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Abstract

Currently, the electricity market is shifting from fosaildls to renewable resources.
The lack of controllability of the output of solar cells andha turbines conflicts with
the requirement that suppliers match their production thighdemand at all times. Our
solution is to drop this requirement and instead use flagroh side of the consumer
to align the demand with an optimal production schedule.

In this thesis, we first investigate this scheduling probléife then consider the
setting in which consumers and suppliers have private imfdion about their jobs
and costs. In this context we propose the Transfer Redisimio Mechanism, which is
budget balanced and individually rational. Under the aggtion that consumers report
truthfully, the mechanism isficient. We conjecture that in practice truth-telling is a
best strategy for consumers.

We present experimental results that show that increasebifity of jobs reduces
the costs of suppliers. Furthermore, the consumers arel fiaumenefit when the flexi-
bility of their jobs is increased, thereby supporting thajeoture that truth-telling is a
best strategy.
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Chapter 1

Introduction

The majority of the production of electricity is currently based on the usesHilftuels.
Because of the associated production of greenhouse gases, it idetedsan important
cause of the greenhousfext [11]. Also, the resources for fossil fuel are limited, and
expected to become less abundant during the coming century. Theliefthe years to
come, energy production is expected to shift from fossil fuels to reblewasources more
and more. The benefits of the use of renewable resources, compdraditional energy
production, are obvious. Less obvious, however, are the drawhzEdks use, the biggest
drawback being lack of controllability.

When using solar cells or wind turbines, the amount of energy producect ison-
trollable like it is with traditional resources. As a result, we see that eneygyegators
keep a significant portion of traditional energy suppliers in their portfolibis is neces-
sary, because the aggregators make contracts in advance about thresaaoi@nergy they
will be producing or consuming. The production of energy from refd&aesources is
predicted, but these predictions can be wrong. Adnof traditional, controllable, produc-
tion is therefore required 9], in order to cope with the lack of controllabilityemewable
resources.

In the current market, the energy flow is demand driven. When the demdrigh,
the suppliers are expected to increase their production, and fulfill trek neggregators
base their long term contracts and day-ahead trades on predictedngtius for their
consumers. With the use of controllable production, this strategy workajthuan increase
in uncontrollable production, it no longerf&ges.

However, we observe that for both solar power and wind energytaicelegree of pre-
dictability exists. The aim of this thesis is to exploit the predictability of energgyecton,
and create a production driven market. To turn a demand driven matked production
driven market, the flexibility has to shift from suppliers to consumers. Weugethat some
flexibility on the consumers’ side already exists, but is not yet utilized. ¢fatie chal-
lenge will be to expose the existing flexibility, and then to make an optimal schigtee
announced demand and the predicted available production.

Because of the complexity of the scheduling problem, the mechanism canappled
on a very large scale. However, a very promising scale would be to appipnéthanism
to a block of households which is capable of its own energy productiory usimewable
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resources. In this setting the scale of the scheduling problem is not teottasplve, but
the diversity of jobs is large enough to enable good utilization of the fluctuatodytion.
Also, by maximizing the use of energy where it is produced, the load forigighdition
network is reduced. Finally, since the demand can be coordinated, thefaueak and
average demand will decrease. Therefore, the required peakityapacomes lower, so
when the diversity of local energy sources is increased, one couldrim#éue block of
households becoming completely self-supporting.

1.1 Research Questions

In this thesis we make a model of the energy market, and investigate the possihititie
benefits of utilizing the flexibility in the system. With the assumption that solar and wind
energy production is cheap, good utilization of these energy sourcefidsted by a low
costs of the executed schedule. Therefore, the emphasis of this thesicdstoreduc-
tion, not making any further distinction between the energy sources. eBeaurch focuses
on two aspects of utilisation of flexibility. The first is the scheduling of the momehts
consumption.

The research concerning this aspect aims to answer the following qugstion

1. How hard is the problem of scheduling demand, such that the costemfygoroduc-
tion are minimized?

2. What algorithms can be used to solve the scheduling problem?
3. What are the benefits of added flexibility on the cost of the resultingisbé2

The second aspect is concerned with the mechanism necessary te thep@iexibility
in the system, required for creation of the optimal schedule. This aspevetigated by
answering the following questions:

4. Does a mechanism exist, that fi@ent, incentive compatible, budget balanced and
individually rational?

5. If not, what properties can be achieved in a mechanism?

6. How much can participants gain from manipulation?

1.2 OQutline of this Thesis

The contents of this thesis are divided over seven chapters and tiperdiges. The chap-
ter being read, Chaptel 1, is the introduction to the context of this thesise hettt chapter,
Chaptef®, the field of mechanism design is introduced briefly. Then theamisch prop-
erties relevant in the context of this thesis are explained. Finally, two wellvkrauction
mechanisms are introduced, and their properties explored.

The formal model of the scheduling problem will be introduced in Chdptertere,
the computational complexity of the scheduling problem is analysed, angwResearch
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Questiorll. Also, an answer to Research Quesiion 2 will be presentedprdblem will
be transferred to the game theoretic setting, by identifying the propertieshiage when
entering the realm of private information.

In Chaptef# we investigate Research Quegflon 4. Literature has praviteghtive re-
sult for the general setting. However, in this chapter we identify someeptiep specific to
our problem that could help circumvent the negative result. Unfortunavatywell known
mechanisms, VCG and AGV, are found to be unable to deliver all the dewiopérties.

In Chaptefb, a new mechanism is introduced based on a mechanism witbayienifi
Two sides of the mechanism are investigated separately, the supplier§irsidthe con-
sumers’ side second. For the implementation of the suppliers’ side of the misthawo
variants will be investigated. In one variant the transfers for consudegrend solely on
their reported, but verifiable, type. In the other, the transfers aieedeirom VCG trans-
fers, and depend on the influence of the consumer on the cost of theéueh Finally, the
two sides are united and the properties of the mechanism as a whole arsednalhis
answers Research Questidn 5.

After establishing a theoretical foundation for the mechanism, some expeainien
vestigation will be performed in Chapfér 6. The benefits of added flexibilityhfe cost of

the schedule are investigated. Thigeets for the consumers of the two variants of the mech-

anism are investigated. This yields a promising answer to Research Q(&sfioe chapter
concludes with a short investigation of the computational scalability of the mexrha

In the last chapter, Chaptier 7, the conclusions of the thesis are formulettedorop-
erties of the mechanism are reviewed, and put into context. The chapteméth some
recommendations for future work.

Finally, the appendices provide more detailed examples for some claims made in the

different chapters.



Chapter 2

Mechanism Design

In this thesis, the aim is to design a mechanism that can be used to create thd optima
schedule of electric power consumption. Before we focus on the prollerfirst give an
introduction into mechanism design.

2.1 Game Theory

Mechanism design is a field of game theory, sometimes referredrevaise game theory
focusing on the design of the game. In game theory the emphasis is on theigoéliye
behaviour of players competing in a game, and on establishing their bestsadtiarder
to achieve their desired outcome.

In general, we say that the behaviour of the players is fully describeldigtype For
each player € | in the game, le#; € ® be the type of player, as an element from the set
of types®. The combined actions of the players producestiteomeof a game. LeO be
the set of all possible outcomes of a game.

The benefit of a certain outcome € O, for a player is given by itvaluationv;. The
value depends on the type of the player and the outcome of the game. Hptheveref-
erence over the outcomes of the game is influenced by another value asTisllis a
monetarytransfer, 75, made to the player by the mechanism. The value of the transfer can
depend on the outcome of the game too, but is usually not directly deperddre type of
the player.

The preference for an outcome is determined byuttiléy of a playeru;(-). The utility
is a function of the type of the player and the outcome of the game. In getiezalility
can be written as the sum of the valuation and the trangfer= v; + 7.

Given the type of a player, there are several actions that the playdakan The set
of actions selected are denoted as strategyof the player. Letr; € £ be the strategy
of a player, from his set of possible strategiesThe combination of the strategies of all
players defines the outcome of the game. Therefore, sometimes we wiltadfer utility
as a function of the players type, strategy and the strategy of other glaach player
will generally choose the strategy that results in the outcome of the gamededng the
strategies of other players, that maximizes its utility.
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Definition 2.1.1(Strategy) A strategy is the plan or decision rule that decides the action a
player will take, given a state of the game and the preferred outcome ofayerpdefined
by its type.

To measure the preference of an outcome of a game, the utility is used faidurali
players. However, generally the players have a preference flerelit outcomes. In that
case, the preference of individual players cannot be used to detetingitbest outcome for
the group as a whole. To measure the benefits of the outcomes for theajialayers as a
whole, the social welfare is used.

Definition 2.1.2(Social welfare) The social welfare of an outcome is the sum of the valu-
ations of all players in the game for that outcome.

SWo) = > i(0)

iel
2.1.1 Solution concepts

The players each have a choice about the strategy they will follow. Wessllirae, through-
out this thesis, that the players andity maximizingand behave in a risk neutral way. Given
the objective of each player to maximize its own utility, we can identify three kifide-0
lutions, in terms of determination of strategies.

The weakest of concepts, but probably also the best known, is tiNasdf equilibrium
[19]. Let the subscripti denote the set of playeagherthani.

Definition 2.1.3 (Nash equilibrium) Given a type profil®;, a strategy profiler is a Nash
equilibrium when:

Viel,of #0i,ui(6,0i(6),0-i(0-)) = ui(6i, 0 (6),0-i(0-i)) (2.1)

The Nash equilibrium defines the situation where no playean improve his utility
by unilaterally changing his strategy. In this situation it is best for each playtllow
a certain strategy;, only when all other players follow their equilibrium strategy. How-
ever, when one player would deviate from its strategy, it might be interefstiranother to
deviate as well, to obtain a better outcome.

A stronger concept is that of a Bayes-Nash equilibrium.

Definition 2.1.4(Bayes—Nasr~1 equilibrium)A strategy profiler is in Bayes-Nash equilib-
rium if, given its expectations ; about the types of other players:

Viel.ol #0vB|u(0.010).0-(0-)] 2 E|u@of{@).0.@-)] 22

In this concept, the best strategy is based on an expectation about teofypimer
players. Therefore, the players need not know the exact valuatrooutcomes by the
other players, but only have knowledge about the distribution of valuatidhe strategy
to choose is the best response to the distribution of the strategy profile exf mittyers.
Therefore, the best strategy might deviate from the strategy that wou)djivén the actual
strategies of other players.

The strongest solution concept is a dominant strategy.
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Definition 2.1.5(Dominant strategy)Giveng; € ©, a strategyo; is dominant if:
V6_i € Oi,0 i, # 0, Ui (6, 7i(61), 0-i(6-i)) = Ui (61, 7 (61), - (6-i)) (2.3)

This states that whatever strategy the other players follow, for playeralways opti-
mal to follow strategyr; instead ofo.

