method compares to the state-of-the-art in regres-
sion trees.

In this paper, we show that regression is a separable ob-
jective, introduce algorithmic techniques taking advantage of
the regression problem, implement regression and algorith-
mic techniques from [8] in the STreeD framework, and com-
pare the implementation to the Optimal Sparse Regression
Trees (OSRT) method [8]. This comparison shows that our
method often finds optimal regression trees an order of mag-
nitude faster than [8].

The remaining part of this paper is structured as fol-
lows: First, sections two to four define the optimal regression
tree problem, consider related work, and define terminology.
Then, in the fifth and sixth sections, the main contribution of
this paper is laid out and the results of experiments are ex-
amined. In the seventh section, there is a reflection on the
reproducibility of this research. And finally, the paper is con-
cluded in the eighth section.

2 Problem definition

Decision trees are a popular machine-learning model for re-
gression and classification problems. A decision tree can be
seen as a function where the input is a set of features, and
the output is the label of the leaf node obtained by following
the branches of the tree. The quality of a decision tree can be
determined by comparing the input and output of the tree to a
large dataset of known inputs and outputs. This paper consid-
ers regression trees where branching nodes split on a single
binary feature, as in [6][7][8], and where the leaf nodes have
some real number as their label, as in [8][3][9]. Note that bi-
nary decisions of non-binary features can be represented by
preprocessing the data. A regression tree is optimal when the
Mean Squared Error (MSE), combined with some regulariza-
tion term that favors simple trees, cannot be lower for any
other tree.

The problem of finding an optimal regression tree is as fol-
lows. Given a maximum tree depth and a dataset D of in-
stances (x, k) with x some binary vector of features and its
label k. An optimal regression tree is one where the result of

the following expression is minimal:

1

|D|
∑

(x,k)∈D

(x− l(u))2 + λN (1)

Where l(u) is the label of the leaf node that classifies the
instance, N is a measure of complexity for the tree such as
the number of nodes, and λ is a scalar parameter describing
the importance of the simplicity of the tree. Note that the
division by the size of the dataset may be omitted since it is
the same for all trees. In section 4 the definition of a decision
tree and its notation is further formalized.

3 Related work
Because finding optimal decision trees is NP-hard [5], heuris-
tic methods such as CART [2] (1984) have been the state-
of-the-art method to generate classification and regression
trees for a long time. Many papers still compare their
out-of-sample performance against trees generated using
CART [8][3][9]. However, it provides no optimality guar-
antees.

More recently, following advances in algorithmic opti-
mizations and hardware, methods that guarantee optimality
can be practically computed for limited depth and dataset
size. Many of these methods focus on classification trees
and not regression trees [6][10][11], but are often followed
by an adaptation to optimize other objectives like regres-
sion [7][8][3].

Bertsimas et al. [3] expand their Mixed Integer Program-
ming (MIP) model for classification trees [11] to generate
optimal regression trees. They optimize directly for real-
valued features and optionally branch on multiple features at
once. Their method is applied to a practical problem and they
claim a 2% increase in out-of-sample performance compared
to CART [2]. However, they only consider trees up to depth
two.

Verwer and Zhang [9] introduce a MIP model for clas-
sification and regression trees that scales better for larger
datasets than their previous method [12], and also show that
for shallow depth the out-of-sample accuracy is higher com-
pared to CART. However, their runtime is on the order of min-
utes for problems that recent dynamic programming methods
can solve in seconds.

Van der Linden et al. [7] generalize the MurTree [6] dy-
namic programming method to solve optimal decision trees
for any objective that satisfies a set of requirements. Re-
gression satisfies these requirements as described later in this
paper. They show that the scalability of these algorithms is
good for some objectives, but do not compare to the state-of-
the-art in optimal regression trees. They argue that dynamic
programming works well because it can take advantage of the
structure of the decision tree, in particular, that subtrees can
be found independently, and that the order in which features
are branched on does not matter.

Zhang et al. [8] adapted GOSDT [10] to optimize regres-
sion trees and discovered a novel lower bound using two
facts. First is that instances with equivalent features cannot
be classified in different leaf nodes, this gives a minimum er-
ror for a leaf that includes it. Second, if there is a tree with

k leaf nodes, there is no lower error possible than if each leaf
node would include those instances whose labels are near-
est to each other. Summing the minimum error obtained by
both gives the k-Means Equivalent Points Bound, for which
they present an efficient algorithm using the one-dimensional
k-Means algorithm from [13] and [14]. However, they do
not make use of the optimizations presented in [6], such as
the specialized depth two algorithm, and the similarity-based
lower bound.

