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Summary

Thesis Title: Information Propagation in Peer-to-Peer Networking: Model-
ing and Empirical Studies

Although being a young technology, peer-to-peer (P2P) networking has spurred dra-
matic evolution on the Internet over the recent twenty years. Unlike traditional server-
client mode, P2P networking applications are user-centric. Users (peers) generate their
own content and share it with others across the Internet. Be it a P2P file-sharing net-
work, a streaming delivery system, a video-on-demand application or an online social
networking site, all of the aforementioned applications aim to fulfil a fundamental goal
- that is, to deliver content to peers in a decentralized manner. In this thesis, we are
motivated to study the information (or content) propagation process from the following
two aspects:

1. To make use of existing techniques and propose models that are applicable in P2P
networking.

2. To conduct empirical studies with emerging P2P applications regarding their
methodologies of information propagation.

First of all, we study gossip-based information propagation in decentralized P2P
overlay networks. We illustrate the difficulty of performing an exact analysis of gossip-
based information dissemination in large-scale and dynamic P2P networks, where each
peer only communicates with a subset of peers in the network. We show that, describ-
ing the gossip-based information propagation process in the aforementioned networks
requires a very large state space, which is computationally not feasible. To guaran-
tee the reliability of gossip-based information dissemination, we perform exact analytic
modeling of the gossip-based information dissemination algorithms under the assump-
tion of uniform neighbor selection over the entire distributed network. The model is
extended to the case where random communication with multiple peers is allowed.
We incorporate different network conditions and peer behaviors in the model. Impor-
tant performance metrics and design parameters are also determined analytically. The
proposed model is applicable for both content propagation and content searching in
decentralized P2P networks. The derived metrics can be used to assess the coverage

xi



xii SUMMARY

and the effectiveness of content dissemination and search. We also study the content
retrieval process provided that, m peers possessing the desired content are discovered.
The effect of selecting a most nearby peer, which is assessed by hopcount and delay,
among the group of m peers on P2P networking during content retrieval is analyzed.
Our analysis answers the question of how many replicas of a particular content need
to be distributed (or how many peers possessing the desired content need to be discov-
ered), so that an acceptable quality of service (in terms of hopcount and delay) can be
offered.

The gossip-based information propagation model discussed above conveys the ba-
sic idea of P2P networking. However, due to the rapid evolution of P2P networking
techniques, applications with new features have been launched and user characteristics
start to play an important role. Hence, we carry out two empirical studies that are de-
signed to disclose important design issues and distinct user behaviors in some emerging
P2P applications. Observations from the two empirical studies can be useful to develop
models that are appropriate for the specific applications.

Our first empirical study focuses on a proprietary Peer-to-Peer Television (P2PTV)
system named SopCast. The commercialized P2PTV applications have become the
most dominant means of deliver video content via the Internet, while their underlying
mechanisms are largely unknown. Consequently, we perform a set of experiments that
are suitable to reflect the overall performance of the SopCast network. We dissect a
part of the SopCast protocol by using a reverse engineering approach. Our analysis
reveals the neighbor communication rule, the video delivery method and the network
structure implemented in SopCast. The topological dynamics of the SopCast network,
and its traffic impact on the Internet are also evaluated. The approach and method-
ology presented in this empirical work provide insights in the understanding of similar
applications.

As mentioned earlier, the importance of users in P2P networking is emphasized
more than any other networking applications. Thus, the second empirical study is con-
ducted with an online social networking site, named Digg. The emerging online social
networking applications are featured with collaborative information recommendation
and propagation: users can publish, discover, and promote the most interesting content
collectively without having a group of website editors. Everyday, a large amount of
information is published on these sites, while only a few pieces of the information be-
come popular. In this empirical analysis, we aim to answer the following questions: 1.
Whether online social networking users are making friends with others that are similar
as themselves? 2. What is the dynamic process that users are collaboratively filter-
ing and propagating information in the online social networks? 3. Whether friendship
relations are helping to propagate newly published content? Understanding different
characteristics and the information propagation process in the online social networks
helps to improve current marketing techniques that attempt to propagate advertise-
ments, products, and ideas over these networks.



Chapter 1

Introduction

1.1 Peer-to-Peer: Collaborative Content Sharing and

Delivery

The technology of peer-to-peer (P2P) networking creates a reciprocal environment
where, by sharing resources and computational capacity with each other, mutual benefit
between end-users is possible. The Internet, as originally conceived in the late 1960s,
was in fact, a P2P system. The goal of the original ARPANET1 was to connect and
share computing resources between equal entities (peers). However, early applications
of the Internet, e.g. File Transfer Protocol (FTP) and Telnet, were themselves server-
client based. Thereafter, a centralized Internet is known to users. The role of the
Internet, has not been reverted, until the year of 1999, when Napster [22] pioneered the
idea of collaboratively sharing music at the end-users. Thereafter, P2P networking has
spurred the implementation of different applications in the fields of P2P file-sharing,
P2P streaming, P2P social networking, etc. Although the underlying mechanism of
different P2P applications are different, they attempt to solve the same problem: that
is, to create a virtual overlay over the existing Internet (both wired and wireless) and to
share and deliver content2 collaboratively.

By seeing the end-users as nodes, and their communication in-between as links, a
P2P overly network is formed on the application layer. A node is also referred to as a
peer in a P2P overlay network. A content (e.g. file, music, video, news, etc.), or part
of the content, is normally replicated, and distributed over the P2P overlay network. A
peer has the role of being a server, and a client at the same time. A peer can retrieve
a desired content directly from its neighbor, whereas it is also responsible for providing
a requested content to others, if it has it.

1Advanced Research Projects Agency Network
2In this thesis, content, message and information are interchangeable terminologies.

1



2 CHAPTER 1. INTRODUCTION

1.1.1 Classification of P2P Overlay Networks

Based on the methodology of overlay construction, we classify the P2P overlay networks
into two types, namely, structured and unstructured.

Structured P2P Overlay Network

By structured, we mean that the P2P overlay network topology is tightly controlled
and content are placed at precisely specified locations so that a search query can be
efficiently routed to the peer with the desired content. Such systems essentially provide a
mapping between the content (identified by a file identifier) and the location (identified
by a unique peer address), using the Distributed Hash Table (DHT). Upon joining,
a peer is assigned a node identifier. The content to be inserted, is also assigned a
unique identifier, which is called the key. Keys are mapped to node identifier, and a
{key, value} pair is generated. Given a key, a store operation (put {key, value}), or
a search operation (value = get(key)) can be invoked to store or retrieve the content
corresponding to the key. Each peer maintains a small routing table consisting of
the information about neighbor location, i.e. the node identifier. A search query is
then forwarded across the overlay network to peers hop by hop, via the nodes whose
identifiers are closer to the key, until it reaches the peer with the key. Typical examples
are Content Addressable Network (CAN) [108], Chord [113], Tapestry [131], Pastry
[109] and Kademlia [91]. The structured P2P overlay networks confront two major
issues. First of all, they only support precise-match query. Secondly, they cannot cope
with frequent peer joining and leaving. Thus, in most of today’s P2P networks, the
structured overlay is not used.

Unstructured P2P Overlay Network

An unstructured P2P overly network is ad-hoc in nature, meaning that the placement
of content is unrelated to the overlay topology, and peers join the network without any
prior knowledge of the topology. In fact, unstructured P2P overlay networks are more
commonly employed, because such an architecture is easy to deploy, robust against
single failures, and resilient to peer churns.

In a decentralized (or distributed) unstructured P2P overlay network, the overlay
network is organized in a random way. The functionalities of content dissemination,
search and retrieval are distributed to peers. The first decentralized unstructured P2P
system, Gnutella [12], uses flooding to query content stored at peers. In some applica-
tions, a centralized location, e.g. a super node or a tracker is proposed to manage the
contact information about peers and the content that they have, e.g. FastTrack/KaZaA
[17], BitTorrent [5], and Tribler [106]. When joining the network, a peer receives a list
of peers, i.e. a peerlist, from the super node or tracker. Even though a centralized
location, i.e. the super node, may exist in the unstructured overlay, neighbor discovery
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and content delivery can still be performed in a decentralized manner. For example,
in Tribler, a peer regularly communicates with the nodes in its peerlist to exchange
neighbor information based on an epidemic protocol. By doing so, peers can gradually
discover more neighbors in the network, and download content from them.

1.1.2 P2P Networking Applications

P2P networking techniques are mostly popularized in the following three fields: P2P
file-sharing, multimedia streaming and P2P social networking.

P2P File-Sharing is the practice of distributing, downloading and storing content
between peers. It is the earliest realization of P2P networking technology. Many P2P
file-sharing systems are still very popular nowadays, e.g. KaZaA, Gnutella, BitTorrent,
Tribler, Emule [9], etc. According to the Internet study report (2008/2009) [14], P2P
file-sharing applications generate the most traffic on the Internet, i.e. 57% of the global
Internet traffic.

P2P Multimedia Streaming underlines the delivery of video or audio content over
the Internet. The P2P Voice Over Internet Protocol (VoIP) allows users to deliver voice
communications over the Internet. With the video-on-demand (VoD) systems, users are
free to watch video content on demand. Moreover, by using the Peer-to-Peer Television
(P2PTV) applications, users can watch real-time video content online. Examples of
academic P2PTV systems are SplitStream, which employs application layer multicast
[49]; and CoolStream, which utilizes epidemic protocols to exchange video content [130].
There are also some P2PTV networks that are developed for commercial purposes, such
as SopCast [31], PPStream [27] and UUSee [36]. These proprietary P2PTV networks
have obtained increasing popularity in recent years, and have become a great success
for video content delivery. Since these proprietary P2PTV systems are not open-source
applications, their underlying mechanisms and architectures are unknown.

P2P Online Social Networking provides a place where users can interact with
others over the Internet. Most online social networks (OSNs) are web based: there is
a centralized website for users to log in, create profiles, send e-mails, instant messages
(IMs) and publish content, etc. On the other hand, OSNs create virtual communities
that allow users to network with friends, share ideas, interests, and information with
each others in a decentralized and self-organized manner. In this sense, online social
networking is also considered as a P2P application. In the last decade, OSNs have
gained significant popularity from end-users (especially the young generations). They
have greatly changed the way that people are socializing with each other and the way
that they are consuming information via the Internet. For instance, recent statistics in
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2008 have shown that teenagers and young adults (age between 13 and 24) spend about
30% of their social lives online [39]. According to a student survey performed by Hesel
et al. in 2008 [71], 89% of the students at the university level use social networking
sites, 70% visit a social network at least once a day; and 84% of them have a personal
page or profile on one or more of the OSNs. Examples of popular OSNs are Facebook
[10], LinkedIn [19], LiveJournal [20], Digg [8], MySpace [21], Twitter [35] and YouTube
[37], etc.

1.2 Research Questions and Motivations

1.2.1 Two Aspects of Studying Information Propagation

The primary goal of P2P networking is to deliver content to peers in a decentralized
way. The above goal, is achieved by three steps: disseminating3 content; searching
for content, and retrieving content. During content dissemination, the content, or the
advertisement message indicating its availability and location is propagated. To search
for content, a search query that is looking for the content itself or for the information
about its location is spread. While for the case of content retrieval, the content itself
is retrieved at the end-user. In all of the three cases mentioned above, information
(e.g. content, controlling messages, search queries) are propagated over the P2P net-
working applications. The process, that the information is propagated (be it content
dissemination, searching or retrieval) is the focus of this thesis.

For us, theoretical and empirical analysis are two inseparable components, because
many networking theories were constructed based on empirical observations. For in-
stance, modeling virus spread over the Internet is motivated by epidemic spreading in
biology [56]; constructing the small-world model is inspired by the famous experiment
performed by Stanley Milgram [93]. The theoretical models are used to describe the
observed phenomena mathematically, and the empirical analysis assists to complement
the mathematical models. As a young technology, the development of P2P networking
requires both theoretical and empirical analysis.

Most P2P applications are man-made. Hence, when devising the content propaga-
tion algorithms, we can make use of existing techniques. For instance, the distributed
hash table is employed to create structured P2P overlays. In the unstructured P2P
networks, flooding, random walk, and gossip-based (or epidemic-based) algorithms are
deployed to disseminate and retrieve content in a probabilistic manner. The aforemen-
tioned techniques have been studied for years, e.g. hash table as in the field of database
indexing and caching [54], flooding as a technique in routing protocols [118], random
walk as studied in graph theory [90], and gossip-based schemes as addressed in biology

3We use disseminate, propagate and spread interchangeably in this thesis.



1.2. RESEARCH QUESTIONS AND MOTIVATIONS 5

and sociology. Therefore, it is convenient for us to learn from these well established
theories, and propose models that can be applied to P2P networking.

On the other hand, in many of the real-world P2P applications, the underlying
mechanism of propagating content is unknown yet. For instance, proprietary P2P
streaming applications are very popular in recent years. However, little information
has been released about their network structures, operational principles and video de-
livery methods. Another example is the emerging P2P online social networks that are
self-organized and spontaneous in nature. These online social networks are user-centric.
Thus, the importance of users are emphasized more than any other networking applica-
tions. In these applications, how do the social relationships and collaboration between
users influence the information propagation procedure is still an open question. With-
out a good understanding of the content propagation process in real-world applications,
developing mathematical modeling is not possible.

As a conclusion, we study the information propagation process in P2P networking
from two aspects. The first aspect is to model, evaluate and predict the effectiveness
of information propagation by using existing techniques. The second one is to under-
stand the underlying mechanisms and the influence of user behaviors in real-world P2P
applications, and to provide insights for further studies.

1.2.2 Motivation and Thesis Scope

In the course of this thesis, we first concentrate on gossip-based information propagation
in unstructured P2P overlay networks. The process of selecting a best peer among the
group of peers who possess the desired content is also addressed. Afterwards, we carry
out two empirical studies. One focuses on a commercial P2PTV system named SopCast.
The second one is conducted with the Digg online social network (OSN).

Theoretical Analysis of Information Propagation

Unstructured P2P overlay networks are widely used on today’s Internet. We consider
gossip-based information propagation schemes that emerge as an approach to maintain
simple, scalable, and fast content dissemination and searching in distributed networks.
Therefore, studying the gossip-based algorithms, that effectively disseminate the in-
formation, is the focus of this study. Once the content is discovered, the process of
selecting the best peer to retrieve it becomes vital. Thus, we are motivated to study
the peer selection problem during content retrieval.

In the theoretical analysis, we aim to accomplish the following issues: 1. Illustrate
the difficulty of modeling gossip-based content propagation in large-scale, highly dy-
namic P2P networks (Chapter 2). 2. Develop a model that describes gossip-based
content propagation and search under the assumption of uniform neighbor selection



6 CHAPTER 1. INTRODUCTION

over the entire distributed network (Chapter 3). 3. Model the process of reaching the
most nearby peer (in hopcount and delay) for content retrieval (Chapter 4).

Empirical Study of a Proprietary P2PTV Network

Extensive measurement studies have been performed to understand traffic patterns
and topological dynamics of various P2PTV applications. One major limitation of
the previous works is to reflect the overall performance of the P2PTV applications.
Moreover, most of the popular P2PTV systems on today’s Internet are commercialized,
which means that their source codes are not available. Therefore, when studying the
performance of such applications, we have to treat them as a black box. The goal
of this case study is two-fold: first, to perform appropriate experiments so that the
entire SopCast overlay can be examined; and second, to disclose the architecture and
mechanisms implemented in the SopCast network.

We design a set of experiments, from which the SopCast protocol is dissected. The
main objectives of this study are: 1. Disclose the network structure and video delivery
pattern in SopCast (Chapter 7). 2. Reflect the topological dynamics of the SopCast
overlay, and its traffic impact on the Internet (Chapter 8). This case study provides
guidelines and methodologies to understand similar applications.

Empirical Study of an Online Social Networking Application

OSNs such as the Digg are gaining increasing attentions from the end-users, especially
the young generations. Since users are more inclined to spend their social lives online,
OSN becomes a promising platform for online campaigning [58], viral marketing [97]
and targeted advertisements [128]. As shown in [128], in 2007, $1.2 billion was spent
on advertisement in OSNs worldwide, and this amount is expected to triple by 2011.
Therefore, we are motivated to study different characteristics of the OSNs (e.g. topo-
logical properties, user behaviors), and the way that users are spreading and sharing
information in these networks. Understanding the fundamental characteristics of cur-
rent OSNs and their underlying principal of disseminating content helps to improve
existing marketing techniques that attempt to propagate advertisements, products, or
ideas over these networks.

We developed a crawler, that is used to collect related information about the Digg
OSN. By performing an extensive analysis on the collected data, two major aspects of
the Digg network are examined: 1. Study the network structure in Digg, measure users’
interests in the Digg network, and compare the similarity between friends (Chapter 11);
2. Examine the content propagation pattern and the effectiveness of friendship relations
during the spread of content (Chapter 12).
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1.3 Thesis Outline

The main body of this thesis consists of 13 chapters and is organized into three parts.
The first part focuses on the theoretical modeling of content dissemination, search and
retrieval. In the second and third part, we present two empirical studies performed with
SopCast and Digg regarding their methodologies of information dissemination. Chapter
14 highlights the main conclusions of this thesis.

1.3.1 Part I: Modeling Content Propagation, Search and Re-
trieval

Chapter 2 defines a gossip-based information propagation problem in decentralized
P2P overlay networks. Basic parameters, that are crucial when designing and mod-
eling gossip-based algorithms are introduced. Gossip-based information propagation
models, associated with the design parameters are reviewed. Furthermore, we illustrate
the major challenge of analyzing gossip-based information dissemination in large-scale,
dynamic P2P networks when peers only communicate with a subset of peers in the
network.

Chapter 3 performs an exact analytic modeling of gossip-based message dissemina-
tion schemes under the assumption of uniform selection of multiple neighbors over the
entire distributed network. Different network conditions and peer behaviors are also
incorporated. The gossip-based algorithms under study are applicable for both content
propagation and content searching in a distributed P2P overlay. Important perfor-
mance metrics and design parameters are determined analytically. The performance of
the gossiping-based content dissemination or search schemes are evaluated.

Chapter 4 addresses the problem of finding the most nearby peer from an initiating
node. We use the metrics of hopcount and delay respectively to assess the closeness
between peers. The analysis presented in this chapter answers the question of how many
replicas of a particular content need to be distributed so that an acceptable quality of
service can be offered.

Chapter 5 highlights the main conclusions of the theoretical analysis.

1.3.2 Part II: Empirical Study of a Proprietary P2PTV Sys-
tem

Chapter 6 provides an overview of the SopCast P2PTV system, and related mea-
surement studies that were performed with the commercial P2PTV applications. After



8 CHAPTER 1. INTRODUCTION

that, we specify the research challenges and highlight problems that we are going to
solve.

Chapter 7 presents three experiments that have been designed to reflect the overall
performance of SopCast. By using a reverse engineering approach, we have successfully
dissected a part of the SopCast protocol. Our understanding of the neighbor communi-
cation pattern, the video delivery rule, and the three-tier network structure of SopCast
is presented afterwards.

Chapter 8 aims to investigate the dynamic nature of the SopCast overlay. We first
classify the SopCast overlay as a two-layer architecture consisting of a neighbor graph
GN and a video graph GV . The activation period of a neighbor/video link that has been
discovered in this chapter, is further used as proper snapshot duration of the dynamic
SopCast overlay. Afterwards, the topological property (in terms of node degree) of the
video and the neighbor graph are evaluated. We also explore the traffic dynamics of the
SopCast network. We study how the SopCast traffic is dynamically distributed over
different peers in the network.

Chapter 9 summarizes the observations and findings of the SopCast P2PTV network.

1.3.3 Part III: Empirical Study of an Online Social Network

Chapter 10 introduces the development of online social networking applications, and
the Digg network. We describe related work that was performed with OSNs and propose
research questions that will be studied. After that, the Digg data crawling process is
explained. We also show some examples of the collected data files.

Chapter 11 discusses the topological properties (i.e. node degree, link symmetry
and assortativity) of the Digg OSN. Thereafter, we study users’ digging activities in
Digg, and present our methodology of quantifying users’ interests. We will show that
friends in the Digg network are indeed sharing similar interests.

Chapter 12 aims to examine the information propagation pattern in Digg. We first
show that the Digg network is an unbalanced system in terms of story submission.
Furthermore, we study the collaborative content propagation in Digg, and discuss the
impairment of Digg friendship relations during the spread of information.

Chapter 13 concludes the empirical analysis performed with the Digg network.
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Modeling: Content Propagation,
Search and Retrieval
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Chapter 2

Gossip-based Information
Propagation

In recent years, gossip-based (or commonly referred to as epidemic-based) algorithms,
which mimic the spread of disease or rumor, have been considered as efficient and ro-
bust means for database maintenance and replication [57], information dissemination
[61], topology construction [74], peer membership management [81], data aggregation
[75] and failure detection [123]. It has also been implemented in many real-world appli-
cations: e.g. in Tribler [106], gossip-based algorithms are used to update and maintain
peer information; in CoolStreaming [130], video content delivery is scheduled by using
the gossip-based algorithms; in wireless ad-hoc networks [68], routing information is
updated between neighbors in an epidemic manner. Consequently, gossip-based infor-
mation propagation problem in decentralized unstructured P2P networks is the focus
of this part.

We start this chapter by defining the gossip-based information propagation prob-
lem, and by introducing important parameters when designing gossip-based algorithms.
Associated with the design parameters, we will review two existing models and illus-
trate the difficulty of analyzing gossip-based information dissemination in large-scale,
dynamic P2P networks.

2.1 Problem Definition

First of all, we define what a gossip-based information propagation problem is. We con-
sider a distributed network with N+1 peers, where a unique identification number (ID)
i, 1 ≤ i ≤ N + 1, is assigned to each peer. In a gossip-based algorithm, communica-
tion between neighbors takes place periodically, which is commonly defined as gossiping
rounds r. Each peer selects its neighbor(s) or gossiping target(s) to forward a piece of
new information according to certain peer selection schemes. Neighbor communication

11
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is delivered over a connecting physical or virtual link. The node that initiates the mes-
sage dissemination process is referred to as the initiator, which is assumed to be the
only informed node at the beginning of the process. Any node that receives the message
will become an informed one. Otherwise, it is referred to as being uninformed. The
number of informed nodes, in round r, is denoted by Xr. The number of uninformed
nodes is then, denoted by Ur = N + 1 − Xr. A node can become uninformed if it
removes this message later on. Peers participating in the gossiping process may behave
differently with respect to different properties, e.g. their willingness of participating in
the gossiping process, bandwidth/storage capacity, or computational power, etc. The
different behaviors of peers are referred to as their their degree of cooperation. The
overall objective is to disseminate the message as fast as possible, so that every node
in the network is aware about the message.

2.2 Important Parameters

When designing or studying gossip-based information propagation algorithms, we need
to consider several important parameters.

2.2.1 Peer View of the Network

A random node i in the distributed network (with N + 1 nodes) maintains a list of m
peers ( 1 ≤ m ≤ N), which is referred to as a peerlist Li, to communicate with. The
dimension, li = dim (Li), of the vector Li is defined as the size of peerlist Li. Usually,
a node i is not allowed to appear in its own peerlist Li, meaning that i /∈ Li. If the
peerlist contains all the other peers in the network, i.e. li = N , we say that the peer
has a complete view of the network. If a peer i only knows a subset of peers in the
network, meaning that 1 ≤ li < N , the peer is then said to have a partial view of the
network.

Peer Complete View In the early study of gossip-based information dissemination
algorithms, it is assumed that every peer knows all the other peers: that is, each peer
has a complete view of the network (li = N). This assumption applies in a distributed
network with moderate network size, e.g. hundreds of nodes. A complete view of peers,
however, is not a realistic assumption in large-scale distribution networks. Because
distribution systems such as P2P networks and ad-hoc networks are featured with
frequent peer joinings and departures. Thus, it is difficult to update the complete node
membership in a highly dynamic system. Moreover, maintaining a complete view of
peers at every node in the network incurs extra overload by frequently exchanging peer
information.
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Peer Partial View To design a scalable gossip-based information dissemination algo-
rithm in large-scale distributed networks, the partial view of peers is taken into account.
In this case, a random peer i only disseminates the information to a subset of peers
in the system, i.e. 1 ≤ li < N . In order to guarantee the reliability of gossip-based
information dissemination, and to cope with peer dynamics, the view of a peer needs to
be periodically updated, according to some peerlist exchange schemes. By periodically
exchanging peerlists, the freshness (in terms of the age and availability) of peers can be
updated. A detailed description of different peerlist exchange schemes can be found in
[76].

2.2.2 Uniformity of Peer Selection

We assume that all peers in the network are equally interested in the content to be
disseminated. To guarantee the reliability of gossip-based information dissemination, it
is preferred to achieve uniformity1 during the neighbor selection (see [61]), so that every
node in the network can be notified by the information to be disseminated. Uniform
neighbor selection can be easily satisfied when peers have a complete view of the net-
work. When only partial view is available, uniformity can also be achieved as discussed
by Jelasity et al. [76] and Eugster et al. [60]. Hence, designing appropriate peerlist
exchange schemes, and properly selecting peers from the local views may also ensure
random peer selection in large-scale distributed networks.

2.2.3 Peer Infectious Model

Inherited from biology, a peer can be uninformed (susceptible as in biology), if it has
not received the information that is to be propagated yet; informed (infected as in biol-
ogy), if it has received the information; and recovered, if it deletes the information after-
wards. Based on the transition between statuses, the three most studied models are: SI
(susceptible-infected), SIS (susceptible-infected-susceptible), SIR (susceptible-infected-
recovered). In networking terms, the SI model (also called the informed-forever model)
means that once an uninformed peer received the information, it becomes informed and
remains informed forever. The informed peers help to propagate the information. In
the SIS model, an informed peer can delete the information after being informed for
some time. Thus, the peer will transit from the informed state to uninformed state
again. The peer that stays in the uninformed state may receive the same information
again and help to propagate it later on. In the SIR model, after being informed for
some time, a peer can decide to remove the information, and refuse to propagate the
same information any more.

1By uniformity, we refer to the case that peers can choose their neighbors uniformly from the entire
network.
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2.3 Gossip-based Information Propagation Models

In the following, we review several gossip-based information propagation models associ-
ated with the aforementioned, two most important assumptions: complete and partial
view of the network.

2.3.1 Theoretical Model - Peer Complete View

An early study of the information dissemination problem is found in [104], in which a
rumor spreading problem is discussed over a group of N+1 people. In each round, every
informed person passes on the information to a single neighbors, selected randomly and
independently of all its previous choices and of all the choices of the other N + 1
people. A person may choose itself as gossiping target. Pittel [104] has derived the
exact expression for the transition probabilities of the process {Xr, r > 1} as follows

Pr[Xr+1 = j|Xr = i] =

 (N+1−i
j−i )

(N+1)i

j−i∑
t=0

(−1)t
(
j−i
t

)
(j − t)i if j − i ≥ 0

0 if j − i < 0
(2.1)

where i is the number of informed nodes in round r, and j is the number of informed
nodes in round r+ 1. The propagation speed, in terms of gossiping rounds, is bounded
by O (log (N + 1)) until everybody is informed.

The assumption of uniform neighbor selection has led to rigorous analysis of gossip-
based algorithms in distributed P2P overlays, and has been studied in many theoretical
papers: e.g. Demers et al. [57] for database maintenance, Birman et al. [48] for reliable
multicasting, Karp et al. [79] in the case of information dissemination, Kempe [80] and
Jelasity et al. [75] regarding gossip-based information aggregation.

2.3.2 Theoretical Model - Fixed Peer Partial View

By using the peerlist Li maintained at each peer i, an adjacency matrix A can be
created correspondingly. The element aij in the adjacency matrix is

aij = 1j∈Li
(2.2)

where the indicator function 1j∈Li
is one if j ∈ Li is true and otherwise it is zero. An

adjacency matrix A characterizes a graph G (N + 1, L) with N + 1 nodes and L links.
Since a peer i does not need to be in the peerlist of node j, if j ∈ Li, the adjacency
matrix A is generally not symmetric.

Van Mieghem et al. in [120], studied an exact continuous-time model for virus
spread in a static network, in which each node has two states: susceptible and infected.
The model in [120] considers the virus spread in an undirected graph characterized by
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a symmetric adjacency matrix. The epidemic threshold, which is associated with the
largest eigenvalue of the matrix A is also rigorously defined.

