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Summary 
Alzheimer's disease is a neurodegenerative disease that progressively impairs 
cognitive functions, ultimately leading to death. As the global population 
continues to age, the prevalence of Alzheimer is on the rise, making it a significant 
public health concern. Given its impact, researchers are extensively studying the 
disease with the aim to slow down its progression, preventing its onset, and 
eventually discovering a cure. 

Genetics significantly influences the risk of developing Alzheimer's disease, with 
an estimated 60-80% of this risk being inherited. To uncover the genetic basis of 
Alzheimer's, researchers use genome-wide association studies (GWAS) to 
identify specific genetic variants, known as single nucleotide polymorphisms 
(SNPs), that are more prevalent in individuals with Alzheimer compared to 
healthy individuals. Many Alzheimer associated SNPs are common, exhibit small 
effect sizes, and are primarily located in non-coding and intergenic regions of the 
genome. These SNPs act as markers for haplotypes (genetic regions, typically 
around 300 kilobases in length) that are passed down through generations. Such 
haplotypes often include at least one genetic factor that contributes to disease 
risk, potentially by modulating the expression of one or more genes. Although 
GWAS-identified SNPs are unlikely to be directly causative, they are frequently 
in partial linkage with the true causal variants. Given that many SNPs reside in 
non-coding regions, which do not directly change protein-coding sequences, 
researchers aim to understand their functional significance by correlating these 
genetic variants with changes in mRNA expression and other molecular data 
such as protein levels. Investigating the biological processes involving these 
genes and proteins may provide insights into the mechanisms underlying 
Alzheimer's disease and ultimately lead to novel therapeutic interventions. 

Recent advances in single-cell RNA sequencing (scRNAseq) have provided 
important insights into Alzheimer's disease by enabling scientists to analyze gene 
expression at the level of individual cells, offering a detailed view of cellular 
activity in both healthy and diseased brains. Alzheimer's disease is characterized 
by considerable heterogeneity, with individuals displaying diverse phenotypic 
manifestations. Moreover, Alzheimer does not affect all brain regions or cell types 
uniformly; it progresses in stages, impacting different regions and cell types at 
varying times. The heterogeneity and progressive nature of Alzheimer's disease 
pose significant challenges for research, as varying levels of pathology can be 
present across different patients and even within different regions of the same 
patient's brain. Despite the availability of extensive phenotypic and scRNAseq 
data, methods to effectively utilize this data to study variations within and between 
individuals have yet to be developed. 

In this thesis, we introduce analytical approaches to investigate the downstream 
biological effects GWAS-identified SNPs. We present an approach that utilizes 
the principal axis of variance among a set of genes linked by a common biological 
component to create a single variable that is subsequently correlated with GWAS-
identified SNPs. Additionally, we designed a gene prioritization strategy that 
emphasizes genes located near GWAS-identified SNPs, ranking them based on 
the extent of significant changes in gene-gene correlation patterns. Furthermore, 
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we identified differential correlation quantitative trait loci (QTLs), defined as 
GWAS-identified SNPs associated with alterations in protein-protein correlation 
networks. These approaches provide additional context to the potential 
downstream consequences of AD-SNPs and offer deeper insights into the 
mechanisms underlying Alzheimer's disease. 

Further, we introduce a novel method that accounts for the heterogeneity of 
Alzheimer, both between different brain cell types within the same individual and 
between individuals, providing a more comprehensive understanding of the 
disease's complexity. 

In addition to the challenges associated with using scRNAseq to study Alzheimer, 
there are technical challenges inherent to the technique itself, particularly the 
issue of data sparsity. The amount of messenger RNA present in a single cell is 
much lower than in bulk tissue samples, leading to many genes appearing as if 
they are not expressed at all. This sparsity can be misleading, and researchers 
have adopted two primary strategies to address it: imputing the zero 
measurements or interpreting the absence of gene expression as biologically 
meaningful. This thesis advocates for the latter approach, emphasizing the 
significance of these zero measurements in understanding cellular biology. We 
demonstrate that by representing gene expression in single-cell data as binary 
(expressed or not expressed), various downstream analytical tasks can be 
performed with the same effectiveness as when using count-based data. 

In summary, the contributions within this thesis advance Alzheimer's research by 
introducing new computational tools and methods to better understand the 
genetics of the disease and cellular mechanisms. Additionally, showing that 
single-cell gene expression can be effectively analyzed in a binary format 
(expressed or not) simplifies genomic data analysis, making it more accessible, 
efficient, and applicable to a range of diseases and conditions. 
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Samenvatting 
Ziekte van Alzheimer is een neurodegeneratieve aandoening die geleidelijk de 
cognitieve functies aantast en uiteindelijk tot de dood leidt. Naarmate de 
wereldbevolking vergrijst, neemt de prevalentie van Alzheimer toe, wat het een 
belangrijk probleem voor de volksgezondheid maakt. Vanwege deze gevolgen 
bestuderen onderzoekers de ziekte intensief met als doel de progressie ervan te 
vertragen, het ontstaan ervan te voorkomen en een geneesmiddel te vinden. 

Genetische factoren spelen een grote rol bij het risico op het ontwikkelen van de 
ziekte van Alzheimer, waarbij naar schatting 60-80% van dit risico erfelijk is. Om 
de genetische basis van Alzheimer te achterhalen, maken onderzoekers gebruik 
van genome-wide associatiestudies (GWAS) om specifieke genetische 
varianten, bekend als single nucleotide polymorfisme (SNP’s), te identificeren die 
vaker voorkomen bij mensen met Alzheimer dan bij gezonde personen. Veel van 
deze Alzheimer-geassocieerde SNP’s zijn algemeen, hebben een kleine 
effectgrootte en bevinden zich hoofdzakelijk in niet-coderende gebieden van het 
genoom en in gebieden tussen de genen. Deze SNP’s fungeren als indicatoren 
voor haplotypen (genetische segmenten, doorgaans ongeveer 300 kilobasen 
lang) die van generatie op generatie worden doorgegeven. Haplotypen bevatten 
vaak ten minste één genetische factor die bijdraagt aan het ziekterisico, mogelijk 
door de expressie van een of meer genen te beïnvloeden. Hoewel door GWAS 
geïdentificeerde SNP’s waarschijnlijk niet direct de oorzaak zijn, blijken ze vaak 
in gedeeltelijke koppeling te staan met de echte causale varianten. Omdat veel 
SNP’s in niet-coderende gebieden liggen, die geen directe veranderingen in eiwit 
coderende sequenties veroorzaken, proberen onderzoekers de functionele 
betekenis te achterhalen door deze genetische varianten te koppelen aan 
veranderingen in mRNA-expressie en andere moleculaire data, zoals eiwit data. 
Het bestuderen van de biologische processen die bij deze genen en eiwitten 
betrokken zijn, kan inzicht bieden in de onderliggende mechanismen van de 
ziekte van Alzheimer en uiteindelijk leiden tot nieuwe therapeutische interventies. 

Recente ontwikkelingen in single-cell RNA-sequencing (scRNAseq) hebben 
belangrijke inzichten opgeleverd in de ziekte van Alzheimer, doordat 
wetenschappers nu de genexpressie op het niveau van individuele cellen kunnen 
onderzoeken. Dit biedt een gedetailleerd beeld van de cellulaire activiteit in zowel 
gezonde als zieke hersenen. De ziekte van Alzheimer wordt gekenmerkt door 
aanzienlijke heterogeniteit: patiënten kunnen sterk uiteenlopende fenotypische 
kenmerken vertonen. Bovendien tast Alzheimer niet alle hersengebieden of 
celtypen op gelijke wijze aan; de ziekte vordert in fasen en beïnvloedt 
verschillende gebieden en celtypen op verschillende tijdstippen. Deze 
heterogeniteit en het progressieve karakter van de ziekte maken onderzoek 
lastig, omdat verschillende voortgang niveaus van pathologie kunnen voorkomen 
bij verschillende patiënten en zelfs binnen verschillende hersengebieden van één 
patiënt. Ondanks de beschikbaarheid van uitgebreide fenotypische en 
scRNAseq-data zijn er nog geen methoden ontwikkeld om deze data effectief te 
benutten voor het bestuderen van variaties binnen en tussen individuen. 

In dit proefschrift introduceren we verschillende analytische methodes om de 
downstream biologische effecten van door GWAS geïdentificeerde SNP’s te 
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onderzoeken. We presenteren een methode die gebruikmaakt van de as van de 
meeste variatie binnen een reeks genen, welke verbonden zijn via een 
gemeenschappelijke biologische component. Hiermee creëren we een enkele 
variabele die vervolgens wordt gecorreleerd met deze door GWAS 
geïdentificeerde SNP’s. Daarnaast hebben we een strategie ontwikkeld om 
genen te prioriteren die zich in de buurt van zulke SNP’s bevinden; we 
rangschikken deze genen op basis van de mate waarin er significante 
veranderingen optreden in hun correlatiepatronen met andere genen. Verder 
hebben we differentiële correlatie-quantitative trait loci (dc-QTL’s) gedefinieerd, 
oftewel door GWAS geïdentificeerde SNP’s die gerelateerd zijn aan 
veranderingen in eiwit-eiwitcorrelatienetwerken. Deze strategieën bieden extra 
context voor de mogelijke downstream gevolgen van Alzheimer-SNP’s en geven 
dieper inzicht in de mechanismen achter de ziekte van Alzheimer. 

Bovendien introduceren we een nieuwe methode die rekening houdt met de 
heterogeniteit van Alzheimer, zowel tussen verschillende hersenceltypen binnen 
één individu als tussen meerdere individuen. Deze aanpak biedt een 
omvattender beeld van de complexiteit van de ziekte. 

Naast de uitdagingen die gepaard gaan met het gebruik van scRNAseq om 
Alzheimer te onderzoeken, zijn er ook technische obstakels die inherent zijn aan 
deze technologie, met name het probleem van de grote hoeveelheden nul 
observaties. De hoeveelheid messenger-RNA (mRNA) in een enkele cel is 
aanzienlijk lag  er dan in een stukje weefsel, waardoor veel genen ten onrechte 
lijken te ontbreken in een enkele cel. Dit verschijnsel kan misleidend zijn, en 
onderzoekers hanteren twee hoofdstrategieën om hiermee om te gaan: het 
imputeren van de nulmetingen of het interpreteren van de afwezigheid van 
genexpressie als biologisch betekenisvol. In dit proefschrift pleiten we voor de 
laatstgenoemde benadering en benadrukken we het belang van deze 
nulmetingen voor het begrijpen van cellulaire processen. We laten zien dat, door 
genexpressie in single-cel data binair (wel of niet uitgedrukt) weer te geven, 
verschillende downstream analysetaken met dezelfde effectiviteit kunnen worden 
uitgevoerd als bij gebruik van op count gebaseerde data. 

Samenvattend leveren de in dit proefschrift een bijdrage aan het onderzoek naar 
de ziekte van Alzheimer door het introduceren van nieuwe computationele 
methoden om de genetica van de ziekte en de onderliggende cellulaire 
mechanismen beter te begrijpen. Bovendien laat we zien dat single-cell 
genexpressie effectief binair kan worden geanalyseerd, wat de data-analyse 
vereenvoudigt. 
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1.1. Alzheimer's Disease 
Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by the 
decline of cognitive abilities and eventually death1. One of the main risk factor for 
AD is aging2. As the global population is increasingly reaching older age, the 
incidence of AD also continues to rise. Given the devastating nature of AD, 
extensive research efforts are underway to deepen our understanding of the 
disease, with the aim of slowing its progression, preventing it, and ultimately 
finding a cure. 

A major portion of AD research focuses on the etiological processes that 
contribute to AD. Researchers aim to identify the biological processes that are 
disrupted and could lead to the development and progression of AD. Several 
hypotheses have emerged in this area, each proposing different mechanisms that 
may underlie the disease (Fig. 1). 

One leading theory is the amyloid-beta (Aβ) cascade hypothesis3, which 
suggests that the accumulation of amyloid-beta peptides in the brain initiates a 
cascade of events leading to neurodegeneration. According to this hypothesis, 
these peptides aggregate to form plaques that disrupt cell function and trigger a 
series of pathological processes, including inflammation and oxidative stress. 

The tau hypothesis4 centers on the role of tau proteins, which are normally 
involved in stabilizing microtubules in neurons. In AD, tau proteins become 
abnormally phosphorylated, leading to the formation of neurofibrillary tangles 
inside neurons. These tangles disrupt the normal functioning of neurons and 
contribute to cell death and cognitive decline. 

The inflammation hypothesis5 posits that chronic inflammation in the brain plays 
a critical role in AD. Microglia, the brain's resident immune cells, become 
activated in response to amyloid plaques and other factors, leading to a sustained 
inflammatory response. This inflammation can exacerbate neuronal damage and 
further drive the progression of the disease. 

The oxidative stress hypothesis6 suggests that an imbalance between the 
production of reactive oxygen species (ROS) and the brain's ability to detoxify 
these harmful molecules leads to oxidative damage. Neurons are particularly 
vulnerable to oxidative stress7, which can damage cellular components such as 
DNA, proteins, and lipids, contributing to neurodegeneration. It is increasingly 
recognized that AD likely results from a combination of these pathological 
processes rather than a single cause. 

Heritability studies suggest that approximately 60-80% of the risk for developing 
AD can be attributed to genetic factors. Hence understanding genetic variants 
associated with these pathological processes requires a integrative approach to 
analyzing genetic and molecular data, which might result in a better 
understanding of the disease's mechanisms and point towards potential 
therapeutic targets. 
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Figure 1: Alzheimer’s disease and eight leading hypotheses (Figure adapted from Hroudová et al8) 

1.2. Genetics of Alzheimer’s Disease 
Although individual human genomes are approximately 99.9% similar, variation 
exists at about 88 million genomic positions where variations are observed with 
a frequency of more than 1% among individuals9. Such variations, called single 
nucleotide polymorphism (SNP), can alter the codon sequence within the coding 
regions of genes (Fig. 2a), potentially changing the polypeptide sequence of 
proteins and thereby affecting protein function, which might lead to diseases. 
However, most genetic variations are found in non-coding regions10, making the 
task of understanding how these variations influence biological processes and 
contribute to diseases a difficult task. Moreover, due to recombination, many 
nearby variants tend to co-occur within individuals11, complicating the 
identification of which variant or groups of variants (haplotypes) are critical for 
disease pathogenesis. Additionally, the interaction of distant SNPs, known as 
epistasis12, may also play a role in disease susceptibility. Altogether, outlining the 
complexity of understanding genetics of human diseases.  

 

Figure 2: a) Schematic representation of the APOE alleles. When individuals have a T allele for both 
the rs429358 and rs7412 SNPs, a cysteine peptide is encoded into the APOE protein at positions 112 
and 158, known as the APOE2 allele. If an individual has a C allele for SNP rs7412, the codon at 
position 158 changes to encode arginine, resulting in the APOE3 allele. When both rs429358 and 
rs7412 SNPs have a C allele, both cysteines are replaced by arginine, forming the APOE4 allele. b) 
Schematic representation of a genome wide association study (GWAS). A GWAS begins with the 
collection of genetic data from two large groups of individuals: controls and cases. For each genetic 
position where variation exists in the population, it is tested whether variants are enriched or depleted 
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in the case group compared to the control group as shown in the contingency table where C is the 
risk variant. This results in an association measure and a p-value, which is shown in the Manhattan 
plot, where every dot is a variant, the x-axis is the location of that variant on the genome and the y-
axis is the -log10 p-value.  

1.2.2. Genome-wide association studies (GWASs) 

SNPs associated with diseases, such as AD, are identified through Genome-wide 
association studies (GWASs, Fig. 2b)13. These studies start by collecting and 
sequencing genomes from a large number of individuals, including both 
individuals affected by a disease and unaffected controls. Researchers then 
examine whether SNPs that have variation in the study population are more 
frequent in those with the disease than in those without. A variety of statistical 
tests14 can be used, such as Fisher's exact test, chi-squared tests, and linear and 
logistic regression analyses, are used to explore the relationships between SNPs 
and disease.   

When tests are performed, it is important to account for the fact that humans are 
diploid, meaning they carry two copies of each chromosome. As such, the 
analyses must consider the effects of having one versus two copies of a genetic 
risk variant, with the assumption that being homozygous (having two identical 
nucleotides) might influence the disease more than being heterozygous (having 
two different nucleotides). 

Additionally, it is important to realize that not all individuals carrying a genetic risk 
variant will develop the associated disease. For example, not even every carrier 
of the APOE4 allele, the largest genetic risk factor for AD, is guaranteed to 
develop AD. Which is even more true for genetic risk factors with less pronounced 
effects. Thus, to detect statistically significant associations with relatively subtle 
effects, larger sample sizes are required. As such, over the years we have seen 
a large increase in study sizes of GWASs. For instance, one of the earliest 
GWASs for AD performed, in 2009 included 16,000 participants identified only 
three statistically significant genetic independent risk variants15. While the latest 
GWAS for AD included almost 800,000 participants and identified 75 statistically 
significant genetic independent risk variants16. 

In studying the genetics of AD, it is essential to make a distinction between 
Familial Alzheimer's Disease (FAD) and Late-Onset Alzheimer's Disease 
(LOAD). FAD is a rare autosomal dominant disorder typically caused by 
mutations in one of three genes: APP, PSEN1, or PSEN2, leading to the 
development of Alzheimer's before the age of 6517. In this thesis, we focus on 
LOAD, which is associated with over 75 independent genetic risk variants16, with 
the APOE4 allele being the primary genetic risk factor18. 

One of the most well-studied genetic risk factors associated with AD is the APOE4 
allele (Fig. 1a), which has been shown to significantly increase the risk of 
developing the disease18,19. Individuals who carry one copy of the APOE4 allele 
have a higher risk compared to those with the more common APOE3 allele, and 
those with two copies of APOE4 have an even greater risk. This allele is believed 
to play a role in numerous processes (e.g., lipid metabolism20, inflammation5, 
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oxidative stress5) that increase the risk of AD and is linked to pathological 
hallmarks (tau pathology21 and amyloid beta accumulation22) associated with AD.  

In addition to APOE4, there are currently approximately 75 independent genetic 
variants known to be associated with an increased risk of developing AD16. Some 
of these genetic variants have been linked to genes involved in various biological 
pathways, including immune response, cell signaling, and lipid transport, 
highlighting the complex nature of AD. Despite advances in identifying these 
genetic variants, understanding their role in the pathogenesis of AD remains 
difficult. The interactions between these genetic factors and environmental 
influences, as well as their combined effect on the molecular mechanisms leading 
to AD, are still not understood. Ongoing research aims to unravel these 
complexities to better understand the disease and eventually develop effective 
therapeutic strategies. 

1.2.3. Brain somatic mutations 
The genetic variations discussed so far are inherited from either parent. However, 
some genetic variants, known as somatic mutations, are acquired during an 
individual's lifetime. These mutations can arise from various causes, including 
errors during DNA replication in cell division23, exposure to environmental 
mutagens24, and defects in DNA repair mechanisms25. Additionally, the 
accumulation of somatic mutations increases with age, which is noteworthy since 
aging is a major risk factor for AD. This connection has been explored in previous 
studies and indeed showed significant associations of somatic mutations with AD 
and AD related pathologies26,27. As such this should be taken into account in 
genetic research related to AD. While the specific role of these somatic mutations 
in the disease progression is not well understood, recent studies suggest that 
they tend to occur in genes involved in the PI3K-AKT, MAPK, and AMPK 
pathways, which are known to contribute to tau hyperphosphorylation27. 

1.2.4. Quantitative trait loci (QTLs) 
One approach to understanding how SNPs contribute to diseases involves 
identifying quantitative trait loci (QTLs28). A QTL is a SNP that is significantly 
associated with a quantitative trait, such as gene expression (eQTL29), protein 
levels (pQTL30), metabolite levels (mQTL31), lipid levels (lQTL32), and other 
molecular biotypes. Essentially, QTLs are SNPs linked to variations in molecular 
measurements.  

Unlike GWASs that focus on disease status as the outcome variable, QTL 
analyses use molecular measurements as the outcome. While GWASs test each 
SNP's association with disease status, resulting in a number of tests equal to the 
number of SNPs (for example, 6 million SNPs equals 6 million tests), QTL 
analyses multiply this number by assessing multiple SNPs against multiple 
biomolecules. For example, analyzing 10,000 genes in an eQTL study would 
require 60 billion tests. Luckily, it is generally observed that SNPs affecting gene 
or protein levels are located near each other (<1 megabase pairs)33, reducing the 
need to test every gene or protein against all SNPs across the genome and 
focusing instead on nearby SNPs, also known as cis-regulation, in contrast to 
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trans-regulation (>1 megabase pair). This localized testing is supported by known 
biological pathways showing how SNPs can influence gene expression34,35. 

Once QTLs are identified, overlaps with disease-associated SNPs can be 
examined to determine if a disease-related SNP also affects, for example, the 
expression of a gene crucial for lipid metabolism. Understanding such links could 
point to disrupted lipid metabolism as a potential disease mechanism, which 
would necessitate further functional studies. 

Recent advancements in QTL research include single-cell QTLs (sc-QTLs36), 
which analyze SNP associations with gene expression specific to cell types, and 
co-expression QTLs (co-QTLs37), which explore how SNPs relate to the 
interaction between two genes. This includes investigating whether a specific pair 
of genes shows a co-expression pattern in individuals with certain genotypes, 
and how this co-expression might change in a different genetic context. 

1.2.5. Challenges with QTL analyses 
Investigating whether a risk locus functions as an expression quantitative trait 
locus (eQTL), indicating a link to abnormal messenger RNA (mRNA) expression, 
is a reasonable approach. However, despite mRNAs encoding proteins, their 
expression levels often do not correlate with protein levels38–40. Consequently, 
eQTLs frequently do not correspond to protein-QTLs (pQTLs)41. Since proteins 
are the cell's functional units, understanding genetic regulation or deregulation 
related to risk alleles through their impact on protein expression might be more 
insightful. 

Focusing solely on eQTLs and pQTLs might overlook the downstream effects of 
causative variants. For instance, a causative missense variant might not affect 
mRNA levels but could alter the amino acid sequence of a protein, significantly 
impacting its function and interactions. This can modify various biological 
pathways, disrupt protein-protein interactions, enzyme activities, and signal 
transduction pathways, leading to cellular dysfunction and different functional 
associations between proteins. 

Assuming that co-expressed proteins are functionally related, allele-specific 
protein correlation patterns might indicate unique regulatory states of biological 
pathways in response to an allele. From this perspective, disease-associated 
alleles could have downstream functional consequences, detectable by 
comparing changes in protein abundance co-expression between carriers and 
non-carriers of risk alleles. This approach could provide deeper insights into the 
genetic regulation and its impact on cellular functions, aiding in the understanding 
of disease mechanisms. 

1.3. Using Single-cell RNAseq Data to Understand 
Alzheimer’s Disease 
The introduction of single-cell RNA sequencing (scRNAseq, Fig. 3a) has 
significantly enriched AD research43,44. scRNAseq quantifies the abundance of 
messenger RNA (mRNA) molecules, which are the molecules responsible for 
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encoding proteins, the functional units of cells. scRNAseq allows to analyze gene 
expression at the level of individual cells, providing a detailed view of cellular 
functions and interactions. By comparing RNA expression profiles between 
healthy individuals and those diagnosed with AD, genes have been identified that 
may play critical roles in the pathology of the disease45. Previously it was only 
possible to investigate transcriptional differences at a bulk tissue level, which 
measure average gene expression across all cells in a sample. Bulk RNA 
sequencing obscures the contributions of specific cell types, making it difficult to 
discern the roles of different cells in the disease process (Fig. 3b). In contrast, 
scRNAseq enables the identification of cell-type-specific gene expression 
changes, offering insights into how distinct cell populations, such as neurons and 
microglia (the brain's resident immune cells), are uniquely affected by AD. This 
detailed cellular and molecular information is important for understanding the 
complex interactions that might drive the disease. Despite its promise, scRNAseq 
is still a relatively new technology and presents several open challenges46.  

Figure 3: a) Workflow of scRNA sequencing (scRNA-seq). (1)Tissue samples are collected from the 
subject, and (2) cells are separated from the collected tissue. (4) RNA molecules are then extracted 
from the isolated cells and (4) subsequently fragmented into smaller pieces. (5) These RNA fragments 
are reverse transcribed to create complementary DNA (cDNA), which is (6) then amplified to produce 
sufficient quantities for sequencing. (7) Sequencing adapters are attached to the amplified cDNA 
fragments, (8) which are then sequenced using a sequencing machine. (9) Finally, the sequenced 
reads are mapped to a reference genome for analysis and identification of gene expression levels. b) 
An illustration of the differences between scRNA-seq and bulk RNA sequencing. The fruit bowl 
represents a sample containing various distinct cell types, symbolized by different fruits (banana, 
avocado, grapes). scRNAseq, depicted by the individual fruits, allows for the examination of gene 
expression at the single-cell level, identifying the specific expression profiles of different cell types 
within a mixed sample. In contrast, bulk RNAseq, represented by the juice glass (mix of fruits), 
homogenizes the sample, providing an averaged gene expression profile that masks the unique 
profiles of individual cell types. 

1.3.1. Challenges of using scRNAseq data to understand 
Alzheimer’s disease 
One major development regarding scRNAseq data is the increased efficiency of 
sequencing protocols coupled with a reduction in costs. This progress now 
enables the measurement of cellular profiles at a population scale across multiple 
conditions. Historically, scRNAseq analyses often focused on measuring many 
cells from a single individual. Because of this, the primary goal was often to 
identify various cell types within that individual. With the capability to include 
multiple individuals in studies, the research paradigm has shifted. Now, 
researchers can explore differences between individuals, such as comparing 
groups diagnosed with AD to healthy control groups. However, current analysis 
methods tend to assume that cells from a given individual uniformly represent the 
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phenotype of their respective donors, overlooking the variation within an 
individual's cells. Consequently, the current single-cell analysis paradigm first 
constructs reference maps of discrete cell types and subtypes. It then identifies 
differentially expressed genes between “cases” and “controls” for each cell group 
or subgroup, thereby neglecting the cellular variation within individual donors.  

However, as an example, AD pathology does not affect the brain uniformly. For 
instance, considering Braak staging47, pathology starts in the lower brainstem 
and progresses in the end to the neocortex, impacting regions sequentially rather 
than all at once. Thus, at any time-point, various brain regions of a single 
individual show differing levels of AD pathology. And this variability in disease 
manifestations is also present at the cell type level48. 

Some methods49,50 have been developed to utilize the multi-individual nature of 
these datasets, allowing for the identification of cell states associated with 
disease by exploiting phenotypic variation among individuals without requiring 
predefined cell types. While identifying phenotype-specific cell states provides 
important insights into the cellular consequences of phenotypes, it overlooks the 
heterogeneous nature of disease. To address this, it is essential to determine 
which donors have cells in the respective cell states and which do not, as well as 
to identify other phenotypic characteristics of donors whose cells exhibit these 
states. Current methods fall short in investigating the relationship between 
differences in phenotypic traits and variations in cellular phenotypic 
manifestations. 

1.4. Sparsity of single-cell RNAseq data 
The amount of mRNA in a single cell is significantly lower than in bulk data51. 
Moreover, transcription is a bursty process; in the same cell mRNA expression 
can be high at one moment and absent at a later moment52. Furthermore, the 
sequencing process involves sampling53, which means not all mRNA molecules 
that are present in the cells are captured during the sequencing process. Next to 
that, technological advancements now allow for population-scale scRNAseq 
studies, encompassing data from more than 100 individuals, over 1 million cells, 
and upwards of 20,000 genes44. With this increased capacity, it has been debated 
whether it is better to measure a larger number of mRNA molecules in fewer cells, 
or to distribute resources across a larger number of cells with fewer mRNA 
molecules per cell. It has been found that the latter approach tends to provide a 
more comprehensive representation of cell biology within the same budget, albeit 
at the cost of increased data sparsity54,55. 

In summary, scRNAseq data has become sparser, i.e. for more genes no 
transcripts are read or only a few. There are two main approaches to manage the 
sparsity observed in scRNAseq data. The first approach considers the zero 
measurements as missing data, attempting to impute these values56. The second 
approach, views these zero measurements as meaningful biological 
information57,58. However, this raises concerns about potentially discarding 
valuable information. In this thesis, we advocate for the second approach, 
emphasizing the biological significance of the zero measurements. 
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1.4.1. Challenges regarding the sparsity of single-cell 
RNAseq data 
The challenge of viewing the zero measurements as biological meaningful 
information lies in the inadequacy of standard count distribution models, such as 
Poisson, which worked well for bulk RNA-seq but fail to account for the number 
of observed zero measurements in scRNAseq data, necessitating the exploration 
of alternative handling and modeling techniques. 

Sarkar and Stephens53 proposed a perspective on this by proposing to model 
observed counts through a combination of an expression model and a 
measurement model. The expression model represents the true biological 
distribution of a gene, which varies per gene. For example, housekeeping genes 
might be uniformly distributed across a cell population, and for other genes, due 
to transcriptional dynamics, mRNA levels might follow a Gaussian distribution 
within a specific cell populations. The measurement model sees the sequencing 
process as a series of Bernoulli experiments, resulting in a Poisson distribution. 
Combining the expression and measurement models yields the count 
distributions as observed in practice. However, this approach is complex because 
there is no one-size-fits-all solution, as the distribution differs for each gene and 
depends heavily on the cell population. 

1.5. Thesis contributions 
The research presented in this thesis addresses several challenges and 
introduces new methodologies and approaches in the study of scRNAseq, 
proteomics and genetics data and its application in understanding AD. Firstly, it 
addresses a major issue with scRNAseq data—its sparsity—by developing a new 
analytical method for differential gene expression analyses and by outlining the 
opportunities this increased sparsity presents. Secondly, the thesis improves 
understanding of how disease-associated genetic risk variants impact mRNAs 
and proteins, as well as the extent to which mRNAs interact with other mRNAs 
and proteins with other proteins in relation to these risk variants, and 
consequently, which biological processes might be disrupted. Moreover, it 
introduces a new approach to analyzing scRNAseq data by accounting for 
cellular heterogeneity both within and between individuals who share similar 
phenotypic characteristics, leading to a better understanding of the heterogeneity 
of AD. This approach has allowed for the identification of nine distinct cellular 
components of AD progression, thereby advancing our understanding of the 
disease's heterogeneity and its underlying mechanisms.  

In Chapter 2, we present a gene prioritization approach for identifying the genes 
that are most likely associated with a genetic risk variant and the respective 
disease. First, we examined differences in correlation patterns of scRNAseq gene 
expression data between individuals diagnosed with AD and undiagnosed 
controls. Through this analysis, we identified key "hub" genes that exhibit 
changes in their correlation with numerous other genes in individuals with AD 
compared to those without a diagnosis. Given that many of these hub genes are 
known to regulate gene expression, we hypothesized that they might play a 
crucial role in the development of AD. This hypothesis was supported by the fact 
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that many of these hubs are also implicated in the genetic risk factors for AD. 
Consequently, we identified systematic differences in gene expression 
associated with AD, which are likely coordinated by these hub genes.  

In Chapter 3 we introduced gene-set-QTLs (GS-QTLs). With GS-QTLs we 
developed an approach that considers the shared maximum variability of the 
gene set as a whole, rather than looking at the sum of individual gene 
associations, thereby association risk variants directly whole sets of genes. Using 
scRNAseq and genetics data from 666 healthy and Alzheimer’s Disease 
individuals we show that GS-QTLs can identify cell type specific associations 
between genetic risk variants, biomolecules, and pathways that are missed by 
conventional methods. 

In Chapter 4, we performed a large-scale pQTL analysis, identifying many 
variants associated with the differential abundance of proteins expressed in the 
Medial Temporal Gyrus. Additionally, we found pairs of proteins that show 
differential correlation in relation to AD risk variants. These findings offer insights 
into potential biological mechanisms that are altered by genetic risk variants, 
thereby enhancing our understanding of the genetic predisposition to AD. 

In Chapter 5 we present a cell type specific somatic mutation identification 
pipeline using scRNAseq data and whole genome sequencing (WGS) data. 
Using this pipeline, we identified sites of somatic mutations in the excitatory 
neuron that were more often mutated in older individuals compared to younger 
individuals. And we found sites that were associated with AD. Meaning that 
individuals with AD were more likely to have a somatic mutation at these sites.  

In Chapter 6, we introduce cell projected phenotypes (CPP). With CPP, we 
introduce a new approach for analyzing population-scale multi-condition 
scRNAseq data. Our method uses transcriptional similarities between cells from 
different individuals, with different phenotypic characteristics, to provide a better 
understanding of cellular variations between individuals and within a single 
individual, thereby addressing the complexity of cellular heterogeneity. Our 
analyses underscore that a) not every cell from an individual exhibits the 
transcriptional signature of that individual's phenotypic characteristics, b) 
phenotypes are expressed to varying degrees across different cell types, and c) 
across individuals with the same phenotypic traits different cell types may be 
implicated. Although such variability is well-recognized in biological studies, this 
study is the first to systematically consider these aspects using single-cell 
RNAseq data, offering new insights into the cellular basis of phenotypic 
variations. 

In Chapter 7 we present Binary Differential Analysis (BDA), a differential 
expression analysis method for scRNAseq data relying on binarized scRNAseq 
data, where every zero remains a zero, and every non-zero value is assigned a 
one. Through extensive experiments we show that BDA performs similarly as 
count based differential expression analysis methods, and in some cases even 
outperforms count based methods. With this research we concluded that the 
binary patterns of gene expression; measured (1) – not measured(0) is actually 
biologically meaningful. In Chapter 8, we extend the findings from Chapter 7, 
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finding that counts add very little information on top of the binary pattern of 
expression and that for various scRNAseq analysis methods the binary pattern is 
sufficient. As such, we recommended the development of specialized tools for bit-
aware implementations of downstream analytical tasks, reducing the amount of 
required computational resources, thereby enabling the analysis of bigger 
datasets and a more fine-grained resolution of biological heterogeneity. 

Finally, we conclude the thesis in Chapter 9 with a discussion of our 
contributions, a discussion on the future of how sparsity could be treated in 
scRNAseq studies, a discussion on how to analyze genetic risk variants and their 
downstream consequences and finally a discussion on the implications of CPP 
on scRNAseq analyses and genetics research. 
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Figure 4: Overview of chapter 2-8.  
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Abstract 
Understanding how genetic risk variants contribute to Alzheimer’s Disease 
etiology remains a challenge. Single-cell RNA sequencing (scRNAseq) allows for 
the investigation of cell type specific effects of genomic risk loci on gene 
expression. Using seven scRNAseq datasets totalling >1.3 million cells, we 
investigated differential correlation of genes between healthy individuals and 
individuals diagnosed with Alzheimer’s Disease. Using the number of differential 
correlations of a gene to estimate its involvement and potential impact, we 
present a prioritization scheme for identifying probable causal genes near 
genomic risk loci. Besides prioritizing genes, our approach pin-points specific cell 
types and provides insight into the rewiring of gene-gene relationships associated 
with Alzheimer’s. 

2.1 Introduction 
Alzheimer’s Disease (AD) is a progressive neurodegenerative disease 
characterized by loss of cognitive functions and autonomy, eventually leading to 
death1. Many hypotheses about the etiology of AD exists, e.g. the amyloid-beta 
(Aβ) cascade hypothesis, the tau hypothesis, the inflammation hypothesis, the 
oxidative stress hypothesis and more2,3, highlighting the complexity of AD. 
Genome-wide association studies (GWASs) have provided a compendium of 
genomic loci that are associated with the risk for AD4–7. However, understanding 
how these risk variants contribute to AD etiology remains a challenge. As the 
number of GWASs is still rising steadily and are increasingly becoming larger in 
sample size, new genomic risk loci are regularly identified, while studies that 
generate mechanistic understanding lag behind8. Methods such as mendelian 
randomization9 and colocalization10 provide insight in causality but fail to provide 
insight in downstream molecular consequences. Single-cell genomics has made 
it possible to investigate genetic regulation in distinct cell types and paves the 
way to new approaches that will provide a more detailed understanding of cell 
type specific dysregulation in AD, genetics and downstream consequences. 

Additionally, scRNAseq has provided insight into cellular heterogeneity and is 
increasingly used to understand transcriptional differences at a single-cell 
level11,12,13. For AD, several scRNAseq studies have been performed14,15,16,17,18 
that have generated new insights into AD pathophysiology. Many scRNAseq 
studies focus on cell type abundance18, cell type specific differential 
expression14,18, identifying novel cell types16 or exploring cellular differentiation 
trajectories19 – where each cell is kept as an independent entity, while being 
categorized into distinct cell types. An alternative approach utilizing scRNAseq 
data involves aggregating multiple measurements of genes within pre-defined 
cell populations, often delineated by cell type and individual, generating pseudo 
bulk datasets20,21. This approach has successfully been used to identify 
differential cellular states across conditions21, exploring cell type specific 
responses22, and identifying cell type specific gene regulation under genetic 
control23.  

While scRNAseq data are well suited for e.g. differential expression analysis 
(DEA), determining expression correlations in scRNAseq data remains 
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challenging24. scRNAseq data is characterized by large numbers of zero counts; 
the lower the expression, the more abundant the zeros25. Consequently, low-
expressed genes can appear highly correlated due to just a few paired 
measurements, while the remaining measurements are zero26,27. The pseudo 
bulk approach provides a solution, as each gene would be represented by the 
aggregated value within a cell population, delineated by cell type and individual. 
As such, even low-expressed genes are represented by a robust aggregated 
value and the correlation is determined by the collinearity between genes across 
individuals instead of single cells. However, even though most scRNAseq 
datasets contain large numbers of cells, these are often derived from a small 
number of individuals, making it challenging to identify meaningful correlations in 
pseudo bulk data.  

To overcome these challenges, we here combined seven previously published 
AD scRNAseq datasets14,15,16,17,18 and generated seven cell type specific pseudo 
bulk datasets (excitatory neurons, inhibitory neurons, astrocytes, 
oligodendrocytes, oligodendrocyte progenitor cells (OPCs), microglia and 
endothelial cells), ranging from 132 to 192 individuals. We used this data to 
investigate differential correlation28,29 of genes between healthy individuals 
(control, CT) and patients diagnosed with AD. In contrast to DEA, differential 
correlation analysis (DCA) provides insight in whether transcriptional changes are 
independent or coordinated and provides insight into dynamic associations of key 
regulators subject to AD. For each cell type we explored gene-gene correlations 
that are significantly different in AD compared to CT. Using a network 
representation of differential correlations, we identified distinct sets of regulatory 
hubs for each cell type. Using the number of differential correlations to rank genes 
located near AD genetic risk variants, we prioritized known causal genes and 
identified potential novel ones. In addition, this approach revealed altered states 
of biological processes in AD associated with the prioritized genes. Finally, taking 
advantage of the characteristics of pseudo bulk data, we performed co-
expression analysis between genes expressed in excitatory neurons and four 
other cell types (inhibitory neurons, astrocytes, oligodendrocytes and microglia) 
to identify pairs of co-expressed genes that are expressed in different cell types. 

2.2 Results 

2.2.1. Analysis workflow 
The analysis workflow consists of six major components. The first component 
describes the demographics of the cell type specific pseudo bulk datasets that 
were composed of seven separate AD scRNAseq datasets (Fig. 1a). In the 
second component, a general overview of differential correlation results between 
CT and AD is presented (Fig. 1b). Then we continue to investigate hubs; genes 
that have the majority of differential correlations with other genes within each 
respective cell type (Fig. 1c). In the fourth component, we compare hubs between 
cell types; are they cell type spcific of shared? Here we test whether shared hubs 
also share neigbourhoods. In the next component, we use the number of 
differential correlations of genes genomically located near AD risk variants in a 
prioritization scheme for identifying putative causal genes and cell types (Fig. 
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1d). In the sixth and final analysis, we perform a co-expression analysis in healthy 
individuals between genes expressed in excitatory neurons and inhibitory 
neurons, excitatory neurons and astrocytes, excitatory neurons and 
oligodendrocytes and finally excitatory neurons and microglia (Fig. 1e), thus 
asking the question whether there are gene-pairs co-expressed across different 
cell types.  

 

Figure 1 Schematic overview of the analysis workflow. A Overview of how the seven cell type specific 
pseudo bulk datasets were combined. Starting with three dimensions (genes, cells and individuals), 
the data was clustered along the cells axis. Next, the clusters were annotated, after which the 
annotated data was aggregated on cell type and individual. This resulted in seven cell type specific 
datasets with genes defining the rows and the individuals defining the columns. B Schematic overview 
of differential correlations and differential correlation network (DCN). The degree of correlation is first 
calculated between pairs of genes in both healthy controls (CT) and Alzheimer’s Disease (AD) 
patients separately, resulting in different co-expression networks. The differential correlation network 
is defined by the difference between both co-expression networks. C Schematic representation of 
comparing DCNs and the corresponding hubs between cell types. Different cell types have different 
DCNs and these similarities and differences are identified. Additionally, the network neighborhood 
genes  of the shared hubs is compared. D Schematic representation of the gene prioritization scheme. 
Genes located near AD risk variants are ranked based on their hub status (i.e., based on the number 
of genes that have an altered association in AD compared to CT). E Schematic overview of differential 
correlation between genes expressed in neurons and genes expressed in astrocytes. 