2.2 Mechanism Design

As each player in a game is optimizing its strategy to increase its own utility, thellovera
result might be very poor for some players. Therefore, in mechanisigrgethe focus is
on the outcome of the utility for the group as a whole. The goal of mechanisigrdis to
specifically choose the rules for the game, such that the social welfarisined.

The outcome of the game can be described by the social choice functicat gbtime.

Definition 2.2.1 (Social choice function) The social choice function(#) chooses an out-
come fronO for a game, given the player-typés- (61,...,6).

The aim is to specify the social choice function by the rules of the game, i.estiact
the actions a player can choose, and to manipulate his utility, such that aljjssategether
result in the desired outcome. In fact, we can restrict our attention a littleeada<of
reasoning about all actions in all situations, it isfi@ient to simply obtain a statement from
the players about their type, when we can apply the revelation prinCigl&l[7,

Definition 2.2.2 (Revelation principle) If a mechanism exists that implements a choice
function f(#) under dominant strategy, Nash or Bayes-Nash equilibrium, then tixéstse
an equivalent direct mechanism, where the equilibrium strategy for ekgfepis truth
telling.

In this thesis, we will work with direct mechanisms only.
Definition 2.2.3(direct mechanism)A tuple (f(6), 7), where:
e f(0):0— Ois an allocation function.
e 7(0) =(71,...,7;) defines the monetary transfers made to each of the participants.

Although the direct mechanism makes it slightly easier to reason aboutsH2gfalso
warns us about the computational properties of such a mechanism, aredjtlirement for
each player to make a report about its type. In some situations it might balaesior
player not to reveal more of their type, when it is imperative that they wilimptrove the
outcome by doing so. This would be possible in an indirect mechanism, whggrplean
respond to each others actions, and iteratively add information as théy. see

Now that the mechanism is outlined, the properties of the mechanism can bssgidc
First the social choice function: a mechanism is said to fiieient when it maximizes
the social welfare. Later, we will use the notatiéh(6) for an allocation function that
maximizes the social welfare.
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Definition 2.2.4 (Efficient mechanism)A mechanism isfgcient when its allocation func-
tion maximizes the social welfare.

¥6 € ©,1(6) = argmaxy_ vi(6,0) (2.4)
0e0 g

For the other properties of mechanisms, there exi&@int levels of application. The
strongest sense &x post meaning after the fact. In this concept we can apply the mech-
anism, and look back to see that a property held its truth, no matter to whatdegtas
mechanism was applied. A weaker concepinierim, meaning that each player knows
about its type and the rules of the mechanism, but only has expectationgiaoytes of
others. The weakest concepiels ante meaning before the fact. With an ex ante property,
the property holds when the players know the rules of the mechanism eaéxpectations
about their types and the types of others, but no strict knowledge #imuother types and
therefore the outcome of the mechanism. If a property holds in an ex anteedmircon-
cept, the property will be true in expectation over all instances, givenrtbw Kistributions
of player types. However, it is not guaranteed that the properties bp#llfinstances.

Here we only introduce those concepts of properties that we will needlatdrhe first
property that is introduced defines the cost, or profit, of employing the amézin. When
the transfers made to the players do not sum up to O, the maintainer of thenisecha
might need to add value to the mechanism. The mechanism is then said not toge¢ bud
balanced, or, when the maintainer has a net negative transfer to themsechi&is weakly
budget balanced. The desired property in this thesis, however, igditmyet balanced-
ness. Clearly, a mechanism which is not budget balanced is undesgiabkejt would cost
money to execute. On the other hand, a weakly budget balance mechamigthgenerate
money, but when this money finds its way back to the the players it influeneestiategy.

To prevent this, the best choice is a strong budget balanced mechanism.

Definition 2.2.5 (Ex post budget balanced mechanismrA)mechanism is budget balanced
when, the sum of all transfers@s

> 7i=0 (2.5)
iel
Two other properties of mechanisms that will be discussed are propegtestist hold

for each player. First, the property that players are not beffervloen not participating.
This implicitly makes the assumption that not participating yields a utility of O.

Definition 2.2.6 (Ex post individually rational) A mechanism is ex post individually ratio-
nal if the ex post utility is nonnegative.

Yo e0,iel,u6,f(),7)=0 (2.6)
The weaker variant that will be used is ex ante individual rationality.

Definition 2.2.7 (Ex ante individually rational) A mechanism is ex ante individually ratio-
nal if the ex ante utility is nonnegative.

Vi€ LE|u(.f(5).77)] 20 (2.7)
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When applying a mechanism it is desirable that the players cannot manip@aistth
come of the game by making untrue claims about their type. Therefore, alulegiroperty
of the mechanism is to incentivise the players to only make truthful reportg gieir type.
The best way to enforce this, is to make sure that the best strategy theyshi@vmake
truthful report. Again we identify two levels of this property.

Definition 2.2.8(Bayes-Nash incentive compatible (BNIC) direct mechanism is Bayes-
Nash incentive compatible if the truthful report is a Bayes-Nash equilibriitheogame
described by the mechanism.

In the Bayes-Nash variant, the players must act before they know ties tyfpother
players. Given the prior knowledge about the distribution of other pfaggres, truthful
reporting is their best strategy.

The stronger variant is dominant strategy incentive compatibility.

Definition 2.2.9 (Dominant strategy incentive compatible (DIC) direct mechanism is
dominant strategy incentive compatible if the truthful report is a dominantegjyeequilib-
rium of the game described by the mechanism.

In this variant it is clear that a truthful report about the players typewsys the best
strategy, no matter what the other players types are.

2.2.1 Mechanism with verification

In some situations, it is not possible to design a mechanism which is incentiveatible
for all properties of the players’ types. For example, in task allocation, lenges might
represent their task with a smaller execution time in order to be scheduled.e&rkanech-
anism would not be able change its allocation thusly, such that truthfultrepd®ecomes a
dominant strategy.

However, under certain conditions it is possible to emplogexhanism with verifica-
tion, introduced by Nisan and Ronén[22]. In a mechanism with verificatione thee two
stages in the mechanism: one where the players communicate and decidelmtétion,
and then an execution stage where the agreed allocation is executedarigfers are es-
tablished only after the execution is completed. During the execution stagagetti@nism
is able to verify some of the properties of the players. In the example athevexecution
time of the tasks would be known to the mechanism, after all the tasks havexsmenesl.

Since the transfers in a mechanism with verification are only establishedtaftexe-
cution stage, the actual, verified, properties of the players can be takeacecount. The
transfers therefore can depend both on the reported types, and werified types of the
players. Players that reported somethinfijedent from their verifiable type can be “pun-
ished”. In éfect, the mechanism makes it undesirable for the players to report anytlting b
their true types, and truthfulness is enforced by the verification mechanism.
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2.3 Auction Mechanisms

Auction mechanisms are used to distribute goods among interested particgapéss).
Well known auction mechanisms are the single item auctions English auctionw@od D
auction.

2.3.1 Single Item Auction

In a single item auction, only one item is up for auction, therefore, only dagep can
acquire the good. We will consider English auction and Dutch auctions.tBeffe auction
mechanisms arefficient i.e. they maximize the social welfare of all players, by allocating
the object to the player that values it the most. However, there is an importteredce
between the two, in how they determine which player values the object the most.

In an English auction, the price increases as the players cry out thehigker bid, for
which they wish to obtain the object. As soon as the latest bid exceeds aglayeation,
that player will stop bidding. Any remaining players can bid just slightly mora tha last
bid to obtain the good. The winning player, therefore, can obtain the itemnfdce that is
unrelated to his own valuation.

In the Dutch auction, on the other hand, the price decreases, until orex dawilling
to pay that price for the good. Then he makes his bid, and obtains the &dnjelee price
he bids. This price is fully determined by the value of the object for this player

Using the revelation principle, we can construct two forms of direct meshres based
on the previous two auctions. While the strategies for players in the dirattadents are
the same, the expected revenue for the center carfiieeatit [16]. The second price sealed
bid auction is the direct equivalent of an English auction, where eaclemptajyomits only
one bid. The player with the highest bid wins the objects, and the player meddhdid
pays only the second highest bid. The other is a first price sealed Hidraun which the
players submit their bids, and equivalently to the Dutch auction, the highkestits, and
the winning player pays the amount of his own bid.

In a first price auction, the bids that players make do not typically refledrtie valua-
tion for an object. After all, if they would bid exactly that value, their utility woulel zero.
Contrastingly, the bids that players make in a second price auction, araltypfee true
valuations for the object. After all, they will pay the price of the second bielstwhich is
already lower than their valuation, therefore there is no incentive to deeithe bid. Fur-
thermore, would the player make a higher bid, it is possible that he endsyiqypaore
than his valuation of the object. As a result the second price sealed bidrguatso known
as a Vickrey[[24] auction, is incentive compatible. On the other hand piirsé sealed bid
auction is not.

2.3.2 VCG Mechanism

The previously described sealed bid auction mechanism can be extenthedataction of
multiple objects. There, the winner pays the bid that had the second higtiestfar the
item. Because there is only one item for sale, that is exactly the social witre/ould
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have resulted when the winner was not present. Generalizing the settimg Bmgle-item
to a combinatorial auction, following the same idea, charging the player tled saadfare
that would have resulted without him, produces a dominant strategy mechanis

It turns out that practically all mechanisms that implement a dominant stratikgy fa
the same class of mechanisms. This class of mechanisms is called the Grosesf clas
mechanisms, proposed by Vickrey [24], Clarké [5] and Grolés [8]e Groves class of
mechanisms are defined by the outcome they choose, and the transfars thaide by the
players. The definition of the transfers, however, contains a functairigmot defined by
the Groves class, therefore, there exist infinitely many mechanisms thit flaé Groves
class.

Definition 2.3.1(Groves class of mechanismd) direct mechanism (6), 7) is a Groves
mechanism if and only if:

e V6 € O, f(0) € argmax, vj(6i,0), it executes (0).

o Viel,7i(6) = ks vk(0-i, T*(0))) — hi(6-i), where his a functions that does not de-
pend on the type of i.

The outcome of a Groves mechanism is the outcome that maximizes social welfare
according to the reported types of the players. The transfers to eaar pl@ defined by
the reported valuation of the other players for the outcome, and a valus thdependent
of the players report. The value bf, the charge is a constant from the point of view of
playeri. Therefore, in order to maximize the payments, the player should aim to maximize
the other players’ valuation for the outcome of the mechanism. Thus, the&otass of
mechanisms has the property stated in Lerhmal2.3.2.

Lemma 2.3.2. Every mechanisms in the Groves classfiEient and incentive compatible.

For the proof of LemmR2Z.3.2, we refer to the work of Cavallo [3].

