
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Interactive Disambiguation of Meta
Programs with Concrete Object Syntax

Lennart C. L. Kats, Karl T. Kalleberg, Eelco Visser

Report TUD-SERG-2010-040

SERG

TUD-SERG-2010-040

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

This paper is a pre-print of:

Lennart C. L. Kats, Karl T. Kalleberg, Eelco Visser. Interactive Disambiguation of Meta Programs with
Concrete Object Syntax. In Mark G. J. van den Brand, Brian Malloy, Steffen Staab, editors, Proceedings of
the International Conference of Software Language Engineering (SLE 2010), Lecture Notes in Computer
Science, Springer, 2010.

@inproceedings{KatsKV10,
title = {Interactive Disambiguation of Meta

Programs with Concrete Object Syntax},
author = {Lennart C. L. Kats and Karl Trygve Kalleberg and Eelco Visser},
year = {2010},
editor = {Mark G. J. van den Brand, Brian Malloy, Steffen Staab},
booktitle = {International Conference on Software Language Engineering

(SLE 2010)},
series = {Lecture Notes in Computer Science},
publisher = {Springer},

}

c© copyright 2010, Software Engineering Research Group, Department of Software Technology, Faculty
of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology. All rights
reserved. No part of this series may be reproduced in any form or by any means without prior written
permission of the publisher.

Interactive Disambiguation of Meta
Programs with Concrete Object Syntax

Lennart C. L. Kats1, Karl T. Kalleberg2, Eelco Visser1

1Software Engineering Research Group, Delft University of Technology, The Netherlands,
l.c.l.kats@tudelft.nl, visser@acm.org

2KolibriFX, Oslo, Norway, karltk@kolibrifx.com

Abstract. In meta-programming with concrete object syntax, meta programs can
be written using the concrete syntax of manipulated programs. Quotations of con-
crete syntax fragments and anti-quotations for meta-level expressions and vari-
ables are used to manipulate the abstract representation of programs. These small,
isolated fragments are often ambiguous and must be explicitly disambiguated
with quotation tags or types, using names from the non-terminals of the object
language syntax. Discoverability of these names has been an open issue, as they
depend on the (grammar) implementation and are not part of the concrete syn-
tax of a language. Based on advances in interactive development environments,
we introduce interactive disambiguation to address this issue, providing real-time
feedback and proposing quick fixes in case of ambiguities.

1 Introduction

Meta programs analyze, transform, and generate programs. Examples include compil-
ers, interpreters, and static analysis tools. Most frequently, meta programs operate on
the abstract syntax of an object language, using a structured representation of programs
rather than a textual representation of their source code. Using a structured representa-
tion ensures well-formedness, enables compositionality of transformations, and makes
it easier to support type safety and hygiene. However, manipulating the abstract syntax
through an API can get tedious, and larger structures are often hard to recognize.

Meta-programming with concrete object syntax [15] as a surface syntax for the
abstract representation is, for a great number of situations, a best of both worlds between
a textual and an abstract syntax representation: the meta program is written using the
familiar concrete syntax of the object language, while at the meta level, all operations
are done on a structured representation of the object program. Concrete object syntax
can be syntactically checked as meta programs are compiled. This technique is now
supported by many meta-programming systems [2,3,4,7,12].

A prevailing problem with embedding concrete object syntax inside a meta-language
is that the syntax of the combined meta-and-object language is usually highly ambigu-
ous when the embedding employs a single pair of quotation and anti-quotation symbols.
For example, a quoted Java code fragment |[i = 2]| can either be an assignment
expression, part of a local variable declaration, or even an annotation element initializer.

