
Memory-Constrained Fluid Simulation on the GPU

by

Wouter Raateland

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday, August 30, 2021 at 2:30 PM.

Student number: 4384938
Project duration: November 9, 2020 – August 30, 2021
Thesis committee: Prof. Dr. Elmar Eisemann, EEMCS, TU Delft

Dr. Klaus Hildebrandt, EEMCS, TU Delft
Dr. Cynthia Liem, EEMCS, TU Delft

An electronic version of this thesis is available at https://repository.tudelft.nl.

https://repository.tudelft.nl

Contents

Article 1

1 Introduction 2

2 Background 3
2.1 Related Work . 3
2.2 SPGrid . 4

3 Data-Structure 4
3.1 Random access . 5
3.2 Stencil access . 6
3.3 Restriction and Prolongation . 6
3.4 Incompressible Fluid Solver . 7

4 Topology Adaptation 7
4.1 Basic operations . 8
4.2 Adaptation setup . 9
4.3 Re-arrangement . 9
4.4 Accuracy . 10

5 Boundary Conditions 10
5.1 Approximating Fluidity . 11
5.2 Handling partially solid cells . 12

5.2.1 Advection . 12
5.2.2 Diffusion . 12

5.3 Performance . 13

6 Terrain-Atmosphere Interaction 14
6.1 Three-Layer System . 14
6.2 Expressiveness of our approach . 15

7 Results 15
7.1 Comparison to a uniform grid . 15
7.2 Comparison to SPGrid . 16
7.3 Comparison to GVDB . 16

8 Conclusions and Future Work 17

A Quantities per Simulation 21

Supplementary Material 22

1 Fluid Simulations 22
1.1 Navier-Stokes Equations for Incompressible Flow . 22
1.2 Semi-Lagrangian Advection . 23
1.3 Solving the Pressure Poisson Equation . 23

2 Alternative Adaptive Grid Structures 25
2.1 GVDB . 25
2.2 Adaptive Staggered-Tilted Grid . 25
2.3 OpenFOAM . 26

3 Signed Distance Functions 26

4 GPU Programming with CUDA 26

Note: If you are not familiar with some of the subjects discussed in this thesis, I
advise you to read the supplementary material before reading the article.

1

Memory-Constrained Fluid Simulation on the GPU

Wouter Raateland, Delft University of Technology

August 23, 2021

Figure 1: Clouds flowing around a mountain. The checkerboard pattern shows the automatically adapting grid resolution.

Abstract

Grid-based fluid simulations are often limited in resolution by their high memory usage and computational costs. One
approach to reducing memory usage and computational costs is to vary the grid resolution over the spatial domain. We
introduce DCGrid, a new data structure for fluid simulations. DCGrid is suited for instantiation in GPU memory and
allows for varying resolution over the spatial domain. We developed an efficient, optimization-based method for local
mesh refinement that automatically adapts the grid resolution according to user-defined parameters during simulations.
Additionally, we complement our data structure with an efficient scheme for approximate handling of collisions between
fluid and static solids on cells with varying resolutions. We integrate DCGrid in a cloud simulation and extend a terrain-
atmosphere interaction model to work with cells of varying resolution and rapidly changing conditions. Furthermore, we
demonstrate the performance of our new methods on both simple simulations of smoke flow and complex simulations of
weather phenomena and compare them to similar fluid simulations on state-of-the-art adaptive grid structures.

1 Introduction

Grid-based fluid solvers are widely used in generating visual effects and in performing physical simulations. When compared to
particle-based, or general mesh-based fluid solvers, grid-based fluid solvers distinguish themselves in their regular structure, the
efficiency of random access on them, the ease of performing stencil operations on them, and their suitability for parallelization.
One disadvantage of grid-based fluid solvers is that their computational cost and memory usage quickly increase as their
resolution increases.

The motivation behind this work is a recent improvement in simulating weather phenomena. Previous works on weather
simulation either focused on a narrow range of phenomena or on a multitude of specialized techniques, each capable of modeling
a specific phenomenon. Hädrich et al. 2020 instead developed a general grid-based fluid solver capable of simulating a wide
variety of complex meteorological phenomena, ranging from low-hanging fog to cumulus clouds. As they rely on uniform
grids and are focused on real-time simulations on personal hardware, the resolution on which they can perform simulations is
limited. Consequently, the expressive range of their model is also limited.

One approach to reducing the computational cost and memory usage of grid-based fluid simulations is spatial adaptivity.
Spatially adaptive grid structures enable higher effective resolutions using fewer cells in total. They do so by allowing for
varying resolution throughout the spatial domain. In this work, we introduce a new spatially adaptive grid structure. Our
structure is named Dynamic Constrained Grid (DCGrid). DCGrid builds upon another spatially adaptive data structure
named Sparse Paged Grid (SPGrid) (Setaluri et al. 2014). We introduce a method for automatically adapting grid topology
while respecting memory constraints. We focus on a high-performance GPU implementation of a fluid solver on DCGrid.

2

Furthermore, we integrate DCGrid in the atmospheric model from Hädrich et al. 2020, and we expand this model with a more
expressive method for terrain-atmosphere interaction that enables the simulation of a broader range of weather phenomena.

Specifically, the main contributions of this work are:

• Memory-efficient grid structure based on a hierarchy of sparsely populated uniform grids, highly suitable for fluid
simulations.

• Efficient, optimization-based, local topology adaptation method that respects memory constraints.

• Approximate solid-fluid interaction model that does not enforce high-resolution cells near boundaries.

• Terrain-atmosphere interaction scheme suited for cells of varying resolution, capable of expressing a wider variety of
meteorological phenomena than previous methods.

• CUDA implementation of an incompressible fluid simulation on DCGrid. Our fluid simulation performs multiple times
faster than similar fluid simulations on previous cutting-edge adaptive grid structures. It also uses less memory for an
equal number of cells.

2 Background

The work presented in this paper builds upon recent contributions from multiple domains. While we cannot exhaustively discuss
the total body of work, we review some closely related work on physics-based modeling of clouds and other meteorological
phenomena, computational fluid dynamics, and spatially adaptive grid structures. We give a brief overview of the SPGrid
structure that provides the basis for DCGrid.

2.1 Related Work

Physics-based simulation of meteorological phenomena has a long history. Kajiya and Von Herzen 1984 introduced one of
the first methods for computationally generating and rendering cloud animations. Many refined representations have been
presented, to cope with the high computational complexity of cloud simulations. These representations range from geometric-
and particle-based (Bouthors and Neyret 2004; Gardner 1985; Neyret 1997), to position-based dynamics (Ferreira Barbosa,
Dobashi, and Yamamoto 2015) and layer-based approaches (Vimont et al. 2020). Recently, Hädrich et al. 2020 introduced a
method for modeling a wide range of cloud types using a generic fluid solver. For a more thorough overview of methods for
simulating clouds, see Vimont et al. 2020.

Stam 1999 introduced an unconditionally stable method for solving velocity advection. This work has been the basis
for grid-based fluid solvers for phenomena such as smoke (Ronald Fedkiw, Stam, and Jensen 2001) and water (Foster and
Ronald Fedkiw 2001). Over the years, many works have proposed different methods to make fluid dynamics more performant.
Notable ones include, Smoothed Particle Hydrodynamics (SPH) (Cornelis et al. 2014; Gissler et al. 2019), hybrid grid-particle
approaches such as Fluid Implicit Particle (FLIP) (Nielsen and Bridson 2016; Wu et al. 2018), FLIP on an optimized narrow
band (Ferstl et al. 2016), a combination of FLIP and Point in Cell (PIC) for simulating viscous fluids (Zhu and Bridson 2005)
and elastic solids (Brandt et al. 2019), and two-way coupling with the Material Point Method (MPM) (Hu et al. 2018). Other
works have focused on accurate simulation of certain features of fluid flow, such as realistic vorticity (Zhang, Bridson, and
Greif 2015), mass and momentum conservation (Lentine, Aanjaneya, and Ronald Fedkiw 2011), detail preserving advection
(Zehnder, Narain, and Thomaszewski 2018), and realistic viscosity using a multigrid method (Aanjaneya, Han, et al. 2019).
Recently, Ummenhofer et al. 2019 introduces an efficient Lagrangian fluid simulation using convolutions. Furthermore, multiple
works have proposed improvements to the visual quality of fluid simulations, either by generating high resolution features on
a low resolution guiding grid (Inglis et al. 2017; Schoentgen et al. 2020; Xie et al. 2018), or using style transfer (Kim et al.
2019; Sato et al. 2018).

The structured nature of uniform grids offers benefits when used in fluid simulations, such as fast stencil access and simple
memory management. On the other hand, their uniform nature dictates a uniform distribution of computational resources over
the fluid domain. This uniform distribution is often an inaccurate representation of the distribution of interesting features in
a fluid domain (e.g., the surface of a liquid, areas close to a boundary, areas with high vorticity). To simulate features of high
interest in the most accurate way possible, we would like to focus computational resources on these features. Multiple works
have presented different alternations to the uniform grid that achieve this. Losasso, Gibou, and Ron Fedkiw 2004 was the first
to introduce a fluid simulation on an octree structure. Museth 2013 introduced OpenVDB, a sparse data structure organized
as a tree with a high branching factor. OpenVDB is especially suited for simulating values at a uniform resolution. A GPU
implementation of OpenVDB, GVDB has been developed by Hoetzlein 2016. Wu et al. 2018 developed a FLIP simulation on
GVDB, capable of simulating and rendering scenes with tens of millions of particles, where the scene topology automatically
adapts to the FLIP particles. Setaluri et al. 2014 introduced SPGrid, a spatially adaptive data structure based upon a
hierarchy of sparsely populated uniform grids. SPGrid has been used in multiple large-scale fluid simulations (Aanjaneya,
Gao, et al. 2017; Liu et al. 2016) and also in an MPM context (Gao et al. 2019; Hu et al. 2018). Recently, Xiao et al. 2020 has
designed an alternative approach to adaptivity based on an Adaptive Staggered-Tilted (AST) grid. This method augments
a primary grid with a secondary, overlapping grid with tilted cells (i.e., rotated by 45◦ in 2D). By scaling each tilted cell
individually, they achieve fine-grained adaptation on a uniform grid. The secondary grid typically imposes a runtime penalty

3

of only a few percent. Nielsen, Stamatelos, et al. 2020 proposed an automatic optimization-based grid refinement algorithm
for smoke simulations in Bifrost. This algorithm runs in O(n) time, where n is the number of allocated grid cells. The widely
used application OpenFOAM includes an Adaptive Mesh Refinement (AMR) module. The module is not yet optimization-
based. Nevertheless, it has enabled simulations with improved accuracy using less computational resources (Cooke et al. 2014;
Lapointe et al. 2020).

