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ARTICLE INFO ABSTRACT

Dataset link: https://doi.org/10.18154/RWTH- Microgels are cross-linked, colloidal polymer networks with great potential for stimuli-response release in
2023-05551 drug-delivery applications, as their small size allows them to pass human cell boundaries. For applications
Keywords: with specified requirements regarding size, producing tailored microgels in a continuous flow reactor is ad-
Microgel synthesis vantageous because the microgel properties can be controlled tightly. However, no fully-specified mechanistic
Flow-chemistry models are available for continuous microgel synthesis, as the physical properties of the included components
Bayesian optimization are only studied partly. To address this gap and accelerate tailor-made microgel development, we propose a
Product-process optimization data-driven optimization in a hardware-in-the-loop approach to efficiently synthesize microgels with defined

sizes. We optimize the synthesis regarding conflicting objectives (maximum production efficiency, minimum
energy consumption, and the desired microgel radius) by applying Bayesian optimization via the solver
“Thompson sampling efficient multi-objective optimization” (TS-EMO). We validate the optimization using the
deterministic global solver “McCormick-based Algorithm for mixed-integer Nonlinear Global Optimization”
(MAINGO) and verify three computed Pareto optimal solutions via experiments. The proposed framework
can be applied to other desired microgel properties and reactor setups and has the potential of efficient
development by minimizing number of experiments and modeling effort needed.

1. Introduction The synthesis of microgels in flow reactors can overcome shortcom-
ings of batch reactors, e.g., limited production capacity and downtime
The microgels’ size and their ability to react reversibly to external between batches, and enhances product development, intensifies pro-

stimuli of temperature, pH, or electrical potential in the surrounding
medium [1] is highly relevant for their application. By definition
microgels of any form exhibit an equivalent diameter between 0.1 pm to
100 pm in the swollen state [2]. The relevance of the microgel size has
been studied for biomedical [3-5], phase separation [6-8], and catal-

duction, and facilitates reaction scale-up [10-13]. Furthermore, includ-
ing process analytical technology in flow reactors allows in-line mon-
itoring and process control under highly reproducible conditions [12-
14]. Thus, continuous production enables the reliable synthesis of

ysis [9] applications. Especially smaller microgels (diameters between microgels.

0.1pm to 0.2 pm in the swollen state) have previously been applied for To unfold the full potential of microgels, accelerating the develop-
biomedical purposes, e.g., for drug delivery agents for medical uptake ment of tailor-made microgels is desirable. A faster development can
and release [4,5] or implant coating [3]. In biomedical applications, be achieved by producing microgels in a continuous reactor mode,
microgels are particularly relevant, as their small size allows them as it simplifies up-scaling to large-scale industrial production. Fur-

to pass the human cell boundary [4]. For the cellular uptake, it was
found that microgels of a hydrodynamic radius in the swollen state (at
20°C) above 400nm and a cross-linker content above 10 mol% prevent
microgel internalization.

thermore, model-based approaches facilitate the optimization of mi-
crogels with tailored properties. Computational models for describing
microgel growth during the synthesis are very sparse and comprise
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mechanistic models suited for batch reaction exclusively [15-20]. Our
previous study [13] revealed significant deviations between the re-
action progress in batch and flow reactors in the microgel synthesis.
In particular, we cannot transfer the batch model equations straight
to a plug-flow model, but rather we must consider diffusion effects,
temperature distribution, and rheological aspects. The physical proper-
ties such as diffusivity coefficient and viscosity are not known during
the microgel synthesis, so mechanistic modeling of the flow process is
restricted.

To address this gap, we propose a data-driven hardware-in-the-
loop optimization for N-isopropylacrylamide-based microgels, one of
the most widely studied thermo-responsive microgel systems. The data-
driven approach facilitates the reaction optimization of the micro-
gel synthesis in flow. We apply Thompson sampling efficient multi-
objective optimization (TS-EMO) [21] to enhance the experimental syn-
thesis design iteratively. The TS-EMO solver is based on the Thompson
sampling [22] algorithm, a popular approach in Bayesian optimization.
In the following, we present a concise introduction to Bayesian opti-
mization focusing on the TS-EMO algorithm. For a more comprehensive
elaboration of the methodology, we kindly direct the interested reader
to consult the relevant literature [23,24].

Bayesian optimization searches for a (global) optimum with a focus
on efficiency, i.e., aiming for small number of function evaluations.
Efficiency is crucial when function evaluations are costly, e.g., require
experimentation or extensive computation. In Bayesian optimization, a
probabilistic model (also called surrogate or digital twin) of the objec-
tive function is constructed and iteratively updated as new data points
are evaluated. The surrogate models are constructed via Gaussian Pro-
cesses (GPs). GPs are considered an effective surrogate model as they
provide predictions and variance estimates while relying on relatively
few data points [25]. Black-box optimization involving GPs for chem-
ical synthesis has been successfully applied for various reactions [26],
including pharmaceutical product development [27], electrochemical
reductive carboxylation [28], and polymerization [29]. Based on the
surrogate model, a new set of input conditions is proposed for the next
experimentation while considering the exploration-exploitation trade-
off. The goal is to find the input variable values that minimize the
objective function. TS-EMO extends the Thompson sampling algorithm
to the multi-objective optimization setting. The promising performance
of TS-EMO concerning data efficiency, capacity to handle noise, and the
ability for batch-sequential usage [21] makes the algorithm suitable for
the optimization of microgel synthesis.