The Groves class of mechanisms define a broad set of mechanisms. Weeare
pick theh;, that will fulfill our needs best. When the mechanism is required to be ex pos
individually rational, then a Clarke tax can be used.

Definition 2.3.3(Clarke tax) A Clarke tax is the choice for the charge that is defined as:
hi = ma 0
| OEOXKZ#: vk(0)

We define the mechanism from the Groves class of mechanisms that usésrkastax
as its charge as a VCG mechanism. & ;) be the outcome that maximizes the social
welfare when does not participate, i.e. the outcome that determines the Clarke tax.

Definition 2.3.4(VCG mechanism)A VCG mechanism is a mechanism in which the social
choice function maximizes the social welfare, and the transfers are defined

Ti= ) vk FO) = D vl F(0-1)) (2.8)

ki k#i

10
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The diference between the two sums of the VCG transfer is tferdnce of the
summed valuation of the players other thafor the outcomes with and without Again,
the transfers assigned to playesire independent of the bid of playkeitself. The VCG
mechanism achieves most of the desired properties, as claimed in Lemnha 2.3.5.

Lemma 2.3.5. The VCG mechanism igfeient, incentive compatible and individually ra-
tional when the no negative externalities property holds.

The proof for the individual rationality part of the lemma is a variation on tle®pby

Nisan [20].

Proof for Lemma Z.315The mechanism falls in the Groves class, since the mechanism is
efficient, and the transfers follow the Groves definition. The Clarke tax is emhgnt on
the players type, and the other term follows straight from the mechanismefohe the
mechanism isféicient and incentive compatible.

A mechanism is individually rational when the utility is non-negative for edelygs.
Using the transfers from the mechanism, the utility for a player is givendpgt (6)) +
Skai Uk(F(0)) = D k(£ (6-1)) = S k(£ (0)) — X uk(F(0-i)) = 0. The firstinequality follows
from the no negative externalities propenty(f(6-i)) > 0. The second step holds because
the allocation function selects the optimal outcome. O

While the VCG mechanism does achieve most of the desired properties, itiadget
balanced. In the next section a mechanism is introduced that is budgetdzhla

2.3.3 AGV Mechanism

When the requirements of ex post individual rationality and dominant ineeotimpatibil-
ity are relaxed, it is possible to construct an ex ante budget balancédraoechanism.
This is the AGV mechanism, named after its inventors d’Aspremont avdr@-Varet[[6].
Sometimes it is referred to as AAGYV, since it was simultaneously developedrowAl].
In this mechanism the transfers that are made to a player are reclaimed &aoitinén play-
ers. In éfect, no transfers are made to or taken from the group of players asle.who
The AGV mechanism is a Bayes-Nash incentive compatible mechanism thevesh
budget balancedness. Transfers in this mechanism are solely detebyitieel expected
valuations that players obtain from the expected outcome.

Definition 2.3.6 (AGV mechanism) The AGV allocation function selects the outcome that
maximizes the social welfare. Let n be the number of players, and let Elsa/the ex-
pected social welfare for the players other than i, tha [S W] = >\ E[vk(0)], the AGV
transfers then are defined as:

1
ﬂzESV\Li—nTlZESV\Lk (2.9)
ki
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Mechanism Design 2.3 Auction Mechanisms

The expected social welfare is calculated by evaluation of the outcomeh parssible
player types, and multiplying them by their probability. This assumes that thmpilay
distributions are known beforehand, and that the same probability distrilsuti@ known
to all players.

That this mechanism is budget balanced is easily observed, by summingrtbiertsa
of all players. A proof for the incentive compatibility property is providgddsishna [13].
Finally, the AGV mechanism is ex ante individually rational.

2.3.4 Bilateral trade

So far we have been considered with the situation where one auctioneenter, has an
item for sale, and several players are bidding to obtain it. Turned aronralreversed
auction, with the center desiring to acquire an object and several sdflersg, the VCG
and AGV mechanisms are equally applicable. The importafrdince to keep in mind
then, is that we assume the players to have a negative valuation, or custiaged with
losing the item. Stated slightlyfiierently, the sellers have had costs for creating the item in
the first place. Either way, the winner of these auctions is the one with thedtigaluation
still, i.e. the least negative valuation, or in terms of cost it is the player thati@tss the
lowest cost with the item.

Nevertheless, the calculations stay the same. Using a negative value Vahtagon, it
turns out the center himself needs to transfer value to the players, ingtéedather way
around. Quite expected, since it is the center in this situation that obtains anktem.
budget balancedness is preserved under the AGV mechanism in thiseaiction.

However, it is in general not possible to combine both settings in one and adltéhe
properties. That is to say, one cannot have several buyers biddiihg several sellers are
offering and maintain the properties defined earlier for these mechanisms.fdvimialy,
we get the following impossibility result by Myerson and Satterthwaite [18]:

Lemma 2.3.7.In the bilateral trade problem, there is no mechanism thaffisient, Bayes-
Nash incentive compatible, individually rational, and at the same time weaklydbipal-
anced.
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Chapter 3

Problem Statement

In this thesis we try to decrease energy production costs by adapting thentnohuen-
sumption to times when production is cheap. We consider jobs that cannotdragted,
with a given deadline and try to match their moment of execution with convenientdst,
moments for the suppliers. Each supplier has, for each time unit, a noadegréunction
of cost per unit energy production.

3.1 Demand Scheduling Problem

Here we present the formal model of the problem. The problem is namedéimam
Scheduling Problem (DSP), since we assume the costs for the supplierfixedy and try
to minimize energy production costs by adapting the schedule of the jobs,Hexding
the demand.

The problem takes a number of jolpg J, each job representing something the con-
sumer needs done. For each consuimel we have a set of jobd, such that when job
belongs to consumerwe have thatj € J;. Each job consists of a set of properties, defining
how the job can be scheduled.

Definition 3.1.1(Job) A job, j, in the DSP is a defined by its properties:
e 3, the arrival time of the job, when it can first be executed,
e sj, the duration of the job,
¢ pj, the power requirement per unit time for the complete duration of the job, and
e dj, the deadline, when the job must be completed.

The model uses a concept of discretized time. We require the jobs to heldeas
aj +sj < d;. Also, the jobs must fall within the time window under considerat@; to
andd; < tf + 1, with tg the first unit of time ands the final unit of time that is considered
in the schedule. Furthermore, these parameters together imply the flexibilibémof
possible starting times) to big = dj —a; - sj + 1.
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Problem Statement 3.2 Complexity of DSP

To provide the consumers with energy, we consider a number of suppkefs
Definition 3.1.2(Supplier) A supplier,s, in DSP is defined by a cost function:
o ¢s(p;.t), the unit cost with a power production of jat time t.

In general, the cost functions are monotonigjfn but typically not int. The total cost
endured by the supplier in order to create the energy; (§7.t) = p{ ¢, (p{.1).

In Sectior 2.2 the notion of agficient mechanisrwas introduced. The objective of the
mechanism constructed in this thesis is for it to Hecrent. However, this requires that the
valuation of the outcomes of the mechanism are defined and known to troukeheaker.
For the suppliers, the valuation is defined, as it is the cost associated wjttotihection of
power that a supplier produces in the schedule. For the jobs, on thehatigrthe valuation
is not defined as a property of the problem. Although, from the contexptigeoriginate
from, consumers wanting to get an energy consuming task done, it is topketes that
some valuation is associated with the jobs.

Unfortunately, in the real world it would be impractical to require a valuategport for
all the jobs that consumers present to the mechanism. First of all, becausentumers
would need some way to communicate this valuation, but second, it would ntpstéer-
rupt their daily business to make their valuation for a job known to the mechaiirite
these two diiculties make the utilization of per job valuations problematic, most important
is probably that it would require that consumers define a quantitative ti@u@r every
job. This task is unreasonable, because consumers simply lack the informetiessary to
give these quantitative valuations [15].

Since a lot of the mechanism properties depend on fiflgiexncy property, later there
will be some assumptions made to provide some form of indication for the valuatithe
consumers. For the schedule to fgogent it will then be seficient to minimize the total
cost for the suppliers.

3.2 Complexity of DSP

In order to investigate the complexity of DSP, we use the bin packing proldéin for
which it is known that its computational complexity is NP-complete. We show thdiithe
packing problem can be reduced to DSP. The bin packing problem iedefsfollows:

Definition 3.2.1 (Bin packing) Given a list L= (I4,...,I5) of integers and a bin size V, is
there a way to distribute the integers over B bins, such that for each ihk ., B it holds
that its sizeSy| = X5, 1j is less than or equal to the bin siziS| < V.

To perform the reduction from bin packing to Demand Scheduling Problemtake
B units of time, to represent thi bins. Then, we create a job for each integjein L.
The integers fronl can be assigned to all of the bins, so it must be possible for the jobs
to be assigned to any of the units of time in the DSP instance. Therefore, wehiak
complete time-span as the allowed time, using paramejexsdd;. The integers can only
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Problem Statement 3.3 Scheduling Algorithm

be assigned to one bin, so we require the time-span of the jobs to be 1. Riveabgt the
power demand per unit time of the jobs equal to the integer \alue

The properties of the equivalent DSP instance becosje: 1, p; = 1j, a; = 1 and
dij=B+1forall j=1,...,n. Consider one supplier, and let the cost for this supplier at
momentt be ®(D; > V,t) = o0, and bounded for demand lower than or equaVtoThe
guestion to be answered is: does a schedule exist, sucl tkdgiD;,t) is bounded. The
answer to this question answers the bin packing problem, the correcfribss reduction
will be proven in the following.

Lemma 3.2.2. Bin packing yes-instances map to DSP yes-instances.

Proof of Lemm&3.212If S; is the bin to which integel; is assigned in the bin packing
problem, we execute it in time unit soej; is 1 only for this particulat. Therefore,
Dt = Xj€jtpj = Xje€jtlj = Xies,1j Is equal to the size ;.

So, if|S¢] <V then alsdD; < V and thusd(Dy, t) is bounded. This holds for artyso if
the bin sizgS;| < V for all t, then the cost for eadhis bounded, and therefope, ®@(Dy,t) is
bounded as well. m|

Lemma 3.2.3. DSP yes-instances map to bin packing yes-instances.

Proof of Lemm&3.213If Y, ®(t, Dy) is bounded, we see that for alit holds: ®(Dx,t) is
bounded, sd; must be less than or equal ¥ Because of the definition dd;, and
the construction of the reduction, we know that= |S;|. Combining the two previous
observations we see thH&| = D; < V. So, the bin packing instance must have a solutian.

Using this reduction from an NP-complete problem to DSP, we observdl@yig.2.4.
Corollary 3.2.4. Demand Scheduling Problem is NP-hard.

