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Abstract
Non-convex discrete-time optimal control problems in, e.g., water or power systems, typically
involve a large number of variables related through nonlinear equality constraints. The ideal
goal is to find a globally optimal solution, and numerical experience indicates that algorithms
aiming for Karush–Kuhn–Tucker points often find solutions that are indistinguishable from
global optima. In our paper, we provide a theoretical underpinning for this phenomenon,
showing that on a broad class of problems the objective can be shown to be an invariant
convex function (invex function) of the control decision variables when state variables are
eliminated using implicit function theory. In this way, optimality guarantees can be obtained,
the exact nature of which depends on the position of the solution within the feasible set. In
a numerical example, we show how high-quality solutions are obtained with local search for
a river control problem where invexity holds.

Keywords Global optimality · Optimal control · Invexity · Discrete-time optimal control ·
PDE-constrained optimization · KKT conditions

1 Introduction

Discrete-time optimal control typically involves the solution of an optimization problem,
which need not be convex. Such non-convex optimization problems arise, for example, in
systems driven by nonlinear partial differential equations (PDEs), such as water, gas, and
power systems [1,12,24]. A typical objective in such problems is to steer the system into
tracking target values for certain state variables, e.g., stabilizing a water level around the
desired level [19].
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One of the desiderata for a solution to an optimization problem is global optimality.
Although locally optimal solutions are often used, globally optimal ones typically yield
substantially better objective values. While approaches aiming for global optimality in gen-
eral nonlinear optimization have been proposed [9,21,31,36], these approaches are often
incompatible with tight computation time limits or large problem sizes. Therefore, common
work-arounds are to use linearizations [3,17,18], convex restrictions, or convex relaxations
[25,27,28], which provide tractability yet at the cost of model accuracy, or to resort to genetic
algorithms [33,37,38].

It is most desirable, however, to obtain a globally optimal solution to the “most exact”
nonlinear model without resorting to computationally expensive techniques. Ample numeri-
cal evidence exists that locally optimal solutions to non-convex discrete-time optimal control
problems are often of high quality, hardly distinguishable from true global optima and/or
better than other applied methods [7,12,21,26].

In this paper, we provide a theoretical underpinning for this phenomenon by showing that,
in the problems we study, the objective function composed with the dynamics is invex in the
original sense of Hanson [23] and Craven [16]. Invexity is a generalization of convexity that
certifies, roughly speaking, that on an open set a stationary point of an invex function is its
global minimum [10,32]. Despite the large body of theoretical work, we are not aware of
research leveraging invexity in a large-scale applied (engineering) context.

We use invexity to prove optimality guarantees for KKT points of problems belonging to
a class of discrete-time optimal control problems, including full global optimality for KKT
points in the interior of the feasible set. Because the invexity of the involved functions is not
readily seen and arises from a function implicitly defined by the problem’s constraints, we
refer to it as hidden invexity. This is analogous to the term hidden convexity [11] that is used
when the convexity of a problem is not immediately apparent. The hidden convexity result of
[11] showed that by reformulating an original, non-convex problem, one can solve a convex
problem whose optimal solution is a global optimum of the non-convex problem.

Our result, in turn, relies on a direct analysis of the non-convex problem using the notion of
invexity and the language of tangent cones. It allows us to prove global optimality properties
for KKT points directly. This is also how our result differs from convex restriction and convex
relaxation methods.

The research contribution of our work, seen from the perspective of different fields, is as
follows:

(a) From the mathematical optimization angle, we show that for a large class of non-convex
problems, certifying the hidden invexity and using standard local solvers is a viable
alternative to the use of solvers for general non-convex optimization problems.

(b) From the optimal control angle, we show that for a large class of discrete-time optimal
control problems, invex formulations exist, preserving the exact nonlinear dynamics.
This allows to tractably determine high-quality solutions to large-scale problems.

(c) From the nonlinear analysis angle, we show that the hidden invexity of a discrete-time
optimal control problem yields so-called conic-intersection optimality guarantees for
KKT points with active inequality constraints, and global optimality for KKT points
in the interior of the domain of the control variables. The notion of conic-intersection
optimality will be formally defined in Sect. 3.

The remainder of this paper is structured as follows. Section 2 introduces the notion of
regular problems for which we establish our result. In Section 3 we prove the main result of
the paper. Section 4 presents a numerical study for a single river segment modelled using a
nonlinear PDE.
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Fig. 1 The relationship between
the controls u, the implicitly
defined states x , and the output
variables y, for n = 2 and m = 3
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2 Regular discrete-time optimal control problems

In this section we describe the class of discrete-time optimal control problems for which we
demonstrate invexity. Consider the problem

min
x,u

( f ◦ g)(x) (P)

s.t. c(x, u) = 0

d(u) ≤ 0,

where we refer to the variables x ∈ R
m as states and the variables u ∈ R

n as controls.
These names are motivated by the fact that the controls implicitly determine the values of
the states through the equality constraints c(x, u) = 0. The function f : Rn → R is the
objective and the function g : Rm → R

n is the output function mapping states x to outputs
y := g(x). These concepts originate in control theory and are essential to our analysis. The
relationship between the controls u, the implicitly defined states x , and the output variables
y, is illustrated in Fig. 1.

