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Abstract—Low-voltage distribution networks (LVDNs) topol-
ogy is significant for distributed energy resources (DERs) in-
tegration, and network operation management, among others.
However, topology identification is a difficult task due to the out-
dated recordings of networks, the uncertainty of DERs and data
privacy. To address this issue, a data-driven topology generation
approach is proposed based on open GIS and voltage magnitude
data. The proposed approach aims to generate a topology with an
accurate number of main feeders and sub-branches for adjacent
substations. The boundaries between adjacent substations are
first identified by using hierarchical clustering (HC) to cluster
normalized voltage magnitude. Given the boundaries and the
location of LV transformers, a hierarchical minimum spanning
tree algorithm (HMST) is adopted to generate graph topologies
using GIS data, which simultaneously verifies the number of
cables under the streets. Finally, the endpoints of each feeder
are estimated by clustering the transformed Pearson correlation
coefficient of voltage magnitude. The feasibility of the proposed
approach is evaluated on two real LVDNs in the Netherlands.

Index Terms—low-voltage distribution network, topology gen-
eration, correlation analysis, hierarchical clustering

I. Introduction
Low-voltage distribution network topology is fundamental

for operation management and control, such as hosting capac-
ity analysis of DERs, congestion management, etc. However,
the topology of DNs is not always available due to missed
and outdated recordings. The assumptions in topology identi-
fication methods in MV networks and transmission networks
make them not suitable for LVDNs [1], such as straight
connection lines between transformers and availability of a
large amount of measurements. Smart meter (SM) data are
limited in LVDNs due to the low deployment ratio of SM
and data privacy. Moreover, the increasing number of DERs
leads to bi-direction power flow, challenging the identification
of LVDN topology [2]. Thus, flexible topology identification
methods are required to reveal the topology of LVDNs.

Data-driven topology identification approaches relying on
GIS and SM data are proposed to address this issue. Open
GIS data provides accessible data to identify the deployment
of cables. The outline of streets is assumed to be the potential
deployment ways for underground cables [3]–[5]. An op-
timization model was proposed to recognize the connection
lines based on Open Street Map (OSM) data in [3]. To
extract multiple voltage level networks using OSM data, a
comprehensive data-driven method was introduced [4]. Based
on detailed GIS data in specific countries, benchmark networks

were generated [5], while the application of these approaches
is subjected to the detailed GIS data, and the generated
networks lack representation of networks in other countries.
Besides, the topology extracted from OSM data only reveals
the connection among buildings. The number of feeders and
their sub-branches is assumed to be the same as the number of
streets, which is not always true. Moreover, the boundary of
substations is assumed to be known in the above approaches,
while it may not be explicit in the GIS database.

Given Micro-phasor measurement units and SM data, a
topology identification approach based on an alternating di-
rection method of multipliers is proposed in [6] to jointly
estimate topology and the network’s parameters. A regression-
based topology identification approach in [7] identifies the
connection information and line impedance by recognizing the
non-zero elements in the impedance matrix from SM data.
Nevertheless, the above approaches assumed that a complete
time-series SM dataset (i.e., voltage magnitude, active power,
and reactive power) is available, which is an unrealistic as-
sumption. Moreover, since the correlation of voltage mag-
nitude from the same substation is stronger than that from
different substations [8], correlation analysis is normally used
to distinguish the voltage magnitude profiles from different
regions. However, the weak correlation among the voltage
magnitudes from adjacent substations decreases the accuracy
of the clustering approaches that rely on Pearson correlation
coefficients (PCC). Furthermore, the feeder identification issue
is not considered in the aforementioned papers due to the
assumption that one main feeder connects to the transformer.

To fill this gap, a data-driven topology generation with a
physics-guidance approach is introduced in this paper. The pro-
posed approach consists of three steps: boundary identification,
graph topology generation and feeder identification. In the first
step, the users located in adjacent substations are distinguished
by clustering normalized voltage magnitude, and the boundary
is determined according to the coordinates of buildings. Given
the boundaries and the location of transformers, a graph
topology with an accurate number of sub-branches is generated
by a simplified HMST algorithm. Then, the endpoints of
feeders are recognized by hierarchically clustering the PCC of
raw voltage magnitude measurements. Finally, the proposed
approach is tested on two real LVDNs in the Netherlands.
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Fig. 1. Framework of proposed topology identification ap-

proach.

