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Abstract

In this study the interval censoring case 2 model combined with the Cox model is
considered. The event-time distribution function is modelled non-parametrically. Two
algorithms are proposed to estimate the event-time distribution function together with
the Cox coefficients. Kernel smoothing is applied to the non-parametric MLE of the
event-time distribution resulting in the smoothed MLE (SMLE). A two-step method
for choosing the smoothing bandwidth based on minimising the MSE is introduced.
Given the SMLE, the precision of the MLE is tested using bootstrap simulations. New
event-times are sampled from the SMLE which are then used to compute bootstrap
estimates of the event-time distribution. This is done for multiple sample sizes to
observe large sample behaviour. This study suggests that larger sample sizes lead to
better estimates. Monte Carlo simulations and the bootstrap simulations agree on the
bandwidth and the large sample distribution of pointwise estimates of the event-time
distribution.
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Chapter 1

Introduction

Human population size has been documented for centuries. In 1760, Daniel Bernoulli wrote an essay
reviewing the effectiveness of inoculation against smallpox, a method for immunisation. Based on
data containing individuals ages, the population that is alive and the decrease in population at each
age group, Bernoulli stated that the prevention method was advantageous if the procedure itself did
not cause too many deaths as inoculation itself had a risk of infecting with the disease. Bernoulli’s es-
say is one of the early articles in which the ideas of what is currently called survival analysis are used.

Since then, the branch of statistics has seen many developments. Applications are not only found
in epidemiology but any field where the time elapsed until an event of interest is measured. Such
data are called time-to-event data. The name survival analysis suggests its application in medicine.
Consider a study on breast cancer, in the Netherlands, women aged between 50 and 75 years old are
asked for examination. In a study like this, the event of interest is the starting of the development
of breast cancer. During the screening, the patient either has the disease or not. If malignant tissue
is discovered during the examination, the exact time of the event is only known to be before the
inspection time. If the inspection time is used as the true event time, the estimate of the time of
developing breast cancer is overestimated. This issue motivates to consider censored data, that is
data of which the precise time of event but only known to lie in a time interval. Survival analysis
deals with this type of data and is used extensively in medicine. Within actuarial science, the the-
ory of survival analysis is applied to make predictions of the payout. Insurance companies need to
estimate the risk of a client to determine the premium.

In survival analysis, important functions are the survival function S(t) = 1−F (t) describing the
probability that an event has not yet occurred at time t. The hazard function λ(t) is interpreted as a
measure of danger a subject is exposed to at time t. Research on lifetimes of a subject arise in many
different fields. A common complication seen in research is that time-to-event data are censored. The
time interval in which the event has taken place can be of infinite length. In some cases only a single
inspection is done. This often happens when testing is destructive so only a single inspection can be
done. An example of this is in animal testing where death of the animal is required for observation.
There also exist cases where continuous inspection of the subject is impractical, think for example
of medical checkups. Such interval censored data contain less information than exact measurements
of the event times. This problem brings complications to the analysis and should be treated carefully.

Considerable research on survival analysis has been done within both the frequentist and the
Bayesian paradigm. Multiple articles have been published on Bayesian survival analysis, one of
them is (Ibrahim, Chen, & Sinha, 2014). However, the majority of the literature studies survival
analysis in a frequentist paradigm. Recently, more articles have been published using nonparametric
regression to estimate hazard functions rather than parametric regression. This type of inference
does not assume the target distribution belongs to a parametric family. It attempts to fit data in a
larger function space, adding more flexibility to the model. This can be useful when the underlying
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2 CHAPTER 1. INTRODUCTION

parametric model is unknown or when the event distribution is not restricted to a parametric fam-
ily. The likelihood function has been derived for interval censored data. Maximising the likelihood
function where the input is a function that does not belong to a parametric family leads to a non-
parametric optimisation problem. In short, this means that the nonparametric maximum likelihood
estimator (NPMLE) lets the data speak for themselves and does not depend on strong restrictions.
Non-parametric estimation does not solely depend on parametrised families but it can make use of
parametric distributions in some cases. Different algorithms exist for computing the NPMLE for
interval censored data, see for example (Groeneboom, Jongbloed, & Wellner, 2008), (Groeneboom
& Jongbloed, 2014) and (Dempster, Laird, & Rubin, 1977).

In this study it will be seen that the NPMLE is a step function even though the true event-time
distribution is continuous. In (Banerjee & Wellner, 2005), kernel smoothing has been applied to
the NPMLE to produce a continuous estimator by smearing out the jumps using a kernel function.
Because the survival function is defined on the positive real axis inconsistency can occur near the
boundary at t = 0 as kernel density estimation adds mass on the negative time axis. A method to fix
inconsistency around boundaries of the domain is studied in (Groeneboom & Jongbloed, 2015). It
is natural to question the accuracy of this smoothed NPMLE (SMLE). (Banerjee & Wellner, 2005)
proposed point-wise confidence intervals for F (t0) using subsampling techniques. More research is
done in (Sen & Xu, 2015) where a simulation study for a the mixed case interval censoring model
is done and proved inconsistency for bootstrap confidence intervals using the NPMLE.

The event time distribution in survival analysis can differ per subject. Other covariates can play
an important role. The lifetime of a machine can for example be increased by using a material
with a higher hardness, then, hardness is a covariate. A medical example would be to measure
the blood pressure of patients when doing research on cardiovascular diseases. The Cox model is
a way to incorporate covariates into the analysis. In this model, each covariate is weighted which
need estimation together with the cumulative hazard function. The hazard function within the Cox
model is defined as Λ(t|s) = Λ0(t) exp(β>s) where Λ0 is the baseline, which is equal for each subject.
Covariates s are weighted by the vector of Cox coefficients β. Both the baseline hazard and β can
be estimated using the the maximum likelihood estimator. The optimisation is in the cross product
of a function space and a Euclidean space. This means that there is a parametric as well as a
nonparametric component. Such models are called semiparametric. The amount of literature on the
Cox model combines with interval censored models is limited. A study is done in (Pan, 1999) on
the Cox model using current status data. Asymptotic results on convergence of both the parametric
part and nonparametric parts in semiparametric regression are proven in (Ma & Kosorok, 2005).
This article works under technical assumptions and proves a rate

√
n-consistency and asymptotic

normality is proven for weights β in the current status model. Moreover, (Groeneboom & Wellner,
1992) proved an optimal convergence rate n1/3 for Λ̂n not using the Cox model. Ma and Kosorok
state that one cannot improve on this rate in their article. Results for the interval censoring case 2
using the Cox model have not been found.

The aim of this study is to be able to generate confidence intervals for F (t0) in the Cox model
where t0 > 0 for interval case 2 censored data. Furthermore, large sample behaviour is observed of
both the NPMLE F̂n and the estimator of the Cox coefficients. Let (β̂n, Λ̂0n) be the NPMLE for
(β,Λ0), the true Cox coefficients and the baseline cumulative hazard function. Estimators are said

to be (weakly) consistent if (β̂n, Λ̂0n) → (β,Λ0) in probability as n → ∞. In the semiparametric
model, the cumulative hazard function of a subject depends on a function Λ0 and parameters β
in a d-dimensional Euclidean space. Monte Carlo simulations are done to see if one can speak of
consistency of β and Λ0. Multiple sample sizes are used to check whether the Monte Carlo estimates
become closer to the true β and Λ0 the baseline cumulative hazard function. Because in many
cases, the target function Λ0 is expected to be continuous, kernel smoothing is applied to find a
smoothed NPMLE. A bandwidth parameter becomes part of the estimator. In order to obtain a
good estimator, finding a good bandwidth parameter is essential. Because in practice only a single
sample is given, the bootstrap is a useful tool for estimating the bandwidth. (Sen & Xu, 2015)
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proved that the bootstrapped NPMLE yields inconsistent results. This motivates to use smoothing
for estimation of the bandwidth. However, in (Groeneboom & Hendrickx, 2017) the opposite is
proven and it is stated that the bootstrap method is consistent.

A method is proposed to select a good bandwidth in terms of having a low mean squared error.
For different sample sizes, this method is applied to select bandwidths. These bandwidths can be
used to compute statistics of interest. A bootstrap study is done on large sample behaviour of
bootstrap samples. For the sample large sample sizes, results are also obtained using Monte Carlo,
sampling from the true distributions. The Monte Carlo and bootstrap results are then compared.
Large sample behaviour is also checked to see the effect that the sample size has on estimators in
terms of precision. Furthermore, confidence intervals are constructed and the length of the interval
will be observed compared to the used sample size.

1.1 Thesis Outline

An overview of the thesis is given in order to see the connections between the topics that are
treated. First general theory on survival analysis is given. In this chapter it is also explained what
interval censored data means. The next chapter gives understanding on how the likelihood function
is derived and what properties of this function are stated. Next, the Cox proportional hazards model
is introduced allowing to add more variables to the analysis. The newly introduced variables are
then incorporated into the previously derived likelihood function. The maximiser of this function
is called the maximum likelihood estimator (MLE). Algorithms are introduced to find the MLE.
Because the output turns out to be a step function while the underlying distribution function is
continuous, smoothing is applied to the MLE. To check for the accuracy of the estimator, bootstrap
procedures are used. Figure 1.1 shows a flowchart of the order of the chapters of this thesis and
their connections.
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Figure 1.1: This flowchart gives an overview of the topics treated in the thesis and the connections
between them.



Chapter 2

Survival Analysis and Data
Censoring

2.1 Survival Analysis

In survival analysis, “time-to-event” data are analysed. That is, one tries to extract information
from data about the time elapsed until a specific event happens. For a long time life tables have
been used to make estimations of peoples survival times, see for example (Cox, 1972). The the-
ory has found applications in many other fields such as engineering, actuarial science, biology and
many other fields where time-to-event data play a role. Using survival analysis, many things can be
quantified, e.g., how well a new medical treatment performs or whether the lifetime of a machine
improves when using a more durable material. This quantification is in a measure called hazard. As
the name suggests, the higher the hazard, the more likely the machine is to fail. Important functions
in survival analysis are the survival function and the hazard function, which turn out to be closely
connected.

Let the time at which an event occurs be denoted by the continuous random variable X taking
values in [0,∞]. This random variable describes the event-times and is distributed according to the
distribution function F having density f . The survival function at time t > 0 is the probability that
an event will not occur until time t and is denoted by

S(t) = 1− F (t) = P(X > t).

From the frequentist interpretation of probability, the survival function evaluated at time t is seen
as the proportion of the subjects for which the event has not occurred before time t when infinitely
many samples are taken. Another quantity which turns out to be in one-to-one correspondence to
the survival function is the hazard function, λ. This quantity is defined by

λ(t) = lim
dt↓0

P(X ∈ [t, t+ dt]|X ≥ t)
dt

. (2.1)

The numerator is the probability the event happens in the interval [t, t+dt] given it had not occurred
before. This definition is not valid if X is a discrete random variable. The hazard function of a
discrete distribution is defined as the conditional probability P(X = t|X ≥ t), however, in this study
only continuous distributions are treated. Consider a medical situation. The probability in (2.1) can
be seen as the fraction of the population that is still alive at time t that dies during the time interval
[t, t + dt]. Dividing this quantity by the duration of the time interval under consideration results
in a rate. The hazard function can be understood as a measure of danger at time t. Integrating
the hazard function accumulates the amount of hazard a subject has been exposed to until time t.
Assuming that F is differentiable in a neighbourhood of t, the definition of the hazard function can

5



6 CHAPTER 2. SURVIVAL ANALYSIS AND DATA CENSORING

be expressed differently by observing that {X ∈ [t, t+ dt]} ⊂ {X ≥ t}, so

P(X ∈ [t, t+ dt]|X ≥ t)
dt

=
P(X ∈ [t, t+ dt])

dt · P(X ≥ t)
=

1

S(t)

F (t+ dt)− F (t)

dt

dt→0→ f(t)

S(t)
, (2.2)

by the definition of the derivative. The chain rule motivates to express the survival function in a
more elegant way once it is observed that the numerator is proportional to the derivative of the
denominator:

λ(t) =
f(t)

S(t)
= − (1− F (t))′

1− F (t)
= − d

dt
logS(t). (2.3)

Integrating this quantity results in the cumulative hazard function, a measure of “how much risk
there has been up to time t”, using that S(0) = 1 this gives

Λ(t) =

∫ t

0

λ(s)ds = −
∫ t

0

d

ds
logS(s)ds = − logS(t) = − log

(
1− F (t)

)
. (2.4)

By convention, when F (t) = 1, then Λ(t) =∞. Likewise, it can be formulated inversely as

F (t) = 1− S(t) = 1− exp(−Λ(t)). (2.5)

Within survival analysis, the family of Weibull distributions is frequently used. This makes it a good
example to show what a cumulative hazard function looks like. The distribution function is

Fρ,k(t) = 1− e−(ρt)k , (2.6)

where ρ, k > 0 are the shape and scale parameters respectively. Then the cumulative hazard function
is computed using (2.4),

Λρ,k(t) = − log(1− 1 + exp(−(ρt)k)) = (ρt)
k
. (2.7)

Taking k = 1 in (2.6) results in the exponential distribution. From (2.7) it is seen that the cumula-
tive hazard function is a linear function Λρ,1(t) = ρt, making the hazard function λρ,1 constant with
respect to time.

The hazard rate itself does not have much meaning. When integrated it does have an inter-
pretation. For a practical understanding, the idea of (Cleves, Gould, & Marchenko Yulia, 2002) is
followed. For the so-called count-data interpretation of the cumulative hazard function, the under-
lying event-time process is observed. Consider a machine with a bearing. When the bearing breaks,
it is replaced by a working one that is as old as the broken one. The time to the next replacement is
needed is measured. Let Nt be the process counting the number of replacements needed during the
time interval (0, t). Then the cumulative hazard function at t can be interpreted as E(Nt) = Λ(t).
The failure time of the bearing can be modelled by a Weibull distribution where the time t is given
in months. The hazard function is found in (2.6), let the parameters for the Weibull distribution
be ρ = 1

80 and k = 7. This could be a model for failure times of bearings. Then at 80 months,
Λρ,k(80) = 1 the expected number of replacements is 1. A bearing that has lasted for 100 months
has been exposed more risk as Λρ,k(100) ≈ 4.7. This translates to the bearing on average has been
replaced 4.7 times if it was replaced at failure by an equally old working one. A code to simulate
how many replacements are needed before 80 months in R together with a simulation are found in
the Appendix in 8.0.3.

Research on nonparametric U-shaped hazard functions λ is done by (Wang & Fani, 2017). This
type of function is also called bathtub shaped. At time t = 0 the function value is high, then it de-
creases to a minimum before becoming increasing. Why this type of function may appear as a hazard
function can be exemplified the following. A newborn is prone to many medical complications such
as birth defects and lower immune system which may be fatal. This translates to a relatively high
value of the cumulative hazard function for small values of t. After infancy the hazard decreases the
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child becomes stronger, then, as it becomes older, the probability of death starts increasing with
age, for example due to elderly diseases. This results in a U-shaped curve. This shape is also studied
parametrically in (El-Gohary, Alshamrani, & Al-Otaibi, 2013) where the Gompertz distribution is
fitted, of which hazard function is U-shaped.

A quantity often used in clinical trials is the hazard ratio. Given two sub-populations having

hazard ratios λ1 and λ2. The hazard ratio at time t is defined the following HR(t) = λ1(t)
λ2(t) . A

link with the count-data interpretation can be drawn. Given t, a hazard ratio of 2 indicates that
the expected number of events that occurred is twice as high for the first subject compared to the
second.

2.2 Incomplete Data and Censoring

Data is a fundamental part in statistics and should be used correctly. The question is how to use it
properly. There are multiple possible issues the data can be subject to. When collecting data, the
data obtained can be biased, corrupted or duplicated or may have other issues. One specific type of
problem that is often seen, within survival analysis is censoring of data. If not addressed correctly,
all these complications can lead to poor conclusions making it crucial to handle them correctly. In
the following paragraphs these types of censoring are explained and will be motivated by practical
examples.

2.3 Right Censoring and Left Censoring

In the right censoring model, it is assumed that when the event had occurred, the precise event-time
is known. If it had not during the study, then it may or may not happen in the future, that means
it happens at either a finite t or, by convention, at t = ∞. When this happens is unknown. In the
last case, the event of the subject is censored on the right side of the time axis, i.e., it is only known
that the event occurred in the time interval [t,∞]. The following example illustrates this. Figure
2.1 shows this data visually.

Example 1. Right censoring can be illustrated with strokes. When a person experiences one, it is
(usually) known when this had happened making it an exact measurement. If the person being ob-
served, has not had a heart attack or stroke, then if may happen in the future, making the observation
right censored.

Similar to the above, there is left censoring. In this case, the data are observed as follows: A
part of the event times is known exact and another part is known only to lie in an interval in the
past. The occurred event of the ith subject is only known to lie in the interval [0, ti].

Example 2. Consider the Epstein-Barr virus of the herpes family. At young ages, infections usually
cause no symptoms or are indistinguishable from the common mild diseases. It is estimated that 90
percent of adults in the US are infected, so it is assumed in this example that eventually, everyone
is infected. Because no unusual symptoms occur, no time of infection can be indicated. If presence
of the virus is measured, the only thing known is that the time of infection lies between birth and the
current age. Such data is left censored.

The following paragraph elaborates another type of censoring which will be the main focus of
this study.

2.4 Current Status Model and Interval Censoring Case 2

Right and left censoring are not the only type of censoring mechanisms. A natural extension to the
previously mentioned types of censoring is where the event-times are never exact. In this situation,
the event either happened before the inspection time or after. The model described here only
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Figure 2.1: Data in the right censoring model consists partly of exact observations and the rest is
censored, i.e., the event had not happened before the time of measurement. The red line separates
the exact observations (crosses) from the intervals of the censored data (lines).

measures the state of the subject at the current time, giving its name current status model but also
goes under the name of interval censoring case 1. Let again X ∼ F be a continuous random variable
describing the event-times. Application of this model often happens when observations on the event
requires destructive testing, for example in animal testing. For each subject i, Xi is unknown. The
only thing known is the first and only inspection time T1,i and the fact whether Xi had taken place
before T1,i or may have happened after the inspection. Here it can be checked whether the onset of a
disease has already taken place or not at a certain time where inspection means death of the animal.
Another type of censoring, on which this study is focussed is the interval censoring type 2 (IC2).
The difference here is that there are two moments of inspection whereas the current status model
has only one. This can be applied when inspections cannot be done continuously and it is possible
to do them multiple times. It is possible that the event has occurred before the first inspection, after
the last, or in between the two.

Example 3. In medical studies one could be interested in a survival time after a given treatment
for a certain disease. There may be risk of the disease to return. Because of this, two check-ups are
planned. The first check-up is after 3 years after the treatment, and another one 6 years later. If
the patient appears to be ill again during the first check-up, then the only thing known is that this
happened at some point during the first three years after the treatment. It is also possible that signs
of the diseases have returned between the first and second check-up. Another possibility is that no
signs have returned until the second check-up, then it may or may not happen in the future.

Throughout the study, the focus lies on case 2 interval censoring. For an easier discussion, by left
censored it is meant that the event happened before the first inspection time and middle censored
when the event happened between the two inspection times. The last possibility is called right
censored, not to be confused with the type of censoring.

Before starting the analysis, the concept of interval censoring needs translation to the language
of mathematics. Starting with the general mixed case interval censoring model. In this model, for
each subject the event-time is interval censored with a different number of inspections. Denote the
random vector containing Ki inspection times of the i’th subject by Ti = (T1,i, . . . , TKi,i) ∼ H such
that almost surely Tk1,i < Tk2,i when k1 < k2. A very general form would be to take Ki to be a
positive integer valued random variable for each subject. An indicator is defined for every interval
of the form (Tj,i, Tj+1,i] for j = 0, . . .Ki + 1. By convention T0,i = 0 and TKi+1,i = ∞. Define the
indicator ∆j,i = 1Xi∈(Tj,i,Tj+1,i] which is one if the event occurred in the given interval and zero if
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Figure 2.2: A visualisation of type 2 interval censored data. The red lines separate the events of
δi = 1 (bottom), γi = 1 (middle) and the events with µi = 1 that have not occurred yet (top). Each
line represents the time-interval in which the event had taken place.

this is not the case.

For the current status model, Ki = 1 for all i and the event Xi happened either before time
T1,i or after. Only a single indicator variable is used to represent in which interval the event Xi

occurred. This interval is either in [0, T1,i] or in (T1,i,∞].