As the microgel size is a highly relevant product characteristic in
the mentioned applications, we aim to produce microgels of a targeted
size (product feature). Simultaneously, we optimize the product flow
and energy demand (process features) because the synthesis has to
meet economic and ecological requirements. The synthesis procedure
highly influences the characteristics of microgels, and multiple influ-
ences on the microgel size have been discovered experimentally. The
surfactant [7,10,30-34], monomer [35], cross-linker [31,36-38], and
initiator [35,39,40] concentration in the synthesis impact the microgel
size. Also, the process conditions, including reactor temperature [31,
35] and flow profile [11,35], determine the microgel size. For the syn-
thesis of microgels with constant cross-linking fraction, we include the
reaction temperature, initiator and monomer flow, and the surfactant
concentration as variable inputs in our data-driven study.

Since TS-EMO is a stochastic optimization algorithm, it does not
guarantee finding the global optimum. We therefore conduct a com-
putational validation step via global deterministic optimization using
our open-source software MAINGO (McCormick-based Algorithm for
mixed-integer Nonlinear Global Optimization) [41]. MAINGO has been
demonstrated to be very suitable for optimization with GPs embed-
ded [42]. The global deterministic optimization ensures that for a
given GP and acquisition function the optimal solution is found. The
computed Pareto-optimal solutions are computed based on the GPs
trained on the experimental data. Thus, the Pareto-optimal points
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are estimates and need to be validated experimentally to show that
we are truly able to synthesize the desired microgel and to ensure
that computational prediction and real experiment agree. Therefore,
in addition, we validate our optimization results experimentally. We
conduct the proposed synthesis of a selection of Pareto-optimal points
and compare the experimental outcome to the computed findings.

We structure the remaining manuscript as follows. Section 2 de-
scribes the experimental setup of the microgel synthesis in the flow
reactor. Section 3 reports our optimization approach, including the
TS-EMO algorithm, the initial data set, and the problem setup using
MAINGO. Section 4 presents the results of the optimization studies and
the computational and experimental validation. Finally, we conclude
our work in Section 5.

2. Experimental
2.1. Materials

N-isopropylacrylamide (NIPAM) (97%, ITC Chemicals) is recrystal-
lized from hexane. 2,2’-azobis(2-methylpropionamidine)dihydrochlor-
ide (AMPA) (97%, Sigma-Aldrich), N, N’-methylenebis(acrylamide)
(BIS) (99%, Sigma-Aldrich), and hexadecyltrimethylammonium bro-
mide (CTAB) (>97%, Merck) are used as received. Deionized water
(referred to as water) is produced in-house (conductivity 0.8 uScm™!
at 25°C).

2.2. Microgel synthesis in flow reactor

We synthesized microgels via precipitation polymerization inside
a tubular glass reactor setup, as described in detail in our previous
publication [13]. In the following, we provide a brief summary of
this experimental setup. Two feed solutions are created, where the
monomer and initiator are dissolved in water. The monomer solution
contains deionized water with 110.6mmol L~' of NIPAM, 2.7 mmol L~!
of cross-linker BIS, and 0.41 mmol L~! of surfactant CTAB. Thus, the
resulting microgels contain a cross-linker fraction of 2.5 mol%. The ini-
tiator solution comprises deionized water with 1.5 mmol L~! of initiator
AMPA. Both solutions (initiator and monomer) and constantly degassed
using nitrogen. The flow rates of the monomer and initiator solution
can be controlled between 2 mL min~! to 18 mL min~! and 0.1 mL min~!
to 0.9 mL min~!, respectively. Hence, the overall flow rate and the ratio
between both feed flows can be adapted. An external heating bath heats
the reactor to reaction temperature. We adjust the reactor temperature
between 60 °C to 80 °C. The produced microgels exit the reactor, and the
solution is cooled to stop the reaction. During the continuous synthesis,
we use Raman spectroscopy to determine the weight fraction of the
remaining NIPAM (wy;p4p) Via in-line measurements. Raman spec-
tra are recorded in HoloGRAMS (Kaiser Optical Systems, Ann Arbor,
Michigan, USA) with cosmic ray correction using an RXN2 Raman
Analyzer (Kaiser Optical Systems) and an acquisition time of 40s. More
details on the Raman measurement configuration are described in our
previous work [13]. We assess the Raman spectra using an evaluation
model based on Indirect Hard Modeling [43], which we previously
developed [13]. We published the calibration measurements for the
model development for transparency and reproducibility [44]. In an
off-line step, we use the Zetasizer Ultra (Malvern Panalytical, Malvern,
UK) to determine the hydrodynamic diameter (D) of the collapsed mi-
crogels via Dynamic Light Scattering (DLS). The microgel samples are
diluted in ultrapure water and prepared in a disposable capillary cell
of the type DTS0012 for the DLS measurements. The measurements are
carried out at 50 °C with an angle of 90° (side scatter). For consistency,
we acquire microgel size measurements in the collapsed state above
the volume phase transition temperature (approximately 32°C [1]),
as the in-line Raman measurements are also conducted at reaction
temperature (between 60 °C to 80 °C). For the sake of completeness, we
took DLS measurements at 20 °C, which we also provide in the data
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Table 1
Bounds on input variable values.
Variable Unit Lower bound Upper bound
F, mL min~! 0.1 0.9
Fy mL min~! 2 18
Ceran mmol L~! 0.14 0.41
T °C 60 80

publication to this work [45]. Each DLS measurement is repeated four
times, and the software ZS Xplorer analyzes the results. We exclude
experimental data points where the DLS measurements are unreliable
due to a high relative error of the microgel size (above 3.8%) or an
increased polydispersity index (above 0.6), indicating that no microgels
formed. Furthermore, in two cases, undesired hydrogels were produced
under the considered experimental settings (see Supporting Information
Sec. 3).

