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MOR.
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Abstract

The computational demands of finite element simulations, particularly in predicting the
time-dependent response of high-dimensional non-linear dynamical systems, pose
significant challenges. To overcome these challenges, researchers have developed
model order reduction (MOR) methods, which aim to reduce computational complex-
ity by utilizing lower-dimensional models. This thesis proposes a MOR technique that
simultaneously learns both the projection to, and the reduced dynamics on, a lower-
dimensional manifold using autoencoders, a type of neural network. During training,
the known linear part of the reduced dynamics is used to aid the optimization process,
leading to an effective method of simultaneous projection and linear informed training
(SPLIT). SPLIT demonstrates outstanding performance on the test case of a 2D can-
tilever beam, and is capable of making non-linear forced response predictions, even
though being trained on unforced decaying trajectories. Even in scenarios involving
highly non-linear behaviour, such as when the beam folds over itself, SPLIT continues
to make accurate predictions, while other MOR techniques fail. This work highlights
the potential of autoencoders to advance the field of MOR and improve the efficiency
and reliability of simulations for complex dynamical systems.
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1
Introduction

This introductory chapter presents an overview of the main research themes. The
chapter first highlights the context of the research and reviews the current relevant
literature. The chapter then discusses the contributions of the study, presents the
research questions, and concludes with an outline of the remaining chapters of the
report.

1.1. High-Dimensional Mechanics Problems
This report focuses on the dynamical systems arising from high-dimensional mechan-
ics problems, which are commonly encountered in various engineering applications.
These problems are typically governed by partial differential equations (PDEs) which
can be spatially discretized using the finite element (FE) method. The discretization of
the PDEs results in a system of second-order ordinary differential equations (ODEs)
for the displacement vector q(t) ∈ Rn, expressed as

Mq̈ +Cq̇ +Kq + f int (q, q̇) = εf ext (Ωt) . (1.1)

HereM , C,K ∈ Rn×n are the mass, damping and stiffness matrices, f int (q, q̇) ∈ Rn

is the purely non-linear internal force and f ext (Ωt) ∈ Rn is the external force, which is
periodic in time, with frequency Ω. The parameter ε is used to control the amplitude
of the external forcing.

These FE models are crucial tools in both scientific and engineering fields, provid-
ing valuable insights into complex systems. However, the computational demands of
FE simulations, particularly in predicting the time-dependent response of non-linear,
high-dimensional dynamical systems, pose significant challenges. Even with ded-
icated commercial software, these simulations often encounter high computational
costs [32].

To address these computational challenges, researchers have developed model
order reduction (MOR) methods. These methods aim to reduce the computational
complexity of mathematical models in numerical simulations [43]. In these MOR
methods, the behaviour of full order models (FOMs) is approximated using lower-
dimensional reduced order models (ROMs), to significantly lower computational cost.
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2 Chapter 1. Introduction

ROMs are essential in scenarios where performing simulations using the FOM is im-
practical due to limitations in computational resources or when doing demanding sim-
ulations, for example real-time simulations [3].

For small displacements, the FE model from equation (1.1) exhibits linear be-
haviour. However, as displacements grow larger, non-linear effects become more
pronounced, leading to more complex dynamics. In extreme cases, large deforma-
tions result in highly non-linear responses, which pose significant challenges when
attempting to reduce the model to a simplified representation, thereby complicating
the process of MOR. This thesis proposes a MOR technique that continues to provide
accurate predictions even under highly non-linear behaviour.

1.2. Model Order Reduction
MOR techniques can be classified into two categories: intrusive and non-intrusive
methods [54]. Intrusive methods directly manipulate the governing equations of the
system to derive reduced models. While these methods can yield effective ROMs,
they necessitate prior knowledge of the underlying equations of the model. In situa-
tions where such equations are not available, for example when utilizing (commercial)
software packages, these methods may present challenges [4]. On the other hand,
non-intrusive methods, also known as data-driven methods, utilize the output data of a
model to construct a ROM [4]. This makes them applicable in scenarios where the un-
derlying equations are unknown and inaccessible. This advantage, along with others,
such as the increasing availability of large datasets from simulations and experiments
[41], has led to recent interest in developing fully data-driven approaches that do not
require access to full order model operators to establish ROMs, or data-assisted ap-
proaches, where both data and the governing equations of the system are used to
derive a ROM.

The development of a MOR method typically consists of two components: deter-
mining a mapping to a reduced space and identifying the dynamics within that reduced
space. The first step, known as dimensionality reduction, relies on the observation that
in high-dimensional systems, not all variables are required to capture the core dynam-
ics of the system. As a result, the high-dimensional system state, q(t) ∈ Rn, can be
mapped to a reduced set of coordinates, z(t) ∈ Rd, where d < n, that retains only the
essential dynamics of the system. This can be written as

z(t) = w(q(t)),

where w : Rn → Rd represents the mapping to the reduced space. Once the reduced
coordinates are obtained, the second step involves determining the dynamics in this
reduced space. The goal is to approximate the system its behaviour using a reduced
order model

ż(t) = r(z(t)).

Here, r : Rd → Rd represents the reduced dynamics, which can either be derived
from the underlying physical model (in the case of intrusive methods) or learned from
data (in non-intrusive methods). These reduced dynamics can be utilized to make



1.2. Model Order Reduction 3

predictions in the reduced space, which are generally computationally less expensive
to obtain than predictions using the full order model. These predictions in the reduced
space can be mapped back to the full space using

q(t) = v(z(t)),

where v : Rd → Rn represents the mapping back to the full space. The following
subsections discuss the current relevant literature on both the dimensionality reduction
and the discovery of reduced dynamics.

1.2.1. Dimensionality Reduction
The first step of MOR, dimensionality reduction, can be done using both linear and
non-linear approaches. Linear methods reduce the dimensionality of the data using
projections to a linear subspace. Non-linear techniques can capture more complex
patterns and variations by learning a mapping to a non-linear manifold.

1.2.1.1. Linear Dimensionality Reduction
An example of an established intrusive linear dimensionality reduction technique in-
volves using modal projection. It is based on the observation that, for many struc-
tures, the lower-frequencymodes dominate the dynamic response, especially in lightly
damped systems [49].

If, for instance, the dynamic behaviour is primarily influenced by the first eigen-
mode φ1 ∈ Rn, the system its response can be approximated using this mode. The
eigenmode can be obtained by solving the undamped eigenvalue problem

Kφ1 = ω2
1Mφ1.

HereK andM are the stiffness and mass matrices from equation (1.1), and ω1 is the
(undamped) natural frequency associated with the first eigenmode φ1. When M is
positive definite, the eigenmode φ1 is typically mass normalized such that

φ⊤
1 Mφ1 = 1.

The high-dimensional model q(t) ∈ Rn can be reduced to a lower-dimensional model
z(t) ∈ R, by projecting the full-order system onto the subspace spanned by φ1 (a
so-called spectral subspace). This is done using

z(t) = φ⊤
1 M · q(t).

In this subspace spanned by φ1, some reduced dynamics describe the response of
z(t). These reduced dynamics can be utilized to make predictions in the reduced
space, which can be mapped back to the full space using the equation

q(t) = φ1 · z(t).

Note that this way,

z(t) = φ⊤
1 M · q(t) = φ⊤

1 Mφ1︸ ︷︷ ︸
=1

·z(t) = z(t).
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An established non-intrusive linear dimensionality reduction technique is proper or-
thogonal decomposition (POD) [2]. POD identifies spatial structures that capture the
most variance in the time-series data of the FE model using principal component anal-
ysis (PCA). By decomposing the system into orthogonal modes, POD can efficiently
reduce the dimensionality of the data while preserving significant features [29]. POD
can hence be considered a data-driven variant of modal projection, enabling a lower-
dimensional representation that retains essential system behaviour, but now derived
directly from data rather than from the governing equations.

POD may however not be optimal for modeling dynamical systems as its modes
are independent of the time evolution or dynamics encoded in the data [19]. This
limitation arises because POD focuses solely on spatial information and does not con-
sider how themodes evolve over time, potentially missing crucial dynamic interactions.
As a result, the reduced model may fail to accurately capture transient behaviour and
temporal dynamics that could be critical in some applications.

To address these shortcomings, methods such as dynamic mode decomposition
(DMD) have been developed. DMD offers a more robust framework for analyzing the
time evolution of dynamical systems by directly linking spatial modes with their tem-
poral behaviour [44]. Unlike POD, DMD identifies modes that evolve according to a
linear dynamic system, making it particularly effective for capturing both spatial and
temporal dynamics. This approach allows for the extraction of dynamic features, such
as oscillatory behaviour or growth/decay patterns, which are essential for understand-
ing complex systems. POD and DMD are however not in the scope of this thesis and
will not be utilized any further.

1.2.1.2. Non-linear Dimensionality Reduction
Linear dimensionality reduction techniques generally fall short in accurately capturing
the relevant behaviour of more complex non-linear systems [37]. To overcome this
limitation, researchers have delved into non-linear techniques [34]. Non-linear dimen-
sionality reduction (NLDR), which is also known as manifold learning, encompasses
various techniques aimed at projecting high-dimensional data onto lower-dimensional
latent manifolds. This approach differs from the projection-based methods like modal
projection and POD, where the generated mappings do not correspond to a manifold,
but a linear subspace.

An approach based in dynamical systems theory offers MOR using spectral sub-
manifolds (SSMs). An SSM is essentially the smoothest possible non-linear manifold
that captures the behaviour of the non-linear system, which asymptotically behaves
like a spectral subspace [20]. Using these SSMs, an intrusive, mathematically rigor-
ous non-linear MOR technique for very high-dimensional problems can be obtained
[24]. The numerical implementation of this methodology, which is called SSMTool, is
available in an open-source MATLAB package [26].

Building on the SSM-based framework of SSMTool, the intrusive SSMLearn
has emerged as a data-assisted alternative for constructing SSMs [9]. SSMLearn
seeks to learn SSMs directly from data using polynomial regression in a graph-style
parametrization, enabling MOR for high-dimensional numerical datasets as well as
experimental measurements.
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Remarkably, SSM reductions trained on unforced data have also demonstrated
the ability to accurately predict non-linear responses when additional external forcing
is applied, as the SSMs persist under small-amplitude forcing [8]. The graph-style
parametrization however breaks down when the manifold folds over the graphing sub-
space. This scenario can occur, for instance, when a cantilevered beam folds over
itself during large-amplitude oscillations along a two-dimensional SSM corresponding
to the beam its fundamental vibration mode [7].

Recently many advancements in artificial intelligence and neural networks (NNs)
have been made. These NNs, inspired by the workings of the human brain, also lead
to the development of new MOR techniques, as they are capable of processing vast
datasets to recognize non-linear patterns [33]. Autoencoders are a type of NN that
can be used for NLDR [22]. They can be utilized for MOR by projecting the high-
dimensional data of a dynamical system onto a lower-dimensional manifold. While in
general, autoencoders result in non-linear techniques, it can be shown that under spe-
cific conditions, the use of autoencoders can be equivalent to PCA [1]. This indicates
that autoencoders serve as a non-linear extension of linear dimensionality reduction.

An autoencoder consists of two main components: an encoder w : Rn → Rd and
a decoder v : Rd → Rn. The encoder maps the high-dimensional time-series data of
q(t) to a lower-dimensional latent space with some reduced model z(t). The decoder
attempts to reconstruct the original data from this reduced representation, resulting in
the reconstruction q̂(t) ≈ q(t). This is illustrated in Figure 1.1. The network adjusts its
weights and biases to minimize the reconstruction error, defined as the mean squared

encoder w decoder v

high-dimensional
input space (q(t))

low-dimensional
latent space (z(t))

high-dimensional
reconstructed
space (q̂(t))

Figure 1.1: Example of an autoencoder consisting of an encoder w and a decoder v. The encoder
maps the high-dimensional input data from q(t) to a lower-dimensional latent space with z(t), while
the decoder attempts to reconstruct the original data from this reduced representation, resulting in

q̂(t).
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error between the original input and its reconstruction, i.e.

L (q, q̂) = ||q − q̂||22 .

This process, known as training, is done by iterating over the available data. Several
studies have demonstrated the efficacy of using autoencoders for model order reduc-
tion [40, 47], even in complex situations, for example systems with unsteady flow [12].

Moreover, ongoing research explore various extensions of autoencoders to en-
hance their capabilities in MOR. The most common extension involves the use of
convolutional autoencoders, which leverage convolutional neural networks (CNNs) to
capture spatial dependencies within the data [18, 42]. CNNs, commonly used in im-
age processing tasks, excel at extracting hierarchical features, making convolutional
autoencoders well-suited for MOR tasks involving spatially distributed systems. The
CNNs however extend beyond the scope of this thesis and will therefore not be uti-
lized.

1.2.2. Discovery of Reduced Dynamics
In addition to determining a mapping to the latent space (whether it be a linear sub-
space or a non-linear manifold), the dynamics associated with this reduced represen-
tation must be learned as well. These reduced dynamics are crucial for describing the
time evolution of the system within the lower-dimensional space. Without accurate
reduced dynamics, a ROM may fail to reproduce the correct time evolution.

Specifically, the model in reduced coordinates, denoted as z(t), can be repre-
sented by a system of ODEs, as

ż(t) = r(z(t)),

where r : Rd → Rd is the function that describes the reduced dynamics. The challenge
is to find an appropriate form of the function r that accurately reflects the dynamics in
the reduced space.