2.2 SPGrid

SPGrid uses a hierarchy of sparsely populated uniform grids to model a grid with cells of varying resolution. It supports
voxels at each hierarchy level, allowing for a natural level of detail (LOD). SPGrid allocates all grids in the hierarchy in virtual
memory. It achieves adaptivity by only allocating the active parts of the grids in physical memory. To do so, SPGrid relies
on specific properties of Haswell processors.

SPGrid structures each grid in a hierarchy in blocks of cells such that one block occupies exactly one 4KB memory page.
This size results in blocks of 43 or 42 × 8 cells, depending on the number of values simulated per cell. SPGrid allocates
blocks in the virtual memory span following a Morton encoding for optimal data locality. This structure enables constant
time translations between a block’s memory address and its location in the grid. These constant time translations allow for
very efficient execution of random and stencil access.

To efficiently compute gradients and Laplacians, SPGrid introduces ghost cells. Let cell Cl
I be a cell with index I located

at grid l in the hierarchy. Then Cl
I is ghost when:

• Cl
I is not active at level l,

• Cl
I neighbors a cell that is active at level s ≤ l,

• and there exists a coarse parent of Cl
I at level l∗ > l that is active.

Before computing a gradient or a Laplacian, SPGrid upsamples values from coarse parent cells into their corresponding ghost
cells in bulk. With these values in place, it then computes gradients and stencils as if the grid were uniform. After performing
the computations, values in the ghost cells are copied back into their coarse parent cells. This way, all grid cells are updated
without computing values multiple times.

Figure 2: Simple multigrid topology. Ghost cells required to
run SPGrid marked in red. Blocks allocated just for ghost cells
marked in yellow and blue.

While ghost cells are an effective means for fast computations, they do come with a problem. The problem is that SPGrid
allocates cells in blocks. Consequently, allocating only a few ghost cells may require the allocation of multiple complete blocks.
This problem is most visible in irregular domains. Figure 2 shows a possible SPGrid hierarchy. In this configuration, SPGrid
allocates 6 blocks for active cells. It also allocates 6 extra blocks just for ghost cells.

Adapting topology in a SPGrid hierarchy works by instantiating a new instance with the desired topology and copying
values accordingly. This workflow is necessary because some architectures are unable to forget that memory pages have been
touched.

3 Data-Structure

Most operations in grid-based fluid simulations make heavy use of random and stencil access. We can implement semi-
Lagrangian advection, diffusion, and projection using just random and stencil access. Therefore, our data structure should
allow for efficient random and stencil access. The regularity of Cartesian grids allows us to perform many fluid operations in
parallel. To run fluid operations as parallel as possible, we run them on the GPU using CUDA kernels. We also designed

4

DCGrid for allocation in GPU memory. Additionally, fluid simulations often operate on multiple data channels, such as
densities, velocities, and auxiliaries. Our structure should support this.

(a) Hierarchy of sparse uni-
form grids. Cells marked in
yellow are active.

(b) Flattened grid hierarchy into one
dense multi-resolution grid, showing
only active cells.

Figure 3: Two visualisations of the same hierarchy of sparsely
populated uniform grids. The thicker lines indicate block
boundaries.

We propose DCGrid, a data-structure based on a hierarchy of L sparsely populated uniform grids G0, . . . , GL−1 (figure
3). To achieve good cache coherency, we store cell data in blocks. Each block consists of 23 subblocks, which in turn consist
of 23 cells each. The resolution between two adjacent levels in the grid hierarchy differs by a factor of 23. Thus, a block
allocated on grid Gl spans the same volume a subblock on grid Gl+1. As this scaling factor resembles a mipmap, we call grid
Gl mipmap level l. To satisfy memory constraints, we limit the number of blocks Bmax,l that can be allocated simultaneously
at each mipmap level 0 ≤ l < L. We also define a global block limit Bmax =

∑
l≤0<LBmax,l.

3.1 Random access

DCGrid allocates blocks of cells in a linear span of memory. Their position in the grid is linked to their index in this linear
memory span by a hash table h. Let b be a block located at pb, then the hash of its position is the 32 bit Morton encoding
of pb = bp/4c. This way of hashing means that a DCGrid instance can have a maximum resolution of 211 × 211 × 210 blocks,
which is equivalent to 8192 × 8192 × 4096 cells. We use a key space of h.size = 4Bmax,l entries for each grid Gl. With this
size, we can find the index of the block in the linear memory span Ib in O(1) time using hash table lookup (algorithm 1).

Algorithm 1: Block index lookup

Input: Position p and grid Gl. Hash table h mapping positions to indices in the linear memory span.
Output: Index Ib, of the block in the linear memory span, or NOT FOUND in case no block exists at position p in grid

Gl.
k ← hash(bp/4c)
s← k mod h.size

s0 ← s
do

if h.keys[s] = k then
return h.values[s]

if h.keys[s] = HASH EMPTY then
return NOT FOUND

s← (s+ 127) mod h.size

while s 6= s0;
return NOT FOUND

DCGrid stores data for each subblock and each cell in separate linear memory spans. These memory spans are ordered
equivalently to the memory span used for block data. To illustrate this, let b be the block stored at index Ib. DCGrid stores
data for the 8 subblocks contained in b at indices {23Ib, 2

3Ib + 1, . . . , 23Ib + (23 − 1)} in the following order:

Is = 23Ib + 0x100
(⌊p.x

2

⌋
mod 2

)
+ 0x010

(⌊p.y

2

⌋
mod 2

)
+ 0x001

(⌊p.z

2

⌋
mod 2

)
(1)

DCGrid stores data for the cells contained in subblock s at indices {23Is, 2
3Is + 1, . . . , 23Is + (23 − 1)} in a similar order:

Ic = 23Is + 0x100(p.x mod 2) + 0x010(p.y mod 2) + 0x001(p.z mod 2) (2)

5

In summary, to find the index Ic of cell c located at position p in grid Gl, we perform three transformations. We first find
the index Ib of the block containing c using a hash table lookup. Then, we find the index Is of the subblock containing c using
a simple transformation. Finally, we find the index Ic of cell c using a similar transformation.

3.2 Stencil access

The stencil operations that we focus on are stencils with dimension 33. The logical ordering of cells within blocks makes it
trivial to compute stencils for cells in the interior of blocks. Computing stencils for cells on the border of blocks, however,
requires accessing neighboring blocks. Naively, this would require multiple random access operations and thus multiple hash
table lookup operations for each stencil operation.

To more efficiently access adjacent cells in different blocks, we pre-compute an apron of cell indices directly neighboring
each block (figure 4). Pre-computing of apron cell indices is performed once, during grid initialization. As the higher resolution
mipmap levels will be sparsely occupied, not all blocks will have direct neighbors at the same mipmap level. We could directly
include neighbors on other mipmap levels in the apron. Doing so would lead to a different amount of cells neighboring each
block. Consequently, we get in non-uniform stencils. Non-uniform stencil computations on a GPU might lead to thread
divergence, which reduces their efficiency. Therefore, we want to avoid non-uniform stencils. Instead, we implement an
approach that retains the benefit of uniform stencils and works with sparsely occupied grids. To do so, we restrict the layout
of the grids in the hierarchy using two rules:

1. For mipmap levels 0 ≤ l < L − 1 and for each cell c ∈ Gl, there must exist a parent cell cp at position 2bp/2c on grid
Gl+1. We also call c a child cell of cp.

2. The lowest resolution grid, GL−1, should be densely allocated.

These restrictions ensure that G0 ⊆ G1 ⊆ · · · ⊆ GL−2 ⊆ GL−1.
To compute the apron cell indices for a block at grid Gl, we iterate over all positions directly adjacent to that block. At

each position p, if p lies inside the domain, we search for a cell in Gl first. If this cell does not exist, we search for a cell at
position p in increasingly coarser mipmap levels. As GL−1 covers the complete domain, this process always finds a cell at
some level. We now treat all cell indices in aprons as if they originate from the same mipmap level. This process yields a
uniform, and thus a performant stencil operation.

Figure 4: Apron cell indices as calculated for the central block.

3.3 Restriction and Prolongation

By restricting the layout of the grid hierarchy, most of the domain will be covered by multiple cells. Specifically, if cell c
covers point p in the domain, then its parent cell also covers that point. Performing fluid simulation operations on multiple
cells covering the same point would be a waste of computational resources. Therefore operations are only performed on the
highest resolution cell that covers any point. This cell is called active. Any cell that is the parent cell of another cell is called
inactive. To get the correct values in the inactive cells, we perform a simple downsampling routine called restriction (figure
5a). Starting at mipmap level G0, we average the values of cells sharing the same coarse parent cell. We store this average in
the parent cell and repeat on each coarser grid until all cells have values.

The inverse operation of restriction is prolongation (figure 5b). This operation traverses the grid hierarchy in the other
direction, from low to high resolution, and transfers values from parent cells into their fine children.

6

(a) Restriction operation updat-
ing cell values by averaging the
values of their fine child cells.

(b) Prolongation of restricted
values back to high-resolution
grid.

Figure 5: Restriction and prolongation operations performed
after each other on the same data.

3.4 Incompressible Fluid Solver

Usually, grid-based fluid simulations store velocity and pressure gradients in a staggered MAC grid. Using a staggered
MAC arrangement, projection can make the velocity field divergence-free up to a rounding error. The problem with a MAC
arrangement is that velocity advection is split into three components and thus takes three times as long. As our work focuses
on performance rather than accuracy, we model velocity at cell centers.

