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Duality relation for quantum ratchets
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A duality relation between the long-time dynamics of a quantum Brownian particle in a tilted ratchet
potential and a driven dissipative tight-binding model is reported. It relates a situation of weak dissipation in
one model to strong dissipation in the other one, and vice versa. We apply this duality relation to investigate
transport and rectification in ratchet potentials: From the linear mobility we infer groundestiatealization
for weak dissipation. We report reversals induced by adiabatic driving and temperature in the ratchet current
and its dependence on the potential shape.
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Periodic structures with broken spatial symmetry, knownma| environment is modeled by the standard Hamiltohign
as ratchet systen{d], present the attractive property of al- of a4 bath of harmonic oscillators whose coordinates are bi-
lowing transport under the influence of unbiased forces. Thﬂnearly coupled to the system coordindtd2]. The bath is
interplay of dissipative tunnelinf2] with unbiased driving  fylly characterized by its spectral densitfw). We consider
enriches the quantum ratchet effect with features absent in it$ict Ohmic damping)(w) = 7w, which reduces to instanta-
classical counterpart like, e.g., current reversals as a functiofe s viscous dampirgiscosity 7) in the classical limit. In
of temperatur¢3,4]. Quantum ratchet systems have only re-g oy 4 system, the ratchet effect is characterized by a nonva-
cently been experimentally realized in semiconduf4dand nishing ~ average stationary particle  current;
superconductof5] devices. Also from the theory side there =lim, . t3fidt’v(t’) in the presence of unbiased driving
are still few works[3,6—10 which, with the exception of e : “Lt A () — ; L
[7,8], are restricted to the regime of moderate-to-stron charactenz_ed by lif... =/ odUF (') ._0’ swnched_ on at fime
Y "=0. In this paper, we shall consider the particular case of

?oa\l/:/]j;;(ljnsgéﬁhearntttfnS((ja(ranslc?rlit’?)st%ﬁa\lm\gg[g]éégg;e\:vr?é?grtiss unbiased bistable driving switching adiabatically between
. ! - the values £. We report a method to evaluate the stationary
role of the band structure in ratchet potentials sustaining few locity v=(F) in the biased situation of time-independent
bands below the barrier was investigated. Recently, a quarY—e. ocity Ul ) n . . P
tum Smoluchowski treatmeritlO] added to the available driving F, Wh'Ch. is also of experlmental |n_tere[s¢,5]. The_ .
methods. In this paper, we generalize to an arbitrary ratché’f:\tchet current in thg_prssence gf adiabatic bistable driving
potential a duality relation put forward ifi1] for a cosine can be expres;ed ag_.UDC(F)-FUDC(_F)' .
potential. It provides a tight-binding description of quantum 1€ whole information on the system dynamics is con-
Brownian motion in a ratchet potential, and leads to an ex{@ined in the reduced density matft) = TrsW(t), obtained
pression for the ratchet current valid in a wide parameteffom the density matrixW(t) of the system-plus-bati
range including weak dissipation and nonlinear adiabaticHr+Hg, With time-independent drivingr, by performing
driving. We apply this method to discuss rectification andthe trace over the bath degrees of freedom. To evaluate the
ground-state delocalization occurring foeak dissipationn  evolution of the average positidig(t))=Trg {Gp(1)}, the di-
ratchet potentials. Our results encompass correctly the claggonal element$(q,t)=(q|p(t)|q) of the reduced density

sical limit. matrix are needed, and can be obtained by real-time path

We consider the HamiltoniaHg of a quantum particle of  integrals techniquei2]. The velocity follows by time differ-
massM in a one-dimensional periodic potentisi(q+L)  entiation. At initial timet’=0, we assume a preparation in a