A common method for approximating (reduced) dynamics is polynomial regres-
sion [14]. In this approach, the reduced dynamics are approximated using a linear
combination of monomials [36]. Using a coefficient matrix R ∈ Rd×l and a library of
monomials up to degree p, expressed as

Φ(z(t)) =
(
z1(t) z2(t) · · · zd(t) z21(t) z1(t)z2(t) · · · · · · zpd(t)

)
,

the reduced dynamics can be approximated using the system of ODEs

ż(t) = R Φ(z(t)).

The coefficient matrixR is determined through regression, for example using ordinary
least squares [36]. By including higher-order terms, polynomial regression can model
non-linear interactions in the reduced space. The advantage of polynomial regres-
sion is its simplicity and the ability to capture basic non-linearity’s. However, it has
limitations for more complex systems, especially when the true dynamics are highly
non-linear and cannot be well approximated by polynomials of low degree [11].
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An alternative method for identifying reduced dynamics is using sparse identifica-
tion of non-linear dynamics (SINDy) [5]. The approach is similar to polynomial regres-
sion, but the library of candidate functions may now also contain more complex terms,
for example trigonometric functions. The key idea in SINDy is that most of the coeffi-
cients of R will be zero, resulting in a sparse model that selects only a few important
terms to describe the dynamics. The selection of the terms is typically done using a
sparsity promoting regression. SINDy is particularly useful when the dynamics are
complex and cannot be easily represented by simple polynomials. By selecting only
the most relevant terms, it produces parsimonious models that are both interpretable
and efficient [10].

A powerful MOR technique involves integrating SINDy with autoencoders to jointly
learn the mapping to the latent space and the reduced dynamics. Known as SINDy
Autoencoders, this framework uses the autoencoder to capture the non-linear map-
ping from the high-dimensional input space to the low-dimensional latent space, while
SINDy operates within this latent space to identify the reduced dynamics [10]. The
aim is to establish one single optimization process that simultaneously adjusts the
autoencoder parameters and the coefficients of the sparse dynamics.

Recent advancements in machine learning have also introduced novel methods
for fitting dynamical systems to data, leveraging the power of NNs and other learning
algorithms. For example, long short-termmemory networks are a type of NN designed
to handle sequential data and capture long-term dependencies. They are particularly
effective for time-series prediction and sequence modeling, making them suitable and
widely used for fitting dynamical systems to data [12, 18, 40, 47]. These results how-
ever extend beyond the scope of this thesis and will therefore not be explored or
utilized any further.

1.3. Contribution and Research Outline
This thesis explores how autoencoders can improve MOR for non-linear dynamical
systems. To achieve this, a novel MOR method is developed, incorporating the data-
assisted discovery of attracting invariant manifolds, enabling rigorous MOR from a
dynamical systems perspective. The method leverages unforced trajectory data to
learn these manifolds.

The learning of the manifold and the discovery of the reduced dynamics is done
in a joint style, inspired by the SINDy Autoencoders [10]. Similar to the SINDy Au-
toencoders, one single optimization process is used to simultaneously learn both the
manifold and its reduced dynamics. The primary distinction of the proposed approach
lie in the elimination of sparsity constraints. Unlike the original SINDy Autoencoder
methodology, which emphasizes on constructing a sparse reduced model, the tech-
nique presented here does not prioritize sparsity. This adjustment allows the model
to potentially capture more complex interactions and non-linearity’s, providing a richer
representation of the system dynamics.

Furthermore, by building on concepts from SSMLearn [8], the linear terms of the
reduced dynamics are incorporated in the optimization, to assist the identification the
ROM.When the linear terms of the FOMare known from the FEmodel, the linear terms
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for the ROM can be derived using modal projection. Including these linear terms in the
ROM discovery process ensures that the underlying linear behaviour is accurately rep-
resented, allowing the non-linear terms to focus on capturing deviations from linearity.
Unlike SSMLearn, which uses a graph-based parameterization to obtain a manifold,
the proposed approach employs an autoencoder, enabling the representation of man-
ifolds that can fold over the graphing subspace.

The proposed method enables the prediction of non-linear forced responses, de-
spite being trained on unforced data, as long as the resulting displacements are within
the training displacements. This capability, which arises from its foundation in dynam-
ical systems theory and its use of deep learning to approximate spectral submanifolds
that persist under small-amplitude forcing [8], is a feature that is not achievable with
SINDy Autoencoders [10].

The proposed method will be referred to as simultaneous projection and linear in-
formed training (SPLIT). To evaluate SPLIT and demonstrate the limitations of existing
approaches, a model of a 2D cantilever beam is employed. The non-linear behaviour
of this beam serves as an excellent test case for assessing the performance of MOR
techniques [30, 46, 50]. Moreover, this test case highlights the shortcomings of cur-
rent methods, such as the folding of the manifold when the beam undergoes large
deflections and bends over itself, an instance where approaches like SSMLearn fail
[7]. The implementation of SPLIT and the test case can be found on GitHub [45].

This research aims to answer the following research questions and sub-questions.

How can autoencoders enhance non-intrusive model order reduction for non-linear
dynamical systems described by high-dimensional finite element models?

• What are the limitations of the established data-driven and data-assisted tech-
niques for model order reduction?

• Are autoencoders able to correctly identify the non-linear manifolds that domi-
nate the systems its response and learn their reduced dynamics?

• How well can the reduced dynamics on these manifolds make predictions for
unseen data?

The rest of this thesis is structured as follows: First, chapter 2 presents the method-
ologies utilized throughout this study. It introduces the 2D cantilever beam test case,
describes various established MOR techniques, and explains the proposed method
SPLIT, along with an extension called SPLIT+. Then chapter 3 details the experimen-
tal setup and results. It discusses the parameters used for data collection and model
training, and compares the performance of the proposed methods against existing
techniques. A critical discussion of the findings is provided in chapter 4. The chapter
analyzes the observed results in the context of theoretical expectations, and identifies
potential areas for further research and improvement. Finally chapter 5 concludes the
thesis by summarizing the key insights gained from the research. It revisits the re-
search questions, presents final answers, and highlights the contributions of this work
to the field of model order reduction.

https://github.com/AronSchouten/SPLIT


2
Methods

This chapter contains the methodologies that will be used in this study. First, the
test case of this study is introduced: A 2D cantilever beam. Next, six different model
order reduction (MOR) techniques are presented. Finally, the chapter concludes with
a discussion of the evaluation metrics applied throughout the report.

2.1. Test Case: A 2D Cantilever Beam
While themethodologies presented in this study apply to general high-dimensional me-
chanics problems described by equation (1.1), this report utilizes a two-dimensional
continuum-based finite element model of a geometrically non-linear beam as a test
case. Cantilever beams are a widely used structural component in engineering ap-
plications, spanning from buildings and bridges to aerospace engineering [15]. The
cantilever beam, fixed at one end and free at the other, is designed to withstand loads
applied perpendicular to its length. The non-linear behaviour of this beam makes it an
ideal test case for evaluating the performance of MOR techniques [30, 46, 50].

The finite element (FE) method is employed to obtain a numerical model for the
beam. The FE model is built using the open-source package YetAnotherFEcode
[25]. The general form of the FE model for the cantilever beam is given by a system
of second-order ordinary differential equations (ODEs) for the displacement vector
q(t) ∈ Rn, similar to equation (1.1), expressed as

Mq̈ +Cq̇ +Kq + f int (q, q̇) = εf ext (Ωt) .

HereM , C,K ∈ Rn×n are the mass, damping and stiffness matrices, f int (q, q̇) ∈ Rn

is the purely non-linear internal force and f ext (Ωt) ∈ Rn is the external force, which
will be periodic with frequency Ω. The parameter ε is used to control the amplitude of
the external forcing.

If the displacement of the beam is small enough, the model will exhibit linear be-
haviour. However, as the beam deflects further, it will start to behave more and more
non-linear. If the beam is displaced far enough, it will bend over itself. This will result in
very non-linear dynamics, which will be challenging to accurately capture in a reduced
order model (ROM). In particular, a manifold describing this folding behaviour will bend

9



10 Chapter 2. Methods

Figure 2.1: Displacement of a 2D cantilever beam in five different configurations. The colour coding
indicates the displacement magnitude, with yellow representing maximum displacement and blue

representing minimal displacement. The figure contains two beams in a folding configuration. Having
a displacement this large leads to highly non-linear behaviour in the dynamical system.

over itself, causing the graph-style parameterization method, used in e.g. SSMLearn,
to fail [7]. An example of a cantilever beam with five different displacements is shown
in Figure 2.1. The figure contains two beams in a folding configuration. The displace-
ment field is colour-coded, with areas of maximum displacement shown in yellow and
areas of minimal displacement shown in blue.

With the 2D model, high-dimensional data can be generated, to serve as input for
the training of the data-assisted or data-driven ROMs. Using the autonomous system,
i.e. equation (1.1) without any forcing,

εf ext(Ωt) = 0,

decaying trajectory data can be collected over m time-steps and arranged into an
n×m matrix

Q =


q1(t1) q1(t2) · · · q1(tm)

q2(t1) q2(t2) · · · q2(tm)
... ... . . . ...

qn(t1) qn(t2) · · · qn(tm)

 .

In this matrix each column corresponds to a time-step and each row to a system
variable. Similarly, the velocity and acceleration data can be arranged in the matrices
Q̇, Q̈ ∈ Rn×m. This data can be utilized during the training of the data-assisted and
fully data-driven MOR techniques, which are discussed in the next section.
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2.2. Model Order Reduction Methods
This research employs six distinct MOR techniques, each of which is explored in detail
in the following subsections. These include techniques using modal projection, au-
toencoders and polynomial regression, and more advanced methods, utilizing SINDy
Autoencoders and SSMLearn. Finally the proposed method SPLIT and an extension
SPLIT+ are introduced. Each methodology offers a unique approach to dimensionality
reduction and model simplification.

2.2.1. Modal Projection
First a simple ROM based on modal projection and polynomial regression is intro-
duced. The methodology involves projecting the high-dimensional data Q onto a
lower-dimensional subspace spanned by the first d eigenmodes. Then, a polynomial
model is fitted to this reduced data using ordinary least squares (OLS). With this re-
duced polynomial model, predictions can be made in the lower-dimensional subspace,
which are then mapped back to the full space using the set of eigenmodes. This ap-
proach will be referred to as ‘modal projection’ throughout the remainder of this thesis.

2.2.1.1. Reducing the Dimensionality
Modal projection is a widely used technique in model reduction that approximates
system behaviour by leveraging a subset of dominant eigenmodes. In this method,
it is assumed that the dynamics of the system are primarily governed by its first d
modes, capturing the most significant features of the system its behaviour. The first
step is to compute these d eigenmodes φ1,φ2, . . . ,φd ∈ Rn by solving the undamped
eigenvalue problems

Kφi = ω2
iMφi, i = 1, 2, . . . , d.

Here M ,K ∈ Rn×n are the mass and stiffness matrices of the system, and ωi is the
undamped natural frequency corresponding to the mode φi. Since the mass matrix
M is positive definite, the eigenmodes are mass-normalized as

φ⊤
i Mφi = 1, i = 1, 2, . . . , d. (2.1)

Once the first d eigenmodes are computed, the high-dimensional data Q can be
projected onto the subspace spanned by these modes. The projection of the displace-
ment data onto the reduced subspace is performed by the mapping

z(t) = φ⊤
i M · q(t).

The data in the reduced coordinates, denoted by Z ∈ R2d×m, is obtained by projecting
the displacement and velocity data Q and Q̇ onto the first d eigenmodes,

Z =



φ⊤
1 M ·Q

...
φ⊤

d M ·Q
φ⊤

1 M · Q̇
...

φ⊤
d M · Q̇


=



z1(t1) z1(t2) · · · z1(tm)
... ... . . . ...

zd(t1) zd(t2) · · · zd(tm)

ż1(t1) ż1(t2) · · · ż1(tm)
... ... . . . ...

żd(t1) żd(t2) · · · żd(tm)


=

(
z(t1) z(t2) · · · z(tm)

ż(t1) ż(t2) · · · ż(tm)

)
,
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and similarly, its derivative Ż ∈ R2d×m can be obtained by projecting the velocity and
acceleration data Q̇ and Q̈ onto the first d eigenmodes,

Ż =



φ⊤
1 M · Q̇

...
φ⊤

d M · Q̇
φ⊤

1 M · Q̈
...

φ⊤
d M · Q̈


=



ż1(t1) ż1(t2) · · · ż1(tm)
... ... . . . ...

żd(t1) żd(t2) · · · żd(tm)

z̈1(t1) z̈1(t2) · · · z̈1(tm)
... ... . . . ...

z̈d(t1) z̈d(t2) · · · żd(tm)


=

(
ż(t1) ż(t2) · · · ż(tm)

z̈(t1) z̈(t2) · · · z̈(tm)

)
.

Note that Z includes both displacement and velocity data, effectively doubling the
dimensionality of the latent space to 2d. This allows for fitting a first-order system of
ODEs of size 2d. The procedure for the discovery of the reduced dynamics is detailed
below.

2.2.1.2. Discovering the Reduced Dynamics
After the data has been projected onto the reduced subspace, the next step is to fit
a ROM to this reduced data, to approximate the system its dynamics in the reduced
space. Polynomial regression is used for this purpose as it provides a simple yet
flexible way to model dynamics. The general form of the model is a first-order system
of ODEs,

Ż = R ·Φ(Z). (2.2)

Here Φ(Z) ∈ Rl×m is a library of monomials of Z up to degree p, expressed as

Φ(Z) =
(
Z Z2 Z3 . . . Zp

)⊤
,

andR ∈ R2d×l is a coefficient matrix that represents the parameters of the polynomial
model. Note that l, which is the dimension of the library, depends on p and d.