3.3 Scheduling Algorithm

Given the definition from Sectidn 3.1 it is possible to compute a schedule that masimiz
the costs for the suppliers. In this thesis we will restrict ourselves to sumulst func-
tions that can be modeled as a mixed integer quadratic constraint progr@Cml This
allows us to use the MIQCP solver from the IBM ILOG CPLEX Optimizer paekathe
CPLEX Optimizer package is well known for itffigiency on solving scheduling problems
in general. However, this MIQCP solver does not provide the exact olgiohation to the
problem, but an approximation.

Before the problem can be solved by a MIQCP solver, the problem muistriisformed
into an MIQCP. Patterns for the construction of linear programs can elfouliterature,
see for example[]4] and_[12]. The MIQCP is a natural extension, anddhstruction
follows along the same lines.

The supplier cost function must have a restricted form, in order to fit in@®MA. This
is achieved by letting the unit cost for a certain production be defined asakienum value
of a set of linear constraint functions. Each constraint functions fertogver bound, as a
function of produced supply, on the unit cost for the supplier. Thesetions, of the form
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Problem Statement 3.4 Game Theoretic Setting

ap +b, are defined by the two parameterandb, and this is also how they will return in
the MIQCP. Thep; used in the previous equation is the power that the supplier provides,
this must be a non-negative real value. betbe the number of linear functions supplier
has.

The MIQCP for the DSP is given below. An extra set of fim&ents,eg;, is introduced,
indicating if job j is executed at timé. The schedule establishes a begin tiopeand an
implied finish timeb; + s; with each task. The value ef} is defined as 1 ib; <t < bj+s;,
and 0 otherwise.

Equation[3.]l determines the objective of the MIQCP, it shows that the sumative
suppliers and all units of time of the caoBt ; that suppliers has in unit of timet must be
minimized. Eachb; ; is bounded below by the constraint function of the supplier for that
unit of time, as shown in Equati@n_3.2. The production by suppliers and d&fr@n jobs
are related by Equatidn_3.3: at any time the sum of the production matcheshaf sue
demand.

Because the jobs cannot be preempted and must be executed betweeivdh&érae
and deadline, the final three equations are required. To ensure tHaggimetimeb; falls
within the proper range, the allowed values are restrictea) kyb; < d; —s;. The execution
codficient is linked to the begin time by Equations]3.4 3.5. The vhlus a large
constant, such that the two equations together ensureithet never 1 before the begin
time of after the more thas; later than the begin time. Finally, EquationI3.6 guarantees
that the execution cdicient is 1 in as many units of time as the time span of the job.

min ZZ(DSJ (3.1)

seS t
subject to
s=1...m
(& pf + by py = Dy t=to...ts (3.2)
q=1...q
Dipi = e t=t...ty (3.3)
seS jed
j=1...n
(et—1)M+Db; <t (3.4)
t=1p...t¢
j=1...n
(€t—1)M-b; <sj-t-1 (3.5)
t=1p...t¢
Zej,t =sj j=1...n (3.6)
t

3.4 Game Theoretic Setting

In Sectior 3.1 we have seen the formalization of the problem. Given a praohétamce the
optimal schedule can be calculated straightforwardly. However, thelstfiaigzard method
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Problem Statement 3.4 Game Theoretic Setting

may not be ficient, considering the complexity of the problem, as shown in Secfign 3.2.
A subset of the possible problem instances, those where the supplersriear unit cost
function, can be solved by the algorithm in Secfiod 3.3.

However, this straightforward calculation of the schedule requiresioledge of the
problem. The entire type information for all jobs and suppliers should be&knothe algo-
rithm before it can begin calculating the schedule. In the real setting, th@jelcreated by
consumers, and the job properties are not inherently known to the dehmdker. In fact,
all the properties that define a job or supplier are supposed to be privatmatfon. There-
fore, the suppliers and consumers have a possibility to provide incanfeatation to the
schedule maker. It is a requirement of the mechanism to ensure truthfutgdrom the
participants. It will be the goal of the following chapters to find a mechanistnabhieves
this.
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Chapter 4

Existence of a Mechanism for DSP

In the literature it is stated that in a bilateral trade setting, with no restriction otyples,
it is not possible to have a mechanism thatfigceent, incentive compatible, individually
rational and budget balanced (Myerson and Satterthwaite [18]). lrdh&ext of DSP,
however, there are some restrictions on the types of the suppliers andHotikermore,
there are restrictions on the schedule that the mechanism produces. firsttsection,
these restrictions will be formalized. In the other sections in this chapterogshilities
of a mechanism with the desired properties will be investigated, given thssitions.

4.1 Properties for DSP

In this section some of the properties of the problem, that follow from theipahcontext,
will be accumulated. The first property is one that restricts the possiblemet of the
mechanism.

Whenever a consumer reports a job to the mechanism, it should not bel@dksib
the job does not get executed. Therefore, it is a requirement of theamisatis outcome
that all the jobs are scheduled at a feasible moment, as is the situation int queetice.
This, of course, begs the question whether this is a reasonable obligattbie fnechanism.
How, after all, can the mechanism ensure that such a feasible schehite ex

In fact, such a guarantee can be derived from current practitiee fhechanism would
be unable to ensure the existence of a feasible schedule, this would mean dbsain
units of time there is a bigger demand for energy than what the suppliersrogiae
However, when the mechanism is applied and jobs report their flexibility,civedsile that
would result from executing the jobs when they first arrive remainsiiteaghis is in fact
the exact schedule that is executed in current practice. Therefereygbhanism has the
possibility to execute the schedule that would have resulted without the mscharhen,
by Assumptiori 1L, it is implied that a feasible mechanism exists. The assumptioans ev
stronger, and states that each job’s cost, in current practice, is bedovalilation for the
execution of that job. Later, this stronger interpretation will be used toepiadgividual
rationality for the mechanism.

Assumption 1. The currently employed energy market is individually rational.
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Existence of a Mechanism for DSP 4.2 A Groves Class Mechanism for DSP

In the previous chapter it was argued that it is not possible to acquiretitative
valuation from the consumers. Therefore, the valuation for the jobs neusajptured in
qualitative properties, as best possible. With Assumgilon 1, a first quaifatoperty has
been provided, that can be seen as an observation from curreticera he next property,
however, is not supported by observation, and must be seen moreasigement for the
mechanism.

When the jobs report their flexibility to the mechanism, the job is considered to be in
different about the moment of execution within the feasible window. This propesults
in Assumptior 2. This assumption makes it easier for the mechanism to establefhi-the
cient schedule, since it does not need to consider a preferencetfeojob, other than the
reported window.

Assumption 2. The valuations for the execution of a job is constant between its arrival
time and deadline.

We do not consider this last assumption to be too restrictive for practigabpes. Even
though it is possible that a preference exists for some jobs, for examblayéahem com-
pleted as soon as possible. When this preference is stronger than tiygededicost benefit
of the delayed completion, the job report could be restricted to the most @@ f@oment
of execution only. By not restricting the feasible window, therefore, thenpdicates that
the variations of its valuation for the moment of execution are smaller than thépaieid
difference in cost. Thefléciency is then dominated by the cost for the suppliers, which sup-
ports the assumption that variations in valuation for moment of execution caegbected,

i.e. it can be considered constant.

4.2 A Groves Class Mechanism for DSP

In order for the mechanism to maximize the social welfare, it is necessarththenecha-
nism has access to the true types of the jobs and suppliers. Therefoae@gairement of
the mechanism to be incentive compatible. One classtient mechanisms where truth
telling is a dominant strategy is the Grove class of mechanisms. In this secticoyva G
mechanism will be constructed for DSP. Then the IR and BB properties wiihbesti-
gated.

Let us first look at the transfers for the jobs only. The Groves trasisiee given by a
constantK;, added to the sum of valuations of the other participants.

Ti=Kj+ > ulf(6)

K]

Every transfer scheme of this form iffieient and incentive compatible. Since the mecha-
nism is also required to be individually rational, ket be defined by the Clarke tax.

Tj=- TE%XZ vk(0) + Z uk((9))
k#]

kz]
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Existence of a Mechanism for DSP 4.2 A Groves Class Mechanism for DSP

Using Assumptiof]2, and the property that all jobs are always executedathation
for all jobs other tharj is constant. The sums over the other jobs cancel each other out, and
the transfer for a jolj thus only depend on the suppliers’ valuation:

7= —rge%xévonsz(f(e)) (4.1)

seS

For the suppliers, a similar construction can be performed. Application@fédnech-
anism with a Clarke tax to the suppliers gives a transfer of:

T ==max) u(0) + ) ul(f(6))

k#s k#s

Again the valuations of jobs cancel out, applying Assumgfion 2 and the\atiger that
all jobs are always executed. The transfers for suppliers thereém@me:

Ty = ‘TE%X; vk(o)+k;vk(f(e)) (4.2)
keS keS

The transfers for all participants follow the transfers of the VCG mechaimsEqua-
tion[2.8. The transfer scheme is therefofcgent, incentive compatible and individually
rational. However, the transfers produced by this mechanism are dgebbalanced. As
stated in Theorefn 4.2.1, it is not possible to create a mechanism that comkeiseddbr
properties, since the problem remains similar to bilateral trade, even with theréwimus
assumptions.

Theorem 4.2.1. For the private information setting of DSP, ngiieient mechanism exists
that is individually rational and budget balanced where truth telling is a domirsdrat-
egy, despite Assumptiéh 1, the current energy market is IR, andnféism[2, consumer
valuation is constant for execution of jobs within their deadline.

This theorem can be proven by presenting a counter example for the VCamsm
previously derived.

Proof of Theorerhi 4.2 1The mechanism is a Groves mechanism, so iffisient and incen-
tive compatible by LemmiaZ.3.2. By application of the Clarke tax, the mechanisamigec
a VCG mechanism. By Lemnia 2.8.5, the mechanism is therefore also individualyala
This proof will consist of an example, showing that the mechanism is noklwéadget
balanced on all instances.

In the example there is one unit of time. Let there be 5 jobs, having a powerakof
1. There are 5 suppliers that have a cost function given by EquafipwHese the following

relation holds Gca < b.
a ifp<l,

b otherwise. (4.3)

¢s(p) = {

The valuation when all suppliers and jobs participatesis\WWhen a job is removed, the
cost is 4, and with one supplier removed, the cost beconzesl
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Existence of a Mechanism for DSP 4.3 AGV for DSP

The transfers for each job are:
pj=4a-5a=-a
The transfers for the five suppliers are:
p; =4a+b-4a=>b
Summing the transfers of all participants yields:

> pj+ > ps=50b-2a)>0 (4.4)
j s

Clearly, sincéd > a, the mechanism implementer must make positive transfers to the players,
i.e. the mechanism runs a deficit.