One speaks of the interval censoring case 2 model if Ki = 2 for each subject i. In that case one
speaks of interval censoring case 2 (IC2). This model has for each subject two inspections and thus
three intervals of the form (Tj,i, Tj+1,i] in which the event can happen. This model will be of main
interest during the thesis so here, special notation for the variables are therefore introduced. Instead
of T1,i and T2,i the two inspection times are denoted by (T,U) ∼ H such that T < U almost surely.
In this study, the distribution of inspection times H is assumed to be continuous implying that, with
probability one, ties in inspection times do not occur. The indicators variables are defined as

∆ = 1X∈(0,T ] Γ = 1X∈(T,U ] M = 1−∆− Γ = 1X∈(U,∞]. (2.8)

The indicators in (2.8) are linked to the maximum likelihood estimator in the upcoming chapter.
To some extent, the current status model can be seen as a special case of the interval case 2 model.
Suppose the distribution of the second inspection times U returns high values, so that P(M = 1)
has very low probability, then the observed event i happens only before Ti or in the interval Ti, Ui.
If U is approximately infinite almost surely, that is P(Xi ∈ (Ti, Ui)) ≈ 1− P(Xi ∈ [0, Ti]), then IC2
reduces to the current status model. A visualisation of this type of data is presented in Figure 2.2.
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Chapter 3

The Maximum Likelihood
Estimator

Various approaches to estimating F based on censored data exist. One of the most frequently
used ones is the Maximum Likelihood Estimator (MLE). The philosophy behind it is to estimate
a parameter of function that is most likely according to the observations. The MLE is found by
maximising the likelihood function, a function that is proportional to the probability of obtaining
the data. To put this in more mathematical terms, let x1, . . . , xn be event times from X ∼ F and
assume that the information available is: xi ∈ Ii for 1 ≤ i ≤ n. For estimating F first the probability
of the data is written down and then maximised for the parameter given the data. The likelihood
function is defined as a function of F by

L(F ) := P(Xi ∈ Ii for all i = 1, . . . , n). (3.1)

The nature of Ii is dependent on context. L is called the likelihood function. Maximising this
probability, or more commonly, the logarithm of this probability as a function of F yields the MLE.
From a set of distribution functions, the distribution function F is chosen for which the sample X
is the most likely. These sets can be further specified if more is known about the data generating
mechanism. Independence of samples is an assumption used frequently when estimating parameters
or functions. Suppose Fθ with continuously differentiable density fθ belongs to a parametric family
and one wishes to estimate a parameter θ of a parametric distribution using exact independent
samples x1, . . . , xn, by proportionality and setting Ii = (xi − δ/2, xi + δ/2) for δ > 0, then the
likelihood function becomes

L(θ|x) = δ−nP(Xi ∈ B(xi, δ/2) for all i = 1, . . . , n) =

n∏
i=1

δ−1P(Xi ∈ Ii) (3.2)

=

n∏
i=1

δ−1
(
Fθ(xi + δ/2)− Fθ(xi − δ/2)

) (†)
=

n∏
i=1

[
fθ(xi) +O(δ)

] δ→0→
n∏
i=1

fθ(xi)).

It is used in (†) that F (x ± δ/2) = F (x) ± 1
2f(x)(δ/2) + O(δ2). Then the maximum likelihood

estimator for θ can be found by maximising

θ̂ ∈ argmax
θ∈Θ

n∏
i=1

fθ(xi)),

if it exists. The notation argmaxx∈D f(x) outputs the argument x′ ∈ D so that it attains the max-
imum of f , that is, f (argmaxx∈D f(x)) = maxx∈D f(x). Twice differentiability of the distribution
function F is required for this estimator due to the application of Taylor’s theorem in (3.2). Not
only parametric distributions can be estimated using the likelihood function. Rather than estimating
parameters of a parametric distribution, one can drop the parametric assumption and maximise the
likelihood in a more general function space. Estimation becomes more complicated but a broader
range of distribution functions can be approximated using so called nonparametric inference.

11
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3.1 Estimating Functions with Censored Data

In the context of recovering a survival function from data, equation (3.1) can be used again. Let
the sets Ii denote the intervals in which an event happened for the i’th subject. More formally, let
X ∼ F , a random variable that is not directly observable. Define the random variables (T,U) ∼ H
such that T < U almost surely. The variables T and U denote two inspection times which are done
subsequently and are assumed to be independent of X. Now, variables indicating in which interval
event X had happened can be defined. The event occurred before the first inspection t, between the
inspection times or after u.

Let x1, . . . , xn be n independent draws from F with inspection times (t1, u1), . . . (tn, un). By
definition, this gives rise to (δ1, . . . , δn) and (γ1, . . . , γn). In case 2 censoring the sets Ii have the
bounds ti, ui and ±∞, where ti and ui are the first and second inspection times of the subject i
respectively. Then

Ii =


(−∞, ti], if δi = 1

(ti, ui], if γi = 1

(ui,∞), if µi = 1

(3.3)

From data censored this way, a distribution function is estimated. In survival analysis one is inter-
ested in the event time which is positive. Therefore, the set of interest is the set of distributions
having mass only on the positive time axis

F = {F : F is a distribution function, F (t) = 0 if t ≤ 0}

This set is refined when more is known about the likelihood function.

Let X1, . . . , Xn be independent identically distributed exact samples from F . A good nonpara-
metric estimator for F based on exact data is the empirical distribution function (ECDF), which is
given by

F̌n(t) =
1

n

n∑
i=1

1Xi<t (3.4)

This form can be motivated by the fact that the probability of an event can be viewed as its limiting
relative frequency, that is, the number of times the event occurred divided by the number of trials.
The expression for F̌n(t) is the relative frequency of the event {X < t}. The Glivenko-Cantelli
theorem states that the ECDF converge uniformly to the true distribution, that is supt>0 |F̌n(t) −
F (t)| → 0 as n → ∞, see (Wasserman, 2006). The ECDF is however a rather simple example of
a nonparametric estimator, but it gives some insight in how estimation is possible without using
parametric families. When one has censored data instead of exact data, the ECDF cannot be applied.
In the next section a method for treating such data is shown.

3.2 Derivation of the Likelihood Function

In case 2 censoring there are two inspection time variables and two indicators which imply in which
interval the event happens. Each observation is an independent draw of the random variable

Z = (T,U,∆,Γ) = (Ti, Ui, 1Xi≤Ti , 1Ti<Xi≤Ui)
n
i=1. (3.5)

Deriving the density function of Z is done by first obtaining the density function. In order to
calculate this, it is useful to split into cases δi = 0 or δi = 1 and γi = 0 or γi = 1 and calculate
separately. The probability of the event {T ≤ t, U ≤ u, 1, 1} is zero because the inspection time
cannot be an element of the intersection of two disjoint sets. Rewriting the event corresponding to
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T , U , ∆ and Γ in terms of X, T and U gives

Z = {T ≤ t, U ≤ u,∆ = 0,Γ = 1} = {T ≤ t, U ≤ u, 1X≤T = 0, 1t≤X≤u = 1}
= {T ≤ t, U ≤ u, t < X ≤ u}
= {T ≤ t, U ≤ u, T < X,X ≤ U}.

Using the fact that X is independent of (T,U), the probability of this event under joint probability
measure PX,H is

PX,H(T ≤ t, U ≤ u,∆ = 0,Γ = 1) =

∫ t

0

∫ u

0

∫ u

t

f(x̄)h(t̄, ū)dx̄dūdt̄

=

∫ t

0

∫ u

t

(F (u)− F (t))h(t̄, ū)dūdt̄.

Differentiating the last expression with respect to t and u respectively yields the density given Γ = 1
and is

g(t, u, δ = 0, γ = 1) = (F (u)− F (t))h(t, u).

In a similar fashion the probabilities of the events {T ≤ t, U ≤ u,∆ = 1,Γ = 0} and {T ≤ t, U ≤
u,∆ = 0,Γ = 0} can be computed. These computations show that

P(T ≤ t, U ≤ u,∆ = 1,Γ = 0) =

∫ t

0

∫ u

0

F (t)h(t̄, ū))dūdt̄,

P(T ≤ t, U ≤ u,∆ = 0,Γ = 0) =

∫ t

0

∫ u

0

(1− F (u))h(t̄, ū))dūdt̄.

Again, by differentiation, the density for Z is given by

g(t, u, δ = 1, γ = 0) = F (t)h(t, u)

g(t, u, δ = 0, γ = 1) = (F (u)− F (t))h(t, u)

g(t, u, δ = 0, γ = 0) = (1− F (u))h(t, u)

Using that any non-zero number to the power zero equals one, the three densities can be written in
a single expression which will be the key ingredient for the likelihood function

g(t, u, δ, γ) = F (t)δ(F (u)− F (t))γ(1− F (t))1−δ−γh(t, u), (3.6)

where 0 < t < u, δ, γ ∈ {0, 1}, δ + γ ≤ 1. This is the density of Z defined in (3.5).

There exists a σ-finite measure κ such that for all measurable sets A it holds that if κ(A) = 0,
then P(A) = 0. Let ξ be a measure having finite mass at the points {0, 1} and let ψ be the Lebesgue
measure on [0,∞). Define the product measure κ = ψ × ψ × ξ × ξ on [0,∞)2 × {0, 1}2. It is clear
that κ is σ-finite. For this measure, define that for A = [a1, b1]× [a2, b2]× {0} × {0, 1}, then∫

A

dP =

∫
A

g(t, u, δ, γ)d(ψ × ψ × ξ × ξ) =

∫ b1

a1

∫ b2

a2

0∑
δ=0

1∑
γ=0

g(t, u, δ, γ)dtdu.

The sums arise from the discreteness of the measures ξ. Applying independence of the samples, the
log-likelihood function basic on a sample of size n becomes

L(F ) =

n∏
i=1

F (ti)
δi(F (ui)− F (ti))

γi(1− F (ti))
1−δi−γih(ti, ui). (3.7)

The nonparametric maximum likelihood estimator (NPMLE) is a function F̂n maximising L over
the set of distribution functions F . In the maximisation with respect to F , the values of h play no
role, the function h can therefore be dropped. Taking the logarithm of L the log-likelihood becomes

L(F ) =

n∑
i=1

δi logF (ti) + γi log(F (ui)− F (ti)) + µi log(1− F (ti)), (3.8)
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where µi = 1 − δi − γi. Note that the NPMLE must satisfy certain conditions. It must be a
distribution function. that is only non-zero on the positive real line. If there exists a maximiser, it
is given by

F̂n = argmax
F∈F

L(F ) = argmax
F∈F

L(F ),

The space of all distribution functions could be too large. The key to optimise L is to appropriately
reduce the size of the function space F . The likelihood (3.8) only depends on the values of F at
the inspection times ti and ui. Its behaviour between these inspection times will not change the
output of the likelihood. Because the MLE is a distribution, the function may not be decreasing.
Therefore, restrictions to the class of piecewise constant functions is appropriate. Define the set of
unique ordered times

V = {t1, u1, . . . , tn, un, t∞} = {v1, . . . vm, such that v1 < . . . , < vm < v∞}.

Here v∞ is a large value which is defined later. By defining V this way, the inspection times ui and
vi are no longer connected. In proofs and implementation it is essential to keep them tied despite
the new ordering of V , for example for computing the second term in (3.8). To solve this issue, a
link function ` connecting the left and right inspection times is essential for further analysis. Based
on this set V , function class in which L will be optimised becomes the class of piecewise constant
distribution functions with possible jumps at V , defined as

F :=

{
F : F (t) =

m∑
i=1

ωi1(vi≤t),

m∑
i=1

ωi = 1, with ωi ∈ [0, 1] for 1 ≤ i ≤ m

}
. (3.9)

Collecting indices of V of left censored data, that is, all data points with δi = 1 makes the set I1.
Similarly the indices that correspond to the events that occurred between the inspection times form
I2 and the same is done for the right censored events. To finish this, the set I2 is subdivided in sets
I2a and I2b such that they correspond with the left and right bounds of the interval respectively.
More formally,

I1 = {j ∈ {1, . . . ,m} : vj = ti for some i in {1, . . . , n}, such that δi = 1}, (3.10)

I2 = {j ∈ {1, . . . ,m} : vj = ti or vj = ui for some i ∈ {1, . . . , n}, such that γi = 1},
I3 = {j ∈ {1, . . . ,m} : vj = ui for some i ∈ {1, . . . , n}, such that µi = 1}.

And divide the set I2 into I2a and I2b as mentioned above,

I2a = {j ∈ I2 : vj = ti for some i} (3.11)

I2b, = {j ∈ I2 : vj = ui for some i}.

Define the link function ` : I2a → I2b that links the left inspection times in V with the corresponding
right inspection times. This means that if vj = ti ∈ I2a implies v`(j) = ui ∈ I2b and inversely,
vj = ui implies v`−1(j) = ti. A property following from monotonicity of V is that v`(i) ≥ vi. With
this, equation (3.8) becomes

L(F ) =
∑
i∈I1

δi logF (vi)︸ ︷︷ ︸
(I)

+
∑
i∈I2a

γi log(F (v`(i))− F (vi))︸ ︷︷ ︸
(II)

+
∑
i∈I3

µi log(1− F (vi))︸ ︷︷ ︸
(III)

. (3.12)

Writing the likelihood in terms of (3.12) makes implementation of the algorithms that will be intro-
duced easier.
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3.3 Properties of the Likelihood Function

For interval censoring where each subject has the same number of inspections, (Van der Vaart &
Wellner, 1996) states the inspection time distribution drops in the likelihood thus need no estimation.
To gain more intuition about the likelihood, it helps to look at the function carefully. All three terms
will give important information on the shape of the maximiser. Since L is to be maximised, it is
essential to know whether an maximum exists. Therefore, the following proposition is important
before maximisation.

Proposition 1. The set F is convex and the function L is concave on F .

Proof. Fix two different functions G1, G2 ∈ F and ε ∈ [0, 1]. Then εG1 + (1 − ε)G2 is a convex
combination of G1 and G2. Both functions only have jumps at V so the problem can be reduced this
set. By non-decreasingness of the elements of F it holds that εG1(vi) ≤ εG1(vj) and (1− ε)G2(vi) ≤
(1− ε)G2(vj) if i < j. Let ε ∈ (0, 1). Adding the two inequalities together yields

εG1(vi) + (1− ε)G2(vi) ≤ εG1(vj) + (1− ε)G2(vj).

Convex combinations are increasing. It is clear that limt→∞ εG1(t) + (1 − ε)G2(t) = 1 and t = 0
results in zero. The convex combination is also right continuous, hence a cumulative distribution
function. It can be concluded that εG1 + (1 − ε)G2 ∈ F . The next step is to show concavity of L
in F . First note that the second derivative the logarithm is strictly negative and so the logarithm
is strictly concave. This means that log(εx + (1 − ε)y) ≥ ε log x + (1 − ε) log y where equality only
holds when x = y. Concavity is shown for each part of L. Because G1 6= G2 there exists at least
one vi on which they differ. It follows that

log(εG1(vi) + (1− ε)G2(vi)) > ε logG1(vi) + (1− ε) logG2(vi).

The same fact follows for the second and third term log(G1(v`(i)) − G1(vi)) and log(1 − G1(v`(i)))
of L for i ≤ n. This follows again from concavity of the logarithm.

log(εG1(vk) + (1− ε)G2(vk)− εG1(v`(k)) + (1− ε)G2(v`(k)))

= log(ε(G1(vk)−G1(v`(k))) + (1− ε) log(G2(vk)−G2(v`(k)))

≥ε log(G1(vk)−G1(v`(k))) + (1− ε) log(G2(vk)−G2(v`(k))).

Note that in this case one cannot speak of strict concavity because it is possible that G1(vk) −
G1(v`(k)) = G2(vk)−G2(v`(k)). Furthermore

log(1− εG1(vi)− (1− ε)G2(vi))) = log(ε(1−G1(vi)− (1− ε)(1−G2(vi)))

> ε log(1−G1(vi)) + (1− ε) log(1−G1(vi))

Applying these inequalities to every term of the log-likelihood given in (3.8) yields

L(εG1 + (1− ε)G2) ≥ εL(G1) + (1− ε)L(G2),

hence L is concave, completing the proof.

Of course, concavity is not a sufficient condition for a function to have a maximiser. If a function
is not upper bounded, then there exists no meaningful maximiser. Note that for values in c ∈ (0, 1)
it is true that log(c) ∈ (−∞, 0). With this in mind, the log-likelihood function is upper bounded by
a sum of zeros, so that L(F ) ≤ 0. Before showing that there exists a unique maximiser, first a few
results are shown about which elements in V can contain jumps. These results are used for proving
uniqueness of the NPMLE.
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3.4 Reduction of the Support of the NPMLE

The set F consists of piecewise constant distribution functions of which the support is the positive
real axis. Its functions contain jumps only at V , that is, for G ∈ F ,

G(x)−G(x−)

{
= 0 if x /∈ V,
≥ 0 if x ∈ V.

It will turn out that the MLE F̂n does not necessarily have jumps at all v ∈ V . This section will
cover some propositions that prove on what subset of V , the jumps are concentrated. The function
G can be expressed in terms of an integral. Let ν be the measure generating G by G(t) =

∫
[0,t]

dν(τ).

Because ν can only have positive mass at points in V , it allows for a representation of a Dirac mix-
ture. Denote the Dirac measure with all of its mass at v by ηv, then one can write ν =

∑m
i=1 ωiηvi ,

where for all i, ωi ∈ [0, 1] are weights such that
∑m
i=1 ωi = 1. In measure theory, the support of ν is

the smallest set of points at which ν has positive measure. Why the true support is smaller than V
is explained, then propositions are stated and proven to make the discussion formal.

Some of the elements of V can be immediately removed from the support or ν due to their
absence in the likelihood. Two cases exist. Take δi = 1, then the effect this observation has on the
likelihood (3.8) is logF (ti). It is clear that ui has no influence on the likelihood and can therefore
be ignored in further inference. If this point has mass, that is, ν({ui}) > 0 yields precisely the same
likelihood value as putting its mass on the closest point to the right. What is meant by this is seen
in Figure 3.1 and is shown to be true in the proof of Proposition 2. A similar argument holds for an
observation having µi = 1, then the time ti has no influence on the likelihood. Therefore ν({ti}) = 0
for these times. Since L(F ) is to be maximised, it first needs to be finite. With this in mind, part
(II) can shed light on where the discontinuities of the estimator F̂n are located. Suppose that for
some k ∈ I2a the step-function G has no increase on the interval (vk, v`(k)], then G(v`(i))−G(vi) = 0.
Since log(0) does not exist it must be true that for all i ∈ I2a that G(v`(i))−G(vi) > 0. This implies
that for every k ∈ I2a, the NPMLE must have at least one jump on the interval (vk, v`(k)] for L(G)
to be finite.

For all i such that δi = 1, it can be seen that ui is no part L. However, such argument does not
hold when γi = 1, then both ti and ui are part of the likelihood. It will be shown in proposition
2 this argument can be used to show that the nonparametric maximum likelihood estimator has
no jumps on I2a, reducing the set (3.9) of possible functions. In the remainder of this section,
propositions are stated and proven that reduce the support of functions in F even more. A close
look at the log-likelihood function shows that for right censored observations, the times ui play no
role. This suggests that in the maximisation algorithms proposed in chapter 5 these points need not
to be taken into account. The same can be said for i ∈ I3. If µi = 1, then the contribution to the
likelihood of this inspection does not involve ti. The following proposition shows that the MLE F̂n
contains no jumps at these points.

Proposition 2. Let (t1, u1, δ1, γ1), . . . , (tn, un, δn, γn) be independent copies of (T,U,∆,Γ). Let Ĝ
maximise L(G) and let the measure ν be such that it generates Ĝ by Ĝ(t) =

∫
[0,t]

dν(t). If δi = 1

and ν({ui}) > 0, the maximiser is not unique. The same holds if µi = 1 and ν({ti}) > 0. Moreover,
there exists a maximiser having no mass to these points.

Proof. Fix i such that δi = 1 and suppose Ĝ is such that ν({ui}) > 0. Note that the term corre-
sponding to δi = 1 in L does not contain the value G(ui). Therefore changing the value G(ui) itself
does not change the value of the log likelihood because it is not dependent on G(ui). Let vq = ui.
The proof is based on using the measure ν to construct another measure ν̃ by moving mass from
vq to vq+1. The goal is to generate a measure ν̃ such that it generates G̃ such that L(G) = L(G̃)
having no mass at ui. Define ν̃ as

ν̃({vq+1}) = ν({vq, vq+1}), ν̃({vq}) = 0. (3.13)



3.4. REDUCTION OF THE SUPPORT OF THE NPMLE 17

For the rest of the support let ν̃|V \{vq,vq+1} = ν|V \{vq,vq+1}. By ν|B means that the measure ν is
restricted to B.1 A visualisation of the movement of mass is shown in Figure 3.1. Doing so, the
new distribution function G̃ is only changed between on the interval (vq, vq+1). A simple calculation
shows this,

G(vq+1) =

∫
[0,vq+1]

dν(x) =

∫
[0,vq)

dν(x) + ν({vq, vq+1}) (3.14)

=

∫
[0,vq)

dν̃(x) + ν̃({vq+1}) =

∫
[0,vq+1]

dν̃(x) = G̃(vq+1).