The next step is to fit the coefficient matrix R by performing OLS regression. The
goal of OLS is to find anR such that the difference between the observed time deriva-
tives Ż and the predicted time derivatives R ·Φ(Z) is minimized. This is achieved by
minimizing the residual sum of squares,∣∣∣∣∣∣Ż −R ·Φ (Z)

∣∣∣∣∣∣2
2
=
(
Ż −R ·Φ(Z)

)⊤ (
Ż −R ·Φ(Z)

)
. (2.3)

This minimization problem has a unique solution, provided that the columns of the
library Φ(Z) are linearly independent [17]. It can be found by solving the so-called
normal equations

Φ(Z)⊤Φ(Z) ·R = Φ(Z)⊤Ż, (2.4)

which can be derived when equation (2.3) is differentiated with respect to R, and set
to zero. Solving equation (2.4) gives the OLS solution for R, denoted by

R =
(
Φ(Z)⊤Φ(Z)

)−1
Φ(Z)⊤Ż.

This matrix equation provides the optimal coefficient matrix that minimizes the error in
approximating the reduced dynamics.
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Once the coefficient matrixR has been determined, the ROM can be used to make
predictions in the reduced space. The predicted dynamics are computed by solving
the system of ordinary differential equations(

ż(t)

z̈(t)

)
= R ·Φ

((
z(t)

ż(t)

))
,

where z(t) represents the reduced coordinates corresponding to the first d eigen-
modes. Numerical integration methods can be applied to solve this system over time.
Once the trajectory z(t) has been predicted in the reduced space, the results must be
mapped back to the full space for interpretation. To reconstruct the high-dimensional
state q(t) from the reduced state z(t), the inverse of the projection step is used. The
reduced state z(t) is mapped back to the full state q(t) using the first d eigenmodes
as,

q(t) =
d∑

i=1

φi · zi(t).

2.2.2. A Decoupled Autoencoder
The next MOR technique is similar to the previous. However, instead of using modal
projection to map to a linear subspace, an autoencoder is used to obtain a mapping
to a non-linear manifold. The fitting of the reduced dynamics on this manifold remains
the same, i.e. using polynomial regression. This autoencoder-based approach is
expected to capture the non-linear behaviour of the system more accurately than the
linear modal projection, particularly in scenarios involving large displacements and
thus significant non-linearity’s. This approach will be referred to as the ‘decoupled
autoencoder’, distinguishing it from other methods involving autoencoders that employ
a joint learning strategy, which are introduced later.

2.2.2.1. Reducing the Dimensionality
An autoencoder consists an encoder w : Rn → Rd and a decoder v : Rd → Rn (recall
Figure 1.1). The encoder and decoder are composed of multiple layers, each with so-
called weights and biases that are learned during the training process. Specifically,
each layer performs a linear transformation on the input, followed by a non-linear ac-
tivation function, which is applied element-wise. This combination allows the network
to capture complex, non-linear relationships in the data.

In the encoding phase, the high-dimensional input data Q is passed through
successive layers, gradually reducing its dimensionality until it reaches the lower-
dimensional latent representation Z. Mathematically, each layer applies a transfor-
mation of the form

yi = σ
(
W iyi−1 + bi

)
,

where W i represents the weight matrix, bi is the bias vector, σ the activation function,
and yi the output at layer i. The final output Z is the result of these transformations.

In the decoding phase, the process is reversed. The latent representation Z is
passed through a series of decoding layers to reconstruct the original data, resulting
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in Q̂. The decoder layers are similarly constructed, with weights, biases, and activa-
tion functions guiding the transformation back to the higher-dimensional space. The
goal is to minimize the reconstruction error, usually measured using a loss function
such as the mean squared error (MSE), which quantifies the difference between the
reconstructed data Q̂ and the original data Q. When all m data points of Q are used
for training, the loss function is expressed as

L
(
Q, Q̂

)
=

1

m

∣∣∣∣∣∣Q− Q̂
∣∣∣∣∣∣2
2
.

Training an autoencoder requires updating the weights and biases in both the en-
coder and decoder to minimize the loss function. This is achieved through optimization
algorithms, which process the training data in small batches. A complete pass over the
entire dataset is called an epoch. As the training progresses, the autoencoder learns
to extract the most significant features of the high-dimensional data, compressing it
into a low-dimensional representation.

Once the training is done, the high-dimensional displacement, velocity and accel-
eration data can be mapped to the manifold using the learned encoder w and the
chain rule,

z(t) = w(q(t)), ż(t) = ∇qw(q(t))q̇(t), z̈(t) = ∇2
qw(q(t)) q̇2(t) +∇qw(q(t)) q̈(t).

The data in the reduced coordinates, denoted by Z, is obtained by projecting the
displacement and velocity data Q and Q̇, as

Z =

(
w(Q)

∇qw(Q)Q̇

)
=

(
z(t1) z(t2) · · · z(tm)

ż(t1) ż(t2) · · · ż(tm)

)
,

and similarly, its derivative Ż can be obtained by projecting the velocity and accelera-
tion data Q̇ and Q̈, as

Ż =

(
∇qw(Q)Q̇

∇2
qw(Q) Q̇

2
+∇qw(Q) Q̈

)
=

(
ż(t1) ż(t2) · · · ż(tm)

z̈(t1) z̈(t2) · · · z̈(tm)

)
.

2.2.2.2. Discovering the Reduced Dynamics
To the projected data, again a first-order system of ODEs (recall equation (2.2)) can
be fitted using polynomial regression, by following the approach from subsection 2.2.1.
This first-order system can again be used to make predictions in the reduced space,
z(t), which can be mapped to the full space using the learned decoder

q(t) = v(z(t)),

to obtain a prediction in the original high-dimensional space.

2.2.3. SINDy Autoencoders
The third MOR method uses an autoencoder, in combination with sparse identifi-
cation of non-linear dynamics (SINDy). The approach simultaneously learns a low-
dimensional representation of the system and identifies the underlying governing dy-
namics. Before introducing this method, called SINDy Autoencoders, the fundamen-
tals SINDy are explained first.
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2.2.3.1. SINDy
SINDy is a method for discovering governing equations of dynamical systems directly
from data [5]. SINDy identifies the underlying sparse structure in the dynamical sys-
tem, enabling the reconstruction of the system its behaviour with a minimal number
of terms. The primary objective of SINDy is to identify a sparse representation of the
dynamics of a first-order system of ODEs,

ż(t) = r(z(t)),

where z(t) ∈ Rd represents the state variables at time t and r : Rd → Rd a non-linear
function describing the system its dynamics.

Similar to polynomial regression, first m samples of z(t) are arranged in a matrix

Z =


z1(t1) z1(t2) · · · z1(tm)

z2(t1) z2(t2) · · · z2(tm)
... ... . . . ...

zd(t1) zd(t2) · · · zd(tm)

 ,

and similarly m samples of ż(t) are arranged in Ż. Then a library Θ(Z) ∈ Rl×m of
candidate functions is constructed, which may contain constant, monomial, or even
trigonometric and rational terms, i.e.

Θ(Z) =
(
1 Z Z2 Z3 · · · sin(Z) cos(Z) · · ·

)⊤
.

This library is a sort of extension of the library of monomials Φ(Z) used in polynomial
regression. It is used to create the linear system

Ż = Ξ ·Θ(Z), (2.5)

where the matrix Ξ ∈ Rd×l is a set of coefficients that is learned using sparsity-
promoting regression. Least squares with a sparsity-promoting L1 regularization term
is performed on the system from equation (2.5), resulting in

Ξ = argmin
Ξ′

(∣∣∣∣∣∣Ż −Ξ′Θ(Z)
∣∣∣∣∣∣2
2
+ λ ||Ξ′||1

)
,

for some regularization weight parameter λ.

2.2.3.2. SINDy Autoencoders
The SINDy Autoencoder combines this SINDy algorithm with an autoencoder to cap-
ture dynamics from scientific data. The autoencoder is enforced to learn coordinates
associated with sparse dynamics by simultaneously learning a SINDy model for the
dynamics of the reduced coordinates [10].

Similar to the decoupled autoencoder-based MOR method from subsection 2.2.2,
the encoder and decoder of the autoencoder are learned by minimizing the reconstruc-
tion loss

Lrecon

(
Q, Q̂

)
=

1

m

∣∣∣∣∣∣Q− Q̂
∣∣∣∣∣∣2
2
.
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However, this loss function is augmented by additional terms that enforce the learned
latent variables to follow sparse dynamics, modeled by SINDy. A libraryΘ(Z) ∈ Rl×m

of candidate functions and a set of coefficients Ξ ∈ Rd×l are used to create the linear
system

Ż = Ξ ·Θ(Z),

similar to SINDy. The coefficients Ξ are again learned using sparsity-promoting re-
gression. This is done in both the original and latent space. By using the chain rule,
the losses in the reduced space

Ldz/dt =
1

m

∣∣∣∣∣∣Ż −Ξ ·Θ(Z)
∣∣∣∣∣∣2
2

=
1

m

∣∣∣∣∣∣∇qw(Q)Q̇−Ξ ·Θ(w(Q))
∣∣∣∣∣∣2
2

and the full space

Ldq/dt =
1

m

∣∣∣∣∣∣Q̇−∇zv(Z) Ż
∣∣∣∣∣∣2
2

=
1

m

∣∣∣∣∣∣Q̇− (∇zv(w(Q))) (Ξ ·Θ(Z))
∣∣∣∣∣∣2
2

=
1

m

∣∣∣∣∣∣Q̇− (∇zv(w(Q))) (Ξ ·Θ(w(Q)))
∣∣∣∣∣∣2
2

are constructed. The two loss functions, together with the L1 regularization

Lreg = ||Ξ||1 ,

to promote sparsity, are combined with the standard autoencoder loss Lrecon to obtain
the overall loss function

Lrecon + λ1 Ldq/dt + λ2 Ldz/dt + λ3 Lreg.

The hyperparameters λ1, λ2 and λ3 determine the relative weight of the 4 terms in the
loss function.

Once the training is done, the learned ROM can be used to make predictions in the
reduced space, z(t), which can again be mapped to the full space using the learned
decoder

q(t) = v(z(t)),

to obtain a prediction in the original high-dimensional space.

2.2.3.3. Fitting a Second-Order System
Given that this research focuses on a second-order system, the SINDy autoencoder
as described above requires a slight modification. The library Θ must now include
terms of both Z and Ż, instead of just Z, i.e.

Θ(Z, Ż) =
(
1 Z Ż Z2 ZŻ Ż

2 · · · sin(Z) sin
(
Ż
)

cos(Z) cos
(
Ż
)

· · ·
)⊤

.
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With this library, the second-order linear system of ODEs

Z̈ = Ξ ·Θ
(
Z, Ż

)
can be formulated, where Ξ is obtained by minimizing the loss in the reduced space

Ld2z/dt2 =
1

m

∣∣∣∣∣∣Z̈ −Ξ ·Θ
(
Z, Ż

)∣∣∣∣∣∣2
2

=
1

m

∣∣∣∣∣∣∇2
qw(Q) Q̇+∇qw(Q) Q̈−Ξ ·Θ

(
w(Q),∇qw(Q) Q̇

)∣∣∣∣∣∣2
2

and the loss in the full space

Ld2q/dt2 =
1

m

∣∣∣∣∣∣Q̈−
(
∇2

zv(Z)Ż +∇zv(Z)Z̈
)∣∣∣∣∣∣2

2

=
1

m

∣∣∣∣∣∣Q̈−
(
∇2

zv(Z)Ż +∇zv(Z)Ξ ·Θ
(
Z, Ż

))∣∣∣∣∣∣2
2

=
1

m

∣∣∣∣∣∣Q̈−
(
∇2

zv(w(Q))∇qw(Q) Q̇+∇zv(w(Q))Ξ·Θ
(
w(Q),∇qw(Q) Q̇

))∣∣∣∣∣∣2
2

resulting in the new loss function

Lrecon + λ1 Ld2q/dt2 + λ2 Ld2z/dt2 + λ3 Lreg.

Note that here the chain rule is used to obtain expressions for Ż and Z̈ in terms of Q.
It is important to highlight the differences between SINDy Autoencoder and the

previous methods. In both the modal projection (subsection 2.2.1) and the decoupled
autoencoder approach (subsection 2.2.2), the reduced space was derived first, and
after that, the reduced dynamics within this space was identified by fitting a polynomial
model using OLS. In contrast, the SINDy Autoencoder performs both the identification
of the latent space and the reduced dynamics simultaneously within a single joint
optimization process. As a result, the determination of the dynamics becomes part of
the minimization problem rather than an exact computation using OLS. Additionally,
in the modal projection and decoupled autoencoder methods, the reduced dynamics
were represented by a first-order system of size 2d, using the data matrix Z, which
included both the mapped displacement data Q and the mapped velocity data Q̇. In
contrast, the SINDy Autoencoder uses an Z which contains only the displacement
data Q, and then fits a second-order system of size d to capture the dynamics. This
approach reduces the computational load during training, as it avoids the need for an
encoder of the form w : Rn → R2d

(
instead of w : Rn → Rd

)
, which would increase the

number of weights and biases that have to be learned.

2.2.4. SSMLearn
The fourth MOR technique is SSMLearn, which is based on spectral submanifold
(SSM) theory. The SSM and its reduced dynamics are defined by a set of non-linear
equations, which are determined through regression [21]. SSMLearn is captures the
dominant modes and non-linearities in the dynamics, making it a powerful tool for
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rigorous MOR of high-dimensional systems with significant computational efficiency
[20].

