
Discovering Digital Siblings
Quantifying Inter-Repository Similarity Through GitHub Dependency Structures

Mateusz Rębacz

Supervisor(s): Dr. Ing. Sebastian Proksch1, Shujun Huang1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
January 28, 2024

Name of the student: Mateusz Rębacz
Final project course: CSE3000 Research Project
Thesis committee: Dr. Ing. Sebastian Proksch, Shujun Huang, Julia Olkhovskaia

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Open Source developers typically use Git repos-
itories to transparently store the source code of
projects and contribute to the code of others. There
are millions of repositories actively hosted on plat-
forms such as GitHub. This presents an opportu-
nity for sharing knowledge between related projects
– the so-called digital siblings. Finding reposito-
ries similar to one’s own can allow for better devel-
oper collaboration and knowledge transfer. How-
ever, due to the large volume of projects, manually
locating digital siblings of a project can be difficult.
Hence, this paper proposes a novel approach, based
on the dependency structures of GitHub reposi-
tories, that allows for calculating inter-repository
similarity and subsequently querying for similar
projects. We aim to answer the research ques-
tion: How can the dependency structures of GitHub
repositories be leveraged to find their digital sib-
lings? This research includes an empirical eval-
uation of various similarity metrics and cluster-
ing techniques for GitHub repositories. Our re-
sults show that dependency structures are a re-
liable characteristic for measuring similarity be-
tween projects. We also identify the specific met-
rics and clustering techniques as particularly effi-
cient. Lastly, we propose and evaluate a compos-
able similarity metric to allow our findings to be
combined with the research of the other Research
Project group members.

1 Introduction
Open Source development is a collaborative approach to cre-
ating software where developers from around the world can
freely access, modify, and contribute to a project’s source
code. Git repositories are typically used in Open Source
projects for storing the project’s code and tracking changes.
They allow developers to contribute to existing projects, fork
codebases for new initiatives, and leverage each other’s work
to build more complex software systems. [Spinellis, 2012]

Currently, GitHub, the largest platform for Open Source
development, holds over 100 million repositories [Warner,
2018]. This vast number of projects creates a unique knowl-
edge base for developers, allowing them to learn from reposi-
tories similar to their own. We introduce the term digital sib-
lings to refer to repositories that have similar goals or share
the same problem domains. An example of such could be a
set of all Android social-media applications. Finding digital
siblings allows their developers to collaborate, improves code
reuse, and simplifies the implementation of boilerplate-heavy
operations such as CI/CD workflows. These factors are very
desirable for developers, however, given the immense num-
ber of GitHub repositories manually locating digital siblings
becomes a daunting task. An automated solution is needed.

Hence, we investigate dependency structures found within
GitHub repositories as a metric for calculating inter-
repository similarity which will lay the groundwork for au-
tomatically querying digital siblings. Dependency structures

refer to the graph of external libraries and frameworks that a
project relies on for its functionality. Analyzing these struc-
tures gives us insight into the project’s technical choices such
as the frameworks and tools used. We theorize that this infor-
mation can uncover the project’s goals and problem domain,
and can therefore be used as a metric to evaluate project sim-
ilarity.

The objective of this paper is to investigate how depen-
dency structures can be used to measure similarity between
GitHub repositories. The research is conducted as part of
a Research Project (RP) group at the TU Delft, where each
member focuses on another metric for GitHub similarity anal-
ysis. We guide our research by investigating the following
research questions:

• Main research question (RQ1): How can the depen-
dency structures of GitHub repositories be leveraged to
find their digital siblings?

• RQ2: What metrics, derived from analyzing depen-
dency structures, most accurately quantify the similarity
between GitHub repositories?
Justification: By finding an effective similarity metric
based on dependency structures that can discern between
digital siblings and dissimilar projects, we show that de-
pendencies can be used to effectively measure the simi-
larity between two repositories.

• RQ3: Which clustering methods are most effective
in grouping GitHub repositories into clusters mirroring
similar problem domains?
Justification: By finding an effective clustering tech-
nique, based on dependency structures, that can cluster
groups of digital siblings, we show that dependencies are
an effective metric for categorizing and querying large
sets of repositories.

• RQ4: How can dependency structures as a similarity
metric be composed with the similarity metrics inves-
tigated by the other RP group members?
Justification: By finding a composable similarity metric
we allow our research to be combined with the work of
the other RP group members. This allows a more ac-
curate, multi-modal similarity metric to be developed in
the future.

We demonstrate that dependency structures are indeed a
robust and practical metric for finding digital siblings. We
show the most effective similarity metrics, and clustering
techniques for grouping similar GitHub repositories. Lastly,
we propose and evaluate a repository similarity metric, based
on dependency structures, which is composable with the work
of the other RP group members.

In the next chapter, we explore the existing body of re-
search to contextualize our study. Chapter 3 details the
methodology used to answer our research questions. Chapter
4 presents our empirical findings and delves into the analy-
sis of these results. In Chapter 5 we reflect on the implica-
tions of our findings in the broader context of software de-
velopment, we discuss practical applications, and the future
work stemming from our findings. Chapter 6 summarizes the
key insights and contributions of our research. Finally, Chap-
ter 7 outlines how our methods and findings are considered

through an ethical lens and assesses the reproducibility of our
study.

2 Literature Review
There have been several previous approaches to querying
software repositories based on their similarity. Each has con-
tributed uniquely to our understanding of how repositories
can be related and grouped.

• MUDABlue is an approach that relies on Latent Seman-
tic Analysis of the source code text to assign each repos-
itory a category. [Kawaguchi et al., 2006] This approach
is quite effective and can be applied to repositories using
any technology or coding language. However, the re-
liance solely on lexical analysis may miss deeper struc-
tural or functional similarities between repositories, and
therefore degrade accuracy.

• CLAN focuses specifically on Java projects, and uti-
lizes package class hierarchies as its basis for determin-
ing repository relationships. By comparing the way Java
projects are structured, CLAN achieves a higher accu-
racy than MUDABlue [McMillan et al., 2012]. How-
ever, its applicability is limited to Java repositories only
and therefore lacks robustness.

• RepoPal leverages GitHub stars metadata and Readme
file contents to ascertain similarities between projects.
Interestingly while it does not consider any code-centric
metrics, the approach provides a higher accuracy and
confidence than the previously mentioned CLAN. It is
also much more robust than the previous metrics [Zhang
et al., 2017].

• CrossSim is an approach that combines various sim-
ilarity metrics including both source code identifiers
and repository metadata, to provide a more compre-
hensive similarity score. Combining code-centric and
metadata-centric metrics makes the method more ro-
bust to differences in repository structures and techni-
cal underpinnings. CrossSim therefore performs more
accurately than the previously mentioned techniques
[Nguyen et al., 2018].