:V(q) tilted by a time_dependent ford._dt), pI’OdUCt form Wher? the bath is jn thermql equilibrium with
- the ratchet systenW(0)=p(0)e #"8[Trge™#H8]"L. The bath
I:IR(t) - +V(@) - F()d. (1) _temperature is fixed by=1/pkg. This leads to a double path
2M integral
The potential assumes in Fourier expansion the form qf
. P(gr,t) :f dg f dg(ai|p(0)|ai) | Dq
A ~ L]
V(@) = X Vi cog2mld/L - @), 2 ;
=1 * * ] ’
<[ DoMaRT Al @

and can take any shape. Apart from special configurations af
{V, sin(¢;—l¢;) =001} of the amplitudesv, and phasesp,, ) ) ,
this potential is spatially asymmetric and describes a ratché" the continuous coordinateg and q'. Here Alq]

system. The interaction of the system with a dissipative ther= exp{—(it/ﬁ)ﬂR} is the propagator of the ratchet system for
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a pathq(t’), and F[q,q’] the Feynman-Vernon influence
functional of the bath inducing nonlocal-in-time Gaussian
correlations between the pattyg’) andg’(t’) [2]. Due to the
nonlinearity of the potentiaV(q), these path integrals cannot
be performed explicitly. For a cosine potential, Fisher and
Zwerger[11] introduced an exact expansion in the propaga-
tor A[q] which transforms the path integrals into Gaussian
ones that can be performed. Generalizing this idea for the
arbitrary periodic potential2), we find the expansion

—

V(q) (units of Vl)
! =)

TS
—|

FIG. 1. Dual relation between a dissipative ratchet system and a
tight-binding (TB) model sketched for a two-harmonics ratchet po-

. et tential (thick curve. Each harmonidthin curve$ generates cou-
expt — '_J dt'V(q(t')) plings to different neighbors in the TB system, according to Esjs.
hilo

and (7). The periodicityE of the TB model is determined by the

% m . viscosity » in the original model.
- |A|, t tm
=>>11 —1fdtmf Aty ... .
meo i} j=1 \ P 0 0

tz o Hg= 2 (Aln+1Xn|+ A0 +1]) - Féra,  (7)
X f dt, exp{— — f dt’p(t’)q(t’)}, (4) =
0 o and bilinearly coupled to differentbath of harmonic oscil-
lators. The spectral density of this bathg(w)=J(w)/[1
+(wl y)?] is still Ohmic but presents a cutoff at the frequency
v v set by dissipation. At initial tim¢’=0 the TB system is
A=—€9 forl>0, A= Al (5)  preparedin the sta1q=0>.l'll'he calculation shows that tig
2 introduced in(5) are identified with the couplings of the TB
_ _ . i _ system(7). We stress that th&h harmonic of the original
The physical meaning of these new quantities will be dis-yntential results in a coupling to thién neighbors in the dual
cussed later. For each term of the sumnoiin (4) we have  Tg gystem as sketched in Fig. 1. One can easily show that
mtroduce.dm intermediate times;, and corresponding indi- e spatial symmetry condition on the phaggss the same
cesl; taking any value amongtl,+2,..;. The SUMXy, iy poth systems. The first three terms on the right-hand side
runs on all configurations of these indices. A similar expan-of (6) reproduce exactly the classical solution for the average
sion is performed for the propagatar[q’'], involving a new  position (q(t)) of a free systemV(q)=0, at long times. In
set ofm’ timestj and indiced| being used to definp’(t')  this linear case, the quantum and classical solutions should
similarly to p(t'). This enables us to rewrite the average po-pe identical, due to Ehrenfest theorem, and they are, because
sition (q(t))=/dqqRq,t) in terms of a series in the ampli- the TB average(grg(t))g vanishes in the absence of the
tudesV, of the potential. potentialV(q). We expect the same result when the potential
Though still intricate, the resulting expression becomess present but unimportant, e.g., for large drivifigand/or
easier to treat in the long-time limit we are interested in.high temperatureg.
Quantitatively, the measurement tirhshould be very long The series expression for the diagonal elements of the
on the time scale/™'=(»/M)™" set by dissipation. A second reduced density matrifg of the TB system, which leads to
approximation is necessary to proceed: we neglect termge series expression fdarg(t))rs, can be written in terms
e, e W, e, e, greeti, et @787, and  of pairs of TB trajectoriesyg(t’) = 7 L5 dt"p(t") [with p(t")
e 8 wherewg=27kg T/, in the integrands involved in introduced above Eq5)], and g}4(t’) defined similarly in
the series expression fau(t)). We shall refer to this assump- terms ofp’(t’). From that one extracts the spatial periodicity
tion as the rare transitior(®T) limit and discuss its validity T’ of the TB system, yieldind.=L/«, wherea=5L2/2x# is
later. Generalizingi11], we consider a Gaussian wave packetihe dimensionless dissipation parameter of the original sys-

centered at positiondp=Trz[dp(0)] and momentump,  tem. These pairs of trajectories combine in discrete paths in
=Tre[pp(0)] as initial preparation for the ratchet system. Wethe q—q’ plane parametrized by pairs of intege(rs,n’).