It is clear that at all times v ∈ V \{vq} it is also true that G(v) = G̃(v), hence, the likelihood

is unchanged, i.e., L(G) = L(G̃). This implies that, if G is an MLE, another maximiser of L is
generated, thus the maximiser of L is not unique. The same argument holds when i is such that
µi = 1 and ν({ti}) > 0. This can be done for any of such cases where δj = 1 and ν(uj) > 0, so there

exists a function G̃ that has all mass removed from the inspection times ui with δi = 1 and ti with
µi = 1, resulting in a maximiser without mass on these points.

Because these inspection times are no part of the likelihood function, they do not need to be
included in the optimisation, this is useful in the algorithmic procedure in chapter 5. Instead of
observing which points are not part of the likelihood, one can also try to see which elements v
the MLE cannot have mass while being part of L. Suppose that G is the MLE. If G has mass on
specific points, it will be shown that moving masses as done in (3.13) results in a strict increase in
the likelihood. To argue why this is possible, the monotonicity of the logarithm is used. Consider i
such that µi = 1. Its contribution to the log-likelihood is µi log(1 − F (ui)). Because the goal is to
maximise L, finding a way to increase µi log(1 − F (ui)) will result in a strict increase. Decreasing
F (ui) will result in a strict decrease of the likelihood. Let vq = ui, moving the mass ν({ui}) to the
first left point vq−1 as in Figure 3.2 yields a decrease of F (ui). A formal statement is found in the
following proposition.

Proposition 3. Let (t1, u1, δ1, γ1), . . . , (tn, un, δn, γn) be independent copies of (T,U,∆,Γ). The
measure ν generating the NPMLE G by G(t) =

∫
[0,t]

dν(t) maximising L has no mass at ui when

µi = 1. Similarly, when γi = 1, then ν({ti}) = 0.

Proof. Let G be the NPMLE and fix i such that µi = 1. Let ν be the measure generating G ∈ F such
that ν({ti}) > 0, then

∫
[0,vk]

dν(t) = G(vk). As in the previous proof, a new measure is constructed

using ν that increases the likelihood. Move the mass of ν at ui to the first inspection on the right
of ui. This means, if vq = ui, then the new measure is defined as

ν̃({vq+1}) = ν({vq, vq+1}), ν̃({vq}) = 0,

and ν̃|V \{vq,vq+1} = ν|V \{vq,vq+1}. Measures ν̃ and ν only differ on the points vq and vq+1. Now it

1For any ν-measurable sets A,B it holds that ν|B(A) = ν(B ∩A). It is easy to show that ν|B is a measure.
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can be shown that this procedure will always increase the likelihood. Denote vq+1 = tr, then

L(G) =

n∑
j=1

δj logG(tj) + γj log(G(uj)−G(tj)) + µj log(1−G(uj)) (3.15)

=

 n∑
j=1
j 6=i,r

δj logG(tj) + γj log(G(uj)−G(tj)) + µj log(1−G(uj))

+ log(1−G(ui))

+ δr logG(tr) + γr log(G(ur)−G(tr)) + µr log(1−G(ur))

<

 n∑
j=1
j 6=i,r

δj log G̃(tj) + γj log(G̃(uj)− G̃(tj)) + µj log(1− G̃(uj))

+ log(1− G̃(ui))

+ δr log G̃(tr) + γq log(G̃(ur)− G̃(tr)) + µq log(1− G̃(ur))

=L(G̃).

the strict inequality in the third line is true because G(ui) > G̃(ui) implies log(1 − G(ui)) <
log(1 − G̃(ui)). This relocation procedure can be applied for every i with µi = 1. If there is no
inspection time on the right, the mass can be relocated to v∞. This procedure results in a strict
increase in the likelihood, thus, G was not the MLE. Consequently, the MLE cannot have mass at
ui if µi = 1. In the case γi = 1 on the time ti can have its mass moved to the first inspection time
on the left. Then a new measure is found

ν̃({vq−1}) = ν({vq−1, vq}), ν̃({vq}) = 0,

such that G(ti) < G̃(ti) so that log(G(ui) − G(ti)) < log(G̃(ui) − G̃(ti)), increasing the likelihood.
The movement of the mass is in this case different, see Figure 3.1 for an illustration. The rest of the
proof remains the same.

In the previous propositions two types of inspection times have been considered. One type of
observation that play no role in the likelihood function. The other proposition looked at how to
increase the likelihood by moving masses to the right. This makes it natural to ask if it is possible
to increase the likelihood by taking mass from a point on the right. By looking at the likelihood
function, it can be seen that some terms increase by increasing the value of F . Take for example
δi = 1, then the contribution to the likelihood is δi logF (ti). If a relocation of mass can find a
distribution function F̃ such that F̃ (ti) > F (ti), then a strict increase is found. This is also the
case when γi = 1 and a new distribution function F̃ is generated such that F̃ (ui) > F (ui) such that
log(F̃ (ui)− F (ti)) > log(F (ui)− F (ti)). The next proposition states that such points do exist.

Proposition 4. Let (t1, u1, δ1, γ1), . . . , (tn, un, δn, γn) be independent copies of (T,U,∆,Γ). Let
G ∈ F be a distribution function such that for δi = 1 and vq = ti and ν({vq+1}) > 0, then
G /∈ argmaxG′∈F L(G′). The same holds when γi = 1 and vq = ui and ν({vq+1}) > 0.

Proof. Similar type of argument holds as used in the proof for Proposition 3. Consider the case
where δi = 1 and vq = ti and ν({vq+1}) > 0. By constructing a new measure ν̃ such that

ν̃({vq}) = ν({vq, vq+1}), ν̃({vq+1}) = 0.

The new distribution function G̃ is equal to G on the set [0, vq) ∪ [vq+1,∞). The difference in the

function values playing a role in the log likelihood is that G̃(ti) > G(ti) so that δi log G̃(ti) > G(ti),
increasing the likelihood. For all other elements of v ∈ V \{ti} it holds that G̃(v) = G(v). Precisely
the same idea is used as in (3.15) for the case when γi = 1 and vq = ui where ν({vq+1}) > 0.
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Figure 3.1: The original distribution function is displayed in red, for the biggest part coinciding with
the black function. Moving the mass of x = 2 to x = 3 yields the black step function.

Figure 3.2: The original distribution function is displayed in red, for the biggest part coinciding with
the black function. Moving the mass of x = 2 to x = 1 yields the black step function.
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Suppose data are collected such that for the smallest inspection time v1 = tq has δq = 0. When
maximising L(F ) it follows that F (tq) = 0. This is because F (tq) must be larger or equal than
zero. There exist two cases. Take γq = 1, then F can be optimised such that log(F (uq)− F (tq)) is
maximal. This is done by letting F (tq) = 0. If µq = 1, by Proposition 2 the mass can be moved
to v2. A similar statement follows from data with vm = uq having µq = 1. Then the contribution
to the log-likelihood is log(1 − F (un)). If the MLE is a distribution function then F (∞) = 1. If
F (uq) = 1 then log(1 − F (uq)) = log(0) = −∞. In this case, the MLE is a subdistribution since
F (uq) < 1, the leftover mass is then put at the point v∞.

After data are collected, Proposition 2 allows to reduce the number of potential support points.
Computationally this is advantageous as the complexity of the algorithms is an increasing function
of the size of the support. Propositions 3 and 4 give more intuition on how the log likelihood be-
haves. They show that all the mass of the NPMLE is located at the inspection times ti of δi = 1 and
ui’s of γi = 1. Next to this, these propositions allow for more reductions on the set of support points.

Now that the log likelihood and some of its properties are known, behaviour of its maximiser is
studied. First uniqueness of the MLE is proven. Now that the support of the jumps of the functions
in F can be reduced using the propositions above, the final support V of the measures generating
the distribution functions in F is reduced to

V = {v ∈ I1 ∪ I2b ∪ {v∞}, v1 < v2 < · · · < vm < v∞}, (3.16)

having m = |V | elements. For proving uniqueness, the fact that jumps are only located on V will
be used.

3.5 Uniqueness of the Maximiser

In the previous paragraph properties for the maximiser, or should be spoken about a maximiser?
Suppose in a study the event time distribution F needs to be found and conclusions are based upon
it. If there are multiple cumulative hazard functions, conclusions based upon such function cannot
be consistent. Because of this, uniqueness of the NPMLE is important in the analysis.

Theorem 1. The log likelihood function L(F ) defined in (3.8) has a unique maximiser on F .

Proof. Let the measures ν1, ν2 be the measures generating F1, F2 respectively by Fi(t) =
∫

[0,t]
dνi(t),

i = 1, 2. The support of the measures is V , the set of all inspection times reduced using Propositions
2 and 3, that is, for both measures ν1 and ν2 we have ν({tq}) = 0 if δq = 0 and ν({uq}) = 0 if
γq = 0. First the easy case is considered. The proof is based on strict concavity of the logarithm,
i.e., if x, y ∈ R+ such that x 6= y, then for ε ∈ (0, 1),

log(εx+ (1− ε)y) > ε log x+ (1− ε) log y. (3.17)

The distributions from above are chosen such that F1 6= F2, otherwise there is nothing to prove.
There must exist at least one vk ∈ V such that F1(vk) 6= F2(vk). If vk corresponds to an inspection
time tq with δq = 1 then (3.17) shows that

log(εF1(tq) + (1− ε)F2(tq)) > ε logF1(tq) + (1− ε) logF2(tq). (3.18)

If vk corresponds to an inspection time uq with µq = 1 then

log
(
1− εF1(uq) + (1− ε)F2(uq)

)
= log

(
ε(1− F1(uq)) + (1− ε)(1− F2(uq))

)
(3.19)

> ε log(1− F1(uq)) + (1− ε) log(1− F2(uq)).

Only a single occurrence of either (3.18) or (3.19) is needed for strict concavity of L because a strictly
concave function plus a concave function is strictly concave. A case that requires more attention
is when tq = vk corresponds to an inspection time such that γq = 1. When F1(uq) − F1(tq) 6=
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F2(uq) − F2(tq), (3.17) results in strict concavity, however, it may happen that F1(uq) − F1(tq) =
F2(uq) − F2(tq). Then (3.17) becomes an equality if x = F1(uq) − F1(tq) and y = F2(uq) − F2(tq).
However, it this equality occurs, then it is possible to show that this local behaviour of F1 and F2

change non-local behaviour of the functions too as a consequence on where the jumps are located.

By definition of F , no jumps occurs on tq = vk. Because if F1(vk) 6= F2(vk), it is therefore also
true that F1(vk−1) 6= F2(vk−1). If the time vk−1 corresponds to an inspection time with indicator
variable γq2 = 0. Strict inequalities (3.18) and (3.19) finish the proof. If γq2 = 1 the same situation
occurs, i.e.,

(i) F1(uq2)− F1(tq2) 6= F2(uq2)− F2(tq2 , )

(ii) F1(uq2)− F1(tq2) = F2(uq2)− F2(tq2),

where F1(uq2) 6= F2(uq2). If case (i) occurs, the proof is done. The problem becomes nested in case
of (ii). By following thr last step multiple times with no occurrence of (i), one finds a q0 such that
tq0 = v1, for µq0 = 0. If γq0 = 1 and (ii) occurs, then

F1(uq0)− F1(tq0) = F2(uq0)− F2(tq0) (3.20)

and F1(uq0) 6= F2(uq0) so that F1(tq0) 6= F2(tq0). However, tq0 = v1 and the functions in F have
no mass in tq0 when γq0 = 1, this forces F1(tq0) = F2(tq0) = 0. Consequently, F1(uq0) − F1(tq0) 6=
F2(uq0)−F2(tq0), contradicting (3.20). Thus, there must always exist some point in which the strict
concavity of the logarithm can be applied. If δq0 = 1 and tq0 6= v1 and (ii) occurs, then there exists
a smaller tqb+1

= v1. By the same reasoning it holds true that F1(tqb+1
) 6= F2(tqb+1

). This does not
lead to a contradictory situation, but it does hold true that for a δqb+1

= 1 that F1(tqb+1
) 6= F2(tqb+1

),
so a single application of (3.18) yields strict concavity of L.

Uniqueness of the maximiser does not necessarily result in a good estimate. In simple cases it
does. Suppose a mean of a random variable X ′ ∼ F ′ is to be estimated if it exists. Let X ′1, . . . , X

′
n be

i.i.d. samples from F ′, then the sample mean converges to the mean, i.e., X̄n = 1
n

∑n
i=1X

′
i → EX ′.

In this case, the estimator for the mean X̄ converges to where it should. This motivates to introduce
the concept of consistency. Let Yi, . . . , Yn be independent identically distributed from G according
to distribution PY . An estimator Θ̂n := Θ̂n(Y1, . . . , Yn) for θ is said to be consistent if Θ̂n converges
to θ in PY−probability, that is, for all fixed ε > 0

PY (|Θ̂n − θ| > ε)→ 0,

in probability as n → ∞. The consistency is called strong when the convergence in the case of
almost sure convergence.

An interpretation of this definition is that for a fixed value ε > 0, as the sample size increases,
it becomes less probable that the absolute error in the estimation is greater than ε. In estimation
problems consistency is an important property as it guarantees that the estimator converges to the
right value as the sample size tends to infinity. Aside from the mathematical definition, it can be seen
as a property that shows whether an estimator converges to where it should. For standard examples
of the maximum likelihood estimator, for example if samples are drawn i.i.d. from a density with
finite mean, the estimator for the mean µ becomes

µ̂n =
1

n

n∑
i=1

xi → µ as n→∞

by the law of large numbers. There also exist cases where an estimator is unbiased but does not con-
verge to its mean. An easy example illustrating this is the statistic Θ(X) = Xn. Then EΘ(X) = µ
but no convergence takes place.
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However, in less trivial cases, things may become more complicated. In (Schick & Yu, 2000)
state that the L(F ) has a maximiser. Research has been done on consistency of the NPMLE for
interval censored data in (Van der Vaart & Wellner, 2000) (Song, 2004). Vaart concludes for the
mixed case interval censoring in Theorem 8 that under the L1 distance, the NPMLE converges to
the true distribution almost surely, thus, the NPMLE is consistent. This result holds for the IC2
model. In the next chapter, the IC2 model is extended to the Cox model.



Chapter 4

Cox Proportional Hazards Model

The hazard function λ is a function of only time. It can be expected that the hazard is different for
every subject having different covariates, resulting in a different hazard. This chapter introduces a
model to include other variables into survival models other than time. For example, mortality does
not merely depend on time but can also be influenced by other factors that can quantify health such
as blood pressure. For instance the drugs taken by a subject during medical study influence the
time-behaviour of the hazard function in a way. Effect of drugs can be beneficial as well as it could
be harmful, dosage of such drugs can be a covariate in a model. Then the model can help to gain
insight in how the hazard is being influenced by the dosage. If the drugs lead to a decrease in the
hazard function, it may be possible that the drugs are beneficial.

Let s be a n by d real matrix of explanatory variables and let sj denote the vector of variables
of subject j. Different models exist that allow additional variables to be introduced. One impor-
tant model is the accelerated failure time model. As the name suggests, it models an accelerated
deterioration by a covariate-dependent scale parameter. This model is described mathematically as

F (t|s) = P(T ≤ t|S = s) = F0(t/c(β>s)),

where c(·) is a function describing how the covariates s affect the “speed of time”. Another important
model on which this study is focussed is the Cox proportional hazard model, named after Sir David
Cox due to his study in (Cox, 1972). In the general proportional hazards model, the hazard function
is assumed to be proportional to a function of covariates, this assumption is called the proportional
hazards assumption. This function is of the form c(β>s) such that c(0) = 1. From this point the
Cox proportional hazards model is abbreviated as the Cox model. The function c is defined in the
Cox model as

c(β>si) = exp(β>si) = exp

 d∑
j=1

βjsij

 .

The vector β ∈ Rd is referred to as the Cox coefficients. Since proportionality of exp(β>s) with the
baseline is assumed, the following expression for the (cumulative) hazard function is obtained,

λ(t|si) = exp(β>si)λ0(t), (4.1)

Λ(t|si) = exp(β>si)Λ0(t).

If si = 0, i.e. exp(β>si) = exp(0) = 1, then the hazard function is equal to the so-called baseline
hazard function, denoted by λ0. It needs to be noted that unlike for distribution functions, positive
multiples of (cumulative) hazard functions are again a (cumulative) hazard function. If a set has
this property, then the set is called a cone. The right hand sides of both expressions in (4.1) consist
of a parametric part, where β is the parameter and a nonparametric part, λ0. Proper estimation of
β can lead to useful conclusions. The proportional hazards assumption also has meaning in terms
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of the survival function. Some algebra shows that

Λ(t|s) = exp(β>s)Λ0(t) = − exp(β>s) logS0(t) = − log
(
S0(t)exp(β>s)

)
(4.2)

Now, using equation (2.3) by applying the mapping x 7→ − log x on both sides yields

S(t) = S0(t)c(β
>s). (4.3)

The latter also allows to write F in terms of the baseline distribution F0. From equation (4.3) the
following is obtained

F (t) = 1− (1− F0(t))exp(β>s). (4.4)

If si and β are such that exp(β>si) > 1, then the hazard function becomes higher than the
baseline hazard. When exp(β>si) < 1 it is implied that subject i has a lower risk of failure than the
baseline hazard. Using the proportional hazards assumption should not be done without verifying
whether the assumption is appropriate. Even though testing this assumption is not part of this
study, it is important to mention.

In (Minami et al., 1998) concludes that the a high blood pressure increases the risk on a my-
ocardial infarction. A study can be done on the influence of blood pressure (s>)1 on the risk of
having a myocardial infarction. Of course there is a link between these medical conditions, but
proper estimation of β under the proportional hazards assumption can quantify how blood pressure
can increase the risk of a heart attack once the proportional hazard assumption is verified. If enough
data are available, more covariates can have their weight β estimated accurately. This allows for
introducing gender as a second covariate. It is possible that the weight β2 for genders s2 is estimated
to be close to zero, i.e., β2 ≈ 0 which implies that exp(β>sj) ≈ exp(β1s1j). Then one could study
whether gender is an explanatory variable.

The hazard ratio is earlier discussed in chapter 2. In the Cox model, comparing two different
sub-populations, the hazard ratio simplifies elegantly. Continuing with the medical example above,
suppose weights β have been fitted to the data and the cumulative hazard function Λ0 is estimated.
Let one subject have covariates sj and another subject have sk. The hazard ratio becomes entirely
dependent on the covariates and not on time,

HR(t) =
λ(t|sj)
λ(t|sk)

=
exp(β · sj)λ0(t)

exp(β · sk)λ0(t)
= exp(β · (sj − sk)).

It is possible to estimate the baseline hazard function parametrically. Generalised Gamma,
Weibull and Gompertz are distributions that are commonly used in applications, see (El-Gohary et
al., 2013) and (Bradburn, Clark, Love, & Altman, 2003). Assuming a parametric distribution on
the data strongly decreases the size of the function space in which the optimisation is done, which
possibly introduces a bias. In many situations it is desirable to let the data speak for themselves,
and therefore opt for a nonparametric approach. Parametric estimation only needs approximation
of parameters. Because the nonparametric approach needs estimation of its function values such
an approach becomes more complicated and computationally intensive compared to parametric
approximation where only a few parameters need estimation. Another downside to a non-parametric
approach is that convergence rates are usually lower than for parametric methods. For example, the
ECDF has a convergence rate to the true distribution of

√
n, see (Wasserman, 2006). Theorem 4.2

in (Groeneboom, Jongbloed, & Witte, 2010) states that the smoothed version of the NPMLE has
a convergence rate of n2/5.1

1The concept of smoothing is elaborated in paragraph 6.1.
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4.1 Semiparametric Regression

Additional to estimating Λ0, in the Cox model one also needs to estimate the Cox coefficients.
Maximising equation (3.8) gives the most likely estimator according to the data. To apply this to
Cox models, a translation is required, expressing the distribution function F in terms of the Cox
hazard will do this. The relation between the distribution function and the Cox cumulative hazard
is required and is easily found using equation (2.5) together with (4.1). It follows that

F (t|s) = 1− S(t|s) = 1− exp(−Λ(t|s)) = 1− exp
(
−eβ

>sΛ0(t)
)
. (4.5)

Plugging this expression into the log-likelihood function given in equation (3.8) yields

L(β,Λ0) =

n∑
i=1

[
δi log

(
1− exp(−Λ0(ti)e

β>si)
)

(4.6)

+γi log
(

exp
(
−Λ0(ti)e

β>si
)
− exp

(
−Λ0(ui)e

β>si
))
− µiΛ0(ui)e

β>si
]
.