2.2.2. Demographics of cell type specific datasets 
We collected seven scRNAseq Alzheimer’s Disease (AD) datasets, comprised of 
1,341,953 cells, and generated seven cell type specific pseudo bulk datasets (See 
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methods: Aggregation, integration and batch correction). The excitatory and 
inhibitory neuron datasets comprise of five datasets (Table 1) and consist of 180 
individuals, of which 81 were diagnosed with AD and 84 had no cognitive 
impairment (CT). A total of 15 individuals with mild cognitive impairment (MCI) 
and/or having other causes for MCI were characterized as other (O) and were 
excluded from any analyses. The astrocyte, oligodendrocyte and oligodendrocyte 
progenitor cell (OPC) datasets comprise six datasets and consist of 180 
individuals (NAD = 87, Nct = 90, NO = 15 ). The microglia dataset comprises five 
datasets and consists of 168 individuals (NAD = 73, Nct = 73, NO = 22). The 
endothelial cell dataset comprises four datasets and consists of 132 individuals 
(NAD = 60, Nct = 70, NO = 2). 

Table 1 Dataset characteristics and demographics 
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X X X X  X  268,060 3,556 180 51% 81 84 15 

Astrocytes X X X X X X  109,713 2,615 192 50% 87 90 15 

Oligodendrocy
tes 

X X X X X X  185,175 2,018 192 50% 87 90 15 

OPCs X X X X X X  41,611 243 192 50% 87 90 15 

Microglia  X X X  X X 58,443 1,356 168 53% 73 73 22 

Endothelial 
cells 

 X X X  X  15,776 368 132 52% 60 70 2 

 

2.2.3. Alzheimer’s Disease is characterized by altered 
correlations between gene pairs across cell types 
To identify altered gene-gene relationships between CT and AD individuals, we 
performed differential correlation analysis within each cell type. Across all cell 
types, a total of 374,243 pairs of genes (~0.65% of all tested pairs, Fig. 2a) had 
altered transcriptional relationships in AD (Padj ≤ 0.01, |∆r| ≥ 0.5). For 253,135 
pairs, an increase in correlation coefficient (∆r ≥ 0.5) was observed in AD and for 
121,108 pairs a decrease (∆r ≤ -0.5, Fig.2b). Most altered relationships were 
identified in excitatory neurons (n = 313,756, 0.70%), followed by inhibitory 
neurons (n = 44,974, 0.72%), astrocytes (n = 7,669, 0.22%), microglia (n = 4,061, 
0.44%), oligodendrocytes (n = 3,219, 0.61%), endothelial cells (n = 515, 0.77%, 
Fig. 2c) and OPCs (n = 49, 0.17%). We next identified genes that are differentially 
correlated with age or Braak stage in AD individuals compared to CT (e.g., no 
correlation between gene expression and age in CT but a positive correlation in 
AD).  Across all cell types, 169 genes were significantly differentially correlated 
with age (Fig. 2d-j, e.g. upregulated with age in CT while downregulated with age 
in AD) and 215 genes were significantly differentially correlated with Braak stage 
(SFig. 1) . PTPN3 (Fig. 2k, rCT = -0.29, rAD = 0.44, Padj = 1.35 × 10-4) showed the 
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most extreme changes in association with age in excitatory neurons from AD 
patients. 

Next, we investigated whether the observed differential correlations are explained 
by the differential expression of the genes between CT and AD individuals. Most 
genes that were differentially correlated were not significantly differentially 
expressed. Of all genes that were differentially correlated with at least one other 
gene (n = 18,321), 3,187(~17%) genes were also significantly differently 
expressed (PFDR ≤ 0.01, STable 1). Interestingly, most pairs of genes that showed 
an increase in correlation coefficient in AD had the same directional effects in 
gene expression; both up- or both downregulated. Vice versa, most pairs of 
genes that showed a decrease in correlation coefficient showed opposite 
directional effects in gene expression; one up- and one downregulated. Testing 
the association between correlation (increase/decrease) coefficient and 
directionality of effects (same/opposite) on gene expression resulted in a log odds 
ratio of 2.78 (95%CI = 2.76, 2.80, STable 2). 

Figure 2 A Percentage and number of significant differential correlations for each cell type. B For 
each cell type the percentage of pairs of genes that have an increased or decreased correlation. 
Increasing meaning a higher correlation coefficient between a pair of genes in individuals with 
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Alzheimer’s Disease (AD) compared to healthy controls (CT), and vice versa. C Volcano plot of the 
differential correlations in endothelial cells. Each dot represents a gene-pair, the x-axis represents the 
difference in correlation coefficient for the respective pair and the y-axis represents the –log10 
empirical P-value. Blue dots are significant differential correlations where an increased correlation 
coefficient was found in AD. Conversely, red dots are significant differential correlations where a 
decreased correlation coefficient was found in AD. D, E, F, G, H, I, J Plots of the genes that are 
differentially correlated with age within the respective cell types. The x-axes represent the Spearman’s 
rank correlation coefficient. Yellow dots represent the correlation coefficient in AD for the respective 
gene with age and purple dots represent the correlation coefficient in CT for the respective gene with 
age. The size of the dots correspond to the –log10 p-value. K Dot plot for PTPN3 (excitatory neurons). 
Each dot is an individual, the x-axes represent the age of the individuals in years and the y-axes the 
expression of the respective genes in the respective cell types. Yellow dots are individuals with 
Alzheimer’s and purple dots are healthy controls. Beneath the dot plot a density plot of age is shown.   

2.2.4. Regulatory hubs are primarily cell type specific  
Next, we constructed gene differential correlation networks for each cell type, 
where vertices represent genes and edges the significant differential correlations 
between genes (Fig. 1b). Degree distributions of these networks followed a 
power law (SFig. 2a-g, STable 3), showing that these networks have scale-free 
topology and that per network only a few central genes (hubs) are involved in the 
majority of altered relationships. Comparing hubs between cell types (Fig. 1c) 
showed that 824 (95%) hubs were cell type specific, and 42 (5%) hubs were 
shared between at least two cell types (Fig. 3a). Of all identified hubs (N= 866), 
261 (30%) hubs had known regulatory functions; 62 (7%) were known 
transcription factors (TFs)30, 70 (8%) were known cofactors30 and 154 (18%) hubs 
were regulators of molecular functions (GO:0065009, Fig. 3b). Interestingly, 
when pairwise comparing the neighbourhoods of excitatory neuron TF hubs 
(Npairs = 930), we found 214 TF pairs with opposite differential correlations with 
the same genes. For example, the TF-hub ZNF579 was negatively correlated 
with CDH10 in CT (r = -0.28) and positively correlated in AD (r = 0.31, Padj = 4.38 
× 10-4). Conversely, TF-hub ZNF33A was positively correlated with CDH10 in CT 
(r = 0.38) and negatively in AD (r = -0.23, Padj = 3.29 × 10-4). This suggests that 
there are genes that are under control by different TFs in AD compared to CT. 
Furthermore, within the respective cell types, the neighbourhoods of 132 hubs 
were significantly enriched (PFDR ≤ 0.01) for the KEGG AD pathway (SFig. 3, 
STable 4), namely in excitatory neurons (N= 97), inhibitory neurons (N = 33) and 
astrocytes (N = 2). We identified hub genes that were differentially correlated with 
age, including sixteen excitatory neuron hubs, two inhibitory neuron hubs (MARS 
and SLF2), two astrocyte hubs (ARHGEF9 and CYFIP2), and one hub from 
endothelial cells (SPOCK2). Additionally, we identified hub genes that were 
differentially correlated with Braak stages, which included one astrocyte hub 
(ZNF302) and three microglia hubs (ALCAM, RAB11A and RASA3).Of the cell 
type specific regulatory hubs, only excitatory and inhibitory neuron hubs showed 
functional enrichment (GO terms), albeit for distinct processes. For example, 
hubs of excitatory neurons were enriched for regulation of transferase activity (N 
= 27, PFDR = 6.20 × 10-6, Fig. 3c) and negative regulation of protein 
phosphorylation (N = 15, PFDR = 2.42 × 10-4), and hubs of inhibitory neurons were 
enriched for positive regulation of RNA biosynthetic process (N = 21, PFDR = 5.65× 
10-5, Fig. 3d) and regulation of transcription by RNA polymerase II (N = 24, PFDR 
= 9.99 × 10-5).  
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Next, we examined hubs that were shared between cell types (N = 42). SARAF 
was the only hub in four cell types and DGKZ, EMC7, HNRNPH1, MOK, NDUFV3 
and S100A6 were shared hubs in three cell types. To investigate whether hubs 
shared between cell types also share neighbourhoods we performed a Fisher’s 
exact test between the neighbourhoods of the respective cell types for each hub 
that was shared between at least two cell types. Considering all cell types, we 
found 21 hubs with significantly overlapping neighbourhoods between cell types 
(fisher exact test, PFDR ≤ 0.01, SFig. 4, STable 5). Of the 21 hubs shared between 
excitatory and inhibitory neurons, 19 had significantly overlapping 
neighbourhoods. These results show that when hub genes are shared between 
cell types the putative gene expression regulatory disruptions are also shared.  

 

Figure 3 A) An UpSet plot of the hubs identified in each cell type, showing the degree of overlap of 
hubs between the cell types. B Pie charts showing the number of hubs that have known regulatory 
functions; transcription factor (orange), cofactor (blue) and regulator of molecular function (green). C-
D Dot plot of the hub enrichment results for excitatory neurons (C) and inhibitory neurons (D), The x-
axes represent the % of how many hubs belong to the GO term relative to all genes comprising the 
GO term. The y-axes represent the GO terms. The color of the dots represents the adjusted P-value 
(FDR) for the term and the size of the dots represent the number of hubs belonging respective GO 
term. 
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2.2.5. Differential correlation-based gene prioritization for 
Alzheimer’s Disease risk variants 
Considering that many hubs are annotated to have known regulatory functions, 
we argue that the number of differential correlations can be seen as a measure 
of importance and could potentially hint at causal involvement of the respective 
hub in AD. As such, we hypothesized that the number of differential correlations 
can be used to prioritize genes located near AD risk variants. We focused on 79 
AD risk variants identified by Wightman et al4 and Bellenguez et al5. Using 
CONQUER31, we identified 2,528 genes near these 79 variants (see methods). 
Of these genes, 975 were present in our collection of single cell datasets (SFig. 
5). In total, for 32 variants at least one hub was located nearby (Fig. 4a, Nexcitatory 

neurons= 19, Ninhibitory neurons= 9, Nastrocytes= 6, Noligodendrocytes= 3, Nmicroglia= 5). 
rs61732533 had four nearby located hubs; MAF1 and BOP1 in excitatory neurons 
and PLEC and CPSF1 in inhibitory neurons. Interestingly, a dysfunction of PLEC 
in neurons is known to be associated with tau accumulation32. rs769450 also had 
four nearby located hubs; OPA3, APOE and FBXO46 in excitatory neurons and 
APOE in inhibitory neurons. For five variants the annotated gene was also a hub 
(rs769450 - excitatory and inhibitory neurons - APOE, rs1065712 - excitatory 
neurons - CTSB, rs141749679 – astrocytes - SORT1, rs72777026 - astrocytes - 
ADAM17 and rs450674 microglia - MAF). 

Next, we calculated a cell type specific normalized rank based on the number of 
significant differential correlations (higher number of differential correlations = 
higher priority). Using this rank we prioritized genes within each cell type and for 
each risk variant. In total, we prioritized 230 genes in all cell types (Fig. 4b, 
STable 6). For 29 variants the previously annotated gene corresponded to the 
highest prioritized gene in different cell types: e.g. rs769450-APOE, rs602602-
ADAM10, rs4663105-BIN1, rs11218343-SORL1, rs1532278-CLU and 
rs141749679-SORT1. For 67 variants, another potential new risk gene ranked 
highest in the various cell types among which nineteen transcription factors were 
prioritized (e.g. rs1140239 - ZNF785, rs7384878 - CUX1). Another prioritized 
gene was MAF1 for rs61732533 in excitatory neurons. MAF1 is a stress 
responsive transcription factor and mTOR effector33. Aberrant mTOR signaling is 
suggested to strongly contribute to AD, mainly through oxidative stress34. KCNC3 
was prioritized for rs9304690 in inhibitory neurons. KCNC3 is a potassium 
channel. A dysfunction of potassium channels has been associated with AD and 
many other neurological disorders35. To evaluate our prioritization approach, we 
compared it to prioritization using DEA. In short, using DEA we prioritized genes 
located nearby risk variants that were the most differentially expressed. The two 
sets of prioritized genes (DCA- and DEA-based) were evaluated using 
DisGeNET36. DisGeNET scores disease-gene associations (GDA, 0.01 – 0.9) 
based on their level of evidence in literature and from curated sources (higher 
GDA = more evidence). DCA- and DEA-based gene prioritization resulted in 70 
and 24 genes respectively that were previously associated with AD (Fig. 4c). The 
highest scoring genes using DCA were APP (GDA = 0.9) and APOE (GDA = 
0.70). The highest scoring genes using DEA were TOMM40 (GDA = 0.50) and 
BIN1 (GDA = 0.50). Thus, we identified more disease-associated genes and with 
higher levels of evidence (i.e., higher GDA score) using DCA compared to DEA, 
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offering an internal validation that DCA can be used as a prioritization method to 
identify putative risk genes. Altogether, with this prioritization approach, well-
known AD genes were prioritized as well as genes that have not yet been 
associated with AD previously. Our method hints at involvement of these lesser-
known genes in AD, and as such they might be of interest for future studies.  

 

Figure 4 Prioritization plots of excitatory neurons, inhibitory neurons, astrocytes and microglia. A) 
hubs located nearby risk variants. B) The prioritized genes for the top 20 risk variants from Wightman 
et al (sorted on significance). C) Distribution of GDA scores for the DCA-based (blue) and DEA-based 
(red) prioritized genes.  
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2.2.6. Co-expression analysis across cell types suggests 
glia-to-neuron intercellular directionality of gene 
expression regulation 
Finally, taking advantage of the characteristics of pseudo bulk data, we explored 
whether co-expression of genes exceeds cell type boundaries and whether it can 
also be indicative of transcriptional regulation across cell types. We focused on 
interactions between excitatory neurons and inhibitory neurons, excitatory 
neurons and astrocytes, excitatory neurons and oligodendrocytes, and finally 
excitatory neurons and microglia. Using only CT data, co-expression between 
pairs of genes was assumed at a spearman rank correlation coefficient of |r| ≥ 
0.6. Excitatory neurons and inhibitory neurons had the highest co-expression rate 
as 2.69% (n = 909,061, Fig. 5a) of all tested gene pairs were co-expressed. For 
astrocytes, oligodendrocytes and microglia this was 0.06% (n = 16,123), 0.08% 
(n = 16,196) and 0.02% (n= 2,078) respectively. Interestingly, when constructing 
co-expression graphs of each tested cell type pair we found that genes expressed 
in astrocytes (Fig. 5b), oligodendrocytes (Fig. 5c) and microglia (Fig. 5d) were 
more densely connected to genes in excitatory neurons, than the other way 
around (Fig. 5e-h). For example, the most densely connected gene in astrocytes, 
HINT1, was co-expressed with 728 genes in excitatory neurons, which is 7.66% 
of all genes measured in the excitatory neurons. The most densely connected 
excitatory neuron gene, FAU (Fig. 5b), was co-expressed with only 65 (2.49%) 
genes in astrocytes. Of note, HINT1 was only co-expressed with 238 excitatory 
neuron genes in the AD population, meaning it lost co-expression with 490 genes. 
Given that HINT1 is implicated in Ca2+ signalling37 and that an increase of 
astrocytic Ca2+ signalling is associated with AD38 and thought to have 
downstream effects on neuronal metabolism39, astrocytic HINT1 might be 
involved in this dysregulation. In oligodendrocytes, the most densely connected 
gene was YWHAH (n = 1,158, 12.2%), which is implicated in the regulation of 
many signaling pathways40. In microglia UBC (n = 361, 3.80%) was most densely 
connected. UBC is involved in ubiquitination, which is a post-translational 
modification process involved in the regulation of many processes41. The function 
of these densely connected genes hints at transcriptional regulation of excitatory 
neuron by genes expressed in inhibitory neurons, astrocytes, oligodendrocytes 
and microglia. 
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Figure 5:  Co-expression between cell types. Top ten (defined by no. of co-expression) excitatory 
neuron genes co-expressed with A) inhibitory neuron genes, B) astrocyte genes, C) oligodendrocytes 
and D) microglia, and vice versa. E.g. EMC7 expressed in excitatory neurons is co-expressed with 
1,072 genes expressed in inhibitory neurons, TNRC6B expressed in inhibitory neurons is co-
expressed with 1,799 genes expressed in excitatory neurons. E-H) Distribution of normalized degree 
of E) genes expressed in excitatory neurons co-expressed with inhibitory neuron genes (left), and 
vice versa (right). F) Of genes expressed in excitatory neurons co-expressed with astrocyte genes, 
and vice versa. G) Of genes expressed in excitatory neurons co-expressed with oligodendrocyte 
genes, and vice versa. H) Of genes expressed in excitatory neurons co-expressed with 
oligodendrocyte genes, and vice versa. Degrees are normalized for total number of genes of the 
“other” cell type.  

2.3. Discussion 
In this study, we have provided insight into cell type specific and coordinated 
transcriptional changes in AD and pin-pointed putative key transcriptional 
regulators of the observed changes.  Most importantly, we have provided a 
prioritization scheme that identifies probable causal genes and important cell 
types by superimposing the set of most differentially correlated genes onto genes 
located near AD risk variants. Finally, we have shown that transcriptional 
relationships and differences in these relationships do exceed the confines of cell 
types, hinting at altered intercellular communication AD. Altogether, performing 
differential correlation analysis (DCA) on scRNAseq data provided a 
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comprehensive insight into transcriptional changes and consequences that are 
associated with AD. 

Our results show that the number of altered associations a gene has with respect 
to other genes in the trait of interest opposed to healthy controls can be used as 
a measure of involvement and severity of consequence for that trait, with the 
respective hub as a probable key actor. In the case of AD, examples of this are 
APOE, SORL1 and ADAM10, three well known AD genes42,43,44,45, which were 
identified as high-ranking hub genes. The ε4 allele of APOE is the largest 
contributor to genetic risk for AD46. Of note, APOE ranked especially high in 
neurons (both excitatory and inhibitory), while APOE expression is generally low 
in neurons. This suggest that DCA analysis of pseudo bulk data is particularly 
capable of also identifying novel cell type specific interactions of risk genes. 
Interestingly,  a recent study confirmed that under stress some neurons indeed 
express APOE47, which might be reflected in our results.  

A strength of our prioritization scheme is that it does not require expression 
quantitative trait loci (eQTL) or colocalization10 analyses for variant-gene 
mapping, which is generally done in GWASs. The effect of a variant on a gene is 
not always reflected in differential expression of the respective gene. For 
instance, a variant might alter the amino acid sequence of a protein, without 
changing the extent to which the transcript is expressed. As the function of the 
protein is possibly changed, it can also alter functional relationships with other 
proteins and their respective transcripts. Support for this is shown with the 
association between rs769450 (part of the ε4 allele) and APOE. In brain eQTL 
and pQTL studies48, rs769450 has been shown not to influence the abundance 
of the APOE protein or transcript. Additionally, in differential expression analyses 
of AD, APOE is often not among the most differentially expressed genes18,14. 
However, in our analysis, APOE is ranked among the most differentially corelated 
hub genes, highlighting the importance of looking beyond changes in expression 
of only one single gene at a time. Alternatively, variants might alter the enhancer 
or promotor regions of a gene, and as a result the respective gene might be under 
control of different TFs in AD compared to healthy controls. Our results indeed 
suggest that when comparing AD with healthy controls, there might be genes that 
are under transcriptional control by different TFs compared to healthy controls. 
Whether this is due to changes in enhancer or promotor regions remains to be 
elucidated.  

We mainly focused on hub genes in differential correlation networks, which were 
defined as genes with the most (top 5%) differential correlations. As hubs are 
involved in the majority of altered associations, we expected these to have a 
regulatory function. However, a previous study evaluating differential co-
expressions showed that differentially regulated targets are more likely to be 
identified as hubs, instead of the regulators (TFs)28. With this in mind, two 
additional layers of evidence were collected to strengthen the regulatory status 
of the identified hubs. First, annotations concerning a regulatory function were 
collected; are the hubs TFs30, cofactors30 or regulators of molecular function? The 
second layer of evidence was disease association; do the hubs have altered 
transcriptional relationships with known AD genes49,50?  Additionally, the gene 
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prioritization scheme provides a third layer of evidence, as it is generally assumed 
that the causal gene is located near the identified risk variant.   

Our results showed that when a pair of genes has increased correlation in the 
tested group, and both genes are significantly differentially expressed, most often 
the genes of that pair have similar directional effects in the tested group in terms 
of mean expression (either up- or downregulated in both groups), whereas a 
decrease of the correlation coincides with opposite directional effects. However, 
most genes that are differentially correlated are not differentially expressed. This 
shows that genes that are subjected to an increase of their correlation are more 
likely to respond in a similar direction subjected to the perturbation, suggesting 
shared and altered TF control. Loss of shared control may result from regulation 
by other TFs. In contrast to differential expression analysis, DCA has an added 
value in providing a more detailed view of transcriptional changes, and whether 
the changes are coordinated or not.  

One limitation of this study is that different brain regions were confounded by the 
batches, and therefore were corrected for. It is known that different brain regions 
have different gene co-expression networks and different cell types and cell-to-
cell connectivity,  and that different brain regions respond differently to AD51.  As 
such, our combination of different brain regions likely favoured transcriptional 
changes that are shared between brain regions.  

Overall, we performed DCA in single-cell data and have shown that AD is 
associated with coordinated transcriptional changes. Our analysis highlights the 
complexity and heterogeneity of cell type specific responses to AD.  And lastly, 
with our bottom-up approach towards gene prioritization we provide a 
compendium of genes that could serve as guidance for functional follow-up 
studies. 

2.4. Methods 

Single-cell RNAseq data 
Four 10x single-cell RNAseq (scRNAseq) datasets were acquired from AMP-AD 
knowledge portal of which the subjects were participants of the Religious Orders 
Study and the Memory and Aging Project (ROS/MAP).  Two 10x datasets17,18 
were acquired from GEO (GSE157827 and GSE138852). The Seattle 
Alzheimer’s Disease Brain Cell Atlas (SEA-AD) was obtained from 
(https://registry.opendata.aws/allen-sea-ad-atlas/). The first dataset (BA9, ID: 
syn16780177) consisted of 24 subjects and originated from the dorsolateral 
prefrontal cortex (DLPFC), specifically Brodmann area 9 (BA9). Raw fastq files 
were obtained of this dataset. The second dataset (BA10, ID: syn18485175) 
consisted of 48 subjects and originated from the prefrontal cortex (PFC), 
specifically BA10. A count matrix was obtained of this dataset as it was already 
processed with CellRanger aligning reads to the hg38 genome14. The third 
dataset (BA9-46, ID: syn21670836) consisted of 32 subjects and originated from 
the DLPFC, BA9 and BA46. Of this dataset a count matrix was obtained as it was 
also processed with CellRanger aligning reads to the hg38 genome52. The fourth 
dataset (BA9-46-Micro, ID: syn12514624) was a microglia only dataset, 

https://registry.opendata.aws/allen-sea-ad-atlas/
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consisted of 12 subjects and originated from the DLPFC, BA9 and BA4615,16. Of 
this dataset, raw fastq files were obtained. The fifth dataset (LAU17, GSE157827) 
consisted of 21 PFC samples and originated from 12 individuals diagnosed with 
AD and 9 healthy controls. Of this dataset a raw count matrix was acquired as it 
was also processed with CellRanger aligning reads to the hg38. The sixth dataset 
(ENT18, GSE138852) consisted from 12 entorhinal cortex samples and originated 
from 6 individuals diagnosed with AD and 6 healthy controls. Of this dataset a 
raw count matrix was acquired. The seventh dataset (SEA-AD) consisted of 89 
middle temporal gyrus samples, 23 of which were diagnosed with AD and 32 were 
specified as CT. Of this dataset the raw count matrix was acquired. 

Clinical data 

Clinical data were acquired from the AMP-AD knowledge portal (ID: 
syn3157322). The variable cogdx was used to characterize controls (CT), 
Alzheimer’s disease (AD) and other (O). Cogdx represents the clinical consensus 
diagnosis of cognitive status at time of death and is indicated with a value ranging 
from one to six. A value of one represents no cognitive impairment (CI), as such, 
individuals with a cogdx of one were characterized as CT. A value of four 
represents Alzheimer’s dementia and no other cause of CI, as such, these 
individuals were characterized as AD. The remaining values represent mild CI 
and/or other causes for dementia and these individuals were characterized as O. 
Besides clinical diagnosis, APOE genotype, Braak stage, sex, and age at time of 
death was also available. However, age at time of death is censored above the 
age 90 years. Of the LAU, ENT and SEA-AD datasets the clinical data were 
acquired from the corresponding sources. For both datasets; age, sex, clinical 
diagnosis and Braak stage were available.  

Single-cell RNA-seq data alignment and pre-processing 
The two datasets (BA9 and BA9-46-Micro) of which fastq files were acquired 
were processed with CellRanger (4.0.0) aligning reads to the hg38 genome, 
default parameters were used. Next, all datasets were jointly pre-processed. 
Cells with ≤20% mitochondrial counts, ≥300 total counts, ≤20,000 total counts 
and  ≥200 measured genes, were kept for downstream analyses.  

Clustering and cell type annotation 
Each dataset was separately processed for clustering and cell type annotation 
which was done as follows. The processed count matrix was loaded in Seurat 

3.2.253. The data was log-normalized, such that: 𝑦𝑖𝑗 =  log (
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗𝑗
× 104), where 

𝑥𝑖𝑗 and 𝑦𝑖𝑗 are the raw and normalized values for every gene 𝑖 in every cell 𝑗, 

respectively. Next, with the 2,000 most variable genes (default with Seurat), 
principal components analysis (PCA) was performed. The number of principal 
components (PCs) used for clustering was determined using the elbow method 
(BA9:12 PCs,  BA10:11 PCs, LAU:11 PCs, BA9-46:10 PCs, BA9-46-Micro: 
7PCs, ENT: 6 PCs).Next, Seurat’s FindNeighbours and FindCluster 

functions were used, which utilizes Louvain clustering, the resolution was set at 
0.5. A UMAP plot was made to visualise and inspect the clusters. The following 
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cell types were identified using known and previously used markers14: excitatory 
neurons (SLC17A7, CAMK2A, NRGN), inhibitory neurons (GAD1, GAD2), 
astrocytes (AQP4, GFAP), oligodendrocytes (MBP, MOBP, PLP1), 
oligodendrocyte progenitor cell (PDGFRA, VCAN, CSPG4), microglia (CSF1R, 
CD74, C3) and endothelial cells (FLT1, CLDN5). Based on differential expression 
of these markers between clusters, determined with Seurat’s FindMarkers 

function, cell types were assigned (SFiles. 1). When clusters were characterized 
by markers of multiple cell types, they were assigned as: “Unknown”. Of the LAU 
and SEA-AD the accompanying cell type labels were used.   

Aggregation, integration and batch correction 
Per dataset, for each cell type, pseudo bulk data was generated. For instance, 
for each subject, cells annotated as astrocytes were aggregated in a single 
vector. As such, we generated cell type specific datasets. Aggregation was done 
based on the binary expression pattern, since the percentage of zeros for a gene 
in a cell population is highly associated with its mean expression25,54. The 
aggregated value of a gene for an individual was defined by the percentage of 
non-zero measurements in a specific cell population. Genes were kept for 
aggregation if they were expressed in ≥ 1% of the respective cell population in all 
datasets. Per cell type, the datasets were combined. Each new cell type specific 
dataset was batch corrected with respect to a reference dataset. First by 
performing a median ratio normalization55 and then, batch correction was 
performed with the ComBat function from the R-package sva (3.36.0)56. For the 

excitatory neurons, inhibitory neurons, astrocytes, oligodendrocytes, OPCs and 
endothelial cells, the BA9 dataset was used as reference and for the microglia 
the BA9-46-Micro dataset was used as reference. Integration was confirmed with 
a PCA and visually inspecting the first four principal components.  

Differential correlation analysis (DCA) 
Differential correlation or differential co-expression was investigated between 
controls and AD individuals. Differential correlation we calculated similarly as 
described by McKenzie et al.29 First, Spearman’s rank correlation coefficient 
between a pair of genes was calculated separately for the groups of interest 
based on the aggregated detection rates. This results in a correlation coefficient 
for each group. Next, the correlation coefficients are transformed to z-scores by 
means of the Fisher z-transformation57.  Then, the difference between z-scores 
can be calculated with equation 1:  

∆𝑧 =  
(𝑧𝑥− 𝑧𝑦)

√𝑣𝑎𝑟(𝑟𝑥)+ 𝑣𝑎𝑟(𝑟𝑦)

 (1) 

where var(r) is calculated by 1.06/(n-3) , with n being the sample size of the 
respective groups. As ∆z is normally distributed, a two-sided P-value for the 
differential correlation between each pair of proteins can be calculated. Besides 
the P-value resulting from the Z-test, empirical P-values were also calculated. 
The empirical null distribution was generated by permuting the group labels a 
1,000 times and performing the Z-test on each pairwise combination of genes. 
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The resulting P-values contributed to the empirical null distribution (𝑥0). Next, the 
empirical P-value was calculated as: 

𝑃𝑒𝑚𝑝 =  
∑ 𝐼(𝑃 ≥  𝑥0)𝑁

𝑛=1

𝑁
 

Where 𝐼() is an indicator function, 𝑁 is the total number of P-values that make up 

the empirical null distribution and 𝑃 is the actual P-value for which we want to 
determine the empirical P-value. Significance was assumed at Pemp ≤ 0.01. 

Classification of differential correlations 
The directional change of correlation between two genes from one group to 
another does not reveal whether an association is lost or gained. As illustration, 
a change from r = -0.9 to r = -0.05 and r = 0.05 to r= 0.9 both have an increase 
of the correlation coefficient. However, in the first example a very strong 
association is lost, while in the second example a very strong association is 
gained. To evaluate differential correlations in terms of loss and gain of 
association we classified each differential correlation. First the state 𝒇(𝒓) in both 
group is determined as follows: 

𝑓(𝑟) = {
0, −0.25 ≤ 𝑟 ≤ 0.25 

+, 𝑟 > 0.25 
−, 𝑟 < −0.25 

 

Where 𝒓 is the Spearman’s rank correlation coefficient of a pair of genes in the 

respective group. A “𝟎” represents a state of no correlation, “+” represents a 

state of positive correlation and “–“ a state of negative correlation. When the state 
of a pair of genes is “–“ or “+” in CT and 0 in AD, then we classify it as a loss of 
association (-/0, +/0). Vice versa is defined as a gain of association (0/-, 0/+) and 
a change from “–“ to “+” or from “+” to “–“, is defined as a flip of association (-
/+, +/-). Differential correlations can also remain in the same state between 
groups (e.g. r = 0.30 to r = 0.95), these are defined as no change of association.  

Differential Expression 
As the aggregated detection rates were normally distributed across the 
individuals, differential expression analysis (DEA) was performed with a linear 
model, where the gene’s expression was specified as the outcome variable and 
the group assignment (CT  = 0 and AD =1) was used as predictor variable. The 
function lm from the stats package from R (4.0.5) was used. Within each cell 

type, each gene was tested on differential expression. P-values were corrected 
for multiple tests, per cell type, with the Benjamini-Hochberg procedure and 
significance was assumed at an adjusted P-value of PFDR ≤ 0.01.  

Network analysis 
For each cell type, the results from the DCA were used to construct networks 
using igraph (1.2.6). In these networks, genes were defined as nodes and an 
edge between two nodes was drawn when they were significantly differentially 
correlated. The centrality of each gene was determined by the degree (no. of 
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differential correlations) within the respective networks. To test whether these 
networks followed the power law the fit_power_law function from igraph was 

used. Hubs were defined as the top 5% of genes having the highest degree. 

Transcription factors and cofactors were downloaded from AnimalTFDB30. Genes 
involved in regulation of molecular functions (GO:0065009) were identified using the 
R-packages GOfuncR (1.10.0) and org.Hs.eg.db (3.12.0).  

GO term enrichment analysis 
For each cell type, a GO term enrichment analysis was performed with the hubs 
that have known regulatory functions (TFs, cofactors, GO:0065009). The GO 
term enrichment analysis was executed with the R-package clusterProfiler 
(v3.18.1)58. Gene symbols were translated to entrez IDs making use of 
org.Hs.eg.db (3.12.0). For each cell type the background was defined by all 
genes that were present in the respective cell type specific dataset. P-values 
were corrected for multiple tests with the Benjamini-Hochberg procedure and 
significance was assumed at an adjusted P-value of PFDR ≤ 0.01. The GO term 
regulation of molecular functions (GO:0065009) was excluded as the hubs were 
partly pre-filtered with this GO term.  

KEGG Alzheimer’s Disease pathway enrichment 
To investigate to what degree a hub was associated with Alzheimer’s Disease, 
each hub was subjected to a KEGG49 AD pathway enrichment analysis. For each 
hub we performed a gene set enrichment analysis on the genes that were 
significantly differently correlated with the respective hub. Genes belonging to the 
KEGG AD pathway (ID: 05010) were defined with org.Hs.eg.db (3.12.0). 
Enrichment was calculated with the fisher exact test from stats package from R 
(4.0.5). P-values were corrected for multiple tests, per cell type, with the 
Benjamini-Hochberg procedure. For each cell type the background was defined 
by all genes that were present in the respective cell type specific dataset. 

Hub overlap 
When hubs were identified in multiple cell types, we investigated to what degree 
the hubs overlap between the respective cell types, in terms of genes the hubs 
were differentially correlated with (e.g. are they differentially correlated with the 
same genes in the different cell types). This was done with the fisher exact test 
from stats package from R (4.0.5) and the background was defined by the genes 
that were present in both cell type specific datasets. P-values were corrected for 
multiple tests with the Benjamini-Hochberg procedure. A significant overlap was 
assumed at P-value of PFDR ≤ 0.01.  

Gene prioritization 
For the prioritization we started with the hubs that were identified as previously 
described. Next, we extracted the RS IDs from two GWASs4,5. In total 79 AD risk 
variants were extracted.  For each variant, CONQUER31 was used to identify 
genes genomically located near the respective risk variants. Besides defining a 
fixed window of 1 Mb around the respective variant, CONQUER uses chromatin 
interaction to dynamically expand the search space. For each variant and cell 
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type, genes were prioritized that were located near the respective variant and 
ordered based on the number of differential correlations within the respective cell 
type. In other words, more differential correlations, higher priority. For each of 
these genes, the regulatory status was evaluated (see Network analysis). Finally, 
the highest-ranking hubs were compared to the previously annotated  genes, 
provided that the previously annotated gene was present in the respective 
datasets. For the variants extracted from Wightman et al4 the genes were 
assigned based on colocalization, fine-mapping and previous literature. For the 
variants extracted from Bellenguez et al5 these genes were the nearest protein 
coding. 
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Supplements 

Supplementary Figure 1: Differential correlation of genes with the braak stage between CT and AD 
individuals. X-axis represents the correlation coefficient of the gene with braak stage in the respective 
group (yellow = AD, purple = CT). Y-axis are the genes. 

 

Supplementary Figure 2: Degree distribution of differential correlation networks of A) excitatory 
neurons, B) inhibitory neurons, C) astrocytes, D) oligodendrocytes, E) microglia, F) OPCs G) 
endothelial cells. Every dot is a gene, the x-axis the index of the gene sorted on degree and the y-
axis is the degree 
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Supplementary Figure 3: Volcano plot of neighborhood AD enrichment. Every dot represents a hub. 
The x-axis represents the log odds ratio of the overlap between the hub neighborhood and the KEGG 
AD pathway. The y-axis represents the –log10 PFDR p-value of the fisher exact test. Colors are the 
different cell types. 
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Supplementary Figure 4: Pairwise neighborhood enrichment of shared hubs between A) excitatory 
neurons and inhibitory neurons, B) inhibitory neurons and astrocytes, C) excitatory neurons and 
astrocytes, D) excitatory neurons and oligodendrocytes, E) inhibitory neurons and oligodendrocytes. 
X-axis is the log odds ratio of the overlap between neighborhoods of the respective hub.  
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Supplementary figure 5: Venn diagrams of gene overlap between genes identified nearby AD risk 
variants and genes expressed in A) excitatory neurons, B) inhibitory neurons, C) astrocytes, D) 
oligodendrocytes, E) microglia, F) OPCs and G) endothelial cells. 
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Abstract 
To investigate the functional significance of genetic risk loci identified through 
genome-wide association studies (GWASs), genetic loci are linked to genes 
based on their capacity to account for variation in gene expression, resulting in 
expression quantitative trait loci (eQTL). Following this, gene set analyses are 
commonly used to gain insights into functionality. However, the efficacy of this 
approach is hampered by small effect sizes and the burden of multiple testing. 
We propose an alternative approach: instead of examining the cumulative 
associations of individual genes within a gene set, we consider the collective 
variation of the entire gene set. We introduce the concept of gene set QTL 
(gsQTL), and show it to be more adept at identifying links between genetic risk 
variants and specific gene sets. Notably, gsQTL experiences less susceptibility 
to inflation or deflation of significant enrichments compared with conventional 
methods. Furthermore, we demonstrate the broader applicability of shared 
variability within gene sets. This is evident in scenarios such as the coordinated 
regulation of genes by a transcription factor or coordinated differential 
expression. 

3.1. Background 
Genome-wide association studies (GWASs) identify genomic loci linked to 
specific traits, but their impact is hard to understand as the majority of associated 
loci fall in non-coding and intergenic regions of the genome1,2. To determine the 
functional significance of genetic variants, they are often linked to changes in 
mRNA expression in bulk RNAseq data (eQTLs)3 or single cell RNAseq data (sc-
eQTLs)4–7, as well as other molecular data, such as lipids (lipid-QTLs8), 
metabolites (mQTLs9,10), and microRNA expression (miQTLs11). Once these 
QTLs are identified, gene set analysis is commonly used to identify affected 
pathways12–16. In the context of complex diseases, this approach typically begins 
with multiple SNPs, as these are associated with multiple genes, enabling 
overrepresentation analysis (ORA). However, when focusing on a single variant, 
this becomes challenging due to the limited number of significantly associated 
genes, which arises from the burden of multiple testing and the small effect sizes 
observed in QTL analyses3,17, especially when associations between a single 
variant and the whole transcriptome is considered (trans-eQTLs). Another 
approach is gene set enrichment analysis (GSEA), which in contrast to ORA 
considers the entire list of genes ranked by their change in expression levels or 
other relevant metrics (e.g., p-value, effect size) without requiring a predefined 
threshold for differential expression. It assesses whether a predefined gene set 
shows significant, consistent differences in expression across the entire ranked 
list. However, GSEA approaches often yield higher numbers of significantly 
enriched gene sets compared to ORA approaches, but also have been found to 
have elevated false positive rates18. To address the limitations of functional 
enrichment analysis of GWAS loci, we propose directly assessing the impact of 
SNPs on the overall variability of expression of a gene set, contrasting with 
traditional post-hoc aggregation approaches (e.g. ORA or GSEA). Our gene set 
QTL (gsQTL) approach starts by combining genes into gene sets based on 
known interactions (gene sets). Previous studies have demonstrated the 
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superiority of principal component analysis (PCA) over other popular methods for 
hidden variable inference for QTL related analyses19. However, principal 
components frequently capture gene expression variance that arises from a mix 
of various biological and technical sources within a single component20. Our 
approach guides the identification of principal components by calculating them 
within a highly controlled environment, specifically focusing on predefined gene 
sets. This approach effectively isolates the biological variance directly associated 
with the specific biological factor represented by the gene set. Furthermore, 
unlike other methodologies21, our components are immediately interpretable due 
to the inclusion of the biological factor (gene set) that directly links the 
corresponding genes.  

The advantages of this approach for QTL analyses include the ability to capture 
collective variation within a gene set using PCA, which can lead to stronger 
associations with risk variants, even when the effect size of the individual genes 
are modest, as demonstrated in Fig. 1. Moreover, the number of gene sets is 
lower than the number of genes, which reduces the burden of multiple testing 
correction, and hence increases statistical power. In addition, multiple genes are 
tested at once for each SNP and these genes do not need to be located near the 
SNP, allowing for an integration of cis and trans regulatory effects. 

 

Figure 1: Graphical explanation with simulated data of the proposed gene set QTL (gsQTL) approach. 
Illustrated are the effects of three genotypes of a SNP on the expression of Gene A (x-axis) and Gene 
B (y-axis) that are together forming one gene set, across a set of measured samples. When we 
inspect the expression of an individual gene for both variations (box plots at bottom and right side of 



 
60 

the figure), there is a significant difference in expression, however, by representing the shared 
variation of the two genes within the gene set, using the first component of a principle component 
analysis (PCA), we can observe that the shared variation in the gene set shows a much stronger 
significant difference in expression when the SNP varies (box plot at diagonal of figure). 

