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A duality relation between the long-time dynamics of a quantum Brownian particle in a tilted ratchet
potential and a driven dissipative tight-binding model is reported. It relates a situation of weak dissipation in
one model to strong dissipation in the other one, and vice versa. We apply this duality relation to investigate
transport and rectification in ratchet potentials: From the linear mobility we infer ground-statedelocalization
for weak dissipation. We report reversals induced by adiabatic driving and temperature in the ratchet current
and its dependence on the potential shape.
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Periodic structures with broken spatial symmetry, known
as ratchet systemsf1g, present the attractive property of al-
lowing transport under the influence of unbiased forces. The
interplay of dissipative tunnelingf2g with unbiased driving
enriches the quantum ratchet effect with features absent in its
classical counterpart like, e.g., current reversals as a function
of temperaturef3,4g. Quantum ratchet systems have only re-
cently been experimentally realized in semiconductorf4g and
superconductorf5g devices. Also from the theory side there
are still few worksf3,6–10g which, with the exception of
f7,8g, are restricted to the regime of moderate-to-strong
damping. After the semiclassical workf3g, further progress
towards a quantum description was made inf9g, where the
role of the band structure in ratchet potentials sustaining few
bands below the barrier was investigated. Recently, a quan-
tum Smoluchowski treatmentf10g added to the available
methods. In this paper, we generalize to an arbitrary ratchet
potential a duality relation put forward inf11g for a cosine
potential. It provides a tight-binding description of quantum
Brownian motion in a ratchet potential, and leads to an ex-
pression for the ratchet current valid in a wide parameter
range including weak dissipation and nonlinear adiabatic
driving. We apply this method to discuss rectification and
ground-state delocalization occurring forweak dissipationin
ratchet potentials. Our results encompass correctly the clas-
sical limit.

We consider the HamiltonianĤR of a quantum particle of
mass M in a one-dimensional periodic potentialVsq+Ld
=Vsqd tilted by a time-dependent forceFstd,

ĤRstd =
p̂2

2M
+ Vsq̂d − Fstdq̂. s1d

The potential assumes in Fourier expansion the form

Vsq̂d = o
l=1

`

Vl coss2plq̂/L − wld, s2d

and can take any shape. Apart from special configurations
hVl sinswl − lw1d=0∀ lj of the amplitudesVl and phaseswl,
this potential is spatially asymmetric and describes a ratchet
system. The interaction of the system with a dissipative ther-

mal environment is modeled by the standard HamiltonianĤB
of a bath of harmonic oscillators whose coordinates are bi-
linearly coupled to the system coordinateq̂ f2g. The bath is
fully characterized by its spectral densityJsvd. We consider
strict Ohmic dampingJsvd=hv, which reduces to instanta-
neous viscous dampingsviscosityhd in the classical limit. In
such a system, the ratchet effect is characterized by a nonva-
nishing average stationary particle currentvR

`

=limt→` t−1e0
t dt8vst8d in the presence of unbiased driving,

characterized by limt→` t−1e0
t dt8Fst8d=0, switched on at time

t8=0. In this paper, we shall consider the particular case of
unbiased bistable driving switching adiabatically between
the values ±F. We report a method to evaluate the stationary
velocity vDC

` sFd in the biased situation of time-independent
driving F, which is also of experimental interestf4,5g. The
ratchet current in the presence of adiabatic bistable driving
can be expressed asvR

`=vDC
` sFd+vDC

` s−Fd.
The whole information on the system dynamics is con-

tained in the reduced density matrixr̂std=TrBŴstd, obtained
from the density matrixŴstd of the system-plus-bathĤ
=ĤR+ĤB, with time-independent drivingF, by performing
the trace over the bath degrees of freedom. To evaluate the
evolution of the average positionkqstdl=TrR hq̂r̂stdj, the di-
agonal elementsPsq,td=kqur̂stduql of the reduced density
matrix are needed, and can be obtained by real-time path
integrals techniquesf2g. The velocity follows by time differ-
entiation. At initial timet8=0, we assume a preparation in a
product form where the bath is in thermal equilibrium with

the ratchet systemŴs0d= r̂s0de−bĤBfTrBe−bĤBg−1. The bath
temperature is fixed byT=1/bkB. This leads to a double path
integral