There is a slight abuse of notation as L was already defined. From this point, the log-likelihood
refers to this expression. Note that the cumulative hazard function does not in general belong to F .
Because the distribution function and the cumulative hazard are bijective, the class of cumulative
hazard functions can be defined as

H := {Λ : Λ(t) = − log(1− F (t)) for all F (t) ∈ [0, 1)} (4.7)

with the convention that log(0) = −∞. The difficulty is that the maximising argument needs to be
found for two objects simultaneously, one is parametric and the other is non-parametric, such prob-
lem is called semi-parametric regression. Next, a method to deal with such a problem is explained.

The method explained here is called the profile likelihood approach. This approach allows to
split the problem into multiple non-parametric problems. Fix β ∈ Rd so that only the nonparametric
problem needs to be solved for this particular β. The profile likelihood is defined by

pLβ(Λ0) = L(β,Λ0). (4.8)

Let Λ̂β0 be the maximiser of pLβ . If this can be computed for every β, then the NPMLE is the tuple

(β, Λ̂β0 ) maximising L.

(β̂, Λ̂0) = argmax
β′∈Rd

L(β′, Λ̂β
′

0 ) = argmax
β′∈Rd,Λ0∈H

L(β′,Λ0).

This method is called profile likelihood approach. A simple example is given to make the idea more
clear.

Example 4. Consider the function f : [0, 2]× [0, 1] defined by f(x, y) = xy2

x2+1 . The profile likelihood
approach works by first fixing x = x0 ∈ [0, 2]. Proceed by maximising f0(y) = f(x0, y) in which the
only variable is y. It is easy to see that y = 1 maximises f0 independent of which x is fixed. As the
second step of the approach is to maximise f(x, 1) over x. Equating the derivative of f(x, 1) to zero
yields x = 1. The maximiser of f using the profile likelihood approach is then (1,1).

A problem that arises is the computation time of estimating the baseline for a given β so a fine
enough discretisation of a bounded subset of Rd and maximise the profile likelihood is implausible.
It is desirable to decrease the number of β’s for which the profile likelihood function needs to be op-
timised. Efficient choices of β for which the baseline is estimated are crucial. For this, an algorithm
is proposed in Chapter 5 that chooses such β limiting the computation time.

A useful property of L(β,Λ0) is concavity with respect to β. This is shown through convexity of
the exponential function. A negative multiplication of a convex function is concave. That makes it
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clear that −Λ0(vi)e
β>zi is concave with respect to β. Compositions of concave or convex functions

preserve this property under non-decreasingness. (Tibshirani & Wasserman, 2015) state that if
g : Rn → R, h : R→ R, then for the composition f = h ◦ g, the following holds:

(i) If h is concave and non-decreasing and g is concave, then f is concave.

(ii) If h is concave and non-increasing and g is convex, then f is concave.

The first term of the likelihood function log
(
1 − exp(−Λ0(ti)e

β>si)
)

is shown to be concave using

these facts. It follows from (ii) that −Λ0(ti)e
β>si is concave. Since the mapping x 7→ 1− exp(x) is

concave non-increasing mapping, β 7→ 1 − exp(−Λ0(ti)e
β>si) is concave by (i). The middle part is

shown to be concave using the previous two results and the fact that a sum of concave functions is
again concave. It follows that

log
(

exp(−Λ0(ti)e
β>si)− exp(−Λ0(ui)e

β>si)
)

(4.9)

= log
(

1− exp
(
−
[
Λ0(ui)− Λ(ti)

]
eβ
>si
))

+ log
(

exp(−Λ0(ui)e
β>si)

)
= log

(
1− exp

(
−
[
Λ0(ui)− Λ(ti)

]
eβ
>si
))

+
(
− Λ0(ui)e

β>si
)
,

and both terms of the last line are concave, hence, L is concave in β. Concavity with respect to Λ0

can be shown using the same method as done for proving strict concavity of L(F ).

It is proven that the maximiser of L(F ) is unique. Because the goal of this study is to maximise
in the Cox model, it is natural to ask whether the NPMLE Λ̂0n is unique. Fix β and s. By (2.5) it
is true that

L(F ) = L
(
1− exp(−Λ0e

β>s)
)

which equals the log-likelihood function in the Cox model. Both sides share the same maximiser as
the function L itself remains unchanged. Suppose Λ̂0n ∈ H maximises the profile likelihood. Again,
by the bijective relation in (2.5), the maximiser Λ̂0n(t) has a unique F̂n ∈ F , defined by

F̂n(t) = 1− exp
(
Λ̂0n(t)eβ

>s
)

for t ∈ V . F̂n is the unique maximiser of L(F ). Because the cumulative hazard and the distribution
function are one-to-one and only one maximiser F̂n exists, Λ̂0n is the unique maximiser of pLβ

(
Λ0

)
.

Until now it is not known how the maximisers can be computed. The next chapter will introduce
algorithms that are able to do this.



Chapter 5

Algorithms for Maximising the
Likelihood Function

Because estimation of hazard function outside the Cox model is difficult, adding an extra parameters
makes things even more difficult. No method is known to estimate β and Λ0 simultaneously. The
profile likelihood method will be used to make the problem easier, the MLE can then be solved in
two parts. Fix β ∈ Rn. An algorithm able to solve for Λ̂β0 = argmaxΛ0∈H pLβ(Λ0) is proposed.
This algorithm is called the iterative convex minorant algorithm and is studied in (Groeneboom &
Wellner, 1992). More algorithms that can solve the NPMLE exist, see e.g. expectation maximisa-
tion and the support reduction algorithm. All these two are studied in (Dempster et al., 1977) and
(Groeneboom et al., 2008). These algorithms are of iterative nature. This brings a problem when
searching for the optimal β. The idea of the profile likelihood is to fix multiple β’s and for each
of them, Λ̂β0 is computed iteratively. This can become very costly in terms of computation time.
The profile likelihood implicitly becomes a function of β so the profile likelihood needs optimisation
in Rd. Many algorithms that optimise functions in Euclidean spaces make use of derivatives. The
derivative of pLβ with respect to β is time consuming to compute as no explicit formula is avail-
able. Numerical approximations can be computed for derivatives with respect to every direction
of β. In order to do this, the profile likelihood needs to be optimised multiple times for comput-
ing single derivative, making derivative based algorithms a infeasible option. Due to this, so-called
derivative-free methods may be a better alternative for optimising β. Two well-known examples of
such algorithms are Hooke-Jeeves and Nelder-Mead, studied in (Hooke & Jeeves, 1961) and (Nelder
& Mead, 1965). Both algorithms use a set of points in the domain of a multidimensional objective
function. The objective function L is evaluated at these points and based on the output, the algo-
rithm attempts to find a direction increasing the objective function. It will turn out that optimising
the profile likelihood is computationally expensive. Therefore one should choose a derivative-free
method that has needs the least function evaluations.

First the ideas behind the algorithms solving the profile likelihood are treated. The remaining
part of this chapter will cover the derivative-free algorithms.

5.1 Isotonic Regression

Consider the regression context with a set of independent observations (Xi, Yi)
n
i=1 for which a re-

gression function r is to be estimated. Each observation Yi represents a drawing from the random
variable that can be expressed as

Yi = r(Xi) + εi, (5.1)

where εi models the noise and Xi is the explanatory variable for Yi and r is an unknown function.
The random variables modelling noise εi are independent following the same distribution with a
finite second moment. In standard linear regression, one restricts r to be of the form r(x) = ax+ b
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Figure 5.1: A dataset is simulated of size n = 4000. The times ti are simulated from an exponential
distribution. Event-times yi are then sampled from Ber(Fgamma(ti)) where Fgamma is the distribu-
tion of Gamma(2, 1/2) displayed in blue. Each purple dot represents a coordinate ti, yi. The dots
are transparent for better visual interpretation. The red line is the output of isotonic regression.

where a, b ∈ R. Choice of the set of basis function depends on context. When periodic behaviour
is expected, a suitable basis could contain a sine function so that r(x) = a+ b sin(ωx). Sometimes,
when not much is known about the regression function r, a functional assumption is already limiting
the function space too much. The only constraint isotonic regression puts on r is that it must be non-
decreasing. An important property used in the algorithms introduced in chapter 5 is stated in the
next lemma. Only assuming that r is non-decreasing, the data will be used to make a nonparametric
estimation for this function. This comes useful when estimating for example distribution functions,
hazard functions, growth curves, or other monotone relations. Non-increasing functions can also be
estimated by approximating −r using the non-increasing data −(vi)

m
i=1. Applications of isotonic

regression are first given in the following examples.

Example 5. A microbiologist is interested in the growth curve of an unknown species of bacteria.
Bacteria are self-reproductive and therefore growth is measured by the number of bacteria per square
centimetre. This quantity is measured up to an uncertainty which is assumed to be symmetric around
zero. Since the colony is cultivated in a Petri-dish with appropriate nutrition, it can be said that
the density is an non-decreasing function of time. This gives rise to a regression context that fits in
the model of (5.1) where r is non-decreasing and the density is fitted as a function of time. After a
certain time the colony starts dying out. From this time, isotonic regression is no longer valid as it
does not allow decrease.

Example 6. Binary regression is commonly applied in practice. One is interested in the relationship
between an (exact) time-to-event and a set of explanatory variables x. A common technique is called
logistic regression in which the logistic distribution is assumed to be the event time distribution of
the form F (x) = (1 + exp(−β ·x))−1. Isotonic can offer a nonparametric alternative. Consider data
y1, . . . , yn having values in the set {0, 1} and times ti. Figure 5.1 displays this situation. A free-form
is fitted between the graph (t, y).

Regression is an optimisation problem, so a error metric is required. The weighted sum of squared
residuals ε2

i = (yi − r(xi))2 is defined as a function of r by

Q(r) =

n∑
i=1

(
yi − r(xi)

)2
wi. (5.2)
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Here the weights wi, i = 1, . . . , n are non-negative. Minimising this functions in H results in

r̂ = argmin
r∈H

n∑
i=1

(
yi − r(xi)

)2
wi (5.3)

where w ∈ [0, 1]n is a vector of weights. These weights can be chosen depending on context, usually
wi = 1 for all i is used. Uniqueness of the minimiser of Q is shown through its (strict) convexity.
Second derivatives with respect to r(xi) are given by

∂2

∂r(xi)2
Q(r) =

∂2

∂r(xi)2

n∑
i=1

(
yi − r(xi)

)2
wi = 2r(xi)wi.

If all r(xi)’s are positive, this results in a positive definite matrix of second derivatives of Q implying
strict convexity of Q in r. Suppose that there are two minimisers r(1) and r(2) with r(1) 6= r(2), then
for ε ∈ (0, 1),

Q(εr(1) + (1− ε)r(2)) ≤ εQ(r(1)) + εQ(r(2)) = Q(r(1)) = Q(r(2)).

This would imply that any convex combination εr1 +(1−ε)r2 results in a new minimiser for Q, which
contradicts the assumption of them being minimisers. An important result of this theory is given in
(E., Robertson, Wright, & Dykstra, 1990). The authors state that the solution r =

(
r(x1), . . . , r(xn)

)
of (5.3) is given by the left derivative of the greatest convex minorant of the diagram that connects
the lines of the coordinates. The diagram is defined by the points

P0 = (0, 0) and Pj =

(
j∑
i=1

wi,

j∑
i=1

wiyi

)
for 1 ≤ j ≤ n. (5.4)

More specifically, r̂(xj) is given by the left derivative evaluated at
∑j
i=1 wi. The left derivative of

a function φ is equivalent to the standard derivative if φ is continuously differentiable, if it is only
piecewise continuously differentiable, the left derivative is defined as the slope on the left side of
the jump. The greatest convex minorant of a diagram is the greatest function that lies completely
under or on the diagram, restricted to being a convex function. This can be thought of the diagram
as nails in a wall, then a thread is lifted from the bottom up, see Figure 5.2. The left derivative of
a function φ : D → R at point x is defined as the limit

lim
h→0−

φ(x+ h)− φ(x)

h
,

for every x ∈ Do. In the context of estimating event-time distributions or hazard functions, the
function r is restricted to the set F or H, that is, jumps occur only at the set V . The left derivatives
of the diagram (5.4) at the point Pk corresponds to the value of r̂k = r̂(xk), this holds for each
k = 1, . . . , n. Because the points xk are the elements V in which the jumps lie, the solution r̂ is fully
determined by isotonic regression. Because the functions behaviour between the elements of V is
constant, r̂ has its function value defined on [0,max(x)]. Let x(k) denote the kth ordered statistic of
x, that is, the set is put in order from smallest to largest, such that x(1) ≤ x(2) ≤ . . . , x(n). Knowing
r(x(k)) and r(x(k+1)), then the function values of r̂ on the interval (x(k), x(k+1)] is equal to r(x(k+1)).
A close look at the image shows that the two red points above the line do not influence the output.

5.2 Iterative Convex Minorant

The algorithm introduced in this chapter is strongly related to Newton’s method. Newton’s method
is a well-known root-finding algorithm that makes use of Taylor’s theorem. Let ϕ : R → R be a
convex function that is at least twice differentiable. Standard use of Newton’s method finds a y′ ∈ R
such that ϕ(y′) ≈ 0. If y′ is obtained by finding the root of the derivative, ϕ′, then ϕ(y′) is should
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Figure 5.2: The left image shows the greatest convex minorant based on the cumulative sum diagram.
The right image shows the left derivative of the cumulative sum diagram. At a jump, the solid dot
denotes the value of the left derivative at the jump.

be close to an extreme of ϕ. Since the profile likelihood needs maximisation, the latter procedure is
of interest. Let yroot be the root of ϕ′. Then

0 = ϕ′(yroot) ≈ ϕ′(y′) + (y′ − yroot)ϕ′′(y′)

by applying Taylor’s theorem and truncate the polynomial after the second term. Isolating yroot
yields

yroot ≈ y′ −
ϕ′(y′)

ϕ′′(y′)
. (5.5)

Updating y′ as the right hand side of (5.5) iteratively results in the Newton algorithm. This pro-
cedure iterates to the true yroot. Essentially, Newton’s method finds the best linear approximation
every step, not taking into account second and higher order terms.

Let Λ̂0 be the the NPMLE and Λ̄0 ∈ H\{Λ̂0} another estimate. It will turn out that the difference
of these in the log-likelihood

L(β, Λ̂0)− L(β, Λ̄0) (5.6)

can be approximated by a quadratic form. Clearly, the difference is positive because L(β, Λ̂0) >
L(β, Λ̄0) and L(β, Λ̂0) is the maximum of L(β,Λ0) for fixed β. To approximate the NPMLE it makes
sense to minimise the quantity above in the set H. Finding algorithmic sequence iterating over Λ̄0

to make the quantity in (5.6) small. Because Λ̄0 is chosen or known and β is fixed, the only unknown
in (5.6) is Λ̂0. Evaluating the Taylor expansion of L(β, Λ̂0) around Λ̄0 up to the third term yields

L(β, Λ̂0)− L(β, Λ̄0) = L(β, Λ̂0)− L(β, Λ̄0) + (Λ̂0 − Λ̄0)>∇L(β, Λ̄0) (5.7)

+
1

2
(Λ̂0 − Λ̄0)>Hess(L)(β, Λ̄0)(Λ̂0 − Λ̄0) +O

(∣∣Λ̂0 − Λ̄0

∣∣3)
≈ (Λ̂0 − Λ̄0)>∇L(β, Λ̄0) +

1

2
(Λ̂0 − Λ̄0)>Hess(L)(β, Λ̄0)(Λ̂0 − Λ̄0)

=: q̃(Λ̂0, Λ̄0)

Where ∇L is the gradient with respect to Λ0(vj) for j = 1, . . . ,m and Hess(L) is the matrix of
second derivatives. These objects exist because there are only a finite number of function values
Λ0(vi) to which derivatives need to be calculated. The j’th element of the gradient and j, k’th
element of the Hessian are given by

∇L(β,Λ0)j =
∂L(β,Λ0)

∂Λ0(vj)
and Hess(L)(β,Λ0)jk =

∂2L(β,Λ0)

∂Λ0(vj)∂Λ0(vk)
.
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Minimising q̃ with respect to the variable Λ̄0 seems difficult at this point. When maximising an
expression above, the maximiser does not change when a quantity independent of the maximiser is
added to the expression. Choosing an appropriate candidate, −∇L(β, Λ̄0)>Hess(L)(β, Λ̄0)−1∇L(β, Λ̄0)
which is independent of Λ̂0, allows to rewrite the difference in a quadratic form. This form turns
out to be suitable for isotonic regression. Adding this constant to q̃ yields

q(Λ̂0, Λ̄0) :=
[{

Λ̂0 − Λ̄0 + Hess(L)(Λ̄0)−1∇L(Λ̄0)
}>

Hess(L)(Λ̄0) (5.8)

×
{

Λ̂0 − Λ̄0 + Hess(L)(Λ̄0)−1∇L(Λ̄0)
}]

leads to a quadratic approximation of the MLE. To relate this expression to the earlier mentioned
Newton step in (5.5), note that in q, the inverse Hessian is multiplied by the gradient. A minimisation
step of q is in fact a step in Newton’s method as the error of the second order polynomial is minimised
and thus a second order correct method. That means that the error is of order O(|Λ̂0 − Λ̄0|2). A
similarity between q and isotonic regression (5.3) can be discovered. If Hess(L)(Λ̄0) is a diagonal
matrix, then q takes the form

m∑
i=1

[
Λ̂0i − Λ̄0i +

[
Hess(L)(Λ̄0)ii

]−1∇L(Λ̄0)i

]2
Hess(L)(Λ̄0)ii. (5.9)

With proper choices of yi, r(xi) and wi, this equation fits perfectly in the theory of isotonic
regression, see (5.2). Take yi = Λ̂0i as the value of the maximiser which is unknown and let

r(vj) = rj = Λ̄0i −
[
Hess(L)(β, Λ̄0)ii

]−1∇L(β, Λ̄0)i. Finally let wi =
[
Hess(L)(β, Λ̄0)ii

]−1
.

However, first the required derivatives need to be computed. These are found in equations (5.10)
and (5.11). Recall that the the likelihood function is given by

L(β,Λ0) =

n∑
i=1

[
δi log

(
1− exp(−Λ0(ti)e

β>si)
)

+γi log
(

exp
(
−Λ0(ti)e

β>si
)
− exp

(
−Λ0(ui)e

β>si
))
− µiΛ0(ui)e

β>si
]

:= L1(β,Λ0) + L2(β,Λ0) + L3(β,Λ0).

The first derivatives with respect to Λ0(vj) are

∂L1(β,Λ0)

∂Λ0(ti)
= δi

eβ
>si

exp(Λ0(ti)eβ
>si)− 1

(5.10)

∂L2(β,Λ0)

∂Λ0(ti)
= γi


eβ
>si

exp((Λ0(ti)− Λ0(ui))eβ
>si)− 1

−eβ>si

∂L2(β,Λ0)

∂Λ0(ui)
= γi


eβ
>si

exp((Λ0(ui)− Λ0(ti))eβ
>si)− 1

eβ
>si exp(−Λ0(ui)e

β>si)

1− exp(−Λ0(ui)eβ
>si)

∂L3(β,Λ0)

∂Λ0(ui)
= −µieβ

>si .

Note that also ∂L1(β,Λ0)
∂Λ0(ui)

= 0 and ∂L3(β,Λ0)
∂Λ0(ti)

= 0, because L1 and L3 do not depend on Λ0(ui) and
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Λ0(ti) respectively. and the second derivatives are

∂2L1(β,Λ0)

∂2Λ0(ti)
= −δj

e2β>si exp(Λ0(tj)e
β>si)

(exp(Λ0(tj)eβ
>si)− 1)2

(5.11)

∂2L2(β,Λ0)

∂2Λ0(ti)
= −γj


e2β>si exp(−(Λ0(uj)− Λ0(tj))e

β>si)

(1− exp(−(Λ0(uj)− Λ0(tj))eβ
>si))2

if Λ0(ui) <∞

0 otherwise.