3. Computational

The following section is structured as follows. First, we formulate
the optimization problem considering the goals and limitations of the
experimental setup, see Section 3.1. In Section 3.2, we describe the
procedure for generating a set of experiments to initialize the iterative
optimization study. Next, we outline the conducted optimization stud-
ies in a high-level description in Section 3.3. Further, we give details
on the basic operating principle of the employed TS-EMO algorithm in
our hardware-in-the-loop setup and the validation approach via global
deterministic optimization and the optimization problem definition
therein in Sections 3.3.1 and 3.3.2, respectively.

3.1. Optimization problem definition

The optimization aims to find optimal settings for the synthesis to
generate a high product output at short residence times and precise,
targeted microgel sizes while minimizing the reaction temperature at
steady-state. Bayesian optimization designs the best combination of in-
put values to optimize these objectives efficiently. Furthermore, the ob-
jectives must be determined from outputs quantifiable via established
monitoring techniques.

The reaction system has four optimization variables as inputs x:
reaction temperature T, surfactant concentration ccy 45, and flow rates
of the initiator F; and monomer F), solution. The bounds on the inputs
are presented in Table 1. The range of T comprises the minimum of
60°C when the initiator decomposition effectively sets in [46] and
the maximum of 80°C when solvent evaporation becomes an issue.
The bounds on ¢o7,5 are based on the reaction experience that no
colloidal stability sets in below the lower limit. Generally, a higher
ccrap causes a smaller microgel size. Thus, we determined the upper
limit for c¢.; 45 based on preliminary experiments. The pump’s capacity
defines the limits for the monomer and initiator solution flow rates.
Furthermore, at the minimum F,, = 2mLmin~!, which entails the
maximum residence time in the reactor (approximately 1800 ), the final
conversion is reached, as discovered in our previous work [13]. The
employed upper bounds allow for achieving the desired microgel size
range, as we conclude from empirical knowledge. The concentration of
the monomer NIPAM (cy;pap = 110.6 mmol L~!) in the stock solution,
and the ratio of monomer to cross-linker BIS are kept constant for the
reaction optimization to maintain a cross-linking fraction of 2.5 mol%
within the microgel.

We measure two quantities of the system at the end of the reac-
tion: The weight fraction of the monomer NIPAM wy;pap and the
microgel’s hydrodynamic radius r . From the measurements, we derive
two quantities y for the surrogate model data set: The product flow
(Fproque:) and the squared deviation from the targeted microgel size
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(Arfq). The product flow characterizes the reactor efficiency and is
computed via:

WNIPAMO — WNIPAM.f

Fproquer = : (FI + FM)’

WNIPAMO

where Wy pspro and Wy pap,, denote the initial and final NIPAM
weight fraction.

The output Ari, is calculated as the squared difference between the
measured and targeted hydrodynamic radius:

2 _ 2
AI‘H = (rH,measured - rH.mrget) .

The targeted microgel size in this contribution is a hydrodynamic radius
of 100 nm in the collapsed state at 50 °C, as the size range is relevant in
medical applications to pass the human cell boundary. Previously, it
was found that microgels with a hydrodynamic diameter above 800 nm
in the swollen state are unsuitable for cellular uptake [4]. This size
corresponds to a hydrodynamic radius of approximately 222 nm at the
collapsed state. Thus, microgels of a hydrodynamic radius of 100 nm are
expected to achieve fast cellular uptake kinetics.

The efficient microgel production targets a low reaction tempera-
ture as heating contributes significantly to energy consumption. The
reaction temperature T is an input to the reactor system; hence, no
additional measurement technology is needed. The difference to the
minimum allowable temperature (see Table 1) is defined as another
objective function:

AT =T -T,

min*
Technically, the input temperature can be used as an objective function
directly. However, we use the temperature difference as the objective
to scale the temperature values to a similar magnitude as the flow rates
and to underline the generality of the method.

The resulting multi-objective optimization problem is summarized
in the following:

o 2
XEE}IE,I;U] FProducr’ AVH, 4T,
where, x = [F}, Fyy, ccrap, T, and x! and xV denote their correspond-
ing lower and upper bounds as presented in Table 1.

3.2. Initial data set

Effective initial values are important to initialize the data-driven op-
timization algorithm. Often random choices are taken as initial guesses,
without distinguishing between variables. However, we aim for ef-
ficient usage of experimental resources and accordingly devised the
following tailored initialization. We configure three groups of exper-
iments, each comprising five experimental settings. The division is
visualized in Fig. 1. We distinguish between input variables T and
ccrap that are at a fixed value for each group and inputs F,, and F,;
that vary simultaneously within one group. We adopt a group size of
five experimental settings per session, as this quantity aligns with the
capacity of a day’s work in the laboratory.

