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The normal and charge-ordered phases in BiCa; , ,,Mn,O; with a hole-doping level ok=0.78 have
been investigated by transmission electron microscopy.88 sgMin,O,, the first identified member of the
327-type Bi-Ca-Mn-O family, was obtained under high oxygen pressure, and presents an orthorhombic struc-
ture with Amamsymmetry at room temperature. A structural modulation is observed in this unusual layered
manganite below 210 K, characterized by the one-dimensional wave pe@22h* and a single transverse
component. At low temperature the superspace group of the charge ordered @@f@[‘]s
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[. INTRODUCTION diffraction, neutron scattering, or/and x-ray scattering

technique$:®??> The orbital ordering observed in

Manganese oxided.n; ,A,MnO; (Ln=trivalent lan- LaSpMn,0; (Tco=210K) is essentially identical to that of
thanide, A=divalent Ca, Sr, Bahave attracted tremendous L81/2Ca,MnOs. However, the charge/orbital ordered state
attention because they exhibit wide variety of fascinating®’ L@SeMn;0O7 collapses again with decreasing temperature

physical properties, such as colossal magnetoresistan@ low 100 K, and the-type antiferromagnetic-state is the

1-4 : Stable phase at low temperatdte.
(CMR) _ effect magneto_structur7al gffecfs, magnetic StudFi)es of charge-strﬁ)e formation m=2 layered per-
polarons; and charge orderingCO)."During the last years . cuites in the MA' rich regime(with a doping concentra-
extens_lve studies are reported on the factors gontrollmg theon x>0.5 are lacking. Furthermore, most of the
migration of conductiveey electrons(or ey holes in perov-  (_n-A);Mn,0; samples previously grown and investigated
skite manganese oxides. In particular, charge/orbital orderingiere based ohn=La, Pr, or Nd. Logically, an overall com-
(CO/IOO of manganese can be rationalized by consideringrehension of this family of materials requires extending the
the behavior ofey electrons in the manganesel ®rbitals,  investigations to the other members, particularly, those with
strongly bonded to @ oxygen ones. The tendency showedsmall lanthanides. The ionic radiugrg)*=1.16 A) that
by many manganites, as well as by other transition-metaBi®* ions adopt in Bj,Ca;,MnQ,, for instance, is consider-
oxides, of a real space ordering of the charge carriers igbly shorter than the size of the lanthanide in the previously
especially remarkable at some fractional values of the dopingeportedLn, ,,Ca , ,,Mn,O; phases. Decreasing the size
level x, mainly x=3%. More complex orbital and charge or- of the Igrge cation, however, the difficulties found in the
derings are observed for hole dopirg %, which are being Synthesis are more severe. _
the subject of a growing research effort. For0.50 com- In this paper we 'report the direct observatlc_)n of a charge-
mensurate with large repeat period and incommensuraterdered layered Bi,,Ca,,Mn,O; phase withx~0.78,
modulations are being report8d.So far, most of the re- close to Mi*/Mn*"=3. During a study of the manganite

search work has been devoteddBO,-type compounds, the Perovskite Bi;«CayMnO5,,%* a different layered Bi based
n=o member of the Ruddlesden and PopperPhase witha=b=0.53nm andc=1.918 nm was identified

(Ln-A), ;. 1Mn,Os, ., ;-like series 1! by means of electron diffraction and high-resolution electron

Recently, investigations have focused on the layered peficroscopy(HREM) experiments. It is of interest to recall
ovskites (LaA),+;Mn,Os,.1 (A=Sr, C3 with n#w. that the presence of Bi as trivalent lanthanide is known to