Now suppose some other mechanism exists, that is both incentive compatibdd-an
ficient. By the revenue equivalence principle, the expected transiethd jobs in that
mechanism is dierent from the transfers in this mechanism only by a condtanfhe
expected transfers for the supplierffeli only by a constarit.

For a job with a power consumption of 0, the transfer in this mechanism is hoSap
the other mechanism is also individually rational. Then, it must holdkhat0. Similarly,
for suppliers not participating in the optimal schedule, the transfer in this anéxh is O.
Therefore, it follows that > 0.

By adding constant& andL to the transfers, the expected deficit can only increase.
Thus, there does not exist affieient mechanism for DSP that is incentive compatible,
individually rational, and budget balanced. O

4.3 AGV for DSP

As seen in the previous section, it is not possible to devisefariemt mechanism that is
incentive compatible, individually rational and budget balanced. The At&@¢hanism has
a weaker strategy concept, that of Bayes-Nash incentive compatibildyisadficient and
budget balanced. Krishna et. al. [14], state that ficient mechanism that is incentive
compatible, individually rational and budget balanced only exists when @@ i weakly
budget balanced. In this section we will confirm a negative result foAG®¥ mechanism.

The AGV mechanism bases the transfers on expectations of valuation Ipgatiie-
pants. So far, only qualitative assumptions about the valuation of the jebslean made,
in this section it becomes necessary to establish a more quantitive analyaig Aldsump-
tion[l, a lower bound on the valuation for the jobs can be defined. Aftepakdch job, the
valuation must be higher than what is charged for it. Therefore, théstsexvaluey?, that
must be larger than or equal to the highest price possible that is chargeul ttoe current
market. This value is a lower bound for the valuation of the jobs, as showguat®n4.b.
The sum of all lower bounds will also be used later onpfst= 3 c; v?.

Viedvjzf (4.5)
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Existence of a Mechanism for DSP 4.3 AGV for DSP

In the following example we calculate AGV transfers, for a single time unitculee
Consider the situation where we havgobs, j € J, andm suppliers,s € S. The valuation
of the suppliers is given by their production costs= -, (p;). Once a schedule has been
created, the costs of each supplier are also determined. We will referdoghef a supplier
using®;. The total cost can therefore be written}@s. s @5 = Dot

The AGV transfers are defined in Definitibn 213.6 but are repeated Isang zias the
total number of participants:

1
Ti= ESV\Li—ﬁZESV\Lk (4.6)
k#i

The important values that determine the AGV transfers are the expectatiwetare for
the other participants. In the DSP this can be split in two terms. First, the edpsmtil
welfare with one job removed is:

ESW j = vigp— v — Pror 4.7)
Second, the situation with one supplier removed is:
ESW, = v — Dot + s (4.8)

Note that these values are expectations: although the job valuations wilhaonge, the
supplier costs are estimates based on a priori known probability distributi@nghe sup-
plier and job types. Substituting Equatidns|4.7 4.8 in Equitidn 4.6, thessiqrdor
the transfers for the jobs is:

1 1
T =ESW; - —— ESW; - —— ESW
J J n+m—1kg\;j} k n+m—l;s s

n-1 /o m 0 1 0 _.0
= ESW = (o= )= i (oo @t + g (vl =~ o
0 _.0 n+m-1,, 1 0 _.0
= or =)= @0t = 1 (o= Pt + 1 (o= - @)
1
__,0, - (0 _0_

Unfortunately, using the assumption that the current energy markettilsdRame can-
not be said about the AGV mechanism. After all, the expected utility for ayplis the
sum of its valuation and its transfers.

uj =Uj+Tj
1
0 0 0
=V +—n+m_l(vtot_vj _(Dtot)
1 0 0
> m(vtot—l}j —q)tot) (410)

The inequality in Equatioh 4.10 is not a general guarantee that IR will beisdtisFor
example, with only one job, the expected utility—i§+1—m<l>tot, negative. In general, from
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Existence of a Mechanism for DSP 4.3 AGV for DSP

the assumption that the current energy market is IR we can defjve @, but not that
U?m - v? > Oor. Without any further assumptions about the job valuation, the utility can-
not be guaranteed to be positive. Therefore, the AGV mechanism foprthiidem is not

individually rational, since it does not achieve ex ante IR, the weakestd IR.
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Chapter 5

The Transfer Redistribution
Mechanism

In the previous chapter it was proven that diceent mechanism that is individually ratio-
nal, budget balanced and incentive compatible cannot to exist. Also, therd€ghanism
can be shown not to be individually rational, based on observations rbadéthe current
market. Another practical fliculty of applying the AGV mechanism is its requirement of
the existence of expectations about the types of the participants.

Therefore, the two mechanisms that are usually considered, VCG and &€&Wot
suited for this problem. In this chapter we search for an alternative armdlirde the Trans-
fer Redistribution Mechanism. We then investigate some of its properties. Thisamiem
will be efficient, budget balanced and individually rational, without the need of seedha
expectation of the types of the participants. Although the mechanism camsbbiwn to be
strictly incentive compatible, the participants will be unable to exploit this ptgpathout
a proper expectation about the types of other participants.

5.1 Mechanism Outline

In this section, we introduce the Transfer Redistribution Mechanism (TR} achieves
budget balancedness. We will show that it is possible to creatéiaiest budget balanced
mechanism that is ex ante IC and IR, under Assumgiion 1, individual ratiorudlitiye
current energy market. We enforce IC for most of the private informdiijousing a mech-
anism with verification. For the particular piece of information that cannetbi§ied, there
is no interim strategy for either truth telling or not truth telling. We speculate tirathie
intended setting truth telling will be a better strategy in expectation.

Definition 5.1.1 (Transfer Redistribution MechanismJhe Transfer Redistribution Mech-
anism is a direct mechanism where:

¢ Allocation is defined by the schedule that minimizes total supplier cost

e Transfers are defined as follows:
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The Transfer Redistribution Mechanism 5.2 Transfers to Suppliers

— Suppliers receive VCG transfers

— Consumers pay a fraction of the sum of supplier transfers, determindaeby
sum of their jobs weights

The mechanism is applied in the following steps. The suppliers make a claimiiof the
cost functions and consumers make a claim of their jobs to the mechanism|ltesa
theirbids. Based on the bids, the scheduling algorithm is used to create an optiméiikche
for the jobs. The algorithm returns the schedule that minimizes the total cabefeuppli-
ers. In the schedule, all jobs that reported feasible constraints adiwdel, and, following
from Assumptior1L, it is assumed that there always exists a supplier thatetimar the
energy for finite cost.

To calculate the transfers to suppliers, the algorithm is ran again, foteeariations
of the input, as will be explained in the next sections. The jobs are assagmnegghing
factor, determined by the type of the job, and, in another weighing schésoetha types
of the suppliers. The sum of supplier transfers is divided over the jotyzoptionally to
their weights. The weights will be determined later in this chapter, when we egamm
alternative weighing schemes.

For the majority of the job properties, it is possible to apphpechanism with verifica-
tion as introduced in Sectidn 2.2.1. The properties that are suited for verificago

e power consumption,
e job arrival time,

e job deadline, and

e job time-span.

Concerning arrival time and deadline, it is only possible to detect a jobepatted these
values too loose, when the resulting schedule plans the job execution at antrtbates
not actually feasible for the job. It is not possible to verify that the reovidues are too
tight. Since this is the only available way left, in which the jobs can game the menhanis
will be the aim of the two weighing schemes to incentivise the jobs to maximize thesepo
of deadline and minimize the reports of arrival time.

5.2 Transfers to Suppliers

Although the mechanism aims to incorporate supplier and consumer constiraiotder

to create a unifying solution framework, the mechanisms of dealing with sujidisand

consumer bids are to some extent independent. Suppliers are only compigtirgher

suppliers, and not with the jobs. Therefore, it would be convenient tbbeto consider
the suppliers’ side and job side of the mechanism independently. Whatisaédo do so,
is to eliminate the uncertainty of suppliers about the job types, and instedd aer&ade
of the jobs, that is invariant during the execution of the mechanism. Thisth@guppliers
no longer need to take into account the possibility that the jobs behaviouravitite from

their reported types.
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The Transfer Redistribution Mechanism 5.2 Transfers to Suppliers

To achieve this, the mechanism will only use the reported job types whenataigu
the supplier transfers. Since these are known at the start of the meuhamd do not
change during execution, the suppliers have reliable information abaait ey will be
compensated for. Having their transfers depend solely on the repahis jobs, and not on
the actual executions, their side of the mechanism is similar to a single sided etoniaih
auction. For a single sided combinatorial auction, we can use the VCG mschanhe
transfers to the suppliers are given in Equalion 5.1.

7-5 Z(D_s—(l)tot+(l)5 (51)

Using VCG, the mechanism will be able to create a schedule that maximizes social
welfare. To see this, first observe that the welfare of the jobs is indigmiof the schedule.
This follows from the fact that all jobs will be executed within their constraiotsnbined
with Assumptiori 2, job valuation is constant within the constraints. Second,elieres of
the suppliers is maximized when their costs are minimized. This is exactly the objectiv
of the allocation function. As a result, the mechanismfigent, independent of the job
transfers. The mechanism also achieves the other desirable proparties $uppliers, see
Lemmd5.Z.1L, inherited from the VCG mechanism.

Lemma 5.2.1. The Transfer Redistribution Mechanism is IC for the suppliers, and truthful
bidding is a dominant strategy.

Proof of LemmaZ5.211The mechanism employs VCG transfers for the suppliers, so these
properties are inherited from that mechanism. O

5.2.1 Constraints on Transfers

The goal of the mechanism is to decrease the production costs for theessipgltimately,
it is the consumers who are the cause for the production costs, and it whlélm®nsumers
that are paying for these costs. In order to align the objective of the mischawhich is
minimizing supplier cost, with the objective of the consumers, minimizing their tres)sfe
there must be a positivetfect on the consumer transfers from a decrease in supplier cost.
This way, when the consumers maximize their utility, they will also minimize suppli¢r cos
Suppose there is a jopp Whose properties possibly increase the total cost, and will never
decrease the cost, when it replages a problem instance. This can for example be a lack
of flexibility.

Comparing the costs for the settings, one witlarid one withj, we see the following
relation: A

Dot > Dot (5.2)

This relationship follows from the change in job properties, and from theatilon mech-
anism selecting the optimal schedule. For the correlation between traastbrosts, it is
desired that transfer monotonicity is satisfied.

Definition 5.2.2 (Transfer monotonicity) Transfer monotonicity is a property of the pay-
ments for the schedule. It is satisfied when the transfers are a monotariefuof the cost
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The Transfer Redistribution Mechanism 5.3 Transfers to Consumers

of the schedule, formally: A A
Ot > Otor = T 27T (5.3)

However, the value of " is determined by VCG transfers. While the left hand side holds
in our context, unfortunately, monotonicity is not guaranteed by VCG teass$o the right
hand side is not naturally implied. Indeed, it is possible to construct an deamnere the
relation is not satisfied. Such an example is given in Appendix A.