Each technique explores a different characteristic of soft-
ware projects and proposes a different similarity metric.
However, no previous work has focused on dependency struc-
tures as a metric for repository similarity analysis. This
knowledge gap motivates our research into this topic.

3 Methodology and Experiment Setup
We split our research into several key sections using the re-
search sub-questions as a guideline. We begin with Data Col-
lection, which involves compiling a labeled list of GitHub
repositories for our experiments. Next, the Dependency Ex-
traction section outlines how we extract and store dependency
information from each repository in our dataset. The Data
Selection section outlines how we split our dataset based on
dependency types. Then, in the Repository Vectorization sec-
tion, we transform the dependency data into a quantifiable
vector format.

Subsequently, the experiments are conducted on the vec-
torized repository data in three key sections:

• Similarity Metrics (answers RQ2): We investigate the
performance of a range of repository similarity metrics.

• Clustering Techniques (answers RQ3): We explore the
performance of various clustering techniques in effec-
tively grouping digital siblings.

• Adjusting for Composability (answers RQ4): We ex-
plore a hybrid approach utilizing clustering to reduce the
dimensionality of the dependency data and create a sim-
ilarity metric composable with the work of the other RP
group members.

3.1 Data Collection
Following a discussion with the RP peers, we decided to fo-
cus exclusively on Java repositories using either the Maven or
Gradle build systems. This choice aims to maintain consis-
tency in the dataset and avoid biases that might arise from the
use of different code and dependency ecosystems. Java, being
a widely used and established programming language, offers
a vast array of software projects spanning different problem
domains [StackOverflow, 2023]. We have selected the fol-
lowing three categories of software:

• Minecraft Modifications (mc-mod): Software intended
to modify or extend the functionality of Minecraft game
clients.

• Minecraft Plugins (mc-plugin): Software intended to
extend the functionality of Minecraft game servers.

• Android Libraries (android-lib): Software and tools
extending the functionality of Android applications.

These sets were chosen due to their active use of depen-
dencies and varying degrees of dependency overlap. For each
category, we identified the top 50 most-starred repositories
on GitHub. The use of the star count as a selection criterion
served a dual purpose: it indicated a repository’s popularity
and community engagement, and it also suggested high ma-
turity in the repository’s development, which is often accom-
panied by well-structured dependency systems.

A significant challenge faced during data collection was the
inconsistency in the use of build systems across repositories.
Some repositories lacked a properly set up build pipeline,
which would make the automatic extraction of dependencies
challenging. To address this, we refined our data collection
criteria to include only those repositories with a well-defined
build pipeline. Our dataset can be seen in appendix A.

3.2 Dependency Extraction
The extraction of dependencies was automated using a tool
developed specifically for this study. Each repository in the
dataset is cloned and extracted as follows:

• For Maven projects, the tool executes the following ter-
minal command in each project directory containing a
pom.xml file.

$ mvn dependency:tree

This command generates a dependency tree representa-
tion, detailing both direct and transitive dependencies of
the project. The output is then parsed, extracting rele-
vant dependency information.

• For Gradle projects, the tool executes the following
command in the repository’s root directory.

$./gradlew projects

This command outputs a list of all Gradle projects within
the repository. The tool then iterates over each project,
executing the following command, where PROJECT is
the id of the Gradle project.

$./gradlew PROJECT:dependencies

Similarly to Maven, this command provides a detailed
dependency tree including both direct and transitive de-
pendencies. The output is then parsed, extracting rele-
vant dependency information.

The extracted dependency data for each repository is stored
in a JSON file mined.json [Rębacz, 2024]. This file is
structured as an array, with each element corresponding to
a unique cloned repository and storing the repository name,
author, category, and a comprehensive list of extracted depen-
dencies. For each dependency, its identifier, and type (direct
or transitive) are recorded.

3.3 Data Selection

We create two sets of repositories from the initial dataset, to
assess the impact of including transitive dependencies in our
evaluation of repository similarity metrics. We construct the
following sets:

• All Dependencies (deps-all): This set includes all avail-
able dependencies for each repository, both direct and
transitive.

• Direct Dependencies (deps-direct): Includes only the
direct dependencies for each repository.

3.4 Repository Vectorization

Vectorization of repositories involves transforming the ex-
tracted dependency data into binary vectors. We scan all
repositories in the dataset and create a set of all unique de-
pendencies used, D . Each repository is then assigned a bi-
nary vector v where each entry corresponds to a dependency
from D . A value of 0 or 1 is assigned to the entry based on
the presence or absence of the dependency in the repository,
respectively.

vi =

uses(ri,D0)
uses(ri,D1)
...
uses(ri,Dk)

 (1)

uses(r, d) :

{
1 if d ∈ r

0 otherwise
(2)

3.5 Comparing Similarity Metrics
To address the sub-question RQ2 we investigate applying var-
ious similarity metrics to the vectorized sets of repositories
and measuring their performance. The investigated metrics
include Euclidean Distance, XOR Similarity, and AND Sim-
ilarity.

Performance Metric The performance of the similarity
metrics is measured as follows. We calculate the average
similarity score for repositories within the same category
and compare it against the average similarity score between
repositories in different categories. This is defined as follows:

Assume we have a set of repositories R and a set of cate-
gories C. For each category c ∈ C, let Rc be the set of repos-
itories in category c, and Routside,c be the set of repositories
not in category c. The average similarity within a category
c, denoted as Sinner,c, and the average similarity outside of a
category c, denoted as Soutside,c, are calculated as follows:

Sinner,c =
1

|Rc|2 − |Rc|
∑

ri∈Rc

∑
rj∈Rc,ri ̸=rj

sim(ri, rj) (3)

Soutside,c =
1

|Rc| · |Routside,c|
∑

ri∈Rc

∑
rj∈Routside,c

sim(ri, rj)

(4)
Here, sim(ri, rj) is the similarity score between reposito-

ries ri and rj , |Rc| is the number of repositories in category
c, and |Routside,c| is the number of repositories not in category
c.

Finally, our performance indicator is the similarity-
difference factor SDFc, defined as follows:

SDFc =
Swithin,c

Soutside,c
(5)

The similarity-difference factor determines the effective-
ness of each similarity metric in distinguishing repositories
of the same category from those of different categories. The
metric that shows the largest factor SDFc is deemed the most
efficient.

The following sections describe the specifics of each of the
investigated similarity metrics.