Finally, we briefly note that recent works consider ad-
justments to regression trees intending to improve out-of-
sample accuracy, such as linear or polynomial functions in
the leaves [15] or making a decision by considering the sum
of the leaves weighted by the probability an instance belongs
to it [16]. As these are different problems they are not further
considered in this paper.

4 Preliminaries
This section introduces the notation adapted from [7] to de-
fine the problem and shows how to use that notation to for-
mulate a dynamic programming (DP) solution to the optimal
regression tree problem.

Let F be a set of features and D be a dataset of instances
(x, k), where x ∈ {0, 1}|F|, where a one denotes the binary
feature being present and zero not, and k ∈ R. For a feature
f ∈ F and instance (x, k) let xf if f is present in x, and xf̄

if not. Also, let Df = {(x, k) ∈ D | xf}.
Let τ = (B,L, b, l) be a binary tree with B and L the

set of branching and leaf nodes respectively, and b : B →
F and l : L → R the assignment of nodes to features for
branching nodes and labels for leaf nodes respectively. The
set of all nodes B ∪ L are the decision variables of the tree.
A branching node u has two children u− and u+ representing
a negative and positive outcome of a feature test respectively.

Optimizing for the MSE plus a regularization term, define
the cost function g : (D × (F ∪ R)) → R as g(D, k̂) =∑

(x,k)∈D (k − k̂)2 for making a leaf node decision and
g(D, f) = λ for making a branching decision, where λ is a
parameter for penalizing more complex trees. The total cost
C of a regression tree can then be computed as follows:

C(D, u) =

{
g(D, l(u)) if u ∈ L

C(Db(u), u
+) + C(D

b(u)
, u−) + λ if u ∈ B

(2)
The minimum cost can be computed more efficiently with

DP by caching solutions to subproblems. Adapting [7], the
minimum MSE cost for a given maximum depth d can be
computed with the following DP formulation:

T (D, d) =

∑

(x,k)∈D (k − k̄)2 if d = 0

min
f∈F

{T (Df , d− 1) +

T (Df̄ , d− 1) + λ}
if d > 0

(3)

Where k̄ denotes the mean of the labels in D.
When a lower bound LB(D, d) ≤ T (D, d) for the cost

of a subtree is known, it can be used to prune a part of the

search space. We use the similarity-based lower bound as
described in detail in [6] and generalized in [7]. The similar-
ity bound uses a lower bound LB(D, d) to compute a lower
bound LB(D′, d) by comparing D and D′ and looking at the
per-instance contribution to the cost of the subtree. Any in-
stances that are present in both datasets do not change the
error. Any instances that are present in D′ but not in D can
only worsen the error, and therefore do not change the lower
bound. And finally, any instance that was in D but is not in
D′ can potentially improve the error, and therefore decreases
the lower bound by the contribution of that instance. Finding
the exact contribution per instance is only possible by com-
puting the cost of the tree, but an upper bound can be for-
mulated depending on the objective. The conditions needed
for an optimization task to use a similarity lower bound are
that it has a subtraction operator, does not have constraints,
does not depend on parent nodes’ branching decisions and it
is per-instance additive [7].

Finally, we introduce the notion of an additive objective,
as defined by [17], and repeat the claim from [7] that any
objective that is additive is separable, and can therefore be
used in the STreeD framework. An objective O for a decision
tree τ is additive when it can be written as follows:

O(D, τ) =
∑
u∈L

fl(Du, u) +
∑
u∈B

fb(Du, u) (4)

5 Main contribution
First, we show that the regression objective satisfies the con-
straint for separable objectives shown in [7]. Then, we show
that the specialized algorithm for trees of depth two pre-
sented in [6] can be used because the MSE is additive per-
instance [7]. Finally, we present a bound on the worst error
that a single instance can introduce. This bound can be used
with the similarity-based lower bound presented in [6].

5.1 Regression as a separable objective
We show that regression is an additive objective to prove that
the dynamic programming formulation in section 4 finds an
optimal regression tree. Recall that section 4 defines an addi-
tive objective as one that can be written as:

O(D, τ) =
∑
u∈L

fl(Du, u) +
∑
u∈B

fb(Du, u) (5)

Now, letting fl(D, u) = g(D, l(u)) and fb(D, u) = λ allows
us to express the regression objective in an additive form.
Therefore, the regression objective is additive and separable,
and we can use it in the STreeD framework.