3.2. Results 
Using six jointly pre-processed Alzheimer's Disease (AD) scRNAseq datasets23–

28,  including genetics data from 666 individuals (N=249 AD cases, N=242 healthy 
controls, and N = 175 with mild cognitive impairment with other causes than AD), 
we demonstrate that gsQTL detects novel functional implications of AD-related 
SNPs and indeed has more power to detect them than current post-hoc 
approaches. gsQTL analyses were performed on previously identified AD risk 
variants29,30. Following pre-processing, 44 variants were retained for testing. For 
seven major brain cell types (excitatory neurons, inhibitory neurons, astrocytes, 
oligodendrocytes, microglia, OPCs and endothelial cells), we report 66 significant 
gsQTLs comprised of 30 AD risk variants and 59 unique gene sets, including 
microRNA targeted genes31, metabolite interacting genes32, and KEGG pathway-
related gene sets33 (Fig. 2a , Sup. Tables 1-3). 

For 53 of the 66 significant gsQTLs, the association of the gene set with the 
variant had a smaller nominal p-value than the association between the variant 
and any of the individual genes within the respective gene set (Supp. Fig 1, Supp 
Table 4), showing empirically that the shared variation among genes within a 
gene set can indeed yield stronger associations with a variant compared to those 
observed when considering only individual genes of that gene set. Among the 
significant microRNA gene sets identified, hsa-let-7d-3p (p=8.03×10⁻⁶, Fig. 2b) 
and hsa-let-7i-3p (p=2.36×10⁻⁴) showed significant associations with rs13237518 
(intronic of TMEM106B) in excitatory neurons, both of which have been 
previously implicated in AD pathology34,35. Additionally, we identified hsa-miR-
6761-3p (5.90×10⁻⁴) associated with rs2526377 (intronic of TSPOAP1) in OPCs, 
also a microRNA previously implicated in AD pathology36. Further, through the 
gsQTL analysis considering the gene sets interacting with metabolites, we 
uncover a potential role of rs1358782 (intronic of RBCK1) in pentose phosphate 
pathway, through the gsQTL in astrocytes with Ribose 5-Phosphate37 
(p=7.29×10⁻5, Fig. 2c).  And, among the KEGG pathways, we identified a 
significant association between taurine and hypotaurine metabolism 
(p=5.60×10⁻⁴, Fig. 2d) and rs10933431 (intronic of INPP5D) in astrocytes. This 
finding is particularly interesting given the growing recognition of astrocytes' 
crucial role in cognitive functioning38,39 and the neuroprotective properties of 
taurine, which is believed to enhance cognitive performance40. These results 
suggest that the AD-risk allele of rs10933431 might be involved in a dysregulation 
of taurine and hypotaurine metabolism, specifically in astrocytes. Collectively, 
these comparisons and results demonstrate the capacity of gsQTLs to reveal 
associations with gene sets that may be overlooked when focusing solely on 
individual genes initially. 
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Figure 2: a, Significant association between gene sets (rows) and genetic variant (columns) grouped 
by major cell type (bottom colors) and with the effect size (β, red-blue gradient) of the association 
between gene set and risk variant.  b,c,d, Boxplots of a selected set of gsQTL: b, hsa-let-7d-3p-
rs13237518, c Ribose 5-Phosphate-rs1358782 and d, taurine and hypotaurine metabolism-
rs10933431, with the genotypes (x-axis) of the respective SNPs and the expression levels (y-axis) of 
the whole gene set as well as three individual genes that belong to the respective gene sets.   

To compare gsQTLs with more traditional post-hoc approaches, we considered: 
1) overrepresentation analysis (ORA) using the fisher exact test, and 2) gene set 
enrichment analysis (GSEA) using the R-package fgsea41. With ORA, we 
identified only two gene sets significantly associated with a variant (Supp. 
Table5-7), which is consistent with the limitations of this approach, which is 
generally more effective when multiple SNPs are analyzed simultaneously. With 
GSEA, we detected 246 gene sets significantly associated with a variant, 
including 188 KEGG pathways, 46 metabolite interacting gene sets and 30 
microRNA targeted gene sets (Supp. Table8-10), comprising 43 unique variants 
and 81 unique gene sets. Only 5 gene sets-variants-cell type combination 
overlapped with those identified by our gsQTL method (Fig. 3a). Upon closer 
examination, we observed that the ribosome pathway was linked to 28 distinct 
variants specifically in excitatory neurons. Despite this, the ribosome pathway did 
not emerge as significant in our gsQTL analysis, even though 111 out of 127 
ribosomal genes showed moderate associations (p≤0.05) with at least one 
variant. These ribosomal genes exhibit a high degree of collinearity amongst each 
other, resulting in the shared variability being captured predominantly by the first 
principal component in PCA (Fig. 3b). But this signal is not strong enough to find 
an association with any of the variants. As GSEA has been reported to have 
elevated false positive rates18, this might be the case here too, suggesting that 
our gsQTL analysis effectively accounts for the inflation of association signals 
caused by collinearity among genes.  

In our approach, we assume that shared variability among genes reflects a 
common underlying regulatory mechanism, such as a microRNA targeting a gene 
set or participation in a KEGG pathway. By analyzing the association between 
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expression changes in TFs and the coordinated expression shifts in their 
downstream targets, we aimed to test how broadly our shared variation approach 
could be applied across different regulatory contexts. More specifically, we 
computed the correlation between the expression of the TF and the shared 
representation of the set of genes targeted by that TF.  Using data from all 
individuals (N = 706) in the excitatory neuron dataset and regressing out potential 
confounding variables (age, sex, dataset and braak stage), we conducted the 
gsQTL analysis for 256 TFs obtained from the TRUST transcription factor 
database42 that overlapped with the measured expression data. We observed 
that for 42 TFs (16%), their expression patterns correlated with the shared 
representation of their target genes (P≤ 4.98×10-46, r ≥ 0.50). Interestingly, for 43 
of the TFs, the shared representation showed a stronger correlation with the TF 
than any of the individual TF target genes (Fig. 3c-d), underscoring the 
considerable value of shared maximum variability within a gene set in association 
analyses. 

 

Figure 3: a, Overlap between the gene sets identified with ORA, gsQTLs and GSEA. b, PCA 
correlation circle plot of all genes comprising the ribosome KEGG pathway and expressed in our 
excitatory neuron dataset. The vectors represent the individual ribosomal genes. The closer the vector 
to each other, the more similar the correlations of the respective genes with respect to the PCs are. 
c,d Absolute correlations between the c, TF POU2F1 and d, TF RB1 and their targets (x-axis) and 
the gene set as a whole (GS PC1), with each of the individual targets and the gene set as a whole 
represented on the y-axis. On the right of the respective plots scatter plots showing the TF 
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expression(x-axis) and target expressions (y-axis) in excitatory neurons where every dot represents 
a donor.  

To further explore the utility of our shared variation approach, we investigated 
whether a shared representation of a gene set is more effective in detecting 
differential expression across conditions compared to traditional methods 
involving differential expression per gene followed by ORA or GSEA for functional 
interpretation. For this purpose, we utilized an acute myeloid leukaemia (AML) 
bulk RNAseq dataset comprising 3,383 individuals43. Our aim was to identify 
metabolic gene sets exhibiting differential expression between AML-subtypes 
characterized by genetic abnormalities: KMT2A.1 (Nindividuals = 540), 
RUNX1_RUNX1T1 (Nindividuals = 300), FLT3_ITD (Nindividuals = 661), CBFB_MYH11 
(Nindividuals = 310) and NPM1 (Nindividuals = 508), TET2 (Nindividuals = 194). We 
evaluated 233 metabolome-related gene sets and tested whether their shared 
representation was differentially expressed between individuals with and without 
the respective genetic abnormalities. Metabolic gene sets were significantly (PFDR 

≤ 0.05) differentially expressed in FLT3_ITD (Ngene sets = 40), followed by KMT2A.1 
(Ngene sets = 39), CBFB_MYH11 (Ngene sets = 32), RUNX1_RUNX1T1 (Ngene sets = 
31) and NPM1 (Ngene sets = 27). Moreover, most metabolic gene sets were 
differentially expressed in more than two subtypes (Supp. Fig. 3a). For example, 
the most pronounced differential expression between blood and bone marrow 
was observed for the metabolic gene set related to phosphatidylcholine in the 
KMT2A.1 subtype (PFDR = 3.77 × 10-53, Supp. Fig. 3b), which was not detected 
using the post-hoc analysis approach. Notably, phosphatidylcholine is the product 
of a reaction catalyzed by genes of the LPC acyltransferase family. LPCAT1, a 
member of this family, is suggested as biomarker to guide treatment choice in 
AML patients.44 When applying the ORA approach, only five metabolic gene sets 
are significantly associated with an AML-subtype, whereas with GSEA, no 
metabolic gene sets are significantly associated with all AML-subtypes, showing 
that our shared variability approach identifies associations of genetic AML 
abnormalities with gene sets that would otherwise go unnoticed. 

3.3. Conclusion 
We present an approach for exploring the functional implications of genetic risk 
variants on gene expression, biomolecules, and pathways. Rather than focusing 
on individual gene associations, our method identifies and examines the shared 
variability of a gene set in relation to genetic risk variants. By defining gene sets 
based on interactions with various biomolecules such as metabolites or 
microRNAs, but also based on biological pathways, our approach provides 
additional context to cell type specific changes associated with genetic risk 
variants. Our findings underscore that a priori identification of shared variability 
within gene sets, via PCA, facilitates the discovery of putative coordinated 
expression changes. These findings can be broadly applied, as demonstrated in 
our study, for associating with genetic risk variants, coordinating the regulation of 
genes targeted by a transcription factor, or coordinated differential expression.  
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3.4. Methods 

Single-cell RNAseq data 
Five 10x single-cell RNAseq (scRNAseq) datasets were acquired from AMP-AD 
knowledge portal of which the subjects were participants of the Religious Orders 
Study and the Memory and Aging Project (ROS/MAP)45. The Seattle Alzheimer’s 
Disease Brain Cell Atlas (SEA-AD) was obtained from 
(https://registry.opendata.aws/allen-sea-ad-atlas/). The first dataset (BA9, ID: 
syn16780177) consisted of 24 subjects and originated from the dorsolateral 
prefrontal cortex (DLPFC), specifically Brodmann area 9 (BA9). Raw fastq files 
were obtained of this dataset. The second dataset (BA10, ID: syn18485175) 
consisted of 48 subjects and originated from the prefrontal cortex (PFC), 
specifically BA10. A count matrix was obtained of this dataset as it was already 
processed with CellRanger aligning reads to the hg38 genome25. The third 
dataset (TREM, ID: syn18485175) consisted of 32 subjects and originated from 
the DLPFC, BA9 and BA46. Of this dataset a count matrix was obtained as it was 
also processed with CellRanger aligning reads to the hg38 genome27.  The fourth 
dataset (DLPFC2: ID: syn31512863) consisted of 424 individuals. Of this dataset 
also a count matrix was obtained as it was also processed with CellRanger 
aligning reads to the hg38 genome24. The fifth dataset (MIT: ID: syn52293433) 
consisted of 427 individuals. Of this dataset also a count matrix was obtained as 
it was also processed with CellRanger aligning reads to the hg38 genome28. The 
sixth dataset (SEA-AD) consisted of 89 middle temporal gyrus samples, 23 of 
which were diagnosed with AD and 32 were specified as CT23. Of this dataset the 
raw count matrix was acquired. 

Clinical data 
Clinical data were acquired from the AMP-AD knowledge portal (ID: 
syn3157322). The variable cogdx was used to characterize controls (CT), 
Alzheimer’s disease (AD) and other (O). Cogdx represents the clinical consensus 
diagnosis of cognitive status at time of death and is indicated with a value ranging 
from one to six. A value of one represents no cognitive impairment (CI), as such, 
individuals with a cogdx of one were characterized as CT. A value of four 
represents Alzheimer’s dementia and no other cause of CI, as such, these 
individuals were characterized as AD. The remaining values represent mild CI 
and/or other causes for dementia and these individuals were characterized as O. 
Besides clinical diagnosis, APOE genotype, Braak stage, sex, and age at time of 
death was also available. However, age at time of death is censored above the 
age 90 years. Of the SEA-AD datasets the clinical data were acquired from the 
corresponding source. For both datasets; age, sex, clinical diagnosis and Braak 
stage were available.  

Genetics data  
Genotyping data were sourced from the Synapse AD portal and consisted of 3 
batches. Batch 1 and batch 2 (SynID: syn17008939) included 1709 and 382 
individuals, respectively, from the ROSMAP study45. Batch 3 (SynID: 
syn28257618) included 95 samples from SEA-AD study23. Batch 2 and batch 3 

https://registry.opendata.aws/allen-sea-ad-atlas/
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data were aligned to GRCh37 (hg19), while batch 1 data was aligned to GRCh36 
(hg18) and lifted over to GRCh37 (hg19). Standard quality control was applied to 
each batch independently (variant call rate >98%, individual call rate >98%, and 
deviation from Hardy-Weinberg was considered significant at p<1e-6). Variant ID, 
strand, and allele frequencies were compared, for each batch, to the Haplotype 
Reference Consortium (HRC, HRC-1000G-check-bim-v4.2.7.pl)46. Genotyping 
data were combined and high-quality genotyping was ensured (variant call rate 
>98%, individual call rate >98%). All autosomal variants were submitted to the 
TOPMED imputation server (https://imputation.biodatacatalyst.nhlbi.nih.gov). 
The server uses Eagle (v2.4) to phase data and imputation to the reference panel 
(TOPMED R2 v1.0) was performed with Minimac447–49. A total of 2,115 individuals 
passed quality control. Prior to analysis, we extracted individuals for which scRNA 
data was also available, leaving 527 individuals (N=171 AD cases and N=184 
healthy controls and N=172 specified as O (other)) for analyses. For these 
individuals, we further selected variants known to associate with AD from 
previous GWAS29,30. Only variants for which all three genotypes were present in 
at least 5% of the total population were tested. Quality control of genotype data 
was performed with PLINK (v1.90b4.6 and v2.00a2.3)50,51. Liftover of the genetics 
data was performed with liftOver R-package (v1.10). 

Bulk AML RNAseq data 
The bulk AML RNAseq datast was obtained from Severens, et al43. This dataset 
consisted of 3,656 individuals and 60,660 transcripts. First, individuals having ≤ 
20,000 or ≥35,000 zero measurements were removed. Next, genes that were 
measured in less than 90% of the individuals were removed. The resulting matrix 
(23,418 genes x 3,383 individuals) was normalized using median ratio 
normalization52. The dataset was comprised of five different source datasets, as 
such, batch correction was done using Combat from the R-package sva(v 
3.46.0)53. BiomaRt54 was used to translate the ensembl gene IDs to HGNC gene 
symbols.  

Cell type annotation 
The DLPFC2 dataset was used to identify marker genes as it was already 
annotated. For excitatory neurons (n = 3.154), inhibitory neurons (n = 457), 
astrocytes (n = 456), oligodendrocytes(n = 283), microglia (646), OPCs (n = 274) 
and endothelial cells (n = 517) markers were identified. First, pseudo bulk data 
was generated for each cell type and concatenated, resulting in a gene by 
individual matrix, in which each individual is present seven times (one for each 
cell type). Then, for each cell type a differential expression analyses, using 
Wilcoxon-rank sum test, was performed where the groups were defined by 
whether the measurement was from the respective cell type (group 1) or not 
(group 2). A gene was considered a marker gene when P ≤ 5 × 10-10 and log2 fold-
change ≥ 3. Next, with these markers the cells from the TREM, BA10 and BA9 
datasets were annotated. This was done using the AddModuleScore function 
from Seurat55, which assigns a score to every cell for each cell type based on the 
expression of cell type markers. Each cell was annotated as the cell type for 
which the score was the highest. However, if the second highest score was within 

https://imputation.biodatacatalyst.nhlbi.nih.gov/
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25% of the highest score, it was annotated as hybrid and removed for subsequent 
analyses.  

Generating pseudo bulk data 
For each dataset, for each cell type, pseudo bulk was generated. Aggregation 
was done based on the binary expression pattern, since the percentage of zeros 
for a gene in a cell population is highly associated with its mean expression56 and 
aggregating based on the percentage of zero results in less false positive in 
downstream analyses opposed to aggregating based on the mean57. Next, for 
each cell type, all the datasets were combined, and genes expressed in less than 
10% of the individuals were removed. Then, the expression was normalized using 
median ratio normalization58 and batch correction was performed using ComBat 
from the sva R-package (v3.46.0)53. The DLPFC2 dataset consisted of 60 
batches and the other datasets were each considered a batch, as such, in total 
there were 64 batches. Batch correction was confirmed with a PCA and visually 
inspecting the principal components and visually inspecting boxplots of the 
individuals’ gene expressions. For the endothelial cells only the DLPFC2 dataset 
was used.  

Shared variability representation of gene sets 
Starting with a gene-by-sample expression matrix we first subset the genes that 
belong to a specific gene set. Using the subsetted gene-by-sample matrix we first 
scale each gene such that the mean = 0 and the standard deviation = 1, then we 
perform a principal component analysis using the prcomp function from the stats 
R-package. If the first principal component explains ≥10% of the total variance of 
the gene set, and the gene set is comprised of at least 5 genes, then we store 
the principal component in the new gene set-by-sample matrix (Supp. Fig 2).  

Gene sets 
We used four different gene sets. Three of these gene set databases (KEGG33, 
TRRUST Transcription Factors42 and Metabolomics Workbench32) we 
downloaded from the webserver of enrichR59: 
https://maayanlab.cloud/Enrichr/#libraries. The microRNA database was 
downloaded from miRTarBase31, where we only considered functionally validated 
microRNA targets.  

QTL analyses 
QTL identification was performed using a linear model which was defined as 
follows: 

𝐸𝒈𝒔,𝑘 =  𝛽0𝐺𝑘 + ∑ 𝛽𝑖𝑐𝑜𝑣𝑖,𝑘𝑖 + 𝜀𝑘  (1) 

where Egs is the shared variable representation of gene set gs (when performing 
gsQTL), or, alternatively, the gene expression of a single gene (when performing 
eQTL), for an individual k. Gk is the genotype dosage of an individuals of the SNP 
of study (0-2) . Covi,k are the covariates for each of the individuals. εk is an error 
term that gets minimized. In both, the GSQTL and eQTL analyses, we adjusted 
for age, sex, diagnosis, dataset, and the first five gene expression PCs. For the 

https://maayanlab.cloud/Enrichr/#libraries
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bulk AML analyses, G represents subtype assignment (0-1) and we adjusted for 
sex and tissue of origin (bone marrow and peripheral blood).  

Transcription factor validation experiment 
Using the healthy individuals and the excitatory neuron dataset, we evaluated the 
association between the expression of transcription factors (TFs) and shared 
representation derived from the genes targeted by the respective TF.  Targeted 
genes were derived from the trust transcription factor database42. We only 
evaluated TFs that were present in both the trust database as well as in our 
expression data. Potential covariance caused by effects of age, sex, dataset and 
Braak stage on the gene expression were regressed out. We only considered TF 
targeted gene sets, when there were minimally five target genes, and the shared 
variability had to explain at least 5% of the total variance of the gene set. The 
association between the expression of the TF and the expression in the shared 
variable representation was evaluated using Spearman's rank correlation 
coefficient. The resulting p-values were adjusted for testing multiple TF target 
gene tests using the Benjamini-Hochberg Procedure, and significance of the 
association was assumed at PFDR ≤ 0.05. 

ORA: Over representation analysis 
Overrepresentation analysis (ORA) was performed using the fisher exact test for 
each variant separately including the genes that are nominally significant, i.e. 
eQTLs for which P ≤ 0.05. The Benjamini-Hochberg Procedure was used to 
corrects for testing multiple gene sets, and a gene set was assumed significant 
at PFDR ≤ 0.05. 

GSEA: Gene set enrichment analysis  
Gene set enrichment analysis (GSEA) was performed using the R-package 
fgsea41 (v 1.24.0). For each variant, the βs of the associations with the genes 
were used to rank the genes, that served as input for the gene set enrichment 
analysis. The resulting p-values were adjusted for testing multiple tests per 
variant using the Benjamini-Hochberg Procedure, and significance of the 
association was assumed at PFDR ≤ 0.05. 

References 
1. Hindorff, L. A. et al. Potential etiologic and functional implications of genome-wide 
association loci for human diseases and traits. Proc. Natl. Acad. Sci. U. S. A. 106, 9362–
9367 (2009). 

2. Smigielski, E. M., Sirotkin, K., Ward, M. & Sherry, S. T. dbSNP: a database of 
single nucleotide polymorphisms. Nucleic Acids Res. 28, 352–355 (2000). 

3. Lonsdale, J. et al. The Genotype-Tissue Expression (GTEx) project. Nature 
Genetics vol. 45 580–585 at https://doi.org/10.1038/ng.2653 (2013). 

4. Neavin, D. et al. Single cell eQTL analysis identifies cell type-specific genetic 
control of gene expression in fibroblasts and reprogrammed induced pluripotent stem 
cells. Genome Biol. 22, 1–19 (2021). 



 
68 

5. Yazar, S. et al. Single-cell eQTL mapping identifies cell type-specific genetic 
control of autoimmune disease. Science 376, (2022). 

6. Van Der Wijst, M. G. P. et al. Single-cell RNA sequencing identifies celltype-
specific cis-eQTLs and co-expression QTLs. Nat. Genet. 50, 493–497 (2018). 

7. van der Wijst, M. G. P. et al. The single-cell eQTLGen consortium. Elife 9, (2020). 

8. Tabassum, R. et al. Genetic architecture of human plasma lipidome and its link 
to cardiovascular disease. Nat. Commun. 2019 101 10, 1–14 (2019). 

9. Rhee, E. P. et al. A Genome-wide Association Study of the Human Metabolome 
in a Community-Based Cohort. Cell Metab. 18, 130–143 (2013). 

10. Gallois, A. et al. A comprehensive study of metabolite genetics reveals strong 
pleiotropy and heterogeneity across time and context. Nat. Commun. 2019 101 10, 1–13 
(2019). 

11. Huan, T. et al. Genome-wide identification of microRNA expression quantitative 
trait loci. Nat. Commun. 2015 61 6, 1–9 (2015). 

12. Bouland, G. A. et al. Diabetes risk loci-associated pathways are shared across 
metabolic tissues. BMC Genomics 2022 231 23, 1–9 (2022). 

13. Pers, T. H. et al. Biological interpretation of genome-wide association studies 
using predicted gene functions. Nat. Commun. 2015 61 6, 1–9 (2015). 

14. Watanabe, K., Taskesen, E., Van Bochoven, A. & Posthuma, D. Functional 
mapping and annotation of genetic associations with FUMA. Nat. Commun. 2017 81 8, 1–
11 (2017). 

15. Xu, T., Jin, P. & Qin, Z. S. Regulatory annotation of genomic intervals based on 
tissue-specific expression QTLs. Bioinformatics 36, 690–697 (2020). 

16. Wang, B., Yang, J., Qiu, S., Bai, Y. & Qin, Z. S. Systematic Exploration in Tissue-
Pathway Associations of Complex Traits Using Comprehensive eQTLs Catalog. Front. Big 
Data 4, 719737 (2021). 

17. Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Systematic differences 
in discovery of genetic effects on gene expression and complex traits. Nat. Genet. 2023 
5511 55, 1866–1875 (2023). 

18. Geistlinger, L. et al. Toward a gold standard for benchmarking gene set 
enrichment analysis. Brief. Bioinform. 22, 545–556 (2021). 

19. Zhou, H. J., Li, L., Li, Y., Li, W. & Li, J. J. PCA outperforms popular hidden variable 
inference methods for molecular QTL mapping. Genome Biol. 23, 1–17 (2022). 

20. Zhernakova, D. V. et al. Identification of context-dependent expression 
quantitative trait loci in whole blood. Nat. Genet. 2016 491 49, 139–145 (2016). 

21. Vochteloo, M. et al. PICALO: principal interaction component analysis for the 
identification of discrete technical, cell-type, and environmental factors that mediate 
eQTLs. Genome Biol. 25, 1–26 (2024). 

22. Tomfohr, J., Lu, J. & Kepler, T. B. Pathway level analysis of gene expression using 
singular value decomposition. BMC Bioinformatics 6, 1–11 (2005). 



 

 

69  

23. Gabitto, M. et al. Integrated multimodal cell atlas of Alzheimer’s disease. Res. 
Sq. (2023) doi:10.21203/RS.3.RS-2921860/V1. 

24. Fujita, M. et al. Cell-subtype specific effects of genetic variation in the aging and 
Alzheimer cortex. bioRxiv 2022.11.07.515446 (2022) doi:10.1101/2022.11.07.515446. 

25. Mathys, H. et al. Single-cell transcriptomic analysis of Alzheimer’s disease. 
Nature 570, 332–337 (2019). 

26. Olah, M. et al. Single cell RNA sequencing of human microglia uncovers a subset 
associated with Alzheimer’s disease. Nat. Commun. 11, 1–18 (2020). 

27. Zhou, Y. et al. Human and mouse single-nucleus transcriptomics reveal TREM2-
dependent and TREM2-independent cellular responses in Alzheimer’s disease. Nat. Med. 
26, 131–142 (2020). 

28. Mathys, H. et al. Single-cell atlas reveals correlates of high cognitive function, 
dementia, and resilience to Alzheimer’s disease pathology. Cell 186, 4365-4385.e27 
(2023). 

29. Wightman, D. P. et al. A genome-wide association study with 1,126,563 
individuals identifies new risk loci for Alzheimer’s disease. Nat. Genet. 2021 539 53, 1276–
1282 (2021). 

30. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease 
and related dementias. Nat. Genet. 2022 544 54, 412–436 (2022). 

31. Huang, H. Y. et al. miRTarBase update 2022: an informative resource for 
experimentally validated miRNA-target interactions. Nucleic Acids Res. 50, D222–D230 
(2022). 

32. Sud, M. et al. Metabolomics Workbench: An international repository for 
metabolomics data and metadata, metabolite standards, protocols, tutorials and training, 
and analysis tools. Nucleic Acids Res. 44, D463–D470 (2016). 

33. Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. 
KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 
(2021). 

34. Dakterzada, F. et al. Identification and validation of endogenous control miRNAs 
in plasma samples for normalization of qPCR data for Alzheimer’s disease. Alzheimer’s 
Res. Ther. 12, 1–8 (2020). 

35. Leidinger, P. et al. A blood based 12-miRNA signature of Alzheimer disease 
patients. Genome Biol. 14, R78 (2013). 

36. Lu, L., Dai, W. Z., Zhu, X. C. & Ma, T. Analysis of Serum miRNAs in Alzheimer’s 
Disease. Am. J. Alzheimers. Dis. Other Demen. 36, (2021). 

37. Palmer, A. M. The activity of the pentose phosphate pathway is increased in 
response to oxidative stress in Alzheimer’s disease. J. Neural Transm. 106, 317–328 
(1999). 

38. Santello, M., Toni, N. & Volterra, A. Astrocyte function from information 
processing to cognition and cognitive impairment. Nat. Neurosci. 22, 154–166 (2019). 

39. Mathys, H. et al. Single-cell multiregion dissection of Alzheimer’s disease. Nat. 
2024 1–11 (2024) doi:10.1038/s41586-024-07606-7. 



 
70 

40. Rafiee, Z., García-Serrano, A. M. & Duarte, J. M. N. Taurine Supplementation as 
a Neuroprotective Strategy upon Brain Dysfunction in Metabolic Syndrome and Diabetes. 
Nutrients 14, (2022). 

41. Korotkevich, G. et al. Fast gene set enrichment analysis. bioRxiv 060012 (2021) 
doi:10.1101/060012. 

42. Han, H. et al. TRRUST v2: an expanded reference database of human and 
mouse transcriptional regulatory interactions. Nucleic Acids Res. 46, D380–D386 (2018). 

43. Severens, J. F. et al. Mapping AML heterogeneity - multi-cohort transcriptomic 
analysis identifies novel clusters and divergent ex-vivo drug responses. Leukemia 38, 
751–761 (2024). 

44. Wang, K. et al. Identification of LPCAT1 expression as a potential prognostic 
biomarker guiding treatment choice in acute myeloid leukemia. Oncol. Lett. 21, 1–1 (2021). 

45. Bennett, D. A. et al. Religious Orders Study and Rush Memory and Aging Project. 
J. Alzheimers. Dis. 64, S161–S189 (2018). 

46. McCarthy, S. et al. A reference panel of 64,976 haplotypes for genotype 
imputation. Nat. Genet. 48, 1279–1283 (2016). 

47. Das, S. et al. Next-generation genotype imputation service and methods. Nat. 
Genet. 48, 1284–1287 (2016). 

48. Loh, P. R. et al. Reference-based phasing using the Haplotype Reference 
Consortium panel. Nat. Genet. 2016 4811 48, 1443–1448 (2016). 

49. Fuchsberger, C., Abecasis, G. R. & Hinds, D. A. minimac2: faster genotype 
imputation. Bioinformatics 31, 782–784 (2015). 

50. Purcell, S. et al. PLINK: A Tool Set for Whole-Genome Association and 
Population-Based Linkage Analyses. Am. J. Hum. Genet. 81, 559 (2007). 

51. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger 
and richer datasets. Gigascience 4, 7 (2015). 

52. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and 
dispersion for RNA-seq data with DESeq2. Genome Biol. 2014 1512 15, 1–21 (2014). 

53. Leek, J. T. et al. The sva package for removing batch effects and other unwanted 
variation in high-throughput experiments. Bioinforma. Appl. NOTE 28, 882–883 (2012). 

54. Durinck, S. et al. BioMart and Bioconductor: a powerful link between biological 
databases and microarray data analysis. Bioinforma. Appl. NOTE 21, 3439–3440 (2005). 

55. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573-
3587.e29 (2021). 

56. Svensson, V. Droplet scRNA-seq is not zero-inflated. Nature Biotechnology vol. 
38 147–150 at https://doi.org/10.1038/s41587-019-0379-5 (2020). 

57. Bouland, G. A., Mahfouz, A. & Reinders, M. J. T. Consequences and 
opportunities arising due to sparser single-cell RNA-seq datasets. Genome Biol. 2023 241 
24, 1–10 (2023). 



 

 

71  

58. Anders, S. & Huber, W. Differential expression analysis for sequence count data. 
Genome Biol. 11, R106 (2010). 

59. Xie, Z. et al. Gene Set Knowledge Discovery with Enrichr. Curr. Protoc. 1, e90 
(2021). 

 

Supplements 

Supplementary Figure 1: A bar plot where the x-axis represent significantly identified gsQTLs and 
the y-axis represents the difference between the -log10(p-value) of the gsQTL and the -log10(p-value) 
of the most significant individual gene that was part of the respective gene set used to calculate the 
proxy values. 

 
Supplementary Figure 2: Visual representation of the approach. First, we take as input a gene 
expression matrix where the rows represent the genes and the columns represent the individuals or 
samples. Then, for the selected gene sets (e.g. pathways, metabolite interacting genes, transcription 
factor or microRNA targets), the respective genes are subsetted from the input dataset. For each 
gene set PCA is performed, either a linear PCA or a kernel-PCA. Next, PCs are filtered based on the 
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number of input genes and based on percentage variance explained. Finally, QTL analyses are 
performed on the PCs. 

 

Supplementary Figure 3: A) Upset plot of the overlap of significantly identified proxy metabolites 
between the AML subtypes. B) Boxplot of the phosphatidylcholine GS-metabolite. X-axis represents 
KMT2A.1 status where 0 is negative and 1 is positive. Y-axis represents the expression value.   
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Abstract 
Through a comprehensive protein quantitative trait loci (pQTL) analysis, we 
identified 8,081 genetic variants linked to the abundance of 227 proteins in the 
Gyrus Temporalis Medius (GTM). This includes novel associations between 
variants and proteins, not found in a previous pQTL study in the prefrontal cortex 
and from expression quantitative loci (eQTL) analyses across 12 brain areas. We 
observed a link between the rs429358-T variant, known for encoding the APOE4 
allele, and increased APOE levels in the GTM, pointing to a potential explanation 
for GTM’s greater vulnerability to Alzheimer’s Disease (AD). We show that AD 
risk variants deregulate protein-protein correlations, providing a genetic basis for 
coordinated modulation of protein associations. Specifically, significant effects on 
protein interactions in the GTM are found for three SNPs: rs9381040 in TREML2, 
rs34173062 in SHARPIN, and rs11218343 near SORL1. Notably, DDX17 may 
exert a protective role in individuals with the rs9381040-T/T genotype by tightly 
regulating synuclein levels. 

4.1. Introduction 
Alzheimer’s Disease (AD) is a progressive disease marked by the loss of 
cognitive functions and autonomy, eventually leading to death1. Numerous 
genome wide association studies (GWASs) have been conducted to identify 
genetic modifiers of AD risk, including attempts to understand their role in AD 
etiology2–4. However, elucidating the mechanistic pathways through which these 
genetic loci influence AD-related processes is difficult. Many risk variants are 
common, have a small effect size on AD, and are located in non-coding and 
intergenic regions. These variants merely act as ‘markers’ of haplotypes, genetic 
regions averaging 300 kb that are inherited across generations5,6. These 
haplotypes typically include at least one genetic factor that increases disease 
risk, possibly by affecting the expression of one or more genes in the risk locus.  
Therefore, while GWAS ‘risk’ variants are unlikely to be directly causative, they 
are likely in (partial) linkage with the causal variant(s).  

It is thus reasonable to investigate whether a risk locus is an expression 
quantitative trait locus (eQTL), meaning it is associated with changes in the 
expression of messenger RNAs (mRNAs)7. However, while mRNAs encode 
proteins, their expression levels are not always correlated with protein expression 
levels8–10. Consequently, eQTLs are often not protein-QTLs (pQTLs)11, while 
proteins are the functional units within the cell. Understanding how AD risk alleles 
associate with protein expression could therefore better pursued to reveal the 
genetic (de)regulation associated with the risk alleles. Additionally, causative 
variants might have downstream effects that are missed when only investigating 
eQTLs/pQTLs. For instance, while a causative missense variant might not alter 
mRNA levels, the change in the amino acid sequence of a protein can lead to a 
significant change in protein function and interactions with other proteins, 
potentially altering various biological pathways. Assuming that co-expressed 
proteins are functionally related, allele-specific correlation patterns of protein 
abundance might indicate a unique regulatory state of biological pathways in 
response to an allele.  
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Based on this, we hypothesize that AD-associated alleles may have downstream 
functional consequences, identifiable by comparing changes in co-expression of 
protein abundance between carriers and non-carriers of risk alleles. In this study, 
we investigated genetic control of protein abundance using a unique collection of 
brains from 88 AD patients, 53 non-demented individuals, and 49 cognitively 
healthy centenarians. The Gyrus Temporalis Medius (GTM) region, known for its 
vulnerability to AD-related neuropathological changes12,13, was specifically 
analyzed, enabling us to conduct a comprehensive pQTL analysis and compare 
changes in co-expression between pairs of proteins between individuals who 
carry an AD-risk allele compared to those the protective risk allele. 

4.2. Results 

4.2.1. Analysis workflow 
We performed an extensive pQTL analysis to assess whether the abundance of 
measured proteins in the GTM correlated with the occurrence of genetic variants 
(Fig. 1a). These identified pQTLs were then compared with previously identified 
brain pQTLs11 and eQTLs across twelve brain areas in the GTEx database7. 
Furthermore, all genetic variants identified as pQTL were evaluated for their 
association with AD risk. We then explored whether AD risk variants identified in 
a previous GWAS2 were linked to distinctive correlation-structures in protein 
abundance, by conducting a differential correlation QTL analysis (dcQTL, Fig. 
1b).  

 

Figure 2: Overview of the pQTL and dcQTL analyses within this study. a) Schematic representation 
of a pQTL analysis. Individuals are grouped according to the genotypes of a genetic variant. A pQTL 
is identified when the expression of a protein is significantly (linearly) associated with the genotype. 
b) Schematic overview of the dcQTL analysis, identifying changes in co-expression relative to 
genotype. Individuals are grouped based on the genotypes of a genetic variant and pairs of proteins 
are identified whose correlation within each genotype differs between genotypes (PFDR ≤ 0.05). 

4.2.2. Demographics 
After quality control of the genetic data, 6,607 individuals were included in the 
analyses (mean age of 68.4±15.8, 53.7% females). For the protein expression 
data in the GTM, 190 individuals were available (mean age of 86.8±13.8, 73.7% 
females). Both genetics and proteomics data were available for 140 individuals 
(mean age of 91.0±14.2, 74.3% females, Table 1).  
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Table 1: Population characteristics of individuals for whom genotyping and protein data were 
available, including the intersection. AD = Alzheimer’s Disease cases, ND = Non-demented controls, 
CEN = centenarians. 

 genotyping data Protein data intersection 

Number of 
individuals 

6,607 190 140 

Females 
(%) 

3549 (53.7) 140 (73.7) 104 (74.3) 

Diagnosis AD ND CEN AD ND CEN AD ND CEN 
N 2,416 3,848 343 88 53 49 67 27 46 
Age (σ) 70.2 

(10.5) 
61.1 
(14.8) 

101.0 
(2.5) 

81.2 
(11.2) 

81.1 
(12.0) 

103.0 
(2.3) 

79.6 
(12.2) 

83.4 
(8.7) 

103.1 
(2.2) 

4.2.3. Genetic modulation of protein abundance is largely 
independent from modulation of its corresponding mRNA 
in the Gyrus Temporalis Medialis 
A pQTL analysis (Fig. 1a) including 140 individuals for which both genetic and 
proteomics data was available, was conducted (Table 1). pQTLs were identified 
using linear regression models, adjusting for estimated cell type composition 
(neurons, microglia/macrophages, and oligodendrocytes) and population 
substructure using the first five principal components (Supplement ‘pQTL linear 
regression model’). A total of 3,427 proteins were tested for association with 
genetic cis-variants lying within 250 Kbp of the TSS. We identified 8,081 variants 
significantly associated with the abundance of 227 proteins in the GTM (PFDR ≤ 
0.05, Fig. 2a). Of these, 5,331 (~66%) are new associations involving 150 
proteins, while 2,750 variants (34%), where associated with 77 proteins, 
overlapping with pQTLs previously identified in a QTL study of the dorsolateral 
prefrontal cortex11.   

Next, we identified a set of 222 independent pQTL variants by prioritizing the most 
significant protein-variant pair within a linkage disequilibrium (LD) block (500 Kbp, 
R2>0.001). 64 of these 222 pQTL variants (29%) were also eQTL variants in at 
least one of the twelve brain areas available in the GTEx Portal7(Supp Table 1), 
and sixteen pQTLs variants being eQTL variants in all twelve brain areas (Fig. 
2b). For the matching pQTLs and eQTLs, the direction of change in protein levels 
corresponded with the direction of change in gene transcript levels (Supp Fig. 1). 
Additionally, the effect sizes of matching pQTLs and eQTLs were significantly 
correlated across all brain regions (P ≤ 6.39 × 10-3, r ≥ 0.46).  

This indicates that while genetic modulation of protein abundance is largely 
independent from genetic modulation of mRNA levels, when shared modulation 
occurs, mRNA levels do correlate with protein abundances.  

4.2.4. rs429358 and rs6857 associate with increased 
APOE abundance and increased Alzheimer’s risk 
Next, to elucidate the potential connection between AD-genetic risk factors and 
dysregulation of protein abundance, we investigated whether the identified 
pQTLs are associated with AD risk. Using an independent dataset of individuals 
with genetics data14–18 (N = 6,479, N cases = 2,361 , N controls = 4,118 see 
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Methods), we checked whether the identified 8,081 pQTL variants were 
associated with AD risk. We found a significant association with AD for rs6857 
and rs429358 (Fig. 2c, Supp. Fig. 3). Rs6857 had an odds-ratio (OR) of 3.22 
(PFDR = 6.0 × 10-145) and rs429358 had an OR of 3.56 (PFDR = 1.5 × 10-167) for AD 
risk. Both variants were pQTLs associated with APOE abundance. Rs6857 had 
a β of 0.18 (SE = 0.04, PFDR = 2.57 × 10-5, Fig. 2d) and rs429358 had a β of 0.18 
(SE = 0.04, PFDR = 2.80 × 10-5, Fig. 2e) associated with APOE abundances.  