II. Topology Generation Framework

The proposed topology identification approach is composed

of three steps: boundary identification, graph topology gener-

ation, and feeder identification. As illustrated in Fig.1.

A. Substation Boundary Identification
The proposed boundary identification algorithm integrates

the HC algorithm and the correlation analysis based on the

modified Pearson correlation coefficient (MPCC). The voltage

magnitude is stored in a matrix V , as shown in Eq. (1).

Vector Vn = [vn,1,vn,2, ...,vn,T ]T represents the time series

voltage magnitude at household n. vn,t represents the voltage

magnitude at household n at time t.

V = [V1,V2, ...,VN ]
T (1)

To mitigate the impact of voltage magnitude on the PCC

values and clustering, voltage magnitude is normalized using

Z-score normalization. The matrix V ∗ represents the normal-

ized data and is the input for the MPCC-based HC algorithm.

The row V ∗
n represents a sample in the HC algorithm, and

the number of clusters is set to the same as the number

of substations. The correlation PCC(V ∗
n ,V

∗
m) between voltage

magnitudes V ∗
n and V ∗

m is obtained by Eq. (2).

PCC(V ∗
n ,V

∗
m) =

Cov(V ∗
n ,V

∗
m)

σnσm
(2)

where σn and σm are the standard deviations of samples V ∗
n

and V ∗
m, respectively. Cov(·) is the covariance function.

To amplify the difference between voltage from different

substations, a non-linear distance D is introduced to replace

the Euclidean distance in the traditional HC algorithm.

D(V ∗
n ,V

∗
m) = 1−min{1

4
ln(1+ ea+4·PCC(V ∗

n ,V
∗
m)),1} (3)

The second item in Eq. (3) is a modified likelihood function

F(·) [9], which is used to calculate the MPCC of samples.

Since the range of function F(·) is (0,1], the range of distance

D(·) is also [0,1). The closer D(V ∗
n ,V

∗
m) is to 0, the more likely

it is that the two samples Vn and Vm are collected from the

same substation. Besides, the parameter a and its impact will

be discussed in Section III.

Algorithm 1: MPCC-based Hierarchical clustering

Input: V ∗, ks, N
Nc = N

for Nc ≥ 1 do
for n ≤ Nc do

for m ≤ Nc do
D0(n,m) = max {D(V ∗

i ,V ∗
j ): V ∗

i ∈ Cn and

V ∗
j ∈ Cm}

end
end
n∗, m∗, D∗

0 ← min{D0}
C ∗

n ← Cn ∪Cm
Nc = Nc -1

Lm[N−Nc]← (n∗,m∗,D∗
0,N

∗)
end
L ← f cluster(Lm,ks)
Output: Cluster: C1, ... ,Cks

The MPCC-based HC algorithm is shown in Algorithm 1.

The calculation in the outer loop is to obtain the linkage matrix

of the input data. The final line is to cluster the input data into

a ks cluster and obtain the labels L by the traditional HC

algorithm (i.e., the function fcluster in Scip).

B. Graph Topology Generation
Two common deployment styles of cables in LVDNs are

depicted in Fig. 2 [10]. A single cable is deployed under

streets with households on only one side in Fig. 2 (a), while

two cables are deployed under streets with households located

on both sides in Fig. 2 (b). To generate a radial topology

with an accurate number of sub-branches, the HMST algorithm

proposed in our previous work [11] is adopted.

The input of the HMST algorithm consists of the shortest

path matrix PLV between households and transformers and the

shortest path matrix P among households. The matrix P is used

as the weight of edges while constructing the graph topology.

The peak demand-based refinement strategy in HMST aims

to verify the number of cables under streets based on the

maximum capacity of cables and peak demand. The maximum

load Is of the street s is estimated using the expression in (4).