Euclidean Distance The Euclidean Distance metric com-
putes the distance between repository dependency vectors in
a multi-dimensional space. For two repository vectors vi and
vj it is defined as:

Dij =

√√√√ n∑
k=1

(vik − vjk)2 (6)

Similarity = −Dij (7)

Since each entry in a repository vector represents the pres-
ence (1) or absence (0) of a specific dependency, the squared
differences in the elements of vi and vj accumulate to a
higher value when there are fewer shared dependencies. Con-
sequently, a lower Euclidean Distance signifies a greater over-
lap in dependencies between the two repositories. Hence, we

use the Negated Euclidean Distance −Dij as our similarity
score. This aligns with identifying digital siblings, as repos-
itories with numerous shared dependencies are likely to be
operating in similar problem domains.

XOR Similarity The XOR Similarity metric computes the
proportion of shared dependency information between two
binarized repository vectors and uses it as a similarity mea-
surement. For two repository vectors vi and vj , it is defined
as:

vxor = vi ⊕ vj (8)

nonzero(v) = |Non-zero entries in v| (9)

Similarity = 1− nonzero(vxor)

|vxor|
(10)

Since repositories sharing a higher number of dependen-
cies will have more matching entries in their vectorized rep-
resentation, this will lead to fewer non-zero entries in the vxor
vector. Consequently, a higher similarity score indicates more
shared dependencies, which helps in identifying digital sib-
lings.

AND Similarity The AND Similarity metric computes the
proportion of dependencies used by both binarized repository
vectors out of the total number of dependencies used. For two
repository vectors vi and vj , it is defined as:

vand = vi ∧ vj (11)

nonzero(v) = |Non-zero entries in v| (12)

Similarity =
nonzero(vand)

max(nonzero(vi), nonzero(vj))
(13)

Repositories sharing a higher number of dependencies will
have a higher number of non-zero entries in the vand vector.
Consequently, their similarity score will be high, which helps
in identifying digital siblings. To ensure that the similarity
is bound between 0 and 1, the score is divided by the largest
number of dependencies used between the two repositories.

3.6 Comparing Clustering Techniques
To address the sub-question RQ3, we investigate applying
various clustering techniques to the vectorized sets of repos-
itories. We compare the clusters produced by the investi-
gated techniques to the reference clustering - clusters corre-
sponding to the manually labeled categories in our dataset.
Our objective is to identify the clustering technique that best
replicates the reference clustering. The investigated cluster-
ing techniques include Agglomerative Clustering, K-Means
Clustering, and Density-Based Clustering.

Computing the Affinity Matrix We first compute an affin-
ity matrix that stores a similarity score between every pair of
repositories in our dataset. The similarity score is computed
using the most effective similarity metric as found in 3.5.

Assuming we have a set of n repositories R, the affinity
matrix A is an n × n symmetric matrix where each element
aij represents the similarity score between repository ri and
repository rj . The affinity matrix is computed as follows:

A =

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

 (14)

aij = similarity(ri, rj) (15)

In this matrix, the diagonal elements (aii) represent the
self-similarity of the repositories and are set to the maximum
similarity score. The off-diagonal elements are calculated
based on the chosen, most-effective similarity metric (e.g.,
Euclidean distance, XOR similarity, etc.).

Performance Metrics We evaluate each clustering tech-
nique using the Rand Index and the Normalized Mutual In-
formation (NMI) score. These metrics compare the clusters
produced by each technique to the reference clustering.

• The Rand Index (RI) measures the similarity between
two clusterings by considering all pairs of samples and
counting pairs that are assigned in the same or different
clusters in the predicted and ground-truth clusterings.
[Rand, 1971] Given clusterings, C and K, of a set of
n elements, the Rand Index is defined as:

RI(C,K) =
a+ b(

n
2

) (16)

where:

– a is the number of pairs of elements that are in the
same cluster in C and in the same set in K,

– b is the number of pairs of elements that are in dif-
ferent clusters in C and in different clusters in K,

–
(
n
2

)
is the total number of possible pairs.

The RI ranges from 0 (no agreement between predicted
and ground truth clusters) to 1 (perfect agreement).

• The Normalized Mutual Information (NMI) score
measures the shared information between two cluster-
ings. [Vinh et al., 2010] Given clusterings, C and K, of
a set of n elements, the NMI is calculated as follows:

NMI(C,K) =
2× I(C,K)

H(C) +H(K)
(17)

where:

– I(C,K) is the mutual information between cluster-
ings C and K,

– H(C) and H(K) are the entropies of clusterings C
and K respectively.

The mutual information I(C;K) is given by:

I(C,K) =
∑
ci∈C

∑
kj∈K

p(ci, kj) log
p(ci, kj)

p(ci)p(kj)
(18)

and the entropy of a clustering, H(C), is calculated as:

H(C) = −
∑
ci∈C

p(ci) log p(ci) (19)

In these equations, p(ci) is the probability of a point be-
longing to cluster ci in clustering C, p(kj) is the proba-
bility of a point belonging to cluster kj in clustering K,
and p(ci, kj) is the joint probability of a point belonging
to both clusters ci and kj .
The NMI Score ranges from 0 (no mutual information)
to 1 (perfect correlation).

The technique with the highest RI and NMI scores is
deemed the most efficient. It indicates that the clustering pro-
duced closely resembles the reference clustering, effectively
separating the repositories by their problem domains.

The following sections describe the specifics of each of the
investigated clustering techniques.
Agglomerative Clustering Agglomerative Clustering
starts by treating each repository as a separate cluster, and
then iteratively merges clusters based on the affinity matrix
A and the specified target number of clusters. With each
iteration, the two repositories with the highest similarity
are merged into a cluster. Clustering is complete once the
number of clusters is equal to k [Anderberg, 1973].

The key characteristics of this algorithm are its simplicity
and the ability to utilize our pre-computed similarity metrics
as the basis for merging adjacent clusters. However, the ap-
proach is best suited for hierarchical data structures which
might impede performance.

In our implementation, we used the following parameters
for the clustering algorithm:

• Affinity Matrix: We use the previously calculated affinity
matrix A.

• Number of Clusters (k): There are three distinct cate-
gories in our labelled dataset. Therefore k = 3.

K-Means Clustering K-Means Clustering divides data into
k distinct, uniform clusters, based on the distances between
data points. First, k centroids are initialized. Then, each
repository is assigned to the cluster with the closest centroid.
Subsequently, these centroids are recalculated iteratively to
minimize the average distance within each cluster. [Mac-
Queen, 1967]

The algorithm has been chosen for its simplicity and its
wide use in literature for classifying vectorized data. K-
Means is known to perform best on datasets that have uni-
formly shaped and sized clusters [Ikotun et al., 2023], which
should make it especially suitable for our dataset.