Considering a discrete stochastic process which takes place in rounds, the description
of the exact model in [120] can be rephrased in terms of content propagation, in which
peers have a fixed partial view of the network. The graph constructed by the peerlists is
assumed to be a connected, undirected graph. At each gossiping round r, a peer i enters
two states: informed, denoted by Xi (r) = 1, or uninformed, denoted by Xi (r) = 0.
The state of the stochastic process is the set of all possible combinations of the states
in which the N + 1 peers can be at round r. The number of the states with k informed
nodes is

(
N+1
k

)
. Thus, the total number of states is

∑N+1
k=0

(
N+1
k

)
= 2N+1. The state

Y (r) of the network at round r is thus expressed as

Y (r) = [Y0 (r) Y1 (r) ... Y2N+1−1 (r)]T

where

Yi (r) =

{
1 if i =

∑N+1
k=1 Xk (r) 2k−1

0 if i 6=
∑N+1

k=1 Xk (r) 2k−1

Thus, the state space of the MC is organized with xk ∈ {0, 1} as

State index i xN+1(r)xN(r)...x2(r)x1(r)
0 00 . . . . . . 0000
1 00 . . . . . . 0001
2 00 . . . . . . 0010
3 00 . . . . . . 0011
...... ......

2N+1 − 1 11 . . . . . . 1111

2.3.3 Theoretical Model - Dynamic Peer Partial View

As mentioned earlier, the distributed P2P networks nowadays are large-scale and highly
dynamic. Therefore, peers may only obtain a partial view of the network, and they
have to update their views periodically with other peers to ensure reliability during
information dissemination. Hence, assuming a complete or a static partial view of
the network is not realistic. Consequently, many previous work focused on proposing
gossip-based algorithms that are applicable in large-scale, and dynamic P2P networks.

For instance, Eugster et al. [60] and Ganesh et al. [64] evaluated the performance
of gossip-based algorithms with dynamic peer partial views during information dis-
semination, respectively. Kermarrec et al. [81] related the reliability of information
dissemination to several system parameters, e.g. system size, failure rates, and number
of gossip targets. The influence of different network topologies in disseminating infor-
mation can be found in [63]. However, to our knowledge, none of the previous papers
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attempted to model the information dissemination process and to calculate the speed
of information dissemination rigorously.

In the sequel, we will answer the question of how difficult it is to describe the gossip-
based information dissemination process with dynamic peer partial views in distributed
P2P networks. We first present an example to demonstrate the major factors need to
be taken into account when defining the states of the system.

Among the many different peerlist exchange algorithms described in [76], we assume
that, when a peer i selects a target node j to gossip with, a union of the two peerlists
Li and Lj is made. The old peerlist of Li and Lj is updated with the new one in the
next round as Li(r+1) = {Li(r) ∪ Lj(r)} \{i} and Lj(r+1) = {Li(r) ∪ Lj(r)} \{j}, so
that i /∈ Li, and j /∈ Lj. In Fig. 2.1, we present an example of a network with 4 nodes,
by making union of two peerlists. Each neighbor selection is performed uniformly from
the peerlist. We will show that the state of the network is not only related to the
combination of the informed nodes, but also depends on the possible combinations of
the peerlists.

Assuming that during initialization2, we assign each peer a peerlist with two neigh-
bors (li = 2). The peerlists for different peers at r = 0 are L1(0) = {2, 3}, L2(0) =
{3, 4}, L3(0) = {1, 4}, and L4(0) = {1, 2}, respectively. In Fig. 2.1, we draw a sample
path, i.e. the realization of the gossiping process in consecutive rounds, when peers
start to exchange their peerlists. At each gossiping round, a random peer i can be
either informed (which is denoted by Xi(r) = 1), or uninformed (which is denoted by
Xi(r) = 0). Initially (r = 0), all of the 4 nodes are uninformed. At the first round
(r = 1), peer 4 starts to disseminate a piece of information. At the next round of
r = 2, there are two possible states in the network. If peer 4 selects peer 1, the sys-
tem moves to the state with the combination of informed nodes 1001 and the updated
peerlists of L1(2) = {2, 3}, L2(2) = {3, 4}, L3(2) = {1, 4}, and L4(2) = {1, 2, 3}. If peer
4 chooses peer 2, the system transits to the state with the combination of informed
nodes 1010 with the peerlists of L1(2) = {2, 3}, L2(2) = {1, 3, 4}, L3(2) = {1, 4}, and
L4(2) = {1, 2, 3}. At the third round, we only present the possible transitions from
state 1001 (with the corresponding peerlists). As shown inside the dotted diagram of
Fig. 2.1, state 1001 can move to 7 states, which are marked from 1 to 7. For instance, if
peer 1 chooses peer 3, and peer 4 chooses peer 3, the system will move from state 1001
(with the corresponding peerlists) to state 1101, with the peerlists of L1(3) = {2, 3, 4},
L2(3) = {3, 4}, L3(3) = {1, 2, 4}, and L4(3) = {1, 2, 3}. Although both states 1 and 2
in Fig. 2.1 (round 3) have the same combination of informed nodes, namely 1101, the
peerlists of the individual peers are different, implying that the combination of peerlists
should also be taken into account when defining the states of the system. The same ob-
servation holds for state 3, 4 and 5 (corresponding to 1011) and 6 and 7 (corresponding

2The initialization is defined as the period in which peers join the network, and receive their
peerlists.
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to 1111).
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Figure 2.1: Demonstration of a sample path of the gossip-based information propagation
process in a network with 4 nodes. Peerlists are updated after making the union of two
peerlists, with i /∈ Li. The block under each peer represents its peerlist. The last row in
the dashed box specifies the transitions between two states. For instance, in the third
round, 1 → 3; 4 → 3 means that peer 1 selects peer 3, and peer 4 selects peer 3. The
operation is explained in detail in the text.

Hence, to describe the gossiping process exactly, the following steps are needed.
Step 1: Describe all possible combinations of informed nodes in the system. As we

have introduced in Section 2.3.2, there are 2N+1 combinations of the informed nodes.
Step 2: Describe all possible combinations of the peerlists. For simplicity, we

remove the constraint of i /∈ Li, such that a peer i is allowed to appear in its own
peerlist. We also assume that there is no size limitation on the peerlist, meaning that
the peerlist size l ranges from 0 to N + 1 (we allow empty peerlist to simplify the
calculation). Since the number of peerlists with k (0 ≤ k ≤ N +1) peers is

(
N+1
k

)
, there

are in total,
∑N+1

k=0

(
N+1
k

)
= 2N+1 different peerlists3.

3If an empty peerlist is not allowed, the total number of the combinations of the peerlists is 2N+1−1.
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Step 3: At each round, every peer in the network may possess one of the peerlists
out of the 2N+1 ones. Therefore, given N + 1 peers in the network (regardless of
their status of being informed or uninformed), the total number of the combinations

of their peerlists is
(
2N+1

)N+1
= 2(N+1)2 . Recall that the state of the network is also

decided by the possible combinations of the informed node in the network. Given
2N+1 combinations of informed nodes in the system, as we have discussed already, the
total number of states used to describe the entire system exactly is 2(N+1)2 × 2N+1 =
2(N+1)2+N+1. Hence, to organize and to index the enormous number of states, we need
to take both the different informed nodes, and the different peerlists into account, which
is challenging. Moreover, such a large state space is also computationally not feasible4.

As a conclusion, the above analysis provides an upper bound on the total number
of states that are needed to describe the information propagation process with peers’
dynamic partial views. The exact number of states depends on the initial conditions
(e.g. initialization of the peerlists) and the dynamics of the dissemination process (e.g.
the peerlist exchange scheme). Nevertheless, an exact analysis of the problem, in which
peers are constantly exchanging peerlists, is difficult. To evaluate the performance of
propagating information in such a scenario, we suggest to perform simulations, or devise
proper approximations.

4As shown in [120], the matrix computations (on a PC) of a 2N model are already limited to N = 13.



Chapter 3

Content Dissemination and Search
with Uniform Gossiping

Uniform neighbor selection over the entire network guarantees the reliability of gossip-
based information propagation. The exact analysis of modeling gossip-based informa-
tion dissemination when peers have dynamic, partial views is not feasible, see Section
2.3.3. When peers have a complete view of the network, the uniformity can be easily
satisfied. In the case where peers have partial views, we assume that the uniformity
can be achieve by employing appropriate peerlist exchange schemes, and by properly
selecting peers from the local views. However, the design of such peerlist exchange
schemes, and of peer selection methodologies is out of the scope of this thesis.

In this chapter, we focus on gossip-based information dissemination with uniform
gossiping. The model is extended to the case where random communication with mul-
tiple peers is allowed. We also complement the model by considering different network
conditions, depending on the knowledge of the state of the neighboring nodes in the
network. Different node behaviors, with respect to their degree of cooperation and
compliance with the gossiping process, are incorporated as well.

The gossip-based algorithms discussed in this chapter are applicable for both con-
tent dissemination and content searching in a decentralized environment. In both cases,
a message needs to be disseminated. For content dissemination, this message contains
either the content itself, or the advertisement information about the content. During
content searching, the message to be disseminated is a search query looking for the
content. From the exact analysis, important performance metrics and design parame-
ters are analytically determined. Based on the proposed metrics and parameters, the
performance of the gossiping-based content dissemination or search schemes, as well as
the impact of the design parameters, are evaluated.

19
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3.1 Algorithm Description

We consider a network with N + 1 peers. In the first round (r = 1), the initiator selects
randomly k neighbors, 1 ≤ k < N , to forward the message to. Any node that receives
the message will become an informed one, and remain informed thereafter. In each
round, all the informed nodes select k gossiping targets randomly and independently
to forward the message to. Since this is an informed-forever model, the number of
informed nodes Xr, in round r, is non-decreasing with r. Similarly, the process of the
number of uninformed nodes Ur by round r, is non-increasing.

The self-concerned nature of the peers is also captured, by incorporating the no-
tion of cooperation. A node in the network, participating in the gossiping process as
expected, is classified as cooperative. Such nodes always accept messages forwarded to
them, become informed and forward the message to others according to the rules. If a
node is not cooperative, it is referred to as non-cooperative. The non-cooperative nodes
are presented in social and P2P networks as a consequence of resource-preservation
concern or simply selfish attitude of the peers. In this thesis, the level of cooperation
in the network will be captured by the cooperation probability β, 0 < β ≤ 1, associated
with each node. Nodes with cooperation probability β = 1 are always cooperative.
Nodes with β = 0 are in essence not part of the network and this degenerate case
is not considered. The following assumptions are made regarding β to facilitate the
analysis: (1) β is time-invariant and common to all nodes; (2) Once a node decides to
be cooperative (or non-cooperative), it is cooperative (or non-cooperative) to all nodes
that select it in the same round. (3) In each round, a node decides to be cooperative
or non-cooperative independently of its choices in previous rounds and of the choices
of others. Once a node decides to be cooperative, it participates in the dissemination
until the end of the gossiping process.

Many variants of gossip-based algorithms exist based on various criteria and levels
of information availability. In this thesis, we study two fundamental cases which are
distinguished by the policy of choosing gossiping targets, namely, the blind and smart
gossiping-target selection schemes (in short, the blind and smart selection schemes).
We describe the two schemes in more details in the sequel. Practical issue such as the
maintenance of gossiping history is not the focal point of this thesis.

3.1.1 The Blind Gossiping-Target Selection Scheme

Under this scheme, no information about the status (informed or not informed) of
the neighbors is available. The k gossiping targets are selected randomly from the N
neighbors. This scheme is thus referred to as blind gossiping-target selection, and is
illustrated in Fig. 3.1. In round r = 1, all k = 2 gossiping targets cooperate. In round
r = 2, all the three informed nodes (1, 2 and 3) select each other as gossiping targets.
Thus, the number of informed nodes remains the same (X2 = X3 = 3). In round
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r = 3, all the three informed nodes select different gossiping targets, in which nodes 4,
5, 6, 7 are uninformed nodes, and node 2, 3 are informed ones. Since nodes 5 and 6
decide to be non-cooperative in this round (1 − β labelled in the corresponding link),
the number of informed nodes in round r = 4 is X4 = 5. The blind gossiping-target
selection scheme models a network with anonymous peers, or the case in which nodes
do not keep log files with all the neighbors that they have contacted. We consider the
blind gossiping-target selection scheme as the worst case because repetitious selection
of gossiping targets may slow down the speed of information dissemination.

r = 1
X1 = 1

1

2 3

k = 2 

r = 2
X2 = 3

1

2 3

k = 2 1

2 3

k = 2 

4                5             6        7

r = 3
X3 = 3

1- 1-

Figure 3.1: Illustration of the blind gossiping-target selection scheme with k = 2 and
0 < β ≤ 1. The shaded circle indicates an informed node. A dotted line between two
nodes indicates communication between them in the previous round.

3.1.2 The Smart Gossiping-Target Selection Scheme

In the smart gossiping-target selection scheme, it is assumed that the nodes know the
identity of their neighbors, and have the complete information about their status, in
terms of being or not being informed about the message under dissemination. Such
information is piggybacked on the periodically exchanged control packets, as part of
the standard neighborhood discovery process. In this way, the knowledge about node
status are provided to the neighboring nodes, so that a node can avoid sending the same
message to the nodes that already knew it. The smart selection leads to a faster message
dissemination compared to the blind one, as already informed nodes are avoided, as
shown in Fig. 3.2. If N+1−Xr < k, every node will be informed, meaning Xr+1 = N+1
in the next round, because it is sufficient that an informed node chooses less than k
targets.
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Figure 3.2: Smart gossiping-target selection with k = 2 and 0 < β ≤ 1. The gossiping
targets are randomly selected among the set of uninformed neighbors.

3.2 Exact Analysis of Gossip-Based Message Dis-

semination

Under the assumption of random neighbor selection over the complete N + 1 nodes in
the network, the process of the number of the informed nodes at the beginning of round
r, {Xr, r > 1} can be modeled rigorously as a discrete Markov chain (MC) with state
space S = {1, 2, ...N + 1}. Let P denote the (N + 1) × (N + 1) transition probability
matrix. Each entry in P , Pij = Pr[Xr+1 = j|Xr = i], denotes the probability that the
MC moves from state i to state j in one round. We denote the probability state vector
s[r] in round r by s[r] = [s1[r], s2[r] ... sN+1[r]], where si[r] = Pr[Xr = i]. Clearly, the
initial probability state vector is s[0] = [1, 0, 0, 0, ..., 0].

The number of informed nodes after every round never decreases, and thus Xr+1 >
Xr, such that the transition probability matrix P is an upper triangular matrix, with
all zeros in the lower triangular part of P . The (N + 1)−state MC has an absorbing
state1 because the network never leaves state N + 1 when all the nodes are informed.
The steady state vector is just the absorbing state of π = [0 0 0 ... 1]. In this triangular
matrix P , the diagonal entries are the corresponding eigenvalues of P . The diagonal
element on the last row is PN+1,N+1 = 1, which is the absorbing state.

In the sequel, the state transition probabilities are derived by employing a combi-
natorial approach. This approach is inspired by the occupancy problem in the balls
and bins model introduced in Appendix A, when the informed nodes are balls, and the
gossiping targets are bins.

1An absorbing state i is a recurrent state with the probability of returning to state i as Pii = 1.
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3.2.1 The Transition Probabilities Pij of the Blind Gossiping-
Target Selection Scheme

Under this scheme, a node chooses its gossiping-target randomly from the N neighbors
in the network (excluding itself). The transition probabilities can be calculated by
applying the balls and bins model as introduced in Appendix A.2.

1. Cooperative nodes with β = 1

In order for the MC to move from state i to state j, z = j − i new nodes will
need to be selected by the i informed ones, after the current round. Under the blind
selection algorithm, each of the i informed nodes selects k different neighbors from the
set of j − 1 nodes (a node is not allowed to choose itself as target) blindly. The z new
nodes should be selected at least once, by the i informed nodes. Otherwise the Markov
process cannot arrive at state j.

Determining Pij is analogous to finding the probability of randomly placing r groups
of k balls to n − 1 bins (colored in red and white), with at least m = z red bins
being occupied, as described in Appendix A.2. The operation of the i informed nodes,
selecting k different neighbors from the set of j− 1 nodes, is equivalent to placing the r
groups of k balls to the n−1 bins, excluding the white bin that has the same numbering
as the group of balls. Selecting the z new nodes is analogous to the placement of balls to
the m red bins. Gossiping-target selection from the set of i informed ones is analogous
to placing the balls to the n −m white bins. Finally, the z new nodes are selected at
least once, which is equivalent to requiring that at least the m red bins are occupied.
The transition probabilities of Pij are derived by substituting m = z, n = j, r = i in
(A.6)

Pij =


(N+1−i

z )
(N

k)
i

z∑
t=0

(−1)t
(
z
t

)(
j−1−t
k

)i
if i− 1 > k and i 6 j 6 min{N + 1, i(k + 1)}

(N+1−i
z )

(N
k)

i

j−1−k∑
t=0

(−1)t
(
z
t

)(
j−1−t
k

)i
if i− 1 < k and k + 1 6 j 6 min{N + 1, i(k + 1)}

0 otherwise
(3.1)

where
(
N+1−i

z

)
is the number of ways to choose z new nodes among the set of N + 1− i

uninformed nodes at state i, and
(
N
k

)i
is the total number of ways that i nodes can

choose k different neighbors.
The non-zero elements in P are discussed by treating the relation of i − 1 and k

properly. The first confinement of i− 1 > k or i− 1 < k specifies a similar conditioning
as n − 1 − m ≥ k or n − 1 − m < k in (A.6). The second confinement of i 6 j 6
min{N + 1, i(k + 1)} or k + 1 6 j 6 min{N + 1, i(k + 1)} defines the minimum and
maximum number of informed nodes that appears in state j.
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� When i− 1 > k, it is possible that each informed node selects its k targets from
the set of i nodes that are already informed. The Markov process remains in state
i, indicating the minimum boundary of j = i. If the i nodes select their neighbors
differently from the set of N + 1 − i uninformed ones, there will be maximally
i(k+ 1) informed ones in the next round. Notice that i(k+ 1) can never be larger
than the total number of nodes in the network, j = min{N + 1, i(k + 1)} serves
as the upper boundary.

� In case of i− 1 < k, k − (i− 1) uninformed nodes have to be selected so that an
informed node can choose k different neighbors successfully. The minimum value
of j is thus, bounded by k + 1. The upper boundary of j 6 min{N + 1, i(k + 1)}
holds as described above.

Under the blind selection algorithm, it is assumed that neighbor selection is per-
formed from the rest of the N neighbors in the network. A variation of the blind
selection scheme is to select k different neighbors out of the N + 1 nodes, which is
considered as an extended setting of the rumor spreading problem in [104]. We present
the mathematical analysis for the extended rumor spreading problem in Appendix A.3.

2. Non-cooperative nodes with 0 < β < 1

Under this case, not all selected new nodes may decide to cooperate. Consequently,
if out of the assumed z = s − i new selected nodes, exactly j − i of them decide to
cooperate, a state transition from i to j will occur. Let B(z, j − i, β) denotes the
probability that there are exactly j − i cooperative nodes out of the z new ones, given
by

B(z, j − i, β) =

(
z

j − i

)
βj−i(1− β)z−(j−i) (3.2)

with 0 ≤ j − i ≤ z.
By properly invoking (3.1) and (3.2), Pij is derived for the general case of 0 < β < 1

as

Pij =



δ∑
s=j

(N+1−i
z )

(N
k)

i

z∑
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(−1)t
(
z
t

)(
s−1−t
k

)i
B(z, j − i, β) if i− 1 > k

and
i ≤ j ≤ min{N + 1, i(k + 1)}

δ∑
s=k+1

(N+1−i
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i
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(−1)t
(
z
t

)(
s−1−t
k
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B(z, j − i, β) if i− 1 < k

and
i ≤ j ≤ min{N + 1, i(k + 1)}

0 otherwise
(3.3)
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where δ = min{N + 1, i(k + 1)}.

3.2.2 The Transition Probabilities Pij of the Smart Gossiping-
Target Selection Scheme

Given i informed nodes in the network, and that each of them selects k different neigh-
bors from the remaining N + 1 − i uninformed ones, the problem is analogous to the
balls and bins model described in Appendix A.1, with the balls being the i informed
nodes and the bins being the N + 1− i uninformed nodes.

1. Cooperative nodes with β = 1

Under this scheme, the transition probabilities can be derived by applying (A.3),
substituting r = i, n = N + 1− i, m = N + 1− j, and n−m = z, where z denotes the
number of new nodes selected by the i informed ones. Thus, we have

Pij =


pN+1−j(i, N + 1− i, k) if N + 1− i > k and i+ k ≤ j ≤ min{N + 1, i(k + 1)}

1 if N + 1− i < k and j = N + 1
0 otherwise

(3.4)
where j = i+ z and

pN+1−j(i, N + 1− i, k) =

(
N+1−i
N+1−j

)(
N+1−i

k

)i z−k∑
t=0

(−1)t
(
z

t

)(
z − t
k

)i
(3.5)

Notice that (3.5) is valid only for N + 1 − i > k. When N + 1 − i < k, the entire
network is informed with probability 1. The conditioning of i+k ≤ j ≤ i(k+1) defines
the minimum and maximum number of informed nodes that appears in state j. If all
the i informed nodes choose the same k neighbors, there are minimally, i+ k informed
nodes at the next state. In case that all the informed nodes choose their neighbors
differently, the number of informed nodes at state j is bounded by min{N+1, i(k+1)}.

2. Non-cooperative nodes with 0 < β < 1

If s denotes the number of informed nodes at the next round, Pis is computed from
(3.4). Out of the z newly chosen nodes, there should be j − i cooperative nodes so
that the process arrives at state j. The probability that j − i out of the z nodes are
cooperative is computed from (3.2) with 0 ≤ j − i ≤ z. Consequently, the transition
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probabilities of Pij are given by

Pij=



min{N+1,i(k+1)}∑
s=i+k

pN+1−s(i, N + 1− i, k)B(z, j − i, β) if N + 1− i > k

and
i ≤ j ≤min {N + 1, i(k + 1)}

B(N + 1− i, j − i, β) if N + 1− i < k
0 otherwise

(3.6)
in which s = i+ z.

3.3 Performance Evaluation

The probability state vector s[r] can be calculated in terms of the initial probability
state vector s[0] and the matrix P from

s[r] = s[0]P r (3.7)

Given a diagonalizable matrix P , the r-step transition probability matrix P r obeys
relation (A.12), as described in Appendix A.4. The time dependence of the probability
state vector s[r] is thus given by

s[r] ' s[0]
(
uπ + λr2x2y

T
2 +O (λr3)

)
(3.8)

where we order the N+1 eigenvalues2 as λ1 = 1 > |λ2| > ... > |λN+1| > 0. λk is the k-th
largest diagonal element of matrix P , and xk and yk are the right and left-eigenvectors
associated with λk, respectively. The tendency of the network towards the steady-state
is thus, determined by the second largest eigenvalue λ2 of P . However, the matrix P is
not always diagonalizable, as discussed in Appendix A.4. In such cases, the probability
state vector s[r] is calculated using (3.7). The mean number of informed nodes in each
round r is consequently computed by

E[Xr] =
N+1∑
i=1

i× si[r] (3.9)

In the sequel, metrics measuring the performance of the proposed gossiping-based
schemes, that are used for content dissemination or discovery, are derived.

2The Frobenius’ Theorem [119, A.4.2 ] specifies that there is only one largest eigenvalue that equals
to 1.
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3.3.1 Content Dissemination Metrics

The effectiveness of the content dissemination process can be assessed in terms of the
minimum number of rounds required to inform m random nodes (apart from the ini-
tiator). Let AN+1 (m) denote such a random variable. Let em (r) denote the event of
having m nodes informed in round r, and let ecm (r) be its complement. The following
equivalence of the events can be established as

{AN+1 (m) = r} = em (r) ∩
{
r−1
∩
j=1
ecm (j)

}
with em (1) ⊆ em (2) ⊆ ... ⊆ em (r). Thus, we will have

Pr [AN+1(m) = r] = Pr [em(r) ∩ ecm(r − 1) ∩ ... ∩ ecm(1)]

= Pr [em(r)\em(r − 1)]

= Pr [em(r)]− Pr [em(r − 1)] (3.10)

where we can show that

Pr [em(r)] =
1(
N
m

) N+1∑
i=1

(
i− 1

m

)
si [r] (3.11)

Since the number of informed nodes never decreases as r grows, we have lim
r→∞

Pr [AN+1(m) = r] =

0 while lim
r→∞

Pr [em(r)] = 1.

The mean minimum number of rounds required to inform m random nodes is given
by

ĀN+1 (m) =
rmax∑
r=1

rPr [AN+1(m) = r] (3.12)

For numerical calculations, we take the upper bound of r as

rmax = min {r : 1− Pr[em(r)] < ξ}

where ξ is a very small positive number.

3.3.2 Search Metrics

The effectiveness of a content search process is assessed in terms of the minimum number
of search rounds required to reach a node that possesses the content, for the first time.
To generalize the study here, we assume that l copies of the content are randomly
distributed over the network of N nodes, excluding the initiator node. Let BN+1 (l)
denote the aforementioned random variable of the minimum number of rounds. Let
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fl (r) denote the event that at least one copy of the content has been discovered by
round r. It is not difficult to show that

Pr[fl (r)] =
N+1∑
i=1

[
1−

(
N+1−i

l

)(
N
l

) ]
× si [r] (3.13)

where 1 − (N+1−i
l )

(N
l )

is the probability that there is at least one copy of the content in

state i, with i searched (informed) nodes.
By following a similar approach as in Section 3.3.1, the following expression is derived

Pr [BN+1(l) = r] = Pr [fl (r)]− Pr [fl (r − 1)] (3.14)

Consequently, the mean minimum number of rounds to find a content, denoted by
B̄N+1(l), can be calculated by

B̄N+1(l) =
rmax∑
r=1

rPr[BN+1(l) = r] (3.15)

in which the upper bound of r during numerical calculation is taken as

rmax = min {r : 1− Pr[fl(r)] < ξ}

where ξ is a very small positive number.
We define another metric to evaluate the overhead caused by the search process:

the mean number of nodes that has been searched (informed) by the round that the
content is discovered for the first time. This quantity, ȲN+1 (l), is derived from

ȲN+1 (l) =
rmax∑
r=1

Pr[BN+1(l) = r]E[X̂r] (3.16)

where E[X̂r] is the mean number of searched nodes in round r, in which the content is
found for the first time.

The expectation, E[X̂r], is computed as

E[X̂r] =
N+1∑
j=1

j × Pr[X̂r = j] (3.17)

in which Pr[X̂r = j] is the probability that there are j search nodes, and that the
content is found for the first time in round r. The computation of Pr[X̂r = j] depends
on Pr[Xr−1 = i], the probability of having i searched nodes in round r − 1, which can
be derived from (3.7). Given that there are i (1 ≤ i ≤ N + 1) searched nodes in round



3.4. RESULTS AND DISCUSSIONS 29

r − 1, and that the content is not found yet, the condition of Xr > Xr−1 has to be
satisfied in order to assure that the content can be found for the first time in round r.
Therefore, the probability of Pr[X̂r = j] is given by

Pr[X̂r = j] =
N+1∑
i=1

Pr[Xr−1 = i]× Pij
1− Pii

(3.18)

With (3.18) and (3.17), we can derive the mean number of searched nodes, ȲN+1 (l),
by the round that the content is discovered for the first time.

3.4 Results and Discussions

In this section, we developed a simulation program to simulate message dissemina-
tion/search through gossiping by using C language. The results of the analysis are
compared with the results derived from the simulated program. In [119], it is shown
that the average error over the non-zero values returned from the simulations decreases

as O
(

1√
n

)
, where n is the number of times that a simulation is performed. In this

thesis, 104 iterations are carried out for each simulated result. For both of the informa-
tion dissemination and search process, random selection of k neighbors is performed.
The initiator is also randomly chosen in each of the simulation instances. In the search
process, l copies of the content are randomly placed at different nodes. The informa-
tion dissemination process stops when there are m informed nodes in the network, and
the search process terminates when at least one copy of the content is discovered. For
each iteration, we collect the number of gossiping rounds until the program finishes,
from which, the probability density function (pdf) and the mean are computed. For the
search process, the number of searched nodes until the end of the program is captured.
The mean number of searched nodes are calculated consequently. The major focus is
to examine the performance of the metrics that are proposed in Section 3.3, as well as
the impact of important parameters under both the blind and smart selection schemes.

3.4.1 Content dissemination results

In Fig. 3.3, we present the results on the probability that all N nodes are informed
by round r, obtained from (3.11) for m = N . Notice that Pr [em(r)] is eventually the
cumulative distribution function (cdf) of AN+1(m) = r, calculated from (3.10). As we
can see from Fig. 3.3, the simulation results for Pr [em(r)] match those from the exact
analysis in (3.10) very well3. As expected, the larger the network, the more rounds it
takes to inform all nodes. We notice that there exists a threshold until all nodes are

3In the following results, we do not show the simulated results.
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informed. For instance, under the blind selection scheme, it is only possible to inform
all nodes after 4 rounds in a small network with N = 10, as shown in Fig. 3.3 (a).
While for larger network with N = 100, it is only possible to inform all nodes after 8
gossiping rounds.
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Figure 3.3: The probability that all nodes (m = N) are informed by round r under the
blind selection scheme (a), and the smart selection scheme (b). (k = 1 and β = 1.0).