A Bayesian test of colocalization (see Methods Colocalization analysis) revealed 
a posterior probability (PP) of 77% that APOE abundance and AD risk share the 
same causal variant, with rs429358 being the most likely variant (PP = 1). 
Notably, the rs429358-T variant encodes for arginine, resulting in the APOE4 
allele19, which is known to increase AD risk. Our findings show that the rs429358-
T variant is linked to higher APOE levels in the GTM, a result not observed in 
prior pQTL studies of the prefrontal cortex. This may help explain the greater 
vulnerability of the GTM to AD, as elevated APOE4 levels could potentially lead 
to increased amyloid-beta accumulation specifically in this brain area. 
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Figure 3 Overview of found significant pQTLs. a) Volcano plot of significant pQTLs (PFDR ≤ 0.05). X-
axis represents the effect size of the pQTL association, and the y-axis represents -log10 P-value of 
the pQTL association. Labels are shown for pQTLs with P-value ≤ 1 × 10-15. b) Heatmap of all 
significant pQTL variants that are also an eQTL variant. Colored squares indicate significant eQTLs 
based on the GTEx database, with color representing the -log10 P-value. The x-axis shows the tested 
brain tissues, and the y-axis the protein/gene names. c) Association of variants with AD risk. The x-
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axis represents the odd ratio (with error bars), and the y-axis shows the two significant variants. d,e) 
Boxplots of APOE protein residuals grouped by genotypes of d) rs6857, and e) rs429358. The x-axis 
represents the genotypes of rs6857/rs429358, and the y-axis represents the residuals of APOE 
protein residuals.  

4.2.5. Genetic risk variants for Alzheimer’s Disease 
associate with changing associations between proteins 
In addition to examining whether genetic risk variants affect the abundance of 
individual proteins, we explored whether AD risk variants influence the correlation 
between proteins, potentially indicating a genetic basis for coordinated changes 
in their functional associations. To investigate this, we tested for differential 
correlation between pairs of proteins with respect to the genotypes of 33 known 
AD risk variants2. These variants were selected such that each genotype was 
represented by at least 10 individuals to mitigate population size discrepancies 
and reduce the likelihood of false positives (Supp Table 2). Differential correlation 
QTL (dcQTL) analysis (see Methods) was performed on the 140 individuals for 
whom both genetic and proteomics data were available.  We identified 238 pairs 
of proteins that were significantly differentially correlated with respect to one of 
the 33 AD risk variants (PFDR≤ 0.05, Supp  Table 3).   

To assess whether the identified protein pairs could have a functional association, 
we checked if the protein pairs were expressed in the same cell type (FPKM > 
0.1, See Methods Human brain cell type transcriptome profile). All protein pairs 
shared cell types in which they were expressed, except for two pairs (DDX17–
PKLR and HNRNPL- ICAM5), which could not be validated as PKLR and ICAM5 
did not exceed the expression threshold in any cell type. These findings reveal 
that although most AD risk variants do not significantly impact the abundance of 
individual proteins in the GTM, they are associated with modifications in protein-
protein correlation patterns.  

4.2.6. Potential role for DDX17 in mediating the protective 
effect of rs9381040-T through tight regulation of synuclein 
abundance 
Next, we aimed to characterize the risk variants and the proteins whose 
associations with other proteins were altered in relation to the respective AD risk 
variants. We found that three SNPs (rs9381040 in TREML2, rs34173062 in 
SHARPIN and rs11218343 near SORL1) had the strongest regulatory effects on 
protein-protein associations. Specifically, most differentially correlated proteins 
(23%) were found between the two homozygous genotypes of variant rs9381040 
(closest gene = TREML2, 54 differentially correlated pairs, including 90 different 
proteins, Fig. 3a). These 90 proteins were enriched for neuron cell type markers 
(N = 17, OR = 3.55, 95%CI = 1.47-9.17, P = 2.71 × 10-3), suggesting that 
rs9381040 may predominantly influence neuronal protein networks and 
potentially impact neuronal function in AD.   

Among the 54 differentially correlated protein pairs, DDX17 had the most altered 
associations, being differentially correlated with 15 proteins (Fig 3b-d). Functional 
enrichment analysis of the proteins differentially correlated with DDX17 revealed 
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enrichment for ‘PFAM Protein Domains: Synuclein’ (N = 3, 1.38 × 10-7). All 
members of synuclein family (SNCA, SNCB and SNCG, Δr ≥ 1.15, PFDR ≤ 2.98 × 
10-2) were differentially correlated with DDX17 with respect to the genotypes of 
rs9381040. In individuals with the T/T genotype (protective), DDX17 was highly 
correlated with SNCA, SNCB and SNCG (r ≥ 0.94). These results suggest that 
DDX17 may play a protective role in individuals with the rs9381040-T/T genotype 
by regulating synuclein levels, potentially preventing its aggregation and the 
subsequent neurotoxicity seen in AD20,21. 

33 pairs of proteins (14%, including 60 different proteins, Fig. 3c, Fig. 3d) showed 
differential correlation between homozygous rs34173062-G and heterozygous 
rs34173062-G/A. Rs34173062 is a missense variant in SHARPIN. Among these 
33 differentially correlated protein pairs, SPTBN2 exhibited the most altered 
associations with other proteins (N=5). SPTBN2, a brain spectrin, has been 
implicated in several neurodegenerative diseases22,23, including AD24,25.  

These findings suggest a potential association between SHARPIN and SPTBN2 
concerning rs34173062. However, the functional association of this association 
to AD risk requires further investigation. The set of 60 proteins was not enriched 
for specific cell type markers. 32 of these proteins were involved in GO biological 
process of ‘transport’ (PFDR = 8.54 × 10-5), 50 proteins were associated with the 
GO cellular component ‘cytoplasmic part’ (PFDR = 5.89 × 10-6), and 16 proteins 
were linked to the mitochondrial part (PFDR = 7.03 × 10-6).  

We observed that 15 protein pairs were dcQTL with variant rs11218343 (closest 
gene = SORL1, involving 29 proteins, Fig. 3e, Fig. 3f). These proteins showed 
distinct correlations between homozygous (T/T) and heterozygous (T/C) 
individuals. However, the group of 29 proteins did not show enrichment for 
specific cell type markers. 18 of these proteins were involved in the GO biological 
process of ‘localization’ (PFDR = 4.90 × 10-3), 8 proteins were associated with the 
GO cellular component ‘dendrite’ (PFDR = 1.00 × 10-4), and 9 proteins were linked 
to ‘neuron projection’ (PFDR = 6.80 × 10-4). 
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Figure 3 Overview of dcQTL results with respect to AD variants. a) Network graph illustrating 
differentially correlated proteins associated with rs9381040. Blue nodes are proteins, an edge 
indicates that two proteins are differentially correlated with respect to rs9381040. Node size reflects 
the degree of connectivity. b) DDX17’s differential correlation with other proteins relative to the 
rs9381040 genotype. The x-axis shows Pearson’s correlation coefficients between protein pairs 
across individuals within the respective genotypes. The y-axis lists each protein pair, and dot color 
indicates different genotypes. Dot size corresponds to -log10 p-value c, d) Scatter plots depicting two 
proteins (c, PKLR ; d, CRYM) differentially correlated with DDX17 (x-axis) concerning rs9381040 
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genotypes. Each dot represents an individual, colored by genotype (purple for C/C, green for C/T, 
yellow for and T/T). e, f) All proteins differentially correlated with e) rs34173062, and f) rs11218343. 
The x-axis represents Pearson’s correlation coefficients between the protein pairs across individuals 
withing the respective genotypes . The y-axis lists each protein pair, with dot colors indicating different 
genotypes. Dot size corresponds to -log10 p-value. 

4.3. Discussion 
We conducted a comprehensive pQTL analysis in the GTM, identifying 
associations between the expression of 227 proteins and 8,081 genetic variants. 
Our findings not only align with previous studies in proteomics and 
transcriptomics, but also revealed novel variant-protein associations that may 
indicate specific vulnerabilities of brain regions to AD.  

Our comparison of AD genetics with brain proteomics suggests that individuals 
carrying AD-associated variants in/near TREML2, SHARPIN and SORL1 exhibit 
distinct protein-protein correlation structures compared to non-carriers. This 
implies that individual AD associated risk alleles may exert significant control over 
protein-protein correlation patterns, highlighting potential mechanisms underlying 
AD pathogenesis.  

The identified dcQTLs often involved central hub proteins. For example, variant 
rs9381040 (near TREML2 gene) was associated with differential correlations 
among 54 pairs of proteins. In this network, DDX17 (DEAD-Box Helicase 17) 
played a pivotal role by exhibiting differential correlation with 15 proteins. DDX17 
functions as a transcriptional co-regulator for various target genes26 and plays a 
significant role in the androgen signaling pathway26, which is implicated in 
protective mechanisms against neurodegenerative diseases by potentially 
reducing β-amyloid accumulation27.  

Moreover, DDX17 is involved in amyloidogenesis, a crucial process linked to AD 
pathogenesis, and a possible mediator contributing to AD28. Although TREML2 
(Triggering Receptor Expressed On Myeloid Cells Like 2) was not measured in 
our proteomics dataset, its expression is known to increase in neutrophils and 
macrophages during immune responses to inflammatory factors29. We speculate 
that the protective effects observed with rs9381040 may involve altered functions 
of DDX17 and potentially be initiated through immune-related responses 
mediated by TREML2. However, further research is needed to elucidate the 
functional relationship between TREML2 and DDX17 regarding their protective 
action against AD.  

SPTBN2 (Spectrin Beta, Non-Erythrocytic 2) was identified as hub protein linked 
to the effects of rs34173062, a missense variant within SHARPIN. Brain spectrins 
have garnered attention in various neurodegenerative diseases22,23, including 
AD24,25. Our findings suggest a connection between SHARPIN and SPTBN2 
concerning genetic risk for AD. The functional implications of this association in 
relation to AD risk require further investigation.  

QTL studies traditionally aim to uncover how genetic variations regulate 
transcription or protein levels. However, our findings underscore the importance 
of moving beyond straightforward associations between genetic variants and 
biomolecules. A variant may not directly influence the expression levels of a 
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transcript or protein; instead, it could trigger changes in biological states where 
the interactions between proteins or transcripts are redefined. While studies using 
single-cell RNA sequencing data increasingly adopt this perspective30,31, our 
research highlights the continued relevance of bulk data, particularly in 
proteomics, for unraveling these intricate genetic interactions. 

This study benefits from the inclusion of single cell data to complement bulk data-
derived results. By considering cell type specificities, we verified that nearly all 
differentially correlated proteins were expressed in the same cells, thereby 
affirming the hypothesis of functional association through co-expression in our 
findings. Another strength lies in the inclusion of individuals with extreme 
phenotypes, particularly cognitively healthy centenarians, who were found to be 
depleted with genetic variants associated with increased AD risk. This inclusion 
enhances the power and effect size for AD specific variants32. 

However, it’s important to note that applying our differential correlation approach 
on a proteome- and genome-wide scale is impractical due to the vast number of 
pair-wise tests between proteins and variants involved. Therefore, a hypothesis 
driven approach, as employed in this study, becomes essential. 

In summary, our study bridged genetic variants with proteomics in the GTM. 
Moreover, through differential correlation analysis based on genotypes of AD risk 
variants, we demonstrated that this approach holds promise as a valuable 
addition to GWAS- and QTL-studies. It effectively identifies proteins potentially 
involved in downstream effects of disease-associated risk variants. Additionally, 
our findings present promising results and suggest new research opportunities 
for exploring genetic implications of AD risk variants. 

4.4. Methods 

Population of the study 
Individuals classified as AD patients were derived from two sources: 1) clinically 
diagnosed with probable AD patients from the Amsterdam Dementia Cohort14 
(N=2,668), and 2) pathologically confirmed AD patients from the Netherlands 
Brain Bank16 (N=436). The non-demented controls included individuals from 
various cohorts: 1) 1,779 individuals aged 55-58 years from the Longitudinal 
Aging Study Amsterdam33 (LASA), 2) 1,206 individuals with subjective cognitive 
decline assessed at the memory clinic of the Alzheimer center Amsterdam 
confirmed as cognitively normal after thorough examination, 3) 40 healthy 
individuals from the Netherlands Brain Bank, 4) 201 individuals from the twin 
study17, and 5) 444 individuals from the 100-plus Study cohort18. The 100-plus 
Study cohort comprises of Dutch-speaking individuals aged 100 years and older, 
who self-reported to be cognitively healthy confirmed by their family members 
and partners. For this study, a total of N=358 cognitive health centenarians and 
N=86 partners of centenarian’s children were considered. Genetic data was 
available for all individuals. For 140 of the 190 individuals, proteomics data was 
also available. These samples with both genetics and proteomics data were used 
for the pQTL analysis in this study. The Medical Ethics Committee of the 
Amsterdam UMC (METC) approved all studies. All participants and/or their legal 
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representatives provided written informed consent for participation in clinical and 
genetic studies. 

Genetic data processing 
Genetic variants were identified using standard genotyping and imputation 
methods, followed by established quality control procedures. Genotyping was 
performed on individuals using Illumina Global Screening Array 
(GSAsharedCUSTOM_20018389_A2). High-quality genotyping was retained 
(individual call rate > 98%, variant call rate > 98%), with exclusions for sex 
mismatches and significant departures from Hardy–Weinberg equilibrium 
(P<1×10-6). Genotypes were prepared for imputation using provided scripts 
(HRC-1000G-check-bim.pl)34 to compare variant ID, strand and allele 
frequencies to the Haplotype Reference Panel (HRC v1.1, April 2016)35. All 
autosomal variants were submitted to the Sanger imputation server 
(https://imputation.sanger.ac.uk), which uses MACH for phasing and PBWT for 
imputation against the HRC v1.1, April 2016 reference panel.  

In total, 3,670 population subjects and 3,106 AD cases passed quality control. 
Before analysis, individuals of non-European ancestry were excluded based on 
1000Genomes clustering, those with a family relation (identity-by-descent > 0.2) 
were also excluded. This resulted in the exclusion of 205 population controls and 
152 AD cases with non-European ancestry, and 217 population controls and 100 
AD cases with family relations. Consequently, 4,191 control subjects and 2,416 
AD cases remained for the analyses, yielding a total sample size of 6,607. Of 
these, 140 individuals also had proteomics data. 

Summary statistics pQTL study 
The pQTL summary statistics of Robins et al.11 were obtained from 
http://brainqtl.org. The pQTLs were identified in 144 healthy individuals originally 
part of the ROSMAP study, a population composition of 63.1% females and a 
median age of 86.5 (range: 67.4 to 102.7). Protein expression data were sourced 
from the dorsolateral prefrontal cortex. In contrast to our pQTL analysis, variants 
within 50 Kbp up- and downstream of the transcription start site (TSS) of the 
respective proteins were tested. The dataset includes pQTL summary statistics 
for 7,901 proteins and 2,599,383 variants, totaling, 4,199,577 pQTLs. Proteins 
were identified using their Uniprot accession IDs and variants by their 
GRCh37/hg19 genomic coordinate. P-values were corrected for multiple tests 
using both Bonferroni and FDR methods. Using Bonferroni correction, 2,955 
significant pQTLs (PBONF ≤ 0.05) were identified, while FDR correction identified 
28,211 significant pQTLs (PFDR≤ 0.05). 

eQTLs from GTEx 
The eQTL data was accessed through the GTEx Application programming 
interface (API)7. Twelve brain regions were analyzed, each brain with varying 
numbers of individuals who had genotype and RNA-seq data available (Table 
S1). The total population comprised 395 individuals, 72% of whom were male. 
While GTEx does not report the exact ages of these individuals, the specified age 
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ranges are as follows: 20-29 years (N = 8), 30-39 years (N = 10), 40-49 years (N 
= 36), 50-59 years (N = 119), 60-69 years (N = 200), and 70-79 years (N = 22).  

The eQTL statistics obtained from GTEx include a normalized effect size (NES), 
which is the slope of the linear regression, indicating the effect of the alternative 
allele (ALT) relative to the reference allele (REF) according to human genome 
reference GRCh38/hg38. The data also contains nominal p-values for the eQTL 
association and a p-value threshold, determined by PFDR ≤ 0.05, but is translated 
to a nominal p-value. Variants are defined by their reference SNP identification 
number (rs IDs), while transcripts are defined by their gene symbol and an 
Ensembl transcript ID.  

Human brain cell type transcriptome profile (HBCT) 
The cell type specific transcript expression data of Zhang et al.36 were obtained 
from https://www.brainrnaseq.org/. A total of 21.661 transcripts were measured 
across five cell types:  astrocytes, neurons, oligodendrocytes, 
microglia/macrophages, and endothelial cells, sampled from individuals ranging 
from 8 years to 63 years old. Specifically, transcripts measurements in astrocytes 
were derived from 26 samples, with fourteen from male individuals and twelve 
from females, including four samples from the tumor core or their vicinity. Neuron-
specific expression came from one male individual, while oligodendrocyte-
specific expression was derived from 5 individuals (4 makes and 1 female). 
Microglia/macrophages expression was available from three individuals (2 males 
and 1 female), and the endothelial cells from two females. The transcript 
expression levels were normalized using Fragments Per Kilobase Million 
(FPKM), providing a standardized representation of transcript abundance. 

Cell type markers, composition, and enrichment 
Cell type markers were estimated using the HBCT transcriptome dataset. First, 
cells that originated from a tumor or its surroundings were excluded (N = 4). The 
average FPKM of each gene, in each of the five cell types (astrocytes, neurons, 
oligodendrocytes, microglia/macrophages, and endothelial cells) was calculated. 
For genes with multiple measurements, an average FPKM value was calculated. 
A gene was annotated as unique cell type marker for a particular cell type when 
the fold change of the average FPKM was ≥ 3 compared to all other cell types.  

Subsequently, the cell type composition for individuals with available protein data 
(N = 190, See Table 1: Protein data) was estimated. This was achieved by 
averaging the protein intensities of the unique cell type makers present in the 
GTM protein dataset for each cell type, thus providing an estimation of the cell 
type abundance for each individual based on their respective protein abundance. 
Finally, cell type enrichments were performed with  the Fisher’s exact test37, 
based on the unique cell type markers of the five cell types, to calculate the 
enrichment of a set of proteins for unique cell type markers. 

Gyrus Temporalis Medialis Proteomics data 
Proteomics data from the GTM was measured for a total of 237 individuals from 
Netherlands Brain Bank38, from whom measurements were taken for 4,829 
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proteins. Among them, 102 individuals were diagnosed with Alzheimer’s Disease 
(AD), 62 were cognitively health centenarians (CHC), and 73 were non-demented 
(ND) controls. Proteomics data was generated using the Sequential Window 
Acquisition of All Theoretical Mass Spectra (SWATH‐ MS) method employing a 
Data-Independent Acquisition (DIA) approach. Spectrum annotation and relative 
protein quantification were performed using MaxQuant software39, with the 
Uniprot human reference proteome40 used as reference.  

Gyrus Temporalis Medialis Proteomics Quality Control 
and Pre-processing 
Quality control was performed separately on both a sample basis and protein 
basis. Initially, samples with more than 34% of low-quality peptides (Q ≥ 0.01) 
were excluded from the analyses (N = 35). After removing low-quality samples, a 
reference peptide intensity distribution was calculated by averaging the peptide 
intensity distributions of the remaining samples. The distance between each 
individual peptide intensity distribution and the reference distribution was then 
calculated using the Kolmogorov–Smirnov test. Samples with a distribution 
distance (D) greater than 0.04 from the reference distribution were excluded from 
the analyses (N = 1). For replicate samples, lower quality samples were 
determined using a paired t-test on the quality measures, resulting in the 
exclusion of eleven replicates.  

The proteomics data was generated in bottom-up fashion, where peptides were 
measured and used to estimate the expression of their respective protein. If the 
peptides comprising a single protein were of low-quality in more than 10% of the 
samples, the respective protein was excluded. Proteins were represented by the 
sum of intensities of their respective peptides. Finally, protein intensities were log2 
transformed to ensure the normality of the protein intensity distributions. The final 
proteomics dataset consists of 3,556 proteins and 190 individuals.  

Next, batch effects, which have no biological meaning, were removed during the 
pre-processing step. Initially, the association between variations in the 
proteomics data and the variables age, sex, Braak stage I-VI, post-mortem delay 
(PMD), APOE genotype (log2 Polygenic Risk Score), and batch were tested using 
the R-package variancePartition41,42. VariancePartition employs a mixed linear 
model to determine the percentage of variation attributable to each variable. 
Among the tested variables, substantial proportions of the variation were 
explained by age, Braak stage and batch. To remove the variation associated 
with batch from the protein intensity data, the combat function from the R-
package sva43 was used. 

pQTL identification 
pQTL analysis was performed on the subset of 140 individuals for which both 
genetics and proteomics data was available after quality control. Genetic variants 
associated with protein expression were identified with Plink (v2.00a2LM)44. 
Linear models were employed for the association analysis, with genotype 
dosages as predictors for protein expression, assuming additive genetic effects. 
The analyses were corrected for estimated cell type composition (neurons, 
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microglia/macrophages and oligodendrocytes, See Materials and methods Cell 
type markers, composition, and enrichment) and population substructure using 
the first five principal components (See methods pQTL linear regression model). 
An additional analysis was performed correcting for phenotype status (AD, ND 
controls and CHC, See Table 1: intersection).  

Resulting effect-sizes (β) were calculated with the minor allele relative to the 
major allele in our population. Association P-values were corrected for multiple 
tests with False Discovery Rate (FDR), with assumed at PFDR ≤ 0.05. The 
analyses were restricted to variants with a MAF higher than 5% and variants 
located 250 Kbp down- and upstream of the TSS of the respective proteins. Four 
window sizes were tested (50 Kbp, 250 Kbp, 500 Kbp and 1 Mb, Supp. Fig. 4). 
Using the 250 Kbp window, we reduced to total number of tests while still 
capturing most of pQTLs.  

Genomic locations of the TSSs were acquired with biomaRt (v2.42.0)45,46. The 
retrieved genomic locations of the TSSs were for genomic build GRCh38/hg38. 
The liftOver R-package (v1.10.0)47,48 was used to lift over the genomic 
coordinates to build GRCh37/hg19, as the genotype files were based on this 
genomic build. 

pQTL linear regression model 
For identifying significant pQTLs, the generalized linear model (GLM) from Plink 
(v2.00a2LM)44 was used, which is the primary association analysis method in 
Plink for quantitative phenotypes. The model applied to our data was as follows: 

𝑃𝑦 =  𝛽0𝐺 + 𝛽1𝑁 + 𝛽2𝑀𝐺̅̅̅̅̅ + 𝛽3�̅� +  𝛽4𝑃𝐶1 + ⋯ + 𝛽8𝑃𝐶5 + 𝜀  (3) 

where: Py is the log2 intensity for the individuals of respective protein (quantitative 
phenotype);  G are the dosages for the individuals of the respective variant that 

is tested;  𝑁 are the mean intensity of all Neuron cell type markers; 𝑀𝐺̅̅̅̅̅ are the 

mean intensity of all Microglia/Macrophage cell type markers;  �̅� are the mean 
intensity of all Oligodendrocytes cell type markers; PCi are the principal 
components for the individuals of the population substructure;  𝜀 is an error term 
that gets minimized with least squares minimization. 

Testing pQTL variants on association with AD risk 
All significant pQTL variants were tested on association with AD risk using all 
individuals for which genetics data was available. This, which comprised 6,479 
individuals (2,361 AD cases and 4,118 ND controls). To ensure an independent 
population, individuals used in the pQTL identification (N=128 of 140) were 
excluded, ensuring no overlap of individuals between the differential expression 
analysis population and the genetic association test population. The association 
of pQTL variants with AD status was tested using a logistic regression model in 
R (v3.6.3), with AD status as discrete outcome variable (ND = 0, AD = 1) and the 
pQTL variant’s dosages as predictor variable. The model was adjusted for 
population substructure using the first five principal components. P-values were 
adjusted for multiple tests using FDR, with significant association assumed at 
PFDR ≤ 0.05. 
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Colocalization analysis 
For the colocalization analysis, we initially identified proteins associated with 
pQTL variant that also showed associated with AD status (See methods Testing 
pQTL variants on association with AD risk). Subsequently, we extracted all 
variants within 250 Kbp up- and downstream of the TSS of these proteins. These 
variants were then evaluated for association with AD status using the same 
cohort of individuals described previously (N = 6,479, See methods Testing pQTL 
variants on association with AD risk).  

A logistic regression model was performed with AD status (ND = 0, AD = 1) as 
the discrete outcome variable and genotypes of the aforementioned variants as 
predictor variable. The model was adjusted for population substructure using the 
first five principal components.  

To estimate the probability that the specified genomic region contains a pQTL 
variant influencing both protein abundance and AD risk, an approximate Bayes 
Factor colocalization analysis was performed using the coloc R-package 
(v3.2.1)49. This analysis utilized summary statistics including p-values, sample 
size and MAF. The colocalization analysis tests five hypotheses. H0: There is no 
association of the genomic region with protein abundance and AD risk. H1: There 
is only an association with protein abundance. H2, there is only an association 
with AD risk. H3: The genomic region is associated with both protein abundance 
and AD risk, but through two different variants. H4: The genomic region is 
associated with both protein abundance and AD risk, through a single variant. For 
each hypothesis, a posterior probability is computed to assess the likelihood of 
colocalization between protein abundance and AD risk in the specified genomic 
region. 

pQTL and eQTL comparison 
We examined whether the significant pQTLs were also an eQTL variant using the 
eQTL data from twelve brain tissues (Table S1) from GTEx (v8)7. An independent 
set of clumped pQTLs (See methods Clumping) was used to minimize the 
number of requests that needed to be sent to the API of GTEx. We investigated 
associations of pQTLs from the GTM with eQTLs both across the twelve brain 
tissues and within specific brain regions. Each gene-variant pair was queried 
across twelve brain tissues using the get_eQTL_bulk function from the R-
package CONQUER (v1.0)50, which requires tissue ID, gene symbol and RS ID 
to be supplied. Significance of the tested eQTLs was determined using the P-
value thresholds provided by GTEx. To compare the directional effects of pQTLs 
with their synonymous eQTLs, we calculated Pearson’s correlation coefficient 
between effect sizes using the cor.test function. 

Clumping 
We created an independent set of pQTLs using LD-based clumping. Variants that 
are located close to each other often exhibit linkage disequilibrium, meaning that 
they are correlated and show similar associations with the same protein. The 
clumping procedure allows to retain only the most strongly associated variant 
within a specified window. We performed clumped individually for each protein 
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using Plink (v1.90b4.6)44, with criteria set at R2 ≥ 0.001 and MAF ≥ 0.05. Linkage 
disequilibrium between variants was calculated using European individuals from 
the 1,000 Genomes Project reference panel51. 

Differential correlation 
We examined whether protein correlation changed when comparing two distinct 
groups based on AD variant genotypes. Initially, Pearson’s correlation between a 
pair of proteins was calculated separately for each group of interest. Let’s denote 
these coefficients as 𝑟𝑥 for group x and 𝑟𝑦 for group y. Subsequently, these 

correlation coefficients were transformed into z-scores using Fisher’s z-
transformation52 (Eq. 4). 

𝑧 = 𝑎𝑡𝑎𝑛ℎ(𝑟) =  
1

2
 ln (

1+𝑟

1− 𝑟
)       (4) 

The difference between z-scores 𝑧𝑥 and 𝑧𝑦 was then calculated using equation 

5:  

∆𝑧 =  
(𝑧𝑥− 𝑧𝑦)

√𝑣𝑎𝑟(𝑟𝑥)+ 𝑣𝑎𝑟(𝑟𝑦)
       (5) 

where 𝑣𝑎𝑟(𝑟) is calculated by  
1

𝑛−3
 , with 𝑛 being the sample size of the respective 

groups. Since ∆𝑧 follows a normal distribution, a two-sided P-value for the 
differential correlation between each pair of proteins can be determined.  

Differential correlation with respect to AD variants 
genotype 
In this analysis, we used individuals with both genetics and proteomics data: 67 
AD individuals, 27 ND controls, and 46 CHC. We conducted a differential 
correlation analysis of proteins based on the genotypes of established AD 
variants. Initially, we considered 41 variants2 known to influence AD risk. We 
selected variants where each genotype was represented by at least 10 
individuals to mitigate population size discrepancies and reduce the likelihood of 
false positives, resulting in 33 remaining variants. 

For variants where all three genotypes were present, we calculated the 
differential correlation between the two homozygous genotypes, reporting the 
correlation involving the heterozygous genotype separately. When only two 
genotypes were present, we assessed the differential correlation between the 
homozygous genotype and the heterozygous genotype.  

The differential correlation method for these variants was implemented in R 
(v3.6.3)53. P-values were FDR corrected based on the total number of tests 
conducted. Significance was established at PFDR ≤ 0.05.  
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Supplements 
pQTL linear regression model 

For identifying significant pQTLs, the generalized linear model (GLM) from Plink 
(v2.00a2LM)60 is used. Which is the primary association analysis method in Plink 
for quantitative phenotypes. The model applied on our data was as follows: 

𝑃𝒚 =  𝛽0𝐺 + 𝛽1𝑁 + 𝛽2𝑀𝐺̅̅̅̅̅ +  𝛽3�̅� +  𝛽4𝑃𝐶1 + ⋯ +  𝛽8𝑃𝐶5 + 𝑒 

Where: 

Py is the log2 intensity for the individuals of respective protein (quantitative 
phenotype).  

G are the dosages for the individuals of the respective variant that is tested. 

𝑁 are the mean intensity of all Neuron cell type markers 

𝑀𝐺̅̅̅̅̅ are the mean intensity of all Microglia/Macrophage cell type markers 

�̅� are the mean intensity of all Oligodendrocytes cell type markers 

PCi are the principal components for the individuals of the population 
substructure.  

e is an error term that gets minimized with least squares minimization. 

Protein residuals  

For each individual, for each protein measured in the GTM protein dataset we 
calculated the residual after correcting for the abundance of three cell types 
(neurons, microglia/macrophages, and oligodendrocytes). The pQTL analysis 
was also corrected for the abundance of these cell types. The residuals were 
calculated in order to truthfully visualize the pQTL associations.  

First for each protein we fitted a linear model: 

𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑖𝑛𝑡 = 𝛽0 + 𝛽1𝑁 + 𝛽2𝑀𝐺̅̅̅̅̅ + 𝛽3�̅� +  𝜀  

Where: 

𝑁 = the mean intensity of all neuron cell type markers 

𝑀𝐺̅̅̅̅̅ = the mean intensity of all microglia/macrophage cell type markers 

�̅� = the mean intensity of all oligodendrocytes cell type markers 

Next, with the fitted model, we predicted the protein expression: 

𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑝𝑟𝑒𝑑 = 𝛽0 + 𝛽1𝑁 + 𝛽2𝑀𝐺̅̅̅̅̅ + 𝛽3�̅� +  𝜀  

And finally, we subtracted 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑝𝑟𝑒𝑑  from 𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑖𝑛𝑡 to get the protein residuals. 
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Supplementary Table 1: Genotyped and RNAseq sample sizes from GTEx for all twelve investigated 
brain regions 

Tissue 
# RNASeq and Genotyped 
samples  

# RNASeq 
Samples 

Cerebellum 209 241 

Cortex 205 255 

Nucleus accumbens (basal 
ganglia) 202 246 

Caudate (basal ganglia) 194 246 

Cerebellar Hemisphere 175 215 

Frontal Cortex (BA9) 175 209 

Hypothalamus 170 202 

Putamen (basal ganglia) 170 205 

Hippocampus 165 197 

Anterior cingulate cortex 
(BA24) 147 176 

Amygdala 129 152 

Substantia nigra 114 139 
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Supplementary Table 2: AD risk variants subject in differential correlation analysis 

* = variant of which two genotypes were present in population 

RS ID Chromosome Genomic 
location 

Closest 
Gene 

Genotypes 

rs6733839 2 127892810 BIN1 C/C 
43 

C/T  
71 

T/T 
26 

rs9381040 6 41154650 TREML2 C/C 
78 

C/T 
51 

T/T 
11 

rs1859788 7 99971834 PILRA A/A 
13 

A/G 
58 

G/G 
69 

rs73223431 8 27219987 PTK2B C/C 
43 

C/T 
81 

T/T 
16 

rs9331896 8 27467686 CLU C/C 
18 

C/T 
64 

58 
T/T 

rs34674752* 8 145154222 SHARPIN A/A 
0 

G/A 
11 

G/G 
129 

rs7920721 10 11720308 ECHDC3 A/A 
60 

A/G 
56 

G/G 
24 

rs3740688 11 47380340 SPI1 G/G 
22 

G/T  
68 

T/T 
50 

rs1582763 11 60021948 MS4A4A A/A 
18 

G/A  
77 

G/G 
45 

rs3851179 11 85868640 PICALM C/C 
53 

T/C 
66 

T/T 
21 

rs11218343* 11 121435587 SORL1 C/C 
0 

T/C 
12 

T/T 
128 

rs12444183 16 81773209 PLCG2 A/A 
20 

A/G  
65 

G/G 
55 

rs4311 17 61560763 ACE C/C 
34 

T/C  
75 

T/T 
31 

rs12459419 19 51728477 CD33 C/C 
68 

C/T 
58 

T/T 
14 

rs2154481 21 27473875 APP C/C 
35 

C/T 
64 

T/T 
41 
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Supplementary figure 1: Estimate comparison of pQTL studies, in all sub-figures the  x-axis 
represents the estimates of this current study and y-axis represents the estimates from 16. a) 
Estimates of all matching pQTLs. b)  Estimates of all matching pQTLs where the directional effects 
were the same. c) Estimates of all matching pQTLs where the directional effects opposite. 
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Supplementary figure 2: Estimate comparison of pQTLs versus the eQTL NESs from GTEx for all 
investigated brain regions. X-axes represent the NESs from GTEx for a particular eQTL – eGene pair. 
The y-axes represent the betas of the pQTL – protein pair synonymous for the eQTL – eGene pair. 
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Supplementary figure 3: Overview of APOE associated pQTL variants. a) Boxplot of rs6857 
genotypes versus APOE intensity, x-axis represent the genotypes, y-axis represents the log2 
normalized intensity of APOE. b) Boxplot of rs429358 genotypes versus APOE intensity, x-axis 
represent the genotypes, y-axis represents the log2 normalized intensity of APOE. c) LD correlation 
between the six pQTL variants associated with APOE.  

 

Supplementary figure 4: Overview of pQTL variant mapping window. X-axes represent the mapping 
windows of 50 Kbp, 250 Kbp, 500 Kbp and 1 Mb. The y-axes represent the count of the respective 
statistic that is shown.  The title above each plot is the respective statistic. 
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Abstract 
Background and Objectives: With age, somatic mutations accumulated in 
human brain cells can lead to various neurological disorders and brain tumors. 
Since the incidence rate of Alzheimer's disease (AD) increases exponentially with 
age, investigating the association between AD and the accumulation of somatic 
mutation can help understand the etiology of AD. 

Methods: We designed a somatic mutation detection workflow by contrasting 
genotypes derived from WGS data with genotypes derived from scRNA-seq data, 
and applied this workflow to 76 participants from the ROSMAP cohort. We 
focused only on excitatory neurons, the dominant cell type in the scRNA-seq 
data.  

Results: We identified 196 sites that harbored at least one individual with an 
excitatory neuron-specific somatic mutation (ENSM), and these 196 sites were 
mapped to 127 genes. The single base substitution (SBS) pattern of the putative 
ENSMs was best explained by signature SBS5 from the COSMIC mutational 
signatures, a clock-like pattern correlating with the age of the individual. The 
count of ENSMs per individual also showed an increasing trend with age. Among 
the mutated sites, we found two sites to have significantly more mutations in older 
individuals (16:6899517 (RBFOX1), p=0.04; 4:21788463 (KCNIP4), p<0.05). 
Also, two sites were found to have a higher odds ratio to detect a somatic 
mutation in AD samples (6:73374221 (KCNQ5), p=0.01 and 13:36667102 
(DCLK1), p=0.02). 32 genes that harbor somatic mutations unique to AD and the 
KCNQ5 and DCLK1 genes were used for GO-term enrichment analysis. We 
found the AD-specific ENSMs enriched in the GO-term “vocalization behavior” 
and “intraspecies interaction between organisms”. Interestingly, we observed 
both age- and AD-specific ENSMs enriched in the K+ channels-associated genes.  

Discussion: Our results show that combining scRNA-seq and WGS data can 
successfully detect putative somatic mutations. The putative somatic mutations 
detected from ROSMAP dataset have provided new insights into the association 
of AD and aging with brain somatic mutagenesis. 

5.1. Introduction 
Somatic mutations are post-zygotic genetic variations that can result in 
genetically different cells within a single organism.1 Possible reasons for the 
occurrence and accumulation of somatic mutations in human brains are errors 
occurring during DNA replication and gradual failing of DNA repair mechanisms 
caused by extensive oxidative stress.2,3 Previous studies have shown that brain 
somatic mutations originating in neuronal stem/progenitor cells can lead to 
various neurological disorders and brain tumors.4–6 While mutations in post-
mitotic neurons have been found to play an important role in age-related and 
neurodegenerative diseases,7 this association remains relatively poorly 
understood. The link between the accumulation of age-related mutations in 
neurons and neurodegenerative disease is intuitively worth exploring, 
considering aging is a major risk factor for many neurodegenerative diseases, 
like Alzheimer's disease (AD)8.  
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AD is the most predominant form of dementia, and characterized by the 
extracellular accumulation of amyloid beta (Aβ) plaques and the intracellular 
aggregation of phosphorylated tau protein into neurofibrillary tangles (NFTs).9 A 
recent study identified several putative pathogenic brain somatic mutations 
enriched in genes that are involved in hyperphosphorylation of tau.10 These 
results indicate that the aggregation of these neuropathological substrates can 
be partly explained by the accumulation of brain somatic mutations, which raises 
a new direction for investigating the pathogenic mechanism of AD.  

Most age-related somatic mutations are only present in a small group of post-
mitotic neurons or even in a single neuron. For this reason, ultra-deep bulk 
sequencing and matched peripheral tissues are often required.10 This type of data 
is often generated for one specific research question with relatively high cost and 
are not always available from public databases. In contrast, the availability of 
public single cell RNA sequencing (scRNA-seq) datasets has exploded due to 
continuous technological innovations, increasing throughput, and decreasing 
costs.11 scRNA-seq data is most often used for expression-based analyses, such 
as revealing complex and rare cell populations, uncovering regulatory 
relationships between genes, and tracking the trajectories of distinct cell lineages 
in development.12,13 We hypothesized that scRNA-seq data can also be used to 
detect somatic mutations. We are not the first to realize this, in fact, other studies 
pioneered on different solutions to call variants in this setting. For example, 
Prashant et al.,14 compares three different variant callers (GATK, Strelka2, 
Mutect2) and show that a two-fold higher number of SNVs can be detected from 
the pooled scRNA-seq as compared to bulk data. As another example, Vu et al.,15 
developed a specific variant caller (SCmut) that can identify specific cells that 
harbor mutations discovered in bulk-cell data by smartly controlling the false 
positives. Both studies applied their methodology to detect single cell somatic 
mutations in cancer.   

In this study, we designed a workflow to detect brain-specific somatic mutation 
by contrasting genotypes identified with whole genome sequencing (WGS) data 
with genotypes identified with scRNA-seq data. To call variants in single cell data 
we exploit the VarTrix caller from 10x Genomics16 and apply various filters to 
ensure their quality. For each putative somatic mutation, we investigated 
associated genes and their respective relationship with AD and age. Additionally, 
we investigated whether AD and age coincide with an increasing number of 
somatic mutations. 

5.2. Results 

5.2.1. Excitatory neuron-specific somatic mutations 
(ENSMs) 
To study somatic mutations acquired over age and between demented (AD) and 
non-demented (ND) persons, we retrieved data from 90 participants from the 
ROSMAP study for which WGS data in blood or brain as well as scRNA-seq data 
of the frontal cortex was present (Methods). Since the scRNA-seq data (n=90) 
were collected within three different studies, the read coverage for samples varied 
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between the studies (Figure 1A). To reduce the bias generated from the 
unbalanced read coverage, we excluded individuals (n=9) with a total read count 

smaller than 6107, and applied a sample-specific cut-off for the required read 
coverage to detect a somatic mutation based on the total read count per sample 
(Methods). Cells from the scRNA-seq data were annotated according to seven 
major cell types (Methods). As the amount of cells varied for different cell types 
(Figure 1B), we first explored the feasibility of detecting somatic mutations for 
each cell type. This exploratory analysis showed that somatic mutations could 
only be detected from the excitatory neurons (when requiring a minimum number 
of reads (≥5) per sample for a putative variant site, Methods), the dominate cell 
type in our scRNA-seq data. This underpins that a sufficient amount of cells is 
needed for scRNA-seq based somatic mutation detection. As a consequence, we 
focus our analysis on excitatory neurons only. To further ensure data quality, we 
excluded individuals (n=5) which had less than 200 excitatory neurons. After 
filtering, 76 participants (23 from the snRNAseqMFC study, 30 from the 
snRNAseqPFC_BA10 study, and 23 from the snRNAseqAD_TREM2 study) had 
an adequate read coverage and sufficient number of excitatory neurons. The 
demographic data (sex, age-at-death, and cognitive diagnosis (cogdx) 
categories23) of these participants are given in Table 1. More than 72% of them 
were 85 years of age or older at death; 56% were women. Individuals were 
grouped based on their cognitive diagnosis in either being non-demented (n=42) 
or being an AD sample (n=33). 