Studies on L A Mn,O; (n=2) manganites have produce unconventional charge, spin, and lattice dynamics in
QTZX 1+2x Y7 ¢ g v h d d h 8i.CaMnO id 24-26
shown a very high CMR effect for the doping concentrationsSome charge-ordered phases (8i,Ca)MnO; oxides:
0.2<x<0.512"%The natural stacking of perovskite bilayers Moreover, it is worth noticing that the high doping level
in these phases represents an excellent opportunity for tui@f the presenn=2 bilayer phase is still not well described
nelling or spin valves based devices and therefore have afind understood in the infinite layet §, Ca)MnQ; systems.
tracted substantial intere¥t'® Superstructures interpreted Using transmission electron microscopy techniques, we
in terms of thed2 orbital ordering of MA* associated to a have characterized the structural features of normal and
charge-ordered phase have been observeddrsy,Mn0O,  charge-ordered phases in the highly doped layered
(n=1) (Refs. 18 and 19 and LaSsMn,O, (n=2) Bi0aLaseVMnO7 oOxide.
materials?®?! The latter with a hole-doping level of=0.5.
To date, the scarce CO and OO studiesron2 layered
manganites refer to materials having half doped bilaygrs (A black polycrystalline sample was synthesized under
=0.50). Typically these studies involve the use of electronoxygen pressure from high-purity powders o0$Bi, CaCQ,

II. EXPERIMENT
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and MnOz; mixed in the proportion corresponding to
Bi(0.295-Ca0.75-Mn-O(3). Prior to use the powders were
dehydrated at 900 °C for 12 h. The stoichiometric mixture
was thoroughly grounded in an agate mortar and pressed into
a pellet. After several intermediate sintering temperat(ires
an alumina cruciblewith intermediate grindings, the sample
was pressed into a pellet and finally annealed at 1100 °C
under 200-bar oxygen pressure for 24 h. The sample was
then cooled to room temperature at a rate of 300 °C per hour.
Thin specimens for electron microscopy were prepared sim-
ply by crushing the sample with an agate mortar and pestle.
Crushed fragments were mixed with ethanol and then depos-
ited onto a Cu grid coated with a thin carbon film. Electron
microscopy was performed with a Philips CM30T transmis-
sion electron microscope equipped with a low-temperature
sample stage, operating at 300 kV. A Philips CM30UT-FEG
electron microscope with a Link EDX detector was also used
for quantitative analysis.

Two different phases were observed. The main nominal
phase Bj,:Ca, ;gMNnO; of polycrystalline sample was found
to be orthorhombic at room temperature, with Pnma symme-
try and ay2a,, 2a,, \2a, enlarged unit cell, whera,, is
the simple perovskite lattice parameter. At low temperature,
down to 110 K, we did not observe charge-ordered domains
associated to this phase. In contrast, a temperature dependent
behavior was observed in the grains containing the 327
phase. The composition determination of the new ortho-
rhombic Bi-Ca-Mn-O phase was performed by a quantitative
EDX using a spot size of about 20 nm in the Philips F_IG. 1. Electron-diffraction patterns of $i,Ca sgVin,O; phase
CM30UT electron microscope. Quantitative analysis averag@Ptained alonda) [100], (b) [110], (c) [001], (d) [010], (e) [101],
ing over several locations and grains results in a Bi/Ca/Mrfnd (f) [011] zone axes. The extra weak reflegtlons can be indexed
atomic percentage ratio of 5.0/29.1/22.6. These ratios indi@S e normal2a,, 2a,, \2a, orthorhombic cell withPnma
cate that the phase has a composition corresponding &YMMetry:
BiyCa;_yMn,0O; with y=0.44. For the sake of clarity it is . ' _
more convenient writing the stoichiometry as Multiple scattering. When we tilted the sample away from
Bi,_,,Cay . ,,Mn,O; since, in this description directly rep- ~ the low-index zone to minimize multiple scattering, the
resents the concentration of K¥fions (holes in the bilay- ~ (h00) (h=2n+1) reflections disappeared. Therefore the
ers. The average value determined for the 327 phase waspossible space groups for the,BiCa s¢Mn,O; phase are
x=0.78, a doping level close to nominal commensuratdimited to Ama2 (40), A2;am (36), or Amam(63). In addi-
value 2. The present work focuses on the structural propertion, further convergent-beam electron diffracticGBED)