Two approaches have been proposed to address ambiguity in meta programs, each
with their own trade offs and limitations. Perhaps the most straightforward approach

SERG Interactive Disambiguation of Meta Programs with Concrete Object Syntax

TUD-SERG-2010-040 1

Fig. 1. Screenshot of a quick fix dropdown menu, listing three possible tags to dis-
ambiguate a Java quotation. The menu can be triggered by clicking on the error icon
shown in the left margin, or by using a keyboard shortcut. Selecting a suggestion fixes
the ambiguity.

is to use tagged quotation and anti-quotation symbols, e.g. writing Expr |[i = 2]|

using the tag Expr to indicate that the quotation contains an expression. The other
approach is to use type information of the meta-programming language to attempt to
select the intended interpretation of a concrete syntax quotation [5,13]. For example,
for an embedding of Java in Java, a statement Expr assign = |[i = 2]|; can be
disambiguated based on the declared type Expr, while the quotation itself does not have
to be explicitly tagged.

A pressing problem that both approaches share is a lack of discoverability of quota-
tion tags and types. Meta-programmers may be intimately familiar with the concrete
syntax of a language, but may not be well-grounded in the specific names of non-
terminals in the syntax definition and the corresponding tag and type names. Having
to know these names adds to the learning curve of meta-programming. Furthermore, as
object languages evolve, or as additional object languages are added to a meta program,
new ambiguities can be introduced for existing code that has not yet, or insufficiently,
been explicitly disambiguated. Neither of the two approaches provides developers with
adequate feedback if the developer must decide how to fix such an ambiguity.

In this paper we propose interactive disambiguation as a complementary approach
to tag-based and type-based disambiguation that addresses the concern of discover-
ability. Our work builds on advances in interactive development environments (IDEs).
Modern IDEs aid in discoverability of language features and APIs by providing features
such as context-aware code completion and quick fixes. Quick fixes provide a facility
to quickly fix common errors by selecting a fix from a list of suggestions. In this paper
we propose to use quick fixes to present developers a list of candidate type or tag names
for ambiguous concrete syntax fragments, allowing them to selectively fix problematic
ambiguities and quickly discover possible fixes (illustrated in Figure 1). Our interactive
disambiguation approach is fully language independent and does not have to be adapted
for a specific meta-programming language or its type system.

2 Meta-programming with Concrete Object Syntax

In this section we recapitulate the general method for supporting concrete object syntax
in meta languages and describe the problem of ambiguity. This method, as described
in [15,6], is independent of the meta language used and relies on composition of the

2

Interactive Disambiguation of Meta Programs with Concrete Object Syntax SERG

2 TUD-SERG-2010-040

action-to-java-method:
|[action $[Id:name] {

$[Statement*:s∗]
}

]| ->
|[public void $[Id:name]() {

$[Stm*:<statements-to-java> s∗]
}

]|

Fig. 2. A rewrite rule that uses concrete object syntax notation to rewrite a WebDSL
action to a Java method. s∗ is a meta variable containing a list of statements. name
contains an identifier.

syntax of the meta language and the object language. Based on this composition, the
meta language can use quotations of object-level code to match and construct code
fragments in the object language. In turn, quotations can include anti-quotations that
escape from the object language code in order to include variables or expressions from
the meta language. As an example, Figure 2 shows a Stratego [4] rewrite rule that uses
quotations (indicated by |[...]|) and anti-quotations (indicated by $[...]) to rewrite a
WebDSL [16] action definition to a Java method.

Grammar composition Some meta-programming systems, such as Jak [3] and Meta-
AspectJ [8], have been specifically designed for a fixed object language. These systems
use a carefully handcrafted grammar or parser for the combined meta and object lan-
guage. Other systems are more flexible and can be configured for different object lan-
guages by combining the grammar for the meta and object languages, and generating
a corresponding parser using a parser generator. Building flexible meta-programming
systems using traditional parser generators is very difficult, because their grammars are
restricted to LL or LR properties. This means that conflicts arise when the grammar of
the meta language and the object language are combined [6], and these must be resolved
before the meta-and-object language parser can be constructed. A further impediment
to language composition found in traditional parsers is the use of a separate scanner,
requiring the use of a single lexical syntax definition for the combined language.

By using a combination of SDF for syntax definition and SGLR for parsing [6,14],
any object language can be embedded in any meta language [15]. SGLR supports the
full class of context-free grammars, which is closed under composition. This makes it
possible to compose languages simply by combining grammar modules. Mixin gram-
mars can combine languages by introducing productions for quotation and anti-quotation
of an object language to a meta language. Mixin grammars can be written by hand or
automatically generated using a tool.