Is =
(rg)

k ·Ns ·Co ·Ppe

3 · cosθ ·V0
(4)

where rg is the annual growth of demand and k is the planning

period. Co represents the concurrency for Ns houses, represent-

ing how many households reach peak load simultaneously. Ppe
is the average peak demand. cosθ is the power factor and V0
is the voltage level of the street.

In the first step, the traditional MST algorithm is used

to generate a radial tree with the shortest length of cables,

represented by MST (·) and the edge in the tree is represented

by Tw. The weight in P is then adjusted to ensure that all

edges in the generated tree are in PLV . In the second step, if Is
is larger than the maximum capacity Ī of the deployed cable,

two cables are assigned for this street, and two sub-trees T0 for
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Fig. 2. Two deployment styles of cables in LVDNs.

Algorithm 2: FPCC-based Hierarchical Clustering

Input: V , k f , N
for n ≤ N do

for m ≤ N do
ρ∗

n,m = FPCC(Vn,Vm)

end
end
L ← Algorithm1(P∗,k f ,N)
Output: Cluster: C1, ... ,Ck f

the households located on each side are obtained. Conversely,

one tree is generated for all households. The topology T of

the main feeders is obtained based on the updated matrix P.

The graph topology is obtained by combining the T0 and T .

C. Feeder Identification
The endpoints of feeders cannot be directly inferred from the

OSM data since the length and the deployment of each feeder

are not recorded or missed. Compared to voltage magnitudes

from different feeders, the PCC shows a higher correlation

value among voltage magnitudes in the same feeders [8]. This

characteristic means that the voltage magnitude from the same

feeder shows similar correlations. Inspired by this, an FPCC-

based HC algorithm that integrates Fisher z-transformation

and PCC analysis is proposed, as shown in Algorithm 2.

To amplify the difference between voltage correlation from

different feeders, a modified Fisher z-transformation function

is employed to transform PCC, as shown in line 3 in Algorithm

2, which is formulated as:

FPCC(Vn,Vm) = ln(
1+PCC(Vn,Vm)

1−PCC(Vn,Vm)+α
) (5)

where α added to the denominator is used to avoid an infinite

value of FPCC and to control its distribution region.

The number of feeders connected to the transformer is

assumed to be known and taken as the number of clusters.

The input of Algorithm 2 is the voltage magnitude rather

than the normalized voltage magnitude. The input of the

integrated Algorithm 1, as shown from line 6 in Algorithm

2, is the transformed PCC matrix. Each row Pn in P replaces

the corresponding row in V in Algorithm 1. The output of

Algorithm 2 is the k f clusters and the households in each

cluster that are located farthest from the LV transformer are

the endpoints of each feeder.

Fig. 3. correlation coefficients: (a) PCC of V , (b) MPCC of

V , (c) PCC of V ∗ and (d) MPCC of V ∗.

Fig. 4. PCC and FPCC in two LVDNs: (a) PCC in LV-52, (b)

FPCC in LV-52, (c) PCC in LV-62 and (d) FPCC in LV-62.

III. Case study

The proposed approach is evaluated on two adjacent LVDNs

in the Netherlands [10]. The two LVDNs consist of 52 and

62 connection points and are named LV-52 and LV-62, re-

spectively. The load profiles with a resolution of 15 minutes

are selected and scaled from reference [12], and the cosθ is

set at 0.95. The voltage magnitude profiles are generated by

solving a power flow model [13]. The proposed approach is

implemented in Python. The linkage criteria in the traditional

HC algorithm are set as complete linkage. The parameter a is

set as the same value in [9], and parameter α is set as 0.01.

A. Correlation Evaluation
The PCC and MPPC of unnormalized and normalized

voltage magnitudes are shown in Fig. 3. Compared to the

PCC of unnormalized voltage magnitude in Fig. 3(a), there

is a clear boundary in the distribution of PCC of normalized
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Fig. 5. Purity and Recall of A1: (a) Purity and (b) Recall.

voltage magnitude in Fig. 3(c), which indicates the boundary

of substations. Scaled by Eq. (3), the PCC in Fig. 3(a) becomes

1. However, the MPCC of normalized voltage magnitudes in

Fig. 3(d) shows a more clear boundary. As shown in Fig.