Table 1. Summary characteristics of selected sample from the ROSMAP study 

Group Cogdx* n Sex Age, mean ±SD (range) 

Non-demented 
1 33 

23 F; 19 M 85.7±4.2 (76-90) 2 8 
3 1 

Alzheimer’s disease 
4 32 

19 F; 14 M 87.1±3.9 (74-90) 
5 1 

Other dementia 6 1 1F 83 

*Cognitive diagnosis (cogdx) is defined as six categories: 1, NCI: No cognitive impairment (No 
impaired domains); 2, MCI: Mild cognitive impairment (One impaired domain) and NO other cause of 
CI; 3, MCI: Mild cognitive impairment (One impaired domain) AND another cause of CI; 4, AD: 
Alzheimer’s dementia and NO other cause of CI (NINCDS PROB AD); 5, AD: Alzheimer’s dementia 
AND another cause of CI (NINCDS POSS AD); 6, Other dementia: Other primary cause of dementia. 
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Figure 1. Single nuclei RNA (snRNA) reads and cell count across selected samples. Participants 
(n=90) from the ROSMAP project with both single cell RNA sequencing (scRNA-seq) data and whole 
genome sequencing (WGS) data available were selected for this study. A. The distribution of the 

number of snRNA reads across individuals. The dashed red line indicates the cutoff of <610^7 for 
the minimal read coverage, i.e. individuals below this line were excluded from the study (n=9). The 
colors indicated the study that included an individual. Individuals who colored either blue or red were 
from the two batches (B1 and B2) of the snRNAseqMFC study. Individuals colored orange were from 
the snRNAseqAD_BA10 study, and individuals colored purple from the snRNAseqPFC_TREM2 
study. B. The number of cells per cell type per individual. The cell types were distinguished with seven 
different colors (see legend). The colors of the edges indicated different studies, as in A. Abbreviation: 
ExNeurons, excitatory neurons; InNeurons, inhibitory neurons; OPCs, oligodendrocyte progenitor 
cells. 

5.2.2. Summary of detected ENSMs 
Somatic mutations in the 76 participants were detected using the workflow 
described in the Methods. For that the scRNA-seq data of the excitatory neurons 
are compared to WGS data of blood (n=23) or brain (n=53). IBD estimation using 
shared variant sites confirmed the matching between the scRNA-seq and WGS 
samples (pair-wised PI_HAT >0.85, eFigure 3, Methods). From the 9,751,193 
short variants called from the scRNA-seq data, we identified 196 sites that 
harbored excitatory neuron-specific somatic mutations (ENSMs). These genetic 
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sites map to 127 genes (Methods), and 104 sites among them were single-
nucleotide variants (SNVs). From these 196 sites, 98 were shared between 
multiple individuals n>2, and thus are recurrent somatic mutations (eFigure 4). A 
few sites have mutations present in almost all individual genomes, which are 
likely to be either RNA editing events24; transcription errors, which can occur in a 
wide variety of genetic contexts with several different patterns25,26; or technical 
errors27. 53 sites have mutations uniquely present in the brains of the AD samples 
(eTable 1). 

Per individual genome the number of ENSMs ranged from 24 to 41. This does 
not seem to contradict the other observations that found an average of ~12 
somatic SNVs in hippocampal formation tissue using deep bulk exome 
sequencing10, and an average amount of ~1700 somatic mutations (substitutions 
~1500; indels ~200) in neurons using a whole-genome duplex single-cell 
sequencing protocol28. However, this comparison might be complicated by the 
differences in sequencing and somatic mutation detection methods, as well as 
brain regions. 

5.2.3. Number of ENSMs increase with age 
To characterize the ENSMs, a mutation signature analysis was performed on the 
104 detected putative somatic SNVs (Methods). The results show that, from the 
30 COSMIC mutational signatures, SBS5 best explains the observed pattern of 
putative somatic SNVs by Mutalisk (Figure 2, eFigure 5). SBS5 is a clock-like 
signature, i.e. the number of mutations correlates with the age of the individual. 
This suggests that the underlying mutational processes of the found ENSMs 
might be part of the normal aging process in excitatory neurons.29 A previous 
study using bulk exome sequencing also found an abundance of the SBS5 
signature in aged brain tissues.10 

When studying the count of somatic mutation in our analyses, we found only a 
slight increase with age (β=0.15, Figure 3A) that was not statistically significant 
(p=0.12). Similar results were observed when performing the same analysis in 
AD samples and ND individuals separately (eFigure 6). We should note that the 
number of samples is relatively low and represent a relatively narrow age range 
(from 74 to 90 years old). Moreover, participants with an age older than 90 years 
were all censored by age 90, which could also influence the significance of the 
age trend. A significant trend is observed when we exclude individuals at age 90 
from the regression (β=0.37, P=0.005; eFigure 7). 
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Figure 2. The mutation signature of 104 putative excitatory neuron-specific single nucleotide 
variations (SNVs) in the brain. Among the 30 COSMIC single base substitution (SBS) signatures, 
SBS5 was identified as the model that best explains the observed pattern of putative somatic SNVs 
by Mutalisk. The cosine similarity with the 104 putative excitatory neuron-specific SNVs and the 
corresponding Bayesian information criterion (BIC) for each COSMIC SBS signature are shown in 
eFigure 5. A. The percentage of each substitution subtype in the 104 putative excitatory neuron-
specific SNVs. Subtype T>C and C>T are the dominate subtypes and account for 43.3% and 35.6% 
of the fraction separately. B. The top panel shows the observed distribution of 104 putative excitatory 
neuron-specific SNVs across the 96 possible mutation types; the middle panel shows the distribution 
of the identified signature (SBS5); the bottom panel shows the difference of each base substitution 
subtype between the top and middle panel. The same plots of the other top 5 mutational signatures 
in largest cosine similarity (i.e., signatures 25, 12, 26, and 9, except for signature 5) are shown in 
eFigure 5. 

5.2.4. RBFOX1 and KCNIP4 harbor age-associating 
ENSMs 
As several detected ENSMs are being detected in multiple individual genomes 
(eFigure 4), we next tested the association of age with somatic mutation 
prevalence for each site individually using a logistic regression (Methods). We 
added AD status as an explanatory term and excluded the sample with other 
primary cause of dementia (Methods) from this analysis. Two sites (16:6899517 
(RBFOX1), p=0.04; 4:21788463 (KCNIP4), p<0.05) are found to have 
significantly more mutations in older individuals. The age distributions in mutated 
and un-mutated samples for these two sites are shown in Figure 4. Some caution 
should be treated when interpreting this plot for individuals older than 90 years 
as these are all mapped to 90 years old. To assess the effect due to censoring 
on age, we performed a sensitivity analysis by removing all samples with an age 
≥90. The results indicated stronger signals for these two sites (16:6899517 
(RBFOX1), p=0.02; 4:21788463 (KCNIP4), p=0.03; eFigure 8). 
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5.2.5. ENSM sites in KCNQ5 and DCLK1 associate with 
AD status 
Genes that were enriched with somatic mutations in AD samples might have a 
higher possibility to be associated with AD. We found 53 ENSM sites that were 
only detected in AD samples. This prompted the question whether the number of 
ENSMs associate with AD status. A Wilcoxon rank sum test indicated that there 
was no significant difference (p=0.71) in the average count of ENSMs between 
AD samples and non-demented controls (Figure 3B). This finding is in line with a 
previous report10,28,30 that indicated that somatic mutations are associated with 
AD in certain patterns, but not by amount.  

Next, we examined whether the occurrence of an ENSM is overrepresented 
within AD samples. A Fisher's exact test that identifies sites that have a higher 
odds ratio to detect a somatic mutation in AD samples (Methods), yielded two 
sites with significant odds ratios. These sites are mapped to two genes 
(6:73374221 (KCNQ5), p=0.01 and 13:36667102 (DCLK1), p=0.02).  

 

Figure 3. Quantitative comparison of the number of excitatory neuron-specific somatic mutations 
(ENSMs) in terms of AD and aging. A. The number of ENSMs per individual against the age of the 
individual. The line shows how this number regresses with age. The significance of the coefficient 
(β≠0) was tested using a t-test. The same analysis for AD and non-AD samples separately is shown 
in eFigure 6. B. Boxplot of the number of ENSMs in non-demented controls (ND) and AD patients 
(AD). The Wilcoxon rank sum test does not show a significance difference (ns). 
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Figure 4. The occurrence of somatic mutation with age in (A) RBFOX1 and (B) KCNIP4 genes. 
Red dots: AD cases; blue dots: non-demented (ND) individuals. Logistic regression was used to test 
the prevalence of somatic mutations with increasing age. 

5.2.6. Genes harboring AD specific ENSMs do relate to 
Alzheimer or processes involved in Alzheimer 
The 53 AD specific ENSM sites map to 42 genes. When we exclude genes for 
which also an ENSM occurs in an ND individual (n=10), we end up with 32 genes 
that have ENSMs only seen in AD samples (eAppendix 2). Among these 32 
genes, there are several well-known AD-associated genes, like SLC30A3, TTL, 
and CTSB, which thus harbor somatic mutations unique for AD. 

Together with the two genes for which AD samples had a higher occurrence of 
ENSMs (KCNQ5 and DCLK1), we conducted a GO-term analysis to investigate 
the biological pathways that may be involved (Methods). The most enriched 
biological process is “vocalization behavior” (FDR<0.001). Also, “intraspecies 
interaction between organisms” is found to be significant (FDR<0.04). Detected 
genes with these functions are DLG4, CNTNAP2, and NRXN3 (Figure 5). Our 
results also identified a group of genes (CACNA1B, CNTNAP2, DLG4, KCNQ3, 
and KCNQ5) enriched with the GO-term “ion channel complex” (FDR<0.03). 
KCNQ genes encode five members of the Kv7 family of K+ channel subunits 
(Kv7.1–7.5). Four of these (Kv7.2–7.5) are expressed in the nervous system.31 
Concerning AD-related neuropathology, a link between Aβ accumulation and Kv7 
channels has been reported by some studies.32,33 
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Figure 5. GO-terms enriched with genes having AD-specific ENSMs. 32 genes that have ENSMs 
only seen in AD samples, and the KCNQ5 and DCLK1 genes that have a higher occurrence in AD 
samples are used in the GO-term enrichment analysis. The left panel of the figure shows the enriched 
terms, their corrected p-value, the number of genes annotated with that term (size of circle), and the 
fraction of overlapping genes that harbor an AD-specific ENSM (color of circle). The FDR corrected 
significant GO-terms are grouped into three categories: Biological Process (BP), Cellular Component 
(CC), and Molecular Function (MF). The right panel shows the subset of genes having an AD-specific 
ENSM that are annotated with the enriched GO terms, red squares, while a blue square indicates that 
the gene does not have that annotation. Those genes that are not annotated with any of these GO-
terms are not included in this panel. 

5.3. Discussion 
Late-onset Alzheimer's disease, whose incidence increases with age, is often 
referred to as an age-related disease. Although the accumulation of Aβ peptides 
and phosphorylated tau proteins are the main neuropathological characteristics 
of AD, they fail to fully explain the molecular pathogenesis. As such, a cell-level 
investigation might be necessary to study the underlying pathogenic mechanism. 
Here, we identified somatic mutations using public data collected from 76 
ROSMAP donors and investigated their associations with AD and aging.  

Although scRNA-seq data are normally used for expression-based analyses, our 
results have shown that scRNAseq data can be used for the detection of somatic 
mutations at a cell-type specific level. As long as RNA sequences align correctly 
to a reference genome, the pipeline that was used for variant calling can be used 
for both bulk RNA-seq and scRNAseq data.34 However, calling variants for each 
cell separately is not efficient, suffers from low coverage, and each cell is likely 
to have a unique set of identified variants. For this reason, we aggregated cells 
per individual and per cell-type, generating cell-type specific pseudo-bulk data. 
An exploratory run of this workflow revealed that we were only able to confidently 
detect somatic mutations for excitatory neuron as this was the most abundant cell 
type in the scRNA-seq data and thus resulting in sufficient read coverage. Hence, 
it is imperative to have a sufficient amount of cells or relatively deep sequencing 
to reliably detect somatic mutations from scRNA-seq data. 
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Our analysis showed that the prevalence of somatic mutations in the KCNIP4 and 
RBFOX1 genes are associated with increasing age (when corrected for AD 
status). KCNIP4 encodes a member of the family of voltage-gated potassium (K+) 
channel-interacting proteins (KCNIPs), which suggests altered ion 
transports/channels may be associated with the aging process.35 RBFOX1 is a 
neuron-specific splicing factor predicted to regulate neuronal splicing networks 
clinically implicated in neurodevelopmental disorders.36,37 The increased somatic 
mutations in RBFOX1 with age indicates neurodevelopmental disorders may also 
associate with human brain aging. 

We detected the occurrence of somatic mutations within some well-known AD-
associated genes, like SLC30A3, TTL, and CTSB. SLC30A3 is known to be 
down-regulated in the prefrontal cortex of AD patients.38 SLC30A3 is assumed to 
play a protective role against ER stress, which has been thought to be involved 
to neurodegenerative diseases such as AD.39 TTL is a cytosolic enzyme involved 
in the post-translational modification of alpha-tubulin.40 A previous study found 
that levels of TTL were decreased in lysates from AD brains compared to age-
matched controls and that, in contrast, D2 tubulin was significantly higher in the 
AD brains, indicating that loss of TTL and accompanying accumulation of D2 
tubulin are hallmarks of both sporadic and familial AD.41 Gene CSTB encodes 
cystatin B (CSTB), an endogenous inhibitor of cystine proteases.42 Human CSTB 
has been proposed to be a partner of Aβ and colocalizes with intracellular 
inclusions of Aβ in cultured cells.43 Protein levels of CSTB have been also 
reported to increase in the brains of AD patients.44 Apart from these well-known 
AD-associated genes, we also identified that the DCLK1 gene harbored more 
somatic mutations in AD patients. A study reported that DCLK1, which has both 
microtubule-polymerizing activity and protein kinase activity, phosphorylates 
MAP7D1 on Ser 315 to facilitate the axon elongation of cortical neurons.45 These 
observations suggest that somatic mutations may initiate or are involved in the 
AD process in many ways. 

Advance AD-related dementia is often accompanied with language problems, 
behavioral issues and cognitive decline.8 Our results identified AD-associated 
somatic mutations in the genes CNTNAP2, DLG4, and NRXN3, which are 
involved in, among other processes, vocalization behavior and intraspecies 
interaction between organisms. These results may indicate that AD-related 
speech or language problems and withdrawal from social activities might be 
associated with somatic mutations in excitatory neurons. In addition, we identified 
AD-associated somatic mutations in CACNA1B, CNTNAP2, DLG4, KCNQ3 and 
KCNQ5, which are all ion-channels or involved with ion-channels. Previous 
studies have reported on the possible role of altered neuronal excitability, 
controlled by different ion channels and their associated proteins, occurring early 
during AD pathogenesis.46,47 Specifically K+ channels which are the most 
numerous and diverse channels present in the mammalian brain, may partly 
explain this alteration in neuronal excitability.48 Also, a dysfunction of K+ channels 
has been observed in fibroblasts49 and platelets44 of AD patients. Additionally, Aβ 
has been demonstrated to not only be involve in the AD pathogenesis, but also 
modulate K+ channel activities50 and may have a physiological role in controlling 
neuronal excitability51. Somatic mutations involved in K+ channels were detected 
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to associate with both AD and age indicating the existence of common processes 
behind neurodegenerative disease and aging. It also seems that K+ channels are 
naturally subjected to oxidation by reactive oxygen species (ROS) in both aging 
and neurodegenerative disease which are characterized by high levels of ROS.52  

Calling variants and detecting somatic mutations from public scRNA-seq data 
expands the use and scope of scRNA-seq data, and may provide new insight into 
post-zygotic genetic change at a cell-type specific level. The use of a single cell-
type (excitatory neurons) and the minimal read coverage requirement minimized 
biases driven by gene-specific expression. However, some limitations can also 
not be ignored. First, the workflow is relatively complex, and results are sensitive 
to the chosen settings of the parameters. Consequently, quality control was highly 
critical for this study. Nevertheless, we would like to stress the value of further 
validation of the proposed workflow, e.g. by validating candidate ENSMs using 
targeted amplicon sequencing in excitatory neurons. Besides these technical 
aspects, RNA editing events and transcription errors that happen in RNA 
sequences might also be identified as somatic mutations using this workflow, 
which may explain the recurrent mutations that we identified. However, the 
association between this type of mutation and AD or aging could also be 
interesting.53 Another limitation of this study is the relative narrow age range of 
the included individuals. Moreover, ages above 90 were censored to be 90. These 
two factors may explain that we only found a relative weak association between 
age and the accumulation of somatic mutations. On the other hand, the significant 
trend after removing individuals with an age higher than 90 might also suggest 
that nonagenarians and centenarians generally have a healthier individual 
genome. Another limitation of our work is that heterozygous variants from the 
WGS data were ignored in this study (due to potential ambiguity as a result of 
differences in gene expression). Therefore, many potential somatic mutations 
were excluded from the start. Also, to reduce the effect of technical noise, we 
need more than 10% of the reads to support a mutational base, which may 
exclude the mutations present in just one or a few neurons. Finally, as 10x 
scRNA-seq data was used to detect somatic mutations, only variants located on 
the DNA that gets transcribed into mRNA were detected. 

Our study has explored the feasibility of using scRNA-seq data to generate 
potential new insights into the association of AD and aging with brain somatic 
mutagenesis. It should be noted that follow-up studies with larger cohorts are 
required to validate our findings. 

5.4. Methods 

Case selection 
The scRNA-seq data and WGS data were obtained from the Religious Order 
Study (ROS) and the Rush Memory and Aging Project (MAP), two longitudinal 
cohort studies of aging and dementia.17 Information collected as part of these 
studies, collectively known as ROSMAP, includes clinical data, detailed post-
mortem pathological evaluations and tissue omics profiling. The scRNA-seq data 
used in this project were from three sources: 1) snRNAseqMFC study (n=24), 2) 
snRNAseqAD_TREM2 study (n=32), and 3) snRNAseqPFC_BA10 study (n=48); 
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specifically, these three studies used single-nuclei RNA sequencing data. All 
specimens for these three scRNA-seq data sources were collected post-mortem 
from the frontal cortex, sub-regions might slightly differ between studies. The 
scRNA-seq data from the three studies were all sequenced according to the 10x 
Genomics manufacturer’s protocol. Detailed information for cell partitioning, 
reverse transcription, library construction, and sequencing run configuration for 
the three studies is available on Synapse (snRNAseqMFC: syn16780177, 
snRNAseqAD_TREM2: syn21682120, snRNAseqPFC_BA10: syn21261143). 
WGS data was from a subset of the ROSMAP participants with DNA obtained 
from brain tissue, whole blood or lymphocytes transformed with the EBV virus. 
The details for WGS library preparation and sequencing, and WGS Germline 
variants calling were described previously.18 The individuals (n=90) that have 
both scRNA-seq data and WGS data (27 from brain tissue and 63 from whole 
blood) available were selected for this study. Individuals annotated with no 
cognitive impairment or mild cognitive impairment were defined as non-demented 
(ND) controls; AD patients with or without other cause of cognitive impairment 
were defined as AD samples. 

Standard Protocol Approvals, Registrations, and Patient 
Consents 
The ROS/MAP studies and sub-studies were all approved by an Institutional 
Review Board of Rush University Medical Center and all participants signed an 
informed consent, Anatomical Gift Act, and a repository consent to share data 
and biospecimens. 

Cell type annotation 
Each scRNA-seq dataset was separately processed for clustering and cell type 
annotation which was done as follows. The processed count matrix was loaded 
in Seurat (version 3.2.2). The data was log-normalized and scaled before 
analysis. Next, with the 2,000 most variable genes (default with Seurat), principal 
components analysis (PCA) was performed. The number of principal components 
used for clustering was determined using the elbow method. Further, Seurat’s 
FindNeighbours and FindCluster functions were used, which utilizes Louvain 
clustering, the resolution was set at 0.5. A UMAP plot (eFigure 1) was made to 
visualize and inspect the clusters. The following cell types were identified using 
known and previously used markers: excitatory neurons (SLC17A7, CAMK2A,  
and NRGN), inhibitory neurons (GAD1 and GAD2), astrocytes (AQP4 and 
GFAP), oligodendrocytes (MBP, MOBP, and PLP1), oligodendrocyte progenitor 
cell (PDGFRA, VCAN, and CSPG4), microglia (CSF1R, CD74, and C3) and 
endothelial cells (FLT1 and CLDN5).19 Based on the markers’ expression patterns 
across clusters determined by Seurat’s FindMarkers function, cell types were 
assigned to cells (eAppendix 1). When clusters were characterized by markers 
of multiple cell types, they were assigned “Unknown”. 

scRNA-seq short variants calling 
Single nuclei RNA reads were mapped to the reference human genome GRCh37 
using STAR aligner (STAR v2.7.9a). After alignment, duplicate reads were 
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identified using MarkDuplicates (Picard v2.25.0) and reads with unannotated cell 
barcodes were removed using samtools (smatools v1.11). Reads containing Ns 
in their cigar string were splitted into multiple supplementary alignments using 
SplitNCigarReads (GATK v4.2.0.0) to match the conventions of DNA aligner. 
Base Quality Recalibration was performed per-sample to detect and correct for 
patterns of systematic errors in the base quality scores using BaseRecalibrator 
and ApplyBQSR (GATK v4.2.0.0). Short variant discovery was performed on 
chromosome 1-22 with a two-step process. HaplotypeCaller was run on each 
sample separately in GVCF mode (GATK v4.2.0.0) producing an intermediate file 
format called gVCF (for genomic VCF). gVCFs from each individual were 
combined together and run through a joint genotyping step (GATK v4.2.0.0) to 
produce a multi-sample VCF file. eFigure 2 indicates the steps of scRNA-seq 
short variants calling in a flow chart. Variant filtration was then performed using 
bcftools (bcftools v1.11). A basic hard-filtering referring to GATK technical 
documentation20 was performed using cutoffs of 1) the total read depth DP 
<50000; 2) the quality of calling QUAL >100; 3) the quality by depth QD >2; 4) 
the strand odds ratio SOR <2; and 5) the strand bias Fisher's exact test FS <10. 

Identical individual check using IBD estimation 
To make sure the sequences of scRNA-seq and WGS are matching and from the 
same individual, we performed a pairwise identical by descent (IBD) estimation 
using filtered variants from scRNA-seq and WGS in a combined VCF file. The 
estimation was calculated using PLINK v1.9. The proportion IBD value PI_HAT 
from the output of PLINK was used as the estimator, when the profiles are from 
the same individual the PI_HAT value will be close to 1, otherwise it will be close 
to 0. 

Somatic mutation detection using VarTrix 
VarTrix, a software tool for extracting single cell variant information from 10x 
Genomics single cell data, was used to detect somatic mutations. For single 
nuclei gene expression data, VarTrix requires a pre-called variant set in VCF 
format, an associated set of alignments in BAM or CRAM format, a genome 
FASTA file, and a cell barcodes file produced by Cell Ranger as input. After an 
exploratory phase, we observed that only cells annotated as excitatory neuron 
had enough read coverage for somatic mutation detection. Therefore, for each 
individual, a subset of the BAM file including only reads from cells annotated as 
excitatory neuron was used as the input of VarTrix. Correspondingly, the pre-
called variant set was also detected from the subset of the BAM file which only 
including barcodes from cells annotated as excitatory neuron. 

Human reference genome GRCh37 was used as the genome FASTA file. In this 
study, VarTrix was run in coverage mode generating a reference coverage matrix 
and an alternate coverage matrix indicating the number of reads that support the 
reference allele and the alternate allele. These matrices were later used for 
filtering variant sites and detecting somatic mutations in the excitatory neurons.  

Since the scRNA-seq data were collected from three studies, the average 
coverage varied between different sources. To minimize the batch effect from 
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different studies, we filtered the variant site based on the read number of each 
individual. Specifically, we calculated a cutoff 𝐶𝑖 for each individual 𝑖 as below: 

𝐶𝑖 =
𝑛𝑖

∑ 𝑛𝑖/𝑁𝑁
𝑛=1

𝐶 

where 𝑛𝑖 is the number of reads for individual 𝑖, and 𝑁 is the total number of 

individuals. The constant value 𝐶 is set as 25 to guarantee that a sufficient 
amount of reads (>5) can support a variant site for every samples. A variant site 
would be used for somatic mutation detection when for all individuals the read 
depth at this site is higher than the cut-off 𝐶𝑖 for that individual. Next, a somatic 
mutation was identified as present in one individual when: 1) the genotype of this 
individual at the site in WGS was ref/ref and the ratio of reads that support the 
alternate allele in scRNA-seq is larger than 0.1 at the same site, or 2) the 
genotype of this individual at the site in WGS was alt/alt and the ratio of reads 
that support the reference allele in scRNA-seq is larger than 0.1 at the same site. 
When the genotype of an individual at a certain site was heterozygote in WGS, 
we ignored the site for that individual, regardless of the allele ratio in scRNA-seq, 
because we cannot distinguish an observed homozygous variant at a site in 
scRNA-seq is due to somatic mutagenesis or reads missing when there is a 
heterozygous variant in WGS at the same site. 

Mutation signature analysis 
To characterize the contribution of mutation signatures, we pooled all putative 
somatic single nucleotide variations (SNVs) for signature analysis. We formatted 
the pooled SNVs in a VCF file and used it as input for running Mutalisk21 with the 
following configurations: maximum likelihood estimation (MLE) method; linear 
regression. The input file was compared with 30 single base substitution (SBS) 
signatures from the COSMIC mutational signatures database. The best model of 
signature combination was suggested from the tool by considering the Bayesian 
information criterion (BIC). 

Variants annotation and effect prediction 
The gene annotation and functional effect prediction for all putative variants were 
performed using SnpEff (SnpEff v5.0)22. The human genome GRCh37 was used 
as reference genome. If there were multiple genes mapping to one variant site, 
the gene having higher putative effect was used for the disease and age 
association analyses. 

GO-term enrichment analysis 
The gene ontology (GO-term) enrichment analysis was performed using topGo 
package (version 2.38.1) in R and compressed by REVIGO with semantic 
similarity score “Lin”. The genes that were annotated to the variant sites with read 
depths higher than the cut-offs for all samples were used as background.  The p-
values from the uneliminated GO-terms were corrected using 
“Benjamini&Hochberg” method, significant results were reported with false 
discovery rate (FDR) <0.05.  
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Statistical analysis 
All calculations were performed using R (version 3.6.3). The R-scripts for 
statistical analysis are available on GitHub: 
https://github.com/mzhang0215/ENSM_project. Wilcoxon rank sum test, linear 
regression, Fisher's exact test, and logistic regression were performed using the 
“stats” R package. By categorizing the “presence” of a somatic mutation as 1 and 
the “absence” of a somatic mutation as 0, the logistic function was defined as: 
𝑝 = 1/(1 + exp (−(𝛽0 + 𝛽1𝑎𝑔𝑒 + 𝛽2𝑔𝑟𝑜𝑢𝑝))), where 𝑎𝑔𝑒 is the age of the sample 

at death, 𝑔𝑟𝑜𝑢𝑝 is the assigned group for the individual based on the cogdx 

category, and 𝛽0..2 are the coefficients of the intercept and the explanatory 
variables. For this analysis, only individuals from the AD and ND group were 
used. 
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Supplementary Figure 1. The UMAP plot for cell type clustering in each study. The details for cell 
type clustering see Methods. Abbreviation: Astro, astrocytes; Endo, endothelial cells; Ex, excitatory 
neurons; Inh, inhibitory neurons; Micro, microglia; Oligo, oligodendrocytes; OPCs, Oligodendrocyte 
precursor cells. 

 

  

Supplementary Figure 2. The pipeline of short snRNA-seq variants calling. This pipeline follows the 
best practices workflows from GATK. 
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Supplementary Figure 3. IBD estimation between paired genetic profiles from WGS and snRNA-
seq. The IBD estimation was performed to ensure the WGS and snRNA-seq profiles which share the 
same identifier were from the same individual. PI_HAT is a measure of overall IBD alleles. If the 
genetic profiles are from different persons, the value PI_HAT will be close to 0. On the contrary, if the 
profiles are from the same person, the value PI_HAT will be close to 1. 
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Supplementary Figure 4. Distribution of sample counts with excitatory neuron-specific somatic 
mutations at the same site. 
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Supplementary Figure 5. The results of mutation signature analysis. In the top panel, we calculated 
the cosine similarity (red line) and the corresponding Bayesian information criterion (BIC, blue line) 
between the 104 putative excitatory neuron-specific SNVs and each of the 30 COSMIC SBS 
signatures using Mutalisk. Signature 5, highlighted in the top panel, showed the highest similarity and 
lowest BIC value. The other top 5 mutational signatures in cosine similarity (i.e., signatures 25, 12, 
26, and 9, except for signature 5) were also highlighted in the top panel, and their mutation patterns 
were shown in the bottom panel. 
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Supplementary Figure 6. The count of mutations regressed with age in AD cases (A) and non-
demented individuals (B). 

  

Supplementary Figure 7. The count of mutations regressed with age. Individuals at age 90 were 
removed from this figure. The significance of the coefficient (β≠0) was tested using t-test. 
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Supplementary Figure 8. The occurrence of somatic mutation with age in (A) RBFOX1 and (B) 

KCNIP4 genes. As a sensitive analysis, samples with age ≥90 were excluded from these figures. 

Red dots: AD cases; blue dots: non-demented (ND) individuals. Logistic regression was used to test 

the prevalence of somatic mutations with increasing age.
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Abstract 
Single-cell transcriptomics can identify disease driver genes and biomarkers with 
high resolution, revealing heterogeneity both between and within individual 
donors. However, current analysis methods often focus on creating reference 
maps of cell types, overlooking phenotypic variation. Recent advances in profiling 
large disease cohorts enable a new approach: directly associating each cell’s 
transcriptional state with phenotypic variation between individuals. We achieve 
this by linking each cell to multiple transcriptional 'neighborhoods' and their 
corresponding phenotypic enrichments based on donor variables. This method 
connects molecular and disease-level variations within and between individuals. 
By using data from 3.4 million cellular transcriptomes across 599 donors, we 
discovered that not all cells from an individual reflect their phenotypic traits, with 
manifestations varying across cell types. Our findings include the identification of 
potential compensatory mechanisms in Alzheimer’s disease, such as 
neurotransmitter switching, and elevated glucose and cortisol levels in excitatory 
neurons, possibly linked to neuronal hyperexcitability, as well as a 
neuroinflammation-regulating process. 

6.1. Introduction 
The majority of human diseases are multifactorial, affecting multiple tissues, cell 
types, and biological processes throughout the body. Even in monogenic 
disorders individual genes often participate in multiple pathways and biological 
processes, acting differently in various cell types and leading to diverse 
manifestations across individuals, tissues and cells. This complexity is further 
amplified in complex traits that are influenced by diverse genetic and 
environmental factors. Capturing this heterogeneity of dysregulation across cells 
is crucial for understanding the wide range of phenotypic manifestations across 
individuals. Such understanding can significantly impact personalized 
therapeutics, by guiding interventions based on each individuals' unique 
biological dysregulation. It can also help identify different subclasses of disease 
and their corresponding molecular manifestations, by linking phenotypic variation 
with potential therapeutic targets in a cell type-specific, pathway-specific, and 
tissue-specific way.  

To enable this understanding, single-cell RNA sequencing (scRNAseq) 
experiments have the potential to enable detailed exploration of cellular 
heterogeneity at the transcriptomic level. However, current analysis paradigms 
implicitly assume that the cells from a given individual uniformly represent the 
phenotype of their respective donors, thereby ignoring within-individual cell 
variation. This results in the current single-cell analysis paradigm that first 
constructs reference maps of discrete cell types and subtypes, and then identifies 
differentially-expressed genes between “cases” vs. “controls” for each group or 
subgroup of cells, thereafter neglecting the cellular variation within individual 
donors. As recent single-cell cohorts include up to hundreds of individuals with 
diverse phenotypes1–4, the opportunity arises to develop new analysis methods 
that exploit between-individual variation. Some methods5,6 have been developed 
that utilize the multi-individual nature of these datasets, allowing the identification 
of cell states associated with disease by exploiting the phenotypic variation 

https://paperpile.com/c/kGPt7Z/NPMjS+3z3TR+4K3D+lOQ5
https://paperpile.com/c/kGPt7Z/JGIQ+Wdub
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among individuals without requiring predefined cell types. Although identifying 
phenotype-specific cell states offers valuable insights into the cellular impacts of 
phenotypes, it tends to overlook the complexity of disease heterogeneity as 
current approaches fail to explore the connection between variations in 
phenotypic traits and differences in cellular phenotypic manifestations. To 
address this, it is essential to determine which donors have cells in the respective 
cell states, as well as to identify other phenotypic characteristics of donors that 
associate with these cell states. 

Alzheimer’s Disease (AD) is particularly amenable to such an approach due to 
its urgency and major health impact, its highly heterogeneous nature, and the 
recent availability of two large-scale scRNAseq studies by our group1 and the 
Jager study2 involving 599 unique donors together. AD is characterized by 
progressive neurodegeneration, loss of cognitive functions, and ultimately death7, 
but its complexity includes multiple phenotypic signatures implicated in AD 
progression, including the amyloid-beta (Aβ) cascade, tau, inflammation, and 
oxidative stress8. These diverse hypotheses suggest heterogeneity among 
individuals, and that the targeting of any one pathway in therapeutic development 
may lead to the currently-observed low success rates in clinical trials9, as different 
pathways may be dysregulated in different individuals. In addition, AD pathology 
does not uniformly affect the brain, instead beginning in the lower brainstem, 
progressing next to subcortical regions, and ultimately to the neocortex. This 
sequential progression, reflected in Braak staging10, has the implication that at 
any given time point, different brain regions in an individual, and likely different 
cells within them, will exhibit very different levels of AD pathology.  

Extending these observations to the cellular level, we introduce an analysis 
framework to calculate cell-projected phenotypes, a new approach for analyzing 
population-scale, multi-condition scRNAseq datasets. Departing from the 
conventional practice of assuming cells uniformly represent the phenotypic 
characteristics of the respective individual, we assign phenotype scores to each 
cell, conceptualizing disease involvement as a spectrum rather than a fixed 
classification. This approach provides a more nuanced understanding of AD, 
reflecting its complex and heterogeneous nature. 

Using cell-projected phenotypes and a total of 3.4 million scRNAseq cellular 
transcriptomes across 599 unique AD and age-matched control individuals, we 
investigated the associations of cell phenotypic manifestations with donor-level 
phenotypes as well as gene regulation circuitries. We discovered that individuals 
diagnosed with AD have subsets of cells that are transcriptionally similar to 
healthy cells from non-affected individuals. We observed distinct phenotypic 
manifestations varying in intensity across different cell types. Additionally, we 
identified nine distinct AD components, each linked to different cell types and 
clinical manifestations. Characterizing these distinct components, we identified 
unique sets of genes and pathways associated. This integration of single cell 
gene expression with population-level phenotype information and molecular data 
opens up new possibilities for better understanding the complex heterogeneity of 
human disease. 

https://paperpile.com/c/kGPt7Z/NPMjS
https://paperpile.com/c/kGPt7Z/3z3TR
https://paperpile.com/c/kGPt7Z/UHFk
https://paperpile.com/c/kGPt7Z/ymyQ
https://paperpile.com/c/kGPt7Z/8FmG
https://paperpile.com/c/kGPt7Z/Zfl8
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6.2. Results 

6.2.1. Cell-level Phenotypic Projections 
Here, we present a new analysis framework to get cell-projected phenotypes for 
analyzing population-scale, multi-condition scRNAseq data (Fig. 1d). We use a 
'guilt-by-association' strategy to systematically assign phenotype association 
scores to individual cells. Unlike traditional approaches that categorize cells 
based on the phenotypic values or categorical disease states of the donor—
thereby oversimplifying the complexity of biological systems—this framework 
calculates phenotype scores for each cell, allowing for a spectrum of phenotype 
or disease involvement rather than a fixed classification. 

Briefly, our approach consists of the following steps: 

First, we define partially overlapping cellular neighborhoods based on 
transcriptional similarities (using miloR5). To ensure cellular neighborhoods 
consist of multiple individuals, neighborhoods with cells coming from fewer than 
three individuals were removed. Additionally, to prevent any single individual's 
phenotypic trait from dominating the results, we downsample individuals with an 
excessively high number of cells, as this could disproportionately increase the 
representation of their cells within any given neighborhood. These neighborhoods 
are derived from the KNN graph and typically results in a distribution centered at 
roughly 50 cells per neighborhood (Supplementary Fig. 1). 

The second step involves calculating the association between these 
neighborhoods and the phenotypic traits of the individuals, while correcting for 
confounding variables(Supplementary Table 1). For example, if 40 out of 50 cells 
in a neighborhood originate from individuals diagnosed with AD, the 
neighborhood is assigned a high positive AD association score. Conversely, if 40 
out of 50 cells originate from non-AD individuals, the neighborhood receives a 
negative AD association score. 

And third, the phenotype associations of the neighborhoods are propagated to 
the individual cells. On average, cells are part of approximately five 
neighborhoods(Supplementary Fig. 2). We reason that the closer a cell is to the 
center of a neighborhood, the more accurately the neighborhood's phenotypic 
enrichment applies to the cell. Therefore, for each cell, we calculate the distance 
to the centers of its neighborhoods and apply a fading-membership function to 
these distances that allows to assign higher levels of importance to the nearest 
neighborhoods. Finally, the cell’s phenotypic score is determined as the weighted 
average of its associated neighborhoods. By calculating cell-projected 
phenotypes we assume that most cells align with the characteristics of the 
donors, which means that, on average, individuals diagnosed with AD have more 
cells with elevated AD scores than individuals with no AD diagnosis. 

Given current technologies and available datasets, we used transcriptional 
definitions of cellular states. However, this approach is generalizable and can be 
applied to single-cell proteomics and future single-cell profiling of metabolic, 
lipidomic, or other cellular states. 

https://paperpile.com/c/kGPt7Z/JGIQ
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6.2.2. Cell-projected phenotypes reveal intra individual 
cellular heterogeneity of phenotype manifestation 
In this study, we used a total of 3.4 million scRNAseq cellular transcriptomes 
across 599 unique AD and age-matched control individuals. The cellular 
transcriptomes were independently profiled in two cohorts1,2 and included 228 
individuals that were independently profiled by both cohorts. To prevent double-
dipping and to provide a measure of generalizability and robustness to our 
results, the cellular transcriptome that were profiled by our group1 were used for 
defining the cellular transcriptional neighborhoods, and the Jager data2 was used 
to derive additional gene expression-informed measures to associate with the 
cell-projected phenotypes. Furthermore, the other dataset was used to validate 
the projected cellular phenotypes.  

We defined 171,470 cellular transcriptional neighborhoods using 1.8 million 
scRNAseq cellular transcriptomes across 397 AD and age-matched control 
individuals(Fig. 1a-c). We projected  eight donor-level characteristics onto 
individual cells: AD diagnosis, amyloid, tangle density, neuritic plaque load, 
cognitive impairment (CI), cognitive resilience (CR) APOE e4 status, and sex 
(Fig. 1c, Supplementary Fig. 3). For each cell, we computed a score indicating 
how much it is related to each of these donor-level characteristics. With cell-
projected phenotypes we are able to distinguish cells that are ‘representative of’ 
and ‘not representative of’ the phenotypic trait of the respective donor, thereby 
offering a more nuanced perspective of cells, phenotypes and their association 
within and between individuals. 

To illustrate that we can distinguish cells ‘representative of AD’ from those ‘not 
displaying AD characteristics’, we analyzed cell-projected AD diagnosis across 
102,991 astrocytes derived from 322 donors, including 182 diagnosed with AD 
and 140 with no AD diagnosis. Our analysis revealed 34k cells exhibiting AD 
characteristics (AD score≥ 0.25), 36k healthy cells (AD score ≤ -0.25), and 33k 
neutral cells (|AD score| ≤ 0.25). As expected, the vast majority of AD-like 
astrocytes (79%) came from diagnosed individuals, and the large majority of 
healthy cells (66%) were from donors with no AD diagnosis. However, 34% of 
healthy-like astrocytes were from AD donors, and 21% of AD-like astrocytes were 
from non-AD donors (Supplementary Fig. 4).These findings suggest that, 
although the transcriptional states of cells generally align with the clinical 
diagnoses of the donors, individuals diagnosed with the disease still possess 
cells that exhibit a healthy-like state. Conversely, individuals without an AD 
diagnosis do have some cells displaying transcriptional profiles characteristic of 
AD, potentially indicating early, preclinical signs of pathology. 

To validate the transcriptional disease states of these cells, we compared gene 
expressions between AD  astrocytes from diagnosed donors and healthy 
astrocytes from non-AD donors, and vice versa. We find 1,124 genes significantly 
differentially expressed (Pbonf≤0.01,Supplementary Table 2) when comparing 
healthy donor-healthy cell vs. AD donor-AD cell. A ~35-fold decrease in the 
number of differentially expressed genes (Supplementary Table 3) was observed 
when  comparing healthy cells from diagnosed and non-AD donors, supporting 
that healthy-like cells in diagnosed individuals resemble those in non-AD donors 

https://paperpile.com/c/kGPt7Z/NPMjS+3z3TR
https://paperpile.com/c/kGPt7Z/NPMjS
https://paperpile.com/c/kGPt7Z/3z3TR
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and underscoring that an individual's phenotypic trait is not uniformly reflected 
across all their cells. 