∂2L2(β,Λ0)

∂2Λ0(ui)
= −γj


e2β>si exp(−(Λ0(uj)− Λ0(tj))e

β>si)

(1− exp(−(Λ0(uj)− Λ0(tj))eβ
>si))2

if Λ0(ti) > 0

e2β>si exp(−Λ0(uj)e
β>si)

(1− exp(−Λ0(uj)eβ
>si))2

if Λ0(ti) = 0

∂2L3(β,Λ0)

∂2Λ0(ui)
= 0

The Hessian does not have off-diagonal entries if δi = 1 or µi = 1. This is due to the fact that
∂L1(β,Λ0)
∂Λ0(ti)

does not depend on Λ0(vk) if vk 6= ti. The same argument holds for µi = 1. Due to this

property, non-zero second derivatives with respect to different variables only occur when γi = 1,
and only when derivatives are taken w.r.t. to Λ0(ti) and Λ0(ui) for fixed i. Off-diagonal elements
corresponding to γi = 1 are

Hess(L)(β,Λ0)i`(i) = γi
∂2L2(β,Λ0)

∂Λ0(ui)∂Λ0(ti)
=
e2β>si exp({Λ0(ti)− Λ0(ui)}eβ

>si)

(1− exp({Λ0(ti)− Λ0(ui)}eβ>si))2
= −Hess(L)(β,Λ0)ii

(5.12)
For every γi = 1, two off-diagonal elements are non-zero in the Hessian. It should be clear that
there are not many off-diagonal elements in the Hessian. Recall (5.9), because the Hessian is not a
diagonal matrix, the minimiser of (5.9) is only an approximation of the minimiser of (5.7). By this
approximation, the second order part of the approximation has an error, so the method becomes
only first order correct with this additional approximation. This approximation cannot be expected
to work without any justification. The justification is due to the working hypothesis (Groeneboom &
Wellner, 1992) which is explained after the precise statement of the later introduced ICM algorithm.
Now that the theory is established, it can be shown how isotonic regression is applied to (5.8). After
the Hessian is approximated by its diagonal, the correct values for yi, r(xi) and wi given under (5.9)
can be substituted into the cumulative sum diagram (5.4) which then becomes

P0 = (0, 0) and Pj =

(
j∑
i=1

Hess(L)(β, Λ̄0)ii,

j∑
i=1

Hess(L)(β, Λ̄0)iiΛ̄0i −∇L(β, Λ̄0)i

)
. (5.13)

for 1 ≤ i ≤ n. Here Λ̄0i means Λ̄0(vi). The left derivative of the greatest convex minorant is com-
puted, resulting in numerical values of r(xi) which is an estimate of Λ0(xi).

The ICM algorithm is in principle Newton’s method where in each step isotonic regression is
applied to do a linear approximation like the method in (5.5). Iterative use of isotonic regression
itself is not enough to obtain the maximiser of pLβ . Let Λ̄0 be the current iteration of a maximisation
algorithm. Each iteration contains a minimisation problem, given by

B(Λ̄0) = argmin
Λ̂0∈H

q
(

Λ̂0, Λ̄0

)
which is solved using isotonic regression. To see why this works, the statement of the following
lemma from (Jongbloed, 1998) guarantees convergence of the algorithm.
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Lemma 1. Let H be a closed convex cone and pLβ : Rm → R be a concave function such that

it has a unique maximiser Λ̂0. Suppose also that pLβ is continuously differentiable on the set

{Λ0 ∈ Rm : pLβ(Λ0) > −∞}. If additionally Λ̄0 ∈ H\{Λ̂0} such that pLβ(Λ̂0) > −∞, then for
1 ≥ ε0 > 0 sufficiently small

pLβ(Λ̄0 + ε(B(Λ̄0)− Λ̂0)) > pLβ(Λ̄0)

for all ε ∈ (0, ε0].

In words, B(Λ̄0) is a search direction such that there exists an element between Λ̄0 and B(Λ̄0)
that has a larger log likelihood value pLβ than the current iterate Λ̄0. In this application, ε must
be an element of the set [0, 1]. Suppose ε > 1, then it may happen that Λ̄0 + ε(B(Λ̄0)− Λ̄0) which
not an element of the cone. Take for instance Λ̄0 ∈ H, strictly increasing, then 2Λ0 ∈ H. It is clear
that Λ̄0 − 2Λ̄0 is a decreasing function and hence not in H. Lemma 1 guarantees the existence of
an interval [0, ε0] for which any ε ∈ (0, ε0] results in a decrease in the likelihood. Pseudocode of the
algorithm is given in Algorithm 1.

Set ε ∈ (0, 1
2 ), line search parameter;

Set η > 0, accuracy parameter;

Set x(0) ∈ C such that f(x(0)) =∞;

while
[
|x · ∇f(x)| > η or |1 · ∇f(x))| > η or min1≤j≤n

∑n
i=j(∇f(x))i

]
do

ỹ := argminy∈C(y − x+W (x)−1∇f(x))>W (x)(y − x+W (x)−1∇f(x));

if f(ỹ) < f(x) + ε∇f(x)>(ỹ − x) then
x := ỹ

end
else

λ := 1, s := 1
2 . z := ỹ;

while (f(ỹ) < f(x) + (1− ε)∇f(x)>(ỹ − x)) (I)
(f(ỹ) > f(x) + ε∇f(x)>(ỹ − x)) (II) do

if (I) then
λ := λ− s

end
if (II) then

λ := λ+ s
end
z := x+ λ(ỹ − x);
s := s/2;

end

end

end
Algorithm 1: Pseudocode for the Iterative Convex Minorant

Application of the Armijo rule guarantees convergence of ICM. This rule is found in the second
while loop in Algorithm 1. This rule roughly states how fast the iterates must result in de decrease
of the objective function in term of its derivatives. It ensures that the function values of the iterates
do decrease sufficiently as well as the iterates themselves are “different enough” from the previous
one, preventing trapping behaviour. Outputs of the ICM algorithm for different sample sizes are
found in Figure 7.1.

The working hypothesis states the following. Let F̂
(k)
n be the k’th iteration of the ICM algorithm.

Normally, the ICM runs until its convergence criterion is reached. The working hypothesis states

that the one-step estimator F̂
(1)
n and F̂n are asymptotically equivalent. That is, suppose for some

scaling sequence αn, if it is true that αn(F̂
(1)
n (t0)− F0(t0)) → G in distribution then it is also true
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that αn(F̂n(t0) − F0(t0)) → G in distribution. Here, G is a non-degenerate distribution. For this
so-called one-step estimator, a limiting distribution is proven in (Groeneboom & Wellner, 1992).

Because in the ICM algorithm, the Hessian is approximated by its diagonal to compute F̂
(1)
n in

which the off-diagonal elements are not used. Asymptotically, the estimators F̂ 1
n and F̂n are equiv-

alent. For large n this implies the information of the off-diagonal elements can be neglected when
estimating the MLE F̂n as its information is ignored in the ICM step. Even though the hypothesis
remains unproven, it is supported by computer simulations. Under the assumption of the working
hypothesis being true, the estimator obtained using the ICM algorithm is close to the true NPMLE.

Frankly, implementing the ICM is more than copying these lines into the programming language
of preference. The next paragraph is devoted to the problems that are encountered in implementing
the algorithm in the Cox model.

5.3 Difficulties Implementing the ICM Algorithm

This paragraph covers some issues that were encoutered during the implementation of the ICM
algorithm that took time to be solved. Parametrising the time-to-event distribution in terms of the
Cox model comes with problems making the implementation of algorithms less easy. Aside from the
mathematical problems, some of them involve the limitations of the computer or used R packages.
These difficulties are discussed in this paragraph together with their solution.

The isotonic regression step of the ICM algorithm makes is done using the function gcmlcm from
the package fdrtools by (Klaus & Strimmer, 2012). Recall that isotonic regression returns the left
derivative of the greatest convex minorant of a set of points. gcmlcm is a function that finds the right
derivative of the cumulative sum diagram. After constructing the cumulative sum diagram stated
in equation (5.13), it is not always possible to directly apply the function sometimes it is possible
that multiple points of the cusum diagram share the same x-coordinate. This problem is caused by
parametrisation of the Cox model. If an observation is right censored, then the diagonal element of
the Hessian is zero. The cumulative sum diagram is given by

P0 = (0, 0) and Pj =

(
j∑
i=1

Hess(L)(β,Λ
(k)
0 )ii,

j∑
i=1

Hess(L)(β,Λ
(k)
0 )iiΛ

(k)
0 ii −∇L(β, Λ̂

(k)
0 )i

)
.

Suppose µj = 1, then

j∑
i=1

Hess(L)(β,Λ
(k)
0 )ii =

j−1∑
i=1

Hess(L)(β,Λ
(k)
0 )ii.

In this case, the y-coordinate decreases because ∂L(β,Λ0)
∂Λ0(ui)

= −eβ>sk , which is always negative. If a

coordinate on the x-axis is shared by multiple points, only the lowest value determines the slope
for all these points. The two points at the x-axis at x = 2 in Figure 5.2 visualise this idea. When
multiple subsequential right censored observations exist, then by the same argument, the last point,
in terms of index, is the point that determines the slope. This insight allows to temporarily remove
the points of the cusum diagram on the same x-coordinate except for the last before applying gcmlcm.

Not only right-censoring causes issues with gcmlcm. In some cases it occurs that second deriva-
tives become very small, close to the machine precision. During the iterative process, the Hessian

matrix evaluated to some iteration Λ̂
(k)
0 can have very small diagonal elements. This caused some

subsequential x-coordinates of the cusum diagram to become close to- or smaller than the machine
precision which is approximately 2 · 10−16. When this is the case, the two x-values are not distin-
guishable by the computer in regular settings. In this case, gcmlcm fails as described above. Setting
Hessian elements that are close to the machine precision to a small value of 10−8 solves this issue
while keeping the convergence rate.
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5.4 Nelder-Mead Algorithm for Estimating Cox Coefficients

The previous paragraphs of this chapter were devoted to solve the profile likelihood. This resulted in
the ICM algorithm which is able to compute Λ̂β0 for any β up to computational limitations. However,
the ICM algorithm can be time-consuming, especially when the sample size is large. For sample
sizes larger than, say, n = 4000, maximising a single profile likelihood function takes more than half
a minute when η = 10−2 and the initial hazard function is set as the true hazard function.

A clever method is necessary to prevent the computation time from becoming unnecessarily
high. The Nelder-Mead algorithm introduced in (Nelder & Mead, 1965) is a derivative-free method
that can optimise a multidimensional function. The proposed algorithm explores the domain of β
based on a chosen set of points. New iterates are found using the initial set of points. For each
element β(i) in this set, the profile likelihood needs to be maximised. For each of these, an iter-

ative procedure is required to find the corresponding hazard function Λ̂β
(i)

0 and L
(
β(i), Λ̂β

(i)

0

)
can

be computed. Nelder-Mead will be applied together with profile-likelihood and the iterative convex
minorant algorithm to find new β’s that would improve upon the previous β’s until the MLE β̂n is
found. Initial d+ 1 distinct candidates for β spanning Rd are determined as the initial set of βs to
start the algorithm. These are denoted by β(1), . . . , β(d+1), then for each β(i), the profile likelihood

pLβ(i)(Λ0) is maximised to find Λ̂β
(i)

0 for i = 1, . . . , d + 1. These (d + 1) values for the log likeli-

hood L
(
β(i), Λ̂β

(i)

0

)
are then compared, and based on the output, new candidates for β are generated.

This means that for each candidate β, the ICM algorithm is applied to optimise the profile likelihood.

There are multiple derivative free optimisation algorithms. One commonly used algorithm is the
Hooke-Jeeves algorithm published in (Hooke & Jeeves, 1961). A description of the algorithm can
be found in the Appendix 8.0.2. This algorithm has been tested against the Nelder-Mead algorithm.
In a speed comparison between the two algorithms, Nelder-Mead was faster because it required less
function evaluations in most cases. Because it will be used in the actual simulations of chapter 7,
the idea behind the Nelder-Mead algorithm is explained.

Consider an optimisation problem where a function ϕ : Rd → R needs to be maximised. The
Nelder-Mead algorithm requires d + 1 distinct initial points that span Rd, denote these points by

x(0) = (x
(0)
1 , . . . , x

(0)
d+1). In order to update an iterate x(k) to x(k+1) the following procedure is

followed. Figure 5.3 shows a visualisation of a single iteration of the algorithm. The values of

ϕ(x(k)) = (ϕ
(k)
1 , . . . , ϕ

(k)
d+1) := (ϕ(x

(k)
1 ), . . . , ϕ(x

(k)
d )) are computed. The lowest and the two highest

values are denoted using ordered statistics by ϕ
(k)
(1) , ϕ

(k)
(d) and ϕ

(k)
(d+1). Let xL be the element of x(k)

corresponding to ϕ
(k)
(1) , i.e., ϕ(x

(k)
L ) = ϕ(x

(k)
(1)). Furthermore denote the best and second best values

by x
(k)
G and x

(k)
B , defined such that ϕ(x

(k)
G ) = ϕ

(k)
(d) and ϕ(x

(k)
B ) = ϕ

(k)
(d+1). Figure 5.3 illustrates a

single iteration in the algorithm in R2. The algorithm works as follows. Fix a threshold for conver-

gence γ > 0. The element x
(k)
L yields the least value of ϕ(x(k)) while x

(k)
G and x

(k)
B yield the highest

values. Reflecting x
(k)
L through the line between the two best points may lead to an increase of ϕ.

Let x
(k)
M = 1

2 (x
(k)
G + x

(k)
B ) be the mirror point between the two best points. Then x

(k)
R = 2x

(k)
M − x

(k)
L

is the reflection x
(k)
L through x

(k)
M . Another point x

(k)
E extend the search direction x

(k)
R by defining

x
(k)
E = x

(k)
R + (x

(k)
M − x

(k)
L ).

If ϕ(x
(k)
M ) > max(ϕ(x

(k)
R ), ϕ(x

(k)
E )), then ϕ decreases in function value compared to x

(k)
M , the al-

gorithm will look closer near x
(k)
M . Two points are generated around x

(k)
M . Let x

(k)
M1 = 1

2 (x
(k)
M + x

(k)
R )

and x
(k)
M2 = 1

2 (x
(k)
M +x

(k)
L ), then x

(k)
L is updated by x

(k)
M1 if ϕ(x

(k)
M1) > ϕ(x

(k)
M2) and is updated by x

(k)
M2

otherwise if ϕ(x
(k)
M ) ≤ max

(
ϕ(x

(k)
R ), ϕ(x

(k)
E )
)
, then x

(k)
L is updated by x

(k)
R . If ϕ(x

(k)
R ) > ϕ(x

(k)
E ) and

is updated by x
(k)
E otherwise. This replacement results in a new iteration x(k+1). The algorithm

stops when |ϕ(x
(k)
L ) − ϕ(x

(k+1)
L )| < γ. Pseudocode for Nelder-Mead is found in Algorithm 2. Note



36 CHAPTER 5. ALGORITHMS FOR MAXIMISING THE LIKELIHOOD FUNCTION

Figure 5.3: A contour plot is given. The contour lines represent function values where the smallest
rings represent higher values. The points are plotted that are relevant for a single iteration of the
Nelder-Mead algorithm.

that the if statements avoid unnecessary function evaluations of ϕ, saving calculation time. This is
especially useful when computation of a single ϕ(k) is costly.



5.4. NELDER-MEAD ALGORITHM FOR ESTIMATING COX COEFFICIENTS 37

Data: Initial estimate x0 ∈ Rd and a function to maximise ϕ

Generate d+ 1 distinct points x(0) = (x
(0)
1 , . . . , x

(0)
d+1);

Set k = 0;
Set γ > 0;

Set ϕ(x(−1)) = −∞;

while ϕ(x(k))− ϕ(x(k−1)) > γ do

Calculate ϕi = ϕ(x
(k)
i ) for all i = 1, . . . , d+ 1;

Find x
(k)
i ’s correspronding to ϕ(1), ϕ(d) and ϕ(d+1), call these x

(k)
L , x

(k)
G , x

(k)
B respectively;

Generate x
(k)
M = 1

2 (x
(k)
G +x

(k)
B ), x

(k)
R = x

(k)
M + (x

(k)
M −x

(k)
L ) and x

(k)
E = x

(k)
R + (x

(k)
M −x

(k)
L );

if ϕ(x
(k)
M ) > max(ϕ(x

(k)
R ), ϕ(x

(k)
E )) then

Generate x
(k)
M1 = 1

2 (x
(k)
M + x

(k)
W ) and x

(k)
M2 = 1

2 (x
(k)
M + x

(k)
R );

if ϕ(x
(k)
M1) > ϕ(x

(k)
M2) then

Replace x
(k)
L with x

(k)
M1;

else

Replace x
(k)
L with x

(k)
M2;

end

else

if ϕ(x
(k)
E ) > ϕ(x

(k)
R ) then

Replace x
(k)
L with x

(k)
E ;

else

Replace x
(k)
L with x

(k)
R ;

end

end

Set x(k+1) := x(k);
Set k 7→ k + 1;

end
Algorithm 2: Pseudocode for the Nelder-Mead algorithm.
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Chapter 6

The Bootstrap and Interval
Censored Data

In the previous chapters theory and applications of survival analysis are explained. The chapters
that followed introduced theory on the likelihood function for which no known explicit expression
for the maximiser seems to exist. Algorithms are proposed to solve for the NPMLE iteratively. The
solution for (β̂n, Λ̂0,n) = argmaxβ∈Rd,Λ0∈H L(β,Λ0) can be found using these methods. Because

these approximations are made using a single sample, the output of the regression (β̂n, Λ̂0,n) is also
a single estimate. Because the estimator is simply a function of the data, the estimator itself is
random. This makes it natural to question the precision of the estimator.

Precision can be interpreted as a measure on how close estimates are to each other. A sim-

ple example is given to illustrate the idea. Let Y1, . . . , Yn
iid∼ N (µ, σ2). Calculating the mean

Ȳn = 1
n

∑n
i=1 Yi then gives the mean of the sample. It can be seen that Ȳn is random as it is a

sum of random variables, it is easily shown that Ȳn ∼ N (µ, σ
2

n ). Precision of the estimator Ȳn is
then given by n

σ2 . Randomness also appears in the NPMLE because it is generated using random
variables. Precision of the NPMLE can be quantified using simulations.

In the IC2 model, no limiting distribution has been derived for the NPMLE of the point-
wise function values F (t0). Under assumption of the unproven working hypothesis, introduced
in (Groeneboom & Wellner, 1992), a limiting distribution is derived. Consider the current status
model, an interval censoring model with only one inspection time per subject. Let F and G be
the distribution functions of X and T respectively. The log likelihood function for the distribution
function of the IC1 model is given by

LIC1(F ) =

n∑
i=1

δi logF (ti) + (1− δi) log(1− F (ti).

If the densities f and g of F andG are continuously differentiable at time t0 such that f(t0), g(t0) > 0,
then an asymptotic distribution is derived,

Ξn := n
1
3 (F̂n(t0)− F (t0))→ κC (6.1)

in distribution, where κ = [4F (t0)(1−F (t0))f(t0)g(t0)]
1
3 and C = argminh∈R(W (h) +h2) with W a

standard two-sided Brownian Motion, see (Groeneboom & Wellner, 1992). This distribution can be
used as a basis to compute asymptotic confidence intervals. It can however be difficult to estimate
the values of g(t0) and f(t0). Theorem 3.1 in (Sen & Xu, 2015) shows an asymptotic distribution for
IC2 data. Conditional on the inspection times, time evaluations of bootstrapped smoothed NPMLE
F̃nh(t0) yields consistent results. This method involves kernel smoothing and which is elaborated
in paragraph 6.1. Limiting distributions are only known to be true under the working hypothesis.

39



40 CHAPTER 6. THE BOOTSTRAP AND INTERVAL CENSORED DATA

Construction of confidence intervals based on this result involves estimation of f(t0) and g(t0). To
prevent estimation of κ, the bootstrap will be used for computing confidence intervals.