In Fig. 3.4 we study the tail behavior (on log-scale) of Pr [AN+1(m) > r] < ε, where
ε is a pre-defined probability. The tail probability of Pr [AN+1(m) > r], computed from
(3.10), is the probability that the minimum number of rounds required to inform the
entire network exceeds r. For instance, under the blind selection scheme and for N = 10,
the probability that all nodes are informed after round 10 is less than 10−2, as shown in
Fig. 3.4 (a). In other words, in 99.99% of the cases, all network nodes can be informed
by round 10. With the same stringency of ε = 10−2, informing all network nodes under
the smart selection scheme is achieved in only 5 rounds (Fig. 3.4 (b)). The above
observation confirms the higher efficiency of the smart scheme. Notice that for larger
network (e.g. N = 100), the smart scheme informs the entire network in about half the
rounds required under the blind scheme, for the same chance of 10−2. It is obvious that
the smart selection scheme outperforms the blind selection scheme. With the exact
analysis, we can compare the performance of the two extreme case quantitatively.

Moreover, with the exact analysis, we are able to evaluate the performance of
Pr [AN+1(m) > r] given a higher level of stringency (e.g. ε = 10−6), which is nor-
mally, very difficult to achieve with simulations4. For instance, in Fig. 3.4 (a), we

4As described at the beginning of this section, in order to achieve an accuracy of 10−6 from the
simulated results, the simulation needs to be performed 1012 times, which takes very long time.



3.4. RESULTS AND DISCUSSIONS 31

can find that, in 99.999999% of the cases, the entire network of N = 100 can be in-
formed by round 26. The results shown in Fig. 3.4 ensures that the entire network
coverage can be guaranteed with a high probability of 1 − ε. The tail probability of
Pr [AN+1(m) > r] < ε can be utilized to determine the number of dissemination rounds
to be implemented by the service provider (or required for by the end user) in order to
meet the aforementioned quality of service (QoS) requirement. This is also known as
the maximum gossiping rounds problem.

10-5

10-4

10-3

10-2

10-1

100

Pr
[A

N+
1(

m
) >

 r]

108642
(b) r (Smart Selection)

N = 10
N = 20
N = 30
N = 40
N = 50
N = 100

10-6

10-5

10-4

10-3

10-2

10-1

100

Pr
[A

N+
1(

m
) >

 r]

30252015105

 (a) r (Blind Selection)

N = 10
N = 20
N = 30
N = 40
N = 50
N = 100

Figure 3.4: The tail behavior of Pr[AN+1(m) > r] vs number of rounds r under blind
(a), and smart (b) selection schemes (k = 1, β = 1.0, and m = N). Results presented
in this figure are from the exact analysis.

By plotting the mean number of rounds to inform the entire network in Fig. 3.5, we
notice that ĀN+1 (m) grows almost proportionally to log(N). This is because, asymp-
totically (for large N and small k), the expected number of rounds of any dissemination
process in a general graph scales in the order of log(N), as shown in [119, pp. 342],
which indicates the efficiency of the investigated algorithms. In [104] and [79], Pittel
and Karp et al. also gave the same log(N) upper bound of gossiping-based algorithms
with k = 1. Consequently, we can approximate the mean minimum number of rounds to
inform the entire network as ĀN+1 (m) ∼ γk log(N) +αk, where γk and αk are variables
depending on k. The speed of disseminating content under the smart selection scheme
is less affected by increasing the network size, since the slope γk under this scheme is
always smaller than that under the blind scheme for the same k.

In Fig. 3.6, ĀN+1 (m) is plotted as a function of β for different network sizes. As
the cooperation probability β increases, ĀN+1 (m) decreases logarithmically with the
same slope for different network sizes, and for both the blind and the smart selection
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Figure 3.5: Mean number of rounds required to inform the entire network, ĀN+1(m), as
a function of N under the blind (a), and smart (b) selection schemes (m = N , β = 1.0,
and varying k). The horizontal axis is plotted on log scale and the dotted lines are the
fitting curves.

scheme. This phenomenon indicates that the mean number of rounds to inform the
entire network decreases at the same speed as a function of β, regardless of the network
size. Therefore, it could be convenient to extrapolate the curve for larger network
sizes N . Furthermore, by decreasing the cooperation probability β, the performance
of disseminating content degrades for both the blind and the smart algorithm. For
example, the mean number of rounds to inform the entire network with β = 0.2 is
approximately 5.3 times of that with β = 1.0 for the blind selection and 5.8 times for
the smart selection. The performance of the smart selection scheme is, as expected,
better than the blind selection scheme. For instance, for N = 100, with β = 1.0, it
takes on average, 3.9 more rounds to inform all nodes for the blind selection than for
the smart selection; and the blind selection scheme needs 18.1 more rounds to inform
the entire network with β = 0.2, compared with the smart selection.

3.4.2 Content Search Results

To improve the efficiency of the search process, we can either increase the number of
nodes (or gossiping-targets) k searched in each round or distribute more copies l of the
content. The associated overhead ȲN+1 (l), the mean number of nodes that have been
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Figure 3.6: Mean minimum number of rounds required to inform the entire network,
ĀN+1(m), as a function of β under the blind (a), and smart (b) selection schemes (k = 1,
m = N , and varying β). Both sub-figures are plotted on log-log scale. The dotted
lines represent the fitting curves, and γ is the fitting parameter of log

(
ĀN+1 (m)

)
∼

γ log(β) + α.

searched by the round that the content is found, is also evaluated. We examine the
impact of k and l on the performance of the search process, by taking the blind selection
scheme as an example.

Fig. 3.7 (a) confirms that, by searching more nodes (or gossiping-targets) in each
round, the mean minimum number of rounds required to discover the content is reduced.
While the associated overhead, ȲN+1 (l), grows by increasing k (Fig. 3.7 (b)). In Fig.
3.8, we present the effect of increasing the number of copies of the content distributed
in the network (l = 1, 2, 5), with fixed k = 1. As seen from this figure, both the speed of
discovering content B̄N+1(l), and the caused overhead ȲN+1 (l) are improved, since less
gossiping rounds are needed to find a content (Fig. 3.8 (a)), and the mean minimum
number of searched nodes until the content is found (Fig. 3.8 (b)) also decreases, as
l increases. Therefore, in order to have an efficient content discovery process (with
fast searching speed B̄N+1(l) and low overhead ȲN+1 (l)), we should opt for placing
more copies of the content within the network, instead of increasing the number of
searched nodes k in each round in the gossip-based search process. Notice that in both
Fig. 3.7 and Fig. 3.8, the mean number of rounds to discover the content increases
proportionally to log(N), and the mean number of searched nodes grows linearly as a
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function of N .
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Figure 3.7: Mean minimum number of rounds to find the content (a), and the mean
number of searched nodes by the round that the content is discovered for the first time
(b). (Blind selection scheme with l = 1, varying k, and β = 1.0). The dotted lines are
the fitting curves, and γ is the fitting parameter.

Next, we show the impact of different values of β on the performance of the search
process in Fig. 3.9. By increasing the cooperation probability β (from 0.2 to 1.0),
ȲN+1 (l) increases slightly, while B̄N+1(l) decreases dramatically for the same network
size. For instance, to find the content in a network with N = 100 nodes, about five
more nodes are searched when β increases from 0.2 to 1.0 under the blind selection
scheme (Fig. 3.9 (b)). Whereas, the mean number of rounds to find the content for
the first time with β = 0.2 is approximately 4.4 times of that with β = 1.0, as shown
in Fig. 3.9 (a). Therefore, we conclude that the lower cooperation probability does not
incur extra overhead in the network, but compromises severely the effectiveness of the
searching algorithm. We also observe that to find a content with l = 1 in larger network,
i.e. N = 100, the smart selection algorithm is more effective than the blind scheme
regarding the search performance when peers have smaller probability to be cooperative.
Let us once again take the network of N = 100 as an example. When peers are less
cooperative, e.g. β = 0.2, the smart selection scheme only searches approximately one
more node compared to the blind selection algorithm (Fig. 3.9 (d)). While B̄N+1(l),
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Figure 3.8: Mean minimum number of rounds to find the content (a), and the mean
number of searched nodes by the round that the content is discovered for the first time
(b). (Blind selection scheme with k = 1, varying l, and β = 1.0). The dotted lines are
the fitting curves, and γ is the fitting parameter.

on the other hand, is 4 rounds less that the blind selection scheme (Fig. 3.9 (c)). With
β = 1.0, it takes one less round to find the content with the smart selection algorithm,
while searching 4 more nodes compared to the blind selection scheme.

3.5 Summary

In this chapter we focus on modeling the process of gossip-based message dissemina-
tion under the assumption of uniform neighbor selection over the entire nodes in the
network. The level of cooperation by the nodes selected as the gossiping-targets is also
incorporated in the model. The cases of the blind gossiping-target selection and of the
smart one are both analyzed. The obtained analytic results are verified through simula-
tions. From the results, several practical performance metrics of interest and important
design parameters are obtained. For instance, the speed of the dissemination (in gos-
siping rounds) process required to achieve certain percentage of network coverage with
a minimum probability is derived and evaluated. The smart selection algorithm is, in
nature, more effective than the blind selection scheme when disseminating content. By
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Figure 3.9: Mean number of rounds to find at least one copy of the file for the first time
for the blind (a) and smart (c) selection schemes. Mean number of searched nodes by
the round to find at least one copy of the file for the blind (b) and smart (d) selection
schemes. (With k = 1, l = 1, and varying β). γ is the fitting parameter as described in
previous figures.

using the exact analysis, we have compared the performance difference of the above
two algorithms quantitatively. For instance, to inform the entire network with certain
QoS stringency, the smart selection scheme only needs half of the gossiping rounds
compared with the blind selection algorithm. By increasing the cooperation probability
from β = 0.2 to β = 1.0, the mean number of rounds to inform the entire network de-
creases logarithmically with the same slope for different network sizes, and for both the
blind and the smart selection algorithm. Our results about content search also suggest
that when a certain speed (number of rounds) is desirable to discover some content,
it is less costly for the search process to try to place more content replications l in
the network, instead of trying to hit content residing in some nodes only by increasing
the number of gossiping-targets k, contacted in each round. The effectiveness of the
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searching algorithm is impaired with a lower cooperation probability, whereas no sig-
nificant amount of overhead (ȲN+1 (l)) is generated. Considering the trade-off between
the overhead and the effectiveness of the search process, the smart selection scheme is
more effective with small cooperation probability.
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Chapter 4

Selecting The Nearest Peer For
Content Retrieval

So far, we have evaluated the performance of uniform peer selection scheme during
content propagation. In this chapter, we extend our analysis one step further. Let
us assume that, after the searching process described in Chapter 3, we have found m
peers possessing the desired content. The process of selecting a best peer (in cost,
bandwidth, delay, etc.) among the group of m peers for content retrieval, thus becomes
a vital procedure. We revisit the content retrieval process as finding the most nearby
peer from the initiator. Under this context, the initiator refers to the peer who initiates
the downloading request. Our model considers the hopcount and delay as the major
criteria to assess the closeness between peers.

We confine the problem as follows: given a network of size N , over which m peers
with the desired content are randomly scattered, what is the distribution of the hop-
count and delay respectively to the most nearby peer from a requesting node? By
solving the above problem, we expect to answer the fundamental question of how many
replicas of a particular file need to be distributed (or how many peers possessing the
desired content need to be discovered) so that the most nearby peer can always be
reached within j hopcount or t delay.

Typical examples that our model applies are the content distribution networks
(CDNs), and P2P streaming systems. The design purpose of CDNs is to deliver con-
tent to end-users from the most nearby cache server in a reliable and timely manner
[103]. In P2P streaming networks, finding the closest peers is also preferred, so that
the waiting (or buffering) time at an end-user is minimized. Hence, the hopcount and
delay are reasonable metrics to guarantee the QoS provided by CDNs, or P2P stream-
ing networks. Other QoS parameters, such as content availability and accessibility is
beyond the scope of this thesis.

39
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4.1 Modeling Assumption

We model the number of hops and the latency to the nearest peer among a set of m
peers based on three assumptions: (a) a dense graph model1 for the underlying network,
(b) regular link weight around zero, and (c) i.i.d. link weight distribution on each link.

The shortest path from a source to a destination is computed as the path that
minimizes the link weights2 along that path. In [119, Chapter 16.1], it is shown that
a regular link weight distribution - regular means a linear function around zero - will
dominate the formation of the shortest path tree (SPT), which is the union of all shortest
paths from an arbitrary node to all the other destinations. A uniform recursive tree
(URT) is asymptotically the SPT in a dense graph with regular i.i.d. link weights (e.g.
exponential link weights) distribution [117]. A URT of size N is a random tree that
starts from the root A, and where at each stage a new node is attached uniformly to
one of the existing nodes until the total number of nodes reaches N .

4.2 Hopcount Distribution to The Nearest Peer

4.2.1 Theoretical analysis

The number of hops from a requesting peer to its most nearby peer, denoted by hN(m),
is the minimum number of hops among the set of shortest paths from the requesting
node to the m peers in the network of size N . Let HN(m) be the hopcount starting
from one, excluding the event hN(m) = 0 in the URT. Since Pr[hN(m) = 0] = m

N
, we

have

Pr[HN(m) = j] = Pr[hN(m) = j|hN(m) 6= 0] =
1

1− m
N

Pr[hN(m) = j] (4.1)

with j = 1, 2, ...N and Pr[hN (m) = j] recursively solved in [119, p. 427]. However, the
recursive computation involves a considerable amount of memory and CPU-time which
limits its use to relatively small sizes of N ≤ 100.

Fig. 4.1 illustrates Pr[HN(m) = j] versus the fraction of peers m
N

for different hops j
with network size varying from N = 20 up to N = 60. The interesting observation from
Fig. 4.1 is that, for separate hops j, the distribution Pr[HN(m) = j] rapidly tends to
a distinct curve for most of the small networks (N 6 100) and that the increase in the
network size N only plays a small role. Further, the crosspoint of curve j = 1 and j > 2

1The dense graph is a heterogenous graph with the average degree E[D] > pcN ≈ O(logN) and a
small standard deviation

√
V ar[D] � E[D], where pc ∼ logN

N is the disconnectivity threshold of the
link density [119, Chapter 15.6.3].

2The link weight wij assigned to a link (i, j) between node i and node j in a network, is a real
positive number that reflects certain properties of the link, i.e. distance, delay, loss, or bandwidth.
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(the bold line) around m
N

= 15% indicates that in small networks (i.e. N = 20), the peer
fraction should always be larger than 15% to ensure Pr[HN(m) = 1] > Pr[HN(m) > 2].
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Figure 4.1: Pr[HN (m) = j] versus the fraction of peers m
N

from network size N = 20 to
60. The bold line is the pdf of HN (m) > 2 for N = 20. The inserted figure plots the
Pr[HN (m) ≤ 4] as a function of peer fraction m

N
for network sizes N = 20 to 60.

Equation (4.1) can be applied to estimate the peer group size for a certain content
delivery service. For instance, if the operator of a CDN with 40 routers has uniformly
scattered 4 servers (peer fraction around 10%) into the network, he can already claim
that approximately in 98% of the cases, any user request will reach a server within 4
hops (j ≤ 4) as seen in the inserted figure of Fig. 4.1. Placing more servers in the
network will not improve the performance significantly.

4.2.2 An approximation to Pr[HN (m) = j]

To avoid the recursive calculation in (4.1), we approximately compute Pr[HN (m) = j]
by assuming the independence of the hopcount from the requesting node to the m peers
when m is small3. The general form for the approximation is expressed as

Pr [HN (m) ≤ j] ≈ 1− (Pr[HN > j])m (4.2)

provided that at least one of the peers is j hop away (or not all peers are further
than j hop away), where HN is defined as the hopcount from the requesting peer to an
arbitrary chosen node in the URT, excluding the event that the arbitrary node coincides
with the requesting node (i.e. zero hopcount is not allowed).

3The path overlap from the root to the m peers in the URT causes correlation of the hopcount
between peers. When m is small compare to the network size N , the path overlap is expected to be
small, and so is the correlation of the hopcount. The larger the m, the more dependent of the hopcount
from the root to the m peers becomes.
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Take j = 1 as an example. From (4.2), we have Pr[HN(m) = 1] ≈ 1− (1−Pr[HN =
1])m, where Pr[HN = 1], the probability in the URT that the destination is one hop
away from the requesting peer, is equal to [119, p. 361]

Pr[HN = 1] =
1

N − 1

∑N−1

j=1

1

j
(4.3)

In Fig. 4.2, we compare the exact result of Pr[HN(m) = 1] with the approximation
calculated by (4.2). The two curves are quite close to each other, especially for small
number of m

N
. The difference for larger m is caused by the correlation of the hopcount

between node pairs, as explained in footnote3. Therefore, we confine the estimation of
(4.2) with large N and small m, whereas the exact result is applicable for N 6 100
with all m. The number of peers that is one hop away is, on average mPr[HN = 1]. To
ensure that the nearest peer can be reached within one hop, the minimum number of
peers in the network should approximately satisfies the condition of mPr[HN = 1] ≥ 1.
For large N , (4.3) tends to Pr [HN = 1] ' logN

N
, and we have m ≥ N

logN
. The minimum

peer fraction in a large network is thus bounded by

m

N
≥ 1

logN
(4.4)
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4.3 Weight of The Shortest Path to The First En-

countered Peer

4.3.1 The Asymptotic Analysis

In [119, p. 349], the shortest path problem between two arbitrary nodes in the dense
graph with regular link weight distribution (e.g. exponential link weights) has been
rephrased as a Markov discovery process evolving as a function of time from the source
and stops at the time when the destination node is found. The transition rate in this
continuous-time Markov chain from state n, containing the n already discovered nodes,
to the next state n + 1 is λn;n+1 = n(N − n). The inter-attachment time τn between
the inclusion of the n-th and (n + 1)-th node in the SPT for n = 1, 2, ...N − 1, is
exponentially4 distributed with parameter n(N − n).

The exact probability generating function (pgf) ϕWN ;m(z) = E[e−zWN ;m ] of the weight
WN ;m of the shortest path from an arbitrary node to the first encountered peer among
m peers can be formulated as

ϕWN ;m(z) =
∑N−m

k=1
E[e−zvk ] Pr[Ym (k)]

where Pr[Ym (k)] represents the probability that the k-th attached node is the first
encountered peer among the m peers in the URT, vk denotes the weight of the path
to the k-th attached node, and vk =

∑k
n=1 τn. The inter-attachment time τn is an

exponential random variable with parameter n(N − n), the corresponding generating

function of vk can be written as E[e−zvk ] =
k∏

n=1

n(N−n)
z+n(N−n)

.

The formation of the URT with m attached peers depicted in Fig. 4.3 indicates(
m
1

)
possibilities that one peer out of m may be in the k-th position in the continuous

Markov chain. While the remaining m− 1 peers should always appear in the position
that are larger than k-th position. Hence, there are

(
N−1−k
m−1

)
ways to distribute the

m − 1 peers over the N − 1 − k position. Further, the remaining non-peer nodes can
be distributed in (N − 1−m)! ways. This analysis leads us to express Pr[Ym (k)] as

Pr[Ym (k)] =
m(N − 1− k)!(N − 1−m)!

(N − 1)!(N −m− k)!

and the generating function ϕWN ;m(z) becomes

ϕWN ;m(z) =
m(N − 1−m)!

(N − 1)!

∑N−m

k=1

(N − 1− k)!

(N −m− k)!

k∏
n=1

n(N − n)

z + n(N − n)
(4.5)

4The exponential distribution is f (x) = αe−αx.
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N nodes including the root

The k-th attached node is the first encountered peer

The rest (N-m-1) positions are for the 
non-peer nodes

(m-1) out of (N-1-k) positions are for the m-1 peers

The root node

Figure 4.3: Formation of the URT where the k− th attached node is the first encounted
peer in the peer group of m. The shaded circle represents a peer distributed in the tree.

The asymptotic pdf of (4.5) is derived in [121, Section 3.1] as

lim
N→∞

Pr[NWN ;m − ln
N

m
≤ y] = e−mymm+1eme

−y

∫ ∞
me−y

e−u

um+1
du (4.6)

which converges to the Fermi-Dirac distribution function

lim
N→∞

Pr[NWN ;m − ln
N

m
≤ y] =

1

1 + e−y
(4.7)

for large m as shown in Fig. 4.4. It illustrates that a relatively small peer group m ≈ 5
is sufficient to offer a good service quality because increasing the number of peers can
only improve the performance marginally, i.e. logarithmically in m.
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4.4 Discussion on The URT Model

The URT model we used to calculate the hopcount and delay distribution in Section 4.1
is built on two major assumptions: 1) a dense graph to mimic the underlying network
and 2) i.i.d. regular link weight. The Internet might be denser than what has been
measured, taking into account all sorts of significant sampling bias, such as insufficient
sources for traceroutes suggested in [52]. We will also give indications on the link weight
distribution and the applicability of the URT model in P2P network in this section.

4.4.1 Link Weight Structure of Networks

We have used the data from the National Road Database provided by the Dutch trans-
port research center to give an indication on the link weight distribution in a transporta-
tion network. The link weight of the Dutch road is evaluated as the physical distance
between two roadsections.

In Fig. 4.5, we fit the link weight distribution Fw(x) of the Dutch road network with
a linear function. A regular (linear) link weight distribution is found within a small
range [0, ε], where ε ∼ 0.03, which gives evidence to the assumption of regular link
weight structure around zero. The link weight structure in the Internet can be tuned
independently from the underlying network. Therefore, we claim that the assignment
of regular link weights is reasonable.
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Figure 4.5: Fx(x) = Pr[w ≤ x] of the link weight of the Dutch transportation network

with the x axis normalized between [0, 1] (x ∈ [a, b]
normalize→ x ∈
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b
, 1
]
). The correlation

coefficient ρ = 0.99 suggests a high fitting quality.
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4.4.2 Applicability of The URT Model

We have carried out a series of experiments by using the traceroute data provided by
iPlane [15] to give further indication on how well the URT model matches the real
network. iPlane performs periodic measurements by using PlanetLab nodes to probe a
list of targets with global coverage. We use the iPlane measurement data executed on
8th June 2007. We extract the stable traces from 52 Planetlab nodes that are located
in different Planetlab sites. Assuming the traceroutes represent the shortest paths, we
construct a SPT rooted at each PlanetLab node (as a source) to m peers (destinations),
resulting in 52 SPTs in total. By using a map with all aliases resolved in iPlane, we
obtain the router-level SPTs. The m peers are randomly chosen over the world, and the
hopcount (HSPT ) and degree (DSPT ) distribution are obtained by making a histogram
of the 52 SPTs (each with m destinations).

Experimental Results on Node Degree Distribution

Three sets of experiments with m = 10, 25 and 50 were conducted to examine the
degree distribution of the sub-SPT because the number of peers in a P2P network is
not expected to be large5. We observed from the experiments that an exponential node
degree distribution is, if not better, at least comparable to the power law distribution
that has been reported in most of the published papers. The power law distribution is
defined as

Pr [X ≤ x] = cx−α+1 (4.8)

In Fig. 4.6, we fitted Pr[DSPT = k] for m = 10 with a linear function on both log-lin
and log-log scales. The fitting quality of ρe on the log-lin scale and ρp on the log-log scale
are presented respectively. The quality of the fitting on the log-log scale (ρp = 0.99)
is only slightly higher than that of the log-lin scale (ρe = 0.98), which questions the
power law degree distribution of a small subgraph of the Internet topology.

A similar phenomenon is also observed for Pr[DSPT = k] for m = 25 and m = 50.
We provide the correlation coefficients for m = 25 and m = 50 in Table 4.1. Again, the
quality of the fitting seems to be comparable on both scales.

Table 4.1: Correlation coefficient for both log-lin (ρe) and log-log (ρp) scale of m = 10,
25 and 50

ρe ρp
m = 10 0.98 0.99
m = 25 0.95 0.99
m = 50 0.95 0.99

5Measurements on PPLive, a popular P2PTV application [70] reveal that the number of active
peers that a peer can download from is always smaller than 50.
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A discrepancy with the first three experiments occurs if we increase the peer size to
500. For larger subgraphs, a clear power law, rather than an exponential distribution
dominates the node degree. Our findings in this thesis are in line with the conclusions
made in [73], in which a comparable fitting was found for both exponential and power
law property for small subgraph sizes of the Internet. We conclude that the node
degree of a subgraph with small m cannot be affirmatively claimed to obey a power
law distribution. At least, it is disputable whether the exponential distribution can be
equally good as the power law.

Hopcount Distribution on The Internet

The probability density function of the hopcount from the root to an arbitrary chosen
node in the URT with large N can be approximated as the following according to [119,
p. 349].

Pr[HN = k] ≈ Pr[hN = k] ∼ (logN)k

Nk!
(4.9)

where HN indicates the event that k > 1.
We plotted the pdf of the hopcount with m = 50 (50 traceroute samples for each

tree) in Fig. 4.7 (a), in which we see a reasonably good fitting with (4.9). An even better
fitting quality is found in Fig. 4.7 (b) if we increases the number of traceroutes samples
by randomly selecting m = 8000 destinations for each tree, because more traceroutes
gives higher accuracy. We conclude that the hopcount distribution of the Internet can
be modeled reasonably well by the pdf of hopcount (4.9) in the URT.



48CHAPTER 4. SELECTING THE NEAREST PEER FOR CONTENT RETRIEVAL

(a) m = 50 (b) m = 8000
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Figure 4.7: The histogram of hopcount derived from 52 SPTs for m = 50 (a) and
m = 8000 (b) are fitted by the pdf (4.9) of the hopcount in the URT. The measured
data for (a) and (b) are fitted with log(N) = 12.76 and log(N) = 14.97 respectively.

4.5 Summary

We take a further step to analyze the content retrieval process with nearest peer selec-
tion. We obtain the hopcount and delay distribution to the most nearby peer on the
URT by assigning regular i.i.d. link weights (e.g. exponential link weights) on a dense
graph. Both results suggest that a small peer group is sufficient to offer an acceptable
QoS (in terms of hopcount and delay).

Via a series experiments, we have measured the degree and hopcount distribution in
the Internet, from which we show the applicability of the URT model, and consequently
the usability of the pdfs for both hopcount and delay. With a small group of peers
(m 6 50), the URT seems to be a reasonably good model to analyze content retrieval
in P2P networks.



Chapter 5

Conclusion of Part I

The problem of disseminating and searching for content in distributed and unstructured
networks - such as typical P2P and ad-hoc networks - is challenging. Content dissemi-
nation can be realized in two ways: either the content itself is disseminated or, instead,
an advertisement message indicating its availability and location is spread. Searching
for content is typically achieved through the dissemination of a query looking for the
content itself or for the information about its location. In both cases, a message needs
to be disseminated. Consequently, a scheme that effectively disseminates the message,
would be applicable to all the aforementioned problems and such a scheme is the focus
of this part. Moreover, once the desired content has been located after searching, the
process of selecting a best peer for content retrieval becomes vital. Therefore, retrieving
content from a most nearby peer is another problem that we have addressed. In this
theoretical analysis, three major contributions are achieved.

First of all, we considered distributed P2P systems that are large-scale and highly
dynamic. In this case, peers may only communicate with a subset of peers in the
network, and they have to update their views of the network periodically with others
to ensure the reliability during information dissemination. Furthermore, we consider
gossip-based information dissemination schemes that emerge as an approach to main-
tain simple, scalable, and fast content dissemination and searching in today’s distributed
networks. However, preforming an exact analysis of the gossip-based information dis-
semination process with dynamic peer partial views requires a large amount of states,
which is computationally not feasible. We have demonstrated that, the total number
of states (the upper bound) to describe the entire system exactly is 2(N+1)2+N+1.

Secondly, we carried out an exact analytic modeling of gossip-based message dis-
semination schemes under the assumption of uniform selection of multiple neighbors
over the entire distributed network. The gossip-based information dissemination pro-
cess (with N + 1 nodes in the network) was described as an (N + 1)-state MC, and
the transition probabilities were derived by using a combinatorial approach. The level
of cooperation by the nodes selected as the gossiping-targets was incorporated in the
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model. From the results, several practical performance metrics of interest and impor-
tant design parameters were also obtained. For instance, the speed (in gossiping rounds)
of the dissemination process required to achieve certain percentage of network coverage
with a minimum probability was derived and evaluated.