As an example of a mixin grammar, Figure 3 shows an excerpt of a grammar that
embeds Java into the Stratego program transformation language. Quotation productions
have the form q1 osort q2 ->msort and specify that a quotation of object-language non-
terminal osort , surrounded by (sequences of) symbols q1 and q2, can be used in place
of meta-language non-terminal msort . We sometimes refer to q1 and q2 collectively
as the quoting symbols. In most of our examples, q1 is |[and q2 is]|, or a variation
thereof.

3

SERG Interactive Disambiguation of Meta Programs with Concrete Object Syntax

TUD-SERG-2010-040 3

module Stratego-Java

imports Stratego Java1

exports context-free syntax
% Quotations %

"|[" ClassDec "]|" -> Term {cons("ToMetaExpr")}
"|[" BlockStm "]|" -> Term {cons("ToMetaExpr")}
"|[" CompUnit "]|" -> Term {cons("ToMetaExpr")}

% Anti-quotations %
"$[" Term "]" -> ClassDec {cons("FromMetaExpr")}
"$[" Term "]" -> BlockStm {cons("FromMetaExpr")}
"$[" Term "]" -> CompUnit {cons("FromMetaExpr")}

Fig. 3. A mixin grammar for embedding object language Java into host language Strat-
ego. For selected Java non-terminal, the mixin defines productions for quoting and anti-
quoting. ClassDec, BlockStm, CompUnit are defined by the Java grammar.

"CompUnit" "|[" BlockStm "]|" -> Term {cons("ToMetaExprTagged1")}
"Java:CompUnit" "|[" BlockStm "]|" -> Term {cons("ToMetaExprTagged2")}
"$[" "BlockStm" ":" Term "]" -> BlockStm {cons("FromMetaExprTagged")}

Fig. 4. Productions with tagged quoting symbols.

Conversely, anti-quotation productions have the form q1 msort q2 -> osort . They
specify that an anti-quotation of meta-language non-terminal msort , using quoting
symbols q1 and q2, can be used in place of object-language non-terminal osort .

In our example we combine a single meta language with a single object language.
It is also possible to add additional object languages or embeddings and extensions
inside object languages. Using nestable quotations and anti-quotations, meta and object
language expressions can be arbitrarily nested.

Ambiguity As the meta language and object language are combined, ambiguities can
arise in quotations and anti-quotations. Quotations and anti-quotations are ambiguous
if they can be parsed in more than one way, leading to multiple possible abstract syntax
representations. Ambiguities can also occur if the same quoting symbols are used for
(anti-)quotation of multiple non-terminals. Such ambiguities can be avoided by using
quoting symbol tags that indicate the kind of non-terminal or by using type information
from the meta language [5,13]. Both approaches use names based on the non-terminals
in a syntax definition for the object language. Without loss of generality, we focus on a
combination of tag-based disambiguation with interactive disambiguation in this paper.

As an example of tagged quoting symbols, Figure 4 shows tagged productions tag
(anti-)quotations for the CompUnit non-terminal. We indicate the kind of tag in the con-
structor of these productions. For untagged quotation productions we use ToMetaExpr,
for productions with a non-terminal name we use ToMetaExprTagged1 and for pro-
ductions that also include a language prefix we use ToMetaExprTagged2. The last cat-
egory enables distinction between non-terminals with the same name that are defined in

1 This example uses plain imports to combine the meta and object languages (Java and Stratego).
To avoid name clashes between non-terminals of the two grammars, actual mixin grammars
use parametrized imports, so that all symbols are postfixed to make them uniquely named.

4

Interactive Disambiguation of Meta Programs with Concrete Object Syntax SERG

4 TUD-SERG-2010-040

|[
public class X {
// ...

}
]|

CompUnit |[
public class X {

// ...
}

]|

|[
package org.generated;
public class X {
// ...