As discussed above, in situation of the censoring model theoretical results on the MLE of the
Cox coefficients β or function values of F are lacking in the IC2 model. Let θ = θ(F ) be the statistic
of interest. This quantity can be estimated by θ(F̄n) where F̄n is an estimate of the distribution
function F . Without knowing the finite sample or asymptotic distribution of θ(F̄n), it becomes
difficult to measure the accuracy of the initial estimate. Typically, when one knows the underlying
distributions generating the data, Monte Carlo simulations can be used to approximate the distribu-
tion of an estimator. In general, Monte Carlo simulations cannot be done in practice to estimate the
distribution of θ(F̄n) because it requires sampling from the true distribution which is unavailable.
The bootstrap is a technique introduced in (Efron, 1979) that can be used to solve this issue at the
cost of an error. Instead of Monte Carlo sampling from the true distribution F , this can be done
from F̄n. Then Monte Carlo is used to estimate the distribution of θ(F̄n) by sampling new data from
F̄n multiple times and compute estimates θ(F̄ ∗n). The distribution of θ(F̄ ∗n) can then be approxi-
mated arbitrarily well when more estimates are computed. Note that this is not the distribution
of θ(F̄n) but an approximation of it. As (Efron & Tibshirani, 1993) phrased it: “The bootstrap
requires no theoretical calculations and is available no matter how complicated the estimator may
be”. The idea behind the bootstrap is to assume that the data can represent of the true underlying
distribution well so that bootstrap samples generated using the observed data represent samples of
the true distribution. These bootstrap samples can for example be made using the ECDF of the
data. This is supported by the Glivenko-Cantelli theorem, stating that the ECDF converges to the
true distribution see for example (Wasserman, 2006). With these bootstrap samples, the statistic
of interest can be approximated as many times as needed.

The easiest case of a bootstrap sample is to consider data Y = (Y1, . . . , Yn) sampled from the
distribution function G. A sample Y ∗ = (Y ∗1 , . . . , Y

∗
n ) from the ECDF is generated by choosing for

each entry of Y ∗, one from Y with equal probability. This means that in a bootstrap sample, it
is possible that some Yk does not occur in the bootstrap sample, and some occur multiple times
in Y ∗. Given the statistic of interest, θ(G), a bootstrap realisation is calculated based on Y ∗ us-
ing the same calculations as θ(G). Let G∗n be the ECDF made using Y ∗, then as many realisations
of θ(G∗n) can be computed to find an approximation of the distribution of the bootstrap distribution.

Let θ̂n → θ in probability. Using the definition of (Sen & Xu, 2015), the bootstrap procedure

is weakly consistent if θ̂∗n → θ̂n in probability as n → ∞. One needs to be aware of the fact that

the bootstrap does not work in certain situations. When an estimator θ̂n for θ is consistent does
not mean that the bootstrap is consistent. The following example by Efron and Tibshirani (1993)
illustrates this.

Example 7. Let X1, . . . , Xn be independent samples of X ∼ Unif(0, θ). The maximum likelihood
estimator X(n) := max1≤i≤nXi for θ converges to θ almost surely. By independence of the samples

it follows that P(X(n) ≤ x) =
(
x
θ

)n
for x ∈ [0, θ]. Then it holds also that

P(n(θ −X(n)) ≤ x) = 1− P
(
X(n) ≤

x

n
− 1
)

= 1−
(

1− x

nθ

)n
→ 1− exp(−x/θ).

Therefore, the limiting distribution of n(θ−X(n)) is Exp( 1
θ ). Given the same sample X1, . . . , Xn, a

bootstrap procedure can be followed by replacing θ by X(n) and resample X∗(n) by taking the maximum
of a bootstrap sample.

P(X∗(n) = X(n)) = 1− P(X∗(n) 6= X(n)) = 1−
(
n− 1

n

)n
→ 1− exp(−1).

So that P(n(X∗(n) −X(n)) = 0) = 1− exp(−1). Hence, asymptotically both distributions are not the
same. This can be seen easily by observing that the bootstrap distribution has a strictly positive mass
at zero whereas the limiting distribution of X(n) is a continuous distribution. This implies that the
bootstrap procedure is not consistent.
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Kernel K(t)

Rectangular
1

2
1|t|≤1

Biweight
15

16
(1− t2)21|t|≤1

Tricube
70

81
(1− |t3|)31|t|≤1

Epanechnikov
3

4
(1− t2)1|t|≤1

Gaussian
1
√

2π
e−

1
2 t

2

Table 6.1: A table of commonly used kernels with the corresponding formulas.

6.1 Kernel Smoothing

The discrete nature of the NPMLE is not always desirable. It can be the case that the true distribu-
tion is expected to be continuous. One way to make a discrete function continuous is by a method
called smoothing. To exemplify the idea of smoothing, first observe a discrete distribution given by
F̌n =

∑n
i=1 wiητi such that

∑n
i=1 wi = 1, see Figure 6.1. The underlying continuous density can

be estimated by smoothing it. Here, ητ is a Dirac measure with its mass at τ and τi is the i’th
inspection time. Smoothing generates a continuous distribution based on F̌n by replacing the Dirac
mixture to another mixture with the same weights, but with different measures which called are
called kernels. A kernel is a continuous non-negative function K which integrates to one and has a
centre of mass at zero, i.e.,

∫
R tK(t)dt = 0. Kernels are usually symmetric. It can be thought of as

a probability density function. Common functions used for smoothing are polynomial or Gaussian,
see Table 6.1. The first four kernels in this table have a bounded support. The Gaussian kernel
has an unbounded support. The kernel K is scaled by a bandwidth h that determines how much
a (discrete) distribution is smoothed. Scaled kernels are expressed as 1

hK(t/h). The constant h−1

ensures that the rescaled kernel still integrates to one. Substituting t = t′−τ
h yields∫

K(t)dt =

∫
1

h
K

(
t′ − τ
h

)
du = 1.

Smoothing a general discrete density function can be seen as convolution of a kernel with a Dirac
mixture,

f̌nh(t) =

∫
1

h
K

(
t− τ
h

)
dF̌n(τ) =

∫
1

h
K

(
t− τ
h

)
d

(
m∑
i=1

wiητi

)
=

1

h

m∑
i=1

wiK

(
t− τi
h

)
. (6.2)

The bandwidth h in (6.2) will turn out to be important in smoothing. This shows that for Dirac
mixtures, the smoothed function becomes a sum of the rescaled kernels centred around the jumps
of F̌n and the jump heights of F̌n determine the weights. The bandwidth determines the support or
the rescaled kernels. This parameter needs optimisation. Choosing a good value for the bandwidth
can result in better estimation of the distribution function, more details are found in paragraph 6.3.

Instead of estimating a density, the goal here is to estimate a smoothed distribution function.
Since the distribution is simply the integrated density function it follows that

F̌nh(t) =

∫ t

−∞
dF̌nh(t′) =

∫ t

−∞
f̌nh(t′)dt′ =

∫ t

−∞

∫
R

1

h
K

(
t′ − τ
h

)
dF̌n(τ)dt′ (6.3)

=

∫
R

[∫ t

−∞

1

h
K

(
t′ − τ
h

)
dt′
]
dF̌n(τ) =

∫
R
K
(
t− τ
h

)
dF̌n(τ) =

m∑
i=1

wiK
(
t− τi
h

)
,



42 CHAPTER 6. THE BOOTSTRAP AND INTERVAL CENSORED DATA

Figure 6.1: Empirical distribution function (red) of 30 samples of an Exp(1) distribution (blue).

using Fubini’s theorem and differentiability of F̃nh. The integrated kernel is denoted by K(t) =∫ t
−∞K(t′)dt′.

Due to the nature of F , the NPMLE is a Dirac mixture where the weights are generally not
equal, that is, the NPMLE for F can be expressed F̂n =

∑m
i=1 ωiηvi such that the weights sum to

one. The smoothed version of the NPMLE (SMLE) F̂n is defined as

F̃nh(t) =

∫
R
K
(
t− vi
h

)
dF̂n(v) =

1

h

m∑
i=1

ωiK
(
t− vi
h

)
. (6.4)

A visualisation of the formula above is shown in Figure 6.2. When the domain of the true distribution
F is the real line, i.e., it has no boundaries, then kernel smoothing with the proper bandwidth can
reduce the error in the estimation. In the case of survival analysis, there is always a starting time of
an experiment which is usually set to zero. Suppose that the Epanechnikov kernel is chosen, then

K(t) =
3

4
(1− t2)1[−1,1](t), (6.5)

and F̂n has a jump close enough to the boundary t = 0 of the domain of F at t′. In this case,
smoothing can put mass outside the domain of F , allowing unwanted behaviour of the estimator.
This is the case when 1

( t−t
′

h ∈[−1,1])
= 1 and this can happen when t′ ∈ [0, h). Figure 6.3 shows what

goes wrong when not applying a boundary correction.

Because kernel smoothing can place mass outside the domain, pointwise estimators can be in-
consistent. Methods for correcting for this inconsistency at boundaries is studied in literature. A
boundary correction method is proposed by (Groeneboom & Jongbloed, 2015) to prevent mass
outside the true domain and will be used in the simulations. Let [M1,M2] be the boundaries of the
support of F̂n.

F̃nh(t) =

∫ {
K
(
t− u
h

)
+ K

(
t+ u+ 2M1

h

)
−K

(
2M2 − t− u

h

)}
dF̂n(u) (6.6)

When t ∈ [M1 + h,M2 − h], equations (6.4) and (6.6) are equal, see (Groeneboom & Jongbloed,
2015). Applications in survival analysis often use that M1 = 0 and the upper bound M2 is infinite.
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Figure 6.2: Using a sample n = 500, the NPMLE is computed. Top left shows the NPMLE (red)
approximating the true distribution (blue in every figure). Top right is the SMLE with a proper
choice of the bandwidth. On the bottom, the red curves are under and over smoothed estimates.

Figure 6.3: This figure shows that kernel smoothing can fail at the boundaries of the domain. Mass
is found on the negative interval (−h, 0) which is not allowed by definition of the survival function.
The blue line is the true event-time distribution and the red line is an SMLE without boundary
correction.



44 CHAPTER 6. THE BOOTSTRAP AND INTERVAL CENSORED DATA

6.2 Bootstrap Methods

Multiple methods exist for generating bootstrap samples. Suppose some statistic of a real-valued
distribution G is estimated. These statistics can be quantiles of G, the mean, the variance or any
other functional θ(G). Let Y = (Y1, . . . , Yn) be independent samples from G. Take Ĝn to be the
ECDF Ĝn(t) = 1

n

∑n
i=n ηYi . The goal is to estimate θ(G), but only a sample of G is available. From

the sample, θ(Ĝn) is computed which itself is a random variable. The distribution of θ(Ĝn) can be
estimated using the finite sample Y . A bootstrap sample (Y ∗1 , . . . , Y

∗
n ) drawn uniformly resample

from the ECDF Ĝn from which a bootstrapped ECDF Ĝ∗n can be constructed. By resampling the
bootstrapped ECDF, the statistic θ(Ĝ∗n) can be computed as often as needed. This way the distri-
bution of θ(Ĝn) can be approximated to arbitrary precision for a fixed sample Y . This method is
called the empirical bootstrap.

Another way to resample is called the parametric bootstrap. If it is assumed that G belongs to
a parametric family, then its parameter π can be approximated according to the initial sample Y ,
generating an approximation Gπ̂ of G. The bootstrap would not be needed if the functional θ(Gπ̂) is
easy to compute. If the functional gets more complicated, Monte Carlo can be applied. New samples
(Y ∗1 , . . . , Y

∗
n ) are then drawn from Ĝπ̂ to compute as many bootstrap samples θ(Ĝ∗n) as needed which

are then used to approximate the distribution of θ(Ĝn). Next to the parametric bootstrap, there
exists another way of obtaining increasing continuous estimations of F by smoothing.

In the IC2 model, more resampling methods can be explored. The time-to-event distribution F
is of interest so it is desirable to resample variables Z. Pairs of observations can be drawn uniformly
from the initial sample. In this method, the n samples are seen as representative the true joint
distribution of Z. This way, B bootstrap samples Z∗bi = (T ∗bi , U∗bi ,∆

∗b
i ,Γ

∗b
i )ni=1 are generated by

resampling pairs for b = 1, . . . , B. The corresponding bootstrap measure becomes

P∗ =

n∑
i=1

MiηZi , (6.7)

where Mj is the number of times that the observation zj is drawn. By this interpretation, M is a
multinomial distribution with parameters

M = (Mi, . . . ,Mn) ∼ Multinomial(n, n−1, . . . , n−1).

With these samples, bootstrapped NPMLEs F̂ ∗bn can be computed as described in chapter 5. The
empirical bootstrap is advocated in (Groeneboom & Hendrickx, 2017). Another method of re-
sampling is to generate event times X∗ from an estimate of the underlying distribution function F
and use the inspection times T and U to determine the indicator variables ∆∗,Γ∗,M∗ using (2.8).
In selecting the inspection times T and U , one can choose the values originally observed (so one
conditions on the inspections T and U) or one can sample from an estimate of the joint distribution
of these. Based on the (smoothed) NPMLE, indicator variables are determined using the inspection
times following the argument

P(∆ = 1) = P(X < T ) = F (T ) ≈ F̃nh(T ),

similarly,
P(Γ = 1) = P(T ≤ X < T ) = F (U)− F (T ) ≈ F̃nh(U)− F̃nh(T ).

Consequently,
P(M = 1) = 1− P(∆ = 1)− P(Γ = 1) ≈ 1− F̃nh(U),

for some choice of h. New indicator variables are then drawn using the SMLE by

(∆∗i ,Γ
∗
i ,M

∗
i ) ∼ Multinomial(1, F̃nh(Ti), F̃nh(Ui)− F̃nh(Ti), 1− F̃nh(Ui)), (6.8)

for i = 1, . . . , n. This method is used in (Sen & Xu, 2015). It should be noted that their approach
conditions on the inspection times T and U , implying that the results of the study can only be used
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if precisely the same times (Ti, Ui)
n
i=1 are in the dataset.

In this study the method by Sen and Xu is adapted. Given h, this resampling procedure is
described by the following steps.

1. Using data (Ti, Ui,∆i,Γi)
n
i=1, generate an estimator F̃nh for F .

2. From the existing oberservation times, calculate F̃nh(Ti) and F̃nh(Ui) for i = 1, . . . , n.

3. Resample new indicator variables ∆∗i , Γ∗i and M∗i for each i = 1, . . . , n using equation (6.8).

4. Using the new dataset (Ti, Ui,∆
∗
i ,Γ
∗
i )
n
i=1, compute the NPMLE F̂ ∗bn .

5. Repeat steps (2)-(4) B times generating F̂ ∗bn for b = 1, . . . , B.

After these steps, the samples are used for making confidence intervals. However, Sen and Xu
have concluded in Theorem 2.2 in their article that the bootstrap does not yield consistent results
when using the bootstrap samples of the NPMLE. Because of this, the SMLE is used making it is
important to estimate the bandwidth h before starting the actual bootstrapping procedure.

6.3 Bandwidth Selection

The problems occurring when selecting the unsuitable bandwidth have been discussed. In this para-
graph a method is presented to find a proper bandwidth by minimising the mean squared error in
(6.9) as a function of h. In many situations, h follows a power law dependent on n. In the cases of
the ECDF or in the current status model the bandwidth is of the form h = cn−τ for some constant c
and τ > 0. Results of this nature are given in (Wasserman, 2006) and (Groeneboom & Hendrickx,
2017). Proofs of such results in the Cox model have not been found in during study. No assumptions
are made on a constant c and rate τ and h is found directly.

If the constant h is not chosen properly, estimators will have undesirable properties. Choosing
the bandwidth h to be too small, then one speaks of under-smoothing, i.e., kernels have a too narrow
peak in kernel density estimation. Roughly stated, the kernel smoothing function in that case al-
most like a point mass. Since the goal of kernel estimates is to smooth estimators, such behaviour is
impractical. On the other hand there is over-smoothing when h is too big, then a kernel smears out
the mass too much and local behaviour disappears. Both under- and oversmoothing are displayed in
Figure 6.4. An SMLE with properly chosen bandwidth is shown in Figure 6.5. How such bandwidth
is selected for the SMLE is the aim of this paragraph.

Instead of kernel density estimation, in this study, the distribution is being estimated by ap-
plying integrated kernels to the NPMLE. Because the smoother function is the integrated kernel
K(t) =

∫ t
−∞K(t′)dt′, the problems occurring in kernel distribution estimation can be explained

through observing under- and oversmoothing of density estimation. The narrow peaks of an under-
smoothed NPMLE translate to a continuous SMLE but rather steep slopes. A case of oversmoothing
in kernel distribution smoothing is depicted in Figure 6.2 on the bottom right image and bottom
left for undersmoothing.

Related to this issue is the bias-variance trade-off. Let θ be the functional of interest and θ̂ an
estimator for θ. Denote the error of the estimator θ̂ of θ by θ̂− θ. The MSE is defined as the second
moment of the error.

MSEθ(θ̂) = Eθ(θ̂ − θ)2.

A simple calculation shows that this quantity is directly related to the variance of the estimator and
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Figure 6.4: A mixture distribution
(
N (−1, 0.4) +N (1, 0.4)

)
/2 is used for illustration. Two kernel

density estimations with the Epanechnikov kernel showing the importance of a well-chosen band-
width. In the left image, h = 0.15 is chosen, which is too small. In the right image, the bandwidth
h = 0.6 is chosen which is too large. Both estimators are clearly not good.

Figure 6.5: Kernel density estimation of the same data as used in Figure 6.4. Here, a proper
bandwidth h = 0.3 is chosen.
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its bias squared.

MSEθ(θ̂) = Eθ(θ̂ − θ)2 = Eθ
[
(θ̂ − Eθ(θ̂)) + (Eθ(θ̂)− θ)2

]
= Eθ(θ̂ − θ)2 + 2

[
Eθ(θ̂)− θ

][
Eθ(Eθ(θ̂)− θ̂)

]
+ (Eθ(θ̂)− θ)2

= Vθ(θ̂) +Biasθ(θ̂)
2,

where Vθ denotes the variance of θ̂n with respect to the distribution of θ. The bias is defined as
the first moment of the error Biasθ(θ̂) = Eθ(θ̂ − θ) = Eθ(θ̂) − θ, the average error. Finding the
estimator with the lowest MSE should result in an estimator with a low bias and variance. When
using the SMLE, the only variable is h so this can be chosen to minimise the MSE. Choosing the
bandwidth too large introduces more bias but reduces the variance. It is argued in (Silverman,
1986) that in kernel density estimation of the ECDF, the variance of a kernel density estimate is of
order O(h−1), that is, the variance decreases as the bandwidth increases. On the other hand, the
bias should be kept small in order to improve the accuracy of the estimator. Accuracy is obtained
at the cost of variance, so a carefully selected bandwidth is important. Note that both the variance
and the squared bias are positive, therefore, minimising the MSE makes both of these quantities
smaller. Substituting θ̂ by an SMLE F̃nh at time t0 and θ by the true F in the MSE yields

MSE(h) = EF (F̃nh(t0)− F (t0))2. (6.9)

In this case, the MSE becomes a function of h. The h minimising MSE(h) will be searched for as
it results in the estimator with a small bias and variance and is denoted by hopt. It should be clear
that the true quantity cannot be calculated as F is unknown in practice. An estimate F̄n of F is
required for further estimation such that

EF (F̃nh(t0)− F (t0))2 ≈ EF̄n(F̃nh(t0)− F̄n(t0))2. (6.10)

Different options for F̄n exist of which two will be discussed. If F̄n is close to F , then the estimated
MSE should be close to the true MSE.

A reasonable choice for F̄n would be the NPMLE F̂n. However, (Sen & Xu, 2015) have shown
that this choice would lead to inconsistent estimates in the current status model. Even though this
does not necessarily imply inconsistency in the IC2 model it is decided not to use it. Options that
could be more promising are an SMLE or a parametric estimation of F . The latter is useful when
there is an indication whether the time-to-event is distributed according to some parametric family.
In the simulations in chapter 7, samples are drawn from X ∼ Exp(ρ). Real world data does not
always follow a parametric distribution. If it does, it may not always be easy to recognise a para-
metric family from the NPMLE for smaller sample sizes. If there is a parametric distribution that
is close to the true F , it can nevertheless be used for modelling the true MSE. Keep in mind that
this parametric assumption would then only be used for selecting the optimal bandwidth for the
smoothing kernel and not for the final SMLE F̃nh. If F does not belong to a parametric family, then
this may result in poor modelling of the MSE. This would motivate a nonparametric approximation
of F by using an SMLE F̃nh1

for some preselected h1.

Like the parametric assumption, one can say that this approach may also lead to poor modelling
of the MSE. As discussed earlier, there is under- and oversmoothing. The choice of h1 can be arbi-
trary which can lead to improper smoothing. An SMLE is chosen to sample from to estimate the
MSE. It is however difficult to find h1 minimising the right hand side of (6.10).