The smart selection algorithm is, in nature, more effective than the blind selection
scheme when disseminating content. By using the exact analysis, we have compared
the performance difference of the two proposed algorithms quantitatively. For instance,
to inform the entire network with certain QoS stringency, the smart selection scheme
only needs half of the gossiping rounds compared with the blind selection algorithm.
By increasing the cooperation probability from β = 0.2 to β = 1.0, the mean number of
rounds to inform the entire network decreases logarithmically with the same slope for
different network sizes, and for both the blind and the smart selection algorithm. Our
results about content search also suggest that when a certain speed (number of rounds)
is desirable to discover some content, it is less costly for the search process to try to
place more content replications l in the network, instead of trying to hit content residing
in some nodes only by increasing the number of gossiping-targets k, contacted in each
round. The effectiveness of the searching algorithm is impaired by a lower cooperation
probability, whereas no significant amount of overhead (ȲN+1 (l)) is generated. In view
of the trade-off between the overhead and the effectiveness of the search process, the
smart selection scheme is more effective with small cooperation probability. With larger
cooperation probability, the smart selection scheme is less preferable during the search
process, because it incurs more overhead, whereas achieves comparable effectiveness
with the blind selection scheme.

Last but not least, we have investigated the pdf of accessing the nearest peer both
in hopcount and delay. We obtained the hopcount and delay distribution to the most
nearby peer on the URT by assigning regular i.i.d. link weights on a dense graph. Both
results can be used to estimate the number of peers needed to offer certain requirement
on the delivering service. And both results suggest that a small peer group is suffi-
cient to offer an acceptable quality of service. We have also performed experiments on
measuring the degree and hopcount distribution in the Internet, from which we show
the applicability of the URT model, and consequently the usability of the pdfs for both
hopcount and delay. With a small group of peers (m ≤ 50), the URT seems to be a
reasonably good model for a P2P network.



Part II

Empirical Study: A Proprietary
P2PTV Network
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Chapter 6

Introduction

The success of P2P file-sharing systems has spurred the deployment of P2P technologies
in many other bandwidth-intensive large-scale applications. Peer-to-Peer Television
(P2PTV) has become a popular mean of streaming audio and video content over the
Internet. The term of P2PTV refers to P2P software applications that are designed to
distribute video content in real time. The video streams to be disseminated can be self-
generated video content, or TV channels provided by different TV stations. Example
applications are CoolStreaming [130], TVAnts [33], TVU [34], SopCast [31], etc.

However, P2PTV systems, such as SopCast, are developed for commercial purposes:
thus, very little is known about their architectures. The methodology that video content
is propagated in these networks, is unknown as well. Since these proprietary P2PTV
systems have attracted the interests of large amount of users, it is important to evaluate
the video delivery pattern and traffic impact of such applications. An empirical study,
performed with the SopCast proprietary system will be presented in this part.

6.1 What is SopCast?

The SopCast P2PTV system is one of the most popular P2PTV applications nowadays.
It provides a variety of TV channels that people can watch online. Users can also create
and broadcast their own video content by using SopCast. As claimed by the SopCast
development team, billions of users have experienced SopCast since 2004 (when the
first SopCast version was released) till now. The SopCast user interface is shown in
Fig. 6.1, in which a peer is connected to a dedicated TV channel published by a source
provider 1 (SP). Once the SP establishes a public TV channel, it will appear on the user
interface at the SopCast so that people can click and start watching. Registration of
a private channel is also possible in SopCast. In this case, the TV channel will not be

1The source provider is the node who owns and broadcasts the entire video by using SopCast
software.
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public, and it is only accessible by the viewers who are aware of the channel ID.

Source ProviderSopCast Peer

Figure 6.1: Left window: the SopCast interface at the peer side. Right window: the
interface at the SP.

SopCast is proprietary and consequently the SopCast website do not provide much
information about its underlying mechanism. Treating SopCast as a black box, we
perform a set of experiments that are suitable to analyze SopCast in depth. The main
contribution of the empirical study is a comprehensive understanding of the SopCast
system regarding the following three issues.

� Disclosing the operational mechanism and video propagating pattern in SopCast.

� Evaluating the topology and traffic dynamics in the SopCast overlay.

6.2 Related Work and Research Challenges

There are a number of measurement studies performed with various P2P applications.
These measurement analyses focus on studying the network topology, e.g. for Gnutella
[87], [115], Kazaa [88], and UUSee, [129]; analyzing user behaviors, peer dynamics and
content sharing properties, e.g. in Gnutella [40], [114], Kazaa [67], eDonkey [69], PPLive
[70] and BitTorrent [105]; and characterizing the P2P traffic patterns, e.g. in P2PTV
and VoD networks [42], [112], [132], VoIP systems [66] and file-sharing networks [110].
In the following, we review several papers that are well known in the field of measuring
commercial P2PTV systems.
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6.2.1 Related Measurement Studies Performed with Commer-
cial P2PTV Applications

Hei et al. [70] carried out a measurement study of PPLive [26]. They collected a
global view of the entire PPLive network to analyze peer behaviors, and also evaluated
traffic characteristics measured at two residential and two campus users. The PPLive
user behavior, e.g. peer arrival/departure pattern, user geographic distribution, etc.
and traffic characteristics, e.g. streaming rates, start-up Delay, etc. were analyzed in
this study. A heuristic criterion was used in [70] to separate different traffic generated
in PPLive. Data packets, that are larger than or equal to 1200 Bytes, are referred
to as video packets. Otherwise, a packet is assumed to carry control information.
Furthermore, a video connection is assumed to be established if there are more than 10
large packets (> 1200 Bytes) being transmitted consecutively; otherwise, it is referred
to as a a connection with control messages.

Wu et al. [129] performed a large-scale measurement to reflect the time-varying
topologies in UUSee [36]. By collaborating with the UUSee Inc., more accurate global
topology snapshots in a period of two months are obtained in [129]. Their study has
shown that the UUSee network does not have a power-law degree distributions, and the
streaming topologies evolve into clusters inside each internet service provider (ISP).

In [112], Silverston et al. analyzed and compared the traffic patterns and underlying
mechanisms among four popular P2PTV applications, namely, PPLive, PPStream [27],
SopCast, and TVAnts. Silverston et al. used the heuristic, which is previously proposed
in [70], to separate different traffic generated in the P2PTV applications. Based on this
heuristic, different traffic pattern, generated in different applications, are evaluated and
compared.

In addition, Ali et al. [42] evaluated the performance of both PPLive and Sopcast
regarding the control traffic, resource usage, locality, and stability of the two P2P
streaming protocols. In [124], the degree and clustering coefficient are evaluated for
PPLive based on a portion of the peers that have been crawled in their measurement.

Next, we focus on the experiments performed with SopCast.
Ali et al. [42] presented an analysis for both PPLive and Sopcast. They conducted

experiments on a single host joining a system, and collected packet traces for this case.
The systems were run under different environments, and the collected data was further
analyzed to give insight into SopCast’s operation.

The experiment performed by Silverston et al. [112] is based on a single measure-
ment day where two soccer games were scheduled. The data set collected in this paper
is from two personal computers that are directly connected to the Internet from their
campus network.

Sentinelli et al. [111] performed two sets of experiments on SopCast, trying to
propose guidelines for large-scale P2PTV deployment. There were totally 27 peers con-
nected to a popular SopCast channel in the first experiment, while the second experi-



56 CHAPTER 6. INTRODUCTION

ment was run on the PlanetLab network, with 1 node acting as the source to broadcast
their own channel, and several nodes performing as peers.

6.2.2 Research Challenges

Most of the previous work, preformed with SopCast, was executed from a single point
of observation [112], or from a small number of vantage points [42], [111]. Thus, results
from these papers cannot really reflect the performance of the entire SopCast network.

Moreover, these papers highlighted the SopCast mechanism with very general de-
scriptions. Some papers claim that SopCast is based on similar principles as those
underlying CoolStreaming, e.g. [107], some refer to it as a BitTorrent-based P2PTV
system, e.g. [111], but all without substantiating their claims. Only in [42], Ali et al.
attempted to unveil the SopCast protocol. However, we feel their findings are not thor-
oughly substantiated. For instance, control and data traffic are still separated based on
their packet lengths, while the functionality of the control packets is ignored.

The above epitome of related work reveals two major challenges in understanding
the SopCast P2PTV system:

1. Set up appropriate experimental settings so that the overall performance of Sop-
Cast can be reflected.

2. Perform proper analysis on the log files that have been captured during the ex-
periments so that an accurate investigation about the SopCast network can be
derived.

In the sequel, we describe our approaches to set up measurements, and provide
solutions to examine the characteristics of the SopCast network.



Chapter 7

Experiments and Methodologies

As mentioned in the previous chapter, designing proper experiment is crucial in reflect-
ing the global performance of the SopCast network. Without the source code, we have
to treat SopCast as a black box, and dissect the SopCast protocol from the obtained
data files. Furthermore, SopCast traffic is encoded, which makes understanding the
protocol even more challenging. In this chapter, we describe our measurement set-
tings, and provide our methodology of analyzing and understanding the operational
mechanisms implemented in SopCast.

7.1 Experimental Settings

In our measurement, we have used PlanetLab [25] to emulate the SopCast system in a
closed environment. Performing experiments on PlanetLab provides us the advantage
to evaluate the entire constructed overlay. The experiment consists of two types of
nodes:

1. A standard personal computer located in our campus network, which acts as
the SP. With the SP, we registered a dedicated private channel to the SopCast
network. In this channel, a small cartoon movie with a duration of 2 minutes
and size of 3.5 MBytes is continuously broadcast in a loop. Thus, our experiment
resembles a streaming system. The SP runs Windows XP. It is equipped with an
Intel Pentium 2.4 GHz processor, 512 MB RAM and a 100 FastEthernet network
interface, which is further connected through a router to the Internet. Traffic
monitoring and collection at the SP is accomplished with Ethereal [101].

2. The second type of nodes are PlanetLab nodes that act as SopCast peers viewing
the TV channel released by us. Each of the PlanetLab nodes under consideration
runs the following software: (1) SopCast Client (Linux version), with command
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line control; (2) Tcpdump [32] to enable passive monitoring on the traffic trans-
mitted at the SopCast peers; and (3) Perl [24] Scripts to remotely control the
PlanetLab nodes.

We carry out three sets of experiments with different network sizes that are designed
to investigate different characteristics of the SopCast network. The experimental set-
tings are described as follows.

Experiment 1 The first experiment was performed in August 2008, with 50 Planet-
Lab nodes as SopCast peers. In this experiment, the 50 PlanetLab nodes were
controlled in such a way that they joined and left the SopCast network simultane-
ously. The first experiment is a fundamental setting which allows us to dissect the
underlying mechanism implemented in SopCast, and to evaluate its topological
properties. In the first experiment, 45 nodes succeeded in preserving a complete1

log file.

Experiment 2 The second experiment was carried out with 194 PlanetLab nodes in
October 2009. It reflects a more realistic scenario, in which the PlanetLab nodes
joined the SopCast network according to a continuous Poisson process with the
probability that exactly k events occur during a time interval of length t equals
to

Pr [X(t+ s)−X(s) = k] =
(λt)k e−λt

k!
(7.1)

where X(t) is the number of PlanetLab nodes joined in the time interval of length
t, and the rate2 of the Poisson process is set to λ = 360/hour. The PlanetLab
nodes were chosen randomly from different sites. For each of the PlanetLab
nodes, we generated an exponentially distributed random variable T (with rate
λ and mean 1

λ
) that represents the time at which the node will join the SopCast

network. Out of the 194 PlanetLab nodes in experiment 2, 153 nodes succeeded
in participating in the entire experiment.

Experiment 3 The third experiment was carried out in December 2009 with 441
PlanetLab nodes. The purpose is to compare the result obtained from experiment
2 with a larger network size, so that the scalability of SopCast can be evaluated.
Peer joining process in this experiment followed the Poisson process in (7.1), and
the rate of the Poisson process was λ = 900/hour. Out of the 441 nodes, 273
nodes succeeded in participating in the entire experiment. Experiment 2 and 3
are designed to reflect the traffic dynamics of the SopCast network load.

1A complete log file indicates that the node joins the network at the begining of the experiment
and leaves at the end of the measurement.

2By setting the rate of the Poisson process to λ = 360/hour, all peers will join the network within
approximately 30 minutes. We let the experiment run for another 10 minutes, so that the performance
of each SopCast peer becomes stable after entering the network.
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The duration of the three experiments were 40 minutes for each. The collected traffic
log files at the SP and the PlanetLab peers are further processed and analyzed with
AWK [2] and Java [16] scripts developed by us. The anomaly of node failure in the three
experiments are caused by the bandwidth 3 and disk space limitations on the PlanetLab
nodes in question. As a result, nodes may quit the experiment unexpectedly since they
are not allowed to transfer video content, or the data traffic sniffed by tcpdump cannot
be written on their local disks.

During the experiments, each PlanetLab node is identified by its distinct host name
and IP (Internet Protocol) address. The log files captured at the PlanetLab nodes are
saved after their host names, e.g. log planetlab1.ewi.tudelft.nl. If it is not specified, we
analyze the data traffic, captured in experiment 1 in Chapter 7, Section 8.2, and 8.3.
The log files, collected from experiment 2 and 3 are used to disclose traffic dynamics in
Section 8.4.

7.2 Dissecting the SopCast Protocol

To dissect the SopCast protocol by reverse engineering, we perform an extensive analysis
on the tcpdump files that are collected from every PlanetLab node involved in the
experiments. An example of a tcpdump log format is given in Fig. 7.1. The first
column specifies the current clock time at each PlanetLab node, followed by the network
layer protocol, the IP address and port number of the sender, and the IP address and
port number of the receiver. In the last two columns, we may find the transport layer
protocol and the length of the packet.

11:03:53.849221 IP 137.226.138.154.3908 > 128.112.139.96.3908 : UDP, length 46
11:03:53.849291 IP 128.112.139.96.3908 > 137.226.138.154.3908 : UDP, length 28
11:03:53.852812 IP 128.112.139.96.3908 > 137.226.138.154.3908: UDP, length 42
11:03:53.852894 IP 137.226.138.154.3908 > 128.112.139.96.3908: UDP, length 28
11:03:53.853395 IP 128.112.139.96.3908 > 137.226.138.154.3908: UDP, length 1320
11:03:53.853649 IP 137.226.138.154.3908 > 128.112.139.96.3908: UDP, length 28
11:03:53.856165 IP 128.112.139.96.3908 > 137.226.138.154.3908: UDP, length 1320
11:03:53.856234 IP 137.226.138.154.3908 > 128.112.139.96.3908: UDP, length 28

Figure 7.1: An example of standard tcpdump output format.

Tcpdump reveals that SopCast relies on UDP (User Datagram Protocol). To figure
out the packet functionalities, we studied the packet lengths and the corresponding
delivery patterns. Although the work presented in this chapter has been conducted
in a thorough and careful way, without having the source code of SopCast, the claims

3The bandwith of a PlanetLab node can be limited by the PlanetLab administrator.
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that we have made are based on our investigation of SopCast. They are not the exact
description of the protocol.

7.2.1 Neighbor Communication in SopCast

Communication between two peers in SopCast is always initiated by a 52 − 80 byte
packets pair, e.g. peer 152.14.92.59 and peer 169.229.50.14 in Fig. 7.2 (a). Once the
connection is established, the pair of peers keeps exchanging a sequence of 42-byte
packets with each other. The 42-byte packets are transmitted with a high frequency,
roughly every second. We denote this packet as a keep-alive packet. With the keep-alive
packets, a peer announces its existence in the network. The purpose is to accommodate
overlay dynamics, and maintain neighbor relation with others via the decentralized
communication between peers. If two peers exchange a 42-byte control packets with
each other, we refer to these peers as being neighbors. Moreover, the UDP data seems
to be encoded, since we have not found a distinct structure of the UDP data field.
Without the source code, we cannot tell what are the exact message contained in the
42-byte packet.

In Fig. 7.2 (b), a graphic illustration of the neighbor communication scheme is
presented. We see that, peers can lose neighbors. In case a neighbor does not respond
to the keep-alive packets, the peer stops contacting this neighbor until it chooses the
neighbor again. There are also some other packets that we do not understand com-
pletely. For instance, the 74-byte packet and the 958-byte packet appear from time to
time, in Fig. 7.2 (a), but with no regular transmission pattern.

t t

Peer A Peer B

ACK

Keep -alive messageNeighbor link 
active

Neighbor 
connection lost

(b) A graphic illustration of peer communication pattern 

Connection 
establishment

Communication between two neighbors

Time (s)     Size (bytes)     Source IP         Destination IP
60.121599      52             152.14.92.59      169.229.50.14
60.197511      80             169.229.50.14    152.14.92.59
60.199382      74             152.14.92.59      169.229.50.14
60.279217      28             169.229.50.14    152.14.92.59
60.738697      42             152.14.92.59      169.229.50.14
60.814576      28             169.229.50.14    152.14.92.59
61.512937      42             152.14.92.59      169.229.50.14
61.588690      28             169.229.50.14    152.14.92.59

…………
723.980571    42              152.14.92.59      169.229.50.14
724.057957    28             169.229.50.14     152.14.92.59
724.759458    958           169.229.50.14     152.14.92.59
724.759537    28             152.14.92.59       169.229.50.14

(a) An example of tcpdump log file

Figure 7.2: (a) An example of tcpdump file after proper formatting. (b) A graphic
illustration of SopCast neighbor communication pattern.
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7.2.2 Video Delivery in SopCast

In every captured log file, we notice a fixed traffic pattern: a sequence of 1320 bytes
packets are frequently transmitted between peers (or between peers and the SP), pre-
ceded by a control packet with size 46 bytes. Often, a smaller packet with the size of
several hundred bytes or a thousand bytes (e.g. 1201 bytes) is observed at the end of
the data sequence, see Fig. 7.3 (a). The large data packets (except for the 46-byte one)
are video packets.

If a peer is providing video content to its neighbors, we refer to the peer as a parent.
A child is defined if a peer is receiving video streams. We believe that the control
packet of 46-byte acts as a video request packet. A peer in SopCast never voluntarily
delivers video content to its neighbors. To download video packets, a peer always needs
to request them from its neighbors via the video request packet of 46 bytes. After
receiving the request, its parent(s) will deliver a series of video packets to the child. In
case the child needs more video content, it sends another request.

Our analysis also reveals that video delivery in SopCast is chunk-based. The TV
content in SopCast is divided into video chunks or blocks with equal sizes of 10 kbyte.
Following is our methodology to derive this conclusion. We first filtered the series of
1320-byte packet and the smaller packet at the end (see Fig. 7.3 (a)) between two
consecutive 46-byte packets, that are transmitted between a node pair. The aforemen-
tioned packets are referred to as a video sequence. Based on the filtered reports, we
counted on the number of bytes transmitted in a video sequence. With UDP, reliabil-
ity of data transfer is not guaranteed. Therefore, the calculation is carried out for all
node pairs after filtering, and only concerns the video sequence received at the children
side, because video packets received at a child have surely arrived. We found that the
number of bytes in a video sequence is always approximately the integer of 10 kbytes,
e.g. 20 kbytes, 30 kbytes, etc. This finding is in line with the video chopping algorithm
implemented in many existing P2P systems, although the chunk size may be different4.
A peer is allowed to have multiple parents and multiple children, and it is free to request
multiple video blocks from its parents.

The requested blocks are treated as a large datagram during transmission. Due to
the IP fragmentation principle, a large datagram such as 10 kbytes should be segmented
into smaller pieces in order to pass over the Ethernet. SopCast sets the maximum size
of the video packet to be transmitted to 1320 bytes. A generalization of the video block
fragmentation rule is

n× 10 kbyte = x× 1320 bytes+ y (7.2)

where n is the number of requested video blocks, x is the number of 1320-byte video
packets, and y is the size of the smaller fragment in bytes (377, 497, etc.). In Fig. 7.3
(b), we generalize the above findings. A parent-child relation can be established only

4In Bittorrent, the default size of the chopped block is 256 kbytes.
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when two peers are neighbors.

(b) A graphic illustration of video delivery pattern (a) An example of tcpdump log file

Time (s)    Size (bytes)     Source IP          Destination IP
61.825380     46            152.14.92.59       169.229.50.14
61.825623     28            169.229.50.14     152.14.92.59
61.826114     1320        169.229.50.14     152.14.92.59
61.826166     28            152.14.92.59       169.229.50.14
61.826244     1320        169.229.50.14     152.14.92.59
61.826289     28            152.14.92.59       169.229.50.14

………………..
61.830601     1320        169.229.50.14     152.14.92.59
61.830678     28            152.14.92.59       169.229.50.14
61.830744     1320        169.229.50.14     152.14.92.59 
61.830812     28            152.14.92.59       169.229.50.14
61.831305     1201        169.229.50.14     152.14.92.59
61.831373     28            152.14.92.59       169.229.50.14

Video delivery between two peers

t t

Peer A Peer B

Video chunk request A -> B

Video link 
B -> A active

Video packets

Video link down

Figure 7.3: (a) An example of tcpdump file after proper formatting. (b) A graphic
illustration of SopCast video delivery pattern.

7.2.3 Identification of SopCast Packets

Based on the analyses in Section 7.2.1 and 7.2.2, we present the identification of SopCast
packets in Table 7.1. Apart from the 80-byte dedicated replying message, we think
packets with size of 28 bytes are used to acknowledge general packets, except for the
HELLO messages. We base this assumption on the fact that the 28-byte packets are
observed immediately after the reception of a video packet, or a control packet.

Table 7.1: Identification of SopCast Packets
Type Size (bytes) Functionality

Video 1320 Maximum size of the video packets
packet 377, 497, 617, 1081, 1201 Video fragments

52 HELLO packet to initiate link connections
80 Confirmation on receiving the HELLO packet

Control 28 Acknowledgement
packet 42 Keep-alive message with neighbors

46 Video requesting packet
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7.2.4 The Three-tier Structure in SopCast

Another interesting observation from our experiment is that: SopCast has limited the
number of children connected to the SP for video downloading. During experiment 1,
only 13 nodes downloaded video blocks directly from the SP. The rest peers download
video content from the 13 nodes, or between themselves.

Consequently, regarding the video delivery pattern, we can see SopCast as a three-
tier hierarchical structure, see Fig. 7.4. The SP, which is the node who owns the entire
video and broadcasts it by using SopCast software, delivers the video content to a
limited number of peers in the SopCast network. The peers, who receive video content
from the SP directly, are referred to as the first tier peers. The other peers that never
retrieve video content from the SP are called second tier peers. They download video
packets from the first tier peers or exchange video content with each other.

The source provider (SP)

The first tier node

The second tier node

Figure 7.4: A graphic illustration of the SopCast video delivery structure (top is the
SP, middle refers to first tier nodes, and bottom to second tier nodes).

In the sequel, we present our methodology to unveil the criteria of selecting the first
tier peers in SopCast.

7.2.5 First Tier Peer Selection Strategy

To dissect the scheme of selecting peers in the first tier, we consider four different factors
that may be critical in P2PTV systems, namely the available bandwidth, preference of
node physical distance (node locality), the network distance (the hopcount), and node
distance in time (the delay).
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Estimating the bandwidth usage on PlanetLab nodes

Bandwidth usage on PlanetLab is actively controlled through a policy of fair share
access [3]. By default, each slice5 is granted one share of the available bandwidth. The
administrative/root slice can be granted more than one share. Assuming that there are
n slices competing for the outgoing bandwidth of B MBps on a PlanetLab node, each
slice is given x shares of the bandwidth, and the root slice is granted y shares (y > x).
The available bandwidth that the root slice can receive is thus given by Broot = By

nx+y
,

and the bandwidth that a normal slice can use is

Bnormal =
B −Broot

n
(7.3)

Slices that are operating on a PlanetLab node can be up and down from time
to time. By using the user interface of CoMon [6], [102], we downloaded three data
files during the period that we were performing the three experiments. Each of the
three files contains the statistical information about the status of the PlanetLab nodes,
including node name, IP address, CPU and memory consumption, number of active
slices, geographical location, etc. We have computed the average number of active
slices during the experiment period from the collected data files. We also ran a Python
script [28] on every PlanetLab node that is used in our experiments. The Python script
gives us the actual bandwidth shares for all the slices (including the root slice) that have
registered on a particular PlanetLab node. Together with the average number of slices
on a PlanetLab node provided by CoMon, (7.3) is used to estimate the approximate
bandwidth that a node can utilize during our measurements.

Measuring the preference on node distance

We have used traceroute to get the number of hops and delay of a node from the SP. We
start the traceroute when the experiments on SopCast begin. The SP runs traceroute
to all the PlanetLab nodes in parallel. We have collected thousands samples of the
returned paths. The average hopcount and delay is computed from the traceroute data
for all the nodes. The CoMon data also provides the geographic location (country
level) of the PlanetLab nodes. We used this information to determine the preference of
selecting first tier peers based on node location.

The first tier peer selection strategy in SopCast

Fig. 7.5 illustrates the aforementioned four criteria on selecting first tier peers from
experiment 1. To make the figures more readable, we assign each peer a unique peer ID

5A slice is a set of allocated resources distributed across different PlanetLab nodes. The allocated
resources, e.g. computational capacity, CPU usage and bandwidth, of a PlanetLab node are shared by
several slices.
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Figure 7.5: The influence of node distance (i.e., geographic distance, network distance,
and distance in time) and the available bandwidth on the selection of first tier peers in
experiment 1. Peer IDs are sorted in ascending orders for the four metrics (except for
peer location), and thus are different in the four sub-figures.

i (1 ≤ i ≤ N), where N is the number of PlanetLab nodes involved in the experiment.
Instead of presenting the host names of the PlanetLab nodes on the horizontal axis, we
show the peer IDs. From the top two sub-figures in Fig. 7.5, we see that peers with
smaller hopcount or delay also appear in the first tier, which suggests that the hopcount
and delay are not crucial factors in selecting the first tier peers. Furthermore, although
the SP is located in Europe, it does not choose peers that are geographically closer to
it. Finally, the available bandwidth usage also seems to be irrelevant. Peers that have
high bandwidth, do not always appear in the first tier.

Since none of the factors determines the selection of peers in SopCast, we decided to
study the joining process of each peer. We have noticed from the experiment that, after
a peer enters the SopCast network, the SP starts to communicate with it proactively by
sending out HELLO packets. Once a peer replies to a HELLO packet, the SP uploads
video content to the corresponding peer. The SP only contacts a limited number of
peers. Fig, 7.6 (a) presents the influence of the registration process6 of a peer with
the SP from experiment 1. Although peers join the network at the same time, due

6We examine the registration process from the log file of each individual node. Notice that the local
time of Planetlab nodes is synchronized to eastern standard time (EST) time. We use the CoMon data
to check the clock drift at each Planetlab node. For those nodes whose clock is not synchronized, we
compute the correct EST time on that node.
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to the non-negligible processing delay (in seconds), the SP contacts the SopCast peers
sequentially in time. As indicated in Fig. 7.6 (a), the SP contacted several peers, but
they did not establish video delivery. This is because these peers did not respond to
the SP: we did not observe any replying packets that the peers have sent back to the
SP. The peers that have replied to the SP and become first tier peers, in general, stayed
active during the entire experiment (except for three peers that quit the experiment
unexpectedly). These three peers, thus, only download a small amount of video content.

We also examine the first tier peer selection scheme in experiment 2. The result
confirms the first-come-first-serve pattern that has been found in experiment 1. As
shown in Fig. 7.6 (b), since peers join the network sequentially, the first 11 peers become
the first tier peers (regardless of their outgoing bandwidth). The two peers that did
not respond to the SP is not selected. We noticed that the number of selected first tier
peers are different in experiment 1 and 2. It might be caused by the fact that SopCast
has re-selected the first tier peers because three of them quit the first experiment. In
both experiments, once a first tier peer is selected, it remains being connected with the
SP during the entire experimental period, unless it leaves the experiment by itself.

(a) Experiment 1 (b) Experiment 2

10-5

10-4

10-3

10-2

Th
ro

ug
hp

ut
 (M

B
ps

)

18161412108642
Peer ID (sequential contact by the SP)

 Download from SP
 Total download
 First tier peers 0.1

1

10

100

1000

M
bi

t/s
ec

on
d

1
2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100
Peer ID (sequential contact with the SP)

 Outgoing bandwidth
 First tier peers

Figure 7.6: The influence of peer registration procedure with the SP in experiment 1
(a) and 2 (b). There are 13 first tier peers and 11 first tier peers in experiments 1 and
2 respectively. Peers that do not respond to the request from the SP do not appear in
the first tier.

7.3 Summary of SopCast protocol

The analyses in Sections 7.2.1 and Section 7.2.2 highlight the basic operations in Sop-
Cast. In general, SopCast is a decentralized P2PTV network with a dedicated server
for peer membership registration and peer discovery during the bootstrapping period
(i.e. finding other peers when a peer joins the SopCast network for the first time). After
that, peer discovery and communication are completely decentralized. To summarize,
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the peer communication, video delivery pattern and the network structure that have
been discovered from the study are:

� SopCast traffic can be categorized in control packets and video packets. The
control packets fulfil different functionalities, which coordinate the operation of
the SopCast application. The video packets deliver the TV content.