}
]|

Fig. 5. Quotations of a Java compilation unit. From left to right: an ambiguous quo-
tation, a quotation that is disambiguated by tagging, and a quotation that is already
unambiguous without tagging.

different object languages. For tagged anti-quotations we distinguish FromMetaExpr

and FromMetaExprTagged.
Figure 5 shows an illustration of both untagged and tagged quotations. The quo-

tation on the left is ambiguous, as it can represent a single class, a class declaration
statement, or a compilation unit, each represented differently in the abstract syntax.
The quotation in the middle makes it explicit that the intended non-terminal is a compi-
lation unit, resolving the ambiguity. The quotation on the right is already unambiguous,
because only complete Java compilation units can include a package declaration, and
does not have to be explicitly disambiguated. Similar to quotations, anti-quotations can
be ambiguous if they can represent multiple possible non-terminals within the context
of a quotation.

3 Interactive Disambiguation of Concrete Object Syntax

In this section we describe how ambiguities in concrete object syntax can be inter-
actively resolved by analyzing ambiguities and providing quick fix suggestions. We
describe different classes of ambiguities and give an algorithm for automatically deter-
mining disambiguation suggestions for a given parse forest and grammar.

3.1 Classes of Ambiguities

At the grammar level, there are a number of different classes of ambiguities. In this
paper we focus on ambiguities in quotations and anti-quotations. These ambiguities are
inherent to the use of mixin grammars, as languages are woven together and fragments
must be parsed with limited syntactic context. Disambiguation with tags or types can
resolve these ambiguities. Other forms of ambiguities can be caused by the meta or
object language, such as with the C language that notoriously overloads the * operator
for multiplication and pointer dereference. Such ambiguities must be retained if they are
part of the object language design, otherwise they should be resolved at the grammar
level. Ambiguities can also arise by the combination of the two languages if the syntax
between the meta and object language overlap. These cannot always be resolved by
type-based disambiguation [13], but can only be avoided by carefully selecting sensible
quoting symbols in such a way that they do not overlap with the meta language and
object language. Ideally, the symbols are chosen to be aesthetically pleasing characters
or character combinations that never occur in either the object or meta language.

5

SERG Interactive Disambiguation of Meta Programs with Concrete Object Syntax

TUD-SERG-2010-040 5

Fig. 6. The parse forest for the quotation |[public class X {}]|.

Quotations are ambiguous when they can be parsed in more than one way, according
to one or more object languages. To illustrate interactive disambiguation suggestions
for quotations, consider again the untagged quotation in the left-hand side of Figure 5.
Recall that this fragment could represent a single class, a class declaration statement,
or a compilation unit. Using a generalized parser such as SGLR, the parser constructs a
parse forest that branches at the point such an ambiguity, containing all possible subtrees
for the ambiguous expression. Figure 6 illustrates the parse forest for our example, with
at the top a special “amb” tree node that has the three possible interpretations as its
children. The gist of our technique is to analyze the different possible parse trees, and
have the developer select which alternative they intended.

In the mixin grammar for the embedded Java language (shown in Figure 3), there
are three untagged productions that produce the three interpretations of our example.
The tagged productions of Figure 4 parse the same object language non-terminal, but
include distinguishing tags. These tags can be used to disambiguate the example: when
one of the tags ClassDec, BlockStm, or CompUnit is added, there is only one possible
interpretation of the quotation. By providing quick fix suggestions that automatically
insert one of these three tags, meta-programmers can consider the three options and
decide which is the interpretation they intended. In the event that the fragment could
also be parsed using a different object language that happens to use the same tag names,
the prefixed tags such as Java:CompUnit are proposed instead.

Anti-quotations can be disambiguated much like quotations. However, because they
always occur in the context of a quotation, there is no need for language-prefixed quot-
ing tags. For anti-quotations we also distinguish local ambiguity, where a single anti-
quotation can be parsed in multiple ways, and non-local ambiguity, where a larger area
of the quotation can be parsed in multiple ways. Non-local ambiguities arise as anti-
quotations productions typically reduce to multiple possible non-terminals, whereas
quotation productions typically reduce to only one, such as Term in Figure 3.