5.2 Specialized algorithm for trees of depth two
In [6] a specialized algorithm is used to compute trees of max-
imum depth two with a frequency counting approach. When
there is some way to deconstruct the cost into the contribution
per instance, we do not need to compute all combinations ex-
plicitly. For example, when we know the total cost as a sum of
all the per-instance costs, and the cost for all instances where
a single feature is present, we can subtract the second from
the first to get the cost for all instances where that feature is

not present. Similar formulations can be made for all combi-
nations of solutions with depth two, only needing to compute
the cost for all pairs of features where these features are both
present. Finally, we check all combinations to find the best
solutions for one, two, and three branching nodes. These are
cached so that similar subtrees can reuse the solution. For full
details, we refer to the original paper.

To use this specialized algorithm, [7] argues that a prob-
lem must be deconstructed so that the depth two solver can
pre-compute the per-instance costs. We cannot use the MSE
directly when the label to be assigned is not yet known. How-
ever, we can deconstruct it in the following way:

C(D) =
∑

(x,k)∈D

(k − k̄)2 (6)

=
∑

(x,k)∈D

(k2 − 2kk̄ + k̄2) (7)

=
∑

(x,k)∈D

k2 − 2k̄
∑

(x,k)∈D

k + |D|k̄2 (8)

=
∑

(x,k)∈D

k2 − 2|D|k̄k̄ + |D|k̄2 (9)

=
∑

(x,k)∈D

k2 − |D|k̄2 (10)

=
∑

(x,k)∈D

k2 −
(
∑

(x,k)∈D k)2

|D|
(11)

The per-instance cost is then the three-tuple (k, k2, 1), and
the combining operator element-wise addition. We write
the summed per-instance cost Ci for a dataset as Ci(D) =
(
∑

(x,k)∈D k,
∑

(x,k)∈D k2, |D|), and the function to go from
a summed per-instance cost solution (

∑
k,
∑

k2, N) to the
MSE cost as CMSE(

∑
k,
∑

k2, x) =
∑

k2 − (
∑

k)2

N , as de-
rived in equation 11. For example, to compute the MSE cost
C(Df̄) for some feature f , we first compute the summed per-
instance cost for the whole dataset Ci(D) and when the fea-
ture is present Ci(Df), and then element-wise subtract the
second from the first to get the MSE cost for when the feature
is not present:

C(Df̄) = CMSE(Ci(D)− Ci(Df)) (12)

As such, we can compute C(Df̄) quickly from the summed
per-instance cost of other datasets, and there is no need to
loop over all the instances again.

5.3 Similarity bound
As mentioned in section 4 and described in detail in [6], we
can find a lower bound on the error by comparing the dataset
to previously computed datasets and subtracting the worst
contribution the removed instances could have had on the
cost. We show that regression satisfies the requirements to
use a similarity bound and present a per-instance upper bound
specific to the regression objective.

The conditions needed for an optimization task to use a
similarity lower bound are that it has a subtraction operator,

does not have constraints, does not depend on parent nodes’
branching decisions and it is per-instance additive [7]. For
regression, the subtraction operator is − and it does not have
constraints. While the task has a branching component in the
cost, it does not depend on which branching decisions were
made. Finally, regression is directly per-instance additive as
we write the cost function as a sum over the instances.

For regression, we find an upper bound on the contribution
to the error by comparing the instance to the two extremes
of the dataset. The label for any given leaf node cannot be
above the instance with the highest label nor below the in-
stance with the lowest label. If it were, then the MSE would
be higher for all instances. This means for any leaf node u:
min(x,k)∈D(k) <= l(u) <= max(x,k)∈D(k). This directly
gives a bound on the maximum error that any single instance
(x′, k′) can have in a leaf:

max{(k′ − min
(x,k)∈D

(k))2, (k′ − max
(x,k)∈D

(k))2} (13)

Any other label within those bounds would be closer to
the label of the instance. For simplicity, we compute the
minimum and maximum labels over the whole dataset, but
a tighter bound could be found by only using the instances
considered for that subtree.