 

Figure 1: a, b, c, Uniform manifold approximation and projection (UMAP) of the main scRNAseq 
datasets used for calculating the cell-transcriptional neighborhoods where cells are colored by 
coloured by (a) sub cell type (b) diagnosis of the donor and (c) cell-projected AD-scores where blue 
represents a non-AD cell state and red represents an AD cell state, capped at AD-scores of -0.35 and 
0.35. d, The computational steps required to calculate cell-projected phenotypes using microglial cells 
as an example. (1) We start with individual cells, here illustrated with microglia, visualized in a UMAP 
where blue represents cells from non-AD individuals and red represents cells from AD individuals. (2) 
Next, we identify neighborhoods of transcriptionally similar cells. For microglia, there were 6,057 
transcriptional neighborhoods, but for illustration, we show three: Nh#1 (predominantly non-AD cells), 
Nh#138 (approximately 50/50 non-AD and AD cells), and Nh#275 (mostly AD cells). (3) We index the 
donors contributing cells to these neighborhoods to calculate enrichment scores using their 
phenotypic characteristics, depicted with a cell(rows)-neighborhood(columns) membership matrix. (4) 
We then calculate a weighted average for each cell based on the phenotype enrichment score of its 
neighborhoods, assigning higher weights to neighborhoods closely resembling the cells.Finally, we 
present the complete cell(rows)-neighborhood(columns) membership matrix with 6,057 
neighborhoods and 59,000 cells, and display the calculated cell-projected phenotypes in a UMAP. e 
Summary of the included datasets, ROSMAP participants and used measurements e, Overview of 
dataset used. 

6.2.3. Cell type-specific phenotypes uncover differences 
in phenotype manifestations across cell types 
Given our observation that the phenotypic neighborhoods of individual cells from 
the same donor can vary greatly, we aggregated these cell-level scores at the 
cell-type-level across 52 cellular subtypes, to recognize cell-type-level 
manifestation of phenotypes.(Fig. 2a, Supplementary Tables 4-12). We reasoned 
that if phenotypic neighborhoods of individual cells of a certain cell type always 
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correspond to the phenotypic characteristics of the donors, then the phenotype 
is fully manifested in that cell type.   

We observed that AD status (Fig. 2b, r=0.81) and tangle density (Fig. 2b, r=0.84) 
were most effectively represented by the cellular phenotypic states of microglia 
P2RY12, underscoring the critical involvement of microglia and 
neuroinflammation in AD pathology11,12. Reflecting recent literature on the pivotal 
roles of oligodendrocytes and astrocytes in cognitive function, cognitive 
impairment (Fig. 2b) was best represented in the cellular phenotypic states of 
oligodendrocytes13(r = 0.81) and astrocytes14(r≥0.67). And, in agreement with 
evidence that OPCs are differentially influenced by sex hormones15 and show 
transcriptional distinctions between male and female16, sex was almost perfectly 
captured in the cellular phenotypic states of OPCs (Fig. 2b, r=0.91). These 
findings highlight the utility of cell-projected phenotypes in distilling cell type-
phenotype associations, indicating distinct manifestations of phenotypes across 
different cell types. 

Recognizing the circular reasoning of this analysis, we sought to assess the 
robustness and generalizability of cell type-inferred phenotypes by examining 
their capability to predict donor-level phenotypes of new, previously unseen 
donors, using transcriptional profiles of cells from the Jager dataset2. We began 
by training ridge regression models on our dataset, using cell type-inferred 
phenotypes as predictors and donor-level phenotypes as outcomes(Fig. 3c,d). 
For each new cell from the unseen donors, we calculated the transcriptional 
distances to the previously constructed cell neighborhoods and projected the 
phenotype association scores from the nearest neighborhoods onto these new 
cells in a weighted fashion. We then computed "predicted" cell-type-inferred 
phenotypes by averaging the projected cell phenotype scores for each new 
donor, categorized by cell type. These predicted cell-type-inferred phenotypes 
(Supplementary Tables 13-12) were subsequently inputted into the pre-trained 
ridge regression models.  

The association between predicted and measured phenotype was highly 
dependent on the phenotype being predicted. For biological sex (Fig. 3c, p=1x10-

172) and cognitive impairment (Fig. 3d, p=5x10-15) the association between 
predicted and true phenotype showed a highly significant association. Amyloid-
beta load, tangle density, neuritic plaque (Supplementary Fig. 5a, p=4x10-7) and 
AD diagnoses also showed strong significant associations (Fig. 3c,d, p≤4x10-7), 
while APOE e4 status (Supplementary Fig. 5b, p=0.88) and age (Supplementary 
Fig. 5c, p=3x10-3) were more difficult to predict. We reason that the variability in 
associations arises from the way different phenotypes manifest in the prefrontal 
cortex. Consistent with the highly critical function of the prefrontal cortex for 
cognitive functioning17–19, the transcriptional signatures of cells in this region 
correlate with cognitive performance and are therefore predictive. In contrast, the 
prefrontal cortex is pathologically more heavily affected in the later stages of 
Alzheimer’s10,20 and early-stage increases in amyloid levels, tangle density, and 
neuritic plaque load may not be associated with detectable pathological changes 
in the prefrontal cortex, explaining the reduced strength in association for these 
measures, which are here averaged across the brain. 

https://paperpile.com/c/kGPt7Z/TKU2+8s3P
https://paperpile.com/c/kGPt7Z/dLfX
https://paperpile.com/c/kGPt7Z/PKj7
https://paperpile.com/c/kGPt7Z/GBO4
https://paperpile.com/c/kGPt7Z/dH1d
https://paperpile.com/c/kGPt7Z/3z3TR
https://paperpile.com/c/kGPt7Z/s3b5+BRYG+8xRi
https://paperpile.com/c/kGPt7Z/Bkx6+Zfl8
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6.2.4. Cell type-specific phenotypes reveal associations 
with gene expressions obscured by donor-level 
phenotypes 
We next reasoned that the full extent of phenotype associated transcriptional 
disturbances might not be captured by donor-level phenotypic assessments, due 
to the cell-type-specific phenotypic shifts that we are observing across individuals 
(Fig. 2b).  

As an example, for AD-donor #20156469, the transcriptional impact varied 
significantly across different cell types (Supplementary Fig. 6). The microglia 
P2RY12 were relatively unaffected, with an AD score at the 51st percentile (AD 
score = 0.01). In contrast, the oligodendrocytes and astrocyte GRM3 were highly 
transcriptionally affected, with AD scores at or above the 97th percentile (AD 
score ≥ 0.74). Conversely, for AD-donor #50106730, we observed the opposite 
pattern (Supplementary Fig. 7): the oligodendrocytes and astrocyte GRM3 were 
relatively unaffected with AD scores at the 65th (AD score = 0.08) and 34th (AD 
score = -0.15) percentiles, respectively. While the microglia P2RY12 showed 
significant transcriptional impact, scoring in the 98th percentile (AD score = 0.55). 
These two donors show us that the transcriptional impact varies across different 
cell types in different individuals. Using cell-projected phenotype we can exploit 
these differences of phenotype manifestation between individuals for differential 
expression analyses.  

To illustrate this, we performed a differential expression analysis with 
oligodendrocyte-inferred tangle density (Supplementary Table 22) and compared 
it with a differential expression analysis performed with donor-level measured 
tangle density(Fig. 2f, Supplementary Table 23). To prevent double-counting, we 
associated the oligodendrocyte-inferred tangle density score with pseudo bulk 
gene expression data generated using oligodendrocytes from different brain 
samples of overlapping donors (n=178) from the Jager data2. Associated with 
oligodendrocyte-inferred tangle density, we observed more pronounced changes 
in gene expression and a greater number of significant genes(Pbonf ≤0.01, N=703) 
compared to donor-level measured tangle density(N=5, Fig. 2e). The effect sizes 
between the two analyses were significantly correlated(r=0.65, Supplementary 
Fig. 8) and all genes we identified as significantly differentially expressed with 
donor-level measured tangle density were also significantly differentially 
expressed associated with oligodendrocyte-inferred tangle density. Notably, 
METTL7A (Fig. 2f), a methyltransferase, exhibited the most significant expression 
change associated with oligodendrocyte-inferred tangle density and was not 
significant based on the donor-level measured tangle density analysis. Although 
METTL7A’s role in AD and tau aggregation is not well-studied, methylation and 
methyltransferases are recognized as key regulators of tau aggregation and 
neuronal health in AD21.  

Altogether, these results demonstrate the ability of cell-projected phenotypes to 
identify phenotypic shifts and the advantage of accounting for these shifts, 
thereby enhancing our understanding of the relationship between phenotype, cell 
type, and gene expression. 

https://paperpile.com/c/kGPt7Z/3z3TR
https://paperpile.com/c/kGPt7Z/qn9s
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Figure 2: a, The computational steps required to calculate cell-type inferred phenotypes. (1) Starting 
with the cell-projected phenotypes from Fig 1d. (2) For each donor (rows), we calculate the average 
using all their cells (columns), displaying the population averages for cell-projected AD scores and 
microglia-inferred AD scores. Red indicates a high AD-score, and blue indicates a negative AD-score. 
(3) This process is repeated for each cell type,resulting in (b).b, Fifty-two cell-type-inferred phenotype 
(AD, sex, tangle density and cognitive impairment) scores (columns) across 326 donors (rows), 
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ordered by the cell inferred phenotype score. High scores for each cell type are represented in red, 
and low scores in blue. The combined cell inferred score, displayed on the right, is derived from 
predicted donor-level phenotypes using the cell inferred scores as input. Below the plot, cell type 
importance is illustrated, calculated as the Spearman correlation coefficient between the cell inferred 
scores and the combined cell inferred score. Values below or equal to the median are set to zero, 
with the remaining values scaled from 0 to 1. c, Associations between reported donor-level 
phenotypes (x-axis) of  326 donors (left) and 245 previously unseen donors (right) with predicted 
donor-level phenotypes (y-axis), using the predicted cell inferred phenotype scores of AD diagnoses 
and sex. e, Associations between reported donor-level phenotypes (x-axis) of 326 donors (left) and 
245 previously unseen donors (right) with predicted donor-level phenotypes (y-axis), using the 
predicted cell type inferred phenotype scores of cognitive impairment, amyloid-beta load and tangle 
density. e, Results of the differential expression analysis of reported donor-level tangle density (left) 
and oligodendrocytes inferred tangle density (right) with genes expressed in oligodendrocytes 
presented in a volcano plot with gene effect size (β) reported on the x-axis and -log10(p) reported on 
the y-axis. g, Association between METTL7A expression on the x-axis and reported donor-level tangle 
density and oligodendrocytes inferred tangle density on the y-axes. 

6.2.5 Cell type-centric components of Alzheimer’s disease 
and their association with pathological and cognitive 
manifestations 
Calculating the cell type-specific AD scores, we observed that groups of cell types 
exhibit similar AD-phenotypic shifts while simultaneously showing different shifts 
compared to other groups of cell types within the same individuals (Fig. 2b). For 
instance, in the same AD donors from the previous example, donor #20156469 
shows both astrocytes-GRM3 and oligodendrocytes affected by AD, while in 
donor #50106730, both cell types remain relatively unaffected. In both donors, 
this does not translate to the microglia-P2RY12 being affected to a similar degree. 
This observation led us to hypothesize the existence of multiple AD components, 
with individuals affected to varying degrees in different cell types, where each 
component may be characterized by specific donor-level phenotypes. 

To identify these AD components, we performed a correlation analysis between 
the cell type-specific AD scores (Supplementary Fig. 9). Indeed, we observed that 
AD scores in oligodendrocytes were strongly correlated with AD scores in 
astrocyte-GRM3 cells across all donors (r=0.85, p=8x10-91), while showing a 
much weaker correlation with AD scores from e.g., Inh L1-2 PAX6 SCGN cells 
(r=0.17, p=2x10-3). Clustering the cell types based on their similarity of AD scores 
across individuals resulted in the discovery of nine AD components 
(Supplementary Fig. 10, Fig. 3a). 

Next, we investigated the association between these AD components and donor-
level phenotypes. Given that the phenotypes are used to diagnose AD and the 
diagnosis itself informs the calculation of the AD scores, we analyzed only AD 
donors (N = 177) to prevent circular reasoning and the inflation of associations. 

First, we observed that the combined global AD score correlated with all included 
donor-level phenotypes: global pathology (r=0.21, p=6x10-3), amyloid-beta load 
(r=0.27, p=2x10-4), tangle density (r=0.29, p=9x10-5), neuritic plaque (r=0.16, 
p=3x10-2), and cognitive impairment (r=0.29, p=9x10-5). However, we also 
identified outlier donors (Fig. 3b) whose combined global AD scores did not align 
with their diagnoses, which may suggest the presence of cognitive resilience or 
potential misdiagnoses.  
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Further, we observed that the components individually were associated with 
distinct AD-related pathological characteristics(Fig. 3c). Specifically, tangle 
density (Fig. 3d) was significantly correlated (Pbonf≤0.01, r≥0.29) with the Astro-
Oligo(x4), Exc(x5), Exc(x8), and Mic(x2) components. Amyloid-beta load (Fig. 3e) 
was significantly correlated only with the Mic(x2) component, and cognitive 
impairment (Fig. 3f) was significantly correlated only with the Astro-Oligo(x4) 
component. 

These findings demonstrate that increased AD-related transcriptional 
disturbances in astrocytes and oligodendrocytes are associated with more severe 
cognitive impairment and higher tangle density. In contrast, disturbances in 
microglia correlate with higher amyloid-beta load and tangle density. This 
indicates that different pathological facets of AD are linked to transcriptional 
disturbances in distinct cell types. This variation suggests that AD might be best 
understood as a series of distinct but overlapping components, each connected 
to specific cellular dysfunctions and specific pathological characteristics. These 
insights not only redefine our understanding of AD pathology but also highlight 
the potential significance of targeting these specific cellular changes in 
developing future therapies. 

 

Figure 3: a,  Nine cell-type-inferred AD-scores and five reported donor-level phenotypes (rows) of 
317 donors(columns), sorted on the combined AD scores (top row). Red indicates a high value and 
blue a low value. For the original reported AD diagnoses blue is undiagnosed and red is diagnosed 
with AD. b, Relative values of reported donor-level phenotypes of the two most extreme outlier 
individuals, where the combined AD-score did not match the reported donor-level diagnosis. c, 
Associations (spearman rank correlation) between reported donor-level characteristics (rows) and the 
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cell-type-inferred AD-scores (columns). An * indicates significant association at p≤0.01 after 
Bonferroni correction. d,e,f, The increase of the cell-type-inferred AD-scores (y-axis) associated with 
increasing reported donor-level characteristics (x-axis);  tangle density (d), amyloid-beta load (e) and 
cognitive impairment (f), of only AD individuals visualized by sorting the individuals on their reported 
donor-level characteristics and a smoothed (LOESS) line representing each of the cell-type-inferred 
AD-scores. The spearman's rank correlation coefficients reported in the figures are calculated on the 
actual underlying (non-smoothened) data. 

6.2.6. Cell-type-specific Alzheimer components linked to 
transcriptional alterations in distinct processes 
To gain better insight into what might be driving these cell-type-specific AD 
components, we conducted differential gene expression analyses. For each AD 
component identified in our dataset, we sought differentially expressed genes in 
pseudobulk data from the de Jager data, focusing on the contributing cell types 
and overlapping individuals (Supplementary Table 24). We then performed gene 
set enrichment analyses for each set of differentially expressed genes 
(Supplementary Table 25). Our findings reveal that pathways related to 
neurotransmitters, metabolism, neurodegeneration, the immune system, and 
metal homeostasis are predominantly disrupted associated with varying cell-type-
specific AD components (Fig. 4a, Supplementary Fig. 11). Notably, we found 
evidence of neurotransmitter switching, neuronal hyperexcitability, and TRP 
channel-associated inflammatory pathology, all of which may serve as potential 
therapeutic targets. 

6.2.7. Neurotransmitter dynamics and potential switching 
associated with the inhibitory-neuron components 
Specifically, we identified six AD components significantly associated with 
transcriptional alterations in neurotransmitter-related pathways (Pbonf ≤ 0.01, Fig. 
4b). Building on this observation, we hypothesized that these components of AD 
might be associated with alterations in neurotransmitter abundance itself. To test 
this hypothesis, we identified a metabolite dataset measured from the 
dorsolateral prefrontal cortex of 521 donors, 160 of whom overlapped with our 
study. Our analysis revealed significant changes in the abundance of one 
neurotransmitter (arachidonoyl ethanolamide), four neurotransmitter precursors 
(tyrosine, choline, glutamine, and tryptophan), and cortisol, which regulates 
various neurotransmitters (Fig. 4c).  

We also detected sings of neurotransmitter switching. Specifically, choline levels 
were significantly downregulated with increasing pathology in the inhibitory-
neuron component of AD (Fig. 4c,d; r = -0.29, P = 2x10-4). In alignment with a 
known compensatory mechanism22, we observed upregulation of a gene 
encoding a choline transmembrane transporter (Fig. 4e; SLC44A1, β=0.22, P = 
1x10-7), however surprisingly, this was in parvalbumin-positive neurons (Inh 
PVALB HTR4). Parvalbumin-positive neurons typically utilize GABA for inhibitory 
signaling. However, the increased expression of SLC44A1 suggests that these 
neurons may switch to using acetylcholine, for which choline is a precursor. This 
process, termed neurotransmitter switching 23,24, can occur under stress or 
toxicity conditions and has been documented in Parkinson's disease 25. The 
cholinergic system, crucial for cognitive function26, is notably vulnerable in 

https://paperpile.com/c/kGPt7Z/G1NN
https://paperpile.com/c/kGPt7Z/V4eL+lx5z
https://paperpile.com/c/kGPt7Z/nz5A
https://paperpile.com/c/kGPt7Z/7Pvm
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Alzheimer's disease27,28. Parvalbumin-positive neurons may adopt excitatory 
roles in an attempt to maintain the critical balance between excitatory and 
inhibitory signaling in the brain. 

Consistent with literature29–31, together, these findings suggest a widespread 
dysregulation of neurotransmitter processing and signaling in AD pathology.  

6.2.8. Elevated brain-glucose and cortisol levels linked to 
the excitatory neuron component indicate neuronal 
hyperexcitability 
We also observed many metabolic-related pathways significantly associated with 
seven AD components (Fig. 4f). Oxidative phosphorylation exhibited aberrant 
gene expression in 16 sub-cell types linked to the Inh (x18) and Exc (x5) 
components of AD, underscoring the well-known role of oxidative phosphorylation 
in AD.  

Further, in our investigation of the excitatory neuron-centric components of AD, 
we identified dysregulation in the cAMP signaling pathway associated with 
neuronal hyperexcitability. Hyperexcitability is driven by reduced GABA levels32, 
leading to decreased inhibitory control over excitatory neurons. AD is 
characterized by reduced GABA levels33. Consistent with this, we observed 
significant downregulation of two genes (GABBR1 and GABBR2) that interact 
with GABA and are also involved in the cAMP signaling pathway. These genes 
were markedly downregulated in relation to the excitatory neuron-centric 
components of AD (Exc (x5): pbonf = 1x10-5, r = -0.39; Exc (x8): pbonf = 4x10-5, r = 
-0.38). Additionally, cortisol levels (Fig. 4c), known to reduce GABA levels and 
enhance neuronal excitability34, were significantly elevated in association with 
these excitatory neuron components. Further compounding the hyperexcitability, 
hyperexcitability increases the metabolic demands of neurons, which may explain 
the elevated glucose levels observed in relation to the excitatory neuron-centric 
components (Fig. 4g,h, Exc (x5): pbonf = 2x10-3, r = 0.32; Exc (x8): pbonf = 3x10-3, 
r = 0.31). 

6.2.9. TRP channels and arachidonoyl ethanolamide as 
promising targets for potential Alzheimer’s therapies 
We identified multiple disrupted immune-related pathways associated with four 
AD components (Fig. 4i, Exc (x5), Exc (x8), Inh (x18), and Ast-Oli (x4)). In 
oligodendrocytes, there was increased expression of genes involved in NF-kappa 
B signaling(Pbonf = 1.7x10-4). NF-kappa B activation has been suggested as a 
protective mechanism in oligodendrocytes against inflammation35. Additionally, 
Exc (x8) and Inh (x18) were linked to the regulation of inflammatory mediators of 
TRP channels(Pbonf ≤3.7x10-3). TRP channels, including TRPV1 and TRPA1, are 
activated by inflammatory mediators and contribute to neuroinflammatory 
responses. The increased activity of these channels can lead to enhanced 
production of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6, 
exacerbating the inflammatory environment in the AD brain36. Furthermore, both 
Exc(x8) and Inh(x18) were associated with decreased arachidonoyl 

https://paperpile.com/c/kGPt7Z/g7mM+7yAm
https://paperpile.com/c/kGPt7Z/60u6+bRa3+zkxJ
https://paperpile.com/c/kGPt7Z/BFsL
https://paperpile.com/c/kGPt7Z/Flav
https://paperpile.com/c/kGPt7Z/W266
https://paperpile.com/c/kGPt7Z/JyVl
https://paperpile.com/c/kGPt7Z/j2rJ
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ethanolamide levels (Fig. 4c, Pbonf ≤ 1.5x10-3, r ≤ -0.29). Lower arachidonoyl 
ethanolamide levels can result in increased expression of TRP channels, leading 
to greater calcium influx and amplified cellular responses to inflammation37. 
Activation of TRP channels also influences amyloid precursor protein (APP) 
processing and Aβ production. Specifically, TRPM7 activation has been shown to 
prevent AD-related Aβ neuropathology, which is pivotal in AD pathology38. 
Arachidonoyl ethanolamide exhibits significant anti-inflammatory and 
neuroprotective properties by modulating the endocannabinoid system and 
interacting with cannabinoid receptors (CB1 and CB2), which regulate pain, 
mood, and inflammation39. These findings suggest that TRP channels and 
anandamide could be promising targets for potential AD therapies. 

 

Figure 4 a, Significantly as pathways in specific sub-cell-types associated with the cell-type-inferred 
AD-scores. b, Significant dysregulated neurotransmitter-related pathways, colors indicate normalized 
effect size where red indicates that the genes of the respective pathways (rows) are significantly 
upregulated in the respective cell types (columns), associated with the respective cell-type-inferred 
AD-scores (bottom row). An * indicates significant gene set enrichment at p≤0.01 after Bonferroni 
correction.c, Association (spearman rank correlation) between neurotransmitters (precursors and 
regulator, rows) from the metabolite data and the cell-type-inferred AD-scores (columns). An * 
indicates significant association at p≤0.01 after Bonferroni correction. d, Association between the 
Inh(x8) inferred AD-scores (x-axis) and brain-choline levels (y-axis). e,Association between the 
Inh(x8) inferred AD-scores (x-axis) and choline transmembrane transporter (SLC44A1) in Inh PVALB 
HTR4 (y-axis). f, Significant dysregulated metabolic-related pathways, colors indicate normalized 
effect size where red indicates that the genes of the respective pathways (rows) are significantly 
upregulated in the respective cell types (columns), associated with the respective cell-type-inferred 
AD-scores (bottom row). An * indicates significant association at p≤0.01 after Bonferroni 
correction.g,h, Association between Exc(x5) (g) and Exc(x8) (h) inferred AD-scores(x-axes) and 
brain-glucose.i,Significant dysregulated immune-related pathways, colors indicate normalized effect 
size where red indicates that the genes of the respective pathways (rows) are significantly 
upregulated in the respective cell types (columns), associated with the respective cell-type-inferred 
AD-scores (bottom row). An * indicates significant association at p≤0.01 after Bonferroni correction. 

https://paperpile.com/c/kGPt7Z/9W6k
https://paperpile.com/c/kGPt7Z/6VWx
https://paperpile.com/c/kGPt7Z/qUFR
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6.3. Discussion 
In this work, we introduced cell-projected phenotypes to address the need for 
analytical approaches that utilize the rich phenotypic data from recent large-scale 
single-cell profiling of disease and biobank cohorts, which encompass hundreds 
of individuals with diverse phenotypes. By computing cell-projected phenotypes, 
we were able to uncover heterogeneity in cellular phenotype manifestations both 
within and between individuals. This approach allowed us to redefine phenotypes 
at the level of individual cell types for each person, leading to a more nuanced 
understanding of the transcriptional disturbances and dysregulated pathways 
associated with these phenotypes. 

In contrast to existing methods like MiloR5 and CNA6, which focus on phenotypic 
variation among individuals within the context of cellular neighborhoods, our 
approach goes beyond the neighborhood. These existing methods are limited to 
investigating aberrant gene expression within localized cellular environments or 
specific cells linked to a phenotype. However, we believe that the strength of the 
rich phenotypic data lies in its potential to be mapped back to the donor level. By 
mapping phenotypic manifestations back to the donor-level, we can explore 
additional phenotypic characteristics that may be associated with, for example, a 
more severe manifestation of AD in astrocytes. Moreover, in cohorts such as 
ROS/MAP40, where other donor-level molecular measurements (e.g., 
proteomics, metabolomics) are available, mapping back to donor space enables 
the investigation of how other aberrant molecular processes correlate with 
variations in phenotypic manifestations across different cell types in individuals.  

This work demonstrates that recognizing the variation in phenotypic 
manifestations within a cell type across individuals provides a deeper 
understanding of the transcriptional disturbances associated with these 
phenotypes. It challenges the existing paradigm, which typically constructs 
reference maps of discrete cell types and subtypes, followed by identifying 
differentially expressed genes between “cases” and “controls” within each cell 
group or subgroup. This traditional approach does not fully capitalize on the rich 
phenotypic data now available. Through our study using single-cell RNA-seq 
data, we have introduced a systematic approach that reveals: (a) not every cell 
from an individual exhibits the transcriptional signature of that individual's 
phenotypic traits; (b) phenotypes are expressed to varying degrees across 
different cell types; and (c) even among individuals with the same phenotypic 
traits, different cell types may be involved. 

By moving beyond the existing paradigm, we identified a potential compensatory 
mechanism in AD, specifically neurotransmitter switching25. Our findings include 
elevated levels of glucose and cortisol, associated specifically with the excitatory 
neuron components of AD, which may be linked to neuronal hyperexcitability, as 
well as the identification of a potential neuroinflammation-regulating process in 
AD. 

It is important to acknowledge that our phenotype scores are derived from 
transcriptional data. However, the extensive ROSMAP cohort40, coupled with the 
availability of the Jager data2 from the same brain region that included different 

https://paperpile.com/c/kGPt7Z/JGIQ
https://paperpile.com/c/kGPt7Z/Wdub
https://paperpile.com/c/kGPt7Z/XQ9f
https://paperpile.com/c/kGPt7Z/nz5A
https://paperpile.com/c/kGPt7Z/XQ9f
https://paperpile.com/c/kGPt7Z/3z3TR
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samples from overlapping individuals, enabled us to calculate cell type-specific 
phenotype scores from one sample and correlate these with gene expression-
based measures from the other sample. Conducting this analysis within a single 
dataset could have introduced circular reasoning, but the unique composition of 
the ROSMAP cohort provided a robust framework for these analyses, effectively 
mitigating such concerns. 

Altogether, this study not only advances our understanding of AD at a cellular 
level but also pioneers a new paradigm for analyzing scRNAseq data across 
conditions. By using population-scale datasets to investigate intra-individual 
heterogeneity and cross-individual similarities, our approach challenges 
conventional scRNAseq analysis techniques that typically ignore the complex 
spectrum of phenotypic expression across cell types. The insights from our 
research underscore the need for a more nuanced interpretation of scRNAseq 
data, which considers the heterogeneity of disease and cellular behavior within 
and across individuals. Moving forward, it is important that we refine these 
analytical methodologies to fully make use of the rich, multidimensional 
information offered by scRNAseq data. This could lead to more precise diagnostic 
tools and targeted therapies, tailored not only to diseases but also to the 
individual variabilities within patient populations. Our findings serve as a 
foundation for rethinking how single-cell genomics can be employed to dissect 
and understand the biology underlying human health and disease. 

6.4. Methods 

Single cell RNAseq datasets 
Two scRNAseq datasets were acquired from the Religious Orders Study and 
Rush Memory and Aging Project (ROSMAP)40. Both scRNAseq datasets were 
composed of cells originating from the dorsolateral prefrontal cortex. The first 
dataset1 (our study) was acquired from the Synapse Portal (syn52293433). This 
dataset was already pre-processed. In short, gene counts were obtained by 
aligning reads to the GRCh38 genome using Cell Ranger. Doublets and poor 
quality cells were excluded, resulting in the dataset that we obtained that is 
composed of 2,359,994 cells from 427 individuals. Cell types were annotated 
using previously published marker genes and single-cell RNA-sequencing data. 
For a more detailed description of the pre-processing and cell type annotation we 
refer to the methods section of Hansruedi et al1. 

The second scRNAseq dataset2 (Jager) was also acquired from the Synapse 
Portal (syn51123521). This dataset was also already pre-processed. In short, 
gene counts were obtained by aligning reads to the GRCh38 genome using Cell 
Ranger. Doublets and poor quality cells were excluded, resulting in the dataset 
that we obtained that is composed of 1,638,882 cells from 465 individuals. Cells 
were annotated into eight major cell types (excitatory neurons, inhibitory neurons, 
astrocytes, microglia, oligodendrocytes, OPCs, endothelial, and pericytes). For a 
more detailed description of the pre-processing and cell type annotation we refer 
to the methods section of Green et al41. 

https://paperpile.com/c/kGPt7Z/XQ9f
https://paperpile.com/c/kGPt7Z/NPMjS
https://paperpile.com/c/kGPt7Z/NPMjS
https://paperpile.com/c/kGPt7Z/3z3TR
https://paperpile.com/c/kGPt7Z/IjQ6


 

 

141  

Metabolite dataset 
The metabolite data42 were acquired from ROSMAP through the Synapse Portal 
(syn25878459). The metabolite profiles were measured from the dorsolateral 
prefrontal cortex using the untargeted metabolomics platform from Metabolon 
Inc. For a more detailed description of the metabolite profiling pipeline we refer 
to the methods section of 42. In total, the dataset consisted of 521 individuals and 
969 metabolites. First we removed the individuals that were not measured in the 
Our scRNAseq dataset, leaving us with 160 individuals. Next, we removed 
metabolites that were measured in less than 80% of the individuals (N=32) and 
log normalized the data, leaving us with a dataset composed of 160 individuals 
and 592 metabolites. Remaining missing values were imputed with the R-
package eimpute (v0.2.3)43.  

Clinical and metadata 
The clinical and metadata were provided to us by ROSMAP and were available 
for all individuals included in the two scRNAseq datasets and metabolite dataset. 
The clinical data that were used in this work were; NIA-Reagan diagnosis of AD 
(niareagansc), mean of percent area of cortex occupied by amyloid beta of eight 
brain regions (amyloid), mean tangle density of eight brain regions (tangles), 
mean neuritic plaque burden of five brain regions (plaq_n), global cognitive 
function (average of 19 cognitive tests, cogn_global_lv) and global pathology 
burden (gpath). For a more detailed description of the clinical data we refer to 
(https://www.radc.rush.edu/docs/var/variables.htm). Beside these clinical 
variables, we also calculated cognitive resilience to AD (CR), which is defined as 
unexplained variation in global cognitive function given the global pathological 
burden of individuals. We calculated this by fitting a linear regression model with 
global cognitive function as outcome variable (y) and global pathology burden as 
predictor variable (x) and taking the residuals. Global cognitive function was 
inverted by multiplying it by -1 and referred to as cognitive impairment. And sex 
was also inverted where 1 represents female and 0 represents male. Metadata 
that were used in this work were, age of death, post-mortem interval (pmi), sex 
(msex), fixation interval (fixation_interval) and which study the individuals were 
part of; ROS or MAP (study). 

Harmonizing cell type annotations between single cell 
RNAseq datasets 
Our scRNAseq was annotated at a higher resolution (54 sub cell types) than the 
Jager scRNAseq dataset (eight cell types). As such, we used our dataset as 
reference to annotate the Jager scRNAseq dataset at the same resolution. First, 
per major cell type, as annotated in the Mathys dataset (excitatory neurons, 
inhibitory neurons, vasculature cells, OPCs, oligodendrocytes, astrocytes and 
immune cell), we constructed reference datasets, such that each reference set 
contained 1,000 randomly selected cells of each sub cell type. Then, we matched 
the major cell types from both datasets. Next, per major cell type, in chunks of 20 
individuals, we used the FindTransferAnchors, TransferData and AddMetaData 
functions from Seurat (v4.1.0)44 to perform label transfer from the reference sets 
to the cells from the Jager scRNAseq dataset. Quality of the label transfer was 

https://paperpile.com/c/kGPt7Z/mCJ0
https://paperpile.com/c/kGPt7Z/mCJ0
https://paperpile.com/c/kGPt7Z/UdFz
https://www.radc.rush.edu/docs/var/variables.htm
https://paperpile.com/c/kGPt7Z/XGjY


 
142 

assessed by comparing marker genes from our scRNAseq dataset and marker 
genes from the newly identified Jager scRNAseq dataset.  

Generating pseudo bulk datasets  
Using the Jager scRNAseq dataset, for each sub cell type we generated pseudo 
bulk gene expression datasets. We did this by binarizing the gene expression 
values of the single cells, such that every zero remains a zero and every value 
≥1 is assigned a 1. Previous work of ours45 showed that for scRNAseq datasets 
with large numbers of cells and many individuals, calculating binary-based 
pseudo bulk performs better than count-based pseudo bulk, resulting in less false 
positives. Per individual, per gene, we calculated the proportion of measurements 
(1s), to get the relative expressions of the genes of that individual within the sub 
cell type. An individual was excluded for a specific sub cell type if that individual 
had less than 10 cells of the respective sub cell type. And individuals were 
excluded when too few genes were measured in the respective sub cell type 
relative to the other individuals. The lower-bound threshold for this was defined 
as the median of measured genes for all individual minus the IQR*2. For each 
pseudo bulk dataset median ratio normalization46 was applied, followed by batch 
correction using combat from the R-package sva (v3.44.0)47.  

Cell phenotypic projections 
In order to calculate cell projected phenotype a normalized scRNAseq dataset 
and meta data containing phenotypic information about the individuals within the 
scRNAseq dataset are required. First, miloR5 is used to create a k-nearest 
neighbors (KNN) graph, where cells are connected based on transcriptomic 
similarities (euclidean distance). Using this KNN graph, overlapping 
neighborhoods are identified, such that a cell can belong to multiple 
neighborhoods. This results in neighborhood index matrix M with dimensions c×n, 
where c is the number of cells and n is the number of neighborhoods, where a 1 
indicates membership of a cell to a neighborhood. For each neighborhood, the 
cell count per individual is determined, resulting in a neighborhood-by-individual 
count matrix. Then, association between neighborhood and a user defined 
phenotype is tested using NB GLM from edgeR48. During this step TMM 
normalization is used to account for different numbers of cells across individuals 
and covariates can be added to account for confounding factors. The resulting 
log fold-changes, representing neighborhood scores, are stored in vector S. 
Using the neighborhood index matrix M and the vector of neighborhood scores S 
we perform a column wise multiplication which replaces the binary indicators with 
the neighborhood scores, resulting in matrix N.  

Next, for each individual cell we calculate the euclidean distance to each of the 
neighborhoods it belongs to and apply a fading membership function to the 
distances, also known as a softmax function, to provide the ability to assign larger 
weights to closer neighborhoods. The neighborhood scores in matrix N are 
multiplied by the calculated weights. As the weights sum to one, the cell score is 
calculated by taking the sum of the weighted matrix N.  In the context of AD, a 
cell receives a high score when surrounded in the KNN graph by cells from 

https://paperpile.com/c/kGPt7Z/XqlY
https://paperpile.com/c/kGPt7Z/9JfE
https://paperpile.com/c/kGPt7Z/Ywxj
https://paperpile.com/c/kGPt7Z/JGIQ
https://paperpile.com/c/kGPt7Z/Ayxk
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individuals diagnosed with AD, indicating transcriptional similarity. Conversely, a 
low score occurs when surrounded by cells from healthy individuals. 

Pre-processing scRNAseq datasets for cell projected 
phenotypes 
We calculated cell projected phenotypes for each of the major cell types 
separately. First, individuals with too few cells were removed <Q1 (number of 
cells of all individuals). And individuals with too many cells (>median + IQR *2) 
were down-sampled as this could possibly confound the testing of differential 
abundance per neighborhood. Next, using Seurat, we log normalized the count 
matrix, such that  yij =log((xij/jxij))104  , where xij and yij are the raw and 
normalized values for every gene i in every cell j, respectively. Next, we identified 
2,000 highly variable features sew Seurat’s vst method, scaled the count matrix 
and used the 2,000 highly variable genes to run principal component analysis 
(PCA). Using the PCs of the cells we calculated the lisi score (R-package v1.0)49 
to filter out cells that were on average transcriptionally similar to cells coming from 
<3 individuals. As such, ensuring that neighborhoods are composed of at least 3 
individuals.  

Calculating  cell projected phenotypes 
With the pre-processed scRNAseq datasets we used miloR5 (v1.3.6) to calculate 
the KNN graph (k = 30) per major cell type based on the first twelve PCs and to 
identify the neighborhoods of transcriptionally similar cells, such that the number 
of neighborhoods is 10% of the total number of cells. A relatively high k and low 
number of neighborhoods are required to ensure that neighborhoods are 
sufficiently overlapping. Next, per neighborhood, per individual the number of 
cells are counted. Next, the cell counts of these neighborhoods were tested using 
the NB GLM from edgeR(v3.37.4)48 on associations as described in 
Supplementary Table 1. The resulting log fold changes of the neighborhoods 
were weighted with the fading membership function (fading factor = 0.3) and 
propagated to the individual cells as described in the previous section (see 
methods: Cell phenotypic projections).  

Calculating cell type specific phenotypes and proportions 
of AD-like cells 
Using the cell specific phenotype associations we calculated cell type specific 
phenotypes. We did this by taking the mean phenotype score per individual, per 
sub cell type. Sub cell types were excluded when less than 100 individuals had 
cell specific phenotype scores for that respective sub cell type. Individuals were 
excluded when the respective individual had cell specific phenotype scores for 
less than 20 sub cell types. Remaining missing values were imputed with the R-
package eimpute (v0.2.3)43.  

https://paperpile.com/c/kGPt7Z/qzc4
https://paperpile.com/c/kGPt7Z/JGIQ
https://paperpile.com/c/kGPt7Z/Ayxk
https://paperpile.com/c/kGPt7Z/UdFz


 
144 

Clustering cell type specific AD scores to get AD 
components 
To identify the distinct AD components we clustered the sub cell type inferred AD 
scores. To identify sub cell types with similar scores across individuals we first 
regressed out the first PC to remove the variation shared between all sub cell 
types (mainly AD diagnosis). Next, we performed hierarchical clustering with 
complete linkage, where the distance was defined as 1 – Spearman’s correlation 
coefficient between sub cell types. We cut the tree at h = 0.9, resulting in eight 
clusters. After visually inspecting the dendrogram we separated the OPCs from 
the microglia (P2RY12 and TPT1) clusters, due to the relatively large distance of 
the OPCs to the microglia. To get the AD components, we re-calculated the AD 
scores, but now within the clusters of sub cell types. 

Predicting cell projected phenotypes of new cells 
To predict cell projected phenotypes of new unseen cells, first, using the dataset 
for which we have cell projected phenotypes we obtain the 200 most correlated 
genes with the projected phenotypes. Using these 200 genes we calculate the 
euclidean distance between the new cells and the existing neighborhoods of 
matching cell types. For each cell, using the five closest neighborhoods we apply 
the fading membership function (fading factor = 0.1), and sum the weighted 
association scores (of any phenotype) of the respective neighborhoods that 
become the predicted cell projected phenotypes.  

Predicting donor-level phenotypes 
First, we utilized our dataset to train a ridge regression model for each phenotype, 
with the cell type-inferred phenotype scores serving as predictors and the 
reported donor-level phenotype as the outcome variable, using the R package 
glmnet (v4.1.8)50. For binary phenotypes, we used a logistic ridge regression. Cell 
types were selected based on a Spearman correlation of ≥ 0.5 between the 
observed and predicted cell type-inferred phenotype scores using the individuals 
that we measured in both our dataset and the Jager dataset. The lambda 
parameter was optimized through 10-fold cross-validation, and the optimal 
lambda was subsequently applied in the final training of the ridge regression 
model. The trained models were then used to predict donor-level phenotypes of 
previously unseen individuals. The association between predicted and reported 
continuous phenotypes was assessed using Spearman's rank correlation, while 
the association of binary phenotypes was evaluated using a t-test, comparing the 
reported donor-level phenotypes with the outcome probabilities from the logistic 
ridge regression. 