We denote the set of admissible controls as U := {u ∈ R
n : d(u) ≤ 0}, where d is

a vector-valued function whose components are the control inequality constraint functions,
with the inequality holding component-wise, and denote the set of indices of the coordinates
of d by I.

Our goal is to show that the objective of problem (P) is invex as a function of the controls
u, under certain conditions. However, the equality constraints in (P) can involve nonlinear
functions, making the analysis cumbersome. We shall alleviate this difficulty by eliminating
the constraints using implicit function theory and analyzing the problem using total gradients
with respect to u, wherein the derivatives of the state variables xi with respect to u are
expressed explicitly. This step is used for the analysis, but is not required in numerical
implementation.

If the Jacobian ∇x c is invertible, then the total Jacobian of the states x with respect to the
controls u may be expressed using the implicit function theorem as

Dux = −∇−1
x c∇uc, (1)

in which the prefix∇x denotes thematrix of partial derivatives with respect to the components
of x , and Dx the matrix of total derivatives with respect to x , of a given function. In what
follows, by ∇−1 and D−1 we denote the inverses of the respective matrices, if they exist.

In order to establish our result, we need some conditions. In the following, we define the
regular problems for which invexity can be demonstrated. After the definition, we discuss
each of the conditions.

Definition 2.1 Consider problem (P) with states x and controls u. Let the functions f , g, c
and d be continuously differentiable. We say that (P) is regular if the following conditions
are satisfied:
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the linear independence constraint qualifications (LICQ):

1. the Jacobian matrix of the equality constraints c with respect to the state vector x , i.e.,
∇x c(x, u), is square and full-rank for all (x, u) such that c(x, u) = 0, u ∈ U ,

2. the gradient vectors of the active inequality constraints di at the point u, i.e., ∇udi (u) for
all i ∈ I such that di (u) = 0, are linearly independent for all u ∈ U ,

the uniqueness condition:

3. for all u ∈ U , the constraints c(x, u) = 0 have a unique solution x ,

the output-controllability condition:

4. the output function g : Rm → R
n is such that the square matrix

− ∇x g(x)∇−1
x c(x, u)∇uc(x, u), (2)

is invertible for all (x, u) such that c(x, u) = 0, u ∈ U ,

and the convexity condition:

5. the objective function f : Rn → R is convex.

Note that in problem (P), no explicit bounds or inequality constraints are imposed on the
state vector x . State bounds e(x) ≤ 0 do not fit the formalism d(u) ≤ 0 of problem (P)
whence, in general, a problem with explicit state bounds is not regular. In practice, imposing
explicit state bounds can lead to a situation where the projection of the feasible set in terms of
(u, x) onto the space of u becomes a disconnected set. However, terms penalizing deviation
from output variable “bounds” may be included in the objective function f .

We now discuss each of the conditions of Definition 2.1.
Condition 1 is a linear independence constraint qualification (LICQ, [34]). It is required

for the state vector x to be well-defined as an implicit function of u, and for us to be able to
apply the implicit function theorem. Condition 1 is often straightforward to demonstrate if the
dynamics of the underlying model are integrable in time. For the dynamics to be integrable
in time, it is required that the number of states be equal to the number of equations, and
furthermore that the Jacobian of the equations with respect to the states is non-singular.

Condition 2 is the second LICQ and is satisfied for standard domains such as balls and
boxes. It prevents the constraints d(u) ≤ 0 from defining a lower-dimensional subspace of
R
n .
Condition 3 states that the implicit function u �→ x is uniquely defined on U . It is a

standard assumption in discrete-time optimal control, as this required uniqueness property
typically is satisfied if the dynamics are (uniquely) integrable in time. Note that by Condition
1 alone, implicit function theory would only provide for an implicit function that is locally
unique. It would not guarantee an implicit function that is uniquely defined on all of U .

Condition 4 states that different states should map to different outputs. Conditions 1 and
2 imply that the implicit function u �→ x is injective. Therefore x[U ], i.e., the image of the
set of admissible controls under the implicit function x , is an n-dimensional manifold inRm .
Any mapping g that is invertible on this manifold x[U ] is therefore a valid choice.

Another interpretation of Condition 4 is the following. If we would require the LICQ and
uniqueness conditions to hold on R

n (rather than only on U ), Condition 4 would imply that
for every y ∈ R

n , there would exist a control input u ∈ R
n such that y = (g ◦ x)(u). This

hypothetical condition is exactly the classical output-controllability [35] condition.
Condition 5 is standard and includes objectives such as p-norms raised to the p-th power

with p ≥ 2.
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Before looking at examples of regular problems, it is instructive to consider a few irregular
problems to show that the regularity conditions indeed eliminate some of the well-known
NP-hard problems.

Example 2.1 Let [0, 1] ⊂ U ⊂ R. If problem (P) contains a binary restriction constraint
u(1 − u) = 0, then Condition 4 is not satisfied at u = 0.5.

Example 2.2 Let U ⊂ R. If problem (P) contains binary restriction constraints of the form

−u ≤ 0,

u ≤ 1,

u(1 − u) ≤ 0,

then Condition 2 is not satisfied at u = 0 and at u = 1.