Furthermore, we decided to consider three groups of experiments as
a trade-off between covering the input space of T and ¢y 45 sufficiently
and conducting a reasonable size of initial experiments in total.

Changing T between experimental runs relates to long transition
times. Thus, we keep T at a fixed value for each group of experiments
for an efficient proceeding. Also, cqy4p is fixed for an experimental
group, as preparing the monomer solution with different content of
CTAB for each experiment execution is laborious and increases the risks
of inserting air into the reactor system (oxygen inhibits the reaction)
while decreasing the flexibility of the reaction setup. Therefore, keeping
ccrap fixed constitutes a trade-off between effort for the synthesis
preparation, risk of contamination, and loss of flexibility in synthesis
execution.

We employ the 1hsdesign function for Latin Hypercube Sampling
(LHS) in MATLAB 2019b to determine the input values for the initial
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group 1 group 2 group 3
LHS design | ccme || |Lccma || | ccma |

T )T [T ]
[ F WO F JWC F JHC F JRC_F ]
[ Fu L Fu JJC Fu I Fu J)|C_Fy ]

Fig. 1. Grouping of initial experiments designed via LHS.

experiments. In the first step, we set the values for T and ¢y, for
each of the three groups via LHS. Subsequently, we perform LHS again
for F; and F), within each group for five settings. In total, we derive
an amount of 15 initial experiments.

3.3. General approach

We conduct a hardware-in-the-loop optimization study involving
TS-EMO and a validation study including computational and experi-
mental validation. In the hardware-in-the-loop approach, we employ
TS-EMO to determine the next group of experiments based on an
initial experimental data set. The Bayesian optimization algorithm TS-
EMO iteratively suggests new experimental conditions based on the
results of previous experiments. After the suggested group conditions
are experimentally tested, we repeat the optimization process and
subsequent experimentation until eleven iterations have been reached.
Finally, we validate the results from the TS-EMO study computationally
via global deterministic optimization using the software MAiNGO and
experimentally with reaction settings from Pareto optimal points.

3.3.1. TS-EMO algorithm

We apply TS-EMO [21] to the product-process optimization of the
continuous microgel synthesis. The schematic setup of the reactor com-
bined with the algorithm is shown in Fig. 2. TS-EMO uses experimental
data points X = [Fy, Fy, ccrap, T and y@ := [F,, g, 4r%] to create
an approximation via a GP surrogate model of the unknown function
f. For the training of the GPs, we apply Matérn type 1 as the function
kernel. The third objective can directly be calculated from the input
variables. In the multi-objective optimization step, Thompson sampling
allows approximating the Pareto set of the optimal solutions. Here, we
set the number of spectral sampling points to 4,000. Lastly, an optimal
candidate set of input conditions X"V = [F} ... Far news €T 4Bmews Trew!
is calculated to continue in the next experimental iteration loop. The
settings incorporate a genetic algorithm with 1,000 generations for
optimization.

In conclusion, the TS-EMO algorithm is provided with an initial
experimental data set designed via LHS. The algorithm then provides a
new set of experiments to be conducted in the following experimen-
tal round. Subsequently, in each optimization round, we determine
a set of the following five experiments at one fixed T and cop4p
with varying F; and F,,. We chose batch-sequential optimization,
meaning evaluating multiple points in each iteration, as off-line DLS
measurements are conducted more efficiently in batch preparation. In
addition, we chose five experimental settings, as we can adequately
conduct this quantity within one day of synthesis experimentation. The
TS-EMO calculation and the experimentation are repeated in multiple
iterations. Meanwhile, searching for the optimal recipe should take
as few iterations as possible to decrease the experimental effort and
expense of chemicals used. Thus, the hardware-in-the-loop procedure
ends when a certain number of iterations have been performed or the
executor decides that sufficient reaction knowledge has been gathered.
In the presented study, we end the procedure after eleven iterations.
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3.3.2. Global deterministic optimization

For the computational validation, we use MAINGO [41] to con-
duct a global deterministic optimization. We employ MAINGO as an
alternative approach to the non-deterministic optimization included
in the TS-EMO algorithm. Validation using MAiNGO does not require
conducting new experiments but leverages the data collected during
the Bayesian optimization. For the validation study, Fp,,q,. acts as the
single objective. Additionally, we apply the e-constraint method [47]
to restrict the objective Ar%i. As the remaining objective AT is directly
proportional to the input T, we restrict the upper bound of the input
variable T step-wise. For the global optimization, we use the experi-
mental data received in the TS-EMO study and do not perform further
experiments in the form of a hardware-in-the-loop approach. We set the
starting point and the e values for the optimization based on the results
derived from the hardware-in-the-loop study.

We rewrite the optimization problem to a single-objective formula-
tion in reduced space:

min — F,
xepxl xU] 2Praduct (1)
s.t. Arpy <e

As stated above, the values for ¢, xU of T, and the starting point are

derived from the results of the TS-EMO study.