Psqf,td =E dqi E dqi8kqiur̂s0duqi8lE
qi

qf

Dq

3E
qi8

qf

D*q8AfqgA*fq8gFfq,q8g s3d

on the continuous coordinatesq and q8. Here Afqg
=exph−sit /"dĤRj is the propagator of the ratchet system for
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a path qst8d, and Ffq,q8g the Feynman-Vernon influence
functional of the bath inducing nonlocal-in-time Gaussian
correlations between the pathsqst8d andq8st8d f2g. Due to the
nonlinearity of the potentialVsqd, these path integrals cannot
be performed explicitly. For a cosine potential, Fisher and
Zwergerf11g introduced an exact expansion in the propaga-
tor Afqg which transforms the path integrals into Gaussian
ones that can be performed. Generalizing this idea for the
arbitrary periodic potentials2d, we find the expansion

expH−
i

"
E

0

t

dt8Vsqst8ddJ
= o

m=0

`

o
hl jj

p
j=1

m S− iDl j

"
DE

0

t

dtmE
0

tm

dtm−1 . . .

3E
0

t2

dt1 expH−
i

"
E

0

t

dt8rst8dqst8dJ , s4d

whererst8d=s2p" /Ldo j=1
m l jdst8− tjd, and

Dl =
Vl

2
eiwl for l . 0, D−l = Dl

* . s5d

The physical meaning of these new quantities will be dis-
cussed later. For each term of the sum onm in s4d we have
introducedm intermediate timestj, and corresponding indi-
ces l j taking any value amongh±1, ±2, . . .j. The sumohl jj
runs on all configurations of these indices. A similar expan-
sion is performed for the propagatorA*fq8g, involving a new
set ofm8 times tj8 and indicesl j8 being used to definer8st8d
similarly to rst8d. This enables us to rewrite the average po-
sition kqstdl=edqqPsq,td in terms of a series in the ampli-
tudesVl of the potential.

Though still intricate, the resulting expression becomes
easier to treat in the long-time limit we are interested in.
Quantitatively, the measurement timet should be very long
on the time scaleg−1=sh /Md−1 set by dissipation. A second
approximation is necessary to proceed: we neglect terms

e−gt j, e−gt j8, e−gst−t jd, e−gst−t j8d, e−vBt j, e−vBt j8, e−vBst−t jd, and

e−vBst−t j8d, wherevB=2pkBT/", in the integrands involved in
the series expression forkqstdl. We shall refer to this assump-
tion as the rare transitionssRTd limit and discuss its validity
later. Generalizingf11g, we consider a Gaussian wave packet
centered at positionq0=TrRfq̂r̂s0dg and momentump0

=TrRfp̂r̂s0dg as initial preparation for the ratchet system. We
obtain the important result

kqstdl ,
t→`

RT

q0 +
p0

h
+

Ft

h
− kqTBstdlTB. s6d

Parts of the series expression forkqstdl has been summed,
yielding the first three terms. The rest can be identified with
the series expression for the expectation value of the position

operatorq̂TB= L̃on=−`
` nunlknu of a driven tight-bindingsTBd

system, described by the Hamiltonian

ĤTB = o
n,l=−`

`

sDlun + llknu + Dl
* unlkn + l ud − Fq̂TB, s7d

and bilinearly coupled to adifferentbath of harmonic oscil-
lators. The spectral density of this bathJTBsvd=Jsvd / f1
+sv /gd2g is still Ohmic but presents a cutoff at the frequency
g set by dissipation. At initial timet8=0 the TB system is
prepared in the stateun=0l. The calculation shows that theDl
introduced ins5d are identified with the couplings of the TB
systems7d. We stress that thelth harmonic of the original
potential results in a coupling to thelth neighbors in the dual
TB system as sketched in Fig. 1. One can easily show that
the spatial symmetry condition on the phaseswl is the same
in both systems. The first three terms on the right-hand side
of s6d reproduce exactly the classical solution for the average
position kqstdl of a free system,Vsqd;0, at long times. In
this linear case, the quantum and classical solutions should
be identical, due to Ehrenfest theorem, and they are, because
the TB averagekqTBstdlTB vanishes in the absence of the
potentialVsqd. We expect the same result when the potential
is present but unimportant, e.g., for large drivingF and/or
high temperaturesT.