ties and charge ordering phenomena in this highly dope@xperiments show that there are mirror planes perpendicular
bilayered manganite. to thea, b, andc axes. Hence these diffraction data suggest

the space group to b&mam
Besides the main spots that belongAeaentered ortho-
rhombic structure, some extra weak reflections can also be
Big 4L sMIn,0; crystals were first characterized at seen in the EDP’s taken at Rifnarked by arrowheads in
room temperaturéRT) by conventional selected area dif- Figs. Xa—(c)]. They can be indexed as the normal,,
fraction using a parallel electron beam in order to determinéa,,, va, primitive orthorhombic structure oABO; type.
the crystal symmetry. The main zonal electron diffractionThe orientational relationship between matfscenteredA)
patterng EDP’s) prove the phase to have orthorhombic sym-Big 44Ca s¢Mn,O; and the primitive(P) orthorhombic struc-
metry. Figures (a)—(f) show the selected area EDP’s of ture is the following{ 100],//[100]p, (010),//(001)p, and
Big 4Ca 5dVIn,0; phase along100], [110], [001], [010],  (001),//(010)s. The present BisLa sdVIn,0O; crystal con-
[101], and[011] zone axes, respectively. Indexation of thesetains small amounts of theABO; type (\/Eap><2ap
EDP’s shows that it exhibits aA-centered orthorhombic x\/iap) structure in the form of lamellae intergrowths in the
structure. The observed reflections in all the diffraction pat-A-centered orthorhombic structure. An example of this inter-
terns are limited by the reflection conditioris+1=2n for  growth is displayed in Fig. (@), showing g 110], zone-axis
hkl and &I, h, I=2n for hol andk=2n for hk0. The ex- HREM image. Figure @) shows an enlarged HREM image
tinction condition along* is h=2n+1. The weak spots of of the area outlined in Fig.(3). In this image theBi, Ca)
(h00) with h=2n+1 in Figs. Xc) and (f) are due to the and Mn atoms positions can be recognized as dark dots, and
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at 110 K. Due to our limited accuracy in unit-cell determi-
nation, an appreciable change in lattice parameters was not
observed from the original orthorhombic lattice by cooling.

. Evidence for a long period structure related to a charge-
ordered state is given by the appearance of sharp superlattice
spots around each fundamental Bragg reflection in G1€)]
direction. It is found that the structural modulation is incom-
mensurate, the superlattice spots being at the posifions
2k=*+0.22, Q. The corresponding wave vector can be written
asq=b*[0,5,0], where§=0.22. If we use the simple per-
ovskite cell(cubic) as referenceq is along the[110] direc-
tion of the cubic perovskite structure. It can be thus written

FIG. 2. (a) High-resolution image at room temperature takenas q= &/d with d:\/fap_ In order to investigate the tem-
along the[110], direction. It illustrates the intergrowth of the perature dependence of the superstructure reflections, differ-

A-centered orthorhombic B,Ca 5gVin20; structure with lamellae  ent patterns were collected at several temperatures warming

of the anaBll,X_Ca;(MnO3 phase. The Fourier transfqrm c_>f the the sample from 110 K up to RTB00 K). Line plots across

iF;, n;nua“)zr:rfggzzdb'gr:f:ter:leaeHﬂEﬁ Egi;?ﬁ%;ﬂﬁ;:';%;on reflections including superreflections were made using digi-

. ' . P talized images of diffraction patterns recorded on the photo-

2a,, \/fap orthorhombic structure(b) Enlarged view of the area . . .

outlined in (a), showing the 327-type layered structure of the graph films. The curves along ﬂhé. dlrgctlon taken at 110,