� Communication between SopCast peers is decentralized. A peer announces its
existence and maintains connection with its neighbors by frequently exchanging
keep-alive packets.

� Video delivery in SopCast is chunk-based. Each video chunk has equal length of
10 kbytes. A peer is free to request multiple blocks from its parent(s).

� SopCast can be seen as a three-tier hierarchical structure regarding video delivery.
Only a limited number of children can be connected to the SP directly, i.e. the
first tier peers. The second tier peers download video content from the peers in
the first tier, or between themselves.

� It seems that SopCast does not employ a sophisticated algorithm to select the
first tier peers. The first tier peers in the SopCast network are selected based
on a first-come-first-serve pattern regardless of their physical distance, network
distance, node distance in time, and their upload bandwidth.

Our approaches in analyzing the SopCast mechanism reveal important design in-
sights, and help to better understand similar P2PTV applications.
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Chapter 8

Topological and Traffic Dynamics in
SopCast

The topology of the SopCast overlay network can be generated with peers as nodes
and connections as links. The SopCast overlay is constructed with decentralized peers.
The SP operates differently from the peers, because it has the entire video content
and only supports a number of children for video downloading. Therefore, we do not
consider the SP as a decentralized peer. The SopCast network is a highly dynamic
system, because communication links between peers can be up and down from time
to time. In this chapter, we aim to investigate the dynamic nature of the SopCast
overlay. Furthermore, we have discussed in Section 7.2.4 that SopCast is structured as
a three-tier overlay network, in which only a limited number of peers is connected to the
SP directly. We are also interested in finding out how the network load is dynamically
distributed over peers in different tiers.

8.1 A Two-layer SopCast Overlay

By using the findings discovered in Section 7.2.1 and 7.2.2, we study the SopCast overlay
as a two-layer architecture consisting of the neighbor graph GN and the video graph GV .
Both graphs are formed with directed links. We define a peer as a node that is active in
both downloading and uploading processes. The SP is not included in the two layers,
because it only supports a number of children with video downloading. Notice that
not all neighbors will share video streams with each other. A straightforward relation
between the two layers is GV ⊆ GN .

� Neighbor graph GN : The neighbor graph is formed by a set of nodes with neighbor
relations. A link in the graph is denoted as a neighbor link. A neighbor link is
established if a node pair is regularly sending keep-alive messages. If the keep-alive
messages are not observed for some time, the link is considered to be inactive.

69
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The Neighbor Graph 

The Video Graph 

Figure 8.1: A graphical illustration of the two-layer SopCast overlay.

The outgoing degree Dout of GN defines the number of neighbors that a random
peer has in the network.

� Video graph GV : The video graph consists of peers that are transmitting video
blocks. The incoming degree Din of the video graph indicates the number of
parents that a random peer has. The outgoing degree determines the number of
children that an arbitrary peer supports. A video link is activated if there are
video packets being transmitted from the parent to the child.

8.2 Reflecting the Dynamic Overlay

8.2.1 Defining a Proper Network Snapshot Duration

A commonly used method to reflect the changing topology is to take network snapshots
at sequential time points and show them as a time series. A snapshot captures all
participating peers and their connections at a particular time, from which a graph can
be generated. In fact, characterizing dynamic peer-to-peer networks has been considered
a research field with a lot of contentions. The major dispute is on the completeness and
accuracy of the captured topology snapshots in characterizing the actual P2P overlay,
as addressed in [115].

Measuring SopCast dynamics over PlanetLab nodes gives us the advantage to take
unbiased1 snapshots. Thus, completeness of the snapshots is not our major concern. In
a high churning network, such as SopCast, we are not interested in taking instantaneous
snapshots. Because an instantaneous snapshot is taken at an exact time point (in the
order of microseconds), thus capturing only a few nodes and links.

1By unbiased snapshot, we mean that we can control all nodes participating the experiment, and
that the topology can reflect the complete SopCast overlay. When measuring a large-scale P2P network
with crawlers, the snapshot may only capture a portion of the overlay, resulting in a biased network.
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We study the network dynamics by continuously taking network snapshots with the
duration τ as time evolves and show them as a time series. The snapshot duration
may have minor effects on analyzing slowly changing networks, such as Internet on
Autonomous System (AS) level topologies. However, in a P2P streaming system, the
characteristics of the network topology vary greatly with respect to the time scale of
the snapshot duration. Therefore, defining a proper network snapshot duration is the
most imperative task that we have to solve in the first place.

8.2.2 The Activation Period of a Neighbor/Video Link

The SopCast P2PTV system does not share its source code, so investigating whether
there are commands/packets to set up or tear down a link is not possible. As an
alternative, we look at whether, during some time interval, traffic is flowing between
two peers. Hence, we define an active (neighbor or video) link if two peers in SopCast
are continuously transmitting keep-alive messages, or video packets. If no traffic is
flowing, we say that the link is closed. Often, we could notice temporary ceasing of
the connection between two peers. After a period which ranges from several seconds to
hundred seconds, they contact each other again. If a snapshot of the SopCast network
is taken with a long duration, the links that are not no long active can be captured, and
thus incurs errors in the obtained graph. Moreover, with a long snapshot duration, the
changes of link connection cannot be reflected. Therefore, defining a proper network
snapshot is essentially to determine the activation period of the (neighbor or video)
link.

In order to determine the activation period of a neighbor link in SopCast, we pro-
cessed the traces and obtained the time interval between two consecutive keep-alive
messages between all node pairs. From the parsed data set, the corresponding pdf is
plotted in Fig. 8.2 (left figure). This statistical analysis suggests that, with high prob-
ability (more than 95% of the cases), a peer sends two consecutive keep-alive packets to
its neighbors within 2.5 seconds. Thus, we consider the threshold of τN ∼ 2.5 s as the
activation period of a neighbor link. If two peers have not contacted each other within
this interval, termination of a link connection is assumed. With the same approach,
the pdf of the time interval between two consecutive video requests for all node pairs
is plotted. Indicated in Fig. 8.2 (right figure), the activation period of a video link is
around τV ∼ 2.0 s. If a child A requests video blocks from its parent B within 2.0 s
from the previous request, the video link is considered to be active.

The activation period for a neighbor, or video link is further used as the duration
to capture network snapshots of the SopCast overlay, which will be explained in more
detail in the following sections.
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Figure 8.2: Pdf of the activation period of the neighbor link (left) and the video link
(right). Threshold of activation period for the neighbor link is τN ∼ 2.5 s, andτV ∼ 2.0
s for the video link.

8.3 Dynamics of the SopCast Topology

8.3.1 Topology Evolution of the Neighbor Graph

SopCast deploys certain principles to discover neighbors once a peer joins the network.
A peer is consequently expected to be able to contact, at least a portion of the neighbor-
ing peers in the network. In this section, we study how fast do SopCast peers accumulate
their views of the network, and what is the characteristic of SopCast neighbor graph?

We take snapshots of the neighbor graph during the time interval of [0, T ], with
T = 10, 60, 300, 600 seconds respectively, so that all the participating peers and links
that have once been active from the beginning of the experiment till the time T have
been captured. The purpose is to examine all the historical neighboring connections
accumulated in these snapshots.

With the captured snapshots, four directed graphs are obtained. Multiple lines
between two peers are removed. We plot the pdf of the outgoing degree (Dout) of the
four graphs in Fig. 8.3. We notice that peers discover their neighbors quite fast in
SopCast. After 300 seconds, the neighbor topology already converges to a full mesh,
which means that SopCast peers have the ability to find almost all the other neighbors
within a relatively short period of time. The distinct property of neighbor discovery is
better illustrated in Fig. 8.4, in which the evolution of the average outgoing degree of all
peers is plotted as a function of time. The average outgoing degree grows rapidly during
the first 5 minutes of the experiment2. The standard deviation of the average outgoing
degree is also shown. In the first several minutes, peers tend to behave differently. Some
of them contacted with more neighbors, while some only meet a few. This is the reason
that a large standard deviation appears at the beginning of the experiment. As time
evolves, the activity of neighbor discovery gradually converges at different peers. After

2Compared to the entire duration of the experiment (40 minutes), this period can be considered to
be short.
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5 minutes, the standard deviation has reduced substantially.
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Figure 8.3: Topology evolution of the neighbor graph shown for different values of the
snapshot duration. The outgoing degree defines the number of neighboring connections
a node once maintained. In the bottom-right sub-figure, Pr[Dout = k] is fitted with the
degree distribution of a random graph with link density p = 0.999.

In Fig. 8.3, we have shown that peers in the SopCast network have the ability of
accumulating their views of the network in a decentralized manner. However, whether
a peer will frequently contact all the discovered neighbors is still an open question. It
may happen that a peer only contacts its neighbor for one or two times, and never
initiates the connection again. To answer the above question, we examine the dynamics
of the neighbor graph. The activation period of a neighbor link was found to be 2.5 s
in Section 8.2.2. By taking network snapshots with this interval, we could obtain some
insights on the characteristic of the neighbor graph regarding the number of contacted
neighbors.

The neighbor graph is examined during the time interval of [5 min, 35 min]. This
is because, in the first 5 minutes, peers are trying to discover more neighbors, thus
the network is not stable, see Fig. 8.3. The last 5 minutes are also excluded, because
two PlanetLab nodes came offline unexpectedly. By taking snapshots every consecutive
2.5 seconds, 720 network topologies are obtained, which generate 28050 samples of the
outgoing degree in total. The average number of contacted neighbors within 2.5 seconds
is around 37.73. We also extended the snapshot duration to 10 seconds as a comparison.
The average outgoing degree increases slightly to 41.6. This observation suggests that
although a peer in the small network (i.e. N = 50) discovered all the other neighbors, it
only contact a subset of them, e.g. around 38 neighbors within 2.5 seconds. Moreover,
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Figure 8.4: The average outgoing degree of the neighbor graphs as a function of time.

the number of neighbors that a peer keeps contacting is relatively stable. If a peer
frequently changes its neighbors, the average outgoing degree of the neighbor graph
would be larger than 41.60 in the longer snapshot interval of 10 s.

8.3.2 Topology Dynamics of the Video Graph

The SopCast protocol specifies a set of streaming delivery rules that are used to guide
peers to actively connect to others, or allow other peers to establish connections to them-
selves. We aim to understand how SopCast coordinates peers to share video streams
from the perspective of a network topology.

We study the video graph when peers have chances to contact with almost every
neighbor in the network, e.g. after 5 minutes of the experiment in Fig. 8.3, because
the network is considered to be more stable from this time. Hence, the topology of the
video graph is also examined during the time interval of [5 min, 35 min].

Recall that the activation period of a video link was found to be 2.0 seconds. We
divide the time period of [5 min, 35 min] to sequential time slots of 2.0 seconds, resulting
in 900 network snapshots of GV . The 900 snapshots provide us with 32320 samples of
the incoming degree (Din), and 27697 samples of the outgoing degree (Dout). The
incoming and outgoing degree distributions are obtained by making the histogram of
the 32320 in-degree samples and 27697 out-degree samples respectively. In Fig. 8.5,
SopCast peers only retrieve video packets from, on average, 1.86 neighbors during 2.0
seconds. In rare cases, a node may contact more than 10 peers to download streams.

The outgoing degree distribution of the video graph shows different behaviors. A
super peer structure emerges when looking at the curve plotted on a log-log scale in Fig.
8.6. A super peer in a P2P network refers to a node that offers good uploading bitrates
and establishes many connections with different children. It seems that SopCast peers
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are allowed to select several parents to establish downloading connections, while they
will only choose a few of them, which leads to the existence of super peers.

8.3.3 The SopCast Super Peers

In Section 8.3.2, the existence of super peers in the SopCast network is discussed in
terms of node degree. In the following, we evaluate the super peer structure from the
perspective of peer upload throughput.

A critical issue of a P2P system is to fairly distribute the network load to peers
participating in the content delivery process. Preferably, each node should have equal
responsibility to upload content to its neighbors. However, it is very likely that the
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so called tit-for-tat principle [53] is not implemented in SopCast. A peer can re-
quest video packets from one of its neighbors, without offering any video blocks to
this neighbor. For instance, we have noticed constant uploading from PlanetLab node
freedom.informatik.rwth-aachen.de to planetlab1.pop-mg.rnp.br, but no uploading ac-
tivity in the reverse direction.

In Fig. 8.7, we present the total download and upload throughput at every single
peer in this small network (50 nodes). We see that peers tend to have uniform download
throughput. There are several nodes which have downloaded much less than others,
which is caused by bandwidth limitations at these nodes. However, peers behave differ-
ently regarding their upload performance: a few nodes upload a significant amount of
video packets to the network, whereas most peers do not contribute too much regarding
their upload throughput. The peers, that upload significant amount of video content
(e.g. the last 10 peers) is consequently referred to as the super peers, and the rest peers
are called normal peers. The existence of the super peers alleviates the bandwidth
burden at the SP.
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Figure 8.7: Upload and download throughput at every SopCast node during the en-
tire experiment (40 minutes). The horizontal axis presents the ID of each individual
peer after ordering by increasing upload throughput. The upload throughput (down-
load throughput) at a single peer is calculated based on the amount of data uploads
(downloads) to all the children (parents) the peer has.

By taking a series of network snapshots with a duration of 2 s, we measure the
linear correlation coefficient between the value of the outgoing degree and the upload
throughput at every single peer for all the snapshots. The linear correlation coefficient,
that is used to measure the dependence between two random variables of X and Y , is
defined as

ρ (X, Y ) =
E [XY ]− µXµY

σXσY
(8.1)

where µX and µY are the mean of X and Y respectively, and σX and σY represent their
standard deviations. The correlation coefficient ranges between −1 and 1. A positive
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(negative) correlation coefficient, e.g. close to 1 (or to -1), indicates that the large values
of X tend to be associated with large (small) values of Y . The correlation coefficient
of zero means that X and Y are not correlated.

The computed correlation coefficient of ρ = 0.98 indicates a strong correlation be-
tween the outgoing degree and the upload throughput of SopCast peers: a peer uploads
more video blocks if it establishes many connections with its children.

8.4 Traffic Dynamics in SopCast

We have discovered in Section 7.2.4 that SopCast is structured as a three-tier overlay
network. In Section 8.3.3, we have also found the existence of super peers (in terms
of uploading throughput) in SopCast. The next question is: whether the first tier
peers act as the super peers that upload a lot, and how is the network load dynamically
distributed over peers in different tiers? In this section, we use the traffic data, captured
in experiment 2 and 3, because these two experiments allow us to examine more realistic
scenarios in which peers join the network sequentially. In particular, we are able to study
to which peers the newly join node will attach for video downloading. In the experiment
2 and 3, the peer ID was assigned from 1 to N to peers based on the order in which
they joined the network.

8.4.1 Traffic Dynamics as a Function of Network Growth

Peers from the first tier download most of their video content from the SP. Firstly, we
study whether peers from the second tier have the same preferences of connecting to
peers in the first or second tier for video downloading. In Fig. 8.8, we computed the
ratio of video content downloaded from the first tier peers and second tier peers over
the total amount of video content downloaded at every second tier peer. The horizontal
axis starts with the ID of the second tier peers that join the network at sequential
times. It seems that video content downloading from the first tier peers is performed
with a first-come-first-serve pattern. Most of the second tier peers, that have joined the
network earlier, download most of their video content from the first tier peers. While for
those second tier peers that participate in the network later, e.g. after the 100th peer,
the ratio of video content downloaded from the other second tier peers is much higher
than (or at least comparable with) the downloading ratio from the first tier peers.

Since there are 153 peers with valid traffic information in experiment 2, it is not pos-
sible to study the growth trend of each of the peers. In Fig. 8.9, we discuss the growth
pattern of two first tier peers with the best upload performance, and two second tier
peers that have uploaded a reasonable amount of video content. From the log-log scale,
we can see that after joining the network for some time, the upload throughput of peers
converge to a power law (the power law distribution is defined in (4.8)). Since it takes
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Figure 8.8: Ratio of video content downloaded from the first tier peers and second tier
peers over the total amount of video content downloaded at every second tier peer.

some time for other peers to discover the newly joined peer, the upload performance of
the peer is not stable at the beginning. For instance, the fitting parameters for the two
first tier peers (peers 3 and 4) are α = −2.3 and α = −2.5 respectively, after the 28th

peer joins the network. The traffic pattern of the second tier peer 17 presents three
different increasing trends: when it joins the network, the upload throughput increases
dramatically; thereafter, it has a smoother growth; after the 65th peer has joined the
network, the upload throughput at peer 17 follows a power law distribution with fitting
parameter α = −3.6. Peer 35 also has a power law growth after the joining of the 65th

peer, with fitting parameter α = −4.2. Thus, newly joined peers attach to existing
peers proportionally to their upload throughput. The different increasing rates α at
different peers suggest that, instead of knowing all the other N − 1 nodes (excluding
itself), a peer may only contact a subset of all the other peers. Thus, the preferential
attachment model discussed here differs from the previously proposed preferential at-
tachment model [45] where peers have a complete view of the network when attaching
to existing nodes.

8.4.2 Network Load Distribution Over Different Tiers

In this section, we answer the question of whether peers in the first tier act as the super
peers that upload a lot. Firstly, in Table 8.1, we present the total amount of upload
throughput provided by the first and second tier peers respectively, for all the three
experiments. In experiment 1, the total amount of the upload throughput of the second
tier peers is only 0.03 MBps. With increasing network sizes, peers in the first tier start
to provide more video content. However, it seems that the total upload capacity of first
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Figure 8.9: Traffic pattern of four peers as a function of peer joining process (log-log
scale). The dotted lines are the fitting curves.

tier peers in the SopCast network is constrained to a certain value, since it is 3.5 MBps
in experiment 2 and 3.3 MBps in experiment 3, which are almost the same. On the
other hand, the total amount of upload throughput at the second tier peers scales with
increasing network size, e.g. it increases from 2.7 MBps in experiment 2 to 7.7 MBps
in experiment 3.

Table 8.1: Total upload throughput of the first and second tier peers
Total Upload Throughput (MBps) First tier peers Second tier peers
Experiment 1 0.8 0.03
Experiment 2 3.5 2.7
Experiment 3 3.3 7.7

Since the first tier peers are selected based on a first-come-first-serve pattern, peers
with poor upload capacity may be selected. Next, we examine the impact of peers’
outgoing bandwidths on their uploading performance. We have found that peers with
high bandwidth do not always upload the most. In other words, the outgoing bandwidth
of peers does not have a strong impact on their upload throughput. The computed
correlation coefficient between the outgoing bandwidth and the upload throughput of
peers is -0.15, 0.15, and 0.16 for experiment 1, 2 and 3 respectively. Peer joining
time does not influence the upload performance either. Fig. 8.10 corroborates the
stated fact. Surprisingly, even though some of the first tier peers have high outgoing
bandwidth, they do not upload a significant amount of video content. Without the
source code, we could not affirmatively conclude based on what criteria the SopCast
network schedules video content delivery. However, we believe that the video scheduling



80 CHAPTER 8. TOPOLOGICAL AND TRAFFIC DYNAMICS IN SOPCAST

algorithm implemented in SopCast fails to optimize resource utilization, e.g. bandwidth
usage and video downloading from the first tier peers. Some of the first tier peers can
be very selfish, because they may not provide many video content to others although
they download video packets from a good resource, i.e. the SP.
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Figure 8.10: Peer upload throughput and outgoing bandwidth. Peers join the network
sequentially. (Experiment 2)

8.5 Summary

In this chapter, we studied the topological properties and traffic dynamics of the entire
SopCast overlay. While in previous works, obtaining a complete view of the P2PTV
network is always a critical issue. We classified the SopCast overlay as a two-layer
architecture consisting of a neighbor graph GN and a video graph GV . The activation
period of a neighbor (video) link, is further used as the snapshot duration of the dynamic
SopCast overlay. Our findings suggest that, it is very likely that SopCast is a mesh-
based system, in which peers periodically exchange information about video content
availability with each other. The SopCast peers are not greedy when connecting to
parents for video downloading. On average, a SopCast peer downloads video content
from two parents. On the other hand, the existence of super peers, which upload a lot
and support many children for video downloading is also observed.

Our study reveals that the real-world P2PTV application, SopCast, is not efficient
regarding network traffic distribution and resource utilization. It seems that bandwidth
utilization is not optimized in SopCast, because peers with high bandwidth do not
necessarily upload more. Some of the first tier peers can be very selfish. Because they
may not provide many video content to others, even though they download video packets
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from a good resource, i.e. the SP. Peers who join the network earlier attach to the first
tier peers, while the latter ones connect to the second tier peers to download video
content. The upload performance of the first tier peers does not scale as the network
size increases. The total upload throughput of the first tier peers in the experiment 2
and 3 are almost the same. It is not clear whether SopCast intentionally sets such a
threshold on the upload capacity of the first tier peers.

To summarize, our analysis suggests that SopCast does not implement sophisticated
algorithms to select the first tier peers and to attach to existing nodes for video down-
loading. Our study questions the efficiency of the SopCast network, since peers that
are connected to good resources (e.g. to the SP), or with good performance (e.g. high
upload bandwidth) do not always keep providing video content to others.
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Chapter 9

Conclusion of Part II

In this empirical analysis, we performed a series of experiments in a controlled envi-
ronment with a set of PlanetLab nodes running the SopCast application. Via passive
measurements, we have discovered the basic mechanism deployed in the SopCast pro-
tocol, characterized the topological properties of this dynamic P2PTV overlay, and
investigated its traffic impact on the Internet.

Major Conclusions

We dissected the SopCast protocol by reverse engineering. After performing an ex-
tensive analysis on the tcpdump files that are collected from every PlanetLab node
involved in the experiments, we have successfully identified the functionality of some
SopCast packets. Regarding the peer communication pattern, the video delivery rule,
and the network structure in SopCast, our major conclusions are: 1) SopCast traffic
can be categorized into control packets and video packets. The control packets fulfil
different functionalities, which coordinate the operation of the SopCast application.
The video packets deliver the TV content. 2) Communication between SopCast peers
is decentralized. Given a small network, i.e. N = 50, peers discover their neighbors
very fast. 3) Video delivery in SopCast is chunk-based. Each video chunk has equal
length of 10 kbytes. A peer is free to request multiple blocks from its parent(s). 4) We
can see SopCast as a three-tier hierarchical structure regarding video delivery. Only
a limited number of children can be connected to the SP directly, i.e. the first tier
peers. The second tier peers download video content from the peers in the first tier, or
between themselves. 5) SopCast does not employ a sophisticated algorithm to select
the first tier peers. The first tier peers in the SopCast network are selected based on
a first-come-first-serve pattern regardless of their physical distance, network distance,
node distance in time, and their upload bandwidth. Once a first tier peer is selected,
it remains being connected with the SP during the entire experimental period, unless
it leaves the experiment by itself.

83
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Furthermore, we modeled the timevariant SopCast overlay with a two-layer archi-
tecture consisting of the neighbor graph GN and the video graph GV . Our aim was
to find a proper snapshot duration, and characterize the topological properties of this
dynamic P2PTV overlay. Our study revealed that: 1) The activation period of the
neighbor link and the video link is τN ∼ 2.5 s, and τV ∼ 2.0 s respectively. 2) The acti-
vation period of the neighbor (video) link is further employed as the reference duration
when taking snapshots of the neighbor (video) graph with frequent link establishment
and termination. 3) The average number of contacted neighbors within 2.5 seconds is
around 38. 3) The incoming degree distribution of the video graph can be modeled as a
random graph with very low link density p� 1.0. On average, the number of parents of
a SopCast peer to download video content from is two. 4) We observed the existence of
super peers with respect to the number of children that the SopCast peers can support.
A super peer sacrifices a large amount of upload capacity to its many children.

Being a popular commercial P2PTV application, SopCast, however, is not efficient
regarding network traffic distribution and resource utilization. First of all, bandwidth
usage is not optimized in SopCast. Peers with high bandwidth do not upload more, thus,
results unbalanced traffic distribution at different peers. Secondly, SopCast employs a
very simple algorithm to select the first tier peers, i.e. the first-come-first-serve pattern,
and the first tier peers do not have equal roles in uploading video content. Moreover, the
upload performance of the first tier peers does not scale as the network size increases.
Peers who join the network earlier attach to the first tier peers, while the latter ones
connect to the second tier peers to download video content.

Nevertheless, our study questions the efficiency of the SopCast network, since peers
that are connected to good resources (e.g. to the SP), do not always keep providing video
content to others, and the upload bandwidth is not taken into account when selecting
peers. We think that a dynamic first tier peers selection would be more suitable than the
current static first-come-first-serve algorithm. If the first tier peers cannot offer good
upload throughput, their connections with the SP should be terminated. Re-selecting
better peers in the first tier should be performed.

Future Agenda

The empirical analysis performed with SopCast revealed important design issues of to-
day’s commercial P2PTV networks. The methodologies and approaches employed in
this analysis can be used to understand similar applications. Furthermore, the exper-
iments performed in this thesis is based on full access to the peers (i.e. PlanetLab
nodes) with limited network sizes (e.g. hundreds of nodes). As a future step, we can
build a crawler that collects the information of peers in the P2PTV network from one
or multiple query nodes. Results from the crawled data can be further compared with
the ones from the PlanetLab measurement.

As discussed at the beginning of this thesis, theoretical and empirical analysis are
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two inseparable components. The analysis presented in this part also provides insights
on future theoretical studies. For instance, the major difference between the real-world
P2PTV application and the theoretical model proposed in Part I is that peers are not
equal. Therefore, modeling the network with the existence of super peers can be a
possible research direction.

The third proposal is the study of topology when peers attach according to a pref-
erential attachment model on a random subset of peers. As demonstrated in Section
2.3.3, to describe the system where peers have a partial view of the network, a large
number of states is needed. Thus, the new model of creating networks that is closely
related to how P2P networks evolve, can be examined by performing simulations.
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Chapter 10

Introduction To OSNs

A society is a group of individuals who have more or less conscious relations to each
other. In 1954, the concept of social network was first raised by Barnes, in his work of:
Class and Committees in a Norwegian Island Parish, [46]. A social network is defined
as a system consisting of social entities (e.g. individuals, organizations), which are
connected by different types of relations (e.g. friendship, kinship, sexual relationship,
common interest). In graph theory, the social entities are seen as nodes, and their
relationships in between as links. A social network can be observed not only in our
real-world life, but also in the online world, as there are more and more web applications
that aim to connect users via the Internet.

The history of online social networks (OSNs) can be traced back to 1997, when the
first OSN, SixDegrees [30], was launched. Since then, a number of social networking
applications were released. They quickly gained significant popularity, and dramati-
cally changed the way that people consume information across the Internet. Unlike
traditional web-based services, OSNs are user-centric. They aim to fulfil diverse needs
of the end-users. For instance, in Facebook [10], Hi5 [13], LinkedIn [19] and Orkut
[23], OSN users can find and interact with people; in MySpace [21] and Twitter [35],
users can share their ideas and receive feedback from others. There is another type of
OSNs that allows users to publish user-generated content, e.g. Flickr [11], Last.fm [18]
and YouTube [37], or to submit, discover, and distribute content that are published
anywhere on the web, such as Digg [8], Delicious [7] and Reddit [29]. In all of the above
OSNs, social networking is the most distinct feature - users form virtual communities
to network with others and to share information collaboratively. Since users are more
inclined to spend their social lives online, OSNs become promising platforms for online
campaigning [58], viral marketing [97] and targeted advertisements [128].

The major difficulty of analyzing various social phenomena in real-world, large-scale
social networks is the lack of public data. Thanks to the thriving of OSNs, collecting
relevant information about the characteristics (e.g. social interests and collaborative

89



90 CHAPTER 10. INTRODUCTION TO OSNS

behaviors) of millions of users is feasible. In this chapter, we will briefly introduce the
Digg OSN that is going to be studied, and our methodology of collecting the Digg data.

10.1 The Digg OSN

The Digg OSN, studied in this thesis, is a large-scale content discovery and sharing
application, which is also referred to as a social media aggregator. According to the
traffic statistics provided by Alexa.com on May 4th, 2010, the Digg website traffic is
ranked as 117th globally, and as 52th in the United States [1]. Rather than simply
searching for, and passively consuming information, the Digg users are collaboratively
publishing and propagating information.