In our implementation of K-Means, we used the following
parameters:

• Distance Matrix (D): We use the previously calculated
affinity matrix A for this purpose. To treat it as a distance
matrix, we transform each entry from a similarity score
to a distance metric by negating it.

D = −A (20)

• Number of Clusters (k): There are three distinct cate-
gories in our labelled dataset. Therefore k = 3.

Density-Based Scan Clustering DBSCAN is distinct from
K-Means and Agglomerative Clustering as it forms clusters
based on the density of data points in the dataset. First, a
random point is chosen as a centroid. If the point is located in
a dense region, it will remain as a new cluster, otherwise, the
algorithm continues iteratively to the next point. Clusters are
merged based on the Epsilon ϵ parameter [Ester et al., 1996].

The focus on data point density makes DBSCAN outper-
form other clustering techniques on datasets where clusters
are not uniform in their shape or size. It has been chosen to
investigate the behavior of a more robust clustering technique
on our dataset.

In our implementation of DBSCAN, we used the following
parameters:

• Affinity Matrix: We use the previously calculated affinity
matrix A.

• Epsilon (ϵ): The parameter controlling the size of the
computed clusters. The ϵ value of 0.5 was selected.
This was done through trial and error aiming to have the
algorithm generate the same number of clusters as the
number of manually labeled categories in our training
dataset.

• Minimum Points (minPts): This number specifies the
minimum number of points required to form a dense re-
gion, essential for a set of points to be identified as a
cluster. We chose minPts as 5, based on the clustering
behavior observed on the training dataset.

3.7 Adjusting for Composability
This research is carried out as a part of the RP group, where
each researcher investigates a different characteristic for com-
paring GitHub repositories. These characteristics include
source code identifiers, documentation, build configuration,
GitHub metadata, and dependencies. The over-arching goal
is to create a multi-modal metric for measuring similarity be-
tween GitHub repositories which combines all of these char-
acteristics.

The similarity metrics discussed in 3.5 compare vectorized
repositories (3.4) where each vector can consist of hundreds
of entries, proportional to the number of unique dependencies
in the dataset. This presents a challenge in composability, as
such large vectors would dominate when combined with the
similarity metrics proposed by the other RP group members.
To address the sub-question RQ4, we investigate an approach
to measuring repository similarity using dependency struc-
tures that can be seamlessly combined with other metrics.

Composable Approach We propose an approach that uti-
lizes our previous work on clustering (3.6) and similarity met-
rics (3.5) as a means for dimensionality reduction producing
a composable repository similarity metric. The approach in-
volves constructing a pre-trained model M and using it to
compress dependency information of unseen repositories into
k-dimensional characteristic vectors. Subsequently, these
characteristic vectors are used to measure similarity between
repositories using Euclidean distance. The approach is out-
lined as follows:

• Training / Validation Split: Our dataset is split ran-
domly into a training set and a validation set in an 80:20
proportion respectively to eliminate over-fitting biases.

• Training: The model M is trained by computing k clus-
ters from the training dataset using the process outlined
in 3.6. For each cluster, we extract a distinct centroid
vector mi. The computed centroids are then stored as a
part of our model, mi ∈ M .

• Inference: Given two unseen repositories ri and rj ,
with their dependency vectors vi and vj , we compute
their respective characteristic vectors ci and cj .
A characteristic vector ci is constructed with k entries,
each entry corresponding to the Euclidean distance be-
tween the repository dependency vector vi and each cen-
troid in the pre-trained model M .

ci =

dist(vi,m0)
dist(vi,m1)
...
dist(vi,mk)

 (21)

dist(a, b) =

√√√√ n∑
i=1

(ai − bi)2 (22)

We then define the similarity metric between ri and rj as
the Euclidean distance between their characteristic vec-
tors ci and cj .

Di,j = dist(ci, cj) (23)

We theorize that repositories with similar dependency
structures should have similar resulting characteristic vectors.
Therefore, the distance between characteristic vectors can be
used as a similarity metric.

In this approach, the similarity is computed between the
characteristic vectors, each of size k, as opposed to the repos-
itory dependency vectors, which may vary in size based on
the dataset used. This dimensionality reduction allows our
approach to be composable with metrics of other RP group
members. A characteristic vector of a multi-modal metric can
be constructed by appending the characteristic vectors of two
or more composable metrics.
Performance Metric To evaluate the performance of our
composable approach, we use the previously introduced sim-
ilarity difference factor (3). First, we train the model M using
the training set. Then, we evaluate the performance by run-
ning inference on the evaluation set and calculating the SDF.
We compare how using different similarity metrics (3.5) and
clustering techniques (3.6) in the training step can impact per-
formance. For Agglomerative and K-Means clustering, we
run the evaluation with variable values of k: k = 2, k = 3,
k = 5, k = 10, and k = 15

4 Evaluation
Our findings are presented in three parts. In section 4.1 we
compare the performance of repository similarity metrics, as
outlined in 3.5. Then in section 4.2 we compare the per-
formance of repository clustering techniques, as outlined in
3.6. Lastly, in section 4.3 we evaluate the performance of our
composable approach as outlined in 3.7.

4.1 Similarity Metrics
In this section, we answer RQ2 by comparing the perfor-
mance of similarity metrics introduced in 3.5. We compare
how well each metric distinguishes between similar repos-
itories (belonging to the same category) and those that are
dissimilar (belonging to different categories), using the simi-
larity difference factor (SDF) as the performance indicator.

Euclidean Distance deps-all deps-direct
Inner Similarity -9.2536 -6.6766
Outer Similarity -11.6626 -8.9789

SDF 1.2603 1.3448
XOR Similarity deps-all deps-direct
Inner Similarity 0.9652 0.9727
Outer Similarity 0.9486 0.9560

SDF 1.0175 1.0175
AND Similarity deps-all deps-direct
Inner Similarity 0.2946 0.3340
Outer Similarity 0.0987 0.1305

SDF 2.9842 2.5592

Table 1: Comparing the Components of the SDF of Repository Sim-
ilarity Metrics

Similarity Metric Similarity Difference Factor
deps-all deps-direct

Euclidean Distance 1.2603 1.3448
XOR Similarity 1.0175 1.0175
AND Similarity 2.9842 2.5592

Table 2: Comparing the SDF of Repository Similarity Metrics

We observe in Table 2 that the AND Similarity metric has
the highest SDF out of all the investigated metrics for both the
deps-all and deps-direct sets of repositories. The SDF score
of ∼ 2.9842 indicates that, on average, the AND Similarity
metric assigns three times higher similarity values when two
repositories belong to the same reference cluster, as opposed
to repositories belonging to different clusters. The metric
is therefore highly effective at distinguishing digital siblings
from dissimilar repositories.