Algorithm 2: Multigrid solver

Input: Hierarchy of sparsely populated scalar fields f0, . . . , fL−1

Output: Hierarchy of sparsely populated scalar fields u0, . . . , uL−1, approximating the solution to the Poisson
equations ∇2ul = fl for 0 ≤ l < L.

for l = 0 to L - 1 do
ul ← 0 // Initialize each value in ul to 0.

uL−1 ← smooth(uL−1, fL−1)
for l = L - 2 down to 0 do

ul ← prolongate(ul+1)
ul ← smooth(ul, fl)

return u

To make the velocity field divergence-free, we use an approximate projection method based on the pressure Laplacian.
First, we calculate the divergence on each active cell using a simple 7-point stencil. To compute divergence for all cells in the
hierarchy, we apply the restriction operator. Then, we solve the pressure Poisson equation using a multigrid solver (algorithm
2). We typically use a small number of Jacobi iterations as a smoother. Note that our multigrid solver consists of only an
upstroke. The restriction operator automatically smooths high-frequency noise out of the divergence field. Therefore, our
multigrid solver does not require a downstroke.

We tested our multigrid Poisson solver on a DCGrid instance of smoke flowing around a sphere. Compared to a non-
multigrid Poisson solver, our multigrid solver achieves much higher convergence rates using fewer Jacobi iterations (figure
6).

4 Topology Adaptation

We developed an optimization-based local topology adaptation method. Our method distributes computing power and memory
usage over the simulation domain by distributing active cells over mipmap levels. In particular, our method distributes active
cells according to each cell’s priority score p, such that active cells on higher-resolution mipmap levels have higher priority

7

Number of Jacobi iterations

Re
la

tiv
e

Re
sid

ua
l E

rr
or

0,01

0,1

1

10

0 25 50 75 100

Multigrid solver Non-multigrid solver

Figure 6: Relative residual error after different numbers of Ja-
cobi iterations our multigrid solver compared to a non-multigrid
solver.

scores than active cells on lower-resolution levels. In other words:

∀c1, c2 : (is active(c1) ∧ is active(c2)

∧ mipmap level(c1) < mipmap evel(c2))

⇒ p(c1) > p(c2)

(3)

When distributing cells, we need to account for the block limit Bmax,l per mipmap level and the restricted grid layout (section
3.2).

A cell’s priority score p can be any user-defined function. Potentially useful priority scores include the velocity gradient,
proximity to the camera, or proximity to a boundary. Unless stated otherwise, we use the vorticity magnitude of a cell as its
priority score.

4.1 Basic operations

Before introducing our algorithm for topology adaptation, we need to establish the basic operations that constitute the
algorithm: subblock refinement and block unrefinement.

To refine subblock s located at mipmap level Gl, we insert a block at mipmap level Gl−1 spanning the same volume
following algorithm 3. The hash table insertion uses CUDA atomic operations to allow for parallel insertions. When a block
already exists at position p, or if there is no space left at mipmap level Gl−1, we return NOT FOUND. Otherwise, subblock s is
marked as inactive, and block brefined is marked as active and positioned in the grid. Finally, the values in block brefined are
initialized by prolonging the values from subblock s (section 3.3).

Algorithm 3: Subblock refinement

Input: Subblock s to refine, located at position p and mipmap level Gl. Hash table h mapping positions to indices
in the linear memory span.

brefined ← h.insert(p, l − 1)
if brefined 6= NOT FOUND then

mark inactive(s)
mark active(brefined)
brefined.position← p
brefined.mipmap level← l
brefined.values← prolongate(s.values)

To unrefine a block b located at mipmap level Gl, we follow algorithm 4. First, we check if block b is active. If not, then
there exists a higher-resolution block at the same position. In this case, we cannot delete b, as that would leave a gap in the
grid hierarchy. If b is active, we look up the subblock s that resides at mipmap level l + 1 at the same position. Because of
our restricted grid hierarchy layout, s always exists when l < L − 1. We mark s as active and delete b from the hash table.
Again, this hash table deletion uses CUDA atomic operations and can run in parallel.

8

A hash table deletion does not clear the previously occupied key in the hash table, leaving the key unusable. After many
insertions and deletions, this will slow down lookups in the hash table. Eventually, the hash table will run out of space. To
ensure the performance of the hash table, we can refill it periodically.

Algorithm 4: Block unrefinement

Input: Block b to unrefine. Hash table h mapping positions to indices in the linear memory span.
if is active(b) then

s← h.lookup subblock(b.position, b.mipmap level + 1)
mark active(s)
mark inactive(b)
h.delete(b)

4.2 Adaptation setup

Each DCGrid instance includes at least one mipmap level for which the block limit is such that all its cells can be allocated.
In particular, let G0, . . . , GL−1 be a DCGrid instance with L mipmap levels, then there is a mipmap level l, so that for each
l ≤ l′ < L, block limit Bmax,l′ is such that Gl′ can be densely allocated. When initializing a DCGrid instance, we immediately
allocate these mipmap levels densely.

Cells on the other mipmap levels (G0, . . . , Gl−1) are allocated iteratively by refining subblocks from G1, . . . , Gl respectively.
Let Gl, 1 ≤ l < L−1 be a mipmap level on which some blocks are allocated already, i.e., Bl > 0. If Bl−1 < Bmax,l−1, then there
still space for Nl−1 = Bmax,l−1 − Bl−1 > 0 blocks on mipmap level Gl−1. We can now allocate Rl = min{Nl−1, 2

3Bl} blocks
on Gl−1 be refining Rl subblocks from Gl. To select subblocks from Gl, we perform this refinement step only once after each
timestep. We first calculate the priority score of each subblock on Gl using a simple CUDA kernel that averages the priority
scores of each cell in the subblock. We select the Rl subblocks with the highest priority scores for refinement. Selecting these
subblocks is an instance of the k-selection problem. For this problem, a O(n) algorithms exists (Blum et al. 1973). We solve
this problem using the Quick Select algorithm, as this has expected runtime O(n) and is often faster in practice.

4.3 Re-arrangement

Algorithm 5: Block re-arrangement

Input: Grids G0, . . . , GL−1, move limit per grid ml, scalars α and β determining the change in move limits.
for l = 0 . . . L− 2 do
∀s ∈ Gl+1, ps ← calc subblock score(s)
∀b ∈ Gl, pb ← calc block score(b)
Bunrefine ← {b ∈ Gl|is active(b)}
Srefine ← {s ∈ Gl+1|is active(s)}
partial sortascending(Bun refine,ml)
partial sortdescending(Srefine,ml)
vl ← 0
for (b, s) ∈ zip(Bunrefine, Srefine) do

if pb < ps then
unrefine(b)
refine(s)
vl ← vl + 1

ml ← max{αml, βvl}

In a typical fluid simulation, the distribution of values throughout the domain changes over time. Hence, the parts of the
domain that deserve the most attention also change over time. To account for these changes, we allow for re-arrangement of
blocks via algorithm 5.

We determine which blocks should be rearranged per mipmap level Gl, starting at the highest resolution mipmap level G0.
First, we calculate the priority scores of each block in Gl and each subblock in Gl+1. We then find the set of active blocks
Bunrefine ⊆ Gl and the set of active subblocks Srefine ⊆ Gl+1. We sort Bunrefine ascending Srefine descending by their priority
scores, and iterate over each pair in order. For each pair, we check if the priority score of the block is lower than the priority
score of the subblock. If this is the case, then this pair violates our adaptation objective (equation 3). To move closer towards
fulfilling the adaptation objective, we now unrefine the block and refine the subblock.

Sorting all blocks and subblocks is an expensive operation, especially as the amount of blocks grows. Optimally, we would
only sort the vl objective violating pairs. To reduce the number of blocks and subblocks to sort, introduce a move limit ml,
per mipmap level. Move limit ml indicates that at most ml subblocks can be refined and ml blocks can be unrefined at

9

mipmap level l in one execution of the re-arrangement algorithm. To find the blocks and subblocks that have to be unrefined
and refined, we now only need to find the ml blocks with the lowest priority scores and the ml subblocks with the highest
priority scores. This only requires partial sorting of Bunrefine and Srefine up to ml elements, which can be performed in
O(max{|Bunrefine|, |Srefine|} logml) time.

To find reasonable limits ml, we make three observations:

• If ml > vl, we sort more blocks and subblocks than necessary, which is a waste of time.

• If ml < vl, we sort fewer blocks and subblocks than there are objective violating pairs. Doing so leaves some objective
violating pairs unchanged, which is undesirable.

• The amount of objective violating pairs vl in one timestep is often similar to vl in the next timestep.

From these observations, we conclude that move limit ml should be larger than the amount of objective violating pairs vl,
but the difference ml − vl should as small as possible. We also see that we can predict reasonable limits ml for the next
timestep using the amount of objective violating pairs vl in the current timestep. In our experiments, we found that using
ml = max{αml, βvl}, with α = .8 and β = 1.5 gave good results.

After the re-arrangement step, we ensure that all apron cell indices point to the correct cells again. To do so, we calculate
the apron cell indices for each newly inserted block and refresh the apron cell indices that pointed to refined or unrefined
blocks.

4.4 Accuracy

(a) Uniform, 16.8M cells (b) DCGrid, 19.2M cells (c) DCGrid, 4.8M cells (d) DCGrid, 960K cells (e) DCGrid, 192K cells

Figure 7: Smoke simulation run for 150 timesteps under different memory limits. Effective resolution is 2563. Each checker-
board square represents one cell.

Figure 7 shows the same simulation run with different limits, and thus with a different number of allocated cells. The
high-resolution areas in the grid accurately follow the smoke flow. The simulation with the lowest cell limit (figure 7e) allocates
less than 1.5% of the cells used by the simulation on a uniform domain (figure 7a). Still, it faithfully captures the global
features of the smoke flow. The highest resolution adaptive simulation (figure 7c) uses one quarter of the cells that the non-
adaptive simulations use (figure 7a, 7b). This adaptive simulation reproduces almost all the details visible in the non-adaptive
simulations.

5 Boundary Conditions

Other works on fluid simulation on adaptive grids often use high-resolution cells near boundaries and other solids (Aanjaneya,
Gao, et al. 2017; Setaluri et al. 2014; Xiao et al. 2020). We use fixed limits on the number of cells that each mipmap level
can contain at any time. Always having high-resolution cells near boundaries and other solids would limit the efficacy of the
automatic adaptation algorithm. Therefore, we do not enforce cells near boundaries and other solids to have high resolution.