By enforcing constraints on the shape of the cost functions of the stgptis possible
to achieve monotonicity of the transfers for a single time unit. However, siegertiblem is
all about job flexibility, monotonicity per time unit is noticient to achieve monotonicity
over all. Therefore, it seems, VCG transfers cannot be used on pipdiexs’ side, because
it cannot satisfy transfer monotonicity.

The alternative, to resort to aftbrent mechanism on the suppliers’ side, would require
relaxation of the incentive compatibility requirement on the suppliers’ siden;Tfor ex-
ample, a sealed bid first price auction could be used. If all suppliers fttleivequilibrium
strategy in that setting, the implication is satisfied. However, incentive compatisility
longer guaranteed, and knowledge about the competition becomes an mhpactar in
determining one’s strategy.

So, although transfer monotonicity cannot be strictly satisfied using VC@& #re no
good alternatives. However, in the problem context, the number of supphe jobs will be
relatively large. As the number and diversity of jobs and suppliers isesedhe atomicity
of the jobs becomes less prominent, since by reordering the jobs a rasgkenfules can
be created, each with only a slight cosfféience from the others. In the example from
Appendix[4, it was a combination of atomicity and the alignment of the steps in téte co
functions of the suppliers, that led to the non-monotonic behaviour. Irdtyifiwhen the
instances become larger and uncertainty grows, the exact conditiongmtrathful reports
benefit appear less obvious, and the best response strategy lesskslea when a job
can create its strategy with complete knowledge about the types of othdilsfaices the
challenge of calculating the strategy that would benefit it the most. In the fiogpsections,
because of this intuition, it is presumed that transfer monotonicity holds.

5.3 Transfers to Consumers

In the previous sections, the schedule and subsequently the suppl&fetsawere deter-
mined. The supplier transfers were created such that they are inggpearfdhe transfer
scheme for the consumers. In this section we establish two variants fornkéetsato con-
sumers, again we consider this to be independent of the supplier tarisferder to have
this independence, the solution concepts that are considered are ¢R antg BNIC. The
supplier types are therefore exposed to the consumers only as probdibtlifyutions. The
mechanism will only depend on properties that are independent of thexlyimg) distribu-
tion.

Because the mechanism objective is to be budget balanced it is clear tlsamnthef
transfers of the consumers must match the sum of transfers made to thiersu@ne way
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The Transfer Redistribution Mechanism 5.3 Transfers to Consumers

to guarantee this is to assign a weight to each consumer, and divide tHersatxording
to the weights. The cost for one consumer is then calculated using thissxyre

Wi
7 kel Wk ;S“Ts (5.4)

How the jobs of a consumer contribute to its weight depend on the weighirgnech
and will be considered later. However, when a consumer owns one [yliloen the transfer
for that job and the consumer are identical. Note, that while a consumersevesal jobs,
and is responsible for the reports about these jobs, he cannot ustleade on the reports
of those jobs for his benefit. The consumer is not able to improve the ressifiregiules by
manipulation of the reports for the jobs he owns. The mechanism can be baiddalition
proof.

5.3.1 Power Proportional Weights

An easy way to establish weights for the consumers is to just set it equal timt&th@ower
consumption of its jobs, this scheme is defined in Definifion 5.3.1. However simiple th
weighing might be, it already provides the desired properties of the mischaeven in a
strong solution concept.

Definition 5.3.1 (Power proportional weights)The TRM weights for a consumer that are
proportional to its power consumption are called power proportional WweidPPW). The
weights are defined as:

w = Z PjSj

j€Jdi

Individual rationality is achieved as @x postproperty following Lemm&5.3]2.
Lemma 5.3.2. The TRM, using PPW, is ex post individually rational.

Proof for lemma’5.312A mechanism is ex post individually rational when the utility is
greater or equal to zero for all types. In Secfiod 4.3 the lower bound job’s valuation
was set toj‘j’. It seems reasonable to assume that the valuation is proportional to the total

power consumption of the job. So, the lower bound becwlj%esqopj Sj.
p

Wi PiSj
Cj= 5T = T
YjeaW, 2jea PjSj
P;S; 0 0
Sv oo 2,9 Pisi=pisa
2je3 PiSj £
< Vj

Using this result, the utility of each job becomes greater or equal to zero.
Uj =vj—Cj
>vj-vj=0
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The Transfer Redistribution Mechanism 5.3 Transfers to Consumers

Also, the mechanism, when using weights proportional to the power consumipée
as arex antestrategy to report a bigger flexibility. The justification is given in Lenhima’b.3.3.

Lemma 5.3.3. In the TRM, using PPW, truthful reporting of arrival time and deadline is a
weakly dominant strategy when transfer monotonicity holds.

Proof of Lemm&5.313The utility of the consumers is determined by their valuation and
transfers. The valuation of each job is independent of the report. Forthe, the weights
contributions of the jobs are not influenced by the reports of arrival timded@adline, and
other properties are verified.

The only influence on the consumer transfer is the total transfers fougpdiers. With
transfer monotonicity it follows that the transfers are minimized by minimizing thé cos
of the schedule. The expected cost, and therefore the total transferewdr increase by
reporting less flexibility. Therefore, truthful reporting is a weakly domirsrategy. 0O

Although this weighing scheme indeed achieves incentive compatibility, thditsdioe
a consumer to report more flexible jobs are very limited. The decrease itrtotalers that
is achieved by extending one job’s flexibility is, after all, shared with all otiogiIsumers.
The consumer responsible for the decrease will only benefit a fragiopprtional to its
weight. When the mechanism is deployed on larger scale fibetg for a single consumer
might become negligible. Therefore, a stronger benefit is warrantecjén to improve the
applicability of the mechanism. This will be the objective of the next section.

5.3.2 Cost Proportional Weights

In the previous section it was established that it is possible to have a meauohhaisis IC
and IR, when transfer monotonicity holds. However, using the previalesiyed weighing
scheme, the benefits for a consumer of extending its jobs’ flexibility are minirhal piob-
lem in the previous approach is that transfers are divided among thernensaccording to
the energy there jobs require, while this may not be proportional to theaigeiia transfers
they induce. In this section, aftBrent weighing scheme is introduced, that trades incentive
compatibility for a bigger benefit.

With VCG, the utilities represent the benefit for a player, reduced by thm ha causes
to others. So while every player focuses on his own utility, in the end it is ttialsgelfare
that is maximized. The weighing scheme in this section is based on the philosogGyo
transfers to achieve the same goal. In fact, the weigigshe VCG transfers. But instead
of charging the VCG transfers to the consumers directly, they now defngdttiion of the
total transfers that a consumer has to pay. Except foffardnce in notation, the consumer
weights defined in Definition 5.3.4 are exactly similar to the transfers in Equaflbn 4

Definition 5.3.4 (Cost Proportional Weights)The cost proportional weight (CPW) for the
TRM is a weight for a consumer, proportional to the cost increase indilgethat con-
sumer’s jobs. The weight is given by:

W = Dy — iy (5.5)
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The Transfer Redistribution Mechanism 5.3 Transfers to Consumers

When a consumer minimizes its weight, it thereby minimizes its transfer. Therefore
the consumer has an incentive to minimize thedéence in Equation 3.5. Minimizing this
is equivalent to maximizing the social welfare.

As with VCG transfers, for each weight in the weighing scheme it is requiredtain
the suppliers cost of the schedule when all the jobs of one consumeeraoved. This
means that we have to calculate the transfers to the suppliers again fpcexmsumer. The
algorithm for calculating the necessary values is shown in Algorithm 1. Thedle()
method is used to calculate the optimal schedule, given the set of job anesiyxts in
the parameters. The implementation of this method could for example be the MIQ@GP f
Sectior 3.B. The Cos}(method calculates the overall cost of the schedule, i.e. the sum the
suppliers’ costg’ s P; (), and Cost(p) calculates the cost for supplier p in the schedule,
this being equivalent t®;.

The bulk of the work in the algorithm is done in the Schedlile(ethod, solving the
NP-hard scheduling problem. Therefore, it is clear that this mechanisrbeviiitractable.
For the second price calculations it is necessary to compute a scheduléhasas the
number of suppliers, to establish the supplier transfers. For the consueigts, it is
necessary to construct an additional number of schedules, as muaraar consumers.
The complete mechanism is th@§(n+ m)S), wheren andm are the number of consumers
and suppliers respectively, aBds the complexity of the scheduling algorithm. As shown in
Lemma3.Z}#, the scheduling problem is NP-hard, therefore, complexity sttrexluling
dominates the complexity of the algorithm.

Algorithm 1: Price Calculation Algorithm

Input : Bids from consumerd, and bids from the supplieé
Output: A schedule of execution, and a vector of prices

schedule « Schedule(J, §)

Tiot < 0

for s e Sdo
sched « Schedule(ig\ {35 N
T, < Cost(sched) — Cost(schedule) + Cost(schedule, )
Ttot < Trot + Ts

o O A WN P

~

Wiot < 0
foriel do
sched « Schedule(j\ {J}},S)
10 w; « Cost(sched) — Cost(schedule)
11 Wiot <— Wiot + Wi

© o

12 foriel do
13 | Ti e Tior- Wi/ Wiot

14 return (schedule,T)

The result returned by the algorithm contains the schedule that is to betedett also
contains the transfers that have to be payed following this mechanism. Withtthasfers,
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The Transfer Redistribution Mechanism 5.4 Mechanism Properties

calculated using the weights as formulated in Equdfioh 5.5, the mechanism iedRan

Lemma 5.3.5. The TRM, using CPW, is ex ante individually rational for consumers under
AssumptionE]1 arid 2.

Proof of Lemm&5.3]15A mechanism is ex ante individually rational when the expected
utility, before the type is known, is greater than or equal to zero. gle¢ the expected
number of jobs owned by consumeand letn be the total number of jobs in the problem.

~ E[7
Elu] = § (E[Uj])_E['Ti]Zq-v?—E [T
jed jed;
G- Dkel ZjeJk 0 n-v9
6u° [P P
> Guj - ———————=0vj-4—=0

O

The mechanism is, however, not incentive compatible using these weigtigtn
standing transfer monotonicity. For example, Apperdix B shows an exanimeevthe
weight of a job decreases by reporting a tighter deadline, even thougbtéteost, and
total transfers, increase.

The only strategy that would be profitable under all circumstances wottiol &equire
complete knowledge about the reported types of others, and calculategshesbponse.
However, this is not an equilibrium strategy. When all participants behavevty, there
exist problem instances that do not have a stable pure Nash equilibrippegdixC).

