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Abstract—Low-voltage distribution networks (LVDNs) topol-
ogy is significant for distributed energy resources (DERSs) in-
tegration, and network operation management, among others.
However, topology identification is a difficult task due to the out-
dated recordings of networks, the uncertainty of DERs and data
privacy. To address this issue, a data-driven topology generation
approach is proposed based on open GIS and voltage magnitude
data. The proposed approach aims to generate a topology with an
accurate number of main feeders and sub-branches for adjacent
substations. The boundaries between adjacent substations are
first identified by using hierarchical clustering (HC) to cluster
normalized voltage magnitude. Given the boundaries and the
location of LV transformers, a hierarchical minimum spanning
tree algorithm (HMST) is adopted to generate graph topologies
using GIS data, which simultaneously verifies the number of
cables under the streets. Finally, the endpoints of each feeder
are estimated by clustering the transformed Pearson correlation
coefficient of voltage magnitude. The feasibility of the proposed
approach is evaluated on two real LVDNs in the Netherlands.

Index Terms—low-voltage distribution network, topology gen-
eration, correlation analysis, hierarchical clustering

I. INTRODUCTION

Low-voltage distribution network topology is fundamental
for operation management and control, such as hosting capac-
ity analysis of DERs, congestion management, etc. However,
the topology of DNs is not always available due to missed
and outdated recordings. The assumptions in topology identi-
fication methods in MV networks and transmission networks
make them not suitable for LVDNs [1], such as straight
connection lines between transformers and availability of a
large amount of measurements. Smart meter (SM) data are
limited in LVDNs due to the low deployment ratio of SM
and data privacy. Moreover, the increasing number of DERs
leads to bi-direction power flow, challenging the identification
of LVDN topology [2]. Thus, flexible topology identification
methods are required to reveal the topology of LVDNSs.

Data-driven topology identification approaches relying on
GIS and SM data are proposed to address this issue. Open
GIS data provides accessible data to identify the deployment
of cables. The outline of streets is assumed to be the potential
deployment ways for underground cables [3]-[5]. An op-
timization model was proposed to recognize the connection
lines based on Open Street Map (OSM) data in [3]. To
extract multiple voltage level networks using OSM data, a
comprehensive data-driven method was introduced [4]. Based
on detailed GIS data in specific countries, benchmark networks

were generated [5], while the application of these approaches
is subjected to the detailed GIS data, and the generated
networks lack representation of networks in other countries.
Besides, the topology extracted from OSM data only reveals
the connection among buildings. The number of feeders and
their sub-branches is assumed to be the same as the number of
streets, which is not always true. Moreover, the boundary of
substations is assumed to be known in the above approaches,
while it may not be explicit in the GIS database.

Given Micro-phasor measurement units and SM data, a
topology identification approach based on an alternating di-
rection method of multipliers is proposed in [6] to jointly
estimate topology and the network’s parameters. A regression-
based topology identification approach in [7] identifies the
connection information and line impedance by recognizing the
non-zero elements in the impedance matrix from SM data.
Nevertheless, the above approaches assumed that a complete
time-series SM dataset (i.e., voltage magnitude, active power,
and reactive power) is available, which is an unrealistic as-
sumption. Moreover, since the correlation of voltage mag-
nitude from the same substation is stronger than that from
different substations [8], correlation analysis is normally used
to distinguish the voltage magnitude profiles from different
regions. However, the weak correlation among the voltage
magnitudes from adjacent substations decreases the accuracy
of the clustering approaches that rely on Pearson correlation
coeflicients (PCC). Furthermore, the feeder identification issue
is not considered in the aforementioned papers due to the
assumption that one main feeder connects to the transformer.

To fill this gap, a data-driven topology generation with a
physics-guidance approach is introduced in this paper. The pro-
posed approach consists of three steps: boundary identification,
graph topology generation and feeder identification. In the first
step, the users located in adjacent substations are distinguished
by clustering normalized voltage magnitude, and the boundary
is determined according to the coordinates of buildings. Given
the boundaries and the location of transformers, a graph
topology with an accurate number of sub-branches is generated
by a simplified HMST algorithm. Then, the endpoints of
feeders are recognized by hierarchically clustering the PCC of
raw voltage magnitude measurements. Finally, the proposed
approach is tested on two real LVDNs in the Netherlands.
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Fig. 1. Framework of proposed topology identification ap-
proach.

II. ToroLoGY GENERATION FRAMEWORK

The proposed topology identification approach is composed
of three steps: boundary identification, graph topology gener-
ation, and feeder identification. As illustrated in Fig.1.