The superior performance can be attributed to the fact that
AND Similarity is size-agnostic. It focuses on the number
of common dependencies between repositories, without be-
ing influenced by the total number of dependencies that each
repository uses. This attribute makes the AND Similarity the
most suitable in our context in which the dependencies are
not guaranteed to be uniformly distributed among the reposi-
tories.

A surprising result is the emergence of set deps-all as the
most effective for AND Similarity. This set includes all de-
pendency information, both direct and transitive. Since tran-
sitive dependencies are not directly referenced by the project,
we expected that including them might artificially elevate
similarity scores for unrelated repositories, hence degrading
the SDF. However, we can see that compared to set deps-

direct, including transitive dependencies improved the per-
formance by 16.6%.

The effectiveness of AND Similarity in distinguishing dig-
ital siblings from dissimilar repositories validates that depen-
dency structures are an effective characteristic for measuring
inter-repository similarity.

4.2 Clustering Techniques
In this section, we answer RQ3 by comparing the perfor-
mance of repository clustering techniques introduced in 3.6.
We compare which clustering techniques most effectively
group repositories into clusters that reflect their manually la-
beled categories. The performance is evaluated using the
Rand Index (RI) and the Normalized Mutual Information
(NMI) score. Following the results from 4.1, we choose the
AND Similarity metric and repository set deps-all as the basis
for our investigation into clustering techniques.

Clustering Technique RI NMI
Agglomerative Clustering 0.2950 0.0216

K-Means Clustering 0.7484 0.5192
DBSCAN 0.7898 0.5475

Table 3: Comparing the Rand Index and Normalized Mutual Infor-
mation of Repository Clustering Techniques

We observe in Table 3 that the DBSCAN algorithm has the
highest RI and NMI scores out of all the investigated cluster-
ing techniques, followed closely by the K-Means algorithm.
The RI of 0.7898 indicates that ∼ 79% of items in the cluster-
ing constructed by DBSCAN match our reference clustering.

This was a surprising result, as we expected the K-Means
algorithm to be the most effective. K-Means is known to
perform the best on datasets with uniformly sized/shaped
clusters. We know that the clusters in our dataset are uni-
formly sized as that was a pre-condition for our data collec-
tion (3.1). However, a possible explanation is that the clus-
ters are not shaped uniformly in the multi-dimensional de-
pendency space. In that case, the result would reflect the
technical advantages of DBSCAN over the other investigated
clustering methods. DBSCAN takes the density of the data
into account, locating clusters around points of highest den-
sity. This allows the technique to perform better on datasets
that are not uniformly distributed.

The ability to identify clusters that closely resemble the
reference clusters validates that dependency structures are an
effective metric for categorizing and querying large sets of
repositories.

4.3 Composable Approach
In this section, we answer RQ4 by evaluating the performance
of the Composable Similarity metric introduced in 3.7. We
compare how effective this similarity metric is at distinguish-
ing between similar repositories (belonging to the same cat-
egory), and those that are dissimilar (belonging to different
categories), using the similarity difference factor (SDF) as the
performance metric.

The Composable Similarity metric utilizes the previously
introduced similarity metrics (3.5) and clustering techniques

(3.6) in the training step. We choose to only use the AND
Similarity for training the model M because of its superior
performance as shown in 4.1. However, for the clustering
technique, because of the similar performance results of DB-
SCAN and K-Means clustering (4.2), we choose to evaluate
the Composable Similarity with both DBSCAN and K-Means
used in the training step.

Clustering Algorithm SDF of Composable Metric
K-Means (k = 2) 1.6818
K-Means (k = 3) 1.9180
K-Means (k = 5) 2.1859

K-Means (k = 10) 1.8917
K-Means (k = 15) 1.8901
DBSCAN (k = 3) 1.8944

Table 4: SDF of the Composable Repository Similarity Metric
Trained Using Different Clustering Algorithms

We can see in Table 4 that using the K-Means clustering
algorithm (k = 5) to train the Composable Similarity Metric
results in the highest SDF value. The SDF score of ∼ 2.1859
indicates that, on average, the Composable Similarity metric
assigns two times higher similarity values when two reposito-
ries belong to the same reference cluster, as opposed to repos-
itories belonging to different clusters. The metric is therefore
highly effective at distinguishing digital siblings from dissim-
ilar repositories.

This result is surprising, as we were expecting that training
M using the DBSCAN clustering would result in the highest
SDF performance. This is due to our previous results showing
that DBSCAN produces the most accurate clusterings given
our dataset (4.2). In this case, however, the K-Means algo-
rithm emerges as the more effective approach for training M .

The effectiveness of Composable Similarity in distinguish-
ing digital siblings from dissimilar repositories validates that
dependency structures can be used effectively as a compos-
able similarity metric. This allows for more accurate, multi-
modal similarity metrics to be developed in the future.

5 Discussion
We can now answer RQ1 by providing evidence showing that
dependency structures of GitHub repositories can indeed be
leveraged to find digital siblings of these projects.

• Dependency structures can be used to measure the
similarity between two projects. We have shown this
by finding an effective similarity metric based on depen-
dency structures – the AND Similarity (4.1).

• Dependency structures can be used to effectively cat-
egorize and query large sets of repositories. This is
shown in 4.2 by finding an effective clustering technique
capable of grouping sets of digital siblings.

• Similarity metrics based on dependency structures
can be composed with the work of other RP group
members. This is shown by constructing and evaluat-
ing an effective, composable repository similarity metric
based on dependency structures (4.3).

In this section, we reflect on the implications of our find-
ings in the field of software development, the practical appli-
cations of our work, and outline potential directions for future
research.

5.1 Impact on Software Development
Our research has the potential to greatly improve the day-to-
day work of Open Source developers. By enabling program-
mers to identify GitHub repositories similar to their own, our
approach fosters a more efficient exchange of code, solutions,
and ideas. This leads to quicker learning, reduced redundancy
in development, and higher reuse of robust, well-tested com-
ponents. Consequently, our findings not only expedite the
development process but can also enhance the overall quality
of software projects. This contribution marks a step towards
a more interconnected Open Source community.

5.2 Practical Applications
Optimization of CI/CD Pipelines Tools could be created
to analyze highly efficient repositories similar to one’s own,
and automatically suggest optimizations for CI/CD configu-
rations, improving efficiency and reliability in software de-
ployment processes.

Automating Dependency Management and Security A
system could be developed to automatically analyze and sug-
gest updates or improvements to a project’s dependencies
based on the configuration of more mature, yet still themat-
ically similar software projects. This would help maintain
up-to-date and secure dependencies, reducing the risk of vul-
nerabilities.