A method to select h1 is proposed. First the NPMLE F̂n can be calculated. From the shape of
the distribution, an appropriate parametric family can be selected. For multiple parametric families,
parameter(s) ρ̂n can be estimated to the data. Goodness of fit tests can then help to select the final
parametric distribution Fρ̂n which is then used to model F in (6.10). The MSE approximated using
F̄n = Fρ̂n is then approximated using Monte Carlo with the true underlying event-time distribution.
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Fix a number of bootstrap samples B, then the BMSE approximates the right hand side of (6.10)
by

BMSEpar(h) =
1

B

B∑
b=1

(
F̃ ∗bnh(t0)− Fρ̂n(t0)

)2

≈ EFρ̂n (F̃nh(t0)− Fρ̂n(t0))2. (6.11)

The bootstrap samples F̃ ∗bnh for b = 1, . . . , B are generated by drawing event-time samples from
Fρ̂n and generating new indicator variables, as described in chapter 6.2. Until this point, h is not
fixed. The idea is that h is chosen to minimise BMSEpar, obtaining hpar. Then hpar can be used to

compute the SMLE F̃nhpar that will be used for estimation of the final bandwidth hsmo. Let

hpar = argmin
h∈R+

BMSEpar(h). (6.12)

A bandwidth is obtained that does not require an arbitrary choice but is instead data-driven. From
this point, the method of (Sen & Xu, 2015) is followed. Instead of a parametric distribution to
generate event-times from, F̄n = F̃nhpar is used to resample event times. Then the BMSE using this
function is defined as

BMSEsmo(h) =
1

B

B∑
b=1

(
F̃ ∗bnh(t0)− F̃nhpar (t0)

)2

≈ EF̃nhpar
(
(F̃nh(t0)− F̃nhpar (t0))

)2
. (6.13)

To obtain the functions F̃ ∗bnh, new samples need to be drawn from F̃nhpar and new indicator variables
are made using the multinomial distribution found in (6.8). As in (6.12), hsmo is obtained by
minimising BMSEsmo, which is given by

hsmo = argmin
h∈R+

BMSEsmo(h). (6.14)

A step by step description to the above method is formulated the following:

1. Fix an equidistant grid G of candidates for h. Using the data, propose an estimate F̄n of F

2. Using F̄n, generate new indicator variables ∆∗bi ,Γ
∗b
i for i = 1, . . . , n and compute the NPMLE

F̂ ∗bn . Repeat this step B times.

3. For each h ∈ G, compute F̃nh(t0).

4. Using equation (6.11) or (6.13) for all h ∈ G and choose hopt = argminh∈G BMSE(h).

Once hsmo = argminh∈G BMSEsmo(h) is computed using the steps above, the final estimator

F̃nhsmo(t0) is calculated. From this point, bootstrap samples can be drawn to do inference. For
example, approximating the distribution of estimators of generating bootstrapped confidence inter-
vals. The latter is done in the chapter 7.

If in the log-likelihood, F is replaced by a distribution function of a parametric family, its
parameter ρ can be estimated from censored data. Because the distribution function and cumulative
hazard function are one-to-one. The log-likelihood function is maximised for β and Λ0 and the
estimator Λ̂0n is transformed to F̂n according to (2.5). Estimating of ρ requires to reparametrise
the log-likelihood by replacing Λ0 by the cumulative hazard function of the assumed parametric
family. In practical application of survival analysis, it is common to assume that Fρ follows a
general distribution like the Weibull distribution. In our simulation it is known that samples are
drawn from the exponential distribution so only a single parameter is estimated for simplicity. To
estimate ρ, use that the cumulative hazard function of Exp(ρ) is Λ(t) = ρt. Then the log-likelihood
(4.6) becomes

Lparametric(β, ρ) =

n∑
i=1

[
δi log

(
1− exp(−ρtieβ

>si)
)

+γi log
(

exp
(
−ρtieβ

>si
)
− exp

(
−ρuieβ

>si
))
− µiρuieβ

>si
]
.
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Finding the maximising argument (β̂n, ρ̂n) or Lparametric becomes an optimisation problem in Rd+1

since β ∈ Rd and ρ ∈ R. This can be solved easily using only the Nelder-Mead algorithm, or again the
profile likelihood using Nelder-Mead on β and optimize function in R compute the optimal ρ for each
β. With this procedure ρ̂n, β̂n is estimated as argmax(β,ρ)∈Rd+1 L(β, ρ). The estimated distribution

function becomes F̄n(t) = 1− exp(−ρ̂nt) from which one can sample. Now the methodology of the
bootstrap is set-up and the bandwidth can be selected. Before continuing with simulations, some
information is given about confidence intervals.

6.4 Confidence Intervals

From data Z, only a single estimate is obtained. Because Z is only a sample of the true population,
an error is made. Confidence intervals can reveal insight on the sampling error. These intervals
consist of a random lower and upper bound such that with a given probability 1 − α, the true pa-
rameter lies between the random bounds. Often, α = 5% is chosen. Confidence intervals are used
to express uncertainty of an estimator. When from different datasets, 95% confidence intervals are
generated, then it should be true that for approximately 95% of the intervals, the true parameter is
included in the interval. The percentage of intervals in which the parameter is included is called the
coverage. If the promised coverage is achieved, the intervals can be informative about the uncertainty.

Suppose that one attempts to estimate a probability of some event. The estimate always lies in
the interval [0, 1]. From the experiment, a 95% confidence interval is given of [0.02, 0.97]. Because
the interval is very wide, not much information is given as estimate do not seem concentrate any-
where in the interval [0, 1]. An interval with correct coverage of [0.5, 0.55] would however be more
informative because it is narrower. With 95% confidence, the estimate is contained in this interval,
expressing confidence on in which range the true parameter is located. Narrow intervals suggest
lower variability of the estimator.

Confidence intervals cannot be expected to work in all cases. Asymptotic results are usually
applied to derive them, see for example (6.1). Because asymptotic results are used, it is not surprising
that they cannot guarantee the coverage they should have. This is especially the case when the
sample size is low. It can be shown that if asymptotic results cannot be used due to having a low
sample size, these intervals can fail. Limiting distributions have been proven for the current status
model, and under the working hypothesis, also for the interval censoring case 2 model. For the
current status model, (Groeneboom & Hendrickx, 2017) have proven a limiting distribution under
the unconditional bootstrap. It is used to generate confidence intervals in the current status model.
Let hn ∼ cn−1/5 for some fixed c, then

n2/5

[
F̃ ∗nh(t0)−

∫
K
(
t− u
h

)
dF̃nh(u)

]
→ N (0, σ2).

Other asymptotic results can also be used to construct asymptotically correct confidence intervals.
Let

Ξ∗n = n−1/3 (F ∗n(t0)− F (t0))→ κC,
where κ is a non-negative constant and C is a symmetric continuous distribution. Denote the lower
boundary of an interval by θ(lo) and the upper bound by θ(up). From this asymptotic result, it
follows that

P(θ(lo) ≤ κC ≤ θ(up)) ≈ P(L ≤ n1/3(F ∗n(t0)− Fn(t0)) ≤ U)

= P
(
F̂n(t)− n−1/3L ≤ F (t0) ≤ F̂n(t)− n−1/3U

)
.

This result is used by (Banerjee & Wellner, 2005). Let Q̂∗n be bootstrap samples of γ∗n, as a
consequence of this calculation the confidence interval becomes

[θ(lo), θ(up)] =
[
F̂n(t0)− n−1/3Q̂(1−α/2), F̂n(t0)− n−1/3Q̂(α/2)

]
,
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where Q̂(αB) is a consistent estimator or the α’th quantile of Q. This interval is also used by Sen
and Xu, except their estimator is the SMLE, (Sen & Xu, 2015). Asymptotic results like these have
not yet been proven within the Cox model. Because of this, more general standard confidence inter-
vals such as the percentile bootstrap or studentised intervals are generated. The remainder of this
chapter will cover these types of intervals.

Using the observations (T,U,∆,Γ), estimators for the baseline distribution and the Cox-coefficients
are computed. In the previous chapter multiple resampling techniques are discussed. These methods
involve drawing pairs from the original sample, and also using a smoothed version of the MLE to
obtain new indicator variables. Applying the previously introduced algorithms results in bootstrap
samples of the SMLE. For fixed times t0 one can construct confidence intervals for F (t0).

Denote the residual by Rn = θ̂n − θ and define the function H(r) = PR(Rn ≤ r). A 100 − α%
confidence interval is constructed by finding an interval [a, b] such that H(Rn ≤ a) ≈ α/2 and
H(Rn ≤ b) ≈ 1 − α/2. This can be done by generating B bootstrap samples so that the distri-
bution of Rn can be approximated. The estimate F̃nh is assumed to be a good representation of
the underlying F . This makes the assumption that the distributions of θ̂ − θ is approximately the
distribution of θ̂∗ − θ̂. The percentile bootstrap confidence interval will now be constructed. let Ĥ
be the cumulative distribution function of R∗n.

Because H(r) ≈ Ĥ(r) = 1
B

∑B
b=1 1R∗bn ≤r = 1

B

∑B
b=1 1

R
∗(b)
n ≤r, quantiles of Rn can be expressed

in terms of the index of ordered statistics. This becomes clear if consider H(R∗(αB/2)) is considered

such that αB/2 is an integer, then there exist precisely αB/2 values of r̂∗ that are smaller or equal
to r∗(αB/2). It follows that

Ĥ(r∗(αB/2)) =
1

B

B∑
b=1

1
R
∗(b)
n ≤r∗(αB/2) =

αB/2

B
=
α

2
. (6.15)

Then the inverse of H is defined by Ĥ−1
(α) = r∗(αB).

1 The following computation approximates the

quantiles r(α) and r(1−α). Start by finding r such that α ≤ H(r), approximate H by Ĥ, then
Ĥ−1(α/2) ≤ r from here it follows

Ĥ−1(α/2) ≤ r =⇒ r̂∗(αB/2) ≤ r =⇒ (θ̂∗ − θ̂)(αB/2) ≤ θ̂ − θ

=⇒ θ̂∗(αB/2) − θ̂ ≤ θ̂ − θ =⇒ θ̂∗(αB/2) − 2θ̂ ≤ −θ.

Then θ ≤ 2θ̂ − θ̂∗(αB/2). Similarly one can find that Ĥ((1 − α)/2) ≤ r =⇒ 2θ̂ − θ∗((1−α)/2). The
1− α confidence interval is then given by

[θ(lo), θ(up)] = [2θ̂ − θ̂∗((1−α/2)B), 2θ̂ − θ̂∗(αB/2)], (6.16)

such that approximately, P(θ ∈ [θ(lo), θ(up)]) ≈ 1 − α. This construction of confidence intervals
is used in the chapter on simulations. It is possible for percentile confidence intervals of F (t0) to
include elements outside the set [0, 1]. Because the true value of F (t0) cannot be outside of [0, 1], it
makes sense to restrict the interval [θ(lo), θ(up)] to [0, 1] by updating the interval to [θ(lo), θ(up)]∩[0, 1].

A bootstrap method for constructing confidence intervals that has a stronger accuracy at the cost
of more computation power is the studentised confidence interval. If instead a confidence interval
is based on the residual Rn = θ̂n − θ, an interval is constructed based on the residual divided
by the approximated standard error of the estimate. The studentised bootstrap makes use of the
standardised form. Let Z be the initial sample and Z∗ a bootstrap sample according to the method
of (Sen & Xu, 2015). The quantity of interest is

Z∗b =
θ(Z∗i )− θ(Z)

ŝe(θ(Z∗b ))
.

1Note that this inverse is actually in an interval. The minimum of the interval is taken as the inverse.
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The denominator is what makes studentised confidence interval so computationally expensive, es-
pecially when the statistic itself is difficult to compute. Each bootstrap sample Z∗ of the data
generates a sample of the statistic. The studentised interval is constructed such that each bootstrap
sample of the statistic is standardised. To do so, the term θ(Z∗i )− θ(Z) needs to be divided by the
standard error of θ(Z∗i ). This means that bootstrap samples of Z∗ need to be drawn and the statistic
for needs to be computed multiple times to estimate the standard error of the sample. For clarity,
this means that for each separate bootstrap sample, one needs to bootstrap, say B1 times from the
bootstrap sample to estimate its standard error. Let Z∗∗ a bootstrap sample from Z∗ according to
the method of (Sen & Xu, 2015). The standard error for B1 resamples of the bootstrap sample is
given by

ŝe∗(θ(Z∗)) =

(
1

B1 − 1

B1∑
b=1

[
θ(Z∗∗i,b)− θ(Z∗∗)

]2) 1
2

.

Suppose B1 = 30 to estimate the standard error of the bootstrap samples accurately enough. If one
wants to base a confidence interval on B = 1000 bootstrap samples, 30000 total samples are needed.
This is a strong limitation when computing a single sample is time consuming. If the computation
is feasible, then the studentised confidence interval is given by[

θ(Z)−Z(1−α/2)ŝe, θ(Z)−Z(α/2)ŝe
]
,

where ŝe is the standard deviation of θ(Z) defined by

ŝe(θ(Z)) =

(
1

B − 1

B∑
b=1

[
θ(Z∗i,b)− θ(Z∗)

]2) 1
2

.

The studentised confidence interval is used in literature on the current status model, see for example
(Groeneboom & Hendrickx, 2017). Due to the complexity that is added by the Cox model, this is
not feasible. Therefore, in the simulation section, only percentile intervals are generated.
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Chapter 7

Simulations

7.1 Sampling and Simulation Setup

After implementation of the algorithms, it is natural to check how they perform in practice. Testing
performance of the algorithms and accuracy of estimators is central to this chapter. Before applying
the algorithms to actual data, computer generated data samples are used to investigate the behaviour
of the SMLE. First a lemma is proven that helps to understand how samples from the Cox model
can be generated.

Lemma 2. Let X ∼ F with density f . Let g be an strictly monotone invertible function such that
g−1 is differentiable. Then the density function of g(X) is given by

h(t) = f(g−1(t))

∣∣∣∣ ddtg−1(t)

∣∣∣∣ .
Proof. The assumptions in the statement are used. A simple calculation gives the distribution
function H. The density is then found through the derivative, which exists by assumption. First it
is assumed that g is strictly increasing, then

H(t) = P(g(X) ≤ t) = P(X ≤ g−1(t)) = F (g−1(t)).

Differentiating both sides by applying the chain rule yields the desired result.

h(t) =
d

dt
H(t) =

d

dt
F (g−1(t)) = f(g−1(t))

d

dt
g−1(t). (7.1)

If g is strictly decreasing one must observe that if x ≤ y, then g(x) ≥ g(y), so that H(t) = P(g(X) ≤
t) = P(X ≥ g−1(t)) = 1 − F (g−1(t)). Differentiating as above and combining the result with (7.1)
yields

h(t) =
d

dt
H(t) =

d

dt
F (g−1(t)) = f(g−1(t))

∣∣∣∣ ddtg−1(t)

∣∣∣∣ ,
completing the proof.

This lemma makes sampling in the Cox hazard model easier. Let U ∼ Unif(0, 1) and g(x) =
− log(x) be a decreasing function. Clearly g−1(x) = e−x. Applying this to Lemma 2 the following
is obtained

h(t) = 1[0,1](e
−t)(| − e−t|) = e−t1[0,∞)(t)

which is the density function of the standard exponential distribution, so − log(1 − U)
d
= V where

V ∼ Exp(1) and
d
= means that two objects follow the same distribution. The fact that 1−U follows

the same distribution as U is not surprising due to its symmetry around 1
2 . This lemma helps to

53
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formalise this statement. These two facts are used for the sampling in the Cox hazard model.

The uniform distribution is used to sample event times in the Cox model. Given the true event-
time distribution F , a sample is drawn by taking the inverse of F of a uniform sample, i.e., F−1(U).
This is easily shown by the following. Let PU be the measure of U , then

PU (F−1(U) ≤ t) = PU (U ≤ F (t)) = F (t).

The above equation implies that a sample of F is drawn by taking a realisation u of a uniform
random variable U and take F−1(u). This fact is also useful for sampling from the SMLE. First F is
expressed in terms of the cumulative hazard function. If one wishes to sample from the Cox model,
the inverse of F needs to be computed.1 Fix the Cox coefficients β and covariates s, then

u = F (x) = 1− S(x) = 1− exp(−Λ(x|s)) = 1− exp{−Λ0(x) exp(β>s)}, (7.2)

by equation (2.5). Inverting (7.2) to isolate x yields

x = Λ−1
0

(
− log(1− u)

exp(β>s)

)
,

when u is not a realisation but the standard uniform random variable, it follows

X
d
= Λ−1

0

(
− log(1− U)

exp(β>s)

)
d
= Λ−1

0

(
V

exp(β>s)

)
. (7.3)

The right hand side of (7.3) is used for sampling. As stated in Chapter 2, common distributions
used in Survival analysis are Weibull, log-logistic, generalised Gamma. The distribution function of
a Weibull random variable is given by

Fρ,k(t) = 1− exp

(
−
(
t

ρ

)k)
.

By equation (2.3), it follows

Λ(t) = − log(1− F (t)) =

(
t

ρ

)k
.

For sampling event-times, (7.3) states that the inverse of the cumulative hazard function is required.
For the Weibull, the inverse is given by

Λ−1(t) = ρt
1
k .

The functions above correspong to the Exp( 1
ρ ) distribution when k = 1. In the simulation done in

this chapter, the exponential distribution will be used for its explicit formula of the inverse cumulative
hazard function. In each simulation the setup (1)-(4) is as follows unless otherwise specified

1. X ∼ Exp(1), the time-to-event distribution.

2. T ∼ Exp(1/3), the first inspection time.

3. U ∼ T + Exp(2), the second inspection time.

4. β = (0, 0), the Cox coefficients.
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Figure 7.1: From top left to bottom right, NPMLE (blue) with sample sizes n of 500, 1000, 2000,
4000, 8000 and 16000 approximate the true distribution (red) better as n increases. The x-axis
ranges from 0 to 5.

7.2 Simulations on Bandwidth Selection in the Cox Model

Example 1 in (Van der Vaart & Wellner, 2000) it is shown that under mild conditions the NPMLE
converges to the true event-time distribution. Figure 7.1 contains a six realisations of the NPMLE
for different sample sizes to illustrate that larger samples tend to have better estimates. The figure
shows that, as the sample size increases, the estimator gets closer to the true distribution, this
supports their result on convergence.

In 6.3 an almost automated method for selecting the bandwidth is described minimising the
MSE. The performance is tested in this chapter. Samples of sizes n = 500, n = 1000 and n = 2000
are drawn according to the sampling scheme (1)-(4). Because the MSE in (6.9) is approximated first
using a fitted exponential distribution, the model is well-specified in the sense that the approximation
of the MSE by BMSEpar, uses the parametric family containing F to approximate F . Recall that

BMSEpar(h) =
1

B

B∑
b=1

(
F̃ ∗bnh(t0)− Fρ̂(t0)

)2

.

The distribution from which bootstrap samples X∗ are drawn is Fρ(t) = 1−exp(−ρ̂nt) and parameter
ρ is estimated by ρ̂n by the procedure described on page 48. The value hpar is defined by the
bandwidth h that minimises BMSEpar. This bandwidth is used to find a bandwidth parameter hsmo
by minimising BMSEsmo, which is defined by

BMSEsmo(h) =
1

B

B∑
b=1

(
F̃ ∗bnh(t0)− F̃nhpar (t0)

)2

,

1A distribution function F does not always have an inverse. If F is constant on some interval, one uses the
generalised inverse, F−1(t) = inf{x ∈ R : F (x) > t}.
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n ρ̂n hpar BMSEpar(F̃nhpar (1)) hsmo BMSEsmo(F̃nhsmo(1))
500 1.052471 0.75 0.004244447 0.70 0.004462109
1000 0.9758408 0.60 0.00246531 0.6 0.002593156
2000 0.9983666 0.45 0.001338151 0.4 0.001475884

Table 7.1: This table shows results of a bootstrap simulation to find the optimal smoothing param-
eter.

Figure 7.2: From the true distribution, a sample of size n = 500 is drawn. An exponential model is
fitted to the censored data and B = 1000 bootstrap samples are computed. The graph shows the
BMSEpar (red), the value as a function of the smoothing parameter hpar on the x-axis. BMSEsmo
(purple) is calculated using draws from F̃nhpar . A Monte Carlo simulation is done to estimate the
true MSE (blue). 1000 datasets of n = 500 samples are drawn calculating the NPMLE. Sampled
estimators are smoothed using values h on the x-axis.

where Fnhpar (t) =
∑m
i=1 ωiK

(
t−vi
hpar

)
and K is the integrated Epanechnikov kernel. The kernel itself

is defined by

K(t) =
3

4
(1− t2)1t∈[−1,1](t).

If the approximation of the MSE by BMSEpar is done using the correct parametric family, it is
expected that minh BMSEpar(h) < minh BMSEsmo(h). In such case, hpar already yields good re-
sults. However, in practice such parametric assumptions are not always correct, making sampling
from the SMLE with h = hsmo a better choice than sampling from a parametric approximation. Re-
sults of the MSE estimation in which the correct parametric assumption is made is found in Table 7.1.