Differential expression analysis 
Differential expression analyses were performed between the nine AD 
components and genes expressed in the sub cell types that compose the 
respective AD component. The differential expression analysis we performed 
using a simple linear regression with the AD component as predictor variable and 
the pseudo-bulk genes as dependable variable, while correcting for post mortem 
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interval, study (ROS or MAP),sex and fixation interval. Per sub cell type 
Bonferroni correction was used to correct for multiple testing and significance was 
assumed at Pbonf≤0.01. 

Gene set enrichment analysis 
Gene set enrichment analyses were done using the fgsea R-package (v1.24.0)51. 
For each sub-cell-type the genes were sorted on their t value, representative of 
the association with the AD components calculated during the differential 
expression analysis. Enrichment was tested for KEGG pathways52 with at least 5 
genes at most 500 genes.The database was downloaded from the web server 
(https://maayanlab.cloud/Enrichr/#libraries) of EnrichR53.  
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Supplements 

 

Supplementary Figure 1: Distribution of neighborhood sizes, shown per major cell type (panels) with 
neighborhood size (x-axis) and the number of neighborhoods with the respective neighborhood size 
(y-axis). Excitatory neurons were run in three sets due to the number of excitatory neurons cells 
profiled.  
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Supplementary Figure 2: Distribution of the number of neighborhoods a cell belongs to. shown per 
major cell type (panels) with the number of neighborhoods per cell (x-axis) and the number of cells 
with that many neighborhoods (y-axis). Excitatory neurons were run in three sets due to the number 
of excitatory neurons cells profiled.  

 

 

Supplementary Figure 3, Uniform manifold approximation and projection (UMAP) of the main 
scRNAseq datasets used for calculating the cell-transcriptional neighborhoods coloured by cell-
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projected phenotype-scores where blue represents a low phenotype scores and red represents high 
phenotype scores, capped at phenotypes-scores of -1 and 1. 

 

 

Supplementary Figure 4, Boxplots of 322 donors (x-axis) and their cell projected AD scores for 
astrocytes, showing which individuals primarily have cells in alzheimer state ≥0.25 and which in a 
healthy state≤-0.25. Bleu boxplots are donors that reported to be non-AD individuals and red boxplots 
are donors reported to be diagnosed with AD.  

 

Supplementary Figure 5: Associations between reported donor-level phenotypes (x-axis) of 245 
previously unseen donors with predicted donor-level phenotypes (y-axis), using the predicted cell type 
inferred phenotype scores of neuritic plaque(a), APOE4 status (b) and age (c). 
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Supplementary Figure 6 Distribution of Microglia P2RY12, Oligodendrocytes and Astrocytes GRM3 
inferred AD scores, and the position of individual #20156469 in that distribution, indicated with a 
vertical line.  

 

Supplementary Figure 7: Distribution of Microglia P2RY12, Oligodendrocytes and Astrocytes GRM3 
inferred AD scores, and the position of individual #50106730 in that distribution, indicated with a 
vertical line. 

 

Supplementary Figure 8: Association between effect sizes of differential expression analysis 
performed with oligodendrocyte inferred tangle density score (x-axis) and differential expression 
analysis performed with reported tangle density(y-axis). 
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Supplementary Figure 9: Correlation (spearman rank correlation coefficient) between 52 cell-type-
inferred AD scores(row and columns).  
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Supplementary Figure 10: Dendrogram (complete linkage; default) based on 1-spearman rank 
correlation coefficient between cell type inferred AD scores. 
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Supplementary Figure 11: Significantly dysregulated pathways in specific sub-cell-types associated 
with the cell-type-inferred AD-scores. 
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Abstract 
Single-cell RNA sequencing data is characterized by a large number of zero 
counts, yet there is growing evidence that these zeros reflect biological variation 
rather than technical artifacts. We propose to use binarized expression profiles 
to identify the effects of biological variation in single-cell RNA sequencing data. 
Using 16 publicly available and simulated datasets, we show that a binarized 
representation of single-cell expression data accurately represents biological 
variation and reveals the relative abundance of transcripts more robustly than 
counts. 

7.1. Introduction 
Single cell RNA sequencing (scRNAseq) data is highly sparse, and the common 
belief is that the zero values are primarily caused by technical artifacts (often 
referred to as dropouts). Although more zeros are observed in scRNAseq data 
than expected, these can largely be explained by biological rather than technical 
factors(1). Also, the amount of zeros in scRNAseq is in line with distributional 
models of molecule sampling counts(2, 3). These distributional models show that 
a zero observation is not simply a missing-value, as a missing-value would 
provide no information. On the contrary, a zero observation for a gene reveals 
that the respective gene is unlikely to be highly expressed(3). Methods that utilize 
zero observations for feature selection(4),(5) and cell type clustering(6) have 
recently been developed and perform better or comparable with methods relying 
on the continuous expression values of highly variable genes. For instance, 
Qiu(6) binarized scRNAseq count data, where each zero remains zero and every 
non-zero value was assigned a one. With this binary representation, cell type 
clusters were identified based on co-occurrence of transcripts. Yet, it is not clear 
whether differences in the number of zeros for a gene also reflect differences 
across distinct biological cell populations. Therefore, we investigated whether 
biological differences across cell population can be identified using Binary 
Differential Analysis (BDA), rather than the commonly used differential 
expression analysis (DEA). Instead of relying on changes in the expression value 
of genes across cell populations, which can be sparse and are subject to pre-
processing steps, we analyzed the binary expression patterns across biological 
distinct cell populations, i.e. are there more (or less) zeros for a gene in condition 
A compared to condition B. Taken together the main contribution of our work is 
that we show that the binarization of gene expression is biologically relevant and 
can be used to test for differences between a wide variety of groupings, and that 
this holds across different datasets, as well as different single-cell protocols. 

7.2. Results 

7.2.1. BDA competitive with Wilcoxon Rank Sum test 
As proof of concept, we performed BDA with a simple logistic regression on 
binarized expression profiles from 16 scRNAseq datasets (662,825 cells in total, 
Table 1). We compared the results of BDA-LR with those of differently expressed 
genes (DEGs) detected using the commonly used  Wilcoxon Rank Sum test, 
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which is also top ranked for single cell analyses(9),(24). We tested each gene 
using both BDA-LR and DEA for differences between conditions (6 datasets), cell 
types (6 datasets) and normal- versus cancerous tissues (4 datasets, Fig. 1a). 
Across all datasets, a total of 96,275 significant genes (PFDR ≤ 0.05) were 
identified with either BDA-LR (92,381 genes) or DEA (91,521 genes). Of these, 
87,627 were identified by both tests, resulting in a Jaccard index of 0.91. This 
high degree of agreement is also reflected in each individual dataset (median = 
0.92, minimum = 0.76, and maximum = 0.99). We did not use a log fold-change 
(logFC) or log odds-ratio (logOR) threshold, as for each dataset and comparison 
different thresholds are appropriate. In all datasets, the logFC and logOR were 
significantly (spearman) correlated (median(ρ) = 0.90, minimum(ρ) = 0.49, and 
maximum(ρ) = 0.98, P ≤ 5 × 10-100). The three datasets with the lowest correlation 
coefficient between logOR and logFC (ρ ≤ 0.62) were datasets generated using 
the Smart-seq protocol (Table 1). Across the datasets, we observed an average 
increase of 1.80 in logOR (median = 1.70, Q1 = 1.59, Q3 = 2.10), for every 
increase in logFC (see Fig. 1b for the cancer atlas (2) dataset(8)). The high 
degree of agreement of detected genes shows that BDA-LR performs on par with 
the Wilcoxon Rank Sum test and the strong correlation of the logFC and logOR 
across all datasets shows that the results can be interpreted in a similar way. 

Table 1 Single cell datasets included in this study 

Dataset No. 
Unique 
individu
als 

No. 
Cells 

No. 
Gen
es 

Contrastin
g 
subpopulat
ion defined 
by: 

Descripti
on 

Protoc
ol 

Referen
ce 

Alzeheimer's 
Disease (AD) 

14 13.21
4 

10.8
50 

Control vs 
AD 

Entorhina
l cortex 

10x 
Chromi
um 

(21) 

Major 
Depressive 
Disorder 
(MDD) 

34 78.88
6 

30.0
62 

Control vs 
MDD 

Prefrontal 
cortex 

10x 
Chromi
um 

(31) 

Type 2 
Diabetes 
(T2D) 

10 3.514 26.2
71 

Control vs 
T2D 

Pancreas Smart-
seq2 

(32) 

Coronavirus 
Disease 2019 
(COVID19) 

13 44.72
1 

26.3
61 

Control vs 
COVID19 

PBMCs Seq-
Well 

(33) 

Lung 
adenocarcino
ma (LUAD, 
Lung) 

22 88.14
4 

29.6
34 

Normal 
tissue vs 
cancerous 
tissue 

Lung 10x 
Chromi
um 

(34) 

Lung 
adenocarcino
ma (LUAD, 
Lymph node) 

17 54.57
7 

29.6
34 

Normal 
tissue vs 
cancerous 
tissue 

Lymph 
node 

10x 
Chromi
um 

(34) 

Four cancers 
(T-cells) 

14 132.5
49 

22.8
15 

Normal 
tissue vs 
cancerous 
tissue 

Colon, 
Endo, 
Lung, 
Renal 

10x 
Chromi
um 

(35) 

Aging Mouse 
Atlas FACS 

14 74.15
7 

22.9
66 

3m vs 24m Aging 
mouse 

Smart-
seq2 

(7) 
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Aging Mouse 
Atlas Droplet 

11 83.26
2 

20.1
38 

3m vs 24m Aging 
mouse 

10x 
Chromi
um 

(7) 

Allen Brain 
Atlas 
(Medialis 
temporalis 
Gyrus) 

8 14.68
9 

48.3
04 

Inhibitory 
neurons vs 
Excitatory 
Neurons 

Medialis 
temporali
s Gyrus 

Smart-
Seq v4 

(36) 

Colorectal 
Cancer 

23 63.50
2 

27.9
46 

Normal 
tissue vs 
cancerous 
tissue 

Colon 
CRC 
cells 

10x 
Chromi
um 

(37) 

Cortex 
Neurons 

5 9.451 28.9
85 

Inhibitory 
neurons vs 
Excitatory 
Neurons 

Cortex 10x 
Chromi
um 

(25) 

Cortex 
Oligodendroc
ytes 

5 307 28.9
85 

OPC vs 
ODC 

Cortex 10x 
chromiu
m 

(25) 

Substantia 
Nigra 

7 4.711 28.9
85 

OPC vs 
ODC 

Substanti
a Nigra 

10x 
chromiu
m 

(25) 

Cancer atlas 
(1) 

171 33.34
6 

50.7
05 

Regulatory 
T cells vs T 
helper cells 

Cancer 
atlas 

Multiple (8) 

Cancer atlas 
(2) 

162 30.10
5 

48.9
42 

Naive-
memory 
CD4 T cells 
vs 
Transitional 
memory 
CD4 T cells 

Cancer 
atlas 

Multiple (8) 

 

7.2.2. BDA among the best performing tests on simulated 
data 
To compare the performance of binary methods with methods relying on counts 
in a controlled manner, we simulated scRNAseq data with muscat(10) using the 
provided dataset as reference(11). We generated scRNAseq data with varying 
number of cells and 25% of differentially expressed genes. With 1,000 and 2,000 
simulated cells, DEsingle(14) performed the best as the F1-score (Fig. 1c)  and 
positive predictive value (PPV, S Fig. 1) were the highest and the false positive 
rate (FPR, S Fig. 2) was the lowest. However, this performance comes at a cost 
in terms of considerably required computational time (S Fig. 3a). For that reason, 
we excluded DEsingle when simulating 5,000 and 10,000 cells (running time 
>20min). All binary-based methods performed consistently good, with 1,000 and 
2,000 cells ranking tightly together. BDA-fisher and BDA-Phi had decreased 
relative performance with 5,000 and 10,000 cells, while the performances of 
BDA-chisq and BDA-LR were also among the best with 5,000 and 10,000 cells. 
Taken together, this shows that differences in the frequency of zeros between 
groups can represent biological variation and can most accurately be detected 
with BDA-chisq and BDA-LR in a time efficient manner. 
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Figure 1 a, Heatmap of the dataset characteristics, general overview of the results of both BDA-LR 
and DEA per dataset, and a comparison of the results. The rows represent the datasets, the first 
column shows the cell populations that were used as contrast for testing. b, Plot of the logOR and 
logFC of the Cancer Atlas (2) dataset. The x-axis represent the logFCs of each tested gene, and the 
y-axis represent the logORs for the same genes. The blue lines shows the linear association between 
the logFC and logOR. The Spearman's rank correlation coefficient (ρ) is also shown in the plot. c 
Barplots of the F-score of four BDA methods and 12 DEA methods on simulated data. Numbers above 
the barplots show the number of cells that were generated within the simulation. Height of bar defines 
the median value from 25 simulations, error bars are the first and third quartile.   d Two density plots 
of MTUS2 from cortex neuron dataset. The top plot shows the density of MTUS2 in inhibitory neurons 
and the bottom plot shows the density of  MTUS2 in excitatory neurons. e Two density plots of Gnb2I1 
from the aging mouse atlas droplet dataset. The top plot shows the density of Gnb2I1 in 3-month-old 
mice and the bottom plot shows the density of  Gnb2I1 in 24-month-old mice. Both d and e are 
supported with fraction of zeros and variance of each cell population.  
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7.2.3. Differences in test outcomes explained by 
differences in variance between contrasting cell 
populations 
Despite the observed association between mean expression and number of 
zeros, which has been previously described(2), and similar performance of the 
two tests, there were 4,754 and 3,894 genes uniquely identified using BDA and 
DEA, respectively, across all datasets. To better understand these differences, 
we highlighted two extreme exemplar cases that were not significant differentially 
expressed (PFDR ≥ 0.05), while they were binary differential genes (BDGs, PFDR ≤  
5.27 × 10-115). In the cortex dataset(25), MTUS2 had significantly less zeros in 
excitatory neurons (logOR = 1.30, PFDR|BDA = 5.27 × 10-115, Fig. 1d) compared to 
inhibitory neurons, while the median expression levels were not significantly 
different (logFC = -1.70 × 10-3, PFDR|DEA = 5.70 × 10-2), implying additional high 
ranked expressions for every additional zero. In the aging mouse atlas droplet 
dataset(7),  Gnb2l1 had significantly less zeros in the 3-month-old mice (logOR 
= -0.67, PFDR|BDA = 1.81 × 10-122, Fig. 1e) compared to the 24-month-old mice, 
while again the median expression levels were not significantly different (logFC 
= 3.15 × 10-3, PFDR|DEA = 6.97 × 10-1). These examples show that differences in 
variance between contrasting cell populations can interfere with the association 
between observed zeros and mean expression, resulting in disparities between 
BDA and DEA. Of note, most BDGs-only and DEGs-only had small differences in 
P-values between the two tests i.e. a borderline significant difference in frequency 
of zeros while not having a significant difference in median expression (S Fig. 4). 
The mean PFDR for the 4,754 genes uniquely identified using BDA was 9.57 × 10-

3, while the mean PFDR of the same genes using DEA was 3.18 × 10-1. As for the 
3,894 genes uniquely identified using DEA the mean PFDR of BDA was 3.45× 10-

1 and mean  PFDR of DEA was 8.56 × 10-3. 

7.2.4. Binary differential genes are not driven by 
technological or biological process 
To exclude that the differentially behaving genes between BDA and DEA 
associate with a specific technological or biological process, we investigated 
whether there were genes repeatedly detected by a one of the two methods. In 
most cases, genes that were identified as BDG-only (or DEG-only) were found 
within a single dataset (S Fig. 5a, S Fig. 5b), suggesting the absence of a driving 
process for them. 

7.2.5. Binary differential genes validated with bulk RNA 
sequencing data 
To provide additional insight that differences in zero observations are indeed 

biologically relevant and represent differential abundance we compared the 
results of the Alzheimer’s Disease (AD) dataset(21) (entorhinal cortex) with DEA 
analysis performed on a bulk RNAseq AD dataset(19), an approach followed by 
others(26). The bulk RNAseq datatset was comprised of samples from the 
fusiform gyrus. For genes measured in both, the scRNAseq dataset and the bulk 
dataset (N = 2,177), the majority of BDG-only (59.4%) were also differentially 
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expressed in bulk (Fig. 2a). The logOR of the single cell analysis was also 
significantly correlated with the logFC of the bulk analysis (ρ = 0.39, P = 9.70 × 
10-79, Fig. 2b). Similarly, in a second dataset(22), 65.9% of the BDG-only genes 
were differentially expressed in bulk samples from the frontal cortex, temporal 
cortex and hippocampal formation (S Fig 6). Given that the differences in zero 
observations for genes between the tested groups (expressed in logOR) highly 
correlates with the differences in median expression in bulk RNAseq data 
(expressed in logFC), and that the majority of BDG-only were still detected in 
bulk, further emphasizes that binarized scRNAseq expression data can be used 
to detect differentially abundant genes.  

 

Figure 2 a, Venn diagram of genes detected (PFDR ≤ 0.05) in a bulk AD dataset (Friedman, et al), in 
the single cell AD dataset with BDA-LR (BDGs) and with DEA (DEGs). Each section shows the 
number and percentage of genes belonging to that section. b Plot of the logFC from the AD bulk 
dataset (x-axis) and the logOR from the single cell AD dataset (y-axis). The red line represents the 
linear association between the bulk logFC and logOR. The Spearman's rank correlation coefficient 
(ρ) and corresponding association p-value are also shown. Outlier genes (n = 9, b) were removed 
from the plots. 

7.2.6. Binarization with a threshold of one most 
appropriate for BDA 
To test the binarization scheme, we performed a BDA on the AD dataset for binary 
profiles generated with different thresholds for binarization (thresholds ranging 
from one to ten counts). Naturally, for every increase in the threshold, the number 
of genes with zero measurements across all cells increased, resulting in a 
decreasing number of tested and significant genes (S Fig 7a, S Fig 7b). With 
higher thresholds, we found a decrease in correlation of the logORs from BDA 
with the logFC from DEA (S Fig 7c). These results show that the default 
binarization scheme where zeros remain zero and every non-zero value is 
assigned a one, is indeed appropriate. 

7.3. Discussion 
Altogether, our results show that binarized expression patterns across cell 
populations represent biological variation and can be used as measure of relative 
abundance of transcripts. Across 16 datasets and a variety of contrasting cell 
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populations (disease vs healthy, cell types, and cancer status), BDA detected 
biologically relevant genes that were missed by DEA. While the performance of 
BDA and DEA on real data is largely comparable, with a known ground truth, BDA 
performed better than DEA on simulated data. Additionally, BDA benefits 
reproducibility and is more robust than DEA, since the only pre-processing step 
required for BDA is the binarization of counts. In contrast, DEA requires 
normalization and transformation of counts, where an analyst can choose from 
an excess of equally valid methods(27). Performing BDA on datasets generated 
using the Smart-seq protocol should be approached with more caution: although 
the agreement of detected genes between BDA and DEA was high, we observed 
the lowest correlation between the logOR and logFC for these datasets. 

With six of the sixteen datasets we performed the differential analyses between 
cell types that were based on clusters that were determined with the expression 
data itself, opposed to a case-control setting. We should note that this is a circular 
analysis (double dipping) and that the resulting p-values in these comparisons 
are thus not guaranteed to be controlled for false discoveries. This is, however, 
still common practice in single-cell differential analyses, as this setup is used to 
identify cell type markers. For the other ten dataset, the results are not 
compromised statistically as the case-control definitions are not based on the 
single-cell data itself.  

In our main approach to test for BDA, we have used logistic regression. A logistic 
regressor for differential expression has been used before(12, 28, 29). These 
previous applications, however, use continuous expression values of genes as 
input, while we propose to use the binary expression value. As for MAST(12), a 
logistic regression on binarized expression values is implemented to take into 
account the zeros (expressed vs. not expressed) and is combined in a hurdle 
model with a linear Gaussian model for the continuous values. In contrast to the 
previously described methods, we show that the frequencies of zeros alone are 
sufficient to capture biological variation and to identify differential expression of 
genes between biologically distinct groups in single-cell data. 

A commonly used term for observed zeros in single-cell data is dropouts. As zeros 
in single-cell data can largely be explained by distributional models of molecule 
sampling counts (2, 3), the use of the term dropout can be misleading, as 
indicated by Sarkar and Stephens (3). This work contributes to clarifying the origin 
of zeros in single-cell RNAseq data, by showing that the frequency of zeros can 
actually be used to identify biological differences. 

Performing BDA is normalization-free, time efficient and an accurate alternative 
for DEA for which we see three potential use cases. First, BDA could be 
performed in isolation as a fast and accurate alternative to DEA. For different use 
cases, different BDA tests can be used. For more complex study designs BDA-
LR could be used as it allows to adjust for covariates, allowing to take into account 
biological replicates, which decreases false discoveries(30). More 
straightforward designs could be performed with BDA-chisq. Second, BDA could 
be performed in addition to DEA to identify more genes. Finally, BDA could be 
used to validate pre-processing, normalization and DEA as a big discrepancy 
between the BDGs and DEGs could indicate an aberration in the DEA results. 
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7.4. Methods 

Single-cell RNA-seq datasets 
In total, 16 scRNAseq dataset (14 human and 2 mouse) were used to investigate 
the utility and biological relevance of binarized expression profiles of genes (Table 
1). All datasets had pre-annotated cell types and conditions. From the 
corresponding references, un-normalized count matrices were acquired, and only 
annotated cells were kept for further analysis. For each dataset, we extracted the 
annotated cell type, patient ID, and to which of contrasting cell population the cell 
belonged from the included meta data. This was slightly different for the aging 
mouse atlases and cancer atlas. For the aging mouse atlases(7), instead of 
annotated cell types we retrieved the tissue names. For the cancer atlas(8), the 
contrasting cell populations were defined by cell type, so we retrieved the tissue 
and the cancer-type for each cell. Each dataset was separately pre-processed. 
For the Binary Differential Analysis (BDA), the count matrices were transformed 
to a binary representation, where each zero remain zero and every non-zero 
value was assigned a one. For the differential expression analysis (DEA), each 

count matrix was log-normalized using Seurat 3.2.2(9), such that: 𝑦𝑖𝑗 =

 log (
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗𝑗
× 104), where 𝑥𝑖𝑗 and 𝑦𝑖𝑗 are the raw and normalized values for every 

gene 𝑖 in every cell 𝑗, respectively. This normalizes the feature expression 
measurements for each cell by the total expression, multiplies this by a scale 
factor (10,000 by default), and log-transforms the result. The cancer atlas was 
already normalized, as it was a merger of multiple datasets.  

Statistical analysis 
Association p-values were corrected for multiple tests with the Benjamini-
Hochberg procedure and significance was assumed at an adjusted P-value of 
PFDR ≤ 0.05. Spearman's rank correlation coefficient and the associated p-values 
were calculated using the cor.test function in R v4.0.2. 

Differential expression analysis 
DEA was performed using the Wilcoxon Rank Sum test using the FindMarkers 
function in Seurat 3.2.2(9). Note that the Wilcoxon Rank Sum test from Seurat 
takes into account zero measurements, and handles them as ties between 
contrasting cell populations. Genes coding for ribosomal proteins were excluded 
and we only tested genes that were expressed in at least 10% of the cells in either 
of the respective groups of interest. This is the default option in the FindMarkers 
function and speeds up testing by ignoring infrequently expressed genes. Genes 
coding for ribosomal proteins were excluded.  Association p-values were 
corrected for multiple tests.  

Binary Differential Analysis (BDA) 
As the sampling process of biomolecules is the main cause for generating zeros, 
as illustrated by Svensson(2) and  Sarkar and Stephens(3). The probability of 
measuring a gene is dependent on the relative abundance; more abundant genes 
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are less likely to result in a zero observation. Extrapolating this to a population of 
cells, the number of zeros for a gene is representative of the abundance within 
the respective cell population and differences in the number of zeros between 
two groups of cells is representative of differential abundance. Lastly, we assume 
that within a single-cell experiment zeros induced by stochastic processes are 
not confounded by the groupings. In other words, a stochastically induced zero 
is equally likely to happen in either cell population, as such, in this setting can be 
ignored. 

Implementation 
In the main analyses, to statistically test for significant differences of zero 
observations between pre-defined groups in scRNAseq data, we used a logistic 
regression (BDA-LR). Specifically, the glm(family = “binomial”) function in R 
v4.0.2, with the binarized expression pattern of the genes as outcome variables 
and the grouping (i.e. healthy vs diseased) as predictor variable. We have used 
logistic regression because it allows to add covariates to correct for potential 
confounding factors. Moreover, predictor variables as well as covariates can be 
continuous, allowing for complex study designs. All genes that were tested with 
DEA were also tested with BDA. The resulting association p-values were 
corrected for multiple tests (see Statistical analysis). In addition to logistic 
regression, we used the Chi-squared test (BDA-chisq), the Fisher's exact test 
(BDA-fisher) and binary Pearson’s correlation (BDA-Phi) on the simulated data. 
The Chi-squared test and the Fisher's exact tests were performed with the 
chisq.test() and fisher.test() R functions, respectively. These tests were 
performed for each gene on the contingency table representing the binarized 
gene expression against the pre-defined groupings. The binary Pearson’s 
correlation was calculated between each binarized gene and the pre-defined 
groupings and performed with the cor.test() R function, where one group was 
defined as 0 and the other groups as 1. In a binary setting the outcome statistic 
of Pearson’s correlation is called Phi (φ).  

BDA – DEA comparison 
For the comparison between BDA and DEA, we investigated agreement and 
disagreement between detected genes and the linear association between the 
logOR and logFC. Agreement was calculated by the Jaccard index, i.e. number 
of genes that both tests commonly detected, divided by the total number of genes 
that were detected. Agreement was calculated on the combination of all datasets 
and for each individual dataset. The disagreement was investigated by means of 
inspecting characteristics of BDGs-only and DEGs-only. BDGs-only were defined 
as genes that were detected (PFDR ≤ 0.05) by BDA and were not detected (PFDR > 
0.05) by DEA. Conversely, DEGs-only were defined as genes that were detected 
(PFDR ≤ 0.05) by DEA and were not detected (PFDR > 0.05) by BDA. The 
Spearman's rank correlation coefficients between the logOR and logFC were 
calculated with the estimates of all tested genes of the respective datasets. The 
scale differences for every dataset, between logOR and logFC, were calculated 
with a linear model on the estimates of all tested genes of the respective datasets, 
using the lm function in R v4.0.2. The logOR was specified as outcome variable 
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and the logFC as predictor variable. The resulting slopes were interpreted as 
scale differences between the logOR and logFC 

Simulation 
Data was simulated with muscat 1.2.1(10). The provided PBMC dataset(11) was 
used as reference. 100 simulated datasets were generated with varying sample 
sizes (1,000 cells, 2,000 cells, 5,000 cells and 10,000 cells), 25 simulations per 
sample size. For each simulation 1,000 genes were generated of which 25% were 
differently expressed between two groups of equal size. For all tests we 
calculated the False Positive Rate (FPR), Positive Predictive Value (PVV) and 
accuracy (F1-score) per simulation. Performance was evaluated of 12 DEA 
methods. 8 methods implemented in Seurat (wilcox, bimod, t, negbinom, poisson, 
LR, MAST(12), DESeq2(13)), 4 additional methods (DEsingle(14), BPSC(15), 
monocle(16), limmaVoom(17)) and 4 BDA methods (logistic regression, chi 
squared test, Fisher’s exact test and binary Pearson’s correlation). For the 
runtime benchmark, each run of the simulation of every tests was also timed with 
proc.time()function in R. Tests requiring more than 20 minutes computational 

time on one simulated dataset were excluded.  

Validation with existing bulk RNA-seq data 
The AD bulk RNA-seq datasets were acquired from Gemma(18). The first dataset 
from Friedman, et al(19) consisted of 33 controls (CT) and 84 samples from 
individuals diagnosed with Alzheimer’s Disease (AD) collected from the fusiform 
gyrus. This dataset was reprocessed by Gemma and no batch effects were 
present. For the differential expression analysis in bulk we used the Wilcoxon 
Rank Sum test from limma v3.44.3(20). In total, 2,228 genes were tested for 
differential expression, as these genes were also included in the scRNAseq AD 
dataset(21) analysis. The second dataset from Hokama, et al(22) consisted of 47 
controls and 32 AD samples. The samples originated from the frontal cortex (NCT 
= 18, NAD = 15), temporal cortex (NCT = 19, NAD = 10) and hippocampal formation 
(NCT = 10, NAD = 7). The data was reprocessed and batch corrected by Gemma. 
For the differential expression analysis no distinction was made between brain 
regions. In total, 2,001 genes were tested for differential expression. All resulting 
association p-values were corrected for multiple tests. For validation, the 
significant BDGs and DEGs from the scRNAseq AD dataset analyses were 
compared with the significantly differentially expressed genes from the bulk 
analyses. Venn diagrams were plotted with ggVennDiagram(v0.3)(23). 
Correlations were calculated between the logOR and logFC of the single-cell 
analysis with the bulk logFC. 
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Supplements 

 

Supplementary Figure 1 Barplots of Positive predictive value (PPV) of four  BDA and 12 DEA 
methods on simulated data. Numbers above the barplots shows the number of cells that were 
generated within the simulation. Height of bar defines the median value from 25 simulations, error 
bars the first and third quartile. 

 

Supplementary Figure 2 Barplots of False positive rate (FPR) of four  BDA and 12 DEA methods on 
simulated data. Numbers above the barplots shows the number of cells that were generated within 
the simulation. Height of bar defines the median value from 25 simulations, error bars the first and 
third quartile. 
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Supplementary Figure 3 Results of the timing benchmark. Y-axis represents runtime in seconds on 
a log2 scale and X-axis the number of cells. Dots are median runtimes based on 25 runs. Squares 
(DESingle at 5,000 and 10,000 cells) are based on one simulation, as it exceeded the 20 minute 
threshold only one run was available. 

 

Supplementary Figure 4 LogOR – LogFC plot of the Aging mouse atlas droplet dataset. X-axis 
represents the effect size of differences in frequency of zeros (logOR) and the y-axis represents the 
effects size of differences of median expression (logFC). Red dots are genes significantly detected 
by both tests. Purple dots are genes that do not show a significant difference according to both tests. 
Green dots were only detected with BDA and blue dots were only detected with DEA. 
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Supplementary Figure 5a , Bar plot of the number of genes that were identified as DDG-only in i 
datasets. The x-axis represent the number of datasets and the y-axis represent the number of genes 
that were found with that many datasets. For instance, 2740 genes were detected with a single 
dataset and 3 genes were detected with 5 datasets.  b, Bar plot of the number of genes that were 
repeatedly identified as DEG-only. The x-axis represent the number of datasets and the y-axis 
represent the number of genes that were found with that many datasets. 

 

Supplementary Figure 6, Venn diagram of genes detected (PFDR ≤ 0.05) in bulk AD dataset (Hokama, 
et al), in the single cell AD dataset with BDA and with DEA. Each section shows the number and 
percentage of genes belonging to that section 
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Supplementary Figure 7a, Bar plot of total number of tested genes at each binarization threshold. 
The x-axis represents the binarization threshold and the y-axis represent the number of genes that 
were tested with that threshold. b, Bar plot of total number of significant genes (PFDR ≤ 0.05) at each 
binarization threshold. The x-axis represents the binarization threshold and the y-axis represent the 
number of genes that were significant with that threshold. c, Pearson’s correlation coefficient of the 
logOR of the BDA with different thresholds with the logFC of the DEA. The x-axis represents the 
binarization threshold and the y-axis represents The Spearman's rank correlation coefficient with that 
threshold. d, Upset plot of detected genes (PFDR ≤ 0.05) with a threshold of 1, 2, 5 and DEA (Wilcoxon).  
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Abstract 
With the number of cells measured in single-cell RNA sequencing (scRNA-seq) 
datasets increasing exponentially and concurrent increased sparsity due to more 
zero counts being measured for many genes, we demonstrate here that 
downstream analyses on binary-based gene expression give similar results as 
count-based analyses. Moreover, a binary representation scales up to ~50-fold 
more cells that can be analyzed using the same computational resources. We 
also highlight the possibilities provided by binarized scRNA-seq data. 
Development of specialized tools for bit-aware implementations of downstream 
analytical tasks will enable a more fine-grained resolution of biological 
heterogeneity. 

8.1. Background 
Since its introduction, single-cell RNA sequencing (scRNA-seq) has been vital in 
investigating biological questions that were previously impossible to answer[1–
4]. Continuous technological innovations are resulting in a consistent increase in 
the number of cells and molecules being measured in a single experiment. 
However, at the same time, datasets appear to become sparser, i.e. more zero 
measurements across the whole dataset. The sparsity has generally been seen 
as a problem, especially since standard count distribution models (e.g. Poisson) 
do not account for the excess of zeros. [5–8]. This sparked discussions about 
whether the excess of zeros can be explained by mainly technological or 
biological factors[5,8–10]. Jiang et al.[8] discuss the ‘zero-inflation controversy’, 
in which a distinction is made between a biological zero, indicating the true 
absence of a transcript, and a non-biological zero, indicating failure of measuring 
a transcript that was present in the cell. Similarly, Sarkar and Stephens[11] make 
a distinction between measurement and expression. They proposed a model that 
is a combination of an expression model that encodes the true absence of a 
transcript, i.e. a (biological) zero, with a measurement model, for which they use 
a Poisson model (which can result in non-biological zeros due to limited 
sequencing depth). Consequently, even non-biological zeros encode useful 
biological information as then the gene is unlikely to be highly expressed. Or, in 
other words: all zeros in scRNA-seq datasets have biological significance. 
Aligned with this, Qui et al. [12] proposed to ‘embrace’ all zeros as useful signal 
and developed a clustering algorithm requiring only binarized scRNA-seq data (a 
zero representing a zero count and a one for non-zero counts). Using binarized 
scRNA-seq data, Qui et al. identified clusters similar to clusters identified using a 
count-based approach. Although this was the first paper explicitly embracing 
zeros as useful signal, binarization of scRNA-seq was already used to infer gene 
regulatory networks[13]. Since then, several methods have employed binarized 
scRNA-seq data. For instance, scBFA[14], a dimensionality reduction method for 
binarized scRNA-seq data, showed improved visualization and classification of 
cell identity and trajectory inference when compared to methods that use count 
data. Likewise, we introduced Binary Differential Analysis (BDA)[15], a differential 
expression analysis method relying on binarized scRNA-seq data. We showed 
that differential expression analysis on binary representations of scRNA-seq data 
faithfully captures biological variation across cell types and conditions.  
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Provided that a binarized data representation has the potential to reduce required 
computational resources considerably, and as scRNA-seq datasets are 
becoming increasingly bigger and sparser, we wondered if binary should be the 
preferred data representation for other tasks. In this work, we explore the 
consequences of sparser datasets and the applicability of binarized scRNA-seq 
data for various single-cell analysis tasks. 

8.2. Results and Discussion 
We downloaded 56 datasets published between 2015 and 2021. Based on these 
datasets, a clear association between the year of publication and the number of 
cells can be observed (Pearson’s correlation coefficient of r = 0.46, Fig. 1a). For 
instance, the average dataset in 2015 (n = 7) had 704 cells while the average 
dataset in 2020 (n = 7) had 58,654 cells. Another clear trend that can be seen is 
that an increasing number of cells is highly correlated with decreasing detection 
rates (fraction of non-zero values) (Pearson’s correlation coefficient of r = -0.47, 
Fig. 1b). Note that this trend of measuring more cells per dataset outweighs 
improved chemistry over time, and thus still results in sparser datasets. It is likely 
that this trend will continue over the next years as, for many biological questions, 
shallow sequencing of many cells is more cost effective than deep sequencing of 
a few cells(16). Moreover, by measuring more cells we can better estimate the 
probability whether a gene is expressed, and the overall power to detect 
differentially expressed genes in a given dataset increases [17].This trend will be 
amplified, as more population scale and multi-condition scRNA-seq datasets are 
emerging [17,18], for which a low coverage sequencing is sufficient to capture 
cell type specific gene expression (given enough cells are measured per 
individual and per cell type)[19]. Altogether, these developments will result in 
sparser scRNA-seq datasets with larger numbers of cells. 

As zeros become more abundant, a binarized expression might be as informative 
as counts. Using ~1.5 million cells from 56 datasets, we observed on average a 
strong point-biserial correlation (Pearson correlation coefficient p  = 0.93) 
between the normalized expression counts of a cell and its respective binarized 
variant, although differences between datasets exist (Additional file 1: Fig. S1). 
This strong correlation implies that the binarized signal already captures most of 
the signal present in the normalized count data. This strong correlation is primarily 
explained by the detection rate (Additional file 1: Fig. S2a) and the variance of 
the non-zero counts of a cell (Additional file 1: Fig. S2b). In cells where the 
detection rate is low (many zeros) and the variance of the non-zero counts is 
small, the correlation between the normalized expression values and their binary 
representation is high (Fig. 1c). Across all datasets, the detection rate and 
variance of measured expressions were good predictors for the correlation 
between the binary representation and the normalized representation, although 
differences between technologies exist (Fig. 1d). This indicates that as datasets 
become sparser, counts become less informative with respect to binarized 
expression. 
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Figure 1: More cells, more zeros. Binarized scRNA-seq datasets were generated by binarizing the 
raw count matrix, where zero remains zero and every non-zero value is assigned a one. A) 
Association between year of publication, total number of cells. Scatterplot of the number of cells (log 
scale) against the date of publication. B) Scatterplot of the detection rate (y-axis) against the number 
of cells (log scale, x-axis).  C) On the x-axis the Pearson’s correlation coefficient (p) of every cell from 
the PaulHSC dataset between the binarized and normalized expressions. On the y-axis the product 
of the detection rate and the variance of the non-zero values (q). α is the Pearson’s correlation 
coefficient between these values p and q across all cells. D) Boxplots of the α-values for all 56 
datasets grouped by technology. One dataset (LawlorPancreasData) was excluded as α-value (α = 
0.42) for this dataset was a clear outlier. 

To assess whether counts can actually be discarded in practice, we assessed 
whether binarized data can give comparable results to counts in four common 
single-cell analysis tasks: (1) dimensionality reduction for visualization, (2) data 
integration, (3) cell type identification, and (4) differential expression analysis 
using pseudobulk. First, for dimensionality reduction, we used three different 
dimensionality reduction approaches on binarized scRNA-seq data; (i) scBFA 
[14], (ii) PCA (Fig. 2a), and (iii) eigenvectors of the Jaccard cell-cell similarity 
matrix (see Additional file 2). All three approaches were compared to the standard 
approach of applying PCA to the normalized counts (Fig. 2b, Additional file 1: Fig. 
S3). Further, for all four methods the first ten components were used to generate 
a non-linear embedding using UMAP (Additional file 1: Fig. S4). Qualitatively, we 
observed that the results of binary-based dimensionality reduction are 
comparable to standard count-based methods. This was confirmed quantitatively, 
as the pairwise distances between cells based on the binary-based UMAPs were 
highly correlated with the pairwise distances from the count-based UMAP (r ≥ 
0.73, Additional file 1: Fig. S5). Especially the UMAP generated with the binary-
based PCs  was visually very similar to the UMAP generated with the count-
based PCs (Fig. 2c-d). Calculating the silhouette score (SS) for each cell type 



 

 

177  

with the reduced dimensions (n = 10) resulted in slightly lower scores for scBFA 
(SS = 0.32) and binary-based PCA(SS = 0.39) compared to the count-based PCA 
(SS = 0.44) (Additional file 1: Fig. S6). However, in the UMAP space (2-
dimensional), silhouette scores for scBFA (SS = 0.43) and binary-based PCA (SS 
= 0.42) were higher than count-based PCA (SS = 0.35).   

Second, we integrated three scRNA-seq datasets[20–22] with Harmony[23], 
using count- and binary-based PCA. Both, visually and quantitatively, we 
observed an improved mixing of cells for the binary representation (LISI = 1.18) 
as compared to counts (LISI = 1.12) (Additional file 1: Fig. S7-S8). Third, we 
evaluated the effect of binarization on cell annotation using (i) marker genes and 
(ii) classification methods. Using a set of known brain cell type markers[24], we 
annotated the binarized AD dataset[20] based on solely the detection of 
respective cell type markers (See Additional file 2). The annotations were 
compared to cell type labels that were originally assigned based on the markers' 
expression level (i.e., counts). We observed a high level of concordance between 
annotations as quantified by a median F1-score of 0.93. (Additional file 1: Fig. 
S9). Additionally, we found that the visualization of the binarized expression of 
cell type markers to be highly similar to the visualization of their normalized 
expression in UMAP plots (Fig. 2e-h, Additional file 1: Fig. S10). Next, we 
compared the performance of automatic cell type identification using scPred and 
SingleR[25,26] on 22 datasets for which cell type annotations were available. The 
median F1-scores were highly similar between cell type identifications based on 
the binarized and the normalized count data, despite large variation of 
sparseness between these datasets. This finding implies that counts do not add 
information for cell type identification. This conclusion was further supported by 
randomly shuffling the non-zero counts, which resulted in a comparable 
performance (Fig. 2I, Additional file 1: Fig. S11). 