Example 2.3 Let [−1, 1] ⊂ U ⊂ R. If problem (P) contains a sinusoidal constraintu = sin x ,
then Condition 3 is, in general, not satisfied.

Example 2.4 Let 0 ∈ U ⊂ R. If problem (P) contains a bilinear constraint of the form
u = x1x2, then the LICQ Condition 1 is, in general, not satisfied.

Example 2.5 Let (0, 0) ∈ U ⊂ R
2. If problem (P) contains a bilinear constraint of the form

x = u1u2, then Condition 4 is, in general, not satisfied.

Example 2.6 Let 0 ∈ U ⊂ R. If problem (P) contains a piecewise constraint of the form

x =
{
0 if u1 < 0,

u21 otherwise,

then Condition 4 is, in general, not satisfied whenever u1 < 0.

We now proceed to introduce examples of systems meeting the regularity conditions.
A first example is provided by affine constraint functions satisfying the appropriate rank
conditions.

Example 2.7 Consider problem (P) with control vector u ∈ R
n , state vector x ∈ R

m , output
vector y ∈ R

n , and trajectory tracking objective

f (y) =
n∑

i=1

|yi − yti |p

with p ∈ [2,∞) and affine output function

y = Cx + c,

subject to the bounds

−∞ < uLj ≤ u j ≤ uUj < ∞ j ∈ {1, . . . , n},
and affine constraints

c(x, u) = Ax + Bu + b,

with matrix A square and invertible, matrices B and C full rank and matrix C such that the
square matrix CA−1B is invertible. This problem is regular.
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Our next example considers trigonometric constraints, which commonly arise in control of
systems with axes of rotation such as vehicles, ships, and aircraft.

Example 2.8 Problem (P) with control vector u ∈ R
2, state vector x ∈ R

2, output vector
y ∈ R

2, and trajectory tracking objective

f (y) =
∑

i∈{1,2}
|yi − yti |p

with p ∈ [2,∞) and output function

y = x,

subject to the bounds

0 < uL1 ≤ u1 ≤ uU1 < ∞,

0 ≤ u2 < 2π,

and constraints

x1 = u1 cos u2,

x2 = u1 sin u2,

is regular. Note that for Condition 4 to hold, u1 must be bounded away from zero.

Some problems with piecewise-defined constraints that are also continuously differentiable,
are regular:

Example 2.9 Problem (P) with control vector u ∈ R
2, state vector x ∈ R

3, output vector
y ∈ R

2, and trajectory tracking objective

f (y) =
∑

i∈{1,2}
|yi − yti |p

with p ∈ [2,∞) and output function

y1 = x1,

y2 = x3,

subject to the bounds

uL ≤ u ≤ uU ,

and constraints

x1 = u1,

x2 =
{
0 if x1 < 0,

x21 otherwise,

x3 = u2 + x2,

is regular. Unlike in Example 2.6, the state vector x of this example is always sensitive to the
control variables u1 and u2.
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Problems with structure similar to that of Example 2.9 commonly occur when modelling
water flow over a weir (a small dam), the crest of which may or may not lie below the
upstream water surface.

Since bilinear constraints are very common, we also show how certain bilinear problems
satisfy the regularity conditions.

Example 2.10 Problem (P) with control vector u ∈ R
2, state vectors x ∈ R

2 and z ∈ R
2,

output vector y ∈ R
2, and objective

f (y) =
∑

i∈{1,2}
|yi − yti |p

with p ∈ [2,∞) and output function

y = z,

subject to the bounds

0 ≤ uLj ≤ u j ≤ uUj < ∞ j ∈ {1, 2},
and constraints

u1 = x1z0, (3)

x1 = z0 − z1, (4)

u2 = x2z1, (5)

x2 = z1 − z2, (6)

with the fixed initial condition z0 ∈ R, is regular as long as z0 is chosen such that zi �= 0,
i ∈ {1, 2}, for all feasible u. Conditions 1–2 and 4–5 are readily verified. To verify Condition
3, i.e., that for any u ∈ U the constraints admit a unique solution, note that the constraints
(3)–(6) may be solved in the given order, starting from the fixed initial value z0, inserting the
computed value for x1 into the subsequent equation, etc.

Problems with structure similar to that of Example 2.10 commonly occur when modelling
the power generation of a hydroelectric turbine in a power station. Instantaneous generation
(u) is non-negative and bounded, and it is bilinear in flow (x) and the water level difference
(z) across a dam, which is never zero. At the same time, an increase in flow (x) results in a
decrease of thewater level difference (z). Similar reasoning applies to the power consumption
of pumps.

The conditions of Definition 2.1 are satisfied by certain optimization problems constrained
by discretized hyperbolic PDEs, if a suitable discretization is chosen. An example of an
optimization problem constrained by appropriately discretized Saint-Venant equations [39]
is presented and analyzed in Sect. 4.

In the next Section, we present our main theoretical result.

3 Hidden invexity

3.1 Introduction

In this section we present our main result that regular problems, in the sense of Definition
2.1, have hidden invexity when reduced to optimization over control variables. We first give
the definition of invexity.
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U Y R
T 1:1 f

Fig. 2 Convex objective function f composed with invertible transformation T

Definition 3.1 Consider an open set X ⊂ R
n . A function h : X → R is called invex on X if

there exists a vector function ηh(x2, x1) : X × X → R
n such that

h(x2) − h(x1) ≥ ηTh (x2, x1)∇h(x1), (7)

for all x1, x2 ∈ X .