The results in the table support the claim that the MSE is better approximated by BMSEpar
than by BMSEsmo. However, one must note that these quantities are generated using a single
sample for each n of the true distribution. This means that repeating the experiment many times
may lead to different results, this is however too time consuming. The MSE appears to decrease
as the sample size increase. This could imply that estimation becomes more accurate with more
data. The quantities found in Table 7.1 are not expected to be much different with new datasets
in the same sampling setup. More computational power is required to verify this. It is however
possible to suggest the correctness of the output of the bootstrap with a Monte Carlo simulation
using the sampling sceme (1)-(4). Table 7.2 shows that the bandwidth differ but the BMSE appears
to approximate the MSE well. The true MSE is approximated as well as BMSEpar and BMSEsmo.
Figures 7.2, 7.3 and 7.4 show the BMSE as a function of h for single samples of sizes n = 500,
n = 1000 and n = 2000 respectively. The figures show that BMSEsmo approximate the MSE well.

A simulation is done using a parametric family which does not contain Exp(1). This is to
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Figure 7.3: From the true distribution, a sample of size n = 1000 is drawn. An exponential model
is fitted to the censored data and B = 1000 bootstrap samples are computed. The graph shows the
BMSEpar (red), the value as a function of the smoothing parameter hpar on the x-axis. BMSEsmo
(purple) is calculated using draws from F̃nhpar . A Monte Carlo simulation is done to estimate the
true MSE (blue). 1000 datasets of n = 1000 samples are drawn calculating the NPMLE. Sampled
estimators are smoothed using values h on the x-axis.

Figure 7.4: From the true distribution, a sample of size n = 2000 is drawn. An exponential model
is fitted to the censored data and B = 1000 bootstrap samples are computed. The graph shows the
BMSEpar (red), the value as a function of the smoothing parameter hpar on the x-axis. BMSEsmo
(purple) is calculated using draws from F̃nhpar . A Monte Carlo simulation is done to estimate the
true MSE (blue). 1000 datasets of n = 2000 samples are drawn calculating the NPMLE. Sampled
estimators are smoothed using values h on the x-axis.

n hopt MSE(F̃nhopt(1))
500 0.75 0.004364859
1000 0.6 0.002671733
2000 0.5 0.001281583

Table 7.2: The true MSE in (6.9) is approximated using 1000 samples of sizes n = 500, n = 1000
and n = 2000. The bandwidth that resulted in the smallest MSE is chosen as hopt.
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Figure 7.5: A plot showing the distribution function of Exp
(√

2/π
)

(red) and the standard half
normal distribution (blue).

n 1000
ρ̂n 1.434622
hpar 0.225

BMSEpar(F̃nhpar (1)) 0.005280483
hsmo 0.45

BMSEsmo(F̃nhsmo(1)) 0.003555854
hopt 0.575

MSEF (F̃n(1)) 0.002972139

Table 7.3: Results under misspecification of the model are shown where data generated from a
half-normal distribution X ∼ |N (0, 1)| was assumed to be exponentially distributed.

show the performance when the chosen parametric model is incorrect. Because the true distribu-
tion is not an element of the assumed parametric family, it is expected that minh BMSEpar(h) >
minh BMSEsmo(h). The event time distribution used in this simulation is the half-normal distri-
bution, i.e., X ∼ |N (0, 1)|. Given censored data, one could think the data are drawn from an
exponential distribution. Figure 7.5 shows the cumulative distribution of both the standard half
normal distribution and the exponential distribution with parameter

√
2/π. It appears that, when

the wrong family is chosen, the parametric approach of optimising the bandwidth does on itself not
perform well. However, using hpar to compute BMSEsmo(h) yields more promising results. It is seen
that with the data, a proper bandwidth is obtained as the BMSE approach resulted in hsmo = 0.45
whereas the Monte Carlo approach resulted in hopt = 0.575. The BMSE as a function of h is found

in Figure 7.6. Table 7.3 shows the output. It appears that the MSE of F̃nhopt(1) obtained with
an incorrect underlying distribution is not much bigger than when the correct family is chosen.
The final SMLE uses the bandwidth that optimised BMSEsmo(F̃nh(1)). Figure 7.7 shows the true
distribution, the NPMLE and the SMLE for different sample sizes and misspecification. It can be
seen that BMSEpar does not match the MSE. It does however result in a reasonable bandwidth hpar
because as BMSEsmo does match the MSE well.

7.3 Simulations on Large Sample Behaviour of the SMLE in
the Cox Model

This paragraph contains a simulation study on the large sample performance of the SMLE in the
Cox model. Recall the definition of consistency. Let θ̂n be an estimator for θ. The estimator θ̂n is
said to be (weakly) consistent if θ̂n converges to θ in probability, that is, for any ε > 0

P(||θ̂n − θ||N > ε)→ 0 as n→∞, (7.4)
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Figure 7.6: From the standard half-normal distribution, a sample of size n = 1000 is drawn. An
exponential model is fitted to the censored data and B = 1000 bootstrap samples are computed.
The graph shows the BMSEpar (red), the value as a function of the smoothing parameter hpar on

the x-axis. BMSEsmo (purple) is calculated using draws from F̃nhpar . A Monte Carlo simulation is
done to estimate the true MSE (blue). 1000 datasets of n = 1000 samples are drawn calculating the
NPMLE. Sampled estimators are smoothed using values h on the x-axis.

Figure 7.7: In all plots, blue represents the true distribution, the NPMLE is visualised in green and
the SMLE is displayed in red. Top left is the estimate for n = 500, top right shows the estimate
for n = 1000, bottom left shows the estimate for n = 2000 and bottom right shows the estimate in
which the wrong parametric model was assumed when estimating the MSE. The sample of n = 1000
is drawn.
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Figure 7.8: For different sample sizes, 1000 Monte Carlo samples of β̂n are generated. From top left
to middle bottom, the sample size n are 250, 500, 1000, 2000, 4000 respectively. Scatter plots are
plotted and variance of the x-axis. The bottom right image shows the mean squared distances of
the estimates of β to the origin for all sample sizes in the same order.

n 250 500 1000 2000 4000
ξβ̂n(0.2) 0.82 0.682 0.481 0.213 0.0813

Table 7.4: Approximated probabilities of (7.5) are shown.

where N is some appropriate norm. Because β and F (t0) belong to a Euclidean space, the Euclidean
norm is chosen. In this study, point-wise function estimates of F (t0) are of interest. In words (7.4)
means that if it can be shown that the probability that the error distance surpasses any ε decreases
to zero when the sample size increases, the estimator is said to be consistent. Figure 7.8 shows
a scatter plot 1000 Monte Carlo estimates of β from data sets consisting of varying sample sizes.
It is suggested that the points cluster around the true β. The probability given in (7.4) can be

approximated by the relative frequency. To indicate that the estimator β̂n may be consistent, define

ξβ̂n(ε) =
1

C

C∑
c=1

1||β̂cn−β||L2>ε
≈ P(||β̂n − β||L2 > ε). (7.5)

For the simulations, C = 1000 samples of sizes n are drawn from the model described in paragraph
7.1. For each sample c, the estimates of β and F (1) are calculated and denoted by β̂cn and F̃ cnhsmo(1).
Figure 7.9 plots ξβ̂n(ε) for ε ranging from 0 to 1. It is shown that for larger n, ξβ̂n decreases from
1 towards zero faster, suggesting that for a fixed ε, the probability does decrease when n increases.
Take ε = 0.2, for this sample the numerical values of the probabilities are found in Table 7.4. This
behaviour is precisely what is expected when the estimator β̂n is consistent. This gives an indication
that the estimator β̂n could be consistent. However, to make this rigorous, more research is needed.

With each β̂cn comes a sample of F̃ cnhsmo(1). The smoothing parameter hsmo found in paragraph

7.2 is used depending on the size of the sample. Possible consistency of F̃nhsmo(1) is now indicated
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Figure 7.9: For sample sizes n = 250 (black), n = 500 (red), n = 1000 (blue), n = 2000 (purple) and
n = 4000 (yellow), the functions ξβ̂n(ε) in (7.5) (left) and ξF̃nhsmo

(ε) in (7.6) (right) are displayed.

It can be seen that as the sample size gets bigger, both functions starts to concentrate around zero.

again by approximating (7.4). Define a new function

ξF̃nhsmo
(ε) =

1

C

C∑
i=1

1|F̃ cnhsmo (1)−F (1)|>ε ≈ P(|F̃nhsmo(1)− F (1)| > ε). (7.6)

Figure 7.9 shows plots of this function for multiple values of n. The same conclusions on consistency
are made as done for β̂n.

If αn(F̃nhsmo(1)−F (1)) converges to some distribution, then one speaks of bootstrap consistency
if αn(F̃ ∗nhsmo(1) − Fnhsmo(1)) converges to the same distribution. Figure 7.10 shows approximated

distributions for both F̃ ∗nhsmo)(1), sampled from the initial sampling setup and the distribution of

F̃ ∗nhsmo(1) when resampling from F̃nhsmo . For each sample size, the histograms are very close to each
other. This suggests bootstrap consistency.
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Figure 7.10: For sample sizes n = 500, n = 1000 and n = 2000. In all three figures, the red histogram
represents the distribution of F̃nhsmo(1) from the true sampling setup. The blue histogram represents
the distribution of F̃ ∗nhsmo(1) where event times were resampled from Fnhsmo . The overlap is coloured
in purple. The histograms are very close to eachother, indicating consistency of the bootstrap
procedure.

Figure 7.11: Confidence bands for the event-time distribution F made using samples of sizes (from
left to right) n = 500, n = 1000 and n = 2000. The blue lines are the true function F , red is the
SMLE and purple the confidence intervals with the bandwidth h being optimised for estimation of
F (1). The black line helps visualising the length of the confidence interval at F (1)

Finally, confidence intervals are constructed for F (1) using different sample sizes. Note that an α
confidence interval is a random interval which asymptotically has the true parameter included with
probability α. With the setup used for the simulations, generating a single confidence interval can
take more than a day. Lengths of intervals are found in Table 7.5. The confidence bands of F are
shown in Figure 7.11, using the same hsmo for the whole function. With more computer power it
would be possible to generate more confidence intervals so that coverage of the confidence intervals
can be tested. If the confidence intervals are consistent, then the coverage should become closer to
α as more data becomes available.

n 500 1000 2000
length CI 0.2677453 0.1977452 0.1391965

Table 7.5: The lengths of the 95% single confidence intervals are given.
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7.4 Application to Real Data

In the period from 1996 to 2001, data has been collected from 4386 randomly sampled children in
Flanders and is studied in (Vanobbergen, Martens, Lesaffre, & Declerck, 2000). The outcome of
interest was the time (in age) of the right central incisor to come through (tooth 24). The data is
given in tenths of years. The inspection times in the data range from 1.1 to 7.4 years old. Together
with the time interval in which the emergence of the tooth occurred, two extra variables are given.
The extra variables are the gender of the child, male is indicated by 0 and female by a 1. The second
variable is “dmf”, which is one if the tooth is delayed, missing or filled and zero otherwise. The result
of the NPMLE is found in Figure 7.12 and the Cox vector is given by β = (0.3239359, 0.3366725).
The output β1 implies that girls have a higher chance of having their tooth 24 to emerge prior to
boys.

Figure 7.12: Baseline distribution function based on the tooth data from dynsurv. The blue line is
the NPMLE and the red line is the SMLE with h = 0.4.

Bootstrapping according to the method of Sen and Xu is not possible with this dataset as the
data was incomplete. Only the intervals in which the emergence of the tooth occurred are provided.
For a right censored event i, only ui and ∞ were in the dataset and ti was missing. For this reason,
no new indicator variables can be resampled according to (6.8). The data would however be suitable
for the method where pairs of observations are resampled. Because resampling was in this case not
possible, h = 0.4 is used, the bandwidth chosen based in the results found in Table 7.2.

The positive Cox coefficient, weighting the gender implies that girls generally have their central
incisor emerged earlier than boys. This result is supported in (Diamanti & Townsend, 2003) who
conclude the same using data on Australian children. The variable “dmf” stands for decay, missing
or filled. This means that the primary tooth decays from caries, fell out or had to be filled. It
appears from this analysis that if this condition is linked the permanent tooth to emerge faster.
However, no supporting articles have been found.
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Chapter 8

Appendix

8.0.1 Gateaux Derivatives

Let F and G be two functions in K. The Gateaux derivative of L at F in the direction G is defined
as

[DG(L)](F ) = lim
ε↓0

1

ε

(
L(F + εG)− L(F )

)
. (8.1)

Instead of F and G being variables as in standard calculus, Gateaux derivatives have a slightly
different interpretation. As in the normal case, the derivative indicates how fast the function output
changes with the variables. Now it is of interest how functions themselves change when shifted
on a line segment between two functions. Computation of the derivative is split into three parts.
L’Hôpital’s theorem is key for calculating the derivative. A short notation is used to improve
readability. In the following the notation Fx = F (x), Gx = G(x) and c = exp(β>s) is used. The
Gateaux derivative of L given in (4.6) is computed in parts,

lim
ε↓0

1

ε

(
log
(
1− exp(−c(F + εG)

)
− log

(
1− exp(−cF )

))
= lim

ε↓0

1

ε
log

(
1− exp(−c(F + εG))

1− exp(−cF )

)
.

Writing the right hand side as a fraction of the logarithm divided by ε yields an expression to which
L’hôpital’s theorem can be applied. Note that the inside of the logarithm converges to one as ε→ 0
and log(1) = 0. Therefore the right hand side becomes

lim
ε↓0

cGt exp(−c(Ft + εGt))

1− exp(−c(Ft + εGt))
=
cGt exp(−cFt)
1− exp(−cFt)

=
cGt

exp(cFt)− 1
=

exp(β>s)G(t)

exp(eβ>sF (t))− 1
. (8.2)

Derivatives of the second and third factor of the likelihood are computed in a similar fashion.

lim
ε↓0

1

ε
log

(
exp(−c(Ft + εGt))− exp(−c(Fu + εGu))

exp(−cFt)− exp(−cFu)

)
= lim
ε↓0

−cGt exp(−c(Ft + εGt)) + cGu exp(−c(Fu + εGu))

exp(−c(Ft + εGt))− exp(−c(Fu + εGu))

=
−cGt exp(−cFt) + cGu exp(−cFu)

exp(−cFt)− exp(−cFu)

=
−eβ>sG(t) exp(−eβ>sF (t)) + eβ

>sG(u) exp(−eβ>sF (u))

exp(−eβ>sF (t))− exp(−eβ>sF (u))
(8.3)

And the third derivative becomes

lim
ε↓0

1

ε

(
− c(Fu + εGu) + cFu

)
= −cGu = −eβ

>sG(u). (8.4)
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Substituting the true quantities: c = eβ
>si , Ft = Λ0(ui), Fu = Λ0(ui). Here, G is the function to

which the derivative is taken. final result:

[DG(L)](F ) =

n∑
i=1

δi
cGt

exp(cFt)− 1
+ γi
−cGt exp(−cFt) + cGu exp(−cFu)

exp(−cFt)− exp(−cFu)
− µicGu. (8.5)

The Gateaux derivative can be used to test optimality. If for an estimate Λ̂0n it holds that
[DΛ0

(L)](Λ̂0n) ≥ 0 for all Λ0 ∈ H then Λ̂0n is the maximiser.

8.0.2 Hooke-Jeeves Algorithm

An alternative to the Nelder-Mead is the Hooke-Jeeves algorithm. Consider an optimisation prob-
lem of the function ϕ : Rd → R. Given an initial point x(0), Hooke-Jeeves algoritm evaluates
ϕ at the points around x(0). Define a set of unit vectors, for example the standard unit vectors
ei = (0, . . . , 1, . . . , 0) with a 1 at entry i. Then based on the current estimate of the maximiser

x(k), the algorithm generated 2d new points. Denote these points by x
(k)
j where j = 1, . . . , 2d and

x
(k)
j = x(k) + ej if j = 1, . . . , d and x

(k)
j = x(k) − ej−d if j = d+ 1, . . . , 2d. A direction with the best

increase if searched for. ϕ(x(k)) > ϕ(x
(k)
i ) for all i, the algorithm decreases the searching area by

replacing x
(k)
j = x(k) ± ej by x

(k)
j = x(k) ± αej and attempts to find vector with higher value of ϕ.

Pseudocode for Hooke-Jeeves is found in Algorithm 3.

Data: Initial estimate x(0) ∈ Rd
Set k = 0;
Set d = 1;
Set γ > 0;

Set a > 0 Set ϕ(x(−1)) =∞;

while ϕ(x(k))− ϕ(x(k−1)) > γ do

Generate 2d distinct points around xk by x
(k)
i = x(k) ± εei, i = 1 . . . d+ 1;

Calculate `i = ϕ(x
(k)
i ) for all i = 1 . . . 2d;

Find i correspronding to `(2d);

while ϕ(x(k)) > `(2d) do
Set d 7→ αd;

Generate 2d distinct points around x0: x
(k)
i = x(0) ± εei, i = 1, . . . , d+ 1;

Calculate `i = ϕ(x
(k)
i ) for all i = 1 . . . 2d;

Find i correspronding to `(2d);

end
Set d 7→ ξd;

Set x(k+1) = argmaxx(k) ϕ(x
(k)
i );

Set k 7→ k + 1;

end
Algorithm 3: Hooke-Jeeves
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Figure 8.1: N is the number of deaths before time t = 100 in years if the mortality of people
is modelled by a Weibull( 1

80 , 7) distribution.. 100000 samples of N are generated.. The red line
is the mean of the samples and is approximately 400. This supports that E(N) = Λρ,k(100) =(

100
80

)7 ≈ 4.768 deaths should be the mean of the experiment. The vertical red line displays the
mean, coinciding with the theoretical prediction.

8.0.3 Count-data Interpretation of Cumulative Hazard Funtion

#### Simulation number of human deaths ####

Lambda = function(t, scale = 1, shape = 1) (t/scale )^shape # CHF

Lambda_inv = function(t, scale = 1, shape = 1) scale*t^(1/shape) # Inverse CHF

t_0 = 100 # Age of interest

N_max = 20 # Maximum of events for a single subject

scale = 80 # Scale parameter of the Weibull distribution

shape = 7 # Shape parameter of the Weibull distribution

samples_N = NA # Vector will contain the number of events before t_0

for ( j in 1:10000){

unif = runif(40)

cu_unif = cumsum(-log(1-unif))

event_times = Lambda_inv(cu_unif , scale , shape)

samples_N[j] = max(which( event_times < t_0 ))

}

isInf = which(is.infinite(samples_N))

samples_N[isInf] = 0 # People who did not die was set to -Inf is set to 0 deaths
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Nomenclature

F Event-time distribution function

S Survival function

Λ Cumulative hazard function

Λ0 Baseline cumulative hazard function

F̌n Empirical distribution function based on n samples

F̂n Nonparametric maximum likelihood estimator based on n samples

F̂
(k)
n The k’th iteration of an algorithm approximating F

F̃nh Smoothed MLE based on n samples, with bandwidth h

f Event-time density function

λ Hazard function

λ0 Baseline hazard function

H Joint distribution of T and U

T First inspection time random variable

U Second inspection time random variable

X Event-time random variable

X∗ Bootstrap resample of random variable X

∆ Random variable indicating the event happened before first inspection

Γ Random variable indicating the event happened between two inspections

M Random variable indicating the event happened after the last inspection

Z Random variable of the observations (T,U,∆,Γ)

V The set containing the times in which F̂n can contain jumps

R+ The set of positive real numbers

F The set of distribution functions of interest

H The set of cumulative hazard functions of interest

I1 The set of ti’s of left censored events

I2a The set of ti’s of middle censored events
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I2b The set of ui’s of middle censored events

I3 The set of ui’s of right censored events

β Cox coefficients

h Bandwidth

s Matrix containing vectors of covariates of all subjects

K Kernel function

L Likelihood function

K Integrated kernel function

L Log likelihood function

pLβ Profile likelihood function with fixed β

BMSE Bootstrapped mean squared error

MSE Mean squared error

∇ Gradient operator

Hess Hessian operator

E Expected value operator

V Variance operator

P Measure of random variable X

ηv Dirac measure with mass at v

N Normal distribution

Pj Index j of the cumulative sum diagram P

β Vector containing Cox coefficients

` Link function connecting two inspection times of the same subject

argmaxx∈D f(x) The element in x ∈ D such that x maximises f

argminx∈D f(x) The element in x ∈ D such that x minimises f
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