wherep(t')=(2mh /L)L)l 8(t' -t;), and

obtain the important result Each path starting in the diagonal elemédy) and ending
- at timet in (m,m) contributes to{m|prg(t)|m). Each transi-
(qt)) ~ go+ Po +— —(Grs()rs. (6) _tion in the path brings a co.r.respondi.ng faatqrand aI_I pat_hs
t—oo n 7 involve at least two transition&f. Fig. 2). Written in this
RT form, the diagonal elements of the reduced density matrix

) ) are a solution of a generalized master equattidj in terms
Parts of the series expression f@((t)) has been summed, of transition rated",, from the TB site(n,n) to the site(n

yielding the first three terms. The rest can be identified withy ;3 n+m). Consequently, these rates are expressed in power
the series expression for the expectation value of the positiogeries of all the couplingd,, starting from second order. As
operatorgrg=LZ;__.n[nXn| of a driven tight-binding(TB)  the timest;,t/ introduced in(4) are identified with the tran-
system, described by the Hamiltonian sition times in the TB representation, the rakgsgive also a
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FIG. 2. Representation of some of the second-ofddy and C10° . 10 20,

| L
third-order (c) paths contributing to the diagonal elements of the 10 k T/AV 20
reduced density matrix of the tight-binding model, and the corre-
sponding dependence on the couplidgs FIG. 3. Ratchet current and stationary velodiiyse) as func-
tion of temperature for the potential of amplitudd/ depicted in

way to control our assumption of rare transitions. It corre-Fig- 1. Weak dissipation is chosen witt=0.2 andfiy=0.76\V.
sponds to neglect those paths which involve transitions on Mving is set toFL=0.57AV.
time scale mafy™, wg?) after the initial timet’ =0 or before
the final timet’ =t. As transitions in the TB model happen on =2[gdw[coth(w/26)(1-cosw) +i sinw7l/w(1+w?) with @
a time scald}l, the duality relation will be valid when the =kgT/#7y. At zero biasF=0 and in the scaling limitiy
transitions are rare on the time scale m&,wgl), i.e., >kgT, the rates show a power-law dependence on tempera-
when all rates satisf{/,,<min(y, wg). This condition is con- turel“g) «T2"1 The linear mobilityurg is thus dominated
trolled by the dissipation through=7/M and the tempera- by the rater(lz) at low temperatures, and vanishes at0 for
ture throughwg=27kg T/ . a<1, which corresponds to free dynamijes u in the dual

Due to the change of periodicity length between the twoweak-binding systerfil4]. This suggests that the occurrence
systems, the dissipation parameteand the energy drop per of a delocalization to localization transition at1 for the
unit cell e=FL becoméx=1/a andeé=€/ « in the TB system. ground state of a cosine potent[dl1,15 would not be af-
Thus, weak dissipation in one system maps to strong disstected in more general potentialsee also Fig. 3
pation in the other one although the viscosityn the spec- In the remainder of the paper, we focus on the ratchet
tral density does not change. The asymptotic dynamics igurrent induced by adiabatic bistable driving=v5(F)
usually described by the nonlinear mobilityu +v%5.(-F). The second-order rates ob€)ﬁ)(—F):F£ﬂ(F)
=lim;_.. v(t)/F. With these notations, the duality relati®®  and therefore cancel out in the expression for the ratchet
can be rewritten in the form current. Hence, we have to focus on contributions of at least
third order to the rate¥',, Here we neglect higher orders.
This is known to provide a good approximation in TB sys-
) » tems with large dissipation parameteand/or high tempera-
where uo=1/7 is the mobility of the free systenV(q)=0.  (re[2]. For simplicity we also consider a potential consist-
In the special case of a cosine potential, this relation Waghg of only two harmonics. There is no problem of principle

already obtained ifi11] for the dc mobility. It it also inter- {5 include more harmonidd6]. We find, withm=+1, +2,
esting to notice that it was also derived[i8] for the linear