Note that the above becomes a definition of convexity in case ηh(x2, x1) = x2 − x1.
The name invex follows from invariant convex [16]. A function is invex if and only if

every stationary point is a global minimum. To see the first implication, set ∇h = 0 in (7).
A concise proof of the reverse implication can be found in [10, Theorem 1].

The definition of invexity is usually stated for functions defined on open sets, wheareas
our goal is to optimize over a closed set U defined by inequality constraints. There exists an
entire family of extensions of the notion of invexity to constrained optimization problems
(KT-invexity [29], HC-invexity [16,23,29], Type I/Type II invexity [22]). However, each of
them is difficult to apply to real-world problems like ours, due to the need to find a common
function η for the objective and the constraints. Therefore, we shall stay with the standard
notion of invexity and eliminate the equality constraints from the problem in order to show
invexity of the objective function on the interior ofU . In this process, we extend the analysis
to the boundary of the feasible set U using the geometry of the tangent cones.

3.2 Main result

In our analysis, instead of constructing the function ηh of Definition 3.1 explicitly, we will
use the fact that invexity of functions arises naturally in the composition of convex functions
with transformations that are full-rank, i.e., that have an invertible Jacobian [15]. We will
now show how regular problems fit this scheme.

In the following we assume that all conditions of Definition 2.1 hold. Per Condition 5 of
Definition 2.1, the objective function f of a regular problem (P) is convex. In order to obtain
an invex function on the set of admissible controls U , we compose the objective f with
a full-rank transformation. We construct this full-rank transformation by using the implicit
function theorem to express the state vector x as a function u �→ x . Condition 1 ensures
that the conditions of the implicit function theorem are met, and Condition 3 ensures that the
function u �→ x is globally unique. Problem (P) can therefore be rewritten as:

min
u

( f ◦ g ◦ x)(u) (PU )

s.t. d(u) ≤ 0.

In (PU ), the composition T : U → Y := T [U ], T (u) := (g ◦ x)(u), will be playing the role
of the invertible transformation, and the composition f ◦ T will be shown to be invex. This
setup is illustrated in Figs. 1 and 2.
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y∗
Y

y∗
Y

Fig. 3 The highlighted areas illustrate sets T [V (u∗)]within which a solution y∗ = T (u∗) is globally optimal,
for an interior (left) and a boundary solution (right). The sets are shown in the output space Y = T [U ] to
highlight the role of the tangent cones. Note that in the left panel the point y∗ is in the interior of Y , hence a
global minimum in Y , despite the fact that there are some points in Y that are not “visible” from the tangent
cone at y∗. This is thanks to invexity

The strength of our result for a particular KKT point with (u∗, λ∗) will depend on the
place where point y∗ = T (u∗) is in the set Y : in the interior, or on the boundary. In general,
the set Y is non-convex and optimality guarantees are stated in terms of “the set of points
in Y that can be seen” from y∗. To make this rigorous, we first recall the definition of the
tangent cone [20,34].

Definition 3.2 Let Y ⊂ R
n be a non-empty set. A vector d ∈ R

n is called tangent to Y at
y ∈ Y , if there exist sequences {yk} ⊂ Y , {tk} ⊂ R

+ such that

yk → y, tk → 0,
yk − y

tk
→ d.

The set of all tangent vectors at y ∈ Y is the tangent cone of Y at y, denoted as TY (y).

Tangent cones provide the vocabulary to define our notion of conic-intersection minimum.

Definition 3.3 Consider a regular problem (PU ).We say that a point u∗ is a conic-intersection
minimum if it is a global minimum on the set

V (u∗) := {u ∈ U : T (u) − T (u∗) ∈ TY (T (u∗))}, (8)

where TY (T (u∗)) denotes the tangent cone of Y at T (u∗).

The definition states, in rough terms, that a conic-intersection minimum is a global minimum
with respect to the interior of the domain and all inactive boundary segments (invexity), minus
any points “hidden from view” due to local non-convexity of the active boundary segments
in Y . The geometric meaning is illustrated in Fig. 3.

We now state our main result whose proof is presented in Sect. 3.3.

Theorem 3.1 Consider a regular problem (PU ). Let (u∗, λ∗) be a KKT point of this problem.
Then u∗ is a conic-intersection minimum.

Before proceeding to the corollary, we note that the reverse statement of Theorem 3.1, i.e.,
that every minimum is a KKT point, follows from the LICQ Conditions 1 and 2 in Definition
2.1. These LICQ conditions form the regularity condition required for every minimum to be
a KKT point [34, Theorem 12.1].

The corollary is a direct consequence of the fact that for an interior point,TY (T (u∗)) = R
n .

Corollary 1 Consider a regular problem (PU ). Consider a KKT point (u∗, λ∗) such that
u∗ ∈ intU. Then u∗ is a global minimum of f ◦ T on U.
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Corollary 1 is exactly the characterization of an invex function on intU . In other words, then,
the function h := f ◦ T is invex on intU , with

ηh(u2, u1) = ∇−1T (u1) (T (u2) − T (u1)) .