A. Substation Boundary Identification

The proposed boundary identification algorithm integrates
the HC algorithm and the correlation analysis based on the
modified Pearson correlation coefficient (MPCC). The voltage
magnitude is stored in a matrix V, as shown in Eq. (1).
Vector V, = [vn,l,vng,..wvn’g]T represents the time series
voltage magnitude at household n. v, represents the voltage
magnitude at household »n at time ¢.

V=[Vi,Va,...W]" (1)

To mitigate the impact of voltage magnitude on the PCC
values and clustering, voltage magnitude is normalized using
Z-score normalization. The matrix V* represents the normal-
ized data and is the input for the MPCC-based HC algorithm.
The row V," represents a sample in the HC algorithm, and
the number of clusters is set to the same as the number
of substations. The correlation PCC(V,",V,") between voltage
magnitudes V,* and V,; is obtained by Eq. (2).

~ Cov(V;, V)

PCCV; V) = “n

2
where o, and o0, are the standard deviations of samples V,
and V¢, respectively. Cov(-) is the covariance function.

To amplify the difference between voltage from different
substations, a non-linear distance D is introduced to replace
the Euclidean distance in the traditional HC algorithm.

1 L
D(V,.V,) = 1 = min{ In(1 + @ FHPCCU V)Y 1} 3)

The second item in Eq. (3) is a modified likelihood function
F(-) [9], which is used to calculate the MPCC of samples.
Since the range of function F(-) is (0, 1], the range of distance
D(+) is also [0, 1). The closer D(V,", V") is to 0, the more likely
it is that the two samples V, and V), are collected from the
same substation. Besides, the parameter a and its impact will
be discussed in Section III.

Algorithm 1: MPCC-based Hierarchical clustering
Input: V*, k;, N
N. =N
for N.>1 do
for n < N, do
for m <N, do
Do(n,m) = max {D(V;".,V}): V; € €, and
Vi€ Cn}
end
end
n*, m*, Djj <— min{Dy }
G, — € UG
N, =N, -1
Ly[N—N,] < (n*,m*,D§,N*)
end
£ <+ fcluster(Ly,ky)
Output: Cluster: Cy, ...

Cry

The MPCC-based HC algorithm is shown in Algorithm 1.
The calculation in the outer loop is to obtain the linkage matrix
of the input data. The final line is to cluster the input data into
a kg cluster and obtain the labels .Z by the traditional HC
algorithm (i.e., the function fcluster in Scip).

B. Graph Topology Generation

Two common deployment styles of cables in LVDNs are
depicted in Fig. 2 [10]. A single cable is deployed under
streets with households on only one side in Fig. 2 (a), while
two cables are deployed under streets with households located
on both sides in Fig. 2 (b). To generate a radial topology
with an accurate number of sub-branches, the HMST algorithm
proposed in our previous work [11] is adopted.

The input of the HMST algorithm consists of the shortest
path matrix Pry between households and transformers and the
shortest path matrix P among households. The matrix P is used
as the weight of edges while constructing the graph topology.
The peak demand-based refinement strategy in HMST aims
to verify the number of cables under streets based on the
maximum capacity of cables and peak demand. The maximum
load I of the street s is estimated using the expression in (4).

(rg)¥ Ny Co - Ppe
3-cos0 -V
where r, is the annual growth of demand and & is the planning
period. C, represents the concurrency for N, houses, represent-
ing how many households reach peak load simultaneously. Py,
is the average peak demand. cos6 is the power factor and Vj

is the voltage level of the street.

In the first step, the traditional MST algorithm is used
to generate a radial tree with the shortest length of cables,
represented by MST(-) and the edge in the tree is represented
by T,,. The weight in P is then adjusted to ensure that all
edges in the generated tree are in Pry. In the second step, if /g
is larger than the maximum capacity I of the deployed cable,
two cables are assigned for this street, and two sub-trees T for

Iy = “4)
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(b)
Fig. 2. Two deployment styles of cables in LVDNSs.

Algorithm 2: FPCC-based Hierarchical Clustering

Input: V, k¢, N
for n <N do

for m <N do

‘ p;tk,m = FPCC(V,,,Vin)

end
end
£ « Algorithm1(P* k¢ ,N)

Output: Cluster: Cy, ... ,Ck_/

the households located on each side are obtained. Conversely,
one tree is generated for all households. The topology 7' of
the main feeders is obtained based on the updated matrix P.
The graph topology is obtained by combining the T and 7'.

C. Feeder Identification

The endpoints of feeders cannot be directly inferred from the
OSM data since the length and the deployment of each feeder
are not recorded or missed. Compared to voltage magnitudes
from different feeders, the PCC shows a higher correlation
value among voltage magnitudes in the same feeders [8]. This
characteristic means that the voltage magnitude from the same
feeder shows similar correlations. Inspired by this, an FPCC-
based HC algorithm that integrates Fisher z-transformation
and PCC analysis is proposed, as shown in Algorithm 2.
To amplify the difference between voltage correlation from
different feeders, a modified Fisher z-transformation function
is employed to transform PCC, as shown in line 3 in Algorithm
2, which is formulated as:

1+ PCC(V,, V)

FPCC(Vy,Vin) = In(— PCC(Vp, Vi) + 0t
ny¥m

) &)

where o added to the denominator is used to avoid an infinite
value of FPCC and to control its distribution region.