The series expression for the diagonal elements of the
reduced density matrixr̂TB of the TB system, which leads to
the series expression forkqTBstdlTB, can be written in terms

of pairs of TB trajectoriesqTBst8d=h−1e0
t8dt9rst9d fwith rst8d

introduced above Eq.s5dg, and qTB8 st8d defined similarly in
terms ofr8st8d. From that one extracts the spatial periodicity

L̃ of the TB system, yieldingL̃=L /a, wherea=hL2/2p" is
the dimensionless dissipation parameter of the original sys-
tem. These pairs of trajectories combine in discrete paths in
the q−q8 plane parametrized by pairs of integerssn,n8d.
Each path starting in the diagonal elements0,0d and ending
at time t in sm,md contributes tokmur̂TBstduml. Each transi-
tion in the path brings a corresponding factorDl and all paths
involve at least two transitionsscf. Fig. 2d. Written in this
form, the diagonal elements of the reduced density matrix
are a solution of a generalized master equationf12g in terms
of transition ratesGm from the TB sitesn,nd to the sitesn
+m,n+md. Consequently, these rates are expressed in power
series of all the couplingsDl, starting from second order. As
the timestj ,tj8 introduced ins4d are identified with the tran-
sition times in the TB representation, the ratesGm give also a

FIG. 1. Dual relation between a dissipative ratchet system and a
tight-bindingsTBd model sketched for a two-harmonics ratchet po-
tential sthick curved. Each harmonicsthin curvesd generates cou-
plings to different neighbors in the TB system, according to Eqs.s5d
and s7d. The periodicityL̃ of the TB model is determined by the
viscosityh in the original model.
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way to control our assumption of rare transitions. It corre-
sponds to neglect those paths which involve transitions on a
time scale maxsg−1,vB

−1d after the initial timet8=0 or before
the final timet8= t. As transitions in the TB model happen on
a time scaleGm

−1, the duality relation will be valid when the
transitions are rare on the time scale maxsg−1,vB

−1d, i.e.,
when all rates satisfyGm!minsg ,vBd. This condition is con-
trolled by the dissipation throughg=h /M and the tempera-
ture throughvB=2pkBT/".

Due to the change of periodicity length between the two
systems, the dissipation parametera and the energy drop per
unit cell e=FL becomeã=1/a andẽ=e /a in the TB system.
Thus, weak dissipation in one system maps to strong dissi-
pation in the other one although the viscosityh in the spec-
tral density does not change. The asymptotic dynamics is
usually described by the nonlinear mobilitym
=limt→` vstd /F. With these notations, the duality relations6d
can be rewritten in the form

msa,ed→
RT

m0 − mTBs1/a,e/ad, s8d

wherem0=1/h is the mobility of the free system,Vsqd;0.
In the special case of a cosine potential, this relation was
already obtained inf11g for the dc mobility. It it also inter-
esting to notice that it was also derived inf13g for the linear
ac mobility in a cosine potential. However, we did not com-
pletely succeed in generalizing Eq.s8d in the presence of
time-dependent driving.

We shall now focus on the evaluation of the stationary
velocity vDC

` sFd. By solving the generalized master equation
mentioned above, one finds the stationary velocityvTB

`

= L̃ommGm in the dissipative TB system. The duality relation
s6d can then be used to obtain

vDC
` sFd = F/h − sL/ado

m=1

`

msGm − G−md. s9d

As discussed above, the ratesGm are power series in the
couplingsDl starting from second order. For a givenmÞ0,
there are only two possible second-order contributions toGm,
which, after use of Eq.s5d, sum up tof2g

Gm
s2d =

Vm
2

4"2g
E

−`

`

dte−m2ãQstd+imsFL̃/"gdt. s10d

The influence of the dissipative environment enters through
the dimensionless bath correlation functionQstd

=2e0
`dvfcothsv /2uds1−cosvtd+ i sinvtg/vs1+v2d with u

=kBT/"g. At zero biasF=0 and in the scaling limit"g
@kBT, the rates show a power-law dependence on tempera-
tureGm

s2d~T2m2ã−1. The linear mobilitymTB is thus dominated
by the rateG1

s2d at low temperatures, and vanishes atT=0 for
a,1, which corresponds to free dynamicsm=m0 in the dual
weak-binding systemf14g. This suggests that the occurrence
of a delocalization to localization transition ata=1 for the
ground state of a cosine potentialf11,15g would not be af-
fected in more general potentialsssee also Fig. 3d.