Bi 4.Ca s Mn,0, phase along the direction. 140, 190, and 210 K are_shown in Flg(.t_);B Note that the

temperature of the investigated crystal is actually not mea-
the bilayered structure of thel -M)sMn,O, phase along sured but rather a position about 10 mm from the specimen

the ¢ axis can be clearly observed. Hence HREM andCUP such that the real temperature of the crystal is higher

i . ) ; . than the indicated temperature. A decrease of the intensities
electron-diffraction data give evidence of large regions of

i . ; i f the superlattice spots is clearly observed with increasing
well-crystallized and defined 327-type layered structure Ot([)emperature. They become invisible around 210 K. No dis-

the Biy.4La& sgVIn,O; phase. o .
: : tinguishable changes in the crystal symmetry or the length of
The a and b axes can be taken theeand ¢ axes of the q were observed with increasing temperature.

Pnma2a,, 2a,, y2a, primitive orthorhombic structure ™| g interesting to recall that Let al?” observed two dis-

bﬁcause fth"e HRhEM |r[n_a?e fOf anwlntergrowthﬂzntliﬁga)_zt tinctive structural modulations in the charge-ordered phase
shows a TUTly conerent intertace. WWe assume that the INtela¢ yoyragonal LaSMn,0; (alonga* andb* directions, re-

grogxr\]/th pr|.m|t|ve _ortTorrTombu; phase hoas.tht(re] samle unit cel pectively. They were considered to originate from twin do-
as the main nominal phasediCa, ;MO in the polyerys-  \aing with wave vectors rotated by 95<°2In the present

talh_ne sample, which has be_en determmeq in Ref. 23. .Th%rthorhombic phase only one set of superstructure reflections
lattice parameter along theaxis was determined from ratio was detectedFig. 3a)]

of Itlhe spacings of Oosnig]gé?gigﬂonsbirg%gg gi){fs the Following the method of describing incommensurate su-
ced parameters to ba=0. nm,b=0. M, perstructures by de Wolfet al,?® the one-dimensionally
andc=1.918 nm. modulated structure of this charge-ordered phase can be de-

Elegtron diffraction was also perform'ed at low tempera-g . ined using a four-dimensional superspace group. Apart
tures, in the range 100300 K, to investigate the presence %om the three reciprocal basis vectors a fourth vector de-

charge ordering in the Bi.Cg sdMN.07 phase. Figure @ gorining the modulationq= sb*) is added. With this the
shows the{001] zone-axis EDP of BjsCa 5eVinO7 taken  (ocinrocal-lattice vectors for the CO phase can be expressed
as H=Ha* + Kb* +Lc* +mq, whereH, K, L, andm are
integers. The systematic extinction conditions associated
with this one-dimensionally modulated structure are ob-
served to be the following: K+L=2n in general,H=2n
for HOLO, and m=2n for OKLm. Thus from the general
extinction condition we can conclude that the four-
dimensional superspace group belongs to the Bravais class
PLM™™(No. 15.28 The possible superspace group of the CO
phase of Bj L& sgVIn,0O; can be determined i"ffl or
000 020 PAMAM [Ama2(0p0)s00 or Amam(0p0)s00 in one-line
symbol with the use of Superspace Group Tabfeghis

FIG. 3. () [001] zone-axis electron-diffraction pattern of Would result in theAma2 or Amamas space group for the
Big.4.Ca sgMIN,0O, phase obtained at 110 K. The superlattice spots@verage structure. Since no symmetry difference between the
can be clearly seerfb) Microphotometric density curves along the basic structure of the low-temperature phase and that of the
b* direction showing the temperature variation of the superstrucRT phase was found in the CBED experiments, the super-
ture reflections. space group of Bi,La& sgVin,O; phase is suggested to be
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(a) (b) rated periodically by stripes of nondistorted #1®; octahe-

d 7 Z - dra. If the priority is to minimize the Coulomb energy,
e o e |eo . Ly on ® the Wigner model should be consider@dn the model of