To start, the second-order system

Mq̈ +Cq̇ +Kq + f int (q, q̇) = εf ext (Ωt)

is transformed to the first-order system

ẋ =

(
0 I

−M−1K −M−1C

)
︸ ︷︷ ︸

=A

x+

(
0

−M−1f int(q, q̇)

)
︸ ︷︷ ︸

=f0(x)

+ ε

(
0

M−1f ext(Ωt)

)
︸ ︷︷ ︸

=f1(Ωt)

. (2.6)

SSMLearn uses an encoder w : [R2n,R] → Rd, which is a linear map,

z = w(x,Ωt) = W 0x, (2.7)

and a decoder v :
[
Rd,R

]
→ R2n, which is a non-linear map

x = v(z,Ωt) = V 0z + vnl(z) + εv1(Ωt), (2.8)

to map to and from a space with the reduced dynamics r : Rd → Rd,

ż = r(z,Ωt) = R0z + rnl(z) + εr1(Ωt). (2.9)

The linear parts of these mappings are defined using the first eigenmode φ1,

W 0 =

(
φ⊤

1 M 0

0 φ⊤
1 M

)
and V 0 =

(
φ1 0

0 φ1

)
,

meaning that W 0V 0 = I. The non-linear parts of these mappings are discovered by
utilizing regression [8], i.e.

vnl = argmin
v′
nl

m∑
j=1

||xj − V 0zj − v′
nl(zj)||22 , rnl = argmin

r′
nl

m∑
j=1

||żj −R0zj − r′
nl(zj)||22 .

To discover the time-dependent parts of the mappings, first some intermediate steps
have to be taken.

When decoding and encoding z, one finds

z = w(v(z,Ωt),Ωt)

z = W 0(V 0z + vnl(z) + εv1(Ωt))

z = W 0V 0︸ ︷︷ ︸
=I

z +W 0vnl(z) + εW 0v1(Ωt))

0 = W 0vnl(z)︸ ︷︷ ︸
z-dependent

+εW 0v1(Ωt)︸ ︷︷ ︸
Ωt-dependent

)

meaning that
W 0vnl(z) = W 0v1(Ωt) = 0. (2.10)
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Substituting equation (2.8) and (2.9) into equation (2.6) gives the invariance equa-
tion

∇zv(z,Ωt)r(z,Ωt) +∇Ωtv(z,Ωt)Ω = Av(z,Ωt) + f 0(v(z,Ωt)) + εf 1(Ωt).

Substituting equation (2.7) and (2.6) into equation (2.9) gives a second invariance
equation

∇xw(x,Ωt)(Ax+ f 0(x) + εf 1(Ωt)) +∇Ωtw(x,Ωt)Ω = r(w(x,Ωt)).

By using the fact that w(x,Ωt) = W 0x, one obtains

W 0(Ax+ f 0(x) + εf 1(Ωt)) + 0Ω = r(W 0x),

meaning that the reduced dynamics is simply the projection of the full dynamics via
W 0. In particular

W 0A = R0W 0, (2.11)

or when left multiplied by V 0

W 0AV 0 = R0.

With these results, the time-dependent parts of the mappings v and w can be
found. First, equation (2.8) and (2.9) are substituted into the first invariance equation.
Collecting the O(ε)-terms gives

V 0r1(Ωt) +∇Ωtv1(Ωt)Ω = Av1(Ωt) + f 1(Ωt).

Multiplying this equation by W 0 gives

W 0V 0︸ ︷︷ ︸
=I

r1(Ωt) +∇Ωt W 0v1(Ωt)︸ ︷︷ ︸
=0 (2.10)

Ω = W 0Av1(Ωt)︸ ︷︷ ︸
= R0W 0v(Ωt)︸ ︷︷ ︸

=0 (2.10)

(2.11)

+εW 0f 1(Ωt),

so
r1(Ωt) = W 0f 1(Ωt), (2.12)

meaning that the time-dependent part of the reduced dynamics, is simply the mapped
external forcing function.

2.2.5. SPLIT
The proposed simultaneous projection and linear informed training (SPLIT) method
combines elements of autoencoder-based manifold learning with dynamics modeling,
inspired by the approaches SSMlearn [9] and SINDy Autoencoders [10]. The method
jointly learns a low-dimensional manifold and the associated reduced dynamics by
incorporating linear terms from the full order model (FOM) to guide the optimization.
This ensures that the ROM captures the linear behaviour accurately, allowing the non-
linear components to focus on modeling deviations from this linear foundation.

SPLIT utilizes an autoencoder, with an encoder w which maps the full-order data
Q to the low-dimensional coordinates Z, while the decoder v reconstructs the full-
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order data from the reduced coordinates. The encoder and decoder are trained by
minimizing the reconstruction loss, expressed as

Lrecon

(
Q, Q̂

)
=

1

m

∣∣∣∣∣∣Q− Q̂
∣∣∣∣∣∣2
2
,

where Q̂ = v(w(Q)). Simultaneously, the reduced dynamics, described by a system
of second-order ODEs

z̈(t) = R0

(
z(t)

ż(t)

)
+ rnl(z, ż)

is learned. Similar to SSMLearn, the linear part of these dynamics are given by the
linear part of the FOM, mapped using the first eigenmode, resulting in

R0 =
(
φ⊤Cφ φ⊤Kφ

)
. (2.13)

It might seem that these linear dynamics are independent of the mass matrixM . How-
ever, it is important to note that M is already incorporated into the first eigenmode φ1

through mass normalization (recall equation (2.1)). The non-linear part of the reduced
dynamics rnl :

[
Rd,Rd

]
→ Rd are leaned in a style similar to the SINDy Autoencoders.

Given a library Θ(Z) ∈ Rl×m, which includes the non-linear monomials of Z and Ż

up to order p, i.e.

Θ(Z, Ż) =
(
Z2 ZŻ Ż

2
Z3 · · · Ż

p
)⊤

,

the second-order linear system of ODEs

Z̈ = R0

(
Z

Ż

)
+Ξ ·Θ

(
Z, Ż

)
can be formulated. The coefficient matrix Ξ ∈ Rd×l is obtained by minimizing the loss
in the reduced space

Ld2z/dt2 =
1

m

∣∣∣∣∣∣∣∣Z̈ −
(
R0

(
Z

Ż

)
+Ξ ·Θ

(
Z, Ż

))∣∣∣∣∣∣∣∣2
2

=
1

m

∣∣∣∣∣
∣∣∣∣∣∇2

qw(Q) Q̇+∇qw(Q) Q̈−R0

(
w(Q)

∇qw(Q) Q̇

)

−Ξ ·Θ
(
w(Q),∇qw(Q) Q̇

) ∣∣∣∣∣
∣∣∣∣∣
2

2

and the loss in the full space

Ld2q/dt2 =
1

m

∣∣∣∣∣∣Q̈−
(
∇2

zv(Z)Ż +∇zv(Z)Z̈
)∣∣∣∣∣∣2

2

=
1

m

∣∣∣∣∣∣∣∣Q̈−
(
∇2

zv(Z)Ż +∇zv(Z)

(
R0

(
Z

Ż

)
+Ξ ·Θ

(
Z, Ż

)))∣∣∣∣∣∣∣∣2
2

=
1

m

∣∣∣∣∣
∣∣∣∣∣Q̈−

(
∇2

zv(w(Q))∇qw(Q) Q̇+∇zv(w(Q))

(
R0

(
w(Q)

∇qw(Q) Q̇

)

+Ξ ·Θ
(
w(Q),∇qw(Q) Q̇

)))∣∣∣∣∣
∣∣∣∣∣
2

2

.
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Note that here the chain rule is used to obtain expressions for Ż and Z̈ in terms of Q̇,
Q and Q̈. The two loss functions are combined with the standard autoencoder loss
Lrecon to obtain the overall loss function

Lrecon + λ1 Ld2q/dt2 + λ2 Ld2z/dt2 .

The hyperparameters λ1 and λ2 determine the relative weight of the 3 terms in the
loss function. Note that for SPLIT, no regularization is used, as the sparsity that was
utilized in the SINDy Autoencoder, is no longer of interest for SPLIT.

Once the training is done, the learned ROM can be used to make predictions in the
reduced space, z(t), which can again be mapped to the full space using the learned
decoder

q(t) = v(z(t)),

to obtain a prediction in the original high-dimensional space.

2.2.6. SPLIT+
An extension of the SPLIT methodology, referred to as SPLIT+, introduces a new
step after the joint training of the mapping and dynamics. In SPLIT+, once the low-
dimensional manifold and corresponding dynamics have been learned through the
joint optimization process, the learned dynamics are discarded. Instead, the trained
autoencoder is only used to encode the data to the reduced space. In this reduced
space, a first-order system is then fitted using polynomial regression. By discard-
ing the learned coefficients, this approach allows for the possibility of capturing non-
linearity’s that the joint optimization might have missed, potentially due to incorrect
training parameters. By still utilizing the joint learning of the mapping and the dy-
namics (even though these dynamics are never used), the autoencoder is ensured to
project to a space where the dynamic system can operate effectively. Keeping this
step guarantees that the learned manifold has a meaningful representation.

More specifically, after training, the encoderw is used to map the high-dimensional
displacement and velocity data Q and Q̇ in the reduced coordinates, denoted by Z,
by utilizing

Z =

(
w(Q)

∇qw(Q)Q̇

)
=

(
z(t1) z(t2) · · · z(tm)

ż(t1) ż(t2) · · · ż(tm)

)
.

Similarly, its derivative Ż can be obtained by projecting the velocity and acceleration
data Q̇ and Q̈, as

Ż =

(
∇qw(Q)Q̇

∇2
qw(Q) Q̇

2
+∇qw(Q) Q̈

)
=

(
ż(t1) ż(t2) · · · ż(tm)

z̈(t1) z̈(t2) · · · z̈(tm)

)
.

Instead of relying on the previously learned second-order dynamics from SPLIT, a
first-order system of the form

Ż = R0

(
Z

Ż

)
+R ·Φ(Z)
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is fitted to the encoded data. Here R0 ∈ R2 contains the linear parts of the FOM
mapped using the first eigenmode (recall equation (2.13)), Φ(Z) ∈ Rl×m represents a
library of non-linear monomials that describe the dynamics in the reduced space,

Φ(Z) =
(
Z2 Z3 . . . Zp

)⊤
,

and R ∈ Rd×l contains the coefficients that need to be determined via OLS. This is
again achieved by minimizing the residual sum of squares,∣∣∣∣∣∣∣∣(Ż −R0

(
Z

Ż

))
−R ·Φ (Z)

∣∣∣∣∣∣∣∣2
2

.

This minimization problem has a unique solution, provided that the columns of the
library Φ(Z) are linearly independent [17], given by

R =
(
Φ(Z)⊤Φ(Z)

)−1
(
Φ(Z)⊤Ż − Φ(Z)⊤R0

(
Z

Ż

))
.

This matrix equation provides the optimal coefficient matrix that minimizes the approx-
imation error of the reduced dynamics, while simultaneously incorporating the linear
components mapped from the FOM.

Once the first-order dynamics are fit, predictions in the reduced space can bemade
using this first-order polynomial system of ODEs. These predictions can be mapped
back to the full space via the leaned decoder, as

q(t) = v(z(t)).

2.3. Evaluation Metrics
To evaluate the performance of the ROMs, three evaluation metrics are used. One
of the metrics is the normalized mean-trajectory-error, which gives the error between
two trajectories in terms of a percentage. In addition to this error, the backbone curves
are utilized, which give an indication of how the system behaves when no forcing is
present. Finally, also forced response curves are used to evaluate the performance
of the system when external forcing is introduced. The three metrics are explained in
more detail below.

2.3.1. Normalized Mean-Trajectory-Error
The normalizedmean-trajectory-error (NMTE) is employed as the primary metric. This
metric effectively quantifies the accuracy of ROM-based predictions in capturing the
dynamic behaviour of the full system [7, 9].

The NMTE of a displacement vector q̃ is given by

NMTE =
100

m ·maxi ||qi||2

m∑
i=1

||qi − q̃i||2 ,

where q is the displacement vector of the FOM. The NMTE metric is normalized by
the maximum displacement magnitude observed in the dataset, ensuring that the er-
ror measure is scale-invariant and can be interpreted as a percentage of the largest
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displacement. This normalization allows for a consistent comparison across different
scenarios and scales of motion.

The NMTE can be used to calculate a reconstruction or reproduction error, by using
the reconstructed displacement vector q̂ = v(w(q)) or the decoded displacement
vector of the ROM v(z(t)) respectively. A lower NMTE indicates a better performance
of the ROM in capturing the essential dynamics and characteristics of the dynamical
system [8].

2.3.2. Backbone Curves
In addition to the NMTE, backbone curves are utilized as an evaluation metric to
assess the performance of the ROMs. Backbone curves describe the relationship
between the amplitude and frequency of oscillations in a non-linear system in the ab-
sence of external forcing. These curves are essential for understanding the non-linear
characteristics and the resonance behaviour of the cantilever beam [6].

To extract the frequencies from the unforced time simulations, the method of Peak
Finding and Fitting is employed [27]. As the name of the methods suggests, this
method first finds the peaks in the time simulation. The time intervals between suc-
cessive peaks are then calculated to determine the period, and thus the frequency
of the oscillation. The extracted frequency data is plotted against the amplitude, to
construct the backbone curve, which shows the dependence of frequency on the os-
cillation amplitude.

In linear systems, the natural frequency is constant regardless of the oscillation
amplitude. In non-linear systems however, the natural frequency often varies with the
amplitude of oscillation due to non-linear stiffness or other non-linear effects. This is
illustrated in Figure 2.2, where an example of a backbone curve is given.