In the remainder of the paper, we focus on the ratchet
current induced by adiabatic bistable drivingvR

`=vDC
` sFd

+vDC
` s−Fd. The second-order rates obeyGm

s2ds−Fd=G−m
s2dsFd

and therefore cancel out in the expression for the ratchet
current. Hence, we have to focus on contributions of at least
third order to the ratesGm. Here we neglect higher orders.
This is known to provide a good approximation in TB sys-
tems with large dissipation parameterã and/or high tempera-
ture f2g. For simplicity we also consider a potential consist-
ing of only two harmonics. There is no problem of principle
to include more harmonicsf16g. We find, withm= ±1, ±2,

Gm
s3d =

V1
2V2

4"3g2 ImFE
−`

`

dtGumu
s3dstdeimsFL̃/"gdt−i sgnsmdwG ,

s11d

where we have introducedw=w2−2w1, and

G1
s3dstd = −E

0

`

dre−2ãQsrdfe−2ãQst+rd+ãQst+2rd

+ e−2ãQst−rd+ãQst−2rdg,

G2
s3dstd =E

0

`

dreãQsrd−2ãQst+r/2d−2ãQst−r/2d. s12d

At third order the rates obeyGm
s3dsF ,wd=G−m

s3ds−F ,−wd, which
is a consequence of parity. The dependence of the ratchet
current on the potential parameters is then up to third order
in the potential amplitude

vR
` ~ V1

2V2 sinsw2 − 2w1d. s13d

The ratchet current vanishes for a symmetric potential
sinsw2−2w1d=0 as it should.

FIG. 2. Representation of some of the second-ordersa,bd and
third-order scd paths contributing to the diagonal elements of the
reduced density matrix of the tight-binding model, and the corre-
sponding dependence on the couplingsDl. FIG. 3. Ratchet current and stationary velocitysinsetd as func-

tion of temperature for the potential of amplitudeDV depicted in
Fig. 1. Weak dissipation is chosen witha=0.2 and"g=0.76DV.
Driving is set toFL=0.57DV.
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The behavior of the particle and ratchet currents as func-
tion of temperature and driving is shown in Figs. 3 and 4 for
a two-harmonics potential. In Fig. 3, the driving is set to
FL=0.57DV, whereas in Fig. 4, the temperature is fixed to
kBT=0.23DV. With V1=4V2, the untilted potential, depicted
in Fig. 1, has a barrier heightDV=2.2V1. We choosea
=0.2 and"g=0.76DV. It means that the typical action is
Î2MDVL2<2", and the dissipation rateg=h /M is about
one-fourth of the classical oscillation frequencyV0

=2pÎV1/ML2 in the untilted potentialsweak dissipationd. In
this numerical application, none of the rates exceeds 0.05g
and 0.08vB, which means that the duality relation is valid for
this system. Moreover, the third-order rates stay at least one
order of magnitude below the second-order ones. The ratchet
current presents several reversals as a function both of the
driving and the temperature. As expected for the small values
of driving and dissipation used in Fig. 3, the stationary ve-
locity is very close to the value of a free systemv0=F /h at
T=0, which corresponds tolocalization vTB

` <0 in the TB
systemf17g. Accordingly,vR

`<0 in this regime. The station-
ary velocity also tends tov0 sdashed line in Fig. 4d for driv-
ing or temperatures much higher than the potential barrier,
and the ratchet current vanishes correspondingly. If observed
in experiments, this linear behavior would provide a direct
estimation of dissipation.

In conclusion, we obtained a duality relation yielding a
tight-binding description of Brownian motion in a tilted
ratchet potential. We demonstrated its application to investi-
gate rectification of adiabatic driving and ground-state delo-
calization for weak dissipation.
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