Figure 7 (left) shows a local ambiguity. The anti-quotation $[x] may be interpreted
as an identifier or as the signature of the quoted class. The remainder of the quotation is
unambiguous, making it trivial to identify the cause of the ambiguity in the parse forest.

Figure 7 (right) shows a non-local ambiguity. For this example, the entire body
of the quotation can be interpreted in multiple ways: it can be either a class y with
modifier x, or a package/import/type declaration x followed by a class y. For non-
local ambiguities it is harder to identify the cause of the ambiguity, as the quotation
expressions are no longer a direct subtree of the “amb” node as they are in Figure 6.

6

Interactive Disambiguation of Meta Programs with Concrete Object Syntax SERG

6 TUD-SERG-2010-040

CompUnit |[
class $[x] {
// ...

}
]|

CompUnit |[
$[x] class Y {

// ...
}

]|

Fig. 7. Example of a local ambiguity (left) and a non-local ambiguity (right). In the
first only the anti-quotation $[x] is ambiguous, in the other the entire contents of the
quotation is ambiguous.

3.2 Automatic Disambiguation Suggestions

In this subsection we describe an algorithm to automatically collect disambiguation sug-
gestions. We implemented the algorithm using Stratego and published the implemen-
tation and source code online at [1]. A prototype currently integrates into the Spoofax
language workbench [10].

Figure 8 shows pseudocode for the disambiguation suggestions algorithm. At the
top, the CollectSuggestionsTop function is the main entry point, which gets the
parse forest and grammar as its input and returns a set of disambiguation sugges-
tions as its output. For each outermost ambiguous subtree amb, it uses the Collect-
Suggestions function to find local disambiguation suggestions.

The CollectSuggestions function produces a set of disambiguation suggestions
by inspecting each subtree of the amb tree node (line 2). For each branch, it searches
for the outermost meta-expressions that are not yet completely tagged (line 3). For each
meta-expression it determines the production prod that was used to parse it (line 4), and
its left-hand and right-hand side non-terminals (line 5, 6). For SGLR parse trees, the
production is encoded directly in the tree node, allowing it to be easily extracted. Only
meta-expressions that are a direct child of amb (local ambiguities) and meta-expression
subtrees that do not have any tag (non-local ambiguities) are considered for suggestions
(line 7).2 For the selected meta-expressions, a set of possible disambiguation sugges-
tions is collected (line 8). These suggestions take the form of tagged meta-expression
productions (line 9) that contain the same left-hand and right-hand side non-terminals
as the production prod (line 10). Of course, we only include quotation productions if
the current expression is a quotation, and anti-quotation productions if it is an anti-
quotation (line 11). After all corresponding suggestions are collected, the complete set
is filtered using the FilterAmbiguousSuggestions function (line 13).

The FilterAmbiguousSuggestions function filters out any suggestions that are
ambiguous with respect to each other. This is useful if two object languages both match
a meta-expression and they use the same quotation tag X. In those cases, inserting
the tag X would not resolve the ambiguity, and a tag with a language prefix of the
form Lang:X must be proposed instead. For suggestions with quoting symbols q1 ,q2
(line 3, 4), the function only returns those for which there is no other suggestion with
the same quoting symbols (line 5, 6).

2 A special case is the ToMetaExprTagged1 constructor, used for tagged quotations without a
language prefix. Suggestions are only provided for local ambiguities with this constructor.

7

SERG Interactive Disambiguation of Meta Programs with Concrete Object Syntax

TUD-SERG-2010-040 7

COLLECTSUGGESTIONSTOP(tree, grammar)

1 results ← {}
2 foreach outermost subtree amb in tree where amb has the form amb(...)