The Digg users can submit an URL (Uniform Resource Locator) of a story that is
published elsewhere on the web. A story published in Digg can be a video, an image,
or news. In fact, from our study, we notice that around 88% of the Digg stories are
news. Once a story is published, the Digg users can digg or bury it by using the
voting system implemented in Digg. A digg on a story refers to a positive rating, and
burying a story indicates disagreement or a negative attitude towards that story. In
this way, the Digg users can publish, discover, and promote the most interesting stories
by collective recommendation without a group of website editors. A story that has
just been submitted is referred to as an upcoming story and is placed on the upcoming
section in Digg. If an upcoming story is considered to be interesting by the majority, it
becomes popular and appears on the front pages of the popular section. Promoting a
story from upcoming to popular is managed by an algorithm developed by Digg. The
algorithm considers the number of diggs, the diversity of users that are digging the
story, the time when the story was submitted, and the topic of the story as the major
factors to promote a story. Unfortunately, the Digg website does not provide too much
details about the algorithm. There are approximately 10,000 stories submitted to Digg
daily, while only around 150 stories are promoted to popular.

Social relationship is assumed as an important factor during content recommenda-
tion. Every Digg user maintains a list of friends that he has added, which is referred
to as the friends list. Via a so-called friends’ activity interface (see Fig. 10.1), users
can keep track of their friends’ activities once logged in, e.g. stories that their friends
have submitted, commented or digged. To discover a story, a Digg user can either use
the friends’ activity interface, or other features on the Digg website, e.g. front page
and search engine. As shown in Fig. 10.1, Digg stories are categorized into eight major
topics: technology, world & business, science, gaming, lifestyle, entertainment, sports
and offbeat. A Digg user can also find stories with respect to their type: news, videos,
and images. Stories belong to each topic or type are again classified as upcoming and
popular. All popular (upcoming) stories under each topic and each type are aggregated
to the overall popular (upcoming) section, which is the default page shown to a user en-
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tering the Digg website. Once a user has digged on a story, he is implicitly propagating
and recommending the story to others.

The friends’ activity interface

Popular Upcoming News    Videos    Images Customize

Figure 10.1: The Digg web interface.

10.2 Related Work Performed With OSNs

Early studies on real-life social networks focus on a collection of people, that are formed
by friends, acquainted people, movie actors, scientific collaborations on research papers,
etc. A famous empirical study in sociology was performed by Stanley Milgram [93],
from which the “six degrees of separation” has been observed. Afterwards, extensive
theoretical analyses were conducted to discover the structure of social networks (see e.g.
[45], [82], [99], [126]). Regarding the spread of information in social networks, Mark
Granovette argued in his influential paper: The Strength of Weak Ties [65], that the
social relationships between users can be partitioned into “strong” and “weak” ties.
The strong ties correspond to the links between close friends, relatives, or neighbors;
and the weak ties correspond to links between acquaintances, or friends of friends. In
was shown in [65] that the strong ties are tightly clustered, and the weak ties are more
efficient regarding information spread, e.g. acquiring job information. An overview of
social network analysis techniques is presented by Wasserman and Faust in [125].

When studying the real-world social networks, the sociologists are facing a major
challenge: the lack of large-scale data to analyze various social phenomena. With the
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thriving of OSNs in recent several years, investigating the properties of social com-
munities that are at a large-scale becomes realistic. Hence, sociologists and computer
scientists start to focus on the OSNs. Previous works performed with OSNs mainly
addressed three issues: 1) the topological properties and network structures; 2) user
behaviors and properties; 3) content publication and propagation. Mislove et al. [95]
studied the topological properties of four OSNs that are large-scale: Flickr, YouTube,
LiveJournal, and Orkut. They obtained the data by crawling publicly accessible infor-
mation on these networking sites. In [95], different network metrics, e.g. link symmetry,
node degree, assortativity, clustering coefficient of the four networks were measured.
Mislove et al. have shown that the OSNs are characterized by high fraction of sym-
metric links, and composed of a large number of highly connected clusters. The degree
distributions in the OSNs follow a power law, and the power law coefficients for both
in-degree and out-degree are similar. Backstrom et al. [44] studied the network growth
and evolution by taking membership snapshots in the LiveJournal network. They also
presented models for the growth of user groups over time.

User characteristics in OSNs are also often addressed. Leskovec et al. [86] pre-
sented an extensive analysis about communication behaviors and characteristics of the
Microsoft Messenger instant-messaging (IM) users. The authors examined the com-
munication pattern of 30 billion conversations among 240 million people, and found
that people with similar characteristics (e.g. age, language, and geographical location)
tend to communicate more. Based on the data, Leskovec et al. constructed a commu-
nication graph and analyzed the topological properties of the graph in terms of node
degree, cluster coefficient, and the shortest path length. They have shown in [86] that
the communication graph is well connected, robust against node removal, and exhibits
the small-world property1. Benevenuto et al. [47] examined users’ activities of Orkut,
MySpace, Hi5, and LinkedIn. A clickstream model was presented in [47] to characterize
how users interact with their friends in OSNs, and how frequently users transit from
one activity (e.g. search for people’s profiles, browse friends’ profiles, send messages to
friends) to another.

There are also many researchers who aim to discover content popularity and propa-
gation in OSNs. For instance, Cha et al. [51] studied photo propagation patterns in the
Flickr OSN and the impact of social relations on propagating photos. The results in [51]
suggest that: 1) friendship relations play an important role during information spread;
2) photo popularity may increase steadily over years even for the most popular photos;
and 3) over 50% of users find their favorite pictures from their friends in the social
network. Szabo et al. [116] analyzed and compared the popularity of Digg content with
YouTube videos. As shown in [116], YouTube videos keep attracting views throughout
their lifetimes, whereas Digg stories saturate quickly. Social networking is not effective
once Digg content is exposed to a wide audience, although they are important in the

1Small-world networks have a small diameter and exhibit high clustering [126].
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stages when content exposure is constrained to a small number of users. An in-depth
study about YouTube and Daum (a Korean OSN) video popularity evolution was dis-
cussed in [50]. It was shown that video popularity of the two applications is mostly
determined at the early stage after a video content has been submitted to the OSNs.
In [83], Lerman showed that users find new interesting stories via the social links and
claimed that social (friendship) filtering is an effective approach to filter information
in Digg. The same observation was found in [84], where Lerman et al. showed that
social networks play a crucial role in the spread of information on both Digg and Twit-
ter websites. Content in Twitter spread continuously as the story ages, whereas Digg
stories initially spread quickly through the network.

Most of the previous work addressed the importance of friendship networks during
the discovery and spread of information. The same conclusion was also made for Digg.
However, we believe that previous reports regarding the Digg network are not sufficient
to reflect its overall content propagation pattern due to two reasons. First of all, results
in [83] and [84] are based on a limited number of data set that were collected during
a short period of time (around a week): 2858 stories in [83] and 3553 stories in [84].
Secondly, to what extent the friendship relations are propagating content during the
entire information spread process and how to quantitatively measure the influence of
social links have not been addressed in [83], [84] and [116].

10.3 Research Questions

A fundamental assumption about OSNs is the potential of discovering and propagating
information along social links, i.e. the friendship relations ([51], [83], [84], [85] and
[116]). Another important factor that has not been addressed is the time criticality of
the content shared in OSNs. Moreover, user behaviors in a given OSN is influenced by
the specific interfaces and mechanisms provided by the website. Yet, the influence of
content dynamics as well as the service interfaces during the spread of information and
on the characteristics of users are not well understood.

In this thesis, we present a large-scale measurement study of the Digg OSN, also
referred to as a social media aggregator. Compared with other OSNs that aim to pub-
lish and share content, the Digg network has three distinguishable features: 1) Digg
uses the number of diggs to reflect the popularity and importance of the published con-
tent; 2) Digg implements its own algorithm to classify popular and unpopular content
(i.e. upcoming content) and place them in different sections. 3) Digg provides multiple
features for content discovery and digging, i.e. via friends, by using the front page/rec-
ommendation engine, and by search. The aforementioned three factors lead to distinct
user behaviors and content propagation pattern in Digg. Our objective is therefore to
study the underlying mechanism of information propagation, and the effectiveness of
friendship relations during content propagation in Digg. In this thesis, we focus on two
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major research issues.

1. Study the network structure in Digg, measure users’ digging activities and quan-
titatively compare users’ interests/tastes with each other.

2. Examine the content propagation pattern and the effectiveness of friendship rela-
tions in the spread of content.

Studying the above two issues is beneficial to understanding the fundamental char-
acteristics as well as the underlying principals of disseminating content in emerging
social media aggregating websites and helps to design new systems.

10.4 Data Crawling Process

We aim to study different perspectives of the Digg OSN, such as the friendship relations,
the characteristics of users, and the properties of the published content. Hence, the
major challenge in crawling the Digg network is to obtain the most comprehensive and
valid data that we are interested to reflect different aspects of the Digg OSN.

While most social network traces are crawled using friendship relations, see [95] and
[41], the Digg data set was obtained by a simultaneous exploration of the network from
four different perspectives, as shown in Fig. 10.2. By using the Digg Application Pro-
gramming Interface (API), we are able to explore the aforementioned four perspectives
(from bottom to top in Fig. 10.2) during data collection:

� Site perspective: The Digg website lists all popular and upcoming stories under
different topic areas. Every hour, we retrieve all popular stories (for all topics)
that are listed on Digg. Every four hours, all upcoming stories (for all topics) are
collected. All discovered stories are added to an “all-known story” list maintained
by us.

� Story perspective: For each of the stories that has been retrieved, a complete
list of all activities performed by different users (who digged on the story) is
collected. Any user that is discovered will be added to the “all-known user” list
for future exploration.

� User Perspective: For each user discovered within the Digg OSN, the list of
their activities, such as submitting and digging on stories, is retrieved. Occasion-
ally, a previously unknown story is discovered (this is typically the case for older
stories before we started the collection). For such a story, the entire (digging)
activities of users are retrieved for that story.
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Figure 10.2: Different components of the Digg crawling process.
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� Social Network Perspective: Each registered user can make friends with other
Digg users. In the crawling process, a list of friends is retrieved for every user.
If a friend is a previously unknown user, this user is added to the data discovery
process, and a list of all his friends and his public user profile information are
retrieved. This procedure is continued in a breath-first search (BFS) manner
until no new user can be found. The process is periodically repeated afterwards
to discover new friendship relations that have been formed after the last crawling
pass through the data.

By using the above crawling methodology, we are able to collect the entire infor-
mation about friendships and activities of users and the published content in the Digg
network. Although the Digg network was officially founded on December, 2004, the
feature of the friends list was not released until July 2005, when the second version
of Digg was launched. Therefore, in our analysis, the collected friendship information
starts from July 2005. Until May 2010, our Digg data set has a volume of more than 600
GB (Giga Bytes), containing the related information about 1.5 million registered users
and 10 million published stories in the Digg OSN. The collected Digg data set is in the
form of individual XML (Extensible Markup Language) files. To study different char-
acteristics of the Digg OSN, we analyze the collected XML files by using Java language
[16] and bash scripting [4]. Following, we present some example files of the collected
data. With these files, we perform a large-scale analysis of the Digg OSN. Due to the
large volume of data set to be studied, our analysis is both time and computationally
consuming.

Digg Information of Stories/Users

The Digg network assigns each story a unique ID. Table 10.1 shows an excerpt of the
digg information of the story 16181860, which contains all users that have digged on it.
In the second row, we see a timestamp of 1261779003, which is in UNIX epoch format.
It is the time that the digg information was crawled from the Digg website. The total
number of diggs made on this story when we crawled it, as indicated by the field of
“total”, is 723. The field of “date” indicates the time that a user digged on the story.
“Story” is the story ID. In this example, it is all “16181860” since we queried all the
diggs on story 16181860. “User” names the user who has made the digg. “Status” lists
the status of the story (popular or upcoming), when the information about story diggs
were downloaded.

Similarly, Table 10.2 presents an example of all the diggs made by the user “Mac-
BookForMe”. The structure is identical to that in Table 10.1.
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Table 10.1: Digg information of the story with ID 16181860
<?xml version=“1.0” encoding=“utf-8” ?>
<events timestamp=“1261779003” total=“723”>
<digg date=“1260118952” story=“16181860” user=“craigsbro22” status=“popular”/>
<digg date=“1255980662” story=“16181860” user=“mapyqf” status=“popular”/>
+ many more lines
</events>

Table 10.2: All diggs made by user ”MacBookForMe”
<?xml version=“1.0” encoding=“utf-8” ?>
<events timestamp=“1249291922” total=“195”>
<digg date=“1249291031” story=“14650409” user=“MacBookForMe” status=“upcoming” />
<digg date=“1249291029” story=“14650953” user=“MacBookForMe” status=“upcoming” />
+ many more lines
</events>

Story Information

We have collected related information about the stories published on Digg. Table 10.3
presents an example of the story 16181860. The first row presents the URL of the story
16181860, where it is originally published. Following, we see the submission time of
the story (indicated by “submit date”), the total number of diggs (indicated by the
field “diggs”) made on the story and the unique ID (indicated by “id”) of the story. In
the third row, we presents the promotion time when the story became popular (by the
field of “promote date”), the status of the story when it is crawled (by “status”), the
media type of the story (by “media”). Next, we show the description and the title of
the story. As indicated by the sixth and seventh rows, the story is submitted by user
“MacBookForMe”, who registered with Digg at time 1202811079. By the time that we
crawled the data, there are 21504 clicks on the profile of user “MacBookForMe”, and
the topic that the story belongs to is “Sports”. The related information about the story
16181860 is ended by “</story>”, as indicated in the last row.

Friendship Information

Table 10.4 shows the friends of user “MacBookForMe”. The field “name” indicates the
user name of his friends. “Registered” is the time when the friend registered with Digg.
“Profileviews” is the number of clicks made on the profile of that friend. “Mutual”
means a mutual friendship relation, and “date” is the timestamp when “MacBook-
ForMe” made friend with the corresponding user.
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Table 10.3: Related information of the story 16181860
1 <story link=”http://news.bbc.co.uk/1/hi/in depth/8280072.stm” />
2 <story submit date=”1254247007” diggs=”722” id=”16181860” />
3 <story promote date=”1254259233” status=”popular” media=”images” />
4 <description>Who knew synchronised flipping could be so much fun!</description>
5 <title>Flippin’ Flip [PIC]</title>
6 <user name=”MacBookForMe” registered=”1202811079” profileviews=”21504” />
7 <container name=“Sports />
8 </story>

Table 10.4: Friends of user “MacBookForMe”
<?xml version=”1.0” encoding=”utf-8” ?>

<eventstimestamp=”1241784850” total=”80”>

<digg name=”adrian67” registered=”1146300011” profileviews=”23333” mutual=”1” date=”1224590329” />

<digg name=”alamala” registered=”1207600335” profileviews=”9054” mutual=”1” date=”1211673990” />

<digg name=”annjay” registered=”1206177687” profileviews=”9106” mutual=”1” date=”1225446296” />

+ many more lines

</events>

Front Page Information

The Digg website has 250 front pages, with 15 popular stories per page. Every hour, we
collect information about the popular stories that appear on the front pages. The first
column, as presented in Table 10.5, is the front page number. Following are the IDs
of the 15 stories on each front page in a decreasing order regarding their positions on
that page. The number of diggs made on a story is shown inside the parenthesis of each
story. For instance, Table 10.5 tells us story 22263292 is the first story appearing on the
first front page. At the moment that we have crawled it, there were 97 diggs on that
story. The crawling date and time are reflected by the file names, e.g. frontpage 2010-
04-30–15-00 is the name of the example file presented in Table 10.5.

Table 10.5: Front page information crawled on 2010-04-30, 15-00 hour
1, 22263292(97) 22262567(116) (224) 22260602(124) 22253075(297) 22262446(342) .....
2, 22250421(295) 22262794(172) (682) 22250537(176) 22253240(337) 22246646(233) .....
3, 22251223(292) 22255642(203) (47) 22251404(379) 22256668(403) 22256314(231) ......
.....



Chapter 11

Network Topology and User
Characteristics

In this chapter, we first study the Digg network structure, e.g. degree distribution, link
symmetry and degree correlation. Afterwards, we measure users’ digging activities and
interests. Finally, we answer the question of whether Digg users are sharing similar
tastes with their friends.

11.1 The Topological Property of the Digg OSN

Friendship relation is assumed to be a crucial factor during content propagation. There-
fore, we first characterize the network structure in Digg and compare the Digg network
with other OSNs. By considering the 1,527,818 registered Digg users as nodes and their
friendship relations as links, a direct friendship network GF , is constructed. If a user
A adds user B as a friend, user A is referred to as a fan of user B. If B also adds
A as a friend, the two users are called mutual friends. A bi-directional link is called
a symmetric link. Otherwise, the link is referred to as being asymmetric. In GF , the
outgoing degree Dout defines the number of friends that a random user has, and the
incoming degree Din indicates the number of fans that a random user has.

As mentioned in Section 10.1, users can keep track of the stories that are submitted
and digged by their friends via the friends’ activity interface. Thus, content propaga-
tion in the Digg friendship network GF is initiated in the reversed direction along the
friendship links. In Fig. 11.1, we illustrate the friend and fan relationships in Digg (the
solid arrows), as well as the way that information is propagated via friendship links (the
dotted arrows). As shown in Fig. 11.1, user A has three friends and two fans. Being the
fan of user B, C and D, user A discovers and consequently diggs stories recommended
by B, C and D. On the other hand, since user E and F add user A as friend, user A
is implicitly propagating content to E and F . In short, a user disseminates content to
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his fans in the opposite direction along the incoming links.

A

Friends of user AFans of user A

B

C

D

E

F

Figure 11.1: Illustration of the friend relationships in Digg as well as the way that
information is propagated. The solid arrows represent the friend or fan relationships.
The dotted arrows refer to information propagation along the friendship links.

11.1.1 The Degree Distribution

We define the giant component as the largest connected component in a network. The
giant component in our Digg data collection consists of 685,719 nodes and 6,736,174
links. Out of the remaining 842,099 nodes, there are 810,586 nodes not being connected
to any one in the network. The nodes with zero in-degree and out-degree are defined
as disconnected nodes, which is approximately half of the entire Digg users in our data
set. The remaining 31,513 nodes that are not connected with the giant component,
form 13,270 distinct connected components. The maximum number of nodes in these
components is 77, and the smallest component only consists of 2 nodes. These connected
components consist of 23,763 links.

In Fig. 11.2 (a) and (b), we plot the pdf of the out-degree, Dout, and in-degree,
Din, of the giant component respectively. On a log-log scale, both Pr [Dout = k] and
Pr [Din = k] exhibit straight lines, conforming to the power law distribution1. Notice
that Digg has artificially capped a user’s maximal out-degree to 1000, the distribution
of very high out-degrees (close to Dout = 1000) is thus, distorted in Fig. 11.2 (a). By
using least-squares fitting, the exponent of Pr [Dout = k] is found to be αp = 1.6, which
is slightly lower than the exponent of the in-degree, i.e. αp = 1.8.

Our finding about the node degree distribution in Digg is consistent with previous
reports on Flickr, YouTube, LiveJournal, and Orkut (see [95]), in the sense that the
power law exponents of these OSNs are all smaller than 2 (between 1.5 and 2). However,
the node degree distribution of OSNs suggests fundamental different network structure
compared with other complex networks, e.g. the real-world social network, the World
Wide Web (www)2, and the power grid network, in which the power law exponents are

1The power law distribution is defined as Pr [X ≤ x] = cx−α+1.
2The nodes in a www network are HTML documents, and they are connected by links pointing

from one page to another.
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between 2.1 and 4 [45]. The observed power law distributions with an exponent smaller
than 2 indicates that there is no finite mean regarding the node degree distribution.
Indeed, we can still estimate on the mean value of node (in- and out-) degree by using
real data set with finite size. However, as the size of data set changes, our estimation on
the mean value of node (in- and out-) degree also changes with non-negligible variance.
On the other hand, the mean value of node degree does not diverge as the network size
increases in the other complex networks mentioned above.
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Figure 11.2: Sub-figure (a): Pdf of the out-degree of the giant component. A cut-off
out-degree of 1000 is set in the digg network. Sub-figure (b): Pdf of the in-degree of
the giant component. Both curves are plotted on log-log scale and best fitted with the
power law distribution.

Furthermore, the large amount of disconnected nodes in the Digg network seems to
conflict with the existing assumption of the importance of a friendship network - users
need to establish friendship relations in order to find and propagate information. Since
most large OSN traces are crawled by using the breadth-first search (BFS) technique
following friendship links, the amount of disconnected nodes are naturally excluded
from the collected data set, and only the connected components are studied, e.g. in
[51] and [94]. The crawled Digg data set provides us the advantage of analyzing the
characteristics of the disconnected nodes and their digging activities. As we will show
in Section 11.2, the disconnected nodes are actively digging stories even though they
are not connected with anyone, which questions the necessity of making friends to find
and propagate content in Digg.
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11.1.2 Link Symmetry

Contrary to previously studied OSNs which exhibit high level of symmetry (e.g. the
fraction of symmetric links is 62% in Flickr, 74% in LiveJournal and 79% in YouTube
[95]), the link symmetry in Digg network is much lower. Among the total number of
6,759,937 friendship links in Digg, only 2,687,583 links are symmetric (38% on average).
The link symmetry in Digg also varies with respect to users’ out-degrees. As shown in
Table 11.1, users that are connected with a small group of friends (i.e. 0 < Dout < 10)
are more likely to be accepted as mutual friends: 53% of their friendship links are
symmetric. Being the fan of many users does not increase the probability of being
accepted as friends. The percentage of symmetric links of users with Dout = 1000 is
only 0.31.

Table 11.1: Link symmetric and content discovery in Digg
User Group Number Symmetric Links Stories

of Users (Percentage) Digged Via
Friendship

0 < Dout< 10 282536 53% 4.4%
10 ≤ Dout< 100 49416 42% 25%
100 ≤ Dout< 1000 13993 39% 59%
Dout= 1000 111 31% 60%

The level of link symmetry in OSNs is generally determined by users’ incentives of
making mutual friends, i.e. to discover and propagate content via friendship relations.
In the sequel, we discuss whether Digg users depend on the friendship links to discover
content. If a user diggs a story after the time that his friends have digged on the same
story, we assume that the story is recommended by friends and therefore propagated via
friendship links. From the entire stories that a user has digged, we calculate the number
of stories that was recommended and digged by using friendship relations. As shown in
Table 11.1, the content location pattern in Digg is consistent with existing hypothesis
in OSNs - friendship relation is crucial in discovering content. Users that make many
friends tend to be more inclined in digging stories on which their friends have digged.
For instance, users that have made a lot of friends (Dout = 1000) discover 60% content
via friendship links, whereas users who make less friends (Dout < 10) do not depend on
their friends to find content. Most likely, they use front page recommendation or the
search engine to digg stories.

The findings presented in Table 11.1 also underlines the fact that Digg friendship
relations are less reciprocal in terms of content discovery. Making many friends (high
out-degree) leads to an increasing number of stories discovered from friends. However,
the friends of a user do not necessarily want to locate content via his friends. By us-
ing (8.1), we see that there is no correlation between the out-degree of two friends:



11.1. THE TOPOLOGICAL PROPERTY OF THE DIGG OSN 103

the correlation coefficient is ρout = 0.05. Users who make many friends do not nec-
essarily connect with others that are similar. Hence, the friends of a user who has
high out-degree may not rely on friendship relations to find content (see Table 11.1).
Consequently, it is less demanding for them to make mutual friends.

11.1.3 Assortativity in Digg

The assortativity [122] measures the degree correlation of two connected nodes. In
general, the dependence between two random variables of X and Y is evaluated using
the linear correlation coefficient described in (8.1) of Section 8.3.3.

According to Newman’s definition in [100], the assortativity in directed networks
measures the tendency of a node i to connect with other nodes that have incoming
degrees similar to node i’s outgoing degree. The above definition, however, does not
provide much insight on the content propagation process in Digg. As mentioned in
Section 11.1, a Digg user propagates content to his fans implicitly. Therefore, instead of
employing the definition in [100], we measure the assortativity in Digg as the correlation
of the in-degree between two nodes that are connected by a directed link. Assuming
that we have randomly chosen a directed link from the Digg friendship network, the
node at the start of the directed link is called the source node, and the node at the end
of the link is referred to as the destination node. We calculate the assortativity in the
Digg network as

ρ =

L∑
k=1

ikjk − 1
L

L∑
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ik
L∑
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(
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jk

)2
] (11.1)

where L is the total number of the directed links in the network, ik is the excess in-degree
of the source node at the k-th link, and jk is the excess in-degree of the destination node
of that link. The excess in-degree is one less than the original out-degree (in-degree) of
that node.

The correlation coefficient ranges between −1 and 1. A positive correlation coeffi-
cient, e.g. close to 1, indicates users tend to connect to others of similar degree. For
instance, the influential users3 are connected with other influential users who have high
in-degree. While a negative correlation coefficient, e.g. close to -1, means that influ-
ential users are connected with users who are not similar (i.e. users who have a few
fans). The in-degree correlation between two friends in Digg is derived as ρin = −0.03
by using (8.1), which is close to zero. This value shows that there is in fact no cor-
relation between the in-degree of two friends in Digg. In theory, content propagation

3We define an influential user as the one that has many fans, i.e. high in-degree.
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in an assortative network (i.e. positively correlated in-degree) is more favorable under
the assumption that friendship network is important during content propagation. To
propagate content, we can opt for the influential users, because they are able to forward
the content to other influential users and thus speed up the spread of content. However,
such a property has not been observed in the Digg network.

11.2 Users’ Activities and Interests

In this section, we quantitatively measure users’ digging activities and users’ interests
in Digg.

Users’ Digging Activity

We define Xu the number of stories a user has digged, which is also referred to as
the digging activity of that user. We notice that 93% of the 1.5 million Digg users
have digged at least one story, whereas the remaining 7% users only registered in Digg
without any digging.

In Fig. 11.3, we present the pdf of the digging activity Xu of the connected nodes
and disconnected nodes respectively. Although the disconnected nodes do not establish
any friendship relations, they are also actively digging stories in the network. How-
ever, compared with the nodes in the connected components, the digging activity of
disconnected nodes is quantitatively different - the maximal number of digged stories is
approximately one order less than for nodes in the connected components. The curve
of the disconnected nodes also decays faster than the connected nodes and the number
of disconnected users who digged less than ten stories is higher than those connected
ones. Combining the observations in Fig. 11.3 and Table 11.1, we see that friendships
do not always play an important role in discovering and digging content. At least, the
digging activities of the disconnected users are not affected by the fact that they do not
establish friendship relations.

Interestingly, on a log-log scale, the curves of Pr [Xu = k] exhibit a slightly decaying
trend from the straight line for users that digg the most stories. Fig. 11.3 shows that
the best fitting curve of Pr [Xu = k] is the power law distribution with an exponential
cut-off4 at the tail. The power law distribution with an exponentially decaying tail has
been reported in protein networks [77], in e-mail networks [59], in actor networks [43], in
www networks [98], and for video popularity in YouTube [50]. A power law distribution
is normally generated by the preferential attachment model [45]. If the distribution of
Xu completely obeys the power law, we can rephrase users’s digging activities as: the
probability that a user will digg a new story is proportional to the number of stories

4The power law with an exponential cut-off is described by f (x) = cx−αpe−αex, where the expo-
nential decay term e−αex overwhelms the power law behavior at very large x.
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that he already digged. This explanation however, does not explain the decay trend at
the tails of the two curves. In the sequel, we discuss two models that were proposed to
explain such a bending tail.

First of all, Amaral et al. [43] argued that in a social network formed by actors, an
actor may stop acting due to his age. Therefore, a node (i.e. an actor) will stop receiving
new links after some time, which yields the exponential cut-off at the tail. Secondly,
Mossa et al. [98] attributed the exponential decay of the degree distribution of the
www to the fact that users cannot receive information about all available web pages on
the Internet. We think the exponentially bent tails in Fig. 11.3 can be explained by
using the two models described above. As we will show in Chapter 12, the “attractive”
period of a story is very short. The majority of the diggs on a story is made after one
or two hours since it is promoted to the Digg front page. Afterwards, the popularity
of a story decreases dramatically. Hence, a story will stop receiving diggs due to its
age. As mentioned before, there are approximately 10,000 stories being submitted to
Digg every day. Since users cannot stay online 24 hours per day and because of the
short lifetime of a story, users are eventually digging a subset of all published stories.
Combining the aforementioned two facts, the bending tail is consequently generated.
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Figure 11.3: Pdf of the number of stories digged by the connected nodes and discon-
nected nodes, respectively. The best fitting curve is the power law distribution with an
exponential cut-off.

Concentration of Users’ Interests

The major challenge to quantify users’ interests in OSNs is that users may not provide
their social interests. Even though some users have specified their interests, their actual
activities may deviate from what they have claimed. Thus, to our knowledge, this thesis
is the first work trying to quantify users’ interests in OSNs.
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As mentioned earlier, stories in the Digg network are categorized into eight topics.
Given that a user has reacted on k (1 ≤ k ≤ 8) different topics, we define the number
of stories that a user has digged under each of the topic, as a metric to quantitatively
evaluate his preference of that topic.