3(b) and (d), Z-score normalization amplifies the difference

between voltage magnitude profiles from different substations

while attenuating the difference between voltage magnitude

profiles from different feeders. Thus, unnormalized voltage

magnitude data are more suitable for feeder identification.

The PCC and the FPCC of unnormalized voltage magnitude

are depicted in Fig. 4. Although there are clear boundaries

in Fig. 4(a) and (c), the samples around the boundaries may

be misidentified due to the higher correlation with the start

points of the other feeders, such as the 1st household and the

40th household in Fig. 4(a).The FPCC in LV-52 and LV-64 in

Fig. 4(b) and (d) also show more clear boundaries. Moreover,

there is a significant disparity in the FPCC values on either

side of the boundary. Additionally, compared to the raw voltage

magnitudes, the FPCC has a better representation of the unique

characteristics of feeders. For instance, for the first feeder

in LV-62, the FPCC vector P∗
n (n=1,...,10) exhibits higher

magnitudes in dimensions 1 to 10, with relatively smaller

values in other dimensions.

B. Performance of Proposed Approach

The goal of the proposed approach is to generate topology

by following a three-step approach. The parameter a in Eq. (5)

impacts the calculation of the linkage matrix Lm and further

impacts the accuracy of boundary identification. As common

indicators for evaluating clustering algorithms, the purity Ppu
and average recall R of Algorithm 1 are calculated to analyze

the impact of parameter a.

The curves of purity and average recall in Fig. 5 decrease

with the increasing of parameter a. When the purity Ppu or

average recall R is around 0.5, it means that the input voltage

magnitude from the two substations is classified into the same

clusters, i.e., the proposed Algorithm 1 fails to identify the

boundary of the substations. In particular, when 20-dimension

voltage magnitude vectors Vn are available, Algorithm 1 fails

to identify the boundaries. On the other hand, when parameter

a is set between 5 and 8, the purity and average recall

Fig. 6. Topology for (a) actual topology for LV-52, (c) gen-

erated topology for LV-52, (b) actual topology for LV-62 and

(d) generated topology for LV-62.

TABLE I: The Purity of A3 With Different α .

Parameter Dimension of Voltage
α 20 50 80 110 140 192

0.0001 1.00 0.98 0.98 0.98 0.98 0.98
0.0010 1.00 0.98 1.00 1.00 1.00 1.00
0.0100 1.00 1.00 1.00 0.98 0.98 0.98
0.1000 1.00 1.00 1.00 0.98 0.98 0.98

significantly decrease until around 0.5. Thus, parameter a
should be set to a value less than 5.

Based on the obtained boundaries, the generated graph

topologies for LV-52 and LV-62 are shown in Fig. 6. As

shown in Fig. 6(c), two cables under streets 2 and 3 are

identified. However, compared to the actual topology, there is

an inaccurate connection line at the 39th node in the generated

topology of LV-52, which is caused by deployment-related

factors and other physical constraints. The path between the

39th node and the 31st node is shorter than the path between

the 39th node and the 27th node. However, in the actual

network, the 39th node is connected to the 27th node. The

generated topology for LV-62 in Fig. 6(d) is consistent with

the actual topology in Fig. 6(b).

There are four feeders in LV-52 and LV-62, respectively.

To analyze the impact of parameter α and voltage magnitude

dimension on the Algorithm 2, the purity of Algorithm 2 is

analyzed under multiple scenarios. Table I presents the purity

under voltage magnitude profiles from LV-52. The minimum

purity of Algorithm 2 is 98%, and the purity remains at 100%

as more data becomes available or as parameter α is tuned.