3 results ← results ∪ COLLECTSUGGESTIONS(amb, grammar)
4 return results

COLLECTSUGGESTIONS(amb, grammar)

1 results ← {}
2 foreach child subtree branch in amb
3 foreach outermost subtree expr in amb where ISMETAEXPRTAGGABLE(expr)
4 prod ← the production for expr
5 lsort ← the non-terminal at left-hand side of prod
6 rsort ← the non-terminal at right-hand side of prod
7 if expr = branch ∨¬ISMETAEXPRTAGGED(prod) then
8 results ← results ∪ { (expr ,prod ′) | prod ′ ∈ productions of grammar
9 ∧ ISMETAEXPRTAGGED(prod ′)

10 ∧ prod ′ has the form (q1 lsort q2 -> rsort)
11 ∧ prod ′ and prod have the same construc-
12 tor prefix To or From }
13 return FILTERAMBIGUOUSSUGGESTIONS(results)

ISMETAEXPRTAGGABLE(t)

1 if t has FromMetaExpr, ToMetaExpr, or ToMetaExprTagged1 constructor
2 then return true
3 else return false

ISMETAEXPRTAGGED(p)

1 if p has FromMetaExprTagged, ToMetaExprTagged1 or ToMetaExprTagged2 constructor
2 then return true
3 else return false

FILTERAMBIGUOUSSUGGESTIONS(suggestions)

1 return { (prod ,expr) | (prod ,expr) ∈ suggestions
2 ∧ prod has the form (q1 lsort q2 -> rsort)
3 ∧¬∃ (expr ′,prod ′) ∈ suggestions:
4 prod ′ has the form (q1 lsort ′ q2 -> rsort ′) }

Fig. 8. Pseudo-code for collecting suggested quotation symbols.

3.3 Presentation of Suggestions

Interactive disambiguation is based on the notion of quick fixes, small program transfor-
mations that can be triggered by the developer in case of a code inconsistency or code
smell. Quick fixes are non-intrusive: as developers write their program, errors or warn-
ings are marked inline, but it is up to the developer to decide when and if to address the
problems. For interactive disambiguation, quick fixes allow meta-programmers to write
concrete syntax for expressions first, allowing the parser to decide whether or not it is
ambiguous, proposing appropriate quick fixes as necessary.

8

Interactive Disambiguation of Meta Programs with Concrete Object Syntax SERG

8 TUD-SERG-2010-040

The CollectSuggestionsTop function is executed each time the result of parsing
the meta program is ambiguous. The quickfix menu is populated with the results, and
any ambiguity can be addressed by adding the tag name or by inserting the type into the
context of the quotation. In order to avoid spurious suggestions for multiple ambiguities,
we only provides suggestions for the outermost expressions (Collect-Suggestions,
line 8), allowing meta-programmers to incrementally fix any remaining ambiguities.

While we emphasize interactivity, it should be noted that the technique does not
necessarily require an IDE. Quotation alternatives can also be displayed as part of the
build process and used with generic text editors that may not interactively parse and
analyze the meta language source code.

In our implementation we cache operations such as collecting productions from the
grammar for efficiency, while in the algorithm described here we abstract from these
optimizations. Experience with the prototype tells us that the performance overhead
of the suggestions algorithm is very low, as it only does a depth-first traversal of each
ambiguity and a few hash table lookups.

4 Discussion and Conclusions

In this paper we combined interactive and tag-based disambiguation to reduce quotation
noise in meta-programs with concrete syntax. Developers only need to quote where
absolutely necessary, and are interactively helped to introduce appropriate quotation
symbols where required.

Interactive disambiguation can also be combined with type-based disambiguation,
assisting in cases where type-based disambiguation is inadequate, as multiple type-
based interpretations are type correct. These cases particularly arise when combining
the technique with type inference, as seen with Meta-AspectJ [8], or when forgoing
quoting symbols that distinguish between the meta and the object language, as observed
by Vinju [13]. Both works propose heuristics as a solution in these cases. Interactive dis-
ambiguation can let the programmer interactively, and thus more predictably, resolve
such ambiguities statically. Alternatively it can assist when programs are not yet type
consistent, providing suggestions for inserting type declarations or type casts. Strat-
ego is largely untyped, ruling out type-based disambiguation for our present prototype.
A typed variant of Stratego [11] might be a suitable testbed for experiments combin-
ing interactive disambiguation and type inference. On the dynamic side, we have had
promising experimental results using runtime disambiguation, where the decision of
the correct interpretation of a meta-expression is delayed until run-time, when the ac-
tual values of meta-level expressions are known. Based on a static analysis of the meta-
program, it is possible to determine which quotations can safely be disambiguated at
runtime.