0 o 2 paired Jahn-Teller stripeTS longitudinal displacements

are expected from the fact that bistripe and background re-

INY

-

(c) (d) gions may have different lattice spacirfyBased on image

o p simulations, quantitative electron diffraction, and high-

® e IZI?;D ® o EIEI?;O resolution imaging, a careful crystallographic study of
j J j % Lag 3LCa ¢ MNO;5 has been reported in Ref. 31, supporting
) 4b i ) 5h i the Wigner-crystal model. The authors show that the large
longitudinal displacement of the bistripe model is incompat-

at ® m" ible with electron-diffraction data. Further work is required
%‘ i to investigate the expected longitudinal displacements in the

b bistripe model of bilayered perovskites. In principle, the su-

_ _ _ perstructure could be different in the various members of the
FIG. 4. Schematic representations of possible *MNIN*"  Ryqdlesden-Popper series because the presence of rock-salt-
charge-ordering andsyz .,2/dsy2_2 orbital-ordering of MA” pro- v ne |ayers between the perovskite blocks can lead to another
jected along th¢001] direction forx=3 [(a) and(c)] andx= [(b)  compromise between minimizing the Coulomb repulsion of
and(d)] corresponding, respectively, to the Wigner-crystal and bis'the charge$Wigner crystal and the lattice strain associated

tripe models. with orbital ordering(bistripe models
Amam ) _ In summary, we have reported the observation of
Ps—11 - For HKLm, the reflections withm=2n are very g 327-type layered structure in the Bi-Ca-Mn-O phase

weak and often not observable. Reflections with-2 are  diagram (n=2 member of the Ruddlesden-Popper
not present at all. Thus only the=1 superreflections are (Bi,Ca), . 1Mn,0O3,, Series, obtained under high oxygen
very significant. This indicates that the deviation from thepressure. The normal and charge-ordered structures of
average structure is close to sinusoidal. It is of interest tdBij 44Ca& 5gVIN,O; have been investigated by transmission-
note that the intensities of the superstructure reflections ielectron-microscopy and HREM measurements. At room
the higher-order Laue zones are observed to be relativeliemperature its crystal structure preseft®amsymmetry.
stronger than those of the super-reflections in the zero-ordédf special interest is the high doping level of the present
Laue zone. This will be the subject of further research. Bi-based bilayered manganite=0.78. Electron-diffraction

In the investigated phase,=6/d=1/4d(1—¢) and the data reveal the appearance of a superstructure below 210 K.
incommensurability parameter (¢ =0.092) shows no tem- The structural modulation in the low-temperature phase of
perature dependence. This is in agreement with a charge athis layered manganite corresponds the one-dimensional
dering as the origin of the incommensurability. Regardingwave vectorq=0.22* and presents a single transverse
the linear §=0.22~1—x dependence, the incommensuratecomponent. The modulated structure has been successfully
super-reflection spots should be attributed to the mixed comexplained in terms of mixed domains obgand %, peri-
mensurate modulations4 and H,. The adjacent commen- odicity associated with thd,2(Mn*") orbital ordering. The
surate configurations to the doping levet0.78 arex=3 superspace group of CO state is determined t®H83™.
andx=3%. A fine mixture of 40% 4, and 60% B, paired
periods is completely consistent with the overall periodicity
g=0.22*. In Fig. 4 we show a schematic representation of
the Wigner[Figs. 4a) and (b)] and bistripe[Figs. 4c) and The authors acknowledge financial support by Stichting
(d)] models for the orbital- and charge-ordered superstrucvoor Fundamenteel Onderzoek der MatefOM), MEC
tures with doping levels=3 (0.79 andx=3% (0.80. In the  (PB97-1175, Generalitat de Cataluny@RQ95-8029, IN-
bistripe models the pattern has the form of stable pairs oTAS (Project No. 971-11954and the EC through the “Ox-
heavily Jahn-Teller distorted diagonal R, stripes, sepa- ide Spin Electronic§OXSEN)” network (TMR).
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