Not enforcing high-resolution cells near boundaries does pose a problem. We now need to handle fluid-solid interactions
on cells with different resolutions. As a solution, we propose an approximation scheme. In our scheme, we handle domain
boundaries as standard Dirichlet boundary conditions. Inside the domain, however, we do not just mark cells as either solid

10

or fluid. Instead, we define a fluidity rc ∈ [0, 1] on each cell c. Let Ω ∈ R3 be the part of the domain that is solid, then Ωc

is the part of the domain that is fluid. Now rc approximates the part of cell c that overlaps with Ωc. For example, rc = 1
indicates that cell c is completely fluid and rc = 0 indicates that c is completely solid. Figure 8 illustrates the fluidity of cells
at different mipmap levels where Ω is a sphere with radius 4, i.e Ω = {x ∈ R3 : ‖x− (8, 8, 8)‖ ≤ 4}.

Figure 8: Fluidity rc for cells of different resolutions against a
simple spherical boundary.

5.1 Approximating Fluidity

A naive implementation might regard a cell c at a coarse mipmap level l and position p ∈ R3 as if it were the sum of the
high-resolution cells it spans. It would calculate rc by iterating over all these high-resolution cells, and then taking the average
of their fluidity:

rc =
1

8l

p.x+2l∑
x=p.x

p.y+2l∑
y=p.y

p.z+2l∑
z=p.z

1Ωc(x, y, z), (4)

where 1Ωc : R3 7→ {0, 1} is the indicator function of Ωc. This way, approximating the fluidity of coarse cells requires more
computations than approximating the fluidity of fine cells. This is contrary to our reason for using coarse cells in the first
place: to save computational power.

Our method approximates the fluidity of each cell using a single evaluation of the signed distance function (SDF) of Ω.
We define the SDF of Ω, fΩ : R3 7→ R as usual:

fΩ(x) =

{
d(x, ∂Ω) if x ∈ Ωc

−d(x, ∂Ω) if x ∈ Ω,
(5)

where ∂Ω denotes the boundary of Ω and
d(x, ∂Ω) = inf

y∈∂Ω
‖x− y‖. (6)

To use this signed distance function, we use the following property of signed distance functions:

Theorem 1. Let Ω ∈ R3 be a bounded set with signed distance function fΩ : R3 7→ R and let x,y ∈ R3 be two points such
that x 6∈ ∂Ω and ‖x− y‖ < |fΩ(x)|. Then x and y are both inside, or both outside of Ω, i.e., y ∈ Ω if and only if x ∈ Ω.

Proof. Let Ω, fΩ, x and y be defined as before. If x ∈ Ω and y ∈ Ωc, or if x ∈ Ωc and y ∈ Ω, then the shortest path between x
and y crosses ∂Ω at least once at some point z ∈ ∂Ω. It follows that ‖x−y‖ = ‖x−z‖+‖y−z‖ ≥ ‖x−z‖ ≥ d(x, ∂Ω) = |fΩ(x)|.
This statement contradicts our condition that ‖x− y‖ < |fΩ(x)|. Hence, either both x,y ∈ Ω, or both x,y ∈ Ωc

Now, let c be a grid cell at mipmap level l centered around p ∈ R3. We can interpret c as a cube with edge length s = 2l

and thus for each point p′ ∈ c, ‖p− p′‖ < 1
2
s
√

3.
Using theorem 1, we observe the following:

• If p ∈ Ωc and fΩ(p) > 1
2
s
√

3, then the cell is completely fluid, i.e., c ⊆ Ωc and hence its fluidity is rc = 1.

• If p ∈ Ω and fΩ(p) < − 1
2
s
√

3, then the cell is completely solid, i.e., c ⊆ Ω and hence its fluidity is rc = 0.

11

• If − 1
2
s
√

3 ≤ fΩ(p) ≤ 1
2
s
√

3, then part of the cell overlaps with Ω and part with Ωc. In this case, calculating the exact
volume of c ∩ Ω would be expensive and thus, we approximate 0 ≤ rc ≤ 1.

We combine these three observations to define a general approximation formula for a cell’s fluidity:

rc =
1

2
+
fΩ(p)

s
√

3
(7)

5.2 Handling partially solid cells

We accounted for partially solid cells in our fluid simulation by modifying some operations. Specifically, we modified the
semi-Lagrangian advection and the diffusion operations.

5.2.1 Advection

Figure 9: Sampling for advection at point p. Solid areas
marked.

To perform semi-Lagrangian advection with partially solid cells, we trace back velocities from cell centers as usual. We
differed in the method used for sampling.

Let p be the point at which to sample for advection, and let c1, c2, c3 and c4 be the cells surrounding p centered around
p1,p2,p3 and p4 respectively (figure 9). Normally, one would sample a value by linearly interpolating values v1, v2, v3 and
v4 depending upon position p. The problem with this way of sampling is that the partially solid cells influence the resulting
value too much. To balance the influence of partially solid cells, we implemented a weighted interpolation scheme. Let grid
spacing be ∆x. For i ∈ {1, 2, 3, 4}, we define the weight of cell i as

wi = rci
(∆x− |p.x− pi.x|)(∆x− |p.y − pi.y|)(∆x− |p.z − pi.z|)

∆x3
(8)

Given values vi at cell ci, we interpolate as follows:

v =

∑
i∈{1,2,3,4} viwi∑
i∈{1,2,3,4} wi

(9)

When all surrounding cells are completely fluid, i.e., rci = 1 for i ∈ {1, 2, 3, 4}, then this interpolation method is equal to
bilinear interpolation. When all surrounding cells are completely solid, i.e., rci = 0 for i ∈ {1, 2, 3, 4}, we return a default
value depending on the quantity that is advected.

5.2.2 Diffusion

(a) rc1 = 1,
rc2 = 1

(b) rc1 = 1,
rc2 = 0

(c) rc1 = 3
4

,

rc2 = 1
2

Figure 10: Different scenarios for diffusion. Solid areas marked.

In this section, we consider the diffusion of quantities through the fluid. We implemented the diffusion operation for each
cell as a simple seven-point stencil that computes the diffusion between a cell and its 6 direct neighbors. To account for
partially solid cells, we adjust the amount of diffusion between a cell and one of its neighbors based on their fluidity.

Let c1, c2 be two directly neighboring cells and let α be the amount of diffusion between the cells if both are completely
fluid. To calculate the actual amount of diffusion s(c1, c2) between the two cells, we consider three scenarios:

• If both cells are completely fluid, diffusion between the cells is not limited (figure 10a).

12

• If at least one of the cells is completely solid, i.e., min{rc1 , rc2} = 0, there can be no diffusion between them (figure 10b).

• If both cells are partially fluid, i.e., 0 < rc1 , rc2 ≤ 1, then, on average, the area of the diffusion interface is limited by

min{rc1 , rc2}. However, also on average, the volume over which diffusion is performed is scaled by
rc1+rc2

2
(figure 10c).

If we combine the three scenarios, we find a general formula for the amount of diffusion between directly neighboring cells
c1 and c2:

s(c1, c2) = α
2 min{rc1 , rc2}
rc1 + rc2

. (10)

Iteration

M
as

s p
re

se
rv

at
io

n

0

0,25

0,5

0,75

1

1,25

10 20 30 40 50 60 70

512^3 256^3 128^3 64^3 32^3

Figure 11: Smoke mass conservation over time for smoke flow
around sphere simulated over 75 timesteps on uniform grids
with different resolutions. Note that the smoke hit the sphere
around timestep 50 on each resolution.

5.3 Performance

(a) t = 75,
r = 5123,
no obstacle

(b) t = 25,
r = 5123

(c) t = 75,
r = 5123

(d) t = 75,
r = 2563

(e) t = 75,
r = 1283

(f) t = 75,
r = 643

(g) t = 75,
r = 323

Figure 12: Smoke flow around sphere simulated over 75 timesteps using uniform grids with different resolutions.

Figure 12 shows our approximate fluid-solid interactions in action on a simulation of smoke flow past a sphere. We observe
similar global behavior when the smoke collides with the spherical solid on vastly different resolutions. Figure 11 reinforces
this observation by showing that the mass conservation over time follows a similar trajectory for the higher resolutions 1283,
2563, and 5123. While relatively more mass is absorbed by the solid at lower resolutions 643 and 323, the global visual behavior
still looks plausible.

By pre-computing the fluidity of cells, we can handle arbitrarily complex solids with no runtime overhead and constant
memory overhead.

13

Table 1: Overview of the quantities stored in each cell type in the simulations in this paper.

Cell type Quantity Description

Atmosphere

tf Potential temperature
vf Vapor density
cf Warm cloud density
if Ice cloud density
af Ash density
rf Precipitated rain density
sf Precipitated snow density
gf Precipitated graupel density

Surface

ts Temperature
hs Humidity
fs Fuel density (e.g. grass, litter)
as Ash density
ws Water
ss Snow
gs Graupel

Ground

tg Temperature
hg Humidity

-
Soil Properties
(e.g. albedo, heat capacity)

6 Terrain-Atmosphere Interaction

In their recent work, Hädrich et al. 2020 were able to simulate a wide variety of cloud types using a single general model.
They relied on first-principle formulations of atmospheric physics and a small set of parameters describing heat and humidity
on the ground to simulate anything from mist to cumulus clouds. They modeled the ground as an inlet boundary condition,
which worked well when quantities are relatively constant. When quantities at the ground rapidly change, this model could
not capture their effects truthfully (figure 15a). We introduce a new method that does capture both relatively constant and
rapidly changing quantities at the ground. Our method allows for the simulation of an even wider variety of atmospheric
phenomena compared to previous work.

6.1 Three-Layer System

Algorithm 6: Terrain-Atmosphere Interaction

Input: Rectangular domain D = {x0, . . . , x1} × {y0, . . . , y1} × {z0, . . . , z1},
with horizontal slice Dh = {x0, . . . , x1} × {z0, . . . , z1},
heightmap h : Dh 7→ R,
ground layer g : Dh 7→ GroundCell,
surface layer s : Dh 7→ SurfaceCell,
atmosphere layer f : D 7→ AtmosphereCell.

advect temperature(s, h)
advect water(s, h)
diffuse quantities(s)
for p ∈ Dh do

c←
{
f [p.x, y,p.z] : y ∈ {y0, . . . , y1}

}
diffuse atmosphere to surface(s[p], c)
diffuse ground to surface(s[p], g[p])
apply state transitions(s[p], h[p])
diffuse surface to atmosphere(s[p], c)

We model terrain-atmosphere interactions as a diffusion process consisting of three layers: a two-dimensional ground layer,
a two-dimensional surface layer and a three-dimensional atmosphere layer. Table 1 describes the quantities stored in the cells
of each layer.