4. Results and discussion

The results and discussion are organized as follows. First, we present
our findings from the study involving TS-EMO with four inputs and
three objectives in Section 4.1. There we show the Pareto optimal
solutions for the three-dimensional objective system, the progression
of the experimental outcome with accumulating experimentation, the
error analysis of the measurements, and the Pareto optimal solutions
for each of the four inputs. Subsequently, we display the results of
the validation studies in Section 4.2. The computational validation via
global deterministic optimization is shown in Section 4.2.1. We re-
formulated the optimization problem to a single objective with four
input variables for the final study. In Section 4.2.2, we additionally
exhibit the experimental validation of three Pareto optimal points. We
provide all experimental data [45]. The data includes the raw Raman
measurements and an evaluation of the DLS measurements. In addition,
we make data points underlying the graphical representation of the
results available in Supporting Information Sec. 2. The data points
include the experimental data (Supporting Information Section 2.1)
and the Pareto optimal solutions calculated via global deterministic
optimization in the validation step (Supporting Information Sec. 2.2).
As the Pareto optimal solutions calculated via TS-EMO are exhaustive,
the data is not provided explicitly. The results can be re-constructed
by applying TS-EMO on the experimental data provided. The software
employed in this contribution is available open-source: TS-EMO [48]
and MAINGO [49] with MeLOn [50], the interface for embedded
machine-learning models.

4.1. Hardware-in-the-loop involving TS-EMO

We conduct eleven iterations for the hardware-in-the-loop optimiza-
tion. We analyze the Pareto optimal solutions in detail regarding the
feasible space of the objective values in Section 4.1.1. Next, the pro-
gression of the experimentation outcome, an analysis of the errors from
the experimental measurements, and the computational uncertainty
of the calculated Pareto front are presented in Section 4.1.2. Lastly,
we evaluate the input variable values at the Pareto optimal points
to derive suitable reactor settings for the desired microgel product in
Section 4.1.3.
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Fig. 2. Overview of the iterative multi-objective optimization of the microgel synthesis in flow using the TS-EMO algorithm. Solid arrows indicate material flow, dotted arrows

represent information transfer.

4.1.1. Pareto optimal solutions

In the hardware-in-the-loop study, F;, Fy, ccr4p, and T are varied
as the inputs to the reactor, and Fp, 4,0 A’?p and AT are the objectives.
Fig. 3 shows the resulting Pareto front of the study calculated using TS-
EMO (marked with colored circles) and the experimental data points
obtained during the hardware-in-the-loop optimization (marked with
‘x” symbols). Later, in Section 4.1.2, we will also show the progression
of experimental outcomes for each iteration separately (see Fig. 4). For
the TS-EMO calculations in Fig. 3, we used a population size of 5,000 to
represent the three-dimensional Pareto front sufficiently. As visualizing
three objectives is challenging, we proceed with a two-dimensional
plot and add a color scale for the third objective to visualize the
estimated Pareto front for better interpretation. However, it is crucial
to remember that we are considering three-dimensional optimization
results for the meaningful interpretation of the two-dimensional plots.

For the two-dimensional Pareto fronts, the desired outcome in
Fig. 3, the utopia point, of the multi-objective optimization regarding
the product flow and the squared radius deviation is located in the
bottom left corner of the plot. Equally, small temperature deviations
(depicted in dark blue) indicate the location of the utopia point in
the third dimension. Looking at the results, it appears that the three
objective functions are conflicting; thus, reaching the utopia point is
impossible. In other words: the product flow rate becomes lower for
microgels closer to the targeted size, and higher temperatures are
needed for high product flow rates. In addition, the shaded area around
a squared radius deviation accounts for a difference of +5nm or 5% to
the desired size.

The analysis of the estimated Pareto front in Fig. 3 yields that up to
6.0mLmin~! of product flow, a microgel size sufficiently close (+5nm)
to the desired size is achievable. The microgel size deviation begins
to diverge more strongly from the targeted value after a product flow
rate of approximately 6.5mLmin~! is reached. This deviation shows
that product flow rates above a value of around 6.5mLmin~! are
incompatible with the targeted microgel size.

The temperature influences the optimal product flow more signif-
icantly than the optimal microgel size. This trend is represented by
the color indicated temperature change that is more substantial along
the x-axis than the y-axis. The underlying GPs (depicted in Supple-
mentary Information Sec. 1) show that an increase in temperature
generally accompanies an increase in product flow. Still, the product
flow converges towards approximately 6.5mLmin~' for temperatures
above approximately 70 °C (corresponding to 10K temperature devia-
tion). Thus, low temperatures (below 70 °C) are sufficient considering
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Fig. 3. Estimated Pareto front of the hardware-in-the-loop study using TS-EMO:
Squared radius deviation over product flow. The color scale indicates the temperature
deviation. The x symbols mark the experimental data points. The shaded area maps the
deviation of +5nm to the desired microgel radius. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

the trade-off between maximizing product flow and achieving the
targeted microgel size, as above approximately 70 °C only the product
flow improves. Overall, the optimal temperature input spans the entire
allowable range between 60 °C to 80°C. Furthermore, the GP for the
squared radius deviation (Supplementary Information Sec. 1) shows an
increase with rising temperatures. However, the correlation between
reaction temperature and microgel size deviation appears highly non-
linear and subject to inherent variance. Lastly, the underlying GP for
the temperature deviation (Supplementary Information Sec. 1) confirms
the successful training of the GPs, as the temperature deviation shows
no correlation to F;, Fy, or ccr4p, and is directly proportional to the
input temperature values with little variance.