In particular, when parameter α is set to 0.0010, Algorithm

2 identifies each feeder using more than one day’s voltage

magnitude. Meanwhile, the 39th node is clustered in the same

cluster as the 27th node instead of in the same cluster as the
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Fig. 7. Purity of A1 and A3 under multiple SM classes: (a)

Purity of A1 and (b) Purity of A3 in LV-52.

31st node, which means the inaccurate connection lines in

the generated graph topology are revised. Given the voltage

magnitude in LV-62, the purity remains at 100% independent

of parameter α , except for the 50-dimension voltage magni-

tude. In summary, Algorithm 2 efficiently identifies each feeder

in DNs when the parameter α is set around 0.0010 and the

dimension of the input voltage data is greater than 96.

C. Robustness Analysis
Considering the random error brought by SMs, six kinds of

Gaussian error (i.e., ve ∼ N (μ,σ)) are generated and added

to the simulation voltage magnitude data according to the ac-

curacy requirements for SMs [9]. The mean μ of the Gaussian

distribution is set as 0. According to the 3σ principle, three

times the standard deviation 3σ of the Gaussian distribution

is set as 0.2%, 0.5%, 1%, 2% and 5%.

Fig. 7 presents the purity of Algorithm 1 and Algorithm

2 under voltage magnitude data with the above errors. Given

data from the high-precise SMs (e.g., 0.2%, 0.5%), Algorithm

1 can identify the accurate boundaries of substations, while

Algorithm 1 fails to identify the boundaries and feeders

using data from the low-precise SMs (i.e., 1%, 2% and 5%).

According to Fig. 7(b), Algorithm 2 is more sensitive to

error compared to Algorithm 1. Based on voltage magnitude

with smaller magnitude errors, Algorithm 2 can identify at

least 85% of the user-to-feeder relationship using more than

two days’ data. However, Algorithm 2 only identify around

50% user-to-feeder relationship using voltage magnitudes from

the low-precise SMs (i.e., 1%, 2% and 5%). Thus, the two

proposed algorithms are more suitable for DNs with high-

precise SMs. Besides, the collected voltage magnitude data

may be incomplete due to the communication issues in the

cyber layer. The purity of Algorithm 1 and Algorithm 2 under

incomplete voltage magnitude are summarized in Table II. The

impact of missing data is similar to the impact of the voltage

dimension. Given more than one day’s data, the accuracy of

the proposed algorithms remains at 100%.

IV. Conclusion

A topology identification approach is proposed based on

voltage magnitude and GIS data to extract topologies that

TABLE II: Purity Under Incomplete Voltage Magnitude data.

Algorithm
Voltage Incomplete rate (%)

Dimension 5 10 20 30 40 50

A1
50 0.99 0.99 0.99 0.95 0.9 0.97
100 1.00 1.00 1.00 1.00 1.00 1.00

A3(LV-52)
50 0.99 0.98 0.99 0.98 0.98 0.98
100 1.00 1.00 1.00 1.00 1.00 1.00

A3(LV-62)
50 0.98 0.98 0.99 0.99 0.99 0.98
100 1.00 1.00 1.00 1.00 1.00 0.99

are close to the actual topologies in LVDNs. The boundaries

of substations are first identified by correlation analysis of

voltage magnitude, and the graph topology is generated based

on OSM data and the obtained boundaries. The inaccurate

connections in the generated graph topologies induced by the

mesh streets are revised by correlation analysis simultaneously

in the feeder identification step. With the guidance of GIS

data, the generated topology not only presents the connections

but also reveals the deployment of the cables in LVDNs.

The results show that the generated topologies using OSM

and incomplete voltage magnitudes approximate the actual

topology. Our future work aims to identify topology with

parallel feeders and meshed structures.

References

[1] H. Zhang, J. Zhao, X. Wang, and Y. Xuan, “Low-voltage distribution
grid topology identification with latent tree model,” IEEE Transactions
on Smart Grid, vol. 13, no. 3, pp. 2158–2169, 2022.

[2] G. Cavraro and R. Arghandeh, “Power distribution network topology
detection with time-series signature verification method,” IEEE Trans-
actions Power Systems, vol. 33, no. 4, pp. 3500–3509, 2017.
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