We update quantities in the three layers according to algorithm 6. First, we update the surface layer in isolation. The
surface layer update transports temperature uphill, and water content downhill using semi-Lagrangian advection. It also
diffuses both temperature and water content in each cell with their neighbors. The state transitions operation handles

14

microphysics per surface cell. These microphysics include the melting of snow, the pyrolysis of ground fuels, and other effects.
The ground layer models the base values. The quantities in the surface layer will revert to these base values when not

externally influenced. We modeled interactions between the surface and the atmosphere layer as a diffusion process split
into two parts. First, the surface layer is updated using quantities from the atmosphere. Then, the atmosphere is updated
by diffusing quantities from the surface layer into the atmosphere. Since we work with fluid cells of different resolutions,
diffusing the quantities into a single fluid cell would lead to unrealistic results, especially as cells get coarser (figure 13a).
Instead, we diffuse the quantities from the surface into the complete column above the surface cell. We distribute the diffusion
strength s following an exponential distribution (figure 13b). Let ∆a ≥ 0 be the altitude of a point above the surface. Let
∆t > 0 be the timestep and let hd > 0 be a general diffusion parameter, controlling the strength of the diffusion. Now
s(∆a) = exp (−∆a/(hd∆t)). Note that

∫∞
0
s(∆a) d(∆a) = 1 for all values of hd and ∆t.

Let c be an atmosphere cell with top and bottom altitudes b, respectively a. Let h be the altitude of the terrain under the
cell. To calculate the diffusion strength for sc for cell c, we integrate s over [max{0, a− h},max{0, b− h}]. This results in the
following formula:

sc = exp
(
−hd∆tmax{0, a− h}

)
− exp

(
−hd∆tmax{0, b− h}

)
. (11)

(a) Diffusion into lowest cell that
is completely above the terrain.
Note the unnatural gaps.

(b) Ideal situation. Diffusion
into all cells above the terrain
following an exponential distri-
bution.

Figure 13: Two different approaches to surface to atmosphere
diffusion.

To diffuse values from the atmosphere into the surface, we apply the inverse operation of diffusion from the surface into
the atmosphere. We sample quantities from the atmosphere column using the same distribution s(∆a) and update the surface
cells according to these quantities.

6.2 Expressiveness of our approach

With our approach, we produced a spatial transition from low fog-like structures to cumulus clouds (figure 14a). Contrary to
the previous work (Hädrich et al. 2020), we show that this structure is unstable over time (figure 14b). The discrete patches of
cloud visible at timestep t = 150 converge into a more uniform layer of clouds at timestep t = 450. This instability is caused
by our multigrid projection method. Compared to the non-multigrid solver used in the previous work, our multigrid solver
takes more global features of the velocity field into account.

Additionally, our approach captures rapidly evolving terrain conditions that the previous method could not capture, such
as wildfires (figure 15).

7 Results

In this section, we present the results of comparing our framework with other fluid systems. We implemented all simulations
on DCGrid on the GPU using CUDA. Unless stated otherwise, we performed all simulations on an NVIDIAR○ GeForce GTX
1070.

7.1 Comparison to a uniform grid

We evaluated the performance of the DCGrid data structure by running the same fluid simulation on a DCGrid instance in
which the domain is densely allocated and on a simple uniform grid.

In terms of runtime, the DCGrid instance required 75% more time per frame than the uniform grid (table 2). Fluid
operations on DCGrid are slower because they require pointer indirections. Also, after each update, DCGrid requires some
extra time to accumulate changed values. Rendering performs worse because of the number of computations required to
translate a position into a cell index.

15

(a) t = 150

(b) t = 450

Figure 14: Transition from fog (left) over stratocumulus to cumulus (right). We use the same setup as Hädrich et al. 2020.

DCGrid also has a memory overhead when compared to a uniform grid. In this example, DCGrid uses about 2.2 times
the amount of memory that a uniform grid uses. In general, the memory overhead of DCGrid depends on the number of
floating-point channels used per cell. When using 17 floating-point channels per cell, the memory overhead of DCGrid is only
about 40%. The apron cell indices are the main contributor to the memory overhead.

7.2 Comparison to SPGrid

DCGrid is inspired by and shares characteristics with SPGrid (Setaluri et al. 2014). To test DCGrid against SPGrid, we
recreated one of the scenes that they showcased (figure 16). Because of limited GPU memory, we can only allocate 112M cells
in our DCGrid instance, compared to the 135M that SPGrid used. Even with fewer cells, our automatic topology adaptation
scheme produces a more detailed simulation. Because DCGrid uses cell-centered advection, reuses temporary channels, and
does not require ghost cells, DCGrid uses only about one-third of the memory compared to SPGrid. Even including the time
for rendering, this experiment on DCGrid runs about 449 times faster than the original experiment on SPGrid (table 2). As
DCGrid and SPGrid run on different systems and our experiment in DCGrid used only about 82% of the cells that the SPGrid
experiment used, the performance difference might be less significant in other scenarios.

7.3 Comparison to GVDB

To compare DCGrid to GVDB, we set up a simple smoke simulation in GVDB (figure 17). In the experiment, we used
cell-centered semi-Lagrangian advection, simple vorticity confinement, and non-multigrid projection using 10 Jacobi iterations
for both DCGrid and GVDB. We set up GVDB such that the domain automatically expands around the smoke, once using
bricks of 323 cells and once using bricks of 83 cells. GVDB used the least memory and ran the fastest using bricks of 83 cells.
To get a fair comparison between GVDB and DCGrid, we configured the memory limit for the DCGrid instance to be equal to
the memory used by the GVDB instance with bricks of 83 cells. Using this same amount of memory, DCGrid allocated 1.57M
cells (of which 1.38M active cells), while GVDB allocated only 1.18M cells. Also, DCGrid performed the fluid simulation
about 4.8 times as fast as GVDB overall. We attribute a large part of the performance difference between GVDB and DCGrid
to the projection operation, where GVDB has to synchronize its apron cells after each iteration. For just rendering, GVDB

16

(a) t = 150, previous method (b) t = 150, our method (c) t = 450, our method

Figure 15: Wildfire caused by the ignition of dry grass.

Table 2: Timings and memory usage of experiments included in this work. For the quantities used in each experiment, see
appendix A.

Scene Structure Domain Memory Floats Avg. Time / Timestep (ms)
(MB) / Cell Advect Project Topology Render Rest Total

Fig. 7a Uniform 2563 537 8 34 24 - 2.0 16 76
Fig. 7b DCGrid 2563 1177 8 50 39 8.6 9.5 22 130
Fig. 7c DCGrid 2563 294 8 13 9.7 7.3 12 5.7 47
Fig. 7d DCGrid 2563 59 8 3.9 2.5 2.8 10 1.8 21
Fig. 7e DCGrid 2563 12 8 1.4 0.9 1.6 7.1 1.4 12
Fig. 1 DCGrid 512× 1282 193 17 11 4.8 6.4 25 13 60
Fig. 14 DCGrid 512× 64× 128 193 17 11 4.7 5.5 19 13 52
Fig. 15 DCGrid 2563 193 17 9.7 4.4 5.1 17 9.5 46
Fig. 16a SPGrid1 10242 × 2048 23GB 16 26s 525s - ? 24 575s
Fig. 16b DCGrid 10242 × 2048 6872 8 507 430 303 41 - 1280
Fig. 17a GVDB 2563 422 8 24 127 6.9 2.4 20 180
Fig. 17b GVDB 2563 97 8 15 102 9.3 1.4 15 142
Fig. 17c DCGrid 2563 97 8 5.2 9.1 3.5 9.2 2.2 29

1 Data for the SPGrid result is sourced from Setaluri et al. 2014. This data did not include rendering time. Experiment run on Intel
Xeon E5-2670.

is significantly faster than DCGrid. We can attribute this performance to their efficient empty skipping and block traversal
algorithms.

GVDB only allocates cells on the highest resolution. In this particular case, this benefits the result. GVDB only has to
use memory for the high-resolution cells. Therefore, it can allocate more of them than DCGrid, using the same amount of
memory. As a result, it preserves some more details in the simulation. In general, only allowing cells on the highest resolution
can be a limitation for GVDB. Due to this restriction, for example, we have to resort to a non-multigrid solver for velocity
projection.

8 Conclusions and Future Work

We presented a spatially adaptive grid structure tailored for fluid simulations and suitable for implementation on the GPU.
We introduced an efficient, optimization-based algorithm for automatic local grid refinement based on user parameters. We
also introduced new methods for efficiently handling solid-fluid interactions approximately for cells of different resolutions.
Additionally, we were able to extend an earlier model for terrain-atmosphere interaction such that it handles rapidly changing
values and a multi-resolution fluid grid. We demonstrated the expressiveness of this extension by recreating one scene with
a transition from low-hanging, fog-like clouds to cumulus clouds and another with a wildfire. We compared our method to
the state-of-the-art data structures SPGrid and GVDB and found that our method performs fluid simulations multiple times
faster than both SPGrid and GVDB. We found that GVDB achieves superior rendering performance.

When comparing simulations on DCGrid to the same simulations on a uniform grid, we were able to generate similar results

17

(a) Smoke flow simulated using SPGrid, 135M allocated cells. Image
source Setaluri et al. 2014.

(b) Smoke flow simulated using DCGrid, 112M allocated cells.

Figure 16: Comparison between DCGrid and SPGrid on a smoke flow around sphere. Domain size is 10242 × 2048, each
checkerboard square represents a 43 cells.

18

(a) GVDB, brick size 323 (b) GVDB, brick size 83 (c) DCGrid

Figure 17: Smoke simulation run in GVDB and DCGrid on a 2563 grid. Middle and right scene both use 97MB memory at
most.