In conclusion, the results concerning a suitable microgel size at a
high product flow and medium reactor temperatures are promising. The
underlying GPs confirm our apriori reaction knowledge; thus, we can
validate the functionality of the applied method elementarily. However,
the GPs are occasionally subject to high variance, and the available data
points are limited. Nevertheless, we can derive meaningful information
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about the synthesis, e.g., limiting the temperature to 70 °C is sufficient
for successful synthesis. Furthermore, we find that a maximum prod-
uct flow of 6.0mLmin~! is achievable when restricting the allowable
microgel size deviation to +5nm.

4.1.2. Experiment progression and error analysis

In Fig. 4, the calculated Pareto front is shown with the progression
of the experimentation. The temperature and the surfactant concentra-
tion for each experimental group are listed in addition to the order
of experiment progression on the color scale. In the graph, the stars
mark the results from the initial experiments designed via LHS. The
LHS ensures a good distribution over the input space. The initial exper-
imental results also cover the output space adequately, indicating that
the initial data set already provides a reasonable basis for information
on the reaction.

Furthermore, the triangles depicted in a color scale represent the
experimentally determined data points and their progression in the
hardware-in-the-loop approach. In each set of experiments, five data
points are received. We must neglect some data points due to DLS
measurement showing a high size distribution index (indicating that
no real microgel was formed) or a high relative measurement error.
Thus, a reduced amount of experimental data points is shown. There is
no clear trend visible in the experiment progression, as the algorithm
tries to balance exploitation and exploration in the design of the
next experiment. The listed temperature and surfactant concentration
values along the experimental progression show that the algorithm
mostly explores temperature regions below 70 °C. While the surfactant
concentration is varied over the entire allowed input space. Also, for
the conducted experiments in this study, the algorithm does not repeat
in any iteration the suggested experimental conditions regarding the
combination of temperature and surfactant concentration. Although
output measurements are sometimes excluded without further infor-
mation to the algorithm, the algorithm does not try to re-evaluate
the correlated input space. The batch-sequential procedure presumably
achieves that the algorithm carries on without going back to previously
tested conditions where no information was received. In other words:
although no input information is gathered at certain input conditions
within one experimental group, the information from the remaining
input conditions within the group supports the algorithm enough.

In Fig. 5, the calculated Pareto front is shown with the computa-
tional standard deviation of the optimal points. Also, the experimental
data points are depicted with the according experimental error bars.
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Fig. 5. Estimated Pareto front of the hardware-in-the-loop study using TS-EMO:
Squared radius deviation over product flow. The gray circles represent the estimated
Pareto optimal solutions based on the GPs and the according standard deviation.
The black circles indicate the experimental outcomes and the according measurement
uncertainty.

The magnitude of the experimental error is derived from the measure-
ment technology. The evaluation model of the Raman measurements
has an inherent root mean squared error of cross-validation (RMSECV)
of 0.037 wt-%. The error propagation, including the RMSECYV, is consid-
ered for the uncertainty of the product flow. For the DLS measurement,
the Zetasizer Ultra internally evaluates the standard deviation over the
four conducted measurements. This error value is also propagated for
the uncertainty of the experimental squared particle size deviation.

Some experimental data points lie slightly below the estimated
Pareto front. This phenomenon becomes visible in a three-dimensional
analysis. However, the considered experimental data points lie within
the calculated standard deviation of the estimated Pareto front for
the squared radius deviation. Furthermore, the experimental error bars
resulting from the DLS and Raman measurement errors are displayed
to underline the magnitude of uncertainty inherent in the real-life
experimental setup.
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4.1.3. Pareto optimal solutions for different inputs

In Fig. 6(a) to 6(c), the Pareto front for the objectives Arz and
Fpoaue: and three out of the four applied inputs is shown. The color
scale indicates the associated input configuration. The inputs pictured
include the surfactant concentration, the monomer, and the initiator
flow rate. The Pareto front with the according input temperature is
not depicted explicitly, as Fig. 3 contains information on the input
temperature.

Fig. 6(a) shows that the microgel size deviates strongly from the
desired size for higher c¢q;4p values. Overall, ¢.;4p ranges only be-
tween 0.22mmol L™! to 0.41 mmolL~!. The underlying GP (depicted in
Supplementary Information Sec. 1) indicates that the product flow can
be considered independent of ¢y 4. In contrast, the correlation be-
tween squared radius deviation and ¢y 4 5 is impaired by high variance.
The finding that the product flow is unaffected by c.y 45 follows the
expected outcome, as a change in stabilizer should not impact the
conversion kinetics of the reaction system.

In Fig. 6(b), the monomer flow rate ranges between 2.75 mL min~!
to 14.2mLmin~! and mainly correlates to the product flow. The re-
lation between monomer flow rate and product flow is defined in
Eq. stating that generally, the monomer flow and product flow are
directly proportional (second term in Eq. ). However, the monomer
flow rate is also related to the conversion (first term of Eq. ). A higher
monomer flow can cause a smaller conversion, as not all monomer
can be consumed in the smaller residence time. The underlying GP
(depicted in Supplementary Information Sec. 1) shows the trade-off
between high monomer flow rates associated with an increased overall
flow and a lower conversion and low monomer flow rates with a low
overall flow but higher conversion. Furthermore, the monomer flow
rate has little to no influence on the microgel size deviation according
to the underlying GP.