5.3 Future Work
Longitudinal Studies on Dependency Evolution Con-
ducting longitudinal studies to observe how dependency
structures evolve in successful projects. This could provide
insights into the lifecycle of software dependencies, guiding
developers on when to adopt, update, or retire certain depen-
dencies.

Quicker Dependency Extraction While our study re-
vealed that the repository similarity metrics perform best on
data sets including both transitive and direct dependencies
(4.1), the difference in performance is small. If transitive de-
pendencies are not considered, it is possible to create a more
efficient dependency extraction pipeline that extracts depen-
dency data directly from the Gradle and Maven files without
needing to run the build pipeline. This has the potential to sig-
nificantly improve the efficiency of the dependency extraction
step, decreasing the time needed per repository, and hence al-
lowing more repositories to be analyzed.

Expanding to Multiple Programming Languages and
Ecosystems While our current study focuses primarily on
Java repositories, extending the research to include multiple
programming languages and their respective package ecosys-
tems could provide a more comprehensive understanding of
how dependency structures impact project similarity across
diverse development environments.

6 Conclusions
The Open Source ecosystem provides a virtually infinite
knowledge base for developers from all over the world. It is,
however, challenging to find relevant information in this ex-
pansive network hosting millions of software projects. Find-
ing projects similar to one’s own allows for better developer
collaboration, improves code reuse, and simplifies the imple-
mentation of boilerplate-heavy operations. The motivation
behind this research was to allow Open Source developers
to easily find similar GitHub repositories. We specifically
tackled the challenge of quantifying the similarity between
GitHub repositories, based on their dependency structures.
Our primary objective was to find how dependency structures
can be used to identify "digital siblings" – repositories that
have similar goals or share the same problem domains.

The key research questions and conclusions were:

• How can the dependency structures of GitHub repos-
itories be leveraged to find their digital siblings?: We
have shown and evaluated the most effective similar-
ity metrics and clustering techniques which can identify
groups of digital siblings in a set of GitHub repositories.
Our work paves a way for a large-scale approach capa-
ble of querying the entire GitHub database for digital
siblings based on the dependency structures of projects.

• What metrics, derived from analyzing dependency
structures, most accurately quantify the similarity
between GitHub repositories?: Our findings high-
lighted the effectiveness of the AND Similarity met-
ric (4.1). This metric proved superior in distinguishing
repositories belonging to the same reference software
category from the repositories belonging to other cate-
gories, using only their dependency information.

• Which clustering methods are most effective in
grouping GitHub repositories into clusters mirroring
similar problem domains?: The Density-Based Clus-
tering (DBSCAN) method emerged as the most effec-
tive, accurately grouping repositories into clusters that
mimic the reference set of clusters (4.2).

• How can dependency structures as a similarity met-
ric be composed with the similarity metrics investi-
gated by the other RP group members?: We built
upon our investigation of repository similarity metrics
and clustering techniques to propose a novel compos-
able similarity metric (3.7). We evaluated this metric
and found it to be highly effective at identifying digital
siblings, as well as, being composable with the metrics
proposed by the other RP group members (4.3).

Our research has the potential to greatly improve the way
Open Source developers collaborate, share knowledge and
co-create ideas. The presented findings can serve as a foun-
dation for practical approaches such as automated optimiza-
tion of CI/CD pipelines, or collaborative dependency man-
agement systems. This work also serves as a starting point for
further research into dependency structure evolution, more
efficient dependency extraction approaches, or investigating
dependency structures of more software ecosystems.

7 Responsible Research
In this work, we have taken careful considerations to en-
sure the validity and reproducibility of our findings. Honesty,
scrupulousness, transparency, independence, and responsibil-
ity are the core principles of the Netherlands Code of Conduct
for Research Integrity [KNAW et al., 2018], that we strictly
adhere to. This section addresses the potential risks to valid-
ity and reproducibility, and the measures taken to ensure that
standards of responsible research are upheld in our study.

7.1 Ethical Data Collection
Ethical data collection concerns the way our dataset is con-
structed and the impact of it on the privacy and well-being
of affected groups. The following steps were taken to ensure
ethical data collection:

Use of Open Data All the data collected for this research
is Open Source and publicly available. The repositories have
been gathered using the public GitHub API, using the criteria
outlined in 3.1. The licenses of the repositories in our dataset
have been checked to ensure their fair use in our research.

No Personally Identifiable Information The repository
data collected does not contain any personally identifiable in-
formation that could compromise privacy of any groups or
individuals.

7.2 External Validity
External validity concerns the extent to which our results can
be generalized to other contexts and datasets. The following
threats to validity can be acknowledged:

Dataset Size Our study is based on a rather small dataset of
150 projects, representing three distinct software categories.
This is due to the limited time and resources available for this
study. To improve the generalizability of our findings, a larger
dataset should be considered with a more varied set of labeled
software categories.

Data Collection Criteria In our data collection step (3.1),
we highlight that only repositories using the Java language
and either the Maven or Gradle build systems will be in-
cluded in our dataset. While this reduces the bias of the data
stemming from differences in build systems and dependency
ecosystems, it does harm the generalizability of our approach.

7.3 Reproducibility
Reproducibility concerns the extent to which other re-
searchers can obtain the same results as the ones presented in
this paper when using our dataset and evaluation code. The
following steps were taken to ensure reproducibility:

Openly Accessible Dataset and Code We store our
dataset, the dependency extraction code, and the code used to
evaluate repository similarity metrics/clustering techniques,
in a publicly accessible Zenodo repository under the DOI
10.5281/zenodo.10576708 [Rębacz, 2024]. Zenodo is a safe,
trusted, and citeable platform for archiving research reposi-
tories, funded by the European Union and CERN [Zenodo,
2024]. This approach guarantees that the dataset, as well as,
the code used in this research stays openly available to other

researchers and allows for easier reproducibility. We encour-
age a collaborative environment and the growth of collective
knowledge by inviting others to validate, reuse, and expand
on our work.
Integrity of Results We present all the results of our inves-
tigation accurately with no outside modifications. Every table
is an accurate representation of the data collected during the
evaluation. If any data has been excluded, we have made note
of it explicitly and explained our choice. This policy protects
the integrity of our research and guarantees that the results
accurately reflect our work.
Instructions for Reproducibility The methodology sec-
tion (3) of our work contains detailed explanations of the
steps we took to collect our data and produce the presented
results. This makes it easy for the reader to follow our ap-
proach and arrive at the same results, which enhances the re-
producibility of our research. The code published alongside
this research contains a README.md file with additional ex-
planations on how to compile the dependency extraction and
evaluation modules [Rębacz, 2024].