Table 1: The datasets used to run the experiments, |D| is the number
of instances, and |F| the number of binary features

Dataset |D| |F|
airfoil 1503 17
airquality 111 17
enb-cool 768 27
enb-heat 768 27
household 2049280 15
insurance 1338 48
optical 640 29
real-estate 414 18
seoul-bike 8760 32
servo 167 15
sync 557 12
yacht 308 35

6 Experimental Setup and Results
We perform two experiments to show the effectiveness of the
method presented in this paper. First, to show its scalability,
we measure the runtime of the algorithm, both for increas-
ing depth and increasing size of the dataset, and compare it
to OSRT [8]. It shows that, in most cases, our method with
all lower bounds enabled performs best. Then, to show the
pruning potential of various lower bounds, we measure the
number of calls to the depth two solver and compare it to a
baseline where the bounds are disabled. This shows that all
lower bounds combined have a larger pruning potential than
using a single lower bound, and indicates that improving the
performance of calculating the bounds will increase the per-
formance of the algorithm as a whole.

We use the same twelve datasets and binarization for our
experiments as used in the experiments in [8]. These are
listed in table 1. All experiments were run on the Delft-
Blue [18] supercomputer using an Intel XEON E5-6248R
24C 3.0GHz. The experiments used a timeout of 100 sec-
onds with a memory limit of 8GB of RAM, except for the
experiment with increasing dataset size, which used a time-
out of 30 minutes and a memory limit of 100GB. We re-
peated all experiments three times for an error margin, and
used multiple regularization terms λ for each dataset and
depth. The regularization term λ, which gives a penalty for
each branching node in the tree, is normalized by the vari-
ance and size of the dataset: λ = W

∑
(x,k)∈D (k − k̄)2 with

W ∈ {0.0001, 0.001, 0.005, 0.01, 0.1}.

Figure 1: Percentage of trees computed after a certain time, for all
datasets except household

Figure 2: Training time for increasing subset size of dataset house-
hold, with d=5 and W=0.035, and a confidence interval of 95%

6.1 Scalability
For scalability, we performed two experiments. First, to show
the scalability of the maximum depth, we use all datasets ex-
cept household for finding trees of varying depth. Then, we
use the household dataset to show the scalability in the num-
ber of instances.

For the depth scalability experiment, we used a maximum
depth of three to ten inclusive to find trees. This experiment
focuses on showing the potential scalability of the algorithm,
a very high depth of decision tree is often not desired, as it
becomes less interpretable. Figure 1 shows the percentage of
trees solved within the amount of time on the x-axis. Note
that the x-axis has a logarithmic scale. All methods follow
a roughly logarithmic trend in the number of trees solved
within some amount of time, which is expected for an NP-
hard problem. However, as seen from the graph, STreeD with
all bounds enabled is about an order of magnitude of time
ahead of OSRT.

Figure 2 shows scalability in the number of instances used
to find the optimal regression tree. This experiment uses splits
of the household dataset. We ran experiments for subsets of D
with the first 10i instances for every i >= 2 until it contains
the whole dataset. For this experiment, the maximum depth is
five, and the regularization weight is 0.035. The figure shows
that STreeD performs well for subsets containing up to about
105 instances, and OSRT outperforms STreeD for any subset
larger than this. We have not investigated the cause for this
due to time constraints and suggest it for future work.

Figure 3: Difference in depth-2 solver calls for different lower
bounds for all datasets except household, with a confidence inter-
val of 95%

6.2 Pruning potential
Figure 3 shows the ratio of calls to the depth two solver made
by each lower bound compared to the baseline of STreeD
without any lower bounds. A lower percentage of calls in-
dicates a higher pruning potential. This shows the potential
of the lower bounds without binding them to the performance
of this implementation.

The k-Means Equivalent Points lower bound generally has
the highest amount of pruning. With very high depth we see
its performance fall off compared to other methods. An ex-
planation for this is that the implementation has a hard limit
of k = 50, which means the lower bound becomes relatively
less performant after exceeding that threshold.

The performance of the equivalent points bound depends
heavily on the presence of instances with equivalent features
but different labels. While the bound does provide an im-
provement over using only the similarity bound, its pruning
potential is far lesser when not combined with the k-Means
bound.

Finally, we observe that while the lower bounds in some
cases have only 10% of the depth two calls, the time after
which the approach without bounds catches up to the percent-
age of trees solved is not an order of ten removed in figure 1.
This means improving the lower bound computation has the
potential to make the algorithm faster.