The backbone curves are used to evaluate the ROMs by comparing the ROM-

Figure 2.2: Illustration of two backbone curves. The linear backbone curve (blue) shows a constant
frequency, whereas the non-linear (orange) backbone curve shows variation in frequency with

oscillation amplitude.
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generated curves against those obtained from the simulations of the FOM. This com-
parison helps in verifying the ability of the ROMs to capture the non-linear frequency-
amplitude relationship inherent in the dynamic behaviour of the cantilever beam. A
close match between the ROM-derived backbone curve and that from the FOM sim-
ulation indicates a high-fidelity ROM that can accurately reproduce the system its dy-
namics.

2.3.3. Forced Response Curves
Finally, forced response curves (FRCs) are employed to evaluate the predictive accu-
racy of ROMs. FRCs provide insights into how well the ROM predicts the behaviour
of the system when external forcing is present [35]. FRCs are utilized to analyze both
the amplitude and phase. Before detailing the process of generating the FRCs, it is
essential to clarify how external forcing is integrated into the ROMs.

2.3.3.1. Treatment of External Forcing in ROM
For modal projection and SSMLearn, which use a linear encoder, the external forcing
function can simply be mapped using φ⊤

1 to obtain the time-dependent part of the
reduced dynamics (recall e.g. equation (2.12)). However, for the autoencoder-based
MOR techniques, which utilize a non-linear encoder, incorporating external forcing
requires a different approach.

First, assume that the decoder and reduced dynamics now also include a time-
dependent part, expressed as

q = v(z) + εv1(Ωt) and z̈ = r(z) + εr1(Ωt). (2.14)

This can be justified using SSM theory, which states that the underlying manifold re-
mains intact even with the inclusion of small-amplitude time-periodic forcing [20]. By
substituting the time-dependent decoder and dynamics from equation (2.14) into the
system defined in equation (1.1), it follows that

Mq̈ +Cq̇ +Kq + f int(q, q̇) = εf ext(Ωt)

q̈ +M−1Cq̇ +M−1Kq +M−1f int(q, q̇) = εM−1f ext(Ωt)

v′′(z)ż2 + v′(z)z̈ + εΩ2v′′
1(Ωt) +M−1C(v′(z)ż + εΩv′

1(Ωt))

+M−1K(v(z) + εv1(Ωt)) +M−1f int(q, q̇) = εM−1f ext(Ωt)

v′′(z)ż2 + v′(z)(r(z) + εr1(Ωt)) + εΩ2v′′
1(Ωt) +M−1C(v′(z)ż

+εΩv′
1(Ωt)) +M−1K(v(z) + εv1(Ωt)) +M−1f int(q, q̇) = εM−1f ext(Ωt)

Collecting the O(ε)-terms leaves

v′(z)r1(Ωt) + Ω2v′′
1(Ωt) + Ωv′

1(Ωt) + v1(Ωt) = M−1f ext(Ωt),

and by choosing v1 = 0, one finds

v′(z)r1(Ωt) = M−1f ext(Ωt). (2.15)

Now let α be such that α(z) · v′(z) = 1, i.e.

α(z) =
v′(z)⊤

||v′(z)||22
.
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Then equation (2.15) can be multiplied by α to obtain

r1(Ωt) = α(z) ·M−1f ext(Ωt),

which means that the reduced dynamics with external forcing can be described by

z̈ = r(z) +α(z) ·M−1f ext(Ωt). (2.16)

Note that the external forcing now not only depends on the time t, but also the reduced
state z.

2.3.3.2. Construction of Forced Response Curves
To construct the FRCs, the system is subjected to a periodic external force with varying
frequencies Ω. The forced simulation is run until the fast transients die out, ensuring
a steady-state forced response is achieved. The displacement of the tip of the beam
qtip during the last period, denoted by [τ, τ + T ), is then used to extract the amplitude
and phase of the response. The underlying idea is that with the amplitude and phase,
the response at a particular degree of freedom can be described as

amplitude · sin(Ωt+ phase).

The amplitude of the response is determined by simply finding the maximum value
of qtip. The phase of the response is computed by taking the arctangent of the integral
of the response multiplied by the complex exponential e−i2πt/T [8], i.e.

amplitude = max
t∈[τ,τ+T )

|qtip(t)| , phase = ∠
∫ τ+T

τ

qtip(t) · e−i2πt/T dt.

Figure 2.3 provides an example of the FRCs for both the amplitude and phase under
external forcing at different frequencies. The amplitude of the tip of the beam is ex-
pected to peak near its eigenfrequency. The phase shifts from 0 to −π, with a sharp
decline, also occurring around the eigenfrequency.

(a) Amplitude (b) Phase

Figure 2.3: Example of forced response curves showing the amplitude and phase of the tip of the
beam under external forcing at different frequencies. The amplitude peaks around the beam its

eigenfrequency, while the phase drops sharply from 0 to −π near that same frequency.
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A ROM can be considered effective if its FRC closely aligns with that of the FOM.
Achieving this indicates that the ROM captures the system its resonant behaviour and
dynamic response under external periodic loading conditions. In addition, since ROMs
are trained on unforced data, their ability to predict forced responses effectively would
showcase a powerful predictive capability.

This approach is a straightforward way to extract FRCs, that lies within the scope
of this thesis. However, it is worth noting that more sophisticated methods, such as
numerical continuation [23], or analytical techniques which utilize the normal form of
the reduced dynamics [9], exist.



3
Results

This chapter presents the findings of the study. It starts by outlining the parameter
configuration of the experimental setup. Following this, an evaluation of the training
outcomes for themodel order reduction (MOR) techniques are discussed. The chapter
then discusses the performance of the reduced order models (ROMs) during both
unforced and forced simulations. Finally, the computational run times are analyzed.

3.1. Parameter Configuration
This section discusses the parameter configuration used for the full order model (FOM)
and the MOR techniques. First, the setup of the finite element (FE) model and the
simulation parameters for obtaining the full order data are described. Subsequently,
the parameters for the MOR techniques are provided.

3.1.1. Parameters for Data Collection
Since this thesis focuses on data-driven and data-assisted ROMs, first data has to be
collected. The FE model of the 2D cantilever beam is utilized to do so. The beam that
is used, is constructed from titanium, and has a length of 1 meter, a height (along the
bending direction) of 0.02 meter, and an out of plane width of 0.05 meter [52]. The
geometric and material properties of the beam are summarized in Table 3.1.

Table 3.1: Material and geometric properties of the titanium cantilever beam.

Property Value
Young’s modulus 104 · 109 Pa
Density 440 kg/m3

Poisson’s ratio 0.3

Length 1 m
Height (along bending direction) 0.02 m
Width (out of plane) 0.05 m

27
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The beam is discretized using a finite element grid with 40 elements along the
length and 2 elements along the height (recall Figure 2.1). This results in 246 degrees
of freedom, of which 6 are fixed by the boundary condition. The mass matrix M

and stiffness matrix K are obtained through the standard assembly routine in the
YetAnotherFEcode package. For damping, a mass-proportional damping approach is
used [52]. The damping matrix C is defined as

C =
ω1

50
M ,

where ω1 is the first undamped natural frequency of the beam.
To generate trajectories for training and testing, unforced simulations are con-

ducted using the autonomous system. The initial displacement is derived from a prior
performed forced simulation, while the initial velocity and acceleration are set to zero.
Five different initial displacement vectors are used, with increasing magnitudes. They
are visualized in Figure 3.1. Note that in the two of the cases, the beam folds over
itself. The five initial conditions result in five different trajectories, with increasing non-
linearity. Using the trajectories, three different test cases are defined:

1. The first case uses small displacements. The ROM is trained with a trajectory
where the tip of the beam has an initial displacement of 0.1412m (Figure 3.1b),
and tested with a trajectory where the tip has an initial displacement of 0.0496m
(Figure 3.1a). The corresponding trajectories, shown in Figure 3.2a, do not con-
tain too much non-linear behaviour yet.

2. The second case uses large displacements. The ROM is trained with a tra-
jectory where the tip of the beam has an initial displacement of 0.2797m (Fig-
ure 3.1c), and tested with a trajectory where the tip has an initial displacement of
0.1412m (Figure 3.1b). The corresponding trajectories are shown in Figure 3.2b.
More non-linear behaviour is expected in these trajectories.

3. Finally also a scenario where the beam reaches a folding configuration is uti-
lized. The ROM is trained with a trajectory where the tip of the beam has an initial
displacement of 0.3777m (Figure 3.1e), and tested with a trajectory where the
tip has an initial displacement of 0.3568m (Figure 3.1d). The trajectories in this
case, shown in Figure 3.2c, exhibit very non-linear behaviour.

Note that each time, the ROM is tested with slightly smaller displacements than that
it is trained on.

(a) 0.0496m (b) 0.1412m (c) 0.2797m (d) 0.3568m (e) 0.3777m

Figure 3.1: Five different displacements, used as initial conditions, arranged in increasing order of
magnitude. The displacements, specified in meters, correspond to the tip of the beam. The

configurations of 3.1d and 3.1e display folding behaviour, with the beam displacing enough to fold
over itself.
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(a) Small displacements (b) Large displacements (c) Folding configuration

Figure 3.2: Trajectories of the displacement of the tip of the beam (perpendicular to the beam).
These trajectories are used for training and testing the ROMs. No external forcing is present. During

the 30 periods T , the displacement decays, converging to an equilibrium.

The Newmark-beta integration scheme is employed for time-integration, with
β = 0.275625 and γ = 0.55 [13]. The time-step size of this implicit Newmark is set
to be h = T/1000, where T is the period corresponding to the eigenfrequency of
the beam. The simulation is run for 30 periods T to capture the dynamic response.
This results in trajectories with m = 29996 time-steps. The displacement data Q and
velocity data Q̇ vectors are directly obtained from these simulations. To calculate the
acceleration data Q̈, finite differencing with sixth-order accuracy is used, ensuring
precise derivative estimates.

3.1.2. Parameters for Model Order Reduction
Besides the parameters of the FOM, also the parameters of the MOR techniques have
to be specified. While parts of the six MOR methodologies from section 2.2 overlap,
each method has some distinct configurations and parameters. The settings are as
follows:

• The modal projection method (subsection 2.2.1) utilizes only the first eigenmode,
φ1, for projecting the system to the reduced space, as the behaviour of the beam
is primarily governed by this mode.

• The SSMLearn methodology (subsection 2.2.4) identifies a two-dimensional in-
variant manifold using a non-linear polynomial basis of order 3 for the decoder.
The dynamics on this manifold, also of order 3, are then fitted using the linear
part of the reduced dynamics.

• The autoencoder-based methods (subsection 2.2.2, 2.2.3, 2.2.5, and 2.2.6) all
utilize the same autoencoder architecture. It consists of an input and output
layer matching the number of unconstrained degrees of freedom, which is 240.
Between these layers, there are five hidden layers with sizes 64, 32, 1, 32, and
64, respectively. This architecture ensures a compact and non-linear mapping
of the full-order data to a low-dimensional space. The encoder w : R240 → R
maps the data to a single latent dimension, while the decoder v : R → R240

reconstructs it back to the full space.
To guarantee that the equilibrium state of the beam maps to zero in the latent
space, the autoencoder does not include biases, relying solely on weights and
activation functions. The chosen activation function is the exponential linear unit



30 Chapter 3. Results

(ELU), which also maps zero to zero. The weights of the network are initialized
using Xavier initialization [16], and training is performed for 15,000 epochs using
the Adam optimizer [31] with a batch size of 1024 and a learning rate of 10−4 [10].

• In addition to this autoencoder setup, the SINDy Autoencoder, SPLIT and
SPLIT+ (subsection 2.2.3, 2.2.5, and 2.2.6) utilize hyperparameters in their loss
functions. The loss weight in the full space, λ1, is calculated as the ratio of the
squared norms of the displacement data Q and the acceleration data Q̈ [10],
expressed as

λ1 =
||Q||22∣∣∣∣Q̈∣∣∣∣2

2

.

The loss weight in the reduced space, λ2, is set to be one order of magnitude
lower than λ1 [10]. This configuration ensures a slight prioritization of the recon-
struction of q over the prediction of q̈, ensuring that the encoder and decoder
focus primarily on reconstructing the original data, while the reduced model em-
phasizes accurate prediction of the second-order dynamics.
For the SINDy Autoencoder (subsection 2.2.3), the third hyperparameter, the
sparsity coefficient λ3, is set to 0 as sparsity is not of interest in this study. In
addition, the library Θ includes only monomials, so excluding any constants or
trigonometric functions.

Note that these configurations ensure that all methods utilize a two-dimensional
subspace for the reduced dynamics (d = 2). This is intentional, as the behaviour of
the 2D cantilever beam is primarily governed by the first eigenmode, which has an
attracting invariant manifold with a dimensionality of 2 [8]. Additionally, the dynamics
within the reduced space are represented using a polynomial library of order 3 for all
MOR techniques (p = 3). This is done since cubic non-linearity’s are expected in the
beam dynamics [39]. The time-integration of all reduced order models is carried out
using the 8th-order Runge-Kutta method [51].

3.2. Evaluation of Training Outcome
The following section provides an evaluation of the training outcomes for the MOR
techniques, without yet using them for simulations or predictions. Instead, the analy-
sis focuses on assessing the results directly obtained from the training process itself.
This includes tracking the losses of the autoencoder-based methods, analyzing the
eigenvalues of the discovered reduced dynamics, and evaluating the reconstruction
accuracy of the MOR techniques.

3.2.1. Losses of Autoencoder-based Techniques
During the training process of the autoencoder-based MOR techniques (subsec-
tion 2.2.2, 2.2.3, 2.2.5, and 2.2.6), the loss functions can be tracked and plotted
against the number of epochs. This allows for a visualization of how well the model
is learning over time. This is done for the case with the large, non-folding, displace-
ments (where the initial displacement of the beam is 0.2797m), and illustrated in
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(a) Decoupled autoencoder (b) SINDy Autoencoder (c) SPLIT

Figure 3.3: The training and testing losses plotted against the number of epochs for the different
autoencoders, in the case of the data with the large, non-folding displacements. The training loss

(blue) and testing loss on slightly smaller displacements (orange) both decrease over time, indicating
improved model performance.