The expression for ηh follows from the convexity, hence invexity, of f on Y = T [U ] with
η f (y2, y1) = y2− y1 = T (u2)−T (u1) (cf. Definition 3.1). By continuity of h we also know
that none of the points on the boundary of U map to lower objective values, whence a KKT
point in the interior of U is a global minimum on all of U .

We will now explain the meaning of the general result. For this, it is instructive to first
recall the reference situation: general nonlinear optimization. A KKT point of a nonlinear
optimization problem need not be a local minimum; it may also be a local maximum, or a
saddle point. Furthermore, in case that a KKT point is a local minimum, it is only guaranteed
to be minimal within an arbitrarily small neighbourhood of itself. From a numerical point of
view, generic nonlinear optimization problems are hard: local solvers may converge to KKT
points that are local maxima or saddle points.

For a regular problem, Theorem 3.1 provides a stronger characterization of KKT points.
Although there is no guarantee that a KKT point (u∗, λ∗) on the boundary ofU is not a saddle
point or a local maximum with respect toU , Theorem 3.1 states that u∗ is a local minimum,
and therefore not a maximum or a saddle point, with respect to V (u∗). This is important
from a numerical point of view, since it implies that a local solver will converge to a local
minimum (and certainly not a maximum) with respect to V (u∗). Secondly, it states that the
point u∗ is in fact a global minimum over V (u∗).

The meaning of the global optimality of the KKT point u∗ over V (u∗) is best understood
by analyzing two distinct cases. The first is when u∗ ∈ intU , i.e., u∗ lies in the interior ofU ,
in which case V (u∗) = U so that u∗ is a global minimum overU . The second is when u∗ lies
on the boundary of U . In that case, its objective value is no greater than the objective values
for all points u corresponding to points y that lie in the intersection of the translated tangent
cone with the set Y itself, i.e., that lie in the set (T (u∗) + TY (T (u∗))) ∩ Y . Both cases are
illustrated in Fig. 3.

A conic-intersectionminimum on the boundary need not be globally optimal, as is demon-
strated by the following example:

Example 3.1 Problem (P) with control vector u ∈ R
2, state vector x ∈ R

2, output vector
y ∈ R

2, and objective

f (y) = −y2,

and output function

y = x,

subject to the bounds

−0.5 ≤ u1 ≤ 1,

0 ≤ u2 ≤ 1,

and constraints

x1 = u1,

x2 = u2 + u21,
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is regular. The point u∗ = (−0.5, 1) is a KKT point on the boundary, and therefore a conic-
intersection minimum by Theorem 3.1. It is thus a global minimum on the set

V (u∗) = {(u1, u2) : −0.5 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1, u2 + u21 ≤ 1.25 − (u1 + 0.5)}.
The point u∗ is not, however, globally optimal on U , since a lower objective function value
is obtained at the point (1, 1).

A real-world application of Theorem 3.1 is discussed in Sect. 4.

3.3 Proof of Theorem 3.1

Recall that the function u �→ x exists by virtue of the implicit function theorem, the conditions
of which are satisfied due to Condition 1 of Definition 2.1. By Condition 3, this function is
uniquely defined on the feasible set U .

Consider the transformation T = g ◦ x . By Condition 4 of Definition 2.1, the matrix DuT
is invertible whence, by the inverse function theorem, the transformation T itself is invertible.
The transformation and its use within the optimization problem is illustrated in Fig. 2.

As per the definition of problem (P), the feasible set is described using the constraints
d(u) ≤ 0. We will first show that a point (u∗, λ∗) is a KKT point of the optimization problem

min
u

( f ◦ T )(u) (PU )

s.t. d(u) ≤ 0,

if and only if (T (u∗), λ∗) is a KKT point of the optimization problem

min
y

f (y) (PY )

s.t. (d ◦ T−1)(y) ≤ 0.

Afterwards, we will analyze the global optimality structure of the KKT points. Let

LU (u, λ) := ( f ◦ T )(u) + λT d(u)

denote the Lagrangian of problem (PU ), and let

LY (y, λ) := f (y) + λT (d ◦ T−1)(y)

denote the Lagrangian of problem (PY ). We will use the standard definition of KKT points
following [34]. KKT points (u, λ) of (PU ) correspond to stationary points (u, λ) of the
Lagrangian LU by which we have, using the fact that the transformation T is invertible, that:

0 = DyLY

= ∇y f + λT∇ud Du
(
T−1)

= ∇y f + λT∇ud D−1
u T

= ∇y f
[
DuT D−1

u T
] + λT∇ud D−1

u T

=
[
∇y f DuT + λT∇ud

]
D−1
u T

= DuLU D−1
u T .
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Since DuT is invertible, a point (u∗, λ∗) is a stationary point ofLU if and only if (T (u∗), λ∗) is
a stationary point ofLY . Similar reasoning applies to the primal and dual feasibility conditions
(d(u∗) ≤ 0 and λ∗ ≥ 0) as well as to the complementarity condition (λ∗

i di (u
∗) = 0). This

completes the first part of the proof.
We now analyze the KKT points. For this, rather than using the definition of invexity

directly, we will use properties of the tangent cones. In this way, we will also be able to
reason about points on the boundary of the feasible set; recall that invexity is defined on open
sets, i.e., sets without their boundary (cf. Definition 3.1).