Let the set of random variables {Xk}1≤k≤8 be the number of stories that a user
digged on a particular topic. The index of k from 1 to 8 corresponds to the topic
of technology, world & business, science, gaming, lifestyle, entertainment, sports and
offbeat respectively. The set X(1), X(2), ..., X(8) is consequently defined as the ranked
random variable of {Xk}1≤k≤8, if X(1) = max1≤k≤8Xk, and X(8) = min1≤k≤8Xk. The

sum of {Xk}1≤k≤8, S =
8∑

k=1

Xk, is the total number of stories that a user digged. The

variable of Rk =
X(k)

S
defines the ratio of the stories under the k-th topic after ranking,

over the total number of stories digged by a random user.

Fig. 11.4 depicts E[Rk|Vn], the average value of Rk provided that a user is interested
in n (1 ≤ n ≤ 8) topics (denoted by the event Vn). We see that users exhibit strong
and distinct preference of their most favorite topic over the less favorite ones. A user
diggs at least two times more stories in his favorite topic than the second favorite ones,
and the stories digged under individual topics decrease logarithmically. For instance,
if a user is interested in two topics, his most favorite topic counts for 67% of the total
stories that he digged. A user interested in three topics diggs 59%, 24% and 17% of
the stories in his first, second and third favorite topics. The above findings are further
used in Section 11.3, to compare the similarity between users’ interests.
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Figure 11.4: The average ratio of the k-th favorite topic of users that are interested in n
topics after ranking. The vertical axis is plotted on logarithmic scale for easier reading.
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11.3 Similarity Between Friends

It is commonly assumed that users are making friends with who are similar. This
section aims to discover whether the aforementioned assumption is ture in the Digg
network. In Fig. 11.4, we observed the existence of a most preferred topic of users over
the other less favorite ones. Based on the distinct and stable users’ interests, we further
measure the similarity between users’ taste.

We denote by T(k) the name of the k-th topic after ranking. For a random user pair i
and j, we obtain two set of lists of

{
ti(1), ti(2), ..., ti(8)

}
and

{
tj(1), tj(2), ..., tj(8)

}
, in which

ti(k) and tj(k) are the name of the k-th favorite topic of user i and user j, respectively.
Since ti(1) is the most favorite topic of user i, we compare ti(1) with tj(k) ∈ {1 ≤ k ≤ 8}
of user j. The similarity hops, defined in (11.2), is used as the metric to evaluate the
similarity of the most favorite topic between i and j.

hij = (k − 1) 1{ti(1)=tj(k)} (11.2)

in which the indicator function, 1{x} is defined as 1 if the condition of x is satisfied, else
it is zero. The similarity hop hij measures the distance of user i’s favorite topic with
respect to the k-th favorite topic of user j, and ranges between 0 ≤ hij ≤ 7. A zero hop
means that two users have identical interests with each other. A small similarity hop,
say hij = 1, indicates high overlapping interests between two friends. While a large hop
suggests that users do not have similar taste in common, e.g. hij = 7.

Our calculation shows that the similarity hop between two friends decreases expo-
nentially: 36% friend pairs have the identical interests and the percentage of friend
pairs that are one, two and three hops away are 20%, 15% and 10% respectively. The
average similarity hops is 1.7, indicating high similarity between friends’ interests.

11.4 Summary

OSNs show different properties with previously observed networks, such as real-world
social networks, technological and biological networks, in terms of node degree distri-
bution. For instance, the power law exponents for different OSNs, are smaller than 2,
as reported in this thesis (for Digg) and previous work (for Flickr, LiveJournal, and
Orkut) [95], while it is between 2.1 and 4 in other complex networks.

Contrary to other OSNs such Flickr, LiveJournal and YouTube, link symmetry in
Digg network is very lower (38% on average). Since a Digg user relies on his fans to
propagate information, making many friends does not increase the number of fans who
will digg on the stories submitted or digged by the user. Users with many friends are
more dependent on their friends to discover and consequently digg content, whereas
the disconnected users are also actively digging stories in spite of the friendships. Since
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the Digg network provides different features/interfaces for content discovery, friendship
relation is no long considered as the primary way to locate content.

Moreover, the interests of OSN users are not evenly spread over different topics.
Users have a strong preference about his most favorite topic over the less favorite ones.
Based on the above observation, we studied the similarity of the most favorite topic
between friends. Our analysis confirms the common hypothesis in OSNs - users are
likely to be associated with who are similar (the average similarity hops between two
friends is 1.7).



Chapter 12

Collaborative Content Submission
and Propagation

The Digg OSN aims to aggregate content published in different places on the Internet
into a single website, and the Digg users are considered as the driving force to filter and
propagate content in the OSN. Some stories become a great success and obtain many
diggs once being published, whereas some other stories are only shared between a small
number of users and quickly fall into oblivion. Therefore, it is important to characterize
the content submission and propagation patterns in Digg so that we can have a better
understanding about its underlying mechanism of disseminating content.

12.1 Story Submission Pattern

As mentioned in Section 10.1, among the approximately 10,000 stories submitted to
Digg everyday, only around 150 stories are promoted and hit Digg’s front pages in the
popular section. Our first objective is to study whether users have equal chances to
submit popular stories.

In Fig. 12.1, we present the Lorenz curve1 [89] regarding the story submission pat-
tern in Digg. As illustrated by the red dotted line in Fig. 12.1, 80% of the Digg stories
are submitted by approximately only 25% of the Digg users, suggesting a quite unequal

1For every Digg user in our data set, we calculate the number of stories submitted by him and
obtain a sequence of values xi (1 ≤ i ≤ N) that are ranked in non-decreasing order (xi ≤ xi+1), where
N = 1, 527, 818, and xi represents the number of stories digged by user i after ordering. The horizontal
axis in Fig. 12.1 defines the fraction of Digg users after ordering, and the vertical axis represents the
fraction of stories digged by the corresponding fraction of users. The further the Lorenz curves are
away from the line of equality, the more unequal the system is. The corresponding Gini coefficient
is computed as the ratio of the area that lies between the line of equality and the Lorenz curve over
the total area under the line of equality. A low Gini coefficient implies the tendency towards an equal
system - a zero Gini coefficient corresponds to complete equality, and vice versa.
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system. The above observation conforms to the Pareto principle, i.e. the so-called “80-
20 rule” [78], that has been widely observed in economics and sociology. The inequality
of story submission becomes more drastic for popular stories: only 2% of the users
succeed in submitting popular stories, whereas the majority of Digg submitters fails
to promote their content through the Digg network. The above observations indicate
that most Digg users (80%) are reading content, rather than actively publishing sto-
ries, and that the “flavor” of the Digg OSN is dominated by a small number of people
(2%) in the community. The presence of a small group of users who have succeeded
in submitting popular stories seemingly suggests that they are the critical users who
can effectively disseminating content. However, we have found that these 2% users do
not always succeed in submitting popular stories. First of all, there is no correlation
between the number of stories a user has submitted and the ratio of stories that will
become popular: the correlation coefficient is -0.02. Secondly, the average ratio of sub-
mitted popular stories of the 2% users over their total number of submissions is 0.23.
Hence, there is no “critical” submitters who can always make a success while submit-
ting stories. As we will show in Section 12.2, to promote a new published content, the
timely and collaborative digging activities of Digg users play the important role.
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Figure 12.1: Stories submission pattern of the 1.5 million Digg users. Out of the
10,773,307 stories submitted in the Digg network, 115,163 stories succeed to become
popular. The ratio of popular stories over the total number of submitted stories is 0.01.
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12.2 Collaborative Content Propagation

We study the growth of number of diggs of a story, i.e. the diggcount of a story, in
the Digg network2. We focus on the popular stories in our data set. The number of
visitors who has clicked and read a story is defined as the pageview of that story. Our
analysis shows that the diggcount of a story is highly correlated with its pageview - the
correlation coefficient is 0.87. Hence, we consider the number of diggs on a story as a
good metric to reflect the popularity of that story.

12.2.1 Story Promotion Duration

The propagation of a popular story consists of two phases: before and after it becomes
popular. Firstly, we calculate the promotion duration, T , of a popular story as the time
between its publication and promotion. Fig. 12.2 presents the distribution FT (t) of the
promotion duration of the collected 115,163 popular stories.

As revealed from Fig. 12.2, the Digg promotion algorithm manages the published
content in such a way that most popular stories are promoted within the first 24 hours
from their publication. The average promotion duration is approximately 16.3 hours.
In rare cases, stories can be promoted to popular after a long time since its publication
(a maximum promotion time in our data collection is found to be over 2 years), which
is caused by the change of algorithm.
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Figure 12.2: FT (t) = Pr[T ≤ t] of the promotion duration of popular stories (in hours).
The average promotion duration of popular stories is approximately, 16.3 hours.

2A user is only allowed to digg once on a story.
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12.2.2 Collaborative Content Promotion

Popular stories in Digg are submitted by 2% users, as discussed in Section 12.1. The
submitters of these stories, however, are not the major factor to determine the success
of stories. In the following, we study users’ collaborative propagation of stories in Digg.

First of all, we calculate the ratio of friend and non-friend diggers among the total
number of diggers before a story is promoted. By friend diggers, we refer to users that
are propagating a story via friendship relations, e.g. friends, friends’ friends, etc. By
non-friend diggers, we mean random users who digg a story without the engagement
of the friendship network. Out of the 115,163 popular stories, there are 63,484 stories,
in which there are more friends than non-friends promoting the stories before they
become popular. The remaining 51,679 stories are mainly promoted by non-friends
before they are popular. Table 12.1 presents the average friends and non-friends ratio
of the two types of stories. Before stories are promoted to popular, the average ratio of
the friend diggers of the 63,484 stories and the non-friend diggers of the 51,679 stories
are comparable: 0.72 and 0.77 respectively. On the other hand, after a story is popular,
the number of non-friends who are digging the story is much higher than the number
of friends, which is not surprising because once a story is placed on the first front page,
it is more “visible” to users that are active on the Digg website.

Table 12.1: Ratio of friends and non-friends over the total number of diggers for popular
stories

Before popular After popular
Average ratio Friends Non-friends Friends Non-friends
63,484 stories 0.72 0.28 0.25 0.75
51,679 stories 0.23 0.77 0.14 0.86

To study the two story propagation patterns in more detail, we randomly select 20
stories from the 63,484 stories promoted by friends and the 51,679 stories promoted
by non-friends. Stories from the same type exhibit similar popularity growth pattern.
In Fig. 12.3(a) and (b), the number of friends and non-friends that are digging the
two sampled stories are plotted as a function of time. Story 10471007 (Fig. 12.3 (a))
receives most of its diggs via friendship relations before being placed on the first front
page, and story 1083159 (Fig. 12.3 (b)) obtains the diggs mainly from non-friends. For
both stories, the number of diggs increases drastically after they have been placed on
the first front page. Stories placed on the front pages of the popular section quickly
obtain the attention of many random users, and non-friends become more influential in
propagating the story thereafter.

The “attractive period” of a story, on the other hand, is very short. Most of the
diggs are made within the first 2 or 3 hours after stories are placed on the first front
page. As time elapses, stories lose their popularity quickly and the number of diggs
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(a)

(b)

Figure 12.3: Sub-figure (a): Propagation of a popular story promoted by friends. Sub-
figure (b): Propagation pattern of a popular story promoted by non-friends. (log-log
scale)

becomes stable approximately after 40 hours from their promotion, as illustrated by
the aggregated propagation patterns3 of the two types of stories in Fig. 12.4.

3Since stories have different promotion durations, we compute the aggregated number of diggs at
the time that a story is published, and the number of diggs of that story when it is promoted to
popular. Thus, in Fig. 12.4, only two time points are plotted before stories are promoted.
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Figure 12.4: Sub-figure (a): The aggregated propagation pattern of the 63,484 popular
stories being promoted by friends (average promotion duraton is 12.6 hours). Sub-figure
(b): The aggregated propagation pattern of the 51,679 stories being promoted by non-
friends (average promotion duraton is 11.1 hours). The accumulated number of diggers
is plotted on the vertical axis. (log-log scale)

Among the entire 10 million stories collected in our data set, 88% are news, 8.0% are
videos and 4.0% are images. Because the 88% stories contain content that is highly time-
relavant, such as breaking news, emerging technologies, their attractiveness is in nature
limited in time and becomes obsolete very fast. Moreover, the Digg network manages
content in such a way that stories are shifted from the top position to the second
position, third position, etc. on the first front page when new stories are promoted.
Once a story reaches the last position of the first front page, it will be placed on the
first position of the second front page, and so forth. The number of diggs obtained by
stories saturates quickly as new stories are promoted and as their ages increase.

We plot the pdf of the diggcount of popular stories on the first five front pages in
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Fig. 12.5. The diggcount of stories on front page m, denoted by Xm (m > 1), is the
number of diggs a story has obtained before it is shifted to the next page. As shown
in Fig. 12.5, the curves are fitted reasonably well with the lognormal distribution4. In
fact, the lognormal distribution fits the pdfs of story diggcounts appearing on different
front pages. Fig. 12.6 presents the fitting parameters (µ and σ) of the lognormal curves
for the first 50 front pages. Fig. 12.6 illustrates that after (approximately) the 18th

front page, the diggcounts of stories hardly increase. Since a story stays on each front
page for about 2.3 hours, it takes approximately 40 hours (see Fig. 12.4) to shift a story
to the 18th front page.
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Figure 12.5: Pdf of story diggcount on the first five front pages in the popular section
of the Digg website.

The lognormal distribution has been frequently observed in biology and sociology,
e.g. in [72], [96] and [127]. As mentioned in [55], a well established process that
generates the lognormal distribution is the law of proportionate effect that has been
considered and proposed by Kapteyn in 1903. The law of proportionate effect specifies
that if the growth of the diggcount of a story increases proportionally to the current
diggcount, the story diggcount tends to be a lognormal distribution. However, whether
the law of proportionate effect applies in the Digg network remains an open question,
because content popularity in Digg can be more complex than the process described in
[55]. Indeed, content popularity in Digg is determined by two phases: before and after
being popular. The Digg promotion algorithm selects stories from the upcoming section
and promotes them to the popular front pages, and thus also plays a role. For instance,

4The lognormal probability density function with parameters µ and σ is defined as

flognormal(x) =
exp

[
− (lnx−µ)2

2σ2

]
σx
√

2π
(12.1)
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Figure 12.6: Mean and standard deviation of the fitted lognormal curves for the first
50 front pages (1 ≤ m ≤ 50).

Table 12.2: Growth of two types of popular stories
Before popular After popular
(#digg/hour) (#digg/hour)

Stories # total diggs 7.3 13.1
promoted # friends 5.2 5.8
by friends # non-friends 2.1 11.8

Stories # total diggs 4.9 14.4
promoted # friends 1.2 5.3

by non-friends # non-friends 3.7 13.7

we observed that stories promoted by non-friends requires less digg increment in order
to get promoted: on average, stories promoted by friends need to obtain 5.2 friend
and 2.1 non-friend diggs per hour before being promoted, as presented in Table 12.2.
While stories promoted by non-friends only requires 1.2 friends and 3.7 non-friends per
hour (see Table 12.2). The increment of the number of diggs after the stories becoming
popular is much higher than the initial phase (before being popular). Therefore, the
diversity of diggers may also affect the propagation of a story. If a story is promoted by
non-friends, it can be promoted to popular with less increment of diggs. To predict the
popularity of Digg stories and explain the lognormal distribution in Fig. 12.5, future
research is needed.

12.3 Impairment of the Digg Friendship Relations

We have found that friendship relations only lead to successful dissemination for half
of the promoted popular stories. In this section, we investigate the effectiveness of
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friendship relations during content propagation in more details. Afterwards, we explore
the reason that leads to the impairment of the Digg friendship network.

We found that surprisingly, out of the 6,759,937 friendship links, only 121,898 friend
pairs have digged at least one common story. The remaining friend pairs never digged
the same story in spite of their friendship relation. Furthermore, the 2% friend pairs
that have exchanged the same content also perform differently. As plotted in Fig. 12.7,
Pr [W = w] follows a power law distribution, where W denotes the common stories
digged by two friends. We see that only a few friend pairs digg many common stories,
whereas most of friends do not react with each other very often.
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Figure 12.7: Pdf of the number of common stories digged by friends in Digg. The best
fitted curve is the power law distribution.

Moreover, friendship networks are assumed to be efficient during content propaga-
tion in the sense that users have the ability to “activate” their friends to forward the
content further via their social links. Intuitively, users with higher in-degree will be
more influential in terms of “activating” their fans when propagating content. How-
ever, such an assumption is not true in the Digg OSN. Our study reveals that the active
incoming links5 in Digg is extremely low. Although there exists a strong correlation
(ρ = 0.76) between the active in-degree and the total in-degree a user has, the linear
regression line [119, pp. 31] of Din active = 0.007Din + 0.2 suggests an extremely low
activation ratio (0.007) of users’ incoming degree, where Din active denotes the number
of active in-degree of a random user. Hence, on average, even for a user with 1000 fans,
only 7 fans may be activated. Thus, we conclude that there is in fact no significantly
influential users in the Digg friendship network.

Last but not least, our analysis shows that the spread of information dies out quickly
through the Digg friendship network. On average, the content is not propagated further
than 3.9 hops away from the submitter. Furthermore, nearly 70% of the friend diggers

5The active incoming links means that the fans digged the story recommended by their friends.
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are direct friends of the submitter, and the multi-hop friend relation only increases the
number of friend diggers marginally (by 10%). The remaining 20% friend diggers are
not activated via the friendship links from the submitter, but by some random users
who have digged on the story.

To summarize, our observation differs from previous studies [51] and [95] which
illustrated the importance of friendship during content propagation, and questions the
effectiveness of friendship relations in online social media aggregator such as the Digg.
In Section 11.3, we have empirically substantiated the assumption that friends are
sharing similar interests. Although users do have high overlapping interests with their
friends, the friendship links do not propagate content efficiently as we have expected
(only 2%). In the sequel, we aim to examine other explanations of the poor performance
of the friendship relations during content propagation.

First of all, we examine whether active users that digged many stories are connected
with users who are also active. For a randomly chosen friend pair i and j (j is i’s
fan), the linear correlation coefficient of the number of stories digged by user i and j is
computed as ρ = 0.05 by using (8.1). The derived linear correlation coefficient indicates
that there is no correlation between friends’ digging activities. The uncorrelated digging
activity of the friend pairs consequently leads to the impairment of the Digg friendship
network, because an active user may not be connected with other active users. A user
cannot interact and propagate content collectively with his friends who are not active
in Digg.

Secondly, a most distinct feature of the Digg OSN, as discovered in Section 12.2.1,
is the time criticality of the content published in Digg. A story needs to be promoted
within 24 hours since its publication. Thus, the alignment of friends’ digging pattern
in the first 24 hours (the promotion threshold of a story) is a necessity to promote a
new published story.

From our data set, we study the growth of the friend links in the Digg network over
the past 4 years (from July 2005 to May 2009). As shown in Fig. 12.8, the number
of established friend links grows steadily over time (bin size in months). The number
of active friend pairs6 in each month, on the other hand, is much lower that the total
number of friend links established in Digg, indicated by the red bar. For instance, in
June 2007, there exist 2 million friend links, while only 5871 friend pairs are active
in that month and the active friend pair ratio is around 0.003. On average, there are
10574 active friend pairs per month7 and the active friend pair ratio per month is only
0.009.

Since the first 24 hours is critical for stories to get promoted, we also study the

6If two friends have digged at least one story, we call them an active friend pair; if two friends have
digged at least one common story, we call them an active friend pair digged the same story.

7Notice that the number of established friend links L in every month is a random variable. Hence,
Y = E [La|L] is the random variable equal to average number of active friend pairs given the total
number of friend links per month is L, where La is the number of active friend pairs per month.
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number of friend pairs that will digg on the same story provided they are active on the
same day. We take a snapshot of the Digg friendship network during the entire 30 days
of June 2007, and further calculated the number of active friend pairs and the ones
that digged the same story in this month. Our calculation suggests that, on average,
196 friend pairs are active daily, and approximately one third of the active friend pairs
(about 59 friend pairs) have reacted on the same story. We also computed the number
of active friend pairs per day and the common stories that they have digged from July
2005 to May 2009 (notice that the total number of established friendship links are
not constant during the entire 4 years). We see that the number of friend pairs that
digged on the same story daily is strongly correlated with the number of active friend
pairs on that day - the correlation coefficient is 0.9. The slope of the linear regression
line of the aforementioned two random variables is 0.3, indicating that around 30%
of the friend pairs will digg on the same story if they are active on that day. The
above analysis indicates that friendship relations are in fact reasonably effective in
disseminating content, provided friends’ digging activities are aligned on the same day.
However, the stringent promotion threshold challenges the alignment of friends’ digging
activities and further impairs the effectiveness of the friendship relations during content
propagation in Digg.
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Figure 12.8: Number of established friend links, active friend pairs, and active friend
pairs digging the same story from July 2005 to May 2009 (bin size in months). The
figure is plotted on a log-linear scale for easier reading.

12.4 Summary

Although OSNs such as the Digg encourages collaborative content publication, not all
users are interested in doing so. Most Digg users (85%) are passively reading content
rather than publishing stories to Digg. Only 2% of users have succeeded in submitting
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popular stories. To make newly published content a success, collaborative recommenda-
tion and propagation by the Digg users plays an important role. Contrary to previous
observation and assumption in OSNs, friendship relations only lead to successful con-
tent dissemination in half of the cases. Stories become popular in a short period of
time (on average 16.3 hours) and saturate quickly after their promotion (in approxi-
mately 40 hours). The above results highlight the fundamental difference between the
Digg network and other OSNs on the importance of friendship relations during content
propagation. Due to the dynamic nature of the published content, the effectiveness of
Digg friendship relations is impaired during content propagation. The effectiveness and
success of friendship links in Digg is determined by the alignment of friends’ digging
activities during the spread of information.



Chapter 13

Conclusion of Part III

The key feature of the Digg OSN is to aggregate, filter and recommend the most valu-
able social media in a collective way. In this part, we present an in-depth analysis of an
emerging online social media aggregator, Digg.com, from various aspects. Our aim is to
study the characteristics of users and the impact of friendship relations on propagating
information. By employing a simultaneous exploration of the Digg network from differ-
ent perspectives (i.e. site, story, user and social network perspectives), we are able to
crawl the most valid information about the friendship relations, the user activities, and
the published content in Digg. Our crawling methodology provides us the advantage of
studying the characteristics of both connected and disconnected users in the network,
while the commonly used BFS technique is only able to collect informations about the
connected nodes following friendship links. We have found a significant amount of users
(approximately half of the entire Digg users in our data collection) that do not connect
with any other user in the network. However, the performance of the large amount of
disconnected users has not been addressed in previous studies due to the limitation of
the crawling method. In the following, we highlight our major conclusions in this part.

Major Conclusions

The Digg network exhibit very low fraction of symmetric links (38% on average). Since
a Digg user relies on his fans to propagate information, making many friends does not
increase the number of fans who will digg on the stories submitted or digged by the
user, which contrasts with blog articles that claims the importance of making friends for
successful content dissemination. Users with many friends are more dependent on their
friends to discover and consequently digg content, whereas the disconnected users are
also actively digging stories in spite of the friendships. Since the Digg network provides
different features/interfaces for content discovery, friendship relation is no long the
only and most convenient way to locate content. The distinct algorithm and interface
implemented on the Digg website have impaired the effectiveness of friendships not
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only for content location, but also during content dissemination. Although friends are
sharing common interests with each other, friendship relations only lead to successful
dissemination for half of the content. Stories in Digg are promoted to popular within
a short period of time (16.3 hours on average). The time criticality of content requires
the alignment of friends’ digging activities at the right time, which can be achieved only
in half of the cases as we have empirically shown. Once stories are placed on the first
front page of the popular section, the impact of friends on digging stories is even of less
importance, and non-friends become the dominant factor to disseminate content.

Our analysis in this part contrasts with the results reported in previously studied
OSNs regarding the importance of friendship network along information propagation.
Our analysis suggests that the dynamics of content and user behaviors in OSNs can be
greatly influenced by the specific algorithm as well as the web interface provided by the
given OSN. The effectiveness of friendship relations is consequently impaired. To our
knowledge, our analysis is the first study that questioned the effectiveness of friendships
in disseminating content.

As a conclusion, we have discovered distinct user behaviors and content dissemi-
nation patterns in Digg, an emerging social media aggregator. Our methodology of
crawling the Digg data as well as the analysis provide insights in understanding the un-
derlying principals of similar applications. Meanwhile, the results presented in this part
may help the end-users and content owners to spread their content in a more effective
way. For instance, users should motivate their fans to be active after the content has
been published in order to have a successful promotion.

Future Agenda

Our analysis of the Digg OSN is an ongoing research. We started to design the crawler
and initiated the crawling process from January 2009. The analysis presented in this
thesis leads to a series of open questions that deserve further and in-depth study. For
instance, factors that determine whether a story will be promoted by friends or non-
friends are not clear yet. Moreover, to predict the popularity of Digg stories and explain
the lognormal distribution in Fig. 12.5, future research is needed.

Open question:
1) What differs between stories promoted by friends and non-friends?
2) What process generates the lognormal distribution in Fig. 12.5?

In the following, we discuss some potential proposals to answer the above open
questions. Our first hypothesis is that the topic of content might influence the group
of audiences interested in the content. Intuitively, emerging news with an attractive
title will quickly grab the attentions of many people, while a funny story might be first
shared with friends and then made well-known to the public. The above hypothesis
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needs to be verified by evaluating the story info (Table 10.3) for the two types of stories
separately. Furthermore, it is also interesting to answer the question of “when is the
proper time to submit content”. Examining the most active (digging) period of online
users can provide us indications on the most efficient time to submit content. If a story
is submitted when most of the Digg users are offline, the story has less chances to be
digged. On the other hand, if many people are actively digging, the story has higher
chance to be promoted, mostly likely, by random users.

Furthermore, we aim to develop a model that predicts the content popularity in
OSNs after their publication. However, it seems that content popularity in Digg is
influenced not only by users’ collaborative dissemination, but also the story promotion
algorithm implemented in Digg. Stories with a few diggs, but very attractive topics (or
content) can be placed on the first front page as well. The artefact caused by the Digg
promotion algorithm makes the understanding of Fig. 12.5 challenging. As a starting
point, we could replicate the observations found in Table 12.2 in order to infer the story
promotion algorithm in Digg. If possible, we suggest to analyze the OSNs, in which
the content popularity is completely determined by the users without any pre-defined
algorithms.
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Chapter 14

Conclusions

In recent decades, the implementation of P2P networking techniques has greatly changed
the way that people are consuming information via the Internet. The rapid evolution
of P2P networks motivates us to study the information propagation process in different
types of P2P networks. Our first approach is to model the content propagation, search,
and retrieval process under proper assumptions (part 1). From the exact analysis, we
obtain important metrics to evaluate the performance of the proposed algorithms and
processes. To construct theoretical models, a good understanding of empirical observa-
tions is necessary. However, due to the fast deployment of P2P networking technology,
the underlying mechanisms of propagating content in many real-world applications are
not clear yet. Consequently, the second objective of this thesis is to carry out empirical
studies of real-world P2P applications so that theoretical modeling can be performed
in the future. During the empirical analyses, the underlying mechanism and network
structure of a commercial P2PTV system have been addressed (part 2); the influence of
social relations as well as the unique service interface during information propagation
in a large-scale OSN are also investigated (part 3).

Part 1: Modeling content propagation, search and retrieval

We studied gossip-based information propagation in decentralized P2P networks, be-
cause gossip-based algorithms are considered as efficient and robust means to dissem-
inate information. The primary goal of gossip-based information propagation, is to
disseminate content to every peer in the network, i.e. to achieve the reliability.

In large-scale and highly dynamic P2P systems, in which peers only communicate
with a subset of peers (a partial view) in the network, preforming an exact analysis
of the gossip-based information dissemination process is computationally not feasible.
Because the total number of states (the upper bound) to describe the entire system

exactly is 2(N+1)2+N+1.

On the other hand, if uniform neighbor selection over the entire network is satisfied,
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gossip-based information dissemination process (with N + 1 nodes in the network) can
described exactly as an (N + 1)-state MC. When peers have a complete view of the
network, uniform peer selection can be easily satisfied. Under the case where peers
have partial views, we assume that the uniformity can be achieve by employing appro-
priate peerlist exchange schemes, and by properly selecting peers from the local views.
Therefore, performing an exact analytic modeling of gossip-based message dissemina-
tion schemes under the assumption of uniform selection of multiple neighbors over the
entire distributed network is the focus of this thesis. The gossip-based algorithms dis-
cussed in this thesis are applicable for both content propagation and content searching
in a distributed P2P networks. Different network conditions and peer behaviors are
incorporated in the model. Important performance metrics and design parameters are
also determined analytically.