We performed a preliminary evaluation of our approach using existing source files
that embed Java in Stratego, from the Dryad Java compiler [9]. The sources use a to-
tal of 55 concrete syntax quotations of a wide variety of different Java language con-
structs. Most are small quotations, but a few contain complete compilation units, used
for compilation and for unit testing. We stripped all existing disambiguation tags from
the sources, and by following the interactive disambiguation suggestions, were able to

9

SERG Interactive Disambiguation of Meta Programs with Concrete Object Syntax

TUD-SERG-2010-040 9

successfully disambiguate the files. We then introduced WebDSL [16] as an additional
object language as a form of an evolution scenario. This introduced new ambiguities, as
some expressions such as Expr |[$[Expr:x] == $[Expr:y]]| would be a valid
quotation for either language. Again, applying the quick fixes helped the transition and
resolved the ambiguities by introducing language-prefixed tags.

We have found interactive disambiguation to be a practically useful technique, com-
plementary approach to both tag-based [6], and type-based disambiguation [5,13], and
independent of the meta and object language and their type system.

Acknowledgements This research was supported by NWO/JACQUARD projects
612.063.512, TFA: Transformations for Abstractions, and 638.001.610, MoDSE:
Model-Driven Software Evolution.

References

1. The interactive disambiguation project.
http://strategoxt.org/Spoofax/InteractiveDisambiguation, 2010.

2. J. Arnoldus, J. Bijpost, and M. van den Brand. Repleo: a syntax-safe template engine. In
GPCE, pages 25–32, 2007.

3. D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for Implementing Domain-Specific
Languages. In Conference on Software Reuse, page 143, 1998.

4. M. Bravenboer, K. T. Kalleberg, R. Vermaas, and E. Visser. Stratego/XT 0.17. A language
and toolset for program transformation. SCP, 72(1-2):52–70, 2008.

5. M. Bravenboer, R. Vermaas, J. J. Vinju, and E. Visser. Generalized type-based disambigua-
tion of meta programs with concrete object syntax. In GPCE, pages 157–172, 2005.

6. M. Bravenboer and E. Visser. Concrete syntax for objects: domain-specific language embed-
ding and assimilation without restrictions. In OOPSLA, pages 365–383, 2004.

7. J. R. Cordy, C. D. Halpern-Hamu, and E. Promislow. TXL: A rapid prototyping system for
programming language dialects. Comp. Lang., Syst. & Struct., 16(1):97–107, 1991.

8. S. S. Huang, D. Zook, and Y. Smaragdakis. Domain-specific languages and program gener-
ation with Meta-AspectJ. Transactions on Software Engineering Methodology, 18(2), 2008.

9. L. C. L. Kats, M. Bravenboer, and E. Visser. Mixing source and bytecode: a case for compi-
lation by normalization. In OOPSLA, pages 91–108, 2008.

10. L. C. L. Kats and E. Visser. The Spoofax language workbench. Rules for declarative speci-
fication of languages and IDEs. In OOPSLA, pages 444–463, 2010.

11. R. Lämmel. Typed generic traversal with term rewriting strategies. Journal of Logic and
Algebraic Programming, 54(1):1–64, 2003.

12. A. van Deursen, J. Heering, and P. Klint, editors. Language Prototyping. An Algebraic Spec-
ification Approach, volume 5 of AMAST Series in Computing. World Scientific, September
1996.

13. J. J. Vinju. Type-driven automatic quotation of concrete object code in meta programs. In
RISE, pages 97–112, 2005.

14. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of Amsterdam,
September 1997.

15. E. Visser. Meta-programming with concrete object syntax. In GPCE, pages 299–315, 2002.
16. E. Visser. WebDSL: A case study in domain-specific language engineering. In GTTSE, pages

291–373, 2007.

10

Interactive Disambiguation of Meta Programs with Concrete Object Syntax SERG

10 TUD-SERG-2010-040

TUD-SERG-2010-040
ISSN 1872-5392 SERG