We first recall a few definitions. Relevant references are [5,20,34].

Definition 3.4 The set

A(y∗) := {i ∈ I : (di ◦ T−1)(y∗) = 0}
is called the active set for the problem (PY ) at the point y∗ ∈ Y .

Definition 3.5 The set

F(y∗) := {t ∈ R
n : t T Dy(di ◦ T−1)(y∗) ≤ 0 ∀i ∈ A(y∗)},

is called the set of linearized feasible directions for the problem (PY ) at the point y∗ ∈ Y .

Definition 3.6 The cone

K ◦ := {y ∈ R
n : yT x ≤ 0 ∀x ∈ K }

is called the polar cone of the cone K .

Let (u∗, λ∗) be a KKT point of (PU ). Our aim is to show that u∗ is global minimum of f
on the set V (u∗) as defined in (8). For this, it is convenient to reason about y∗ = T (u∗) and
problem (PY ). By Condition 2 of Definition 2.1, the LICQ holds for the constraint function
d ◦ T−1. Therefore, F(y∗) = TY (y∗). See [34, Theorem 12.1] for proof of this fact.

Since, by the first part of the proof, (y∗, λ∗) is also KKT point, we have

− ∇y f (y
∗) = λ∗T Dy(d ◦ T−1)(y∗). (9)

Following the definition of the set of linearized feasible directionsF(y∗), for all t ∈ F(y∗) =
TY (y∗) we have that t T Dy(di ◦ T−1)(y∗) ≤ 0 for all i ∈ A(y∗). Because of this and the
facts that λ∗

i ≥ 0 for all i ∈ A(y∗) and λ∗
i = 0 for all i ∈ I \ A(y∗), it follows from (9) that

−t T∇y f (y∗) ≤ 0 for all t ∈ F(y∗) = TY (y∗). Therefore −∇y f (y∗) ∈ (TY (y∗))◦, the polar
cone of the tangent cone.

Since T [V (u∗)] ⊂ Y , it follows directly fromDefinition 3.2 that TT [V (u∗)](y∗) ⊂ TY (y∗).
The inclusion reverses when taking polar cones, so that

−∇y f (y
∗) ∈ (TY (y∗))◦ ⊂ (TT [V (u∗)](y∗))◦.

This means that for every tangent vector t ∈ T[V (u∗)](y∗), we have t T∇y f (y∗) ≥ 0. By
convexity of f (Condition 5 of Definition 2.1), for every y ∈ T [V (u∗)],

f (y) − f (y∗) ≥ (y − y∗)T∇y f (y
∗) ≥ 0.

The second inequality follows from the fact that y − y∗ ∈ TY (y∗) by construction of the set
V (u∗). We conclude that y∗ is a global minimum of f on T [V (u∗)], whence u∗ is a global
minimum of f ◦ T on V (u∗). ��
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Upstream Downstream (gate)River flow →

Fig. 4 Conceptual view of river segment

4 Numerical experiment: river water level control

4.1 Introduction

In this section, we describe a numerical experiment involving a discrete-time optimization
problem for a system driven by hyperbolic partial differential equations. The experiment
illustrates how a search for a KKT point using a local solver always leads to the same conic-
intersection optimum. This suggests that this solution is in fact a conic-intersection or global
optimum, as predicted by the theory. In turn, this highlights the practical relevance of our
result: without further analysis, one would only be able to claim any global properties of a
solution using computationally expensive general-purpose solvers for non-convex problems
such as, e.g., Couenne [9], or, alternatively, seeding a local search with a large number of
different starting points in order to obtain increased confidence in the quality of the solution.

We consider a single river segment under the decision maker’s control, illustrated in Fig.
4. The river segment has two endpoints: (i) the upstream endpoint – flow through this point
over time is treated as an external parameter for which a time series is available, (ii) the
downstream endpoint – a gate where we control the outflow with decision variables. The
goal is to schedule the water release at the downstream endpoint over time so that the level
over the river segment deviates as little as possible from the target level. This models the
control problem faced by operators of impounded rivers, i.e., rivers where segments are
separated by weirs or dams, such as the Meuse and the Moselle in Europe.

Given the upstream inflow, downstream outflow, and initial conditions, the time evolution
of the level and flow of water at each point of the river is governed by hyperbolic partial
differential equations [39]. These are known as the Saint-Venant equations, and are given by
the momentum equation

∂Q

∂t
+ ∂

∂x

Q2

A
+ gA

∂H

∂x
+ g

Q|Q|
ARC2 = 0, (10)

with the longitudinal coordinate x increasing in the flow direction of the river, time t , flow
(discharge) Q, water level H , cross section A, hydraulic radius R := A/P , wetted perime-
ter P , Chézy friction coefficient C , gravitational constant g, and by the mass balance (or
continuity) equation

∂Q

∂x
+ ∂A

∂t
= 0.

In a setting with bidirectional flow, the |Q| factor in the momentum equation (10) may be
approximated by a smooth function [12]. In this section, however, we will only consider
unidirectional flow with Q > 0, so that |Q| = Q. We will also not consider wetting and
drying of the channel, whence we assume that A > 0 and P > 0.