19

using only a fraction of the memory. Currently, densely allocated DCGrid instances suffer a performance and memory penalty
compared to fluid simulations on a uniform grid. To reduce this performance penalty, it seems promising to explore CUDA’s
virtual memory management APIs, introduced in CUDA 10.2. If we can employ these APIs successfully, we could perform
random access without relying on pointer indirections and hash table lookups, as if the grid were uniform. Consequently,
the hash table and the pre-calculated apron cell indices would become redundant. Removing these two structures would
significantly reduce both the runtime and the memory overhead. Additionally, we could explore the approach used in Wu et
al. 2018 and store cell data in textures. Using textures could potentially improve the performance of advection and rendering,
as it would enable hardware-accelerated interpolation.

Our structure is currently limited in three ways. First, we use fixed-size blocks of 43 cells. Allowing users to vary the block
size could be beneficial to simulations. Larger blocks, for example, would require fewer apron cell indices per cell, which would
reduce memory overhead. Second, we limit the maximum number of blocks per mipmap level. This limit does not appear to
restrict the scenarios we explored. However, we could explore using an overall block limit instead. Such a limit would allow
for more flexible grid layouts, which could help in highly dynamic scenarios. Finally, we only support rectangular domains,
which limits the range of our simulations. As fluids often flow outside their initial domain, allocating cells outside the initially
defined rectangle would open up new possibilities.

References

Aanjaneya, Mridul, Ming Gao, et al. (2017). “Power diagrams and sparse paged grids for high resolution adaptive liquids”.
In: ACM Transactions on Graphics 36.4, pp. 1–12. doi: 10.1145/3072959.3073625.

Aanjaneya, Mridul, Chengguizi Han, et al. (2019). “An Efficient Geometric Multigrid Solver for Viscous Liquids”. In: Proceed-
ings of the ACM on Computer Graphics and Interactive Techniques 2.2, pp. 1–21. doi: 10.1145/3340255.

Blum, Manuel et al. (1973). “Time bounds for selection”. In: J. Comput. Syst. Sci. 7.4, pp. 448–461.
Bouthors, Antoine and Fabrice Neyret (Aug. 2004). “Modeling clouds shape”. In: Eurographics (short papers). Eurographics

Association. New Zealand: Eurographics Association. doi: 10.2312/egs.20041020.
Brandt, Christopher et al. (2019). “The reduced immersed method for real-time fluid-elastic solid interaction and contact

simulation”. In: ACM Transactions on Graphics 38.6, pp. 1–16. doi: 10.1145/3355089.3356496.
Cooke, J.J. et al. (2014). “Adaptive mesh refinement of gas–liquid flow on an inclined plane”. In: Computers & Chemical

Engineering 60, pp. 297–306. issn: 0098-1354. doi: https://doi.org/10.1016/j.compchemeng.2013.09.007. url:
https://www.sciencedirect.com/science/article/pii/S0098135413002767.

Cornelis, Jens et al. (2014). “IISPH-FLIP for incompressible fluids”. In: Computer Graphics Forum 33.2, pp. 255–262. doi:
10.1111/cgf.12324.

Fedkiw, Ronald, Jos Stam, and Henrik Wann Jensen (2001). “Visual simulation of smoke”. In: Proceedings of the 28th annual
conference on Computer graphics and interactive techniques - SIGGRAPH 01. doi: 10.1145/383259.383260.

Ferreira Barbosa, Charles Welton, Yoshinori Dobashi, and Tsuyoshi Yamamoto (2015). “Adaptive cloud simulation using
position based fluids”. In: Computer Animation and Virtual Worlds 26.3-4, pp. 367–375. doi: 10.1002/cav.1657.

Ferstl, Florian et al. (2016). “Narrow Band FLIP for Liquid Simulations”. In: Computer Graphics Forum 35.2, pp. 225–232.
doi: 10.1111/cgf.12825.

Foster, Nick and Ronald Fedkiw (2001). “Practical animation of liquids”. In: Proceedings of the 28th annual conference on
Computer graphics and interactive techniques, pp. 23–30.

Gao, Ming et al. (2019). “GPU optimization of material point methods”. In: ACM Transactions on Graphics 37.6, pp. 1–12.
doi: 10.1145/3272127.3275044.

Gardner, Geoffrey Y. (July 1985). “Visual Simulation of Clouds”. In: SIGGRAPH Comput. Graph. 19.3, pp. 297–304. issn:
0097-8930. doi: 10.1145/325165.325248. url: https://doi.org/10.1145/325165.325248.

Gissler, Christoph et al. (2019). “Interlinked SPH Pressure Solvers for Strong Fluid-Rigid Coupling”. In: ACM Transactions
on Graphics 38.1, pp. 1–13. doi: 10.1145/3284980.

Hädrich, Torsten et al. (2020). “Stormscapes: Simulating Cloud Dynamics in the Now”. In: ACM Transactions on Graphics
39.6, pp. 1–16. doi: 10.1145/3414685.3417801.

Hoetzlein, Rama Karl (2016). “GVDB: Raytracing Sparse Voxel Database Structures on the GPU”. In: Eurographics/ ACM
SIGGRAPH Symposium on High Performance Graphics. Ed. by Ulf Assarsson and Warren Hunt. ?: The Eurographics
Association. isbn: 978-3-03868-008-6. doi: 10.2312/hpg.20161197.

Hu, Yuanming et al. (2018). “A moving least squares material point method with displacement discontinuity and two-way
rigid body coupling”. In: ACM Transactions on Graphics 37.4, pp. 1–14. doi: 10.1145/3197517.3201293.

Inglis, T. et al. (2017). “Primal-Dual Optimization for Fluids”. In: Computer Graphics Forum 36.8, pp. 354–368. doi: 10.
1111/cgf.13084.

Kajiya, James T. and Brian P Von Herzen (1984). “Ray Tracing Volume Densities”. In: Proceedings of the 11th Annual
Conference on Computer Graphics and Interactive Techniques. New York, NY, USA: Association for Computing Machinery,
pp. 165–174. isbn: 0897911385. doi: 10.1145/800031.808594. url: https://doi.org/10.1145/800031.808594.

Kim, Byungsoo et al. (2019). “Transport-based neural style transfer for smoke simulations”. In: ACM Transactions on Graphics
38.6, pp. 1–11. doi: 10.1145/3355089.3356560.

Lapointe, Caelan et al. (2020). “Efficient simulation of turbulent diffusion flames in OpenFOAM using adaptive mesh refine-
ment”. In: Fire Safety Journal 111, p. 102934. doi: 10.1016/j.firesaf.2019.102934.

20

https://doi.org/10.1145/3072959.3073625
https://doi.org/10.1145/3340255
https://doi.org/10.2312/egs.20041020
https://doi.org/10.1145/3355089.3356496
https://doi.org/https://doi.org/10.1016/j.compchemeng.2013.09.007
https://www.sciencedirect.com/science/article/pii/S0098135413002767
https://doi.org/10.1111/cgf.12324
https://doi.org/10.1145/383259.383260
https://doi.org/10.1002/cav.1657
https://doi.org/10.1111/cgf.12825
https://doi.org/10.1145/3272127.3275044
https://doi.org/10.1145/325165.325248
https://doi.org/10.1145/325165.325248
https://doi.org/10.1145/3284980
https://doi.org/10.1145/3414685.3417801
https://doi.org/10.2312/hpg.20161197
https://doi.org/10.1145/3197517.3201293
https://doi.org/10.1111/cgf.13084
https://doi.org/10.1111/cgf.13084
https://doi.org/10.1145/800031.808594
https://doi.org/10.1145/800031.808594
https://doi.org/10.1145/3355089.3356560
https://doi.org/10.1016/j.firesaf.2019.102934

Lentine, Michael, Mridul Aanjaneya, and Ronald Fedkiw (2011). “Mass and Momentum Conservation for Fluid Simulation”. In:
Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. SCA ’11. Vancouver, British
Columbia, Canada: Association for Computing Machinery, pp. 91–100. isbn: 9781450309233. doi: 10.1145/2019406.

2019419. url: https://doi.org/10.1145/2019406.2019419.
Liu, Haixiang et al. (Nov. 2016). “A Scalable Schur-Complement Fluids Solver for Heterogeneous Compute Platforms”. In:

ACM Trans. Graph. 35.6. issn: 0730-0301. doi: 10.1145/2980179.2982430. url: https://doi.org/10.1145/2980179.
2982430.

Losasso, Frank, Frédéric Gibou, and Ron Fedkiw (2004). “Simulating water and smoke with an octree data structure”. In:
ACM Transactions on Graphics 23.3, pp. 457–462. doi: 10.1145/1015706.1015745.

Museth, Ken (2013). “VDB: High-Resolution Sparse Volumes with Dynamic Topology”. In: ACM Transactions on Graphics
32.3, pp. 1–22. doi: 10.1145/2487228.2487235.

Neyret, Fabrice (1997). “Qualitative Simulation of Convective Cloud Formation and Evolution”. In: Eurographics Computer
Animation and Simulation ’97. Vienna: Springer Vienna, pp. 113–124. isbn: 978-3-7091-6874-5. doi: 10.1007/978-3-
7091-6874-5_8.

Nielsen, Michael B. and Robert Bridson (2016). “Spatially Adaptive FLIP Fluid Simulations in Bifrost”. In: ACM SIGGRAPH
2016 Talks. SIGGRAPH ’16. Anaheim, California: Association for Computing Machinery. isbn: 9781450342827. doi: 10.
1145/2897839.2927399. url: https://doi.org/10.1145/2897839.2927399.

Nielsen, Michael B., Konstantinos Stamatelos, et al. (2020). “Auto-Adaptivity: An Optimization-Based Approach to Spatial
Adaptivity for Smoke Simulations”. In: Special Interest Group on Computer Graphics and Interactive Techniques Confer-
ence Talks ? doi: 10.1145/3388767.3407320.

Sato, Syuhei et al. (2018). “Example-based turbulence style transfer”. In: ACM Transactions on Graphics 37.4, pp. 1–9. doi:
10.1145/3197517.3201398.

Schoentgen, Arnaud et al. (2020). “A density-accurate tracking solution for smoke upresolution”. In: The Visual Computer
36.10-12, pp. 2299–2311. doi: 10.1007/s00371-020-01889-3.