The consumers, therefore, do not have a strict equilibrium strategyetés, in prac-
tice, the jobs have to determine their strategy with incomplete knowledge. Wectioeje
that for the practical purpose of the mechanism, the best strategy is tnahduting.

Conjecture 5.3.6. Truth telling is a best response under uncertainty, for the TRM with
CPW.

In the next chapter, this conjecture will be investigated experimentally.

5.4 Mechanism Properties

In the previous three sections, piece by piece, the TRM was constri&geeral properties,
for parts of the mechanism, have already been verified. In this sectiomesh# of the
mechanism as a whole is analyzed, to determine the global properties. Aithloese
properties were intended to exist designit is still relevant to restate them here.

The important property for the mechanism maintainer is that he is not redoiwesdt
value to the system for which he is running the mechanism. For the participaigs,
preferred that no value needs to be destroyed. These propertigsnangarized in Lemma

5.41.

Lemma 5.4.1. The Transfer Redistribution Mechanism is strongly budget balanced.
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The Transfer Redistribution Mechanism 5.4 Mechanism Properties

Proof of lemm&5.4]1The sum of transfers made to the suppliers is distributed over the
consumers, according to their jobs weights. Therefore, the sum ofdrartharged to the
consumers is equal to what is payed to the supplier. The mechanism id batlgeced. o

When Conjecture’5.3.6 holds, the reports from jobs and suppliers is tiLftie mech-
anism can then create the schedule using complete information. Since théi@tldeac-
tion maximizes social welfare, Lemrha 514.2 follows.

Lemma 5.4.2. When Conjecturé 5.3.6 holds, the Transfer Redistribution Mechanism is
gfficient.

Proof of Lemm&5.4]2All jobs are always scheduled, so there is no influence of the mech-
anism on the welfare of the consumers, following Assumgdfion 2. From Comg8.3.6

it follows that the jobs report truthfully. The mechanism is incentive compatfidii¢he
suppliers. The mechanism, therefore, has complete knowledge aboubtaedasupplier
types. Since the suppliers costs are minimized by the resulting schedulecitlenszifare

is maximized. O

Combining the results of the lemmas in this section and those in the previous sections
the following theorem follows as a unifying claim.

Theorem 5.4.3. The Transfer Redistribution Mechanism is budget balanced, ex ante indi-
vidually rational, and gicient given the reported types when the Conjediure 5.3.6 holds.

Proof of Theorerhi 5.413The proof for dhiciency follows from Lemm&5.412, and budget
balancedness follows from Lemrha 5]4.1. From Lenima b.2.1 we get ex postivece
compatibility for the suppliers, which implies ex ante incentive compatibility, andlyina
we have ex ante incentive compatibility for the consumers from Lelma 5.3.5. ]

The mechanism is not inherently incentive compatible. However, it is comgetthat
the best response under uncertainty is truth-telling. In the next chapter experimental
results are analyzed to investigate this claim.
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Chapter 6

Experiments

In the previous chapter we have established some theoretical lowerdtarrte perfor-
mance of the TRM. However, because the lower bounds are boundgentaiion, there is
a possibility that in some instances these lower bounds are not met for alJalike other
hand, the bounds are lower bounds, so it is to be expected that the petieamance of
the mechanism is better than these values. In this chapter we will make anigoélye
mechanism by applying it in an experimental setup.

Throughout this chapter, the consumers will own only one job. The weaiddrans-
fers are therefore associated equally with that job as with its owner. Somédtiméso
will be used interchangeably, and when weights and transfers of agaimemtioned, they
should be thought of as belonging to the owner of the job.

The scheduling algorithm used for the experiments is the MIQCP solvertfreiBM
ILOG CPLEX Optimizer package. The optimizer is set to continue optimizing untthése
integer value is within % of the best non integer value. The returned schedule costs are
therefore a % approximation of the exact solution.

6.1 Schedule Costs Reduction by Increased Flexibility

The aim of the mechanism is to reduce the production costs of energy by atittzén
flexibility on the consumers’ side. In this experiment only the direct coste@msidered,
not the transfers. Therefore, this experiment verifies the benefitbdasuppliers, and not
necessarily for the consumers. However, when transfer monotonidig,ithe consumer
transfers will decrease when the cost decreases. This experimentasifipa relation
between flexibility in the system and the cost of the resulting schedule.

The experiment starts with 30 problem instances, each with 18 jobs thahbdiex-
ibility. For the iterations of the experiment, the flexibility of each job is updatediewh
the arrival time and deadline of the jobs remain centered around the valtres aniginal
problem. The 30 instances the experiment starts with are generated anrafiden, each
iteration the flexibility of every job is increased with a value of 0, 1 or 2 each adfhal
probability. The total flexibility in the system therefore increases.
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Experiments 6.2 Consumer Transfer Benefits With Power Proportioright&e

Figure 6.1: Cost profiles of suppliers, during cost experiments

In all the iterations, the cost profile of the five suppliers stays the same. tApthe
cost profiles is shown in Figute .1. The cost profiles are a linear funfdioeacht, with
perturbations following a sine-function, to introduce sonfeedénces in the costs over time.

The results of running the scheduling algorithm are shown in Figute 6elfigure,
the costs of each schedule have been normalized on the cost of thepooidieng problem
instance without added flexibility. It is clear that there exists a trend ofedsang costs,
when the flexibility increases.

Benefits of the flexibility increase range from a few percent for instaitita by chance
already had a cheap configuration, to over 20 percent for instanaelsati an unfortunate
initial distribution. The average benefit, exceeds 10 percent when drage flexibility
is 3. Therefore, this experiment proves that adding flexibility to the systsratpositive
effect on production costs. The magnitude of tffee would naturally vary with dierent
cost profiles for the suppliers.

6.2 Consumer Transfer Benefits With Power Proportional
Weights

The experiments in the previous section show that more flexible jobs yieldapehsched-

ule. When schedule cost and transfers are correlated, this will alsdgvedd transfers for

the consumers. In this experiment, theet of a flexibility increase for one job is studied,
when the other jobs remain the same. The weighing scheme that is used intibis isebe
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Figure 6.2: Relative cost with added flexibility

power consumption proportional weight (PPW) from Secfion 5.3.1. Tpea®d results
are a slight decrease in transfers.

In this experiment 25 jobs and 6 suppliers are created randomly. Théetrafar this
instance are calculated. Then, one by one, the flexibility of the jobs is sexlea certain
amount, and the transfers of the new instance calculated. The tranffieesjobs depend
on the total transfer and the job’s power consumption.end on the totaldrarsf the job’s
power consumption. The latter does not change during this experimeng salthfactor
of influence is the total transfers. These values are plotted in Higdre 6.3.

For some consumers the relative cost exceeds 1. However, becagsbdduling algo-
rithm produces an approximation, the observed increases fall within tertamty of the
transfer ratio, and no conclusions can be drawn from them. The fidhanesfore, shows no
significant increase in the transfers of jobs with an increased flexibilitis i§hn line with
Lemmal[5.3.B, truthful reporting arrival time and deadline is a weakly domirteategy.
The benefits are, however, also small, since the benefit is shared athoorgsamers.

6.3 Consumer Transfer Benefits With Cost Proportional
Weights

The benefit for a consumer to increase flexibility is small when the PPW scisensed,

as is shown in the previous section. In this section, the experiment is rdpkatecver the

consumer transfers are calculated using the cost proportional we@PW) scheme. The
aim of the experiments is to support Conjecfure 5.3.6, consumers improveutitigirby
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Figure 6.3: Normalized costs of jobs as flexibility increases, using powesutoption
proportional weights. Each box shows the cost for 25 jobs.

reporting the arrival time and deadline of their jobs truthfully. It is expetitatthe benefits
of increased flexibility are bigger than in the previous experiment. This fslloecause the
decrease in total transfers to the suppliers is similar, but by extendingilitgxith its jobs,
a consumer now potentially also decreases its share of the total transfer.

The same experimental setup is used as described before. The fiatgmtie is the
weighing scheme, resulting inftérent transfers for the consumers. These transfers are
plotted in Figuré 6.14.

The graph shows a significant decrease of the average transfehytsipporting the
expectation that consumers get a benefit for reporting more flexibilityavleage transfer
drops almost 20% when the jobs have maximum flexibility. But, when the jobs €an b
scheduled on half the time units in the problem, the decrease in transfer idyall@%.
These results support Conjectlire 5.3.6.

On the other hand, it appears that four jobs do not benefit at all, siecephof the
box’s whiskers remains at 1, and for a flexibility increase of 14 it is visibda there are
four jobs with a relative cost around 1. Possibly this could be becausdithe window
already contained their optimal moment in the schedule, so the transfer fordibes not
change by adding more flexibility.

A few points in the graph are above the relative cost.001 This suggests that the
transfers increase by the report of more flexibility. However, this cammtucannot be
drawn so easily. The scheduling algorithm used in this experiment appriesrire exact
value by an approximation of.®%. The uncertainty for the transfers are the result of
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Figure 6.4: Normalized costs of jobs as flexibility increases, using cogiogional
weights.

summing and dividing a lot of schedule-costs. Therefore the recordeshises, the biggest
being 168%, fall within the uncertainty of the transfers.

6.4 Consumer Transfer Benefit and Initial Flexibility

In this section we are interested in thieet the flexibility of the other jobs has on the
transfer benefits for a job extending its flexibility. In this experiment we ickem®ne hand-
crafted problem, where 15 jobs are spread evenly across the 25 time uthiésproblem.
Six variations are constructed, varying the initial flexibility of all jobs in the instabe-
tween 0 and 5. For each of these six instances, the flexibility of each jomirstuncreased
further, up to an additional 15 units of time. The result would be 30 grdphsnstead Fig-
ure[6.5 shows averages, grouped per variation. The 5 suppliers rdra@ame throughout
the experiment.

The graphs for the initial flexibilities from O to 4 show a trend that the benefiah
increased flexibility is bigger, when the other jobs also have more flexibilitis iSmot un-
expected, since more flexibility for the other jobs enables more schedweshbyhmaking
it possible to find one that decreases the cost and, consequentlfetsans

The graph for an initial flexibility of 5 has a less steep decline than that obdtra-
dicting this trend. Indeed, thelative transfer benefit for the jobs is not as big as that for
those in the instance with an initial flexibility. However, the absolute transtages when
all jobs have their initial flexibility, i.e. where the flexibility increase is 0, are gigantly
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Figure 6.5: Cost decrease as flexibility is added to the system. Each poiatagdtage of
15 schedules, resulting from increasing the flexibility for one job.

lower. This is also explained easily, since the initial instance has enoughilftgxn itself
to create a cheaper schedule. The relative benefit for one job to di¢gibadl flexibility
thereby decreases, but in absolute terms the transfers are lower tharothbe jobs in the
graph with an initial flexibility of 4.