Figure 3.3. The training loss, represented in blue, reflects the model its performance
on the training data, while the testing loss, illustrated in orange, shows the model its
performance on the test data, which features the slightly smaller initial displacement
(0.1412m). The network has not encountered this test data during training. Both
losses decrease over time as the autoencoder learns to better reconstruct the input
data. In addition, for the joint methods from subsection 2.2.3, 2.2.5, and 2.2.6, the
network also achieves a more accurate representation of the reduced dynamics.

Among the MOR techniques, the decoupled autoencoder, shown in Figure 3.3a
achieves the smallest loss, demonstrating the most effective learning. It is important
to keep in mind however that the loss function of this network is also the simplest. The
proposed method SPLIT (and its extension SPLIT+, as they use the same autoen-
coder) shown in Figure 3.3c, follows with a loss that is two orders of magnitude higher.
Meanwhile, the SINDy Autoencoder (Figure 3.3b) shows the highest loss among the
three, suggesting it struggles more with obtaining an accurate reconstruction and dy-
namics compared to the other approaches. This indicates that the incorporation the
linear terms, as done in SPLIT and SPLIT+, really enhances the optimization process.

3.2.2. Eigenvalues of Linear Dynamics
After training, the eigenvalues of the linear part of the discovered dynamics can be
calculated. A comparison of these eigenvalues with those of the FOM provides in-
sight into how well the ROMs capture the fundamental dynamic characteristics of the
system. The eigenvalues of the first eigenmode of the FOM are −3.9805 ± 398.03i.
These can be calculated using the damping ratio ζ1 [23], as(

−ζ1 ±
√

ζ21 − 1

)
ω1, where ζ1 =

1

2ω1

(
φ⊤

1 Cφ1

φ⊤
1 Mφ1

)
.

Here ω1 is the undamped natural frequency associated with the first eigenmode φ1,
and C and M are the damping and mass matrix of the FOM respectively. For the
ROMs, the eigenvalues can be obtained by using the linear part of the reduced dy-
namics that where discovered during training. Specifically, the eigenvalues can be
determined by examining the first two rows and columns of the coefficient matrix R

(or Ξ for the SINDy Autoencoder and SPLIT).



32 Chapter 3. Results

Table 3.2: Eigenvalues of the linear part of the discovered dynamics across the six different MOR
techniques and three different cases with increasing non-linearity: small displacements (0.1412m),
large displacements (0.2797m), and displacements where the beam is in a folding configuration

(0.3777m).

Small displacements Large displacements Folding configuration
Modal Projection -3.9946 ± 397.99i -4.1405 ± 397.53i -4.8033 ± 396.98i
Decoupled AE -4.1809 ± 397.71i -4.3870 ± 396.87i -5.1730 ± 394.13i
SINDy AE 0.19689 ± 4.6250i -4.2943 ± 3.0028i -3.2833 ± 4.0206i
SSMLearn -3.9805 ± 398.03i -3.9805 ± 398.03i -3.9805 ± 398.03i
SPLIT -3.9805 ± 398.03i -3.9805 ± 398.03i -3.9805 ± 398.03i
SPLIT+ -3.9805 ± 398.03i -3.9805 ± 398.03i -3.9805 ± 398.03i

The eigenvalues of the linear parts of the six ROMs are shown in Table 3.2, for
the three different cases. For SSMLearn, SPLIT, and SPLIT+, the linear dynamics,
and consequently their corresponding eigenvalues, are specified during training (recall
subsection 2.2.4, 2.2.5, and 2.2.6). As a result, the eigenvalues of these ROMs are
identical to those of the FOM in all three cases.

The eigenvalues of the modal projection and decoupled autoencoder methods
show slight deviations from those of the FOM. This discrepancy increases as the non-
linearity of the system increases (from small displacements to folding configurations).
This indicates that, while these methods can approximate the linear dynamics well
in simpler scenarios, their accuracy diminishes as the complexity of the system in-
creases. The SINDy Autoencoder exhibits significant deviations from those of the
FOM across all three cases, even producing a positive damping ratio (real part) in the
case of small displacements. This indicates that it struggles to capture the linear dy-
namics accurately, which will lead to errors when this ROMwill be used for predictions.

3.2.3. Reconstruction Accuracy
A third and final way to measure the performance of the MOR techniques, without
actually conducting simulations, is by verifying that the mapping to and from the re-
duced space can be performed without introducing errors. This can be done using
the so-called reconstruction error. It is important to note that this evaluation does not
focus on the performance of the discovered dynamics. Instead, the normalized mean-
trajectory-error (NMTE) is used to measure the difference between the displacement
of the FOM, q, and the displacement after being mapped to the reduced space and
then reconstructed back to the full space, q̂.

For example, the reconstruction error for modal projection is given by

NMTE =
100

m ·maxi ||qi||2

m∑
i=1

∣∣∣∣qi −φ⊤
1 Mφ1qi

∣∣∣∣
2
,

and for an autoencoder with encoder w and decoder v, the NMTE is given by

NMTE =
100

m ·maxi ||qi||2

m∑
i=1

||qi − v(w(qi))||2 .
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Table 3.3: Normalized mean-trajectory-errors for the reconstruction of the six different MOR
techniques across the three cases with increasing non-linearity: small displacements (0.0496m),
large displacements (0.1412m), and displacements so far the beam is in a folding configuration

(0.3568m).

Small displacements Large displacements Folding configuration
Modal Projection 0.93698% 2.7082% 8.2094%
Decoupled AE 0.085436% 0.16938% 0.24545%
SINDy AE 2.3038% 2.6283% 2.9808%
SSMLearn 0.021106% 0.25558% 1.1236%
SPLIT 0.086916% 0.43862% 0.94212%
SPLIT+ 0.086916% 0.43862% 0.94212%

As discussed in subsection 3.1.1, the testing is done with a trajectory containing
slightly smaller displacement than the one used for training.

The reconstruction errors for the six different MOR techniques, for the three differ-
ent cases are shown in Table 3.3. Note that for small displacements, and thus little
non-linearity, all methods seem to reconstruct the data fine, even the linear modal
projection. However, when the displacements start to increase, eventually to a fold-
ing configuration, the reconstruction errors increase, especially those of the modal
projection. This is in line with the expectation: A linear dimensionality reduction tech-
nique should not be able to capture complex non-linear behaviour. Also note that the
reconstruction errors of SPLIT and SPLIT+ are the same, as the same autoencoder
is utilized in both MOR techniques (and only the reduced dynamics are different).

3.3. Unforced Simulations
After analyzing the outcomes directly obtained from the training process, the next step
is to evaluate the performance of the ROMs in making predictions. This section evalu-
ates the performance of the ROMs on unforced predictions by utilizing the normalized
mean-trajectory-error and by analyzing the backbone curves.

3.3.1. Predicting an Unforced Trajectory
To predict an unforced beam using a ROM, first an initial condition of the FOM q(0) is
mapped to the reduced space. Then, the reduced dynamics are employed to make
a trajectory within this reduced space using the mapped initial condition. Finally, this
reduced trajectory is mapped back to the full space to obtain the prediction qROM(t)

of the unforced beam in the full space. The ROMs are again tested with a trajectory
containing slightly smaller displacement than the one used for training, as discussed
in subsection 3.1.1.

The trajectories in the reduced space for all six ROMs are shown in Figure 3.4.
These trajectories involve the large, but not yet folding displacements (0.1412m),
meaning they exhibit non-linear behaviour. In all six cases, it is evident that at the
beginning of the trajectory, the true (blue) and predicted (orange) paths overlap. How-
ever, after some time, they start to diverge.
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(a) Modal Projection (b) Decoupled autoencoder (c) SINDy Autoencoder

(d) SSMLearn (e) SPLIT (f) SPLIT+

Figure 3.4: Trajectories in the reduced space for all six ROMs with large displacements (0.1412m),
exhibiting non-linear behaviour without folding. The predicted trajectories (in orange) initially align

closely with the true trajectories (in blue), but begin to diverge over time. Distortions in the projection
of 3.4b and 3.4c result in butterfly-like shapes rather than smooth circles.

In the cases of the decoupled autoencoder and the SINDy Autoencoder technique,
shown in Figure 3.4b and 3.4c, a distortion occurs in the mapping: The (true) trajectory
is being mapped to a more butterfly-like shape rather than a smooth circle. This distor-
tion complicates the description of the dynamics in the reduced space, which causes
the prediction to become worse. This issue is especially visible with the SINDy Au-
toencoder, where the prediction generated by the SINDy dynamics deviates entirely
from the true trajectory. By using the linear terms of the reduced dynamics that are
known from the FOM, which is done for SSMLearn, SPLIT and SPLIT+, this problem
is overcome, as visible in Figure 3.4d, 3.4e and 3.4f.

These reduced trajectories can be mapped back to the full space to be compared
to the trajectory of the FOM. The displacements of the tip of the beam over time for the
different ROMs are illustrated in Figure 3.6. The same is done for the small displace-
ments (0.0496m) and folding configuration case (0.3568m), shown in Figure 3.5 and
3.7.

In the small displacement case, depicted in Figure 3.5, the reconstructed trajecto-
ries from most ROMs closely follow the true trajectory of the FOM, demonstrating that
most methods perform well when the system exhibits mostly linear characteristics. For
the large displacement case (Figure 3.6), discrepancies start to emerge between the
ROMs and the FOM. This is due to the increased non-linearity in the system, making
it more challenging for the reduced-order models to accurately capture the dynamics.
The predicted trajectories initially align closely with the true trajectories, but begin to
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(a) Modal Projection (b) Decoupled autoencoder (c) SINDy Autoencoder

(d) SSMLearn (e) SPLIT (f) SPLIT+

Figure 3.5: Trajectories of the tip of the beam for all six ROMs with small displacements (0.0496m),
exhibiting mostly linear behaviour. In this case, the predicted trajectories (in orange) align closely with

the true trajectories (in blue). SINDy, in 3.5c fails to make a correct prediction.

(a) Modal Projection (b) Decoupled autoencoder (c) SINDy Autoencoder

(d) SSMLearn (e) SPLIT (f) SPLIT+

Figure 3.6: Trajectories of the tip of the beam for all six ROMs with large displacements (0.1412m),
exhibiting non-linear behaviour without folding. The predicted trajectories (in orange) initially align

closely with the true trajectories (in blue), but begin to diverge over time. Again, SINDy, in 3.6c fails to
make a correct prediction.

diverge over time. When the displacements increase even further, to a folding con-
figuration, illustrated in Figure 3.7, the differences between the ROMs become even
more pronounced. The increased non-linearity and geometric complexity of the beam
in this configuration cause most ROMs to produce a trajectory that significantly de-
viates from the FOM. The decoupled autoencoder and SPLIT+ are able to maintain
better agreement with the FOM, with SPLIT+ showing a high level of accuracy in pre-
dicting both the amplitude and frequency of the beam, indicating its robustness in
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(a) Modal Projection (b) Decoupled autoencoder (c) SINDy Autoencoder

(d) SSMLearn (e) SPLIT (f) SPLIT+

Figure 3.7: Trajectories of the tip of the beam for all six ROMs with displacements so large the beam
folds over itself (0.3568m). The increased complexity and non-linearity in this configuration cause

significant deviations for some ROMs compared to the FOM. The decoupled autoencoder and SPLIT+
are able to maintain better agreement with the FOM, with SPLIT+ showing a high level of accuracy in

predicting both the amplitude and frequency of the beam.

capturing the complex dynamics of the folding behaviour.
The SINDy Autoencoder seems to be having difficulties to accurately making a

prediction, as is evident in Figure 3.5c, 3.6c, and 3.7c. This is somewhat anticipated,
given the discrepancies in the eigenvalues of the linear part of the reduced dynamics,
as seen in Table 3.2.

With the trajectories now expressed in the full space, the normalized mean-
trajectory-error can be calculated to quantify the deviation between the displace-
ment of the FOM q(t) and the displacement of the ROM qROM(t). The errors for
the six different ROMs, across the three cases, are listed in Table 3.4. Similar to
the reconstruction error, most methods perform well for small displacements. As the
displacements increase, eventually leading to a folding configuration, the NMTE of
the methods grow. This is in line with the observations from the figures. Nevertheless,

Table 3.4: Normalized mean-trajectory-errors for the unforced prediction qROM of the six different
ROMs across the three cases. The decoupled autoencoder and SPLIT+ are the only two ROMs that

have an error of less than 10%, even when the beam is in a folding configuration.

Small displacements Large displacements Folding configuration
Modal Projection 0.99619% 3.199% 16.833%
Decoupled AE 1.3789% 4.1513% 5.8772%
SINDy AE 111.186% 50.0276% 70.8029%
SSMLearn 0.074255% 1.7065% 15.3383%
SPLIT 0.37445% 5.2151% 14.584%
SPLIT+ 0.27806% 1.4485% 5.6117%
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two ROMs manage to keep the error relatively small: the decoupled autoencoder and
SPLIT+ methodologies maintain errors below 10%, even when the beam reaches
the folding configuration. The SINDy Autoencoder seems to be failing in all three
scenarios due to the butterfly-shaped patterns and its reduced dynamics, as shown
in Figure 3.4c and Table 3.2.