Setaluri, Rajsekhar et al. (2014). “SPGrid: A Sparse Paged Grid structure applied to adaptive smoke simulation”. In: ACM
Transactions on Graphics 33.6, pp. 1–12. doi: 10.1145/2661229.2661269.

Stam, Jos (1999). “Stable Fluids”. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’99. USA: ACM Press/Addison-Wesley Publishing Co., pp. 121–128. isbn: 0201485605. doi:
10.1145/311535.311548. url: https://doi.org/10.1145/311535.311548.

Ummenhofer, Benjamin et al. (2019). “Lagrangian Fluid Simulation with Continuous Convolutions”. In: International Con-
ference on Learning Representations. ?: International Conference on Learning Representations.

Vimont, Ulysse et al. (2020). “Interactive Meso-scale Simulation of Skyscapes”. In: Computer Graphics Forum 39.2, pp. 585–
596. doi: 10.1111/cgf.13954.

Wu, Kui et al. (2018). “Fast Fluid Simulations with Sparse Volumes on the GPU”. In: Computer Graphics Forum 37.2,
pp. 157–167. doi: 10.1111/cgf.13350.

Xiao, Yuwei et al. (2020). “An adaptive staggered-tilted grid for incompressible flow simulation”. In: ACM Transactions on
Graphics 39.6, pp. 1–15. doi: 10.1145/3414685.3417837.

Xie, You et al. (2018). “tempoGAN: A Temporally Coherent, Volumetric GAN for Super-resolution Fluid Flow”. In: ACM
Transactions on Graphics 37.4, pp. 1–15. doi: 10.1145/3197517.3201304.

Zehnder, Jonas, Rahul Narain, and Bernhard Thomaszewski (2018). “An advection-reflection solver for detail-preserving fluid
simulation”. In: ACM Transactions on Graphics 37.4, pp. 1–8. doi: 10.1145/3197517.3201324.

Zhang, Xinxin, Robert Bridson, and Chen Greif (2015). “Restoring the missing vorticity in advection-projection fluid solvers”.
In: ACM Transactions on Graphics 34.4, pp. 1–8. doi: 10.1145/2766982.

Zhu, Yongning and Robert Bridson (2005). “Animating sand as a fluid”. In: ACM Transactions on Graphics (TOG) 24.3,
pp. 965–972.

A Quantities per Simulation

The quantities simulated in each experiment are summarized in table 3.

Table 3: Quantities simulated throughout the different experiments. Temporaries are reused for different purposes across
multiple operations.

Scenes Densities Misc. quantities Temporaries

Fig. 1, 14, 15 Vapor, Warm cloud, Frozen cloud, Ash, Rain, Snow, Graupel Temperature, Fluidity 5
Fig. 16 Smoke Fluidity 3
Fig. 7, 17 Smoke Temperature 3

21

https://doi.org/10.1145/2019406.2019419
https://doi.org/10.1145/2019406.2019419
https://doi.org/10.1145/2019406.2019419
https://doi.org/10.1145/2980179.2982430
https://doi.org/10.1145/2980179.2982430
https://doi.org/10.1145/2980179.2982430
https://doi.org/10.1145/1015706.1015745
https://doi.org/10.1145/2487228.2487235
https://doi.org/10.1007/978-3-7091-6874-5_8
https://doi.org/10.1007/978-3-7091-6874-5_8
https://doi.org/10.1145/2897839.2927399
https://doi.org/10.1145/2897839.2927399
https://doi.org/10.1145/2897839.2927399
https://doi.org/10.1145/3388767.3407320
https://doi.org/10.1145/3197517.3201398
https://doi.org/10.1007/s00371-020-01889-3
https://doi.org/10.1145/2661229.2661269
https://doi.org/10.1145/311535.311548
https://doi.org/10.1145/311535.311548
https://doi.org/10.1111/cgf.13954
https://doi.org/10.1111/cgf.13350
https://doi.org/10.1145/3414685.3417837
https://doi.org/10.1145/3197517.3201304
https://doi.org/10.1145/3197517.3201324
https://doi.org/10.1145/2766982

Supplementary Material

This section of the thesis aims to familiarize people with the topics discussed in the article. Reading this supplement should
give you enough background information to fully appreciate the work presented in the article. This supplement also discusses
alternative methods for spatial adaptivity in more depth.

1 Fluid Simulations

Fluid simulation is a broad term, that encapsulates the simulation of any sort of liquid or gas, their interactions with each
other, and their interactions with other objects. On a basic level, fluid flows can be described from two perspectives. On one
side, fluids can be seen as a large collection of particles moving through space. Each particle has its individual mass, velocity,
temperature and other properties. This perspective is called the Lagrangian perspective (figure 18a). On the other side, we
can divide a space into cells. Instead of describing how each individual particle moves, instead, we describe how the fluid at
each cell evolves over time. This perspective is called the Eulerian perspective (figure 18b). Fluid simulation methods often
mix these two perspectives to reach good results.

In this thesis, we focus on simulating fluids as seen from an Eulerian perspective. This section aims to give an overview
of the basic aspects of such a simulation. For clarity, we focus on incompressible, homogeneous, single-phase fluids, on a
two-dimensional, Cartesian grid with spacing 1 and leave out diffusion, vorticity confinement and external forces. For a more
complete introduction to fluid simulation on Cartesian grids, see Stam 1999.

(a) Lagrangian perspective (b) Eulerian perspective

Figure 18: The same fluid described from two different perspec-
tives.

1.1 Navier-Stokes Equations for Incompressible Flow

The state of a fluid at time t at position x in a Cartesian grid with spacing 1 can be described by a velocity field u(x, t) and
a pressure field p(x, t). If we know the initial velocity and pressure, then we can describe the evolution of these fields using
the Navier-Stokes equations:

∂u

∂t
= −(u · ∇)u−∇p, (12)

∇ · u = 0. (13)

To solve these equations, we use a version of the Helmholtz-Hodge decomposition theorem:

Theorem 2. Let D ⊆ R2 be a bounded set with smooth boundary ∂D and let n : ∂D 7→ R2 be the normal direction of this
boundary. Let w be a vector field on D that is twice differentiable. Now w can be uniquely decomposed in a divergence free
vector field u and in the gradient of a scalar field ∇p as

w = u +∇p. (14)

Next, we define the distributive projection operator P , that maps a vector field to its divergence-free part: Pw = u.
If we apply P to equation 14, we find Pw = Pu + P (∇p). Since u is already divergence free, Pu = u and thus

u = u + P (∇p). Therefor, P (∇p) = 0.
By applying the projection operator to both sides of equation 12, we get:

P
∂u

∂t
= P (−(u · ∇)u−∇p) (15)

22

As u is divergence free, so is ∂u
∂t

, hence equation 15 simplifies to:

∂u

∂t
= P (−(u · ∇)u) = Pw (16)

This formulation is very useful, as w is simply the resulting velocity field after advection of the velocity field by itself (section
1.2).

To determine Pw, we can apply the Helmholtz-Hodge decomposition 2:

w = Pw +∇p. (17)

If we apply the divergence operator on both sides of equation 17, we get:

∇ ·w = ∇(Pw +∇p) = 0 +∇2p. (18)

The last equation holds because Pw is divergence-free. The resulting equation is a Poisson equation, also known as the
pressure Poisson equation:

∇2p = ∇w (19)

We can retrieve p by solving this equation, either analytically, or using numerical methods (1.3). Using the value for p, we
can write Pw = w −∇p and we find:

∂u

∂t
= w −∇p (20)

1.2 Semi-Lagrangian Advection

Advection is the process with which quantities are propagated through space. Advection can be applied to densities, velocity
and any other quantity of the fluid field.

To advect quantities, we use the first-order implicit integration method as proposed by Stam 1999. To advect a quantity
q through the domain:

qt+∆t(x) = qt(x− u(x, t)∆t) (21)

The advantage of this method over other methods, is that it is simple and stable for arbitrary timesteps and velocities.
To implement this method, we assume a particle to be present at the center of each grid cell x at time t+ ∆t and we trace

the trajectory of this particle back to where it was at time t, given u(x, t). We then find the resulting quantity by linearly
interpolating the quantities at time t at the 4 grid cells surrounding the backtraced position.

1.3 Solving the Pressure Poisson Equation

The Poisson equation ∇2p = ∇ ·w can be written as a matrix equation Ax = b where A = ∇2, x = p and b = ∇ ·w. To
solve this matrix equation, we need to find the inverse of A. The size of this matrix depends directly upon the resolution of
the grid, and thus it quickly becomes infeasible to compute its inverse analytically as the grid resolution grows.

Instead, we can approach the solution using an iterative method. Our method of choice is the Jacobi iteration method, as
it is easily paralellizable on the GPU.

The Jacobi method works by decomposing matrix A into a diagonal matrix D and a matrix R with diagonal elements
equal to zero, such that A = D +R.

The solution to Ax = b is then approximated by:

x(n+1) = D−1(b−Rx(n)) (22)

For our pressure Poisson equation, computing one Jacobi iteration per grid cell now amounts to:

p
(n+1)
i,j =

p
(n)
i+1,j + p

(n)
i−1,j + p

(n)
i,j+1 + p

(n)
i,j−1 − (∇ ·w)i,j

4
(23)

We can now solve the pressure Poisson equation by taking an initial guess of 0 everywhere. With a zero initial guess
however, a lot of Jacobi iterations are required for the solution to converge.

To decrease the number of iterations required for the Jacobi method to converge, we can use a different initial guess. One
way of coming up with such an educated initial guess, is to use a multigrid solver.

A multigrid solver generally includes two phases: a down-stroke, and an up-stroke. In the down-stroke, the target problem
is repeatedly restricted, or scaled down, from a n × n grid to a n/2 × n/2 grid, until the grid size is as small as desired. At
that point, the problem is solved on the small grid. In the upstroke, the solution on the small n× n grid is used as an initial
guess for the solution to the problem on the 2n× 2n grid. Then, the problem is solved on the 2n× 2n using Jacobi iterations.
This propagation routine is repeated until we arrive at the original grid again.