All in all, the size of the transfers decreases when the flexibility of the jobsén th
problem increases. However, the costs for production of energy lmeusbmpensated for,
so at some point the transfers can decrease no more. As the oveihlliflex the system
increases, the benefit of adding one additional time unit flexibility becomeléesma

6.5 Scale and Computability

From running the experiments it becomes clear that the runtime of the mecHazstemes
an issue very quickly. This was to be expected from the theoretical coitypbmalysis.
The dependence of calculation time for the scheduling algorithm on the paranoé the
problem is shown in Figulfe 8.6.

Interestingly, only the number of jobs and flexibility of jobs have a real initaeon the
runtime of the scheduling algorithm. The other properties do not expresa@ads strong
as those two. The correlation between runtime and time span is particularlysswgp
However, the peaks on either end appear where the jobs span almostiteeleration of
the schedule, or almost none. From the scheduling algorithm’s pergpdtigvmight be
similar in the sense that it is either scheduling a bunch of small jobs, or a lmirschall
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Figure 6.6: The fiect of diferent problem parameters on runtime. For each graph, one
parameter is varied, while the others remain at their base value (showncketsa The
x-axis shows how much the parameter is changed relative to its base value.

gaps, which is, apparently, bothfidtult.

The trend of runtime to increase as the flexibility or number of jobs increasdea
explained by a single proportionality. When the runtime is proportional to thebeu of
schedules possible, this explains both.

This suggests that, in arffert to reduce runtime of the scheduling algorithm, one can
focus on the reduction of the number of schedules possible. For exah®gteymber of jobs
can be reduced by grouping the jobs into clusters. The jobs that are todbered should
have the same time properties, i.e. the same span, availability and deadlinendijecmg
the cluster as one, the number of ways the jobs in the cluster can be scheztllee, so
the problem becomes simpler.

By grouping the jobs, of course one also eliminates possible schedulefdite, care
should be taken to see whether this does not influence the other propéttiesnechanism.
For example, Nisari[21] shows that the a VCG mechanism, when the optimahuaiis
replaced with an outcome produced by an approximation or heuristic algorghim|onger
necessarily truthful.
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Chapter 7

Conclusions and Future Work

The goal of this research is to reduce the energy production costefofewe exploit the
flexibility of jobs on the consumers’ side, which is assumed to be alreadgirdsowever
not used in current practice. Yet, before the flexibility can be utilized, iteisessary to
expose this flexibility of the jobs involved. Therefore, the mechanism shmiidcentive
compatible for the consumers reporting the job types.

Matching suppliers with consumers is an extended form of bilateral traden kt-
erature, it is known that for bilateral trade it is not generally possible hiege an i-
cient, budget balanced and incentive compatible mechanism. Howeveraltraion of
consumers for their jobs’ execution is assumed to be constant for aibblie@secutions,
and all jobs are always executed. As a result, the social welfare dawetepend on the
valuation of the jobs. Still, these restrictions are not enough to counter thessibgiy
result. In this thesis, it is shown that no Groves class mechanism existslietes budget
balance for the problem. Furthermore, we show that the AGV mechanisnotchae used
to create an individually rational mechanism under the previously menticssenigotions.

To improve on this result, the applicability of a mechanism with verification is inves-
tigated. When a mechanism with verification can be used, the incentive coitityaté
guirement can be enforced afterwards, and no longer needs to bpextyrinherent to the
mechanism. In the problem at hand, verification can indeed be used fmdesntruthful
reports for most of the properties of the jobs.

The properties that cannot completely be enforced by a mechanism wifibatésn are
the arrival time and deadline of the jobs. These properties can only fiedevhen false
reporting results in a schedule that is infeasible for a job, or by means etlts&dscope of
the mechanism. Declaration of an arrival time and deadline that are narfoavewhat is
feasible cannot be verified. Therefore the mechanism nfiestan incentive for consumers
to report the arrival time and deadline of jobs as wide as possible.

After all, not all properties of the jobs can be verified, a mechanism witticegion
turns out not to be ghicient to remove the requirement of the mechanism to be inherently
incentive compatible. Therefore, the mechanism is still bound by the impossilsityt.

Budget balancedness and individual rationality are the propertiesrthat@st valued
for a mechanism for the energy market. Because if it is not budget ldaradue must be
removed from the mechanism, and if it is not individually rational, consunretsappliers
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Conclusions and Future Work 7.1 Future work

have no incentive to participate in the mechanism. The mechanism must thusckniive
compatibility and, consequentlyffieiency.

The mechanism achieves budget balancedness by dividing the totdetrarede to
suppliers over the consumers. The share of transfers that is asgigmednsumer depends
on its job types. The transfers for the suppliers’ side are determined I3Garaechanism,
thereby achieving truthful reports. However, with VCG transfers it isguaranteed that
the supplier transfers are a monotone function of the schedule cost.

We introduce the notion ofransfer monotonicitythat indicates whether the sum of
transfers to suppliers in a mechanism are a monotone function of the cths optimal
schedule. With the requirement that transfer monotonicity holds, the pawpoional
weighing scheme for the mechanism fB@ent, incentive compatible, individually rational
and budget balanced. From the experiments in SeLfidn 6.2 it becomesholeaver, that
the benefits for consumers to report about their jobs truthfully are quite limiieerefore,
when the valuation for execution of a job within its time window is not strictly coristan
unlike what was assumed, the benefits for the truthful reporting arecatad.

To improve on this result theost proportional weighingcheme is introduced. The
experimental results in Sectibnb.3 show that the benefits obtained by iimgrézsreported
flexibility are indeed larger. However, the mechanism is no longer incentivepatible
using this weighing scheme, regardless of transfer monotonicity.

We conjecture that in the practical setting, truthful reporting is still the hestegy
for the jobs. This is supported by the experiments, since the benefits thabserved
from reporting more flexibility are significantly larger than the losses, if ttay even be
identified as such.

7.1 Future work

The scheduling algorithm that is presented and used for the experimenis tihesis uses
a mixed integer quadratically constrained program solver. This solver mimereturn the
exact value, but instead an approximation within a defined ratio from thet sglution. As
a result, incentive compatibility might be compromised, as was observed by [2igfor
the VCG mechanism working with approximation algorithms. Thieats of the use of an
approximation algorithm should be verified for this problem, and if incentregatibility
is compromised a tlierent scheduling algorithm is necessary before the mechanism can be
deployed. Furthermore, the DSP instances that can be solved are limiteds¢oithine
mixed integer quadratically constrained program class. When more geuo@piier cost
functions have to be modeled, &fdrent scheduling algorithm is required.

If a scheduling algorithm is found for which the mechanism remains incentive-
patible, and that is able to solve problems with cost functions that are foupihatice,
Conjecturé 5.316 must be verified for practical settings. After all, for tis ftmctions of
real world suppliers, transfer monotonicity might not be satisfied. Tifés® the incentive
compatibility for the suppliers.

Finally, the problem solved with the TRM is a static problem, the consumers apti-su
ers do not change during its execution. Therefore, the consumessippliers are required
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Conclusions and Future Work 7.1 Future work

to report their private information before the schedule starts. But whemtthanism is
repeated time after time, the consumers and suppliers expose their prieatedtibn to the
other participants. Both Athey1[2] and Cavallg [3] have researcheticaumechanism in

a dynamic setting. They observe that new possibilities for strategic bemanwerge in a
dynamic setting. Theffect on the incentive compatibility by use of the TRM in a dynamic
setting should also be investigated before it can successfully be applied.
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Appendix A

Non-monotonicity of VCG

The transfers in the VCG mechanism are not monotone in fildemcy of the outcome
value. This can result in some unexpected behaviour. For example, ndiaary auction,
it is possible that some goods are sold with zero transfer, even thouglalinion for
the goods is non-zero for all participants. In the reversed auction tecg #xists some
unexpected behaviour. In the example below, the total VCG transfers edtedse, as a
result ofincreasingtotal power demand in the system.

Taken = 10 suppliers of type |, their cost function given by Equafion/A.1. Theasdu
andb obey the following relation: & a << b.

a ifp<uy,

_J 2a ifu<p<hu,

25 (P=1 20 it SLu<p<y,
b otherwise.

(A1)

One other supplier, of type Il, is also present in the system. This suppkea bost function
given by Equatiof /AR.
da if p<y,

b otherwise. (A-2)

b5 (p) = {

A graph of the cost function of both types of suppliers is shown in Figuie A

The problem starts with jobs, each with a power consumptionwf The cost of the
schedule in this situation is-a- u. To establish the VCG transfers, one supplier at a time
is removed from the problem, and the cost of the schedule with one supgi@ved is
calculated. Since the suppliers contributing to the optimal schedule are all iyypsffices
to do the calculation for a type | supplier only.

In this setting with a type | supplier removed, the problem consists jobs andn
suppliers. With the assumption théu > V1, the cost of the schedule in this setting is

1 This is necessary to ensure that the optimal schedule equals distributitugthevenly over all type |
suppliers. Without this restriction, a couple of suppliers could take a loagebitpans";u, thereby leaving
the other suppliers free to produador the cost ofa-u. The actual fraction of overu depends on the other
parameters of the problem, suchresndgy;, .
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Non-monotonicity of VCG

unit cost
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Figure A.1: Unit cost for the two types of suppliers as a function of demamdoduction.

n-2a-u. Using these costs, the transfers for the suppliers can be calculatathd=supplier,
the transfer is:

Ts =05 — Dior + D
=(n-2a-u)—(n-a-u)+a-u
=(n-1)a-u (A.3)

In the the other setting, the jobs increase their power consumptiondranv. Letu
andv obey the reIation:l—gou <V, so it is not beneficial to assign the power demand to the
type | suppliers only. Then, with a power consumptiorvgfer job, the optimal schedule
is to divide the power demand equally over the 1 suppliers. The cost of the schedule
becomes-4a-v. Removing one supplier, and recalculating the schedule gives a codt too o
n-4a-v. The transfers in this setting are given in Equafion A.4.

7. =n-4a-v—n-4a-v+4a-v
= 4a-v (A.4)

The diference in transfer for one supplier, therefore,ns ()a-u—4a-v. With the
assumption thagu > v, this difference is a positive value for= 10. This would yield a
positive diference per supplier, so the total transfer would be a factor 10 higherefbre
the total transfers in this exampliecreasdy increasing power demand frourto v, hence
showing the non-monotonicity of the VCG transfers.
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Appendix B

Non-1C example for TRM using
CPW

In this appendix, an example is shown of a setting where a job can dedetiaasfers by
reporting a more restrictive deadline. The example consists of two units of @me job,

j, can be executed in either unit of time, while the oth@bs must be executed in the first
unit of time. Whenj claims it too can only be executed in the first unit of time, let this be
denoted by, its transfers decrease, while the total transfers do not.