M(a,e);TWo - wrs(la,éla), (8)

S : . . 2 % -
ac mobility in a cosine potential. However, we did not com- r® = ViVe | drGO(7)eMFLAy i sgrime
. .. . m = 3 m TG‘m‘(T)e )
pletely succeed in generalizing E) in the presence of 4737 e
time-dependent driving. 11
We shall now focus on the evaluation of the stationary (1)

velocity vp(F). By solving the generalized master equationwhere we have introduceg= ©—2¢,, and
mentioned above, one finds the stationary veloaitf -

=LY, ml,, in the dissipative TB system. The duality relation G¥(p)=- f dpe 2P g2aQUr+p)aQ(r+2p)
(6) can then be used to obtain 0

» + e—ZTJzQ(T-pHEQ(T-Zp)]’
vpe(F) =Flp=(L/a) 2 m(I'y=T_y). (9) )
m=1 G(23)(7_) — f dpe’&Q(p)—Z'&Q(ﬁp/Z)—Z'&Q(Thp/Z)_ (12)
As discussed above, the ratEg, are power series in the 0

couplingsA, starting from second order. For a given# 0, i 3) R ,
there are only two possible second-order contributiorig to At third order the rates obely (F, ¢)=I""(-F, —¢), which

which, after use of Eq(5), sum up to[2] is a consequence of parity. The dependence of the ratchet
X current on the potential parameters is then up to third order
@ Vi f dreMPEQUHMFLAY 7 (10 in the potential amplitude
m 2 : © .
4ty ) vR * VAV, sin(pz — 2¢1). (13

The influence of the dissipative environment enters througfThe ratchet current vanishes for a symmetric potential
the dimensionless bath correlation functiorQ(7) sin(g,—2¢,)=0 as it should.
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FIG. 4. Stationary velocity and ratchet curréimse) as a func-
tion of driving for the potential of amplitudAV depicted in Fig. 1.
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=2mV;/ML? in the untilted potentialweak dissipation In

this numerical application, none of the rates exceeds+0.05
and 0.0%g, which means that the duality relation is valid for
this system. Moreover, the third-order rates stay at least one
order of magnitude below the second-order ones. The ratchet
current presents several reversals as a function both of the
driving and the temperature. As expected for the small values
of driving and dissipation used in Fig. 3, the stationary ve-
locity is very close to the value of a free systegrF/ 7 at
T=0, which corresponds ttocalization v7g=~0 in the TB
system[17]. Accordingly,uvg =0 in this regime. The station-

The dashed line is the classical solution in the absence of potentialy Velocity also tends to, (dashed line in Fig. Afor driv-

Weak dissipation is chosen with=0.2 andiy=0.76AV. Tempera-
ture is set takgT=0.076\V.

ing or temperatures much higher than the potential barrier,
and the ratchet current vanishes correspondingly. If observed
in experiments, this linear behavior would provide a direct

The behavior of the particle and ratchet currents as funcestimation of dissipation.

tion of temperature and driving is shown in Figs. 3 and 4 for

In conclusion, we obtained a duality relation yielding a

a two-harmonics potential. In Fig. 3, the driving is set t0tjght-binding description of Brownian motion in a tilted
FL=0.57AV, whereas in Fig. 4, the temperature is fixed toyatchet potential. We demonstrated its application to investi-
kg T=0.22AV. With V,=4V,, the untilted potential, depicted gate rectification of adiabatic driving and ground-state delo-

in Fig. 1, has a barrier heighhV=2.2V;. We choose«

=0.2 andZzy=0.7&V. It means that the typical action is

V2MAVL?=~ 2%, and the dissipation rate=7/M is about
one-fourth of the classical oscillation frequencg,

calization for weak dissipation.
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