The number of feeders connected to the transformer is
assumed to be known and taken as the number of clusters.
The input of Algorithm 2 is the voltage magnitude rather
than the normalized voltage magnitude. The input of the
integrated Algorithm 1, as shown from line 6 in Algorithm
2, is the transformed PCC matrix. Each row P, in P replaces
the corresponding row in V in Algorithm 1. The output of
Algorithm 2 is the ky clusters and the households in each
cluster that are located farthest from the LV transformer are
the endpoints of each feeder.
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Fig. 4. PCC and FPCC in two LVDNSs: (a) PCC in LV-52, (b)

FPCC in LV-52, (c) PCC in LV-62 and (d) FPCC in LV-62.

III. CASE sTUDY

The proposed approach is evaluated on two adjacent LVDNs
in the Netherlands [10]. The two LVDNs consist of 52 and
62 connection points and are named LV-52 and LV-62, re-
spectively. The load profiles with a resolution of 15 minutes
are selected and scaled from reference [12], and the cos0 is
set at 0.95. The voltage magnitude profiles are generated by
solving a power flow model [13]. The proposed approach is
implemented in Python. The linkage criteria in the traditional
HC algorithm are set as complete linkage. The parameter a is
set as the same value in [9], and parameter « is set as 0.01.

A. Correlation Evaluation

The PCC and MPPC of unnormalized and normalized
voltage magnitudes are shown in Fig. 3. Compared to the
PCC of unnormalized voltage magnitude in Fig. 3(a), there
is a clear boundary in the distribution of PCC of normalized
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voltage magnitude in Fig. 3(c), which indicates the boundary
of substations. Scaled by Eq. (3), the PCC in Fig. 3(a) becomes
1. However, the MPCC of normalized voltage magnitudes in
Fig. 3(d) shows a more clear boundary. As shown in Fig.
3(b) and (d), Z-score normalization amplifies the difference
between voltage magnitude profiles from different substations
while attenuating the difference between voltage magnitude
profiles from different feeders. Thus, unnormalized voltage
magnitude data are more suitable for feeder identification.

The PCC and the FPCC of unnormalized voltage magnitude
are depicted in Fig. 4. Although there are clear boundaries
in Fig. 4(a) and (c), the samples around the boundaries may
be misidentified due to the higher correlation with the start
points of the other feeders, such as the 1st household and the
40th household in Fig. 4(a).The FPCC in LV-52 and LV-64 in
Fig. 4(b) and (d) also show more clear boundaries. Moreover,
there is a significant disparity in the FPCC values on either
side of the boundary. Additionally, compared to the raw voltage
magnitudes, the FPCC has a better representation of the unique
characteristics of feeders. For instance, for the first feeder
in LV-62, the FPCC vector P, (n=1,...,10) exhibits higher
magnitudes in dimensions 1 to 10, with relatively smaller
values in other dimensions.

B. Performance of Proposed Approach

The goal of the proposed approach is to generate topology
by following a three-step approach. The parameter a in Eq. (5)
impacts the calculation of the linkage matrix L, and further
impacts the accuracy of boundary identification. As common
indicators for evaluating clustering algorithms, the purity Py,
and average recall R of Algorithm 1 are calculated to analyze
the impact of parameter a.

The curves of purity and average recall in Fig. 5 decrease
with the increasing of parameter a. When the purity P,, or
average recall R is around 0.5, it means that the input voltage
magnitude from the two substations is classified into the same
clusters, i.e., the proposed Algorithm 1 fails to identify the
boundary of the substations. In particular, when 20-dimension
voltage magnitude vectors V,, are available, Algorithm 1 fails
to identify the boundaries. On the other hand, when parameter
a is set between 5 and 8, the purity and average recall

(@
Fig. 6. Topology for (a) actual topology for LV-52, (c) gen-
erated topology for LV-52, (b) actual topology for LV-62 and
(d) generated topology for LV-62.

TABLE I: The Purity of A3 With Different .

Parameter Dimension of Voltage
o 20 50 80 110 140 192
0.0001 1.00 098 098 098 098 0.98
0.0010 1.00 098 1.00 1.00 1.00 1.00
0.0100 1.00 1.00 1.00 098 098 0.98
0.1000 1.00 1.00 1.00 098 098 0.98

significantly decrease until around 0.5. Thus, parameter a
should be set to a value less than 5.