Forth, we evaluated whether counts can also be discarded when pseudobulk data 
is used for differential expression analysis[18]. In a dataset containing scRNA-
seq data of the prefrontal cortex of 34 individuals[27], we generated pseudobulk 
data by either taking the mean expression of each gene across all cells, or the 
fraction of non-zero values across all cells (detection rate), per individual. The 
Spearman's rank correlation between the binarized profile and the mean counts 
(across all genes) was ≥ 0.99 (Additional file 1: Fig. S12) for every individual, 
implying that pseudobulk aggregation with binarized expression faithfully 
represents counts. To quantify this further, we generated 960 datasets using 
muscat [18] with 96 unique simulation settings (see Additional file 2). In each 
dataset, pseudobulk data for each individual was generated and we identified 
differential expressed genes using Limma trend[28] for the mean gene 
expression and a t-test for the detection rate. In general, the F1-scores for the 
count and binary representations were very similar across the different settings, 
however, with small sample sizes and fewer cells, analyses based on a count 
representation performed better, while analyses based on a binarized expression 
performed better with larger sample sizes and more cells (Additional file 1: Fig. 
S13). Additionally, count-based analyses resulted in more false positives 
(Additional file 1: Fig. S14) while binarized-based analyses resulted in more false 
negatives (Additional file 1: Fig. S15). The false negatives were primarily due to 
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highly expressed genes that show no differences in the detection rate. At larger 
sample sizes and with more cells, the false negatives diminished (Additional file 
1: Fig. S16). All together, these result show that most of the information is indeed 
captured in the binary representation, only when genes have a high detection 
rate (>0.9), or when the number of cells per sample becomes low, then, changes 
in expression are not reflected in the binary representation and, consequently, 
information from counts is needed. 

 

Figure 2: A,B) Cells plotted against the first two principle components of the AD dataset[20] (A) PCA 
based on binary representation, and (B) PCA based on count representation. UMAP generated from 
data presented with C) the binary-based PCs and D) the count-based PCs. Colors indicate annotated 
cell type. E,H) UMAP based on the count based PCs, in which cells are colored according to the 
binary representation of the marker genes AQP4 (E) and TNR (H) which are known markers for 
astrocytes and OPCs respectively[24] F,G) Similar as E and H but showing the normalized expression 
of the marker gene I) The performance (median F1-score) of cell type identification by SingleR[25] 
and scPred[26] when applied to binary (binarized data), normalized (normalized expression) and 
shuffled (shuffled normalized expression) for 22 datasets.   

Whether zero-inflation associates with technical or biological origins is heavily 
debated[8]. One compelling reason for this debate is the fact that within a single 
dataset some genes are zero-inflated, while others are not[5,8]. We argue that 
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this observation is mostly related to whether a gene is only expressed in a 
subpopulation of cells (e.g. marker genes) or whether a gene has a stable 
expression (e.g. housekeeping genes). To substantiate our claim, we used 
BDA[15] to identify the top 100 most differentially expressed genes between two 
cell populations and the top 100 most stable expressed genes in a 10X 
dataset[21] as well as a Smart-Seq dataset[29]. Next, we applied scRATE[5] to 
identify the best distribution model for the observed expression of the identified 
genes, being either a Poisson, a Negative Binomial or their zero-inflated 
counterparts. A fisher exact test showed that a zero-inflated model was enriched 
in the top 100 differentially expressed genes, and a non-zero inflated model was 
enriched in the top 100 stable expressed genes (Table 1). Hence, like earlier work 
[5], we conclude biological heterogeneity to be the main driver of zero-inflation.  

Table 1: Enrichment of zero-inflated distributions for the top100 differential expressed genes and the 
enrichment of non-zero inflated distributions for the top100 stable genes.  

Platform Top 100 Zero-
inflated 

Not zero-
inflated 

logOR 95%CI p-value 

10x Differentially 
expressed genes 

99 1 5.19 3.36, 
8.87 

3.03 × 
10-25 

Stable genes 35 65 

Smart-seq Differentially 
expressed genes 

97 3 3.70 2.50, 
5.36 

5.46 × 
10-18 

Stable genes 44 56 

 

Increasingly larger datasets require increasingly more computational resources. 
The storage required for all 56 datasets used in this study was 764 Gigabytes 
after normalization using sctransform[30], or 276 Gigabytes when log-normalized 
and stored as sparse matrices. In contrast, binarizing the same datasets and 
storing them as bits required only 73 Gigabytes, which is an ~11-fold and ~4-fold 
reduction in storage requirements, respectively (Additional file 1: Fig. S17). Yet, 
there are big differences across datasets. For example, a reduction of ~50-fold 
and ~20-fold, respectively was acquired for the BuettnerESC dataset[31]. The 
amount of storage that can be saved is highly correlated with the detection rate 
(Additional file 1: Fig. S18), with the highest gain for datasets with a high detection 
rate. The considerable storage reduction of the binary representation gives the 
potential to boost downstream analyses to larger numbers of cells, opening 
possibilities to get a more fine-grained resolution of biological heterogeneity[32]. 

We showed that analyses based on a binary representation of scRNA-seq data 
perform on par with count-based analyses. Working with binarized scRNA-seq 
data has clear additional advantages. The first is simplicity. For the various tasks 
that we explored, such as dimensionality reduction, data integration, cell type 
prediction, differential expression analysis[15] and clustering[12], the binary 
representations required no normalization. Hence various subjective choices on 
the normalization could be avoided, which improves reproducibility of these tasks. 
However, as sequencing depth has an effect on the detection rate of a cell, it is 
likely this is not the case for all downstream tasks. Second, binarization reduces 
the amount of required storage significantly and allows the analysis of 
significantly larger datasets. For example, binary-based data allow for a bit 
implementation of clustering as has been done before in the field of molecular 
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dynamics resulting in a significant reduction of run time and peak memory usage 
compared to existing methods[33]. It has also been suggested that binarization 
alleviates noise[14] as it is insensitive to count errors. However, binarization 
remains sensitive to detection errors caused by, e.g., the presence of ambient 
RNA. Consequently, detection of ambient RNA[34] poses a challenge for binary 
representations when studying individual cells, and thus might require specialized 
methods to be developed. 

At first glance, binarizing scRNA-seq data seems to remove signal. However, 
genes that are highly expressed across cells will not have a lot of zeros, whereas 
genes that are lowly expressed across cells will have many. This implies we might 
be able to infer the relative expression of a gene within an individual cell by 
exploiting the detection pattern of similar other cells. Using this reasoning, we 
indeed were able to reconstruct the expression levels of genes from the detection 
pattern using neighboring cells ( Additional file 1: Fig. S19, Additional file 2). 
Hence, we conclude that the detection rate of a gene in a group of cells, such as 
a cell type, do faithfully represents the (mean) expression levels of that gene in 
that group of cells, underpinning why binarization for most of the downstream 
tasks apparently does not have lost signal.  

We have shown that sparsity is inversely correlated with the amount of additional 
signal that is captured with counts. Consequently, binarization will not be useful 
for all scRNA-seq datasets. Previous work suggested that when the detection 
rate is >90%, visualizations based on the binary representation do not perform 
on par with count-based representation [14]. With our simulation experiments, we 
have shown a similar trend when considering the task of detecting differential 
expressed genes based on pseudobulk values.  

8.3. Conclusion 
Concluding, our results support existing literature in showing that binarized 
scRNA-seq data can be used for: dimensionality reduction, data integration, 
visualization, clustering, trajectory inference, batch correction, differential 
expression analysis and cell type prediction. We believe scRNA-seq tool 
developers should be aware of the possibility of using a binary representation of 
the scRNA-seq data instead of count-based data, as it gives opportunities to 
develop computational- and time-efficient tools. 
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8.4. Methods 

Datasets 
A total of 56 scRNA-seq datasets were used of which 52 datasets were 
downloaded using the scRNA-seq R-package (v 2.8.0). Four additional datasets 
were acquired from the corresponding sources (Table 2).  

Table 2: Overview of datasets 

Name Description Numb
er 

Tech Reference 

AztekinTailData tail 13199 10x (1) 

https://github.com/gbouland/Arising_sparsity_scRNAseq
https://doi.org/10.5281/zenodo.7732380
https://identifiers.org/geo:GSE138852
https://identifiers.org/geo:GSE144136
https://doi.org/10.5281/zenodo.3357167
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BachMammaryData mammary gland 25806 10x (2) 

BacherTCellData T cells 10441
7 

10x (3) 

BaronPancreasData(H
umanMouse) 

pancreas 8569 inDrop  (4) 

BaronPancreasData(H
umanMouse) 

pancreas 1886 inDrop  (4) 

BuettnerESCData embryonic stem 
cells 

288 Quartz-
seq 

(5) 

BunisHSPCData haematopoietic 
stem and 
progenitor 

5183 10x (6) 

CampbellBrainData brain 21086 Drop-
seq 

(7) 

ChenBrainData brain 14437 Drop-
seq 

(8) 

DarmanisBrainData brain 466 Fluidig
m 

(9) 

ErnstSpermatogenesis
Data 

testis 68937 10x (10) 

FletcherOlfactoryData olfactory 
epithelium 

616 Smart-
Seq 

(11) 

GrunHSCData haematopoietic 
stem cells 

1915 CEL-
Seq 

(12) 

GrunPancreasData pancreas 1728 CEL-
Seq 

(12) 

GiladiHSCData haematopoietic 
stem cells 

81024 MARS-
seq 

(13) 

HeOrganAtlasData various organs 84363 10x (14) 

HuCortexData cortex 48000 Drop-
seq 

(15) 

KolodziejczykESCData embryonic stem 
cells 

704 Smart-
Seq 

(16) 

JessaBrainData brain 61595 10x (17) 

LaMannoBrainData('hu
man-es') 

embryonic stem 
cells 

1715 Fluidig
m 

(18) 

LaMannoBrainData('hu
man-embryo') 

embryonic 
midbrain 

1977 Fluidig
m 

(18) 

LaMannoBrainData('hu
man-ips') 

induced 
pluripotent stem 
cells 

337 Fluidig
m 

(18) 

LaMannoBrainData('m
ouse-adult') 

adult 
dopaminergic 
neurons 

243 Fluidig
m 

(18) 

LaMannoBrainData('m
ouse-embryo') 

embyronic 
midbrain 

1907 Fluidig
m 

(18) 

LawlorPancreasData pancreas 638 Fluidig
m 

(19) 

LedergorMyelomaData bone marrow 
plasma cells 

51840 MARS-
seq 

(20) 

LunSpikeInData('416b'
) 

416B cells 192 Smart-
Seq 

(21) 
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LunSpikeInData('troph
o') 

trophoblasts 192 Smart-
Seq 

(21) 

MacoskoRetinaData retina 49300 Drop-
seq 

(22) 

MairPBMCData peripheral blood 
mononuclear 
cells 

29033 10x (23) 

KotliarovPBMCData peripheral blood 
mononuclear 
cells 

58654 10x (24) 

MarquesBrainData brain 5069 
 

(25) 

MessmerESCData embryonic stem 
cells 

1344 Smart-
Seq 

(26) 

MuraroPancreasData pancreas 3072 CEL-
Seq 

(27) 

NestorowaHSCData haematopoietic 
stem cells 

1920 
 

(28) 

PaulHSCData haematopoietic 
stem cells 

10368 MARS-
seq 

(29) 

PollenGliaData outer radial glia 367 Fluidig
m 

(30) 

RichardTCellData CD8+ T cells 572 Smart-
Seq 

(31) 

RomanovBrainData brain 2881 Fluidig
m 

(32) 

SegerstolpePancreasD
ata 

pancreas 3514 Smart-
Seq 

(33) 

ShekharRetinaData retina 44994 Drop-
seq 

(34) 

StoeckiusHashingData
(mode='mouse') 

peripheral blood 
mononuclear 
cells 

50000 10x (35) 

StoeckiusHashingData
(mode='human') 

peripheral blood 
mononuclear 
cells 

50000 10x (35) 

StoeckiusHashingData
(type='mixed') 

HEK, THP1, 
K562, KG1 cells 

30000 10x (35) 

TasicBrainData brain 1809 Fluidig
m 

(36) 

WuKidneyData kidney 17542 
 

(37) 

ZeiselBrainData brain 3005 Fluidig
m 

(38) 

ZeiselNervousData nervous system 16079
6 

10x (39) 

ZhaoImmuneLiverData liver immune 
cells 

68100 10x (40) 

ZhongPrefrontalData prefrontal cortex 2394 Smart-
Seq 

(41) 

ZilionisLungData lung 17395
4 

inDrop  (42) 

ZilionisLungData('mou
se') 

lung 17549 inDrop  (42) 
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ADData brain 13214 10x (43) 

M1Data brain 76533 10x (44) 

MDDData brain 13881 10x (45) 

PBMCData peripheral blood 
mononuclear 
cells 

3500 10x (46) 

 

Binarization and the detection rate 
Binarized scRNA-seq datasets were generated by transforming the raw count 
matrix such that a zero remains a zero and every non-zero value is assigned a 
one. The detection rate refers to the fraction of non-zero values. More formally, 
binarized scRNA-seq data is generated as follows: 

 

yij =  {
1 xij  ≥ 1

0 otherwise
  ,    for   i ∈ [1, g], j ∈ [1, n] 

 

where xij is the expression of gene i in cell j; g is number of genes and n the 

number of cells in the dataset.  

The detection rate DRj for cell j is then defined as: 

DRj =    
∑ yij

g
i=1

g
, ∀j ∈ [1, n] 

 

Similarly, we define the detection rate for a gene DRi and the detection rate across 

the whole dataset DRd:  

 

DRi =    
∑ yij

n
j=1

n
, ∀i ∈ [1, g] 

 

 

DRd =    
∑ ∑ yij

n
j=1

g
i=1

ng
 

 

Note, the detection rate of a gene can be determined either within a specific cell 
population or within the dataset. 
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Log normalization 
Log normalization on scRNA-seq datasets was performed as follows: given a 
count matrix (X) where xij is the expression of gene i in cell j, the log-normalized 

version was generated, such that 𝑦𝑖𝑗 =  log (
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗𝑗
× 104), where 𝑦𝑖𝑗 normalized 

values for every gene i in every cell j ⁠, respectively. 

Dimensionality reduction                                                               
Dimensionality reduction was performed on the Alzheimer’s Disease dataset from 
Grubman et al(43). All dimensionality reductions (count- and binary-based) were 
performed with the same set of highly variable genes. These genes were 
identified using M3drop(47). The count-based dimensionality reduction (Principal 
Component Analysis, PCA) was performed using the default Seurat(48) pipeline 
on data that was log-normalized and scaled. The default Seurat pipeline was also 
applied on binary data (binary-PCA), however, without the normalization step. 
Additionally, for the binary-based dimensionality reduction scBFA(49) was used 
and eigen vectors of the jaccard cell-cell similarity matrix were calculated(Jaccard 
Eigen Vectors, JEVs). For the comparison of UMAP plots, the first 10 components 
of all four dimensionality reductions were used to calculate pair-wise Euclidian 
distances between cells and subsequently obtain the non-linear UMAP 
embeddings. The resulting plots were visually inspected on whether the cells 
clustered together according to previous annotations. Cell type annotations were 
obtained from the original study. 

Batch correction 
Three brain datasets (ADData(43), M1Data(44) and MDDData(45))were used for 
batch correction. From the three datasets, astrocytes, endothelial cells, microglia 
and oligodendrocytes were extracted, and cell type labels were harmonized. 
Then, the three datasets were combined and count- and binary-based PCs were 
calculated using Seurat. These PCs (n = 10) were used as input for Harmony(50). 
The uncorrected and batch corrected PCs were then used as input for the UMAP 
and to evaluate count- and binary-based batch corrected data. 

Use of marker genes with binary data 
To evaluate the use of marker genes with binarized scRNA-seq data, we 
annotated the cells from the ADData(43) dataset using markers from the 
BRETIGEA R-package(51). From the list of marker genes, we construct a one-
hot-encoded marker matrix (M), where the columns represent cell types and the 

rows genes. When, gene g is a marker for cell type c, then, mgc = 1, otherwise 

mgc = 0.  Then, we subset the dataset, such that only known marker genes 

remain. Next, we calculate the Pearson’s correlation between the cell type vector 
(mc) and the binarized expression of the cell (yj). For every cell j we get a 

measure of association (φ) with every cell type c. Higher values indicate higher 

association. As such, we annotated every cell as the cell type for which φ is the 
highest. The approach was evaluated by comparing the annotations with the 
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annotation from the original study. F1-scores for every cell type were calculated 
and the median F1-score was reported. 

Automatic cell-type identification  
Automatic cell-type identification was performed using two existing automatic 
cell-type identification methods, scPred and SingleR(52, 53). Both methods were 
applied to all datasets for which cell type labels were available (n = 22 out of 56). 
Three versions were made of every dataset, (i) a log-normalized version, (ii) a 
binarized version, and (iii) a shuffled version. The shuffled version was made by 
randomly shuffling all non-zero values of the log-normalized version. Note, that 
all zeros remained zero. For all three data representations, 10 reference / target 
splits were randomly made of 75% (reference) and 25% (target) of the total 
number of cells. For scPred, Seurat(48) was used to scale the data (zero-mean 
and standard variance) and calculate the principal components (PCs), which was 
done on all three data representations. Of note, the binarized data 
representations were not normalized. SingleR requires no specific pre-
processing. The predicted labels were compared with the true labels by 
calculating the F1-score for every cell type and taking the median of F1-scores 
across all cell types, using the evaluation function of caret(54). The median F1-
score of all 10 runs were used to evaluate the predictions.  

scRNA-seq data simulation and differential expression 
analysis 
scRNA-seq data was simulated with muscat(55) using the provided dataset(56) 
as reference. In total, 96 settings were generated to evaluate the performance of 
binarized scRNA-seq data when performing differential expression analysis 
(DEA) on pseudo bulk data. For the percentage of differentially expressed genes 
we evaluated 1%, 10%, 20%, 30%, 40%, and 50%. We evaluated datasets with 
1,000, 5,000, 10,000, and 50,000 cells. And, for the number of individuals per 
group we evaluated 5, 10, 20, and 50 individuals. Each combination of the 
aforementioned settings was evaluated, resulting in the 96 settings. For each 
setting we generated ten datasets of 500 genes, resulting in 960 simulated 
datasets. Pseudo bulk data was generated with the mean as aggregation function 
using the aggregateData function from muscat. Here, for each individual the 
mean expression of each gene was calculated based on all cells belonging to the 
respective individual. For the binarized data, the detection rate per gene was 
calculated as the number of cells per individual in which the gene is observed 
divided by the total number of cells belonging to the respective individual. The 
mean pseudo bulk data was normalized using the calcNormFactors function from 
edgeR(57) and DEA was performed using Limma Trend(58). The t-test was used 
for binarized data, without normalization. P-values were corrected for multiple 
testing using the Benjamini-Hochberg procedure. Genes were considered 
significantly detected at Padj ≤ 0.05.  

Identification of best count distribution model 
To test whether zero-inflation in scRNA-seq data can be explained by biological 
heterogeneity, we reasoned that a marker gene is a prime example of biological 
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heterogeneity: it being highly expressed in a specific cell population while virtually 
absent in other cells. As such, we hypothesized that if zero-inflation is primarily 
explained by biological heterogeneity, marker genes should be zero-inflated. 
Using the same reasoning, a stably expressed gene should not be zero-inflated. 
We tested both hypotheses on two brain datasets(10x(44)and a Smart-Seq 
v2(59)). We selected two cell types and performed differential expression 
analyses between the cell types, using BDA(60). Next, we selected the top 100 
most differentially expressed genes (sorted on PFDR), as well as the top 100 most 
stably expressed genes (sorted on smallest fold changes). Using scRATE(61), 
we fitted four different count distribution models (a Poisson, Negative-binomial 
and their zero-inflated counter parts) to all 200 genes individually. Using a leave-
one-out cross validation test, we selected the best count distribution model for 
each gene, based on the best predictive accuracy. For every gene, we then know 
whether it is a marker gene or stably expressed, and whether it is zero-inflated or 
not. With a fisher exact test, we finally evaluate the association between zero-
inflated/not zero inflated with marker/stable. 

Comparison of bit-stored and normalized datasets 
For the bit-stored datasets, the binary-based datasets were stored as Boolean 
vectors using the bit R-package(v4.0.4). All count-based datasets were log-
normalized using Seurat(48) or normalized using scTransform(62). Before the 
comparison of the required storage, the normalized matrices were stored as 
sparse matrices. 

Magnitude recovery 
To recover the magnitude of expression from binary-based data, first pairwise cell 
similarities were calculated using the Jaccard index (JI). Next, for every cell, the 
neighbourhood is determined by the closest neighbour according to the JI, and 
the respective cell itself. Then, for every gene in a cell, a weighted average of the 
binary profile is calculated based on the neighbourhood. The weight is 
determined by the JI and is proportional to the sum of JIs. After this, the dataset 

of weighted averages is log normalized, such that 𝑦𝑖𝑗 =  log (
𝑥𝑖𝑗

∑ 𝑥𝑖𝑗𝑗
× 104), where 

𝑥𝑖𝑗 and 𝑦𝑖𝑗 are the weighted averages and normalized values for every gene i in 

every cell j ⁠, respectively. Finally, all non-zero values that were originally zero in 
the binary-based data are set to zero.   
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Supplementary Figure 1: The distributions of correlation coefficients between the 
binarized and count-based expressions of every cell (p, x-axis) within each dataset (y-
axis). The datasets are grouped by technology. 
 

  
Supplementary Figure 2: A,B,C) Every dot is a cell from the PaulHSC dataset. The x-
axis represents the correlation coefficient between the binarized and count-based 
representation. A) The y-axis is the detection rate, B) the y-axis is the variance of the 
binarized representation of a gene across all cells, and C) the y-axis is the product of 
detection rate and the variance of non-zero counts. 
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Supplementary Figure 3: Comparison of binary-based dimensionality reduction on AD 
Dataset, all points are colored based on pre-annotated cell types. A) First two components 
from scBFA method. B) First two components from the Jaccard similarity eigenvectors. C) 
First two components from binary-based PCA. D) First two components from count-based 
PCA. 

 

Supplementary Figure 4: Comparison of binary-based UMAPs on AD Dataset, all points 
are colored based on pre-annotated cell types. A) UMAP plot based on the ten 
components from scBFA method. B) UMAP plot based on the ten components from the 
Jaccard similarity eigenvectors. C) UMAP plot based on the ten components from binary-
based PCA. D) UMAP plot based on the ten components from count-based PCA. 

 

Supplementary Figure 5: Association of pairwise eucledian distances between cells from 
count based UMAP with A) binary-PCA based UMAP, B) JaccardEV based UMAP and C) 
scBFA based UMAP. First, 5,000 cells were randomly sampled, between which the 
pairwise eucledian distance was calculated based on the different UMAPs. Based on these 
pair-wise distances (n = 12,497,500) the pearson correlation was calculated. For plotting 
10,000 points were randomly sampled from total number of calculated pair-wise distances. 
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Supplementary Figure 6: Silhouette scores of count- and binary-based dimensionality 
reduction. Silhouette scores were calculated with the reduced dimensions and cell types 
as clusters. CountPCA and BinaryPCA are PCs obtainend with counts and binarized 
counts repsecitvely. JEVs are Jaccard eigen values and scBFA were components obtained 
using binary data and scBFA. The last column represents the average of the whole 
dataset.  

 

Supplementary Figure 7: UMAP plots of three brain datasets. A) UMAP plot of three 
brain datasets where the dataset representation was binary, colors indicate cell type. B) 
UMAP plot of three brain datasets where the dataset representation was binary, colors 
indicate dataset. C) UMAP plot of three brain datasets where the dataset representation 
was log normalized counts, colors indicate cell type. D) UMAP plot of three brain datasets 
where the dataset representation was log normalized counts, colors indicate dataset.  
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Supplementary Figure 8 : UMAP plots of three brain datasets, batch corrected for 
datasets using Harmony. A) UMAP plot of three brain datasets where the dataset 
representation was binary, colors indicate cell type. B) UMAP plot of three brain datasets 
where the dataset representation was binary, colors indicate dataset. C) UMAP plot of 
three brain datasets where the dataset representation was log normalized counts, colors 
indicate cell type. D) UMAP plot of three brain datasets where the dataset representation 
was log normalized counts, colors indicate dataset.  
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Supplementary Figure 9: Heatmap of concordance between binary-based cell type 
annotations using markers and counts-based cell type annotations using markers.  
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Supplementary Figure 10: UMAP plot of the AD Dataset with expressions of marker 
genes, using binarized and normalized representations.  
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Supplementary Figure 11: Boxplots of the median F1-score of the automatic cell type 
prediction with different data representations. Both methods (scPred, SingleR) were  
applied 10 times on each dataset with different reference/target splits. The datasets are 
represented on the x-axis and the y-axis are median F1-scores. 

 

Supplementary Figure 12: Scatterplot of detection rate (y-axis) vs mean expression(x-
axis) for all genes (n = 30.062) of one individual. The Spearman's rank correlation (across 
all genes) was ≥ 0.99 for all individuals. Note, spearman’s rank correlation was used as 
this association  between detection rate and log transformed mean is known to be non-
linear, but their ranks are linearly correlated. 
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Supplementary Figure 13: F1-score of 960 simulated datasets indicating the accuracy 
of detecting differentially expressed genes in simulated pseudobulk data when either count 
or binarized data are used. The x-axis represents the fraction of simulated differentially 
expressed genes. The y-axis represents the F1-score. The top-left panel represents a 
comparison of 5 vs. 5 samples in a simulated dataset of 1.000 cells, meaning that each 
sample was comprised of 100 cells. E.g in the bottom left panel each sample was 
comprised of 10 cells. 
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Supplementary Figure 14: FPR of 960 simulated datasets indicating the accuracy of 
detecting differentially expressed genes in simulated pseudobulk data when either count 
or binarized data are used. The x-axis represents the fraction of simulated differentially 
expressed genes. The y-axis represents the FPR. The top-left panel represents a 
comparison of 5 vs. 5 samples in a simulated dataset of 1.000 cells, meaning that each 
sample was comprised of 100 cells. E.g in the bottom left panel each sample was 
comprised of 10 cells. 
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Supplementary Figure 15: FNR of 960 simulated datasets indicating the accuracy of 
detecting differentially expressed genes in simulated pseudobulk data when either count 
or binarized data are used. The x-axis represents the fraction of simulated differentially 
expressed genes. The y-axis represents the FNR. The top-left panel represents a 
comparison of 5 vs. 5 samples in a simulated dataset of 1.000 cells, meaning that each 
sample was comprised of 100 cells. E.g in the bottom left panel each sample was 
comprised of 10 cells. 



 
202 

 

Supplementary Figure 16: Number of false negatives of 960 simulated datasets 
indicating how well simulated differentially expressed genes in pseudobulk data can be 
found back when either count data is used or binarized data. The x-axis represent the 
detection rate groups. E.g. simulated genes with a detection rate between 0 and 0.1 belong 
the first group (0,0.1]. The y-axis represent the number of false negatives. 
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Supplementary Figure 17: Storage requirements for the different data representations. 
A) For each dataset (y-axis) the required storage required in megabytes (x-axis). B) Fold 
reduction(x-axis) for all datasets(y-axis). Fold reduction of bit-stored relative to 
scTransform is purple.  Fold reduction of bit-stored relative to log normalized is yellow. 
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Supplementary Figure 18: Association of detection rate with fold reduction. Scatter plost 
where each dot is a dataset, the x-axis represents the detection rate and the y-axis is the 
fold reduction of bit-stored relative to A) log normalized and B) scTransform. 

 

 

 

Supplementary Figure 19: A) Density plot of the correlation coeffiecient between 
recovered expression values and normalized expression values of the non-zero counts. 
B) Scatter plot showing the recovered expression of ADAP1 (x-axis), and the normalized 
expession values of ADAP1 (y-axis) from the AD dataset. All zero counts are excluded, as 
these artifically inflate the correlation coefficient. 
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9.1. General discussion 
While we have become adept at identifying genetic risk variants associated with 
various diseases, understanding these variants remains challenging. As GWASs 
(genome-wide association studies) continue to grow in sample size, they 
continue to identify more risk variants, including those with smaller effect sizes. 
However, for most genetic risk variants, we still do not know how they modulate 
disease risk1,2. In this thesis, we present two computational approaches (geneset-
QTLs, gsQTL, and differential-correlation-QTLs, dcQTL) aimed at providing 
additional context to the consequences of genetic risk variants.  

Furthermore, technological advancements have made it feasible to generate 
population-scale multi-condition single cell transcriptome (scRNAseq) datasets. 
However, effective methods for analysing these large scale datasets are still 
limited. In this work, we present cell-projected phenotypes that exploit the 
between-individual phenotypic variation to characterize within-individual cellular 
variation. Additionally, with the introduction of such datasets, the number of cells 
is often prioritized over sequencing depth3,4, resulting in increased sparsity. To 
address this issue, we advocate the use of a binarized representation of gene 
expression in this thesis to handle the sparser nature of these datasets.  

9.2. Binarized single-cell RNAseq data 

9.2.1 Loss of information when binarizing single-cell 
RNAseq data 
As reported in chapter 8, zero counts are the most abundant observation in most 
scRNAseq datasets, followed by single counts (i.e. count equal to 1). In many 
cases, the percentage of observations exceeding 1 is below 5% (Fig. 1). 
Consequently, binarization preserves much of the overall signal, because only a 
small fraction of data points (those counts >1) is mapped to one value. In other 
words,  the main “loss-of-information” from binarization arising from collapsing 
counts that are greater than zero into a single category (i.e., 1) is restricted to 
about 5% of the data. We have seen in chapter 8 that this has nearly no 
consequences on any of the downstream tasks. This might be understood by that 
a single cell is never measured in isolation, i.e. there are many cells that share 
similar profiles that in the downstream analysis serve as pseudo-replicates for 
estimating a gene’s expression level. As we have shown that the detection rate 
of a gene (the fraction of cells in which it is expressed) provides a robust proxy 
for its average expression across these pseudo-replicates, focusing on the 
detection rate effectively captures the signal across all expression levels in most 
scRNAseq datasets, thus even when counts above 1 are collapsed into a single 
category. 
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Figure 1:  Distribution of scRNAseq read counts across multiple datasets. The x-axis shows the 
observed count category: 0, 1, or >1. The y-axis indicates the percentage of total observations within 
each dataset. Bars are grouped by dataset. 

9.2.2 Future of binarized single-cell RNAseq data 
In chapters 7 and 8, we provide an overview of the various analytical tasks that 
can be performed using binarized scRNAseq data, hoping to inform tool 
developers about the potential of binarized scRNAseq. Since then, additional 
methods utilizing binarized scRNAseq data have emerged, including: 1) Multi-
omics integration5, 2) quantum gene regulatory networks6, 3) clustering of 
spatially resolved transcriptomics data7, and 4) cell state identification8. The 
feasibility of using binarized scRNAseq data primarily depends on the capture 
rates of sequencing protocols. Currently, the efficiency of capturing, converting, 
and amplifying poly-adenylated mRNA is estimated to be between 10 and 40%9. 
Significant technological advancements are needed to improve the efficiency. At 
which point exactly using binarized scRNAseq data may no longer be feasible 
remains to be investigated. 

In chapter 8, we emphasize the importance of developing specialized bit-aware 
implementations of scRNAseq methods. These implementations have the 
potential to greatly reduce the computational resources needed for methods and 
analyses, including deep learning methods10. This reduction is crucial for 
handling increasingly large datasets. For example, when analysing datasets with 
over 100 million cells, the computational demands of current methods will likely 
exceed the capabilities of many existing systems. Bit-aware implementations 
offer a viable solution to this problem by optimizing resource usage and enabling 
the analysis of these massive datasets. 

In summary, the sparsity of scRNAseq data is likely a persistent challenge. As the 
number of cells being analysed continues to grow, the computational demands 
increase accordingly. Binarization of scRNAseq data, particularly through 
specialized bit-aware implementations, may offer a viable solution to meet these 
increasing demands. 



 
208 

9.3. Unveiling disease heterogeneity within and 
between individuals 
In Chapter 6 we introduce cell projected phenotypes, where we show that each 
cell within an individual can be transcriptionally affected by conditions like 
Alzheimer’s to varying degrees. We extended this to entire cell types, 
demonstrating that people with similar phenotypes might exhibit a diverse range 
of affected cell types. For instance, some individuals might experience slight 
effects across all brain cell types due to AD, while others may show impacts only 
in specific cell types, like microglia, yet display similar overall phenotypes.  

Differential correlation analyses, as discussed in Chapters 2 and 4, are 
particularly well-suited for a similar personalized approach. In these chapters, we 
conduct differential correlation analyses to compare correlations across different 
contexts—for example, healthy versus diseased states (Chapter 2) and 
individuals with protective versus risk genetic variants (Chapter 4). Notably, the 
discovery that genetic variants are linked to differential correlations suggests that 
each person possesses a unique network of functionally related biomolecules, a 
nuance often overlooked by current methods. scRNA-seq data would be highly 
valuable in this context. Creating such personalized, cell type-specific correlation 
networks requires a substantial number of deeply sequenced cells to confidently 
calculate correlations for a specific cell type within an individual, underscoring the 
importance of technological advancements. 

In summary, these individualized, cell type-specific approaches have already 
enhanced, and will continue to enhance our understanding of disease 
heterogeneity, emphasizing the necessity for strategies that consider each 
person's unique genetic, molecular, and cellular landscapes. 

9.4. Somatic variant profiles of single-cells 
In chapter 5, we identified somatic mutations specific to excitatory neurons by 
calling variants from reads obtained from a scRNAseq experiment and 
contrasting them with individual genomes constructed using whole-genome 
sequencing data. The ability to confidently call variants from scRNAseq depends 
on the expression level of the respective transcripts and the number of cells 
measured for a cell type per individual, as this is the determining factor of the 
coverage. Consequently, we were limited to calling variants from the most 
abundant cell type: excitatory neurons. Ideally, this analysis would also be 
performed for other cell types to investigate differences in somatic mutation 
"hotspots" between cell types.  

Additionally, in this work, the reads were prepared using Chromium Single Cell 3′ 
Reagent Kits, which allow for a very limited range of the genome to call variants 
for. This limitation could be addressed by using full read-length methods11 or 
newly developed techniques such as vasa-seq12. However, a limitation persists: 
since the biomolecules we measure are mRNAs, any nucleotide differences from 
the germline sequence could result from either transcription errors or somatic 
mutations. Therefore, a more ideal approach would be the use of single-cell DNA 
measurements13.   
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In chapter 5 we find associations between age and the accumulation of somatic 
mutations, which is thought to be caused by oxidative stress and DNA repair 
inefficiencies14. Especially in the context of neurodegeneration, it would be 
interesting to first investigate how these somatic mutations arise and how they 
contribute to the disease. For instance, does everyone with Alzheimer disease 
have somatic mutations that contribute to the disease, or is this only true for a 
subset of individuals? Could this indicate a specific subtype of Alzheimer?  

9.5. Interpretation and prioritization of genetic risk 
variants 
In chapter 2, 3 and 4 we provide new approaches to identify and investigate 
putative downstream effects of genetic risk variants.  

In chapter 2, we prioritize genes by the number of changes in their context-
specific correlations, positing that significant shifts in correlations from a neutral 
to a diseased context indicate the importance of a gene in the disease. 
Specifically, we focus on genes within 1Mb of genetic risk variants that exhibit the 
most changes in correlations. This method allows for the investigation of gene 
associations in the diseased context using gene set enrichment analysis to 
identify potentially disrupted processes. In chapter 5, our focus shifts to proteins. 
We begin with a univariate protein-QTL analysis to identify associations between 
individual variants and proteins, followed by a differential correlation analysis to 
examine context-specific correlations between protein pairs in individuals with 
protective or risk variants. This approach reveals that a single variant can 
influence the associations between multiple proteins, often highlighting a central 
protein significant to the risk variant, thus prioritizing genes or proteins beyond 
those within 1Mb of the variant. In chapter 3, we introduce gene set-QTLs 
(gsQTLs) to directly link individual risk variants to gene sets. By reducing the 
genes in a gene set to a single vector representing their shared variance, we 
associate these vectors with genetic risk variants, thereby establishing a direct 
connection between the variant and the gene set. This approach offers a more 
targeted analysis compared to traditional methods requiring multiple risk variants 
linked to multiple genes. 

These three approaches share the common goal of providing additional context 
to the putative downstream consequences of genetic risk variants. In a biological 
system, genes and proteins never act alone; there are complex interactions 
among various biomolecules. Knowing that only a single gene is behaving 
differently reveals very little about the broader changes occurring. While the 
approaches presented here may be more challenging to interpret (such as 
understanding the mechanistic pathways that result in an entire gene set having 
"reduced activity" associated with a genetic risk variant), we believe they 
complement standard QTL analyses rather than replace them. These methods 
should be used in conjunction to provide a more comprehensive understanding 
of the biological implications of genetic risk variants.  

Current efforts on the interpretation and prioritization of genetic risk variants are 
increasingly utilizing deep learning. According to the central dogma of molecular 
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biology, all information is stored in DNA. As such, deep learning models are 
developed that use parts of the DNA sequence, typically a window around the 
TSS of a gene, to predict gene expression15. By altering the input sequence and 
observing the effect on gene expression (in silico mutagenesis), variants with the 
largest predicted impact can be prioritized. A challenge in this approach is 
determining the appropriate size of the receptive field or context to examine. 
Current state-of-the-art models include a context of up to 100kb. However, 
biological examples show that variants on one chromosome can affect genes on 
another, indicating the need for even broader contexts. This might extend beyond 
DNA to include interactions with other genes and biomolecules, as well as 
environmental and disease factors, all of which significantly influence gene 
expression. 

9.6. Cell projected phenotypes for interpretation 
and prioritization of genetic risk variants 
With cell projected phenotypes, we calculate a disease manifestation score for 
various cell types across individuals. An interesting approach would be to identify 
associations between these manifestation scores and SNPs. For example, a 
specific SNP might be linked to individuals with higher Inhibitory-neuron AD 
scores, suggesting a greater vulnerability to AD in their inhibitory neurons. Which 
would provide additional context to the downstream consequences of genetic risk 
variants. 

Another application of cell projected phenotypes for interpretation and 
prioritization of genetic risk variants is to adapt the method for calculating cell 
projected genotypes, similar as previously done by Rumker et al16. Instead of 
associating cell neighbourhoods with phenotypes like AD diagnosis or amyloid-
beta load, this method would test for the enrichment of certain genotypes. This 
approach enables the identification of genotype-associated cell states, providing 
additional and valuable context to the consequences of genetic risk variants.  

9.7. Future of cell projected phenotypes 
In chapter 6, we introduce cell-projected phenotypes, an approach that considers 
within-individual cellular heterogeneity and quantifies the degree of 
transcriptional association of a single cell with the phenotypic characteristics of 
the individual. This approach determines whether a cell is affected by the 
individual's phenotypic characteristic or remains unaffected. We also extended 
this to entire cell types, demonstrating that different individuals are affected by 
AD in different cell types to varying degrees. For instance, we found that cognitive 
impairment is particularly correlated with astrocytes and oligodendrocytes being 
affected, while affected microglia are associated with increased amyloid-beta 
load. This suggests cell type-specific components of AD and potentially indicates 
the existence of subtypes.  

Since Chapter 6 presents a computational approach, we currently lack empirical 
confirmation that neurons assigned high tau tangle scores are indeed more 
affected by tau pathology. To validate our computational predictions, one strategy 
would be to acquire spatial data from the same donors that have high cell-specific 
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tau tangle scores. By projecting these scores onto spatially resolved cells (similar 
to the methodology employed in SPAGE17), we can assess the maturation 
stages18 of neurofibrillary tangle development within these cells, ranging from 
pre-tangle neurons to just before dying and leaving behind ghost tangles. If we 
observe that our computed score increases in tandem with the maturation of 
tangle development, this would provide biological validation for our approach. 

An interesting use case for cell-projected phenotypes is the identification of 
disease-specific archetypical cell states. While significant effort is currently 
directed towards creating reference atlases of cell types19, a reference atlas could 
also be developed to include disease-specific archetypical cell states. Such an 
atlas could be invaluable for disease prediction or diagnostics, particularly if 
disease-specific archetypical cell states are present in peripheral blood 
mononuclear cells (PBMCs), as this would offer a non-invasive method for 
diagnosing many diseases. 

11.8. Concluding remarks 
In this thesis, we have addressed one of the main challenges in scRNAseq 
analyses: its sparsity. Through our work, we aimed to demonstrate the utility of 
binarizing scRNAseq data and inspire researchers to incorporate this approach 
into their methods. We have explored novel ways to investigate genetic risk 
variants. The key takeaway is that in a biological system, genes and proteins 
never act alone; there are complex interactions between them. To truly 
understand genetic consequences, we should therefore incorporate many 
different contexts. Additionally, we have developed a novel framework for 
analysing scRNAseq data that leverages between-individual phenotypic 
heterogeneity to gain a better understanding of within-individual cellular 
dynamics, showing that individuals with similar (known) phenotypic 
characteristics can have very distinct cell type manifestation profiles, 
underscoring the importance of the contexts considered. 
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