After evaluating the performance of the proposed schemes, our main conclusions
are: The smart selection algorithm is, in nature, more effective than the blind selection
scheme when disseminating content. By using the exact analysis, we have compared
the performance difference of the two algorithms quantitatively. To inform the entire
network with certain QoS stringency, the smart selection scheme only needs half of
the gossiping rounds compared with the blind selection algorithm. By increasing the
cooperation probability from β = 0.2 to β = 1.0, the mean number of rounds to
inform the entire network decreases logarithmically with the same slope for different
network sizes, and for both the blind and the smart selection algorithm. Our results
about content search also suggest that when a certain speed (number of rounds) is
desirable to discover some content, it is less costly for the search process to try to place
more content replications l in the network, instead of trying to hit content residing in
some nodes only by increasing the number of gossiping-targets k, contacted in each
round. The effectiveness of the searching algorithm is impaired by a lower cooperation
probability, whereas no significant amount of overhead (ȲN+1 (l)) is generated. In view
of the trade-off between the overhead and the effectiveness of the search process, the
smart selection scheme is more effective with small cooperation probability. With larger
cooperation probability, the smart selection scheme is less preferable during the search
process, because it incurs more overhead, whereas achieves comparable effectiveness
with the blind selection scheme.

Assuming that after the search process, m peers possessing the desired content are
discovered. The process of selecting a most nearby peer among the group of m peers
for content retrieval is therefore addressed. The closeness between peers is assessed by
the metrics of hopcount and delay respectively. Based on the URT model by assigning
regular i.i.d. link weights on a dense graph, we evaluated the effect of selecting the
nearest peer (in hopcount) exactly, and present the asymptotic analysis of selecting the
most nearby peer (in delay). Both results can be used to estimate the number of peers
needed to offer certain requirement on the delivering service. And both results suggest
that a small peer group is sufficient to offer an acceptable quality of service. We have
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also performed experiments on measuring the degree and hopcount distribution in the
Internet, from which we show the applicability of the URT model, and consequently
the usability of the pdfs for both hopcount and delay. With a small group of peers
(m ≤ 50), the URT seems to be a reasonably good model for a P2P network.

Part 2: Empirical analysis - SopCast

Proprietary P2PTV applications have become successful means to deliver video content
to end-users. However, their underlying mechanism, topological and traffic impact on
the Internet, are largely unknown. We studied a popular commercial P2PTV system
called SopCast. Compared with previous studies, our work provides a comprehensive
understanding in SopCast. By performing experiments on PlanetLab, we are able to
evaluate the overall performance of the SopCast network. The approach and results
presented in this empirical work may provide insights in understanding similar appli-
cations.

We dissected part of the SopCast protocol by studying different packet lengths
and their delivery patterns. Control packets and video packets are separated with
respect to their functionalities. Based on the analysis, we have discovered the neighbor
communication pattern, the video delivery method, and the three-tier network structure
implemented in SopCast. We have found that communication between SopCast peers is
decentralized. Given a small network, i.e. N = 50, peers discover their neighbors very
fast. Video delivery in SopCast is chunk-based. Each video chunk has equal length of
10 kbytes. A peer is free to request multiple blocks from its parent(s). Only a limited
number of children can be connected to the SP directly, i.e. the first tier peers. The
second tier peers download video content from the peers in the first tier, or between
themselves. We also noticed that SopCast does not employ a sophisticated algorithm
to select the first tier peers. The first tier peers in the SopCast network are selected
based on a first-come-first-serve pattern regardless of their physical distance, network
distance, node distance in time, and their upload bandwidth. Once a first tier peer is
selected, it remains being connected with the SP during the entire experimental period,
unless it leaves the experiment by itself.

We have also evaluated the characteristics of network topology and traffic dynamics
of the entire SopCast overlay. While in previous works, obtaining a complete view of
the P2PTV network is always a critical issue. We classified the SopCast overlay as a
two-layer architecture consisting of a neighbor graph GN and a video graph GV . The
activation period of the neighbor link and the video link is found to be τN ∼ 2.5 s, and
τV ∼ 2.0 s respectively. The activation period of the neighbor (video) link is further
employed as the reference duration when taking snapshots of the neighbor (video) graph
with frequent link establishment and termination. On average, a peer contacts 38
neighbors within 2.5 seconds in the neighbor graph. The topological dynamics of the
video graph was also evaluated. The incoming degree distribution of the video graph
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can be modeled as a random graph with very low link density p � 1.0, meaning that
SopCast peers are not greedy when connecting to parents for video downloading. On
average, the number of parents of a SopCast peer to download video content from is
two. On the other hand, the existence of super peers, which upload a lot and support
many children for video downloading is also observed. A super peer sacrifices a large
amount of upload capacity to its many children.

Our study also revealed that SopCast employs very simple algorithm to select the
first tier peers and to connect to existing peers for video content downloading, i.e. first-
come-first-serve. Some of the first tier peers can be very selfish. Because they may not
provide many video content to others, even though they download video packets from
a good resource, i.e. the SP. Peers who join the network earlier attach to the first tier
peers, while the latter ones connect to the second tier peers to download video content.
It seems that bandwidth utilization is not optimized in SopCast, because peers with
high bandwidth do not necessarily upload more.

Our analysis about the SopCast traffic dynamics has questioned the efficiency of
real-world P2PTV applications such as SopCast. We believe that to design a scalable
and optimal system, the following issues can be improved in SopCast. First of all, the
selection of the first tier peers should be more sophisticated. Instead of the current
first-come-first-serve pattern, the uploading performance of the first tier peers need to
be taken into account. In all of our experiments, once a first tier peer is selected, it
will connect with the SP during the entire experimental period (unless it leaves the
network). To improve the global performance of the SopCast network, we suggest to
employ a dynamic first tier peers selection algorithm. If the first tier peers cannot
offer good upload throughput, their connections with the SP should be terminated.
Re-selecting better peers in the first tier should be performed. Moreover, peers in a
P2P network must be mutually beneficial. The SopCast network needs to motivate its
peers to upload more if they are downloading from a good resource.

In general, the methodologies discussed in this empirical analysis provides a better
understanding of the SopCast commercial P2PTV system, and can be useful to under-
stand similar P2PTV applications. Although we have performed the empirical study
in a careful and thorough way, our observations and claims are not the exact descrip-
tion of the protocol. Moreover, performing experiments on PlanetLab provides us the
advantage of evaluating the performance of the entire SopCast network. However, the
network size is limited to several hundred. Thus, the performance of a P2PTV system
that is at large-scale cannot be reflected.

Part 3: Empirical analysis - Digg OSN

OSNs are emerging applications that combine the idea of networking and social phe-
nomena. The key feature of the Digg OSN is to aggregate, filter and recommend the
most valuable social media in a collective way. Our aim was to study the distinct user
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behaviors as well as the influence of friendship relations during content propagation
in Digg, one of the biggest social news aggregator webpage. We highlight our major
conclusions as follows.

The data collection methodology presented in this thesis differs from existing tech-
niques that crawl large-scale OSNs by following the friendship links. The collected data
set allows us to investigate the complete snapshot of Digg from various aspects and
study the characteristics of both connected and disconnected users in the network. In
fact, there exists a significant amount of users (approximately half of the entire Digg
users in our data collection) that do not connect with any other user in the network.
These disconnected users are actively digging stories in the Digg network, which ques-
tions the necessity of making friends in order to find and propagate content in Digg.
We attribute the above observation to the fact that the Digg website provides different
features/interfaces for content discovery. Thus, friendship relation is no long considered
as the only and most efficient way to locate content.

We also delved into common hypotheses of OSNs such as “users are likely to be
associated with similar users” and “friendship relations are the key factor to propagate
information”. We found that the interests of Digg users are not evenly spread over
different topics, and that users have a strong preference about his most favorite topic
over the less favorite ones. Based on the above observation, we measured the similarity
between friends in the Digg network. Our analysis substantiated the common hypothesis
of friends are sharing similar interests with each other. Furthermore, although friends
are sharing common interests, friendship relations only lead to successful dissemination
for half of the content. The other half of the stories are promoted by non-friends. Once
stories are placed on the first front page of the popular section, the impact of friends on
digging stories is even of less importance, and non-friends become the dominant factor
to disseminate content.

The above analysis contrasts with the results reported in previously studied OSNs
regarding the importance of friendship network along information propagation. We
believe that the dynamics of content and user behaviors in OSNs can be greatly influ-
enced by the specific algorithm as well as the web interface provided by the given OSN.
For instance, the Digg stories are promoted to popular within a short period of time
(16.3 hours on average) and saturate quickly after their promotion (in approximately
40 hours). The time criticality of content requires the alignment of friends’ digging
activities at the right time, which can be achieved only in half of the cases as we have
shown empirically. The effectiveness of friendship relations in the spread of information
is consequently impaired.

As a conclusion, the analyses and results presented in this thesis defined basic obser-
vations and measurements to understand the underlying mechanism of disseminating
content in current online social news aggregators. Our findings have underlined the
importance of service interfaces on content propagation as well as on the effectiveness
of friendship relations during content discovery and propagation. Meanwhile, the pre-
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sented observations may provide insights to the end-users and content owners to spread
their content in a more effective way, e.g. users should motivate their fans to be active
after the content has been published in order to have a successful promotion. On the
other hand, our analyses also provide technical implications to system designers and
developers to properly design their web applications, e.g. a specific service interface
can have great influence on the efficiency of friendship relations as well as the distinct
performance of the OSN.

Summary

In the course of this thesis, we studied the information propagation process in different
P2P networking applications from the perspectives of both theoretical and empirical
analysis. The analytic modeling was performed with the gossip-based information prop-
agation algorithms that are widely employed in today’s P2P networks. Since P2P net-
working is rapidly evolving, we also investigated two emerging P2P applications that
are dedicated for P2P streaming delivery and online social networking. The empiri-
cal analyses conducted with the SopCast and Digg network disclosed important design
issues and user characteristics. To summarize, we have solved different questions in dif-
ferent types of P2P networks, while these analyses also raise new questions and provide
directions for future research.



Appendix A

The Occupancy Problem

A.1 The Occupancy Problem - Scenario 1

The classical occupancy problem considers random placement of m balls into n bins in
a balls and bins model [62]. In this thesis, we assume that there are r groups of k balls
and n bins. We randomly throw the r groups of k balls over the n bins. The k balls in
the same group are placed in such a way that no two balls go into the same bin. Due
to the random placement of balls, there may be empty bins after the placement. A bin
can be occupied by one or more balls. Placement of balls belonging to different groups
are independent and random. We seek the probability that exactly m bins are empty
after the placement.

Following the approach in [62], the probability that all n bins are occupied, denoted
by p0(r, n, k), is

p0(r, n, k) = 1− Pr [at least one bin is empty] (A.1)

To place r groups of k balls to n bins, leaving i preassigned bins empty, there are(
n−i
k

)r
ways. The total number of ways of placing r groups of k balls to n bins is
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n
k

)r
.

Further, there are
(
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ways to choose i preassigned bins. Let Si be the event that i bins

are empty, the probability that Si occurs is
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principle [119, p. 12], we obtain p0(r, n, k) as
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(A.2)

Now consider the case in which the r groups of k balls are placed in such a way
that exactly m out of the n bins are empty. The m bins can be chosen in

(
n
m

)
different
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ways. The number of configurations leading to such placement is
(
n−m
k

)r
p0(r, n−m, k).

Dividing by the total way to place the r groups of k balls to n bins,
(
n
k

)r
, the probability

pm(r, n, k) that exactly m bins are empty is computed as

pm(r, n, k) =

(
n

m

)(n−m
k

)r(
n
k

)r p0(r, n−m, k) (A.3)

This argument in (A.3) is confined to n > k since it is not possible to place k balls to
n bins, with no two balls, in the same bin, if n < k.

With k = 1, the probability in (A.2) can be simplified to

p0(r, n, 1) =
1

nr

n∑
i=0

(−1)i
(
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)
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n!

nr
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Let j = n − i, we have 1
nr

∑n
j=0 (−1)n−j
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)
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nrS
(n)
r , where S

(n)
r are the Stirling

numbers of the second kind [38, section 24.1.4]. If r < n, S
(n)
r = 0. Consequently, (A.3)

is simplified to
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A.2 The Occupancy Problem – Scenario 2

Considering the same model in Appendix A.1, we modify the problem configuration.
We are placing r groups of k balls to n bins, (1 ≤ r ≤ n). The n bins consist of a
number of red and white bins. The position of the red and white bins are predefined,
with the first m bins colored by red, and the last n−m colored by white. The r groups
of balls are numbered from 1 to r, and the white bins are numbered from 1 to n−m.
There is no numbering of the m red bins, see Fig. A.1. Assuming the number of the
groups of balls equals the number of the white bins, the r groups of balls and the n−m
white bins eventually have the same numbering. Furthermore, we assume that a group
of balls with the number i (1 ≤ i ≤ r) cannot be placed to the white bin that has the
same numbering. For instance, balls from group 1 cannot be placed in bin number 1,
balls from group 2 cannot be placed in bin number 2, etc. As a result, the k balls from
the same group are randomly placed to the remaining n− 1 bins, and no two balls go
into the same bin. Placement of balls belonging to different groups are independent and



A.2. THE OCCUPANCY PROBLEM – SCENARIO 2 133

12345

Placement of r groups with k balls

6

Group 1Group 2Group 3Group 4Group 5Group 6

k balls in each group

Probability that the m red bins are occupied The ith group of balls can not be placed in the white bin
that has the same numbering 

Figure A.1: Random and independent placement of r groups of k balls, with no group
of balls being placed in the bin which have the same numbering as itself.

random. We seek the probability that at least the m red bins are occupied, denoted by
pm̄(r, n, k).

Denote δ the maximum number of allowed empty red bins in this scenario. If one of
the m red bins is empty, the r groups of k balls should be placed to the remaining n−2
bins, excluding the bins that have the same numbering as the groups of balls. With the(
m
1

)
ways to choose an empty bin from the m bins, there are

(
m
1

)(
n−2
k

)r
configurations

leading to such placement. In case there are two empty bins out of the m red ones, the
balls are placed to the remaining n − 3 bins, resulting in

(
m
2

)(
n−3
k

)r
ways accordingly.

Denote Si, the event that i out of the m red bins are empty, the r groups of k balls
can only be placed to the rest n − 1 − i bins, resulting in

(
n−1−i
k

)r
arrangements. The

event that at least the m red bins are occupied, Am̄(r, n, k), is given by applying the
inclusion-exclusion principle.
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(A.6)

The limiting values of δ depend on the relation between n−1−m and k. Assuming
n− 1−m < k, this condition implies that the number of the balls from the same group
is more than the n −m − 1 white bins. Therefore, to place the k balls from the same
group to different bins (recall that the k balls from the same group can not go to the
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same bin), k − (n− 1−m) red bins have to be occupied during the placement. Thus,
the maximum number of empty red bins is confined to δ = n − 1 − k. On the other
hand, when n − 1 −m ≥ k, there are enough white bins to place the k balls from the
same group (by placing all the k balls into the n − m − 1 white bins.). Hence, the
maximum number of empty red bins is δ = m.

Taking into account the above analysis, pm̄(r, n, k) should be discussed under two
conditions

pm̄(r, n, k) =
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(
m
i

)(
n−1−i
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(A.7)

where
(
n−1
k

)r
is the total number of ways to place the r groups of k balls to n− 1 bins.

(A.7) can be directly applied by the blind neighbor selection algorithm.

A.3 The Extended Rumor Spreading Problem

In this section, we study the extended scenario of the rumor spreading problem in [104],
with the assumption of selecting k neighbors out of the N + 1 nodes.

A.3.1 The occupancy problem

To model the above mentioned problem exactly, we slightly modify the scenario in Fig.
A.1. We remove the constraint of numbered groups of balls and numbered white bins.
There are m red bins and n−m white bins. Both red bins and white bins are treated
equally during the placement of balls. The r groups of k balls are placed randomly
to the n bins, with no two balls from the same group going to the same bin. Balls
belonging to different groups are placed to the n bins at random and independent of
the choice of other groups. Similarly, the problem is to find the probability that at
least the m red bins are occupied, denoted by γm̄(r, n, k), after the random placement
of balls.

This approach follows the same steps in Appendix A.2. We examine γm̄(r, n, k)
under two conditions. When n − m ≥ k, the maximum number of empty red bins
is m. While with n − m < k, the maximum number of empty red bins can only be
n− k, because k− (n−m) red bins have to be occupied. Otherwise, the k balls from a
same group cannot be placed to k different bins successfully. Therefore, when using the
inclusion-exclusion principle, the maximum number of allowed empty red bins is n− k.

In the event that one of the m red bins is empty, the r groups of k balls are placed to
the remaining n−1 bins. This can be done with

(
n−1
k

)r
ways. Similarly, in case two out

of the m red bins are empty, there are totally
(
n−2
k

)r
ways leading to such placement.

Assuming that i out of the m red bins are empty, denoted by Si, there are
(
m
i

)(
n−i
k

)r
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arrangement leading to such event, where
(
m
i

)
is the configurations to choose i bins out

of the m red ones. Hence, the probability that at least all m red bins are occupied is
computed by using the inclusion-exclusion principle:

γm̄(r, n, k) =
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(A.8)

where
(
n
k

)r
is the total number of ways to place the r groups of k balls to n bins.

A.3.2 The transition probabilities

The MC moves from state i to state j if there are exactly z = j−i new nodes, selected by
the i informed ones. With the modified occupancy problem, we can solve the transition
probabilities Pij by substituting m = z, n = j, r = i in (A.8).

From the approach of (A.8), we have

Pij =
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0 otherwise
(A.9)

When k = 1, (A.9) reduces to (2.1).

A.4 Diagonalizability of matrix P

If P is diagonalizable, the r-step transition probability matrix P r is consequently derived
as

P r = Xdiag(λk)
rY T (A.10)

in which diag(λk) is the diagonal matrix whose diagonal entries are the corresponding
eigenvalues, and X and Y consist of columns of the right– and left-eigenvectors. An
explicit form of (A.10) follows from [119, p. 183] as

P r =
N+1∑
k=1

λrkxky
T
k (A.11)

where xk and yk are the right and left-eigenvectors associated with λk (both are column
vectors with N + 1 entries). Therefore, (A.11) is further decomposed as

P r = uπ +
N+1∑
k=2

λrkxky
T
k ' uπ + λr2x2y

T
2 +O (λr3) (A.12)
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where yT1 = π and x1 = u (with uT = [1 1 1 ... 1]) are the corresponding steady state
eigenvectors, associated with the largest eigenvalue λ1 = 1.

Next, we discuss the diagonalizability of matrix P with respect of the eigenvalues
that it possesses. The matrix Y T is the inverse of the matrix X, which implies that X
is non-singular. Hence, the matrix X should possess a complete set of N + 1 linearly
independent (right-) eigenvectors {x1, x2, ..., xN+1}. In the triangular matrix P , the
eigenvalues of P are just the diagonal elements. The matrix P is diagonalizable if and
only if

geo multP (λk) = alg multP (λk) (A.13)

with 1 ≤ k ≤ N + 1, and where geo multP (λk) is the geometric multiplicity1 of λk, and
alg multP (λk) is the algebraic multiplicity2 of λk, as introduced in [92].

If all the N + 1 eigenvalues of P are distinct, then {x1, x2, ..., xN+1} is a linearly
independent set. In case the matrix P does not possess N + 1 distinct eigenvalues, it
is also possible to diagonalize P . The above statement is true if the number of linearly
independent eigenvectors, associated with λk, equals the algebraic multiplicity of λk.
To compute the eigenvector of λk, we follow

(P − λkI)x = 0

where I is the identity matrix. For simplicity, we denote by mk the algebraic multiplicity
of λk. If the rank of P −λkI is N + 1−mk, meaning rank(P −λkI) = N + 1−mk, the
matrix P − λkI will have has mk linearly independent eigenvectors. In case the matrix
P − λkI does not possess mk linearly independent eigenvectors, it can be reduced to a
Jordan canonical form, as introduced in [92].

In our case, the matrix P studied in Section 3.3 is not always diagonalizable as
explained in the sequel. Under the smart selection algorithm with β = 1, all the first
N diagonal elements are zeros, except for the last row of PN+1,N+1 = 1. Thus, there
are only two distinct eigenvalues, namely λ1 = 1 and λ2 = λ3 = ... = λN+1 = 0. The
matrix P is diagonalizable if and only if there are N linearly independent eigenvectors
associated with the eigenvalue of λ = 0, which requires that

Px = 0

The rank of the matrix P can never be 1. Therefore, it is not possible to obtain N
linearly independent eigenvectors associated with λ = 0. As a result, the matrix P is
not diagonalizable because the matrix X is singular.

Under the blind selection algorithm, the diagonal elements in the first k rows are
zeros when β = 1. The remaining entries on the diagonal are non-zeros, computed from

1The geometric multiplicity of λk, denoted by geo multP (λk), is the maximal number of linearly
independent eigenvectors associated with λ.

2The algebraic multiplicity, denoted by alg multP (λk), is the number of times λk is repeated in the
set of eigenvalues of matrix P .
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(3.3), leading to N + 1− k distinct eigenvalues (λ1, λ2, ...λN+1−k) of multiplicity 1 and
one eigenvalue λN+k = 0 of multiplicity k. Notice that the rank of the matrix P−λN+kI
is N + 1− k. Equation (3.8) can be applied in this case since P is diagonalizable.

With the general case of 0 < β < 1, under both the blind and smart selection
algorithms, the index of the non-zero elements in each row vector [Pi1 Pi2 ... Pi,N+1]
is bounded by i 6 j 6 min {i(k + 1), N + 1}. The diagonal elements are non-zeros.
However, the N + 1 eigenvalues are not always distinct, depending on the value of N ,
k and β. When there are multiple eigenvalues, the matrix P is diagonalizable only
when the structure of P satisfies the relation (A.13). Discussing the particular matrix
structure that leads to a diagonalizable matrix P given multiple eigenvalues has much
higher complexity, and is out of the scope of the thesis.



138 APPENDIX A. THE OCCUPANCY PROBLEM



139



140 APPENDIX B. ABBREVIATIONS

Appendix B

Abbreviations

API Application Programming Interface
AS Autonomous System
BFS Breath-first Search
Cdf Cumulative Distribution Function
CDN Content Distribution Network
EST Eastern Standard Time
FTP File Transfer Protocol
DHT Distributed Hash Table
GB Giga Bytes
HTTP Hypertext Transfer Protocol
ID Identification Number
IP Internet Protocol
ISP Internet Service Provider
MC Markov Chain
OSN Online Social Network
PC Personal Computer
Pdf Probability Density Function
Pgf Probability Generating Function
P2P Peer-to-Peer
P2PTV Peer-to-Peer Television
QoS Quality of Service
SI Susceptible-Infected
SIR Susceptible-Infected-Recovered
SIS Susceptible-Infected-Susceptible
SP Source Provider
SPT Shortest Path Tree
TTL Time-To-Live
UDP User Datagram Protocol
URL Uniform Resource Locator
URT Uniform Recursive Tree
VoD Video-on-Demand
VoIP Voice Over Internet Protocol
WWW World Wide Web
XML Extensible Markup Language
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Samenvatting (Summary in Dutch)

Thesis Titel: informatie verspreiding in Peer-to-Peer netwerken: modeller-
ing en empirische studies

Ook al is P2P netwerken een jonge technologie, het heeft in de afgelopen twintig jaar
al een dramatische evolutie op het internet teweeg gebracht. In tegenstelling tot de
traditionele server-client modus staat in P2P netwerken de gebruiker centraal. Gebruik-
ers (peers) genereren hun eigen informatie en delen het met anderen via het internet.
Of het nu een P2P file-sharing netwerk, een streaming systeem, een video-on-demand
applicatie of een online sociaal netwerk betreft, alle genoemde toepassingen hebben
als fundamenteel doel het leveren van informatie aan medegebruikers op een gedecen-
traliseerde manier. In dit proefschrift bestuderen we de informatieverspreiding op basis
van de volgende twee aspecten:

1. Middels gebruik van bestaande technieken, modellen voor te stellen die van toepass-
ing zijn op P2P netwerken.

2. Door empirische studies met nieuwe P2P toepassingen, hun gedrag met betrekking
tot informatieverspreiding achterhalen.

We beginnen met een studie van informatieverspreiding op basis van roddels (‘gos-
siping’ genoemd) in gedecentraliseerde P2P netwerken. We illustreren de moeilijkheid
van het uitvoeren van een nauwkeurige analyse van gossiping op grote schaal en in dy-
namische P2P netwerken, waarbij elke peer alleen communiceert met een subset van de
peers in het netwerk. We tonen aan dat een beschrijving van gossiping in de bovenge-
noemde netwerken een te grote rekenruimte vereist. Om de betrouwbaarheid van gos-
siping te garanderen, ontwikkelen we een exacte analytische modellering van gossip-
ing algoritmen voor de verspreiding van informatie onder bepaalde veronderstellingen.
Het model wordt uitgebreid zodat willekeurige communicatie met meerdere collega’s is
toegestaan. We incorporeren verschillende netwerkkarakteristieken en peer gedrag in
het model. Belangrijke prestatie en ontwerp parameters worden ook analytisch bepaald.
Het voorgestelde model is toepasbaar informatieverspreiding en het zoeken van infor-
matie in gedecentraliseerde P2P netwerken. De afgeleide parameters kunnen worden
gebruikt om de omvang en doeltreffendheid van de informatieverspreiding en informatie
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zoeken te evalueren. We bestuderen ook het vergaren van informatie, gegeven dat m
peers de gewenste informatie bezitten. Het effect van het selecteren van een peer die
het dichtst bij is op basis van hops of vertraging, in de groep van m peers wordt ge-
analyseerd. Onze analyse geeft antwoord op de vraag hoeveel kopieën van bepaalde
informatie moeten worden verdeeld (of hoeveel peers die beschikken over de gewenste
informatie moeten worden ontdekt), zodat een aanvaardbare kwaliteit van de dienstver-
lening (in termen van hops en vertraging) kan worden geleverd.

Het gossiping model geeft een eerste idee over informatieverspreiding in P2P netwerken.
Echter, vanwege de snelle evolutie van P2P netwerken, zijn er inmiddels toepassingen
gelanceerd met nieuwe functies waar gebruikerskenmerken een belangrijke rol spelen.
Daarom voeren we twee empirische studies uit die zijn ontworpen om belangrijke on-
twerpkwesties en gebruikersgedrag te onderzoeken in enkele opkomende P2P toepassin-
gen.

Onze eerste empirische studie richt zich op een eigen Peer-to-Peer Televisie (P2PTV)
systeem met de naam SopCast. P2PTV toepassingen zijn dominant aanwezig als het
gaat om het leveren van videos/TV via het internet, terwijl hun onderliggende mecha-
nismen nog grotendeels onbekend zijn. Daarom voeren we een reeks experimenten uit
om de prestaties van de SopCast netwerk te weerspiegelen. We ontleden een deel van
het SopCast protocol door middel van ‘reverse engineering’. Onze analyse verklaart
de communicatie, de video verspreidingsmethode en de structuur van het netwerk. De
dynamiek van het SopCast netwerk, en haar impact op het verkeer in het internet wor-
den ook geëvalueerd. De aanpak en de methodologie in dit empirisch onderzoek geven
inzicht in bestuderen van gelijkaardige toepassingen.

Zoals eerder vermeld, het belang van de gebruikers in P2P netwerken is groter dan bij
andere netwerktoepassingen. Daarom wordt de tweede empirische studie uitgevoerd met
een online sociaal netwerk, genaamd Digg. In nieuwe online sociaal netwerktoepassingen
kunnen gebruikers gezamenlijk informatie publiceren, ontdekken, en bevorderen zonder
tussenkomst van websiteredacteurs. Dagelijks wordt er een grote hoeveelheid informatie
gepubliceerd op deze sites, terwijl slechts een paar stukjes van die informatie populair
wordt. In deze empirische analyse willen wij de volgende vragen beantwoorden: 1. Of
gebruikers van online sociale netwerken vrienden maken met anderen die vergelijkbare
interesses hebben? 2. Volgens welk dynamisch proces filteren en dragen de gebruikers
samen informatie uit in de online sociale netwerken? 3. Of vriendschaprelaties helpen
om nieuw gepubliceerde informatie te verspreiden? Inzicht in deze verschillende ken-
merken en de informatie verspreiding in online sociale netwerken helpt bij het verbeteren
van huidige marketingtechnieken die pogen om advertenties, producten, en ideeën over
deze netwerken aan de man willen brengen.
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