References
[Anderberg, 1973] Anderberg, M. R. (1973). Chapter 6 - hi-

erarchical clustering methods. In Anderberg, M. R., editor,
Cluster Analysis for Applications, Probability and Mathe-
matical Statistics: A Series of Monographs and Textbooks,
pages 131–155. Academic Press.

[Ester et al., 1996] Ester, M., Kriegel, H.-P., Sander, J., and
Xu, X. (1996). A density-based algorithm for discov-
ering clusters in large spatial databases with noise. In
Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD’96, page
226–231. AAAI Press.

[Ikotun et al., 2023] Ikotun, A. M., Ezugwu, A. E., Abuali-
gah, L., Abuhaija, B., and Heming, J. (2023). K-means
clustering algorithms: A comprehensive review, variants
analysis, and advances in the era of big data. Information
Sciences, 622:178–210.

[Kawaguchi et al., 2006] Kawaguchi, S., Garg, P. K., Mat-
sushita, M., and Inoue, K. (2006). Mudablue: An auto-
matic categorization system for open source repositories.
Journal of Systems and Software, 79(7):939–953.

[KNAW et al., 2018] KNAW, NFU, TO2-federatie, Hogesc-
holen, V., and VSNU (2018). Nederlandse gedragscode
wetenschappelijke integriteit. DANS.

[MacQueen, 1967] MacQueen, J. (1967). Some methods for
classification and analysis of multivariate observations.

[McMillan et al., 2012] McMillan, C., Grechanik, M., and
Poshyvanyk, D. (2012). Detecting similar software ap-
plications. In 2012 34th International Conference on Soft-
ware Engineering (ICSE). IEEE.

[Nguyen et al., 2018] Nguyen, P. T., Di Rocco, J., Rubei, R.,
and Di Ruscio, D. (2018). Crosssim: Exploiting mutual
relationships to detect similar oss projects. In 2018 44th
Euromicro Conference on Software Engineering and Ad-
vanced Applications (SEAA). IEEE.

[Rand, 1971] Rand, W. M. (1971). Objective criteria for the
evaluation of clustering methods. Journal of the American
Statistical Association, 66(336):846–850.

[Rębacz, 2024] Rębacz, M. (2024). itsmatoosh/tudelft-
bachelor-research-project: 1.0.

[Spinellis, 2012] Spinellis, D. (2012). Git. IEEE Software,
29(3):100–101.

[StackOverflow, 2023] StackOverflow (2023). Stack Over-
flow developer survey 2023.

[Vinh et al., 2010] Vinh, N. X., Epps, J., and Bailey, J.
(2010). Information theoretic measures for clusterings
comparison: Variants, properties, normalization and cor-
rection for chance. J. Mach. Learn. Res., 11:2837–2854.

[Warner, 2018] Warner, J. (2018). Thank you for 100 million
repositories.

[Zenodo, 2024] Zenodo (2024).
[Zhang et al., 2017] Zhang, Y., Lo, D., Kochhar, P. S., Xia,

X., Li, Q., and Sun, J. (2017). Detecting similar reposito-
ries on github. In 2017 IEEE 24th International Confer-
ence on Software Analysis, Evolution and Reengineering
(SANER). IEEE.

A Dataset

https://github.com/filoghost/HolographicDisplays~mc-plugin
https://github.com/NoCheatPlus/NoCheatPlus~mc-plugin
https://github.com/ViaVersion/ViaBackwards~mc-plugin
https://github.com/ViaVersion/ViaVersion~mc-plugin
https://github.com/games647/FastLogin~mc-plugin
https://github.com/TownyAdvanced/Towny~mc-plugin
https://github.com/SkinsRestorer/SkinsRestorerX~mc-plugin
https://github.com/IntellectualSites/PlotSquared~mc-plugin
https://github.com/AuthMe/AuthMeReloaded~mc-plugin
https://github.com/Slimefun/Slimefun4~mc-plugin
https://github.com/SkriptLang/Skript~mc-plugin
https://github.com/DiscordSRV/DiscordSRV~mc-plugin
https://github.com/EngineHub/WorldGuard~mc-plugin
https://github.com/SaberLLC/Saber-Factions~mc-plugin
https://github.com/noahbclarkson/Auto-Tune~mc-plugin
https://github.com/Multiverse/Multiverse-Core~mc-plugin
https://github.com/MilkBowl/Vault~mc-plugin
https://github.com/GeorgH93/MarriageMaster~mc-plugin
https://github.com/MyPetORG/MyPet~mc-plugin
https://github.com/rlf/uSkyBlock~mc-plugin
https://github.com/elBukkit/MagicPlugin~mc-plugin
https://github.com/dmulloy2/ProtocolLib~mc-plugin
https://github.com/DRE2N/DungeonsXL~mc-plugin
https://github.com/GeorgH93/Minepacks~mc-plugin
https://github.com/lenis0012/LoginSecurity~mc-plugin
https://github.com/APDevTeam/Movecraft~mc-plugin
https://github.com/ChestShop-authors/ChestShop-3~mc-plugin
https://github.com/goncalomb/NBTEditor~mc-plugin
https://github.com/TheJeterLP/ChatEx~mc-plugin
https://github.com/garbagemule/MobArena~mc-plugin
https://github.com/PEXPlugins/PermissionsEx~mc-plugin
https://github.com/WooMinecraft/WooMinecraft~mc-plugin
https://github.com/CitizensDev/Citizens2~mc-plugin
https://github.com/PlayPro/CoreProtect~mc-plugin
https://github.com/nsporillo/GlobalWarming~mc-plugin
https://github.com/BentoBoxWorld/BentoBox~mc-plugin
https://github.com/cijaaimee/Slime-World-Manager~mc-plugin
https://github.com/jpenilla/MiniMOTD~mc-plugin
https://github.com/andrei1058/BedWars1058~mc-plugin
https://github.com/libraryaddict/LibsDisguises~mc-plugin
https://github.com/DownThePark/SetHome~mc-plugin
https://github.com/IkeVoodoo/LSSMP~mc-plugin
https://github.com/sgtcaze/NametagEdit~mc-plugin
https://github.com/Gecolay/GSit~mc-plugin
https://github.com/PlaceholderAPI/PlaceholderAPI~mc-plugin
https://github.com/Puharesource/TitleManager~mc-plugin
https://github.com/gonalez/znpcs~mc-plugin
https://github.com/yL3oft/zHomes~mc-plugin
https://github.com/crusopaul/OreRandomizer~mc-plugin
https://github.com/EnttbotX/ClansX~mc-plugin
https://github.com/cabaletta/baritone~mc-mod
https://github.com/Creators-of-Create/Create~mc-mod
https://github.com/xCollateral/VulkanMod~mc-mod
https://github.com/Wurst-Imperium/Wurst7~mc-mod
https://github.com/ReplayMod/ReplayMod~mc-mod
https://github.com/BluSunrize/ImmersiveEngineering~mc-mod
https://github.com/mezz/JustEnoughItems~mc-mod