4.2 Discretization and analysis

In order to build up a finite-dimensional optimization problem, we conduct a spatial dis-
cretization with N + 1 equidistant points at which the flows Qi are computed. Between each
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Q0 Q1 Q2 Q3 Q4

H1 H2 H3 H4

QN−1QN−2QN−3QN−4 QN· · ·
· · · HN−3 HN−2 HN−1 HN

Fig. 5 Staggered grid for the example problem

pair of adjacent flow computation points we consider the level Hi points, such that Hi is
always between Qi−1 and Qi . For each of these points, we consider a time discretization
with T equidistant steps. We denote the corresponding flow and level over time by Qi (t j )
and Hi (t j ). This staggered grid is illustrated in Fig. 5.

The approximation scheme is semi-implicit in time, following [13]. Semi-implicit means
that for the equations at time step t j , some terms are evaluated explicitly at time step t j−1,
and other terms are evaluated implicitly at time step t j , requiring the solution of a system of
equations to determine their values. The semi-implicit schemes of [13,14] strike a balance
between numerical stability on the one hand, and non-singular tridiagonal Jacobian structure
on the other hand.

The discretized mass balance equation is

Qi (t j ) − Qi−1(t j )

�x
+ Ai (Hi (t j )) − Ai (Hi (t j−1))

�t
= 0, (11)

and the discretized momentum equation is

Qi (t j ) − Qi (t j−1)

�t
+ ei, j + gAi+ 1

2
(t j−1)

Hi+1(t j ) − Hi (t j )

�x
(12)

+ g
Pi+ 1

2
(t j−1) Qi (t j−1)Qi (t j )

Ai+ 1
2
(t j−1)2 C2

i

= 0,

with

Ai+ 1
2
(t j ) := 1

2

(
Ai (Hi (t j )) + Ai+1(Hi+1(t j ))

)
,

Pi+ 1
2
(t j ) := 1

2

(
Pi (Hi (t j )) + Pi+1(Hi+1(t j ))

)
,

spatial index i , temporal index j , spatial step size �x , temporal step size �t , and convective
acceleration ei, j . The parameter Ci indicates the local friction coefficient, and Hb

i indicates
the local bottom level. The convective acceleration term ei, j is discretized explicitly in time
as

ei, j := 2Qi (t j−1)

Ai+ 1
2
(t j−1)

Qi (t j−1) − Qi−1(t j−1)

�x

− Qi (t j−1)
2

Ai+ 1
2
(t j−1)2

Ai+1(Hi+1(t j−1)) − Ai (Hi (t j−1))

�x
.

Similar to Example 2.10, the equations are such that they can be solved forward in time,
starting from initial and boundary conditions. Some boundary conditions may be fixed a
priori, whereas others may be given by control variables. In the example grid of Fig. 5, Q0

is a fixed boundary condition, whereas QN is controlled. The values at time step t0 are taken
fixed; these are the initial conditions.

We define the optimization problem as
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min
Qi (t j )
Hi (t j )

f =
T∑
j=1

|HN (t j ) − HN |2 (RP)

s.t. (11) − (12)

Q ≤ QN (t j ) ≤ Q ∀ j ∈ {1, . . . , T },
where the objective is to keep the level at the H node upstream of the gate, i.e., HN , as close
as possible to the target level HN . The function of the remaining states Hi (t j ), i < N , is to
ensure physically accurate wave propagation in the up- and downstream directions.

First, we relate problem (RP) to the general problem (P). The decision variables QN (t j )
play the role of the control vector u, the remaining variables Qi (t j ) where i < N and Hi (t j )
play the role of the state vector x , and the output vector y consists of the subset of state
variables HN (t j ).

We now proceed to analyze the problem (RP) in light of the conditions of Definition 2.1.
Condition 1 follows from the fact that the Jacobian of the equations (11) – (12) with

respect to the states at time step t j is tridiagonal. In [13, p. 128] this Jacobian is shown to be
non-singular, thanks to the semi-implicit approximation scheme. The equations (11) – (12)
do not depend on future states at time step tk , k > j . Therefore, the full rank of the Jacobian
∇x c, i.e., the Jacobian of all equality constraints c with respect to the complete state vector
x , follows by induction on the final time index T .

Condition 2 follows from the linearly independent inequality constraints on the outflow
variables QN (t j ).

Condition 3 follows from the fact that, given states at time step t j−1, the states at time
step t j are uniquely defined. If the cross section A is a linear function of the water level H ,
this follows readily: in this case the equations (11) – (12) are linear in the states at time step
t j , and the Jacobian to these states is full-rank as per Condition 1. In [14] it is shown that
the uniqueness result also extends to a class of nonlinear, monotonic cross section functions
A = A(H).

Condition 4 follows from two considerations. First of all, only equation (11) depends
on the control variables. Since the dependency is linear, and every control variable occurs
in exactly one constraint (11), the Jacobian ∇uc is full-rank. Secondly, for a given control
variable QN (t j ), only the states at tk , k ≥ j are sensitive to it. Consequently, the mapping
from the control variables QN (t j ) to the output variables HN (t j ) is injective.

Condition 5 follows from the fact that the objective function f in problem (RP) is convex
in the output variables HN (t j ).