This way of solving matrix equation Ax = b requires way fewer iterations than taking 0 as the initial guess.
To illustrate the improved convergence rates, we set up an experiment. Figures 19, 20 and 21 show the behavior of a plain

Jacobi solver versus a Jacobi solver using a multigrid method. After 200 iterations, still 7% of the original error is left in the
solution reached by the plain Jacobi solver. In contrast, the multigrid pre-conditioned Jacobi solver reaches this same error
level after only 12 iterations1.

1For an interactive solver of the pressure Poisson equation, visit https://wouterraateland.github.io/multigrid.

23

https://wouterraateland.github.io/multigrid

(a) 10 iterations (b) 50 iterations (c) 100 iterations (d) 200 iterations

Figure 19: Pressure field after different numbers of Jacobi iterations. Top row does not use multigrid, bottom row uses
multigrid.

(a) 10 iterations (b) 50 iterations (c) 100 iterations (d) 200 iterations

Figure 20: Resulting velocity field after different numbers of Jacobi iterations. Top does not use multigrid, bottom row uses
multigrid.

24

(a) 10 iterations (b) 50 iterations (c) 100 iterations (d) 200 iterations

Figure 21: Error after different numbers of Jacobi iterations. Top row does not use multigrid, bottom row uses multigrid.

2 Alternative Adaptive Grid Structures

In this section, we describe approaches taken by previous works to realize spatial adaptivity. In particular, we describe the
approaches taken by GVDB, AST and OpenFOAM.

2.1 GVDB

GVDB is a GPU implementation of the OpenVDB data structure, which models a spatial domain using a tree with a high
branching factor. The root node of the tree covers the complete domain, and the leaf nodes represent high-resolution voxels.
GVDB achieves spatial adaptivity by allocating the tree partially. This partial allocation results in a domain sparsely populated
with high-resolution voxels. GVDB includes two methods to activate regions of the spatial domain. Internally, both methods
add nodes to the tree structure. In particular, these methods add a leaf node for each position in the region to activate. The
first way to activate a region is to do so directly. The other way to activate a region is to pass GVDB a list of points on which
the domain should be active. This way is helpful for hybrid particle/grid simulations such as FLIP, as it allows incremental
updates in which the topology follows the fluid particles.

2.2 Adaptive Staggered-Tilted Grid

Figure 22: Adaptive Staggered-Tilted grid with varying adap-
tation states. Tilted cells marked in yellow.

Xiao et al. 2020 introduced an alternative approach that adds adaptive topology to uniform grids. It does so by augmenting
the primary grid with a secondary, overlapping grid consisting of tilted cells (i.e., rotated by 45◦ in 2D). These tilted cells

25

can be closed (22, top left), opened (22, bottom right), or they can have any state in between. If all tilted cells surrounding
a primary grid cell are open, they effectively half the size of this primary cell, thus achieving spatial adaptivity. This method
can be combined with multigrid methods such as SPGrid and typically imposes a runtime penalty of only a few percent.

2.3 OpenFOAM

OpenFOAM is a simulation application used extensively in the computation of fluid flows for engineering purposes. It operates
on meshes with cuboid cells instead of regular grids. OpenFOAM includes an adaptive mesh refinement (AMR) module that
achieves an adaptive topology by refining and unrefining cells as follows: Before running a simulation, a user defines thresholds
t0, . . . , tL, a refinement property p and a maximum number of cells N . After each timestep, the AMR module iterates over
each cuboid cell c at refinement level i. If p(c) > ti, then it adds c to the list of cells to refine. Next, it picks the first n cells
from that list, such that the total number of cells after refinement does not exceed N . Finally, it splits the selected cells into
8 “refined” cells. The unrefinement step selects all cells for which the value is below the user-defined thresholds. This method
of topology adaptation has some caveats:

1. The user must know good values for the thresholds before running the simulation.

2. Instead of selecting the most important cells from the list with refinement candidates, the AMR module truncates
it. Consequently, cells selected for refinement are not necessarily the best choice, leading to a potentially sub-optimal
topology.

3 Signed Distance Functions

In computer graphics, we frequently represent geometry as collections of triangles. These collections of triangles can grow to
billions, and graphics pipelines are optimized to handle them very rapidly.

In this work, we need to determine the minimum distance to the geometry for arbitrary points. If we were to represent the
geometry as a collection of triangles, we would have to iterate over each of those triangles to determine this minimum distance.
Finding the distance to the geometry this way would be a time-consuming process. So, instead of representing geometry as
collections of triangles, we use signed distance fields (SDFs).

For any metric space (M,d), the SDF for closed set Ω ⊆M is a function f : M 7→ R such that

fΩ(x) =

{
d(x, ∂Ω) if x ∈ Ωc

−d(x, ∂Ω) if x ∈ Ω
(24)

Where ∂Ω denotes the boundary of Ω and
d(x, ∂Ω) = inf

y∈∂Ω
d(x,y). (25)

To illustrate this, consider M = R2, d the euclidean function and let S be the square with sides of length 6 centered around
the origin (figure 23), then the SDF fS for this square equals:

fS(p) =

√

max{0, |p.x| − 3}2 + max{0, |p.y| − 3}2

if max{p.x,p.y} > 3

max{|p.x|, |p.y|} − 3

otherwise

(26)

Finding the distance from an arbitrary point to the geometry using SDFs requires way fewer operations than comparing
with each triangle. Many geometric primitives have a simple SDF formulation. The properties of SDFs make it computationally
cheap to perform transformations on them (i.e., scaling, repetition or merging) 2.

In this work, we use SDFs to render fluids, solids, and their shadows in a single ray marching framework (figure 24). Using
the properties of SDFs, we were able to render soft shadows without any computational cost (figure 24c).

4 GPU Programming with CUDA

People frequently use GPUs to render 3D scenes. However, modern GPUs are capable of running any computation that CPUs
can. In this section, we discuss the trade-offs between running computations on a GPU and CPU. We also explain basic
concepts of GPU programming using CUDA.

Modern GPUs consist of many cores, which are each capable of running many operations in parallel. This architecture
makes GPUs a perfect fit for operations that require many similar computations. There are some drawbacks to running
operations on a GPU. One of the drawbacks is that GPUs and CPUs are different chips. Therefore, data needs to be
transferred between them, which causes some runtime overhead. Also, in general, GPU cores have lower clock speeds than
CPU cores and are optimized for floating-point operations. Therefore, operations that rely on integer or boolean arithmetic
might be faster on the CPU.

2For an incredible application of SDFs, see https://www.shadertoy.com/view/WsSBzh.

26

https://www.shadertoy.com/view/WsSBzh

Figure 23: Visualization of the signed distance function for a
square with sides of length 6 in R2.

(a) No shadows (b) Harsh shadows (c) Soft shadows

Figure 24: Using SDFs to render spheres and shadows.

CUDA is a platform that makes it possible to write programs running on the GPU using just C++ or some other language.
To illustrate how this works, take the following C++ function that increments each element of an array:

void increment_array(float *a, int n) {

for (int i = 0; i < n; i++)

a[i]++;

}

Normally, we would run this function on the CPU using the following code:

int n = 1 << 15;

float *x = (float *)malloc(n * sizeof(float));

increment_array(x, n);

free(x);

To perform this operation on the GPU, we can write a CUDA kernel instead:

__global__ void k_increment_array(float *a, int n) {

for (int i = 0; i < n; i++)

a[i]++;

}

So far, the only change is the global prefix. This prefix indicated that a function should be called from the CPU and
run on the GPU.

We would run this kernel using the following code:

float *x;

cudaMalloc(&x, n * sizeof(float));

k_increment_array<<<1,1>>>(x, n);

cudaFree(x);

27

Here, cudaMalloc and cudaFree are the GPU counterparts of malloc and free, and <<<1,1>>> indicates that our CUDA
kernel should be run in 1 block, consisting of 1 thread. Hence, we are running on the GPU, but we don’t benefit from any
parallelization yet. To run our function in parallel, we can to modify our kernel such that each thread runs only a single
increment, as follows:

__global__ void k_increment_array(float *a, int n) {

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < n)

a[i]++;

}

We can now run this kernel using a parallel configuration:

int blockSize = 256;

int gridSize = (n + blockSize - 1) / blockSize;

k_increment_array<<<gridSize, blockSize>>>(x, n);

This configuration runs the kernel using blocks of 256 threads. We defined gridSize such that the GPU creates at least as
many threads as there are array elements. A correctly configured parallel computation can perform more than 100 times faster
than a serialized CPU computation.

Internally, thread blocks are composed of sets of 32 threads, called warps. Threads in a warp execute the same operations
simultaneously. In some cases, we want different threads in the same warp to write to one memory location simultaneously.

Consider the following kernel, in which each thread increments a number:

__global__ void k_increment(int *value) {

int previous = *value++;

printf("Previous: %d\n", previous);

}

Running k increment with one block of 32 threads would print 0, 32 times.
To increment the value 32 times, we have to use CUDA atomic operations. Atomic operations work in three steps. First,

they restrict access to a memory location to a single thread. Then, they execute the actual operation. Finally, they release
the memory again. This way, atomic operations enable serial computation on the GPU.

Using atomic operations, we can rewrite our increment kernel as follows:

__global__ void k_increment_atomic(int *value) {

int previous = atomicAdd(value, 1);

printf("Previous: %d\n", previous);

}

Running k increment atomic with one block of 32 threads would print values 0 up to 31, as expected.

28

	Article
	Introduction
	Background
	Related Work
	SPGrid

	Data-Structure
	Random access
	Stencil access
	Restriction and Prolongation
	Incompressible Fluid Solver

	Topology Adaptation
	Basic operations
	Adaptation setup
	Re-arrangement
	Accuracy

	Boundary Conditions
	Approximating Fluidity
	Handling partially solid cells
	Advection
	Diffusion

	Performance

	Terrain-Atmosphere Interaction
	Three-Layer System
	Expressiveness of our approach

	Results
	Comparison to a uniform grid
	Comparison to SPGrid
	Comparison to GVDB

	Conclusions and Future Work
	Quantities per Simulation

	Supplementary Material
	Fluid Simulations
	Navier-Stokes Equations for Incompressible Flow
	Semi-Lagrangian Advection
	Solving the Pressure Poisson Equation

	Alternative Adaptive Grid Structures
	GVDB
	Adaptive Staggered-Tilted Grid
	OpenFOAM

	Signed Distance Functions
	GPU Programming with CUDA