Finally, Fig. 6(c) shows the Pareto front for different initiator flow
rates. Here, the initiator flow rate ranges between 0.59 mLmin~! to

0.8 mL min~! with a clear tendency to the upper bound. Similar to the
monomer flow rate, the initiator flow rate is directly proportional to
the product flow as defined in Eq. . However, the initiator flow is a
maximum of a third of the total flow rate and thus less significant for
the overall change in residence time. As expected, the underlying GP
(depicted in Supplementary Information Sec. 1) also shows a highly
linear correlation between initiator flow rate and product flow. In
addition, the GP for the squared radius deviation shows no clear trend
depending on the initiator flow rate.

4.2. Validation

The validation conducted within this contribution includes a com-
putational and experimental part. The computational validation is
global deterministic optimization of the final GP, Section 4.2.1. The ex-
perimental validation is carried out for three calculated Pareto optimal
solutions, and the results are shown in Section 4.2.2.

4.2.1. Computational validation via global deterministic optimization

We proceed with a final deterministic global optimization using
MAINGO. The results from the hardware-in-the-loop study are incor-
porated into the final optimization for validation. First, the data points
from the TS-EMO study are used to train GPs for Fp,,4,.; and A’%q' The
training settings are the same as for the GPs used in the hardware-in-
the-loop approach including TS-EMO. Second, the identified optimal
point close to the targeted microgel size and a sufficient product flow
at a reasonably low temperature is embedded as the starting point of
the optimization: F, = 0.73mLmin"!, F,, = 8.ImLmin~!, ccrsp =
0.34mmol L~!, and T = 68.5°C. The calculated outcome for these input
variables yields a microgel size deviation of 21.1 nm? and a product flow
of 6.0mL min~!. Also, the visualization of the TS-EMO study (see Fig. 3)
allows setting reasonable values for the e constraint method.
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For the deterministic global optimization, the results including the
e constraint method, are presented in Fig. 7 for each input sepa-
rately. Here, we constrain the squared radius deviation step-wise with
a maximum of 25 nm?. The problem becomes infeasible, meaning under
the specified conditions no solution meets all the constraints and still
optimizes the objective, for squared radius deviations below 2nm?.
We compare the global deterministic optimization (MAINGO) with
the optimization results for two objectives (product flow and squared
radius deviation) using TS-EMO.

Overall, the Figs. 7(a) to 7(d) show that the experimental data
points, the Pareto front generated via TS-EMO, and the Pareto front
obtained from MAINGO agree correctly above a product flow of approx-
imately 4.3 mL min~!. TS-EMO finds a feasible Pareto optimal solution
only down to 12.6nm? at a product flow of 4.0 mL min~!. In this region,
the calculated solution via MAINGO diverges and includes feasible
solutions in the product flow range around 4.3 mL min~' with squared
radius deviations between 10nm? to 12 nm?.

The experimental data is obtained through hardware-in-the-loop
optimization, balancing exploration and exploitation strategies. Conse-
quently, the experimental data only partly aligns with the computed
Pareto curve, as the algorithm also ventures into uncharted regions.
Particularly at low product flows with high radius deviations, the
experimental points are not part of the Pareto optimal set. However,
the calculated Pareto optimal curve relies on the experimental data
points. Hence, it becomes imperative that in the region of multi-
objective optima, the experimental data points agree with the calcu-
lated Pareto front. As illustrated in Fig. 7, the experimental values agree
with the calculated results along the estimated Pareto front, implying
qualitatively that the result is trustworthy.

Within the Pareto optimal solutions calculated via MAINGO, three
regimes can be differentiated most visible for the CTAB concentration
and the reaction temperature. These regimes range at a product flow
of 3.4mLmin~! to 3.8 mL min~!, around 4.3 mL min~!, and 4.5 mL min~!
to 6mLmin~!. In each regime, the CTAB concentration, the initiator
flow rate, and the reaction temperature are approximately constant,
and only the monomer flow rate varies.

Further, we change the upper bound of the reactor temperature
input variable value to 61 °C, 62 °C, and 70 °C. The results of the TS-EMO
optimization with two objectives compared to global deterministic opti-
mization results via MAINGO are shown in Fig. 8. The problem becomes
infeasible for squared radius deviations below 2nm? for temperatures
62°C and higher, and below 16 nm? for 61 °C. In other words, based on
the optimization results it is not possible to synthesize microgels with
a squared radius deviation below 2nm? when restricting the reaction
temperature to a maximum of 62 °C or higher. Similarly, for a maximum
temperature of 61 °C, the smallest achievable squared radius deviation
is 16 nm?.