4.3 Application

We now present a concrete problem, based upon the experimental setting from the draft [6].
In this problem, we consider a single river segment with N = 10 uniformly spaced level
nodes and rectangular cross section, an upstream inflow boundary condition provided with
a fixed time series, as well as a controllable downstream release boundary condition. The
hydraulic parameters and initial conditions are summarized in Table 1. The model starts from
steady state: the initial flow rate is uniform and the water level decreases linearly along the
length of the channel. Our objective is to keep the water level at the H node upstream of the
gate, i.e., HN , at the target value HN = 0 m.

A solution to the optimization problemwas obtained using the interior point solver IPOPT
[40] and is plotted in Fig. 6. By releasing water in anticipation of the inflow using the decision
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Table 1 Parameters for the example problem

Parameter Value Description

T 72 Index of final time step

�t 600 s Time step size

Hb
i (−4.90,−4.92, . . . ,−5.10) m Bottom level

l 10 000 m Total channel length

Ai (Hi ) 50 · (H − Hb
i ) m2 Channel cross section function

Pi (Hi ) 50 + 2 · (H − Hb
i ) m Channel wetted perimeter function

Ci (40, 40, . . . , 40) m0.5/s Chézy friction coefficient

Hi (t0) (0.000,−0.025, . . . , −0.222) m Initial water levels at H nodes

Qi (t0) (100, 100, . . . , 100) m3/s Initial flow at Q nodes

Q 100 m3/s Minimum outflow

Q 200 m3/s Maximum outflow

HN 0 m Target water level

N 10 Number of level computation points

(a) Fixed inflow boundary condition. (b) Outflow bounds (dashed) and trajectory.

(c) Upstream level trajectory. (d) Downstream level trajectory.

Fig. 6 Solution to the example problem

variable QN , the optimization is able to reduce water level fluctuations and keep the water
levels close to the target.1

The IPOPT solve, starting from an all-zero starting point, takes approximately 0.1 s to
complete on a 2.6 GHz Intel Core i7 CPU.

1 An example implementation in Python using the algorithmic differentiation package CasADi [4] and homo-
topy continuation [2,8] to solve the nonlinear equality constraints numerically using IPOPT, is available online
at https://github.com/jbaayen/homotopy-example.
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Since some of the bounds on the control variables are active, the conic intersection V (u∗)
of Theorem3.1 need not cover the entire setU . The solution qualitywas analyzed numerically
by seeding the optimization with a large number of different starting points. Latin hypercube
sampling [30] was used to compute 1 000 different starting points, for each of which IPOPT
computed a solution. The standard deviation of the solution vectors was found to be in the
order of 10−11 − 10−13 ≈ 0 per solution vector coordinate, illustrating how every starting
point resulted in an – for all practical purposes – identical solution. This provides evidence
that the found solution is in fact globally optimal, or at least nearly so.

There is also ample other numerical evidence that solutions of this type are globally
optimal or very close to it. In [7], the solution quality and run time of an interior point-type
method (IPM) is benchmarked against a so-called reduced genetic algorithm (RGA, [38])
for a class of water optimization problems. The IPM search finds qualitatively consistent
solutions that always obtain better objective function values than the RGA. This benchmark
includes problems with multiple river segments, multiple spatial control points, and both
coarser and finer discretizations of the Saint-Venant equations in time and space.

Similar results are reported in [21] for drinking water distribution networks, where local
search using IPOPT finds solutions with objective values within a relative distance of 10−3

of those found using the global solver Couenne – in a fraction of the computation time. The
general-purpose global solvers require multiple minutes or hours to run, but the local search
completes in a few seconds at most.

5 Conclusions and outlook

In this work, we used the invariant convexity (invexity) to provide a theoretical framework
to understand the good (often optimal) performance of local solvers on a class of non-
convex problems that arise in discrete-time optimal control. We showed that KKT points for
such problems are conic-intersection optima. Conic-intersection optimality implies global
optimality for solutions in the interior of the feasible set, and is somewhat weaker – yet
significantly stronger than local optimality – on the boundary.

For a concrete PDE-constrained problem that is representative of a real-world water man-
agement problem, we demonstrated hidden invexity and verified the high quality of solutions
obtained by local search numerically. To the best of our knowledge, this is the first time that
the theory of invex functions has been leveraged in a large-scale applied engineering context.

Tomake our results applicable beyond the domain of discrete-time optimal control (where
an expert can typically check whether the conditions of Definition 2.1 hold for a given
discretization), there are two natural next steps that, however, fall outside the scope of this
work. First, it would be of great help to provide automated tools for detecting hidden invexity.
Second, one could also investigate the use of hidden invexity to accelerate branch-and-bound
algorithms for general non-convex global optimization.

On an analytical level, another interesting direction would be to extend our result to
continuous-time optimal control.

Story

This research was driven by the observation that local search algorithms applied to cer-
tain well-structured non-convex discrete-time optimal control problems find solutions that
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are very close to being globally optimal. Non-convex problems with this characteristic are
common inwater resourcesmanagement.We challenged ourselves to find an analytical expla-
nation, as well as exact conditions, for this phenomenon. After pursuing various avenues of
investigation, our research led to the concise result described in the present paper. This result
is, to the best of our knowledge, the first application of the theory of invex functions to
real-world non-convex optimal control.
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