3.3.2. Backbone Curves
In addition to the NMTE of the unforced prediction, backbone curves are utilized as an
evaluation metric to assess the performance of the ROMs. Backbone curves describe
the relationship between the amplitude and frequency of oscillations in a non-linear
system in the absence of external forcing. By comparing the backbone curves of
different ROMs, their effectiveness in preserving the essential dynamical features of
the original system can be assessed. For the extraction of the frequencies from the
unforced time simulations, the method of Peak Finding and Fitting is employed [27].

The backbone curves for the different ROMs are analyzed across the three famil-
iar cases: small displacements (0.0496m), large displacements (0.1412m), and a
folding configuration (0.3568m). The curves are shown in Figure 3.8. The backbone
curve of the SINDy Autoencoder is not included in the figures, as the method of Peak
Finding and Fitting could not be applied on the trajectories generated by this ROM
(see Figure 3.5c, 3.6c, and 3.7c).

For the small displacements case, where the system its behaviour is nearly linear,
almost all ROMs produce backbone curves that closely match the FOM (Figure 3.8a).
This result is expected, as the non-linear effects are minimal, allowing even simpler
models like the modal projection to perform adequately. However, the decoupled
autoencoder does not perform as well in this scenario. The butterfly-like reduced
dynamics may cause the backbone curve to deviate more noticeably from the FOM
compared to the other ROMs.

As the displacements increase in the large and folding cases, differences between
the ROMs become more apparent. For smaller amplitudes, SSMLearn and SPLIT
approximate the FOM quite good. However, as the amplitude of the tip of the beam
increases, even these ROMs start to show discrepancies. This suggests that while the

(a) Small displacements (b) Large displacements (c) Folding configuration

Figure 3.8: Backbone curves for the different ROMs across three cases: small displacements
(0.0496m), large displacements (0.1412m), and a folding configuration (0.3568m). For small
displacements, most ROMs closely follow the FOM, although the decoupled autoencoder ROM

struggles. As displacements increase, SPLIT+ is the method that approximate the backbone curves
of the FOM the best.
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trajectories of the predictions may have small errors, the underlying dynamics driving
these predictions can still significantly diverge from those of the FOM. For SPLIT+ the
backbone curves continue to closely approximate those of FOM, even in the folding
case. This implicates that SPLIT+ has discovered dynamics that closely match those
of FOM.

3.4. Forced Simulations
After evaluating the performance of the ROMs on unforced simulations, the next step
is to assess their performance on forced simulations. This evaluation is motivated
by the expectation that incorporating forcing into the system will not significantly dis-
rupt the learned manifold, as spectral submanifolds are known to persist under small-
amplitude forcing, thereby maintaining the ROM its predictive capabilities even under
external influences [8]. The capability of making predictions of forced data, would in-
dicate a level of generalization in the ROM, showing that it can adapt to new, unseen
scenarios beyond the specific conditions on which it was trained. In this section, the
ROMswill be tested on forced data to evaluate howwell they can predict the system its
response to external influences. This is again done using the NMTE, and by utilizing
forced response curves (FRCs).

3.4.1. Predicting a Forced Trajectory
To predict a forced response using a ROM, the simulation in the reduced space per-
formed again, but now with the inclusion of the external forcing function. The resulting
reduced trajectory is mapped back to the full space to generate the prediction of the
forced beam in the full space.

Recall that for themodal projection technique and SSMLearn (subsection 2.2.1 and
2.2.4), the external forcing function of the FOM could simply be mapped using the first
eigenmode φ⊤

1 . For the non-linear autoencoder-based methods (subsection 2.2.2,
2.2.3, 2.2.5, and 2.2.6) external forcing could be introduced by using equation (2.16).

In this thesis, the external forcing function is represented by the (periodic) sine
function

εf ext(Ωt) = εMφ1 sin(Ωt),

where ε is a parameter to control the amplitude of the forcing, and Ω the forcing fre-
quency, which is chosen to be the (damped) eigenfrequency ω1

√
1− ζ21 . The initial

displacement, velocity, and acceleration are set to zero.
Again, three different cases are considered: one with small forcing, one with large

forcing, and one with forcing up to a folding configuration, corresponding to the ampli-
tude parameters ε = 1, ε = 600, and ε = 6000, respectively. These forced simulations
are conducted for a longer duration than the unforced simulations, to make sure fast
transients die out, ensuring a steady-state response. For the non-folding cases, 200
periods T are simulated, and for the folding case, 400 periods are simulated.

The trajectory of the tip of the beam in the case of large forcing (ε = 600) are
shown in Figure 3.9, for all six ROMs (in orange), together with the trajectory of the
FOM (in blue). The plots reveal that most ROMs converge to a steady-state response
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(a) Modal Projection (b) Decoupled autoencoder (c) SINDy Autoencoder

(d) SSMLearn (e) SPLIT (f) SPLIT+

Figure 3.9: Comparison of the trajectories under large forcing (ε = 600) for the six ROMs (orange)
and the FOM (blue). Most ROMs converge to a steady-state response that is has an amplitude close

to that of the FOM. The SINDy Autoencoder shows a response that is significantly inaccurate,
highlighting its failure to capture the correct dynamics.

that has an amplitude close to that of the FOM. The SINDy Autoencoder however ex-
hibits significant discrepancies in its response when compared to the FOM, indicating
limitations in accurately capturing the underlying dynamics of the forced system as
well.

The accuracy of the predicted trajectory of the ROM is of lesser importance, as
long as the final forced response aligns with that of the FOM. Figure 3.10 contains
the maximum displacement of this final response for the ROMs and the FOM. The
displacement of the SINDy Autoencoder are not included, as the prediction of the
forced response is significantly incorrect (recall Figure 3.9c).

(a) Small forcing (b) Large forcing (c) Folding configuration

Figure 3.10: Maximum displacement of the final response for the FOM and ROMs under varying
forcing amplitudes. For small forcing (ε = 1), all ROMs closely match the FOM, capturing the linear
dynamics effectively. As forcing increases to ε = 600, SSMLearn and SPLIT+ overestimate the

response, while other ROMs underestimate it. Under extreme forcing (ε = 6000), most ROMs become
unstable, with only SPLIT and SPLIT+ providing reasonable approximations.
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Under small forcing (ε = 1), shown in Figure 3.10a, the maximum displacement
is very close to the equilibrium of the beam. Upon zooming in, it becomes evident
that all ROMs behave similarly and closely match the FOM, demonstrating that each
method effectively captures the underlying linear dynamics. As the forcing amplitude
increases to ε = 600 (Figure 3.10b), clear differences between the ROMs begin to
appear. In this scenario, SSMLearn and SPLIT+ overestimate the response amplitude,
whereas the other methods tend to underestimate it relative to the FOM. Additionally,
it can be observed that the modal projection misses the compression of the beam.
This is because the modal projection only considers the bending mode φ1, neglecting
other modes that contribute to the compressive behaviour of the beam.

Under extreme forcing with ε = 6000 (Figure 3.10c), many ROMs struggle to main-
tain stability. Modal projection and SSMLearn experience numerical instability, caus-
ing the reduced simulations to blow up (z → ∞). As an example, the failing forced
prediction made using the modal projection technique is shown in Figure 3.11. Simi-
larly, the decoupled autoencoder method terminates prematurely due to difficulties in
meeting integration tolerances without reducing the step size below acceptable limits.

It turns out that methods that seemed very promising, such as the decoupled
autoencoder technique, ultimately do not work quite as hoped when conditions be-
come too extreme. Only SPLIT and SPLIT+ provide reasonable approximations, with
SPLIT+ achieving the best agreement with the FOM, albeit with some small inaccura-
cies.

The last period (τ, τ + T ] of the trajectories can be used in the calculation of the
error of the response, using the NMTE. The results are presented in Table 3.5. In the
case of small forcing, most ROMs perform well, due to the absence of very serious
non-linearity’s. However, the ROM with the decoupled autoencoder exhibits a slightly
higher error, indicating some difficulty in accurately predicting forced responses even

Figure 3.11: An example of numerical instability in the modal projection ROM under extreme forcing,
causing the predicted displacement to diverge and the simulation to blow up.
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Table 3.5: Normalized mean-trajectory-errors of the prediction of the forced response, for the six
different ROMs across the various cases: small external forcing (ε = 1), large external forcing

(ε = 600), and forcing so extreme, the beam reaches a folding configuration (ε = 6000). For the error,
only the last period of the simulation is considered.

Small forcing Large forcing Folding configuration
Modal Projection 0.60135% 17.3383% Fails
Decoupled AE 5.7232% 2.3031% Fails
SINDy AE 289.1655% 64.5305% 70.62%
SSMLearn 0.12503% 10.4902% Fails

SLIT 0.18002% 20.9863% 4.755%
SPLIT+ 0.18596% 9.3587% 6.0671%

under small external influences. The SINDy Autoencoder struggles significantly, sim-
ilar to the unforced prediction.

When the external forcing increases, so do the errors. In the case of forcing so
large that the beam gets into a folding configuration, most ROMs fail to perform a sim-
ulation in the reduced space. The proposed method SPLIT, along with its extension
SPLIT+, demonstrate excellent results, underscoring their strong capability to accu-
rately capture and predict the complex dynamics of non-linear systems, even under
challenging conditions.

3.4.2. Forced Response Curves
Finally, forced response curves (FRCs) are employed to evaluate the predictive ac-
curacy of the ROMs. To construct the FRCs, the system is subjected to a periodic
external force with varying frequencies Ω. The forced simulation is continued until
fast transients dissipate, ensuring a steady-state response. The displacement of the
tip of the beam qtip during the last period, denoted by [τ, τ +T ), is then used to extract
the amplitude and phase of the response. The FRC of the amplitude for small forcing
(ε = 1), large forcing (ε = 600), and forcing until a folding configuration (ε = 6000)
are shown in Figure 3.12. The FRCs of the phase are shown in Figure 3.13. The
FRCs of the SINDy Autoencoder methodology are not included in the plots, as the
predicted amplitude and phase could not be correctly extracted from their trajectory
(recall Figure 3.9c).

In the small forcing case, the FRCs of both amplitude (Figure 3.12a) and phase
(Figure 3.13a) are generally well predicted by all five ROMs. The amplitude peaks
near the system its eigenfrequency, and the phase shifts from 0 to −π around this
frequency, as expected. This demonstrates that the ROMs are able to capture the
basic resonant behaviour of the system under small external perturbations.

As the forcing amplitude increases, the differences between the ROMs become
more pronounced. Under the large forcing conditions, both SSMLearn and SPLIT
predict the peak response at a frequency that is too high, as shown in Figure 3.12b.
Additionally, these methods, along with modal projection, tend to overestimate the
amplitude. SPLIT+ and the decoupled autoencoder method appear to provide the
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(a) Small forcing (b) Large forcing (c) Folding configuration

Figure 3.12: Forced response curves of the amplitude of the tip of the beam under small external
forcing (ε = 1), large external forcing (ε = 600), and forcing so large the response is a beam in folding

configuration (ε = 6000). The amplitude peaks around the beam its eigenfrequency.

(a) Small forcing (b) Large forcing (c) Folding configuration

Figure 3.13: Forced response curves of the phase of the tip of the beam under small forcing (ε = 1),
large forcing (ε = 600), and forcing so large the response is a beam in folding configuration (ε = 6000).

The phase drops from 0 to −π around the beam its frequency.

most accurate FRCs. Furthermore, Figure 3.13b shows that most ROMs can predict
the phase response accurately, although SPLIT tends to overestimate it.

As the forcing frequency increases further to push the beam to a folding configura-
tion, many simulations start to fail again. Only those simulations that could be finished
are included in the plots in Figure 3.12c and 3.13c. The only ROM capable of generat-
ing a full FRC is SPLIT. However, its amplitude and phase predictions are inaccurate.
While SPLIT+ is unable to produce a complete FRC, it most closely matches the FRCs
of the FOM.

3.5. Evaluation of Computational Run Times
The computational performance of the ROMs is crucial, as one of the primary goals
of MOR is to obtain ROMs with significantly shorter run times, compared to FOMs.
The computational costs can be divided into two categories: offline and online costs.
Offline costs refer to the computational resources used during the development of the
ROM. It includes tasks like data collection, the training of the autoencoders, or the
fitting of the reduced dynamics. The offline phase typically requires some computa-
tional time and resources, but is done only once. The results from the offline phase
can then be used repeatedly during the online phase. This involves performing simu-
lations, both unforced and forced, and the generation of the FRCs.

In this study, the autoencoders are trained using TensorFlow from Python. All
remaining simulations are performed in MATLAB [45]. The computations are executed
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Table 3.6: Comparison of run times of the FOM and the various ROMs, including offline costs
(generation of data, mapping and reduced dynamics) and online costs (unforced simulation, forced

simulation, and FRC generation).

Offline costs Online costs
Generate

training data
Obtain
mapping

Obtain reduced
dynamics

Unforced
simulation

Forced
simulation

Generate
FRC

FOM - - - 20m 28.3s 136m 48.4s 4487m 15.5s
Modal Projection 20m 28.3s 0.005s 0.02s 0.2s 1.5s 45.6s

Decoupled autoencoder 20m 28.3s 96m 33.6s 0.1s 0.2s 1.5s 48.8s
SINDy AE 20m 28.3s 99m 7.2s 0.2s 1.3s 44.4s
SSMLearn 20m 28.3s 0.3s 0.06s 0.2s 1.6s 149.0s
SPLIT 20m 28.3s 98m 23.2s 0.2s 1.4s 48.0s
SPLIT+ 20m 28.3s 98m 23.2s 0.1s 0.2s 1.4s 47.9s

on a machine equipped with a 2.20GHz Intel Core i7 hexa-core CPU, 16GB of RAM,
with both an Intel UHD Graphics 630 and a NVIDIA Quadro P1000 GPU [53]. The run
times of all online and offline processes are measured, and shown in Table 3.6.