7 Responsible Research
This paper adheres to the FAIR principles to reinforce the
reusability of this research [19]. The four principles are listed
below along with a description of how they were followed.
Findable The metadata and content of this work are dis-
coverable in the TU Delft education repository, and the im-
plementation of both the experiments1 and adapted STreeD2

is available publicly. Publishing this paper and code allows
others to find them.
Accessible The repositories for both the paper and code re-
quire no authentication, and are freely available to anyone
with an internet connection. This makes the research accessi-
ble to the general public.
Interoperable Both the datasets used in the paper and the
results of the experiments use the common CSV file for-
mat. This allows others to use them in a system of their own
choice. Furthermore, the main code is written in C++ and
the experiment code is written in Python. Both of these are
executable on many platforms.
Reusable The code repositories contain instructions to
build and run the regression tree solver and experiment setup.
The experiments can be run on a supercomputer like in this
paper, but also on a regular computer albeit with limited size.
This allows anyone to reproduce the results obtained in this
paper.

By following these guidelines, we hope that the results pre-
sented in this paper are reproducible and more broadly us-
able.

8 Conclusions and Future Work
The paper aims to scale the maximum feasible depth and
dataset size for optimal regression trees. We combine pre-
vious optimal decision tree methods, [7] and [8], and intro-
duce a novel upper bound on the contribution of an instance,

1https://github.com/mimvdb/regression-murtree
2The source code will be made available when the source code

for STreeD is made public.

https://github.com/mimvdb/regression-murtree

used with the similarity lower bound from [6]. We show with
extensive experiments that this method is often an order of
magnitude faster than [8], a state-of-the-art method of finding
optimal regression trees. Reducing the time needed to find
optimal regression trees increases the depth and dataset size
that can feasibly be used, thereby increasing the scalability of
the method.

This new method is often an order of magnitude faster
than [8], but there is room for improvement in future work.
In our experiment, OSRT [8] performs better than our method
for dataset sizes one million and above. Future work can in-
vestigate the cause of this performance difference and pro-
pose a way to improve it. In addition, we suggest three opti-
mizations for future work. First, when computing the bound
on the per-instance contribution, we can use the minimum and
maximum of only the currently relevant subset of instances
instead of the minimum and maximum of the whole dataset.
Secondly, adding the k-Means Equivalent Points bound to the
cache used for similarity lower bound computation would al-
low it to calculate a tighter bound when computing a bound
for a similar dataset. Finally, two versions of the dataset could
be maintained, one sorted by features to compute equivalent
points, and one sorted by the label to compute k-Means in
O(k|D|) time. This might be an improvement to the current
approach that sorts the data in O(|D| log |D|) time for every
k-Means lower bound computation.

References
[1] C. Rudin, “Stop explaining black box machine learn-

ing models for high stakes decisions and use inter-
pretable models instead,” Nature Machine Intelligence,
vol. 1, no. 5, pp. 206–215, May 2019. DOI: 10.1038/
s42256-019-0048-x.

[2] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen,
Classification and Regression Trees (Wadsworth).
Chapman and Hall/CRC, 1984.

[3] D. Bertsimas, J. Dunn, and A. Paschalidis, “Regres-
sion and classification using optimal decision trees,”
in 2017 IEEE MIT Undergraduate Research Technol-
ogy Conference (URTC), 2017, pp. 1–4. DOI: 10.1109/
URTC.2017.8284195.

[4] S. Aghaei, M. Azizi, and P. Vayanos, “Learning Opti-
mal and Fair Decision Trees for Non-Discriminative
Decision-Making,” Proceedings of the AAAI Con-
ference on Artificial Intelligence, vol. 33, no. 01,
pp. 1418–1426, Jul. 2019. DOI: 10.1609/aaai.v33i01.
33011418.

[5] L. Hyafil and R. L. Rivest, “Constructing optimal bi-
nary decision trees is np-complete,” Information Pro-
cessing Letters, vol. 5, no. 1, pp. 15–17, 1976. DOI:
10.1016/0020-0190(76)90095-8.

[6] E. Demirović, A. Lukina, E. Hebrard, et al., “Murtree:
Optimal decision trees via dynamic programming
and search,” Journal of Machine Learning Research,
vol. 23, no. 26, pp. 1–47, 2022.

[7] J. G. M. van der Linden, M. M. de Weerdt, and E.
Demirović, Optimal decision trees for separable ob-
jectives: Pushing the limits of dynamic programming,
2023. arXiv: 2305.19706 [cs.LG].

[8] R. Zhang, R. Xin, M. Seltzer, and C. Rudin, Opti-
mal sparse regression trees, 2023. arXiv: 2211.14980
[cs.LG].