Based on the obtained boundaries, the generated graph
topologies for LV-52 and LV-62 are shown in Fig. 6. As
shown in Fig. 6(c), two cables under streets 2 and 3 are
identified. However, compared to the actual topology, there is
an inaccurate connection line at the 39th node in the generated
topology of LV-52, which is caused by deployment-related
factors and other physical constraints. The path between the
39th node and the 31st node is shorter than the path between
the 39th node and the 27th node. However, in the actual
network, the 39th node is connected to the 27th node. The
generated topology for LV-62 in Fig. 6(d) is consistent with
the actual topology in Fig. 6(b).

There are four feeders in LV-52 and LV-62, respectively.
To analyze the impact of parameter ¢ and voltage magnitude
dimension on the Algorithm 2, the purity of Algorithm 2 is
analyzed under multiple scenarios. Table I presents the purity
under voltage magnitude profiles from LV-52. The minimum
purity of Algorithm 2 is 98%, and the purity remains at 100%
as more data becomes available or as parameter ¢ is tuned.
In particular, when parameter « is set to 0.0010, Algorithm
2 identifies each feeder using more than one day’s voltage
magnitude. Meanwhile, the 39th node is clustered in the same
cluster as the 27th node instead of in the same cluster as the

Authorized licensed use limited to: TU Delft Library. Downloaded on May 07,2025 at 07:57:01 UTC from IEEE Xplore. Restrictions apply.



Puritv(%)

Voltage Magnitude Dimension

Fig. 7. Purity of Al and A3 under multiple SM classes: (a)
Purity of Al and (b) Purity of A3 in LV-52.

31st node, which means the inaccurate connection lines in
the generated graph topology are revised. Given the voltage
magnitude in LV-62, the purity remains at 100% independent
of parameter ¢, except for the 50-dimension voltage magni-
tude. In summary, Algorithm 2 efficiently identifies each feeder
in DNs when the parameter « is set around 0.0010 and the
dimension of the input voltage data is greater than 96.

C. Robustness Analysis

Considering the random error brought by SMs, six kinds of
Gaussian error (i.e., v, ~ .4 (U,0)) are generated and added
to the simulation voltage magnitude data according to the ac-
curacy requirements for SMs [9]. The mean u of the Gaussian
distribution is set as 0. According to the 30 principle, three
times the standard deviation 3¢ of the Gaussian distribution
is set as 0.2%, 0.5%, 1%, 2% and 5%.

Fig. 7 presents the purity of Algorithm 1 and Algorithm
2 under voltage magnitude data with the above errors. Given
data from the high-precise SMs (e.g., 0.2%, 0.5%), Algorithm
1 can identify the accurate boundaries of substations, while
Algorithm 1 fails to identify the boundaries and feeders
using data from the low-precise SMs (i.e., 1%, 2% and 5%).
According to Fig. 7(b), Algorithm 2 is more sensitive to
error compared to Algorithm 1. Based on voltage magnitude
with smaller magnitude errors, Algorithm 2 can identify at
least 85% of the user-to-feeder relationship using more than
two days’ data. However, Algorithm 2 only identify around
50% user-to-feeder relationship using voltage magnitudes from
the low-precise SMs (i.e., 1%, 2% and 5%). Thus, the two
proposed algorithms are more suitable for DNs with high-
precise SMs. Besides, the collected voltage magnitude data
may be incomplete due to the communication issues in the
cyber layer. The purity of Algorithm 1 and Algorithm 2 under
incomplete voltage magnitude are summarized in Table II. The
impact of missing data is similar to the impact of the voltage
dimension. Given more than one day’s data, the accuracy of
the proposed algorithms remains at 100%.

IV. CoNcLUSsION

A topology identification approach is proposed based on
voltage magnitude and GIS data to extract topologies that

TABLE II: Purity Under Incomplete Voltage Magnitude data.

. Voltage Incomplete rate (%)

Algorithm . - onsion 5 100 20 30 40 50
X 30 099 099 099 095 09 097
100 100 100 100 100 100 100

30 099 098 099 098 098 098
A3(LV-52) 100 100 100 100 100 100 100
30 098 098 099 099 099 098

A3(LV-62) 100 100 100 100 100 100 099

are close to the actual topologies in LVDNs. The boundaries
of substations are first identified by correlation analysis of
voltage magnitude, and the graph topology is generated based
on OSM data and the obtained boundaries. The inaccurate
connections in the generated graph topologies induced by the
mesh streets are revised by correlation analysis simultaneously
in the feeder identification step. With the guidance of GIS
data, the generated topology not only presents the connections
but also reveals the deployment of the cables in LVDNs.
The results show that the generated topologies using OSM
and incomplete voltage magnitudes approximate the actual
topology. Our future work aims to identify topology with
parallel feeders and meshed structures.
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