In Fig. 8, the Pareto optimal points generated via TS-EMO and
MAINGO agree mostly. Only for a maximum input temperature of
61 °C the global deterministic optimization via MAINGO finds slightly
better Pareto optimal points for squared radius deviations above 23 nm?.
However, the product flow range between 1.3 mL min~! to 1.6 mL min~!
and a minimum squared radius deviation of 16.4 nm? for the associated
temperature are undesirable. Thus, temperatures above 61 °C are more
relevant. For a maximum input temperature of 62 °C, the Pareto optimal
product flow is limited to 4mLmin~! even for substantial deviations
in squared radius at 25nm?. The Pareto optimal points for squared
radius deviations below 13nm? overlap for the MAINGO and TS-EMO
optimization for 62 °C and 70 °C. For a maximum input temperature of
70°C, a notable improvement of the product flow up to approximately
6mLmin~! is achievable when allowing squared radius deviations start-
ing at 18 nm? and above. The TS-EMO Pareto optimal points only cover
squared radius deviations above 12.5nm? for a maximum temperature
of 70 °C. The Pareto optimal points for the MAINGO optimization with a
maximum temperature of 70 °C (Fig. 8) and 80 °C (Fig. 7) agree except
for the regime around 4.3 mLmin~! and squared radius deviations of
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Table 2
Experimental validation of global deterministic optimization.
Experiment  Input Value Output  Estimated Experimental
value value
T 68.5°C
1 ccrap  0.35mmolL! Fproquer  5-95mLmin™! 5.93 mL min~!
F, 0.73 mL min~! Ar, 17 nm? 100 nm?
Fy 7.69 mL min~!
T 71.0°C
2 ccrap  0.16mmol L~! Fproguer ~ 429mLmin~" 420 mL min~!
F,; 0.34 mL min~! Ari, 10nm? 12.25nm?
Fy 4.87 mL min~!
T 62.0°C
3 CeTAB 0.33 mmol L~! Fproduer 3.43mL min~! 3.53mL min~!
F, 0.74mLmin™"  4r, 2nm? 2.25nm?
Fy 3.68 mL min™!

10nm? to 12 nm? indicating that temperatures above 70 °C are irrelevant
for optimized reactor settings.

Overall, the Pareto optimal solutions of TS-EMO and MAiINGO agree
very well. Hence, the hardware-in-the-loop procedure using TS-EMO is
validated sufficiently. However, the global deterministic optimization
finds feasible Pareto optimal solutions beyond TS-EMO. The global
deterministic optimization of the multi-objective synthesis problem is
beneficial because little data is available, and thus guaranteeing a
reliable and reproducible solution is crucial. However, the surrogate
models represented by GPs are subject to significant variance. Thus,
a solution representing the actual reality remains challenging. We
also demonstrate that the deterministic single-objective formulation is
advantageous here to focus on the output space of interest and reduce
computational effort.

4.2.2. Experimental validation

We conduct three experiments along the deterministically estimated
Pareto front for an experimental validation step to determine if the
computed estimate based on the trained GPs can be verified exper-
imentally. The inputs, the estimated, and experimentally determined
values are presented in Table 2. The experimental and calculated values
agree very well for the product flow. The most significant difference
regarding the product flow occurs in Experiment 3 with an absolute
divergence of 0.03 mL min~! (or approximately 2.8%) to the calculated
value. Generally, the agreement of calculated and experimental values
is higher for the product flow than for the squared radius deviation.
The most notable difference regarding the squared radius deviation
arises for Experiment 1, where the absolute divergence is 83 nm?. This
significant divergence can be attributed to the high variation in the
GP prediction for the squared radius deviation. At the same time,
the estimated and experimental value for Experiments 2 and 3 agree
sufficiently. Experiment 3 shows that we can efficiently synthesize
microgels with a radius of 101.5nm, which is acceptable in terms of
accuracy.

Overall, the experimental validation indicates that the obtained
data is enough to enable an adequate prediction via a GP surrogate
model. The agreement between estimated and calculated data is good,
although the underlying GPs are subject to significant variance. The
applied procedure is successful with an absolute deviation of 1.5nm to
the desired microgel radius.

5. Conclusions

Polymerization reactions in flow reactors play an essential role in
precise polymer production. The efficient, accurate, reproducible syn-
thesis of polymers such as microgels is important. Data-driven optimiza-
tion supports the microgel development effectively. We incorporate the
multi-objective optimization algorithm TS-EMO to optimize the synthe-
sis of tailored microgels ecologically and economically. The proposed
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synthesis settings enable a product flow of maximum 6.0 mL min~—' while
remaining in an acceptable range of +5nm to the targeted hydrody-
namic radius. We use the global deterministic optimization software
MAINGO to prove the reliability and reproducibility of the results.
In addition, we demonstrate the usefulness of global deterministic
solutions for problems with little data availability.

From the experimental side, including Raman spectroscopy consti-
tutes a powerful in-line process analytical tool that has the potential to
be incorporated into automated reaction optimization setups. Limita-
tions of the proposed work include the non-automated reactor system

due to off-line DLS measurements. Dependable in-line size determi-
nation remains a critical shortcoming on the road to autonomous
reaction optimization. Furthermore, the DLS data is occasionally un-
reliable or shows a high polydispersity (indicating no real microgel is
produced). Angle-dependent DLS measurements could be incorporated
in future works to exploit the ability of DLS to analyze polydispersity
and secondary particle formation. At the moment, these data points are
discarded but could be meaningfully included as valuable information
for the algorithm in the future. The reliability of DLS data and the
challenging interpretation of the GP predictions shows that expert
knowledge is still crucial in the optimization procedure and limits a
potentially autonomous process based on machine learning. Generally,
data-driven optimization is limited to a specific reactor setup. However,
we can quickly adapt the proposed framework to other desired microgel
properties and reactor setups. Thus, this work supports and enhances
the development of suitable microgels for size-specific applications. The
presented method efficiently explores new microgel synthesis recipes
that facilitate tailor-made microgel production.
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