[9] S. Verwer and Y. Zhang, “Learning optimal classifica-
tion trees using a binary linear program formulation,”
Proceedings of the AAAI Conference on Artificial In-
telligence, vol. 33, no. 01, pp. 1625–1632, Jul. 2019.
DOI: 10.1609/aaai.v33i01.33011624.

[10] J. Lin, C. Zhong, D. Hu, C. Rudin, and M. Seltzer,
“Generalized and scalable optimal sparse decision
trees,” in Proceedings of the 37th International Confer-
ence on Machine Learning, ser. ICML’20, JMLR.org,
2020.

[11] D. Bertsimas and J. Dunn, “Optimal classification
trees,” Machine Learning, vol. 106, no. 7, pp. 1039–
1082, Jul. 2017. DOI: 10.1007/s10994-017-5633-9.

[12] S. Verwer and Y. Zhang, “Learning decision trees with
flexible constraints and objectives using integer opti-
mization,” in Integration of AI and OR Techniques in
Constraint Programming, D. Salvagnin and M. Lom-
bardi, Eds., Cham: Springer International Publishing,
2017, pp. 94–103, ISBN: 978-3-319-59776-8. DOI: 10.
1007/978-3-319-59776-8 8.

[13] H. Wang and M. Song, “Ckmeans.1d.dp: Optimal k-
means clustering in one dimension by dynamic pro-
gramming,” The R Journal, vol. 3, no. 2, pp. 29–33,
2011. DOI: 10.32614/RJ-2011-015.

[14] M. Song and H. Zhong, “Efficient weighted uni-
variate clustering maps outstanding dysregulated ge-
nomic zones in human cancers.,” Bioinformatics,
vol. 36, no. 20, pp. 5027–5036, 2020. DOI: 10.1093/
bioinformatics/btaa613.

[15] D. Bertsimas, J. Dunn, and Y. Wang, “Near-optimal
nonlinear regression trees,” Operations Research Let-
ters, vol. 49, no. 2, pp. 201–206, 2021, ISSN: 0167-
6377. DOI: 10.1016/j.orl.2021.01.002.

[16] R. Blanquero, E. Carrizosa, C. Molero-Rı́o, and D. R.
Morales, “On sparse optimal regression trees,” Euro-
pean Journal of Operational Research, vol. 299, no. 3,
pp. 1045–1054, 2022, ISSN: 0377-2217. DOI: 10.1016/
j.ejor.2021.12.022.

[17] S. Nijssen and E. Fromont, “Optimal constraint-based
decision tree induction from itemset lattices,” Data
Mining and Knowledge Discovery, vol. 21, no. 1,
pp. 9–51, Jul. 2010. DOI: 10.1007/s10618-010-0174-
x.

[18] DHPC, DelftBlue Supercomputer (Phase 1), https : / /
www. tudelft . nl / dhpc / ark : /44463 / DelftBluePhase1,
2022.

[19] M. Wilkinson, M. Dumontier, I. J. Aalbersberg, et
al., “The FAIR Guiding Principles for scientific data
management and stewardship,” Scientific Data, vol. 3,
no. 1, Mar. 2016. DOI: 10.1038/sdata.2016.18.

https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1109/URTC.2017.8284195
https://doi.org/10.1109/URTC.2017.8284195
https://doi.org/10.1609/aaai.v33i01.33011418
https://doi.org/10.1609/aaai.v33i01.33011418
https://doi.org/10.1016/0020-0190(76)90095-8
https://arxiv.org/abs/2305.19706
https://arxiv.org/abs/2211.14980
https://arxiv.org/abs/2211.14980
https://doi.org/10.1609/aaai.v33i01.33011624
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1007/978-3-319-59776-8_8
https://doi.org/10.1007/978-3-319-59776-8_8
https://doi.org/10.32614/RJ-2011-015
https://doi.org/10.1093/bioinformatics/btaa613
https://doi.org/10.1093/bioinformatics/btaa613
https://doi.org/10.1016/j.orl.2021.01.002
https://doi.org/10.1016/j.ejor.2021.12.022
https://doi.org/10.1016/j.ejor.2021.12.022
https://doi.org/10.1007/s10618-010-0174-x
https://doi.org/10.1007/s10618-010-0174-x
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://doi.org/10.1038/sdata.2016.18

	Introduction
	Problem definition
	Related work
	Preliminaries
	Main contribution
	Regression as a separable objective
	Specialized algorithm for trees of depth two
	Similarity bound

	Experimental Setup and Results
	Scalability
	Pruning potential

	Responsible Research
	Conclusions and Future Work