https://github.com/PolyhedralDev/Terra~mc-mod
https://github.com/ldtteam/minecolonies~mc-mod
https://github.com/TerraformersMC/ModMenu~mc-mod
https://github.com/VolmitSoftware/Iris~mc-mod
https://github.com/TeamGalacticraft/Galacticraft~mc-mod
https://github.com/TechReborn/TechReborn~mc-mod
https://github.com/LambdAurora/LambDynamicLights~mc-mod
https://github.com/shedaniel/RoughlyEnoughItems~mc-mod
https://github.com/The-Aether-Team/The-Aether~mc-mod
https://github.com/TerraformersMC/Terrestria~mc-mod
https://github.com/LambdAurora/LambdaBetterGrass~mc-mod
https://github.com/TeamLapen/Vampirism~mc-mod
https://github.com/Coffee-Client/Coffee~mc-mod
https://github.com/TerraformersMC/Traverse~mc-mod
https://github.com/ValkyrienSkies/Valkyrien-Skies-2~mc-mod
https://github.com/mekanism/Mekanism~mc-mod
https://github.com/ForestryMC/ForestryMC~mc-mod
https://github.com/CaffeineMC/lithium-fabric~mc-mod
https://github.com/PorkStudios/FarPlaneTwo~mc-mod
https://github.com/PaperMC/Starlight~mc-mod
https://github.com/VazkiiMods/Botania~mc-mod
https://github.com/cc-tweaked/CC-Tweaked~mc-mod
https://github.com/Glitchfiend/BiomesOPlenty~mc-mod
https://github.com/iPortalTeam/ImmersivePortalsMod~mc-mod
https://github.com/TartaricAcid/TouhouLittleMaid~mc-mod
https://github.com/MrCrayfish/MrCrayfishFurnitureMod~mc-mod
https://github.com/Team-EnderIO/EnderIO~mc-mod
https://github.com/Team-RTG/Realistic-Terrain-Generation~mc-mod
https://github.com/AntiqueAtlasTeam/AntiqueAtlas~mc-mod
https://github.com/TwelveIterationMods/Waystones~mc-mod
https://github.com/YaLTeR/MouseTweaks~mc-mod
https://github.com/MattCzyr/NaturesCompass~mc-mod
https://github.com/squeek502/AppleSkin~mc-mod
https://github.com/vectorwing/FarmersDelight~mc-mod
https://github.com/TeamTwilight/twilightforest~mc-mod
https://github.com/AppliedEnergistics/Applied-Energistics-2~mc-mod
https://github.com/Shadows-of-Fire/Toast-Control~mc-mod
https://github.com/AlexModGuy/AlexsMobs~mc-mod
https://github.com/jaquadro/StorageDrawers~mc-mod
https://github.com/TwelveIterationMods/CraftingTweaks~mc-mod
https://github.com/progwml6/ironchest~mc-mod
https://github.com/Shadows-of-Fire/FastWorkbench~mc-mod
https://github.com/KyaniteMods/DeeperAndDarker~mc-mod
https://github.com/RoboBinding/RoboBinding~android-lib
https://github.com/k0shk0sh/PermissionHelper~android-lib
https://github.com/pedrovgs/Renderers~android-lib
https://github.com/jonfinerty/Once~android-lib
https://github.com/maurycyw/StaggeredGridView~android-component
https://github.com/Cutta/GifView~android-component
https://github.com/lyft/scissors~android-component
https://github.com/vekexasia/android-edittext-validator~android-component
https://github.com/YoKeyword/IndexableRecyclerView~android-component
https://github.com/takahirom/PreLollipopTransition~android-component
https://github.com/MrEngineer13/SnackBar~android-component
https://github.com/sharish/ScratchView~android-component
https://github.com/Meituan-Dianping/Shield~android-component
https://github.com/microsoftarchive/android-sliding-layer-lib~android-lib
https://github.com/miguelhincapie/CustomBottomSheetBehavior~android-component
https://github.com/matrixxun/PullToZoomInListView~android-component

https://github.com/florent37/AwesomeBar~android-component
https://github.com/lguipeng/BubbleView~android-component
https://github.com/nirhart/ParallaxScroll~android-component
https://github.com/jjobes/SlideDateTimePicker~android-component
https://github.com/iammert/StatusView~android-component
https://github.com/MasayukiSuda/FPSAnimator~android-lib
https://github.com/bboylin/UniversalToast~android-component
https://github.com/imkarl/CharacterPickerView~android-component
https://github.com/mabbas007/TagsEditText~android-component
https://github.com/romtsn/ArcNavigationView~android-component
https://github.com/Aspsine/FragmentNavigator~android-component
https://github.com/curioustechizen/android-ago~android-component
https://github.com/shehuan/NiceDialog~android-component
https://github.com/LineChen/FlickerProgressBar~android-component
https://github.com/shehabic/Droppy~android-component
https://github.com/wustor/GangedRecyclerview~android-component
https://github.com/nomanr/WeekCalendar~android-component
https://github.com/panpf/spider-web-score-view~android-component
https://github.com/Glamdring/EasyCamera~android-lib
https://github.com/f2prateek/progressbutton~android-component
https://github.com/klinker41/android-chips~android-component
https://github.com/takimafr/androidkickstartr~android-lib
https://github.com/heinrichreimer/material-drawer~android-component
https://github.com/yanzhenjie/Kalle~android-lib
https://github.com/lawloretienne/Trestle~android-lib
https://github.com/SimonVT/MessageBar~android-component
https://github.com/kobakei/Android-RateThisApp~android-lib
https://github.com/bgogetap/StickyHeaders~android-component
https://github.com/liuguangqiang/CookieBar~android-lib
https://github.com/baoyongzhang/Treasure~android-lib
https://github.com/saeedsh92/Banner-Slider~android-component
https://github.com/dbachelder/CreditCardEntry~android-component
https://github.com/feeeei/CircleSeekbar~android-component
https://github.com/Cutta/TagView~android-component

	Introduction
	Literature Review
	Methodology and Experiment Setup
	Data Collection
	Dependency Extraction
	Data Selection
	Repository Vectorization
	Comparing Similarity Metrics
	Comparing Clustering Techniques
	Adjusting for Composability

	Evaluation
	Similarity Metrics
	Clustering Techniques
	Composable Approach

	Discussion
	Impact on Software Development
	Practical Applications
	Future Work

	Conclusions
	Responsible Research
	Ethical Data Collection
	External Validity
	Reproducibility

	Dataset