For all MOR techniques, an unforced simulation of the FOM is required for train-
ing. The simulation consists of 30 periods T , and costs 20 minutes and 28.3 seconds.
Obtaining the mapping to the reduced space and the reduced dynamics varies signif-
icantly among the different methods. The simplest technique, using modal projection,
has the lowest offline costs for obtaining the mapping and reduced dynamics, taking
just a fraction of a second. In contrast, methods involving autoencoders, such as
the decoupled autoencoder, SINDy Autoencoder, SPLIT, and SPLIT+, have signifi-
cantly higher costs due to the training of neural networks, which takes around 96 to
99 minutes. SSMLearn, while also utilizing a more sophisticated method than modal
projection, still has considerably lower offline costs than the autoencoder-based meth-
ods.

In terms of online costs, which include unforced and forced simulations as well
as generating FRCs, all ROMs demonstrate substantial improvements over the FOM.
The unforced simulation (30 periods) for the FOM takes over 20 minutes, while all
ROMs complete the same task in approximately 0.2 seconds. This dramatic reduction
highlights the efficiency gains possible with ROMs. Forced simulations, which consist
of 200 periods T show a similar trend, with the FOM taking over 136 minutes, whereas
all ROMs complete the task in about 1.3 to 1.6 seconds. When generating FRCs, 33
forced simulations are run. The ROMs generally perform well, completing the task in
under 50 seconds, except for SSMLearn, which takes 149 seconds. This is however
still much faster than using the FOM, as this takes 4487 minutes.

It is important to keep in mind that while methods like modal projection offer the
lowest computational costs, they are generally less effective for capturing complex
dynamics (as seen in section 3.3 and 3.4). The more accurate autoencoder-based
methods like SPLIT and SPLIT+ have a higher computational complexity. However,
note that for example for SPLIT, performing a forced simulation, including the offline
costs of data collection and training the autoencoder, is still faster than performing a
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forced simulation with the FOM, as

20m+ 98m+ 1.4s ≈ 118m︸ ︷︷ ︸
Total time required for a

forced simulation using SPLIT

< 136m.︸ ︷︷ ︸
Time required for a for-

ced simulation using FOM

In addition, the generation of an FRC shows an even more substantial improvement,
with a performance gain of a factor 27, as

Time required for FRC with FOM
Time required for FRC with SPLIT

=
4487m

20m+ 98m+ 48m
= 27.

This again demonstrates the effectiveness of ROMs in significantly reducing compu-
tational time. The analysis of run times illustrate that ROMs significantly outperform
the FOM in terms of computational efficiency.



4
Discussion

The exploration of various model order reduction (MOR) techniques in this study has
provided valuable insights into their strengths and limitations when applied to non-
linear dynamical systems such as the 2D cantilever beam. Reduced order models
(ROMs) capable of accurately predicting system behaviour, while significantly reduc-
ing computational complexity, have been developed, but the results also highlighted
some areas for improvement. This section reflects on some of the choices made dur-
ing the study and suggest promising directions for future research.

4.1. General Points of Discussion
First, while SINDy Autoencoders have shown success in various applications [10],
their performance in modeling the cantilever beam in this study was not satisfactory.
The SINDy Autoencoder was unable to accurately capture the dynamics of the beam,
even under moderately challenging conditions, as indicated in Table 3.2. This lim-
itation led to incorrect predictions, as illustrated in Figure 3.5c, 3.6c, 3.7c, and 3.9c.
This raises questions about the applicability of this method to certain types of systems.
The outcome might be due to the particularly complex behaviour of the beam, which
was too difficult to model. Alternatively, it is possible that the chosen parameters for
the SINDy Autoencoder, although recommended by prior research [10], were not op-
timal for the specific case of this study. This suggests that while SINDy Autoencoders
are robust tools, their application may require more customized parameter tuning or
modifications to handle specific dynamical systems effectively.

Moreover, while advanced techniques like autoencoders were employed for data
reduction, the fitting of the reduced dynamics in this study often relied on basic poly-
nomial regression. Although autoencoders successfully identified lower-dimensional
manifolds, the subsequent step of fitting dynamics onto these manifolds using sim-
ple polynomial regression might have constrained the overall accuracy of the ROMs.
Enhancing this step could be a significant area for improvement. For instance, in-
corporating higher-order polynomial terms or leveraging advanced machine learning
methods such as long short-term memory (LSTM) networks, known for their ability to
handle time-series data, could yield better results, as demonstrated in other studies
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[12, 18, 40, 47].

4.2. Research Outlook for Proposed Methods
The proposed techniques, SPLIT and SPLIT+, demonstrated enhanced performance
in model order reduction. To build on this success, a few recommendations can be
made. One consideration is the assumption of prior knowledge regarding the linear
part of the governing equations. While this requirement enhances the effectiveness
of SPLIT and SPLIT+, it may limit their versatility compared to purely data-driven ap-
proaches, such as SINDy Autoencoders. Exploring methods that reduce this depen-
dency on the prior knowledge of the governing equations could broaden the applica-
bility of these techniques.

In addition, a basic network architecture, a multilayer perceptron, was utilized for
the autoencoder in this study. Ongoing research offers intriguing extensions, such as
convolutional autoencoders that utilize convolutional neural networks (CNNs) to cap-
ture spatial correlations within the data. Since neighboring degrees of freedom corre-
spond to adjacent points on the beam, CNNs could effectively capture these spatial
correlations, enhancing the model order reduction tasks [18, 42]. Other innovative ap-
proaches could involve adapting the loss function of the autoencoder to automatically
determine the latent space dimension [48] or ensuring that the decoder serves as the
exact inverse of the encoder [38]. These advancements offer promising pathways for
the development of even more precise and reliable MOR techniques.

Another promising direction for future research is to modify SPLIT and SPLIT+ to
identify normal form dynamics, enabling the use of a parsimonious model to describe
the reduced dynamics [28]. This enhancement could make it possible to analytically
calculate forced response curves (FRCs) [9], thereby further reducing the computa-
tional cost associated with generating FRCs. Such advancements would make SPLIT
and SPLIT+ even more competitive with existing methods like SSMLearn.



5
Conclusion

This study has explored the application of autoencoders in enhancing model order re-
duction (MOR) techniques for non-linear dynamical systems. It specifically focused on
their capacity to identify manifolds with their reduced dynamics, and the effectiveness
of these dynamics in accurately predicting both unforced (seen scenarios) and forced
responses (unseen scenarios). The research questions posed aimed to evaluate the
potential of autoencoders in MOR, assess the accuracy of the reduced dynamics, and
investigate both established and novel techniques for improvement. This section will
first address the sub-questions, followed by a comprehensive conclusion that answers
the main research question.

What are the limitations of the established data-driven and data-assisted techniques
for model order reduction?

The study has highlighted several limitations of established data-driven and data-
assisted MOR techniques, specifically focusing on modal projection, SSMLearn, and
SINDy Autoencoders.

Modal projection for example, is based on linear mappings (subsection 2.2.1), and
therefore struggles to accurately represent the non-linear behaviour of the system.
While it is effective for capturing the linear components, it fails to do so for the non-
linear dynamics, as evidenced by the increased reconstruction error under non-linear
conditions shown in Table 3.3. The inability to capture these non-linear interactions
limits its applicability for complex systems like the cantilever beam, where non-linear
phenomena come into play.

SSMLearn is able to capture non-linearity’s by using a graph-style parameteriza-
tion to identify non-linear manifolds (subsection 2.2.4). Themethod however becomes
unreliable when the learned manifold folds over its graphing subspace, for example
when a two-dimensional cantilever beam enters configurations involving folding. As
shown in Table 3.4, SSMLearn is not able to reproduce trajectories of a folding beam,
without introducing significant errors.

As discussed in section 4.1, the SINDy Autoencoder method (subsection 2.2.3)
was unable to capture the dynamics of the beam. Even for moderate displacements,

47



48 Chapter 5. Conclusion

SINDy exhibited significant discrepancies from the true system behaviour, as for ex-
ample reflected in the eigenvalues (Table 3.2). This suggests that the effectiveness
of the SINDy Autoencoders may be limited in scenarios involving highly complex or
strongly non-linear dynamics.

Additionally, the established methods examined in this study (e.g. modal projec-
tion, SSMLearn, and SINDy Autoencoders) were all found to fail when extremely large
external forcing was introduced, which caused the steady-state response of the beam
to fold over itself. This is evident in Table 3.5. The inability to handle such high forcing
amplitudes resulted in numerical instabilities and crashing simulations. This break-
down reveals that these MOR techniques struggle with scenarios involving complex
non-linear behaviour, limiting their effectiveness in a broader range of practical appli-
cations.

Are autoencoders able to correctly identify the non-linear manifolds that dominate the
systems its response and learn their reduced dynamics?

Autoencoders have demonstrated potential in identifying non-linear manifolds and
learning their reduced dynamics, as evidenced in this thesis. However, it has been
shown that simply using autoencoders, without incorporating any linear terms during
training, as done in the decoupled autoencoder approach (subsection 2.2.2) and the
SINDy Autoencoders (subsection 2.2.3), can lead to manifolds with a non-smooth,
butterfly-like shape, as seen in Figure 3.4b and 3.4c. This distortion indicates that
while the autoencoder successfully reduces dimensionality, the identified latent vari-
ables and the corresponding reduced dynamics may not accurately reflect the true
system behaviour, as for example shown in Figure 3.8a, making the reduced order
model (ROM) less effective.

The proposed method SPLIT (subsection 2.2.5), addresses these limitations by
integrating the strengths of several established approaches. It combines the joint
learning of autoencoders and reduced dynamics, inspired by the SINDy Autoencoders,
while also incorporating the linear dynamics obtained from modal projection, similar to
SSMLearn. This combination enables SPLIT to maintain the correct linear behaviour
within the learned manifold, ensuring a meaningful representation of the system its
dynamics. Further refinement can be achieved through polynomial regression in the
post-processing step, as done in the extension SPLIT+ (subsection 2.2.6), which has
been shown to yield even better predictions in certain scenarios by correcting small
discrepancies in the learned dynamics.

Overall, while autoencoders alone may fall short in accurately identifying and learn-
ing meaningful non-linear manifolds, integrating them with more sophisticated ap-
proaches, as demonstrated by SPLIT and SPLIT+, can significantly improve the qual-
ity of the ROMs.

How well can the reduced dynamics on these manifolds make predictions for unseen
data?

The ability to predict non-linear forced responses (with displacements within the
range of training), despite being trained on only unforced data, arises since the MOR
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techniques approximate spectral submanifolds, which persist under small-amplitude
forcing [8]. For small displacements, all ROMs were indeed able to accurately predict
forced simulations (Table 3.5) and forced response curves (Figure 3.12a and 3.13a),
showing good agreement with the full order model (FOM). However, as the forcing am-
plitude increased and the beam was pushed into a highly non-linear folding configura-
tion, many ROMs encountered numerical instabilities or convergence issues, leading
to incomplete or inaccurate simulations. SPLIT and its extension SPLIT+, however,
have demonstrated strong predictive capabilities for unseen data, even under these
challenging conditions.

In the numerical experiments conducted in this thesis, SPLIT was the only method
able to generate a complete forced response curve (FRC) for the folding configura-
tion, although its amplitude and phase predictions deviated from those of the FOM,
as shown in Figure 3.12b and 3.13b. While SPLIT+ could not produce a complete
FRC under these extreme conditions, it exhibited the best overall agreement with the
FOM, closely matching its amplitude and phase behaviour where it succeeded. This
suggests that the enhanced optimization process and additional regression step in
SPLIT+ provide improved predictive power and stability, making it a more reliable
method for the MOR of complex non-linear systems, even when predicting unseen
data.

How can autoencoders enhance non-intrusive model order reduction for non-linear
dynamical systems described by high-dimensional finite element models?

In conclusion, autoencoders have demonstrated significant potential for enhancing
MOR in non-linear dynamical systems by learning lower-dimensional representations
using data. They are capable of identifying manifolds that capture the essential dy-
namics of these systems.

This study has shown that while autoencoders can successfully perform dimen-
sionality reduction, their performance in terms of accurately capturing and predicting
system dynamics can vary, depending on the complexity of the behaviour of the sys-
tem, and the specific parameters chosen for the ROM. This inconsistency is for exam-
ple highlighted through methods like SINDy Autoencoders (subsection 2.2.3), which
struggled to model the underlying dynamics accurately.

The development of the proposed methods SPLIT and SPLIT+ (subsection 2.2.5
and 2.2.6), represents a significant advancement by integrating the strengths of exist-
ing techniques and carefully optimizing key parameters. SPLIT successfully combined
the autoencoders its capability to learn meaningful manifolds with the aid of linear dy-
namics, resulting in a robust method for reducing model complexity while preserving
dynamic accuracy. By jointly learning the manifold and its reduced dynamics, SPLIT
offered a reliable ROM that accurately captured both linear and non-linear behaviour.
Its extension, SPLIT+, further improved performance by refining the learned dynamics
through polynomial regression, leading to even better predictions in complex scenar-
ios.

In summary, while autoencoders offer valuable tools for dimensionality reduction,
their application in MOR requires careful integration with methods that ensure accu-
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rate modeling of the dynamics. The success of SPLIT and SPLIT+ demonstrates
the potential for autoencoder-based MOR techniques by combining state-of-the-art di-
mensionality reduction with strategies that enforce accurate dynamic representations.
This integrated approach forms the basis for further improvements, enabling even
more effective and robust MOR techniques for nonlinear dynamical systems. Some
recommendations for further improvements were discussed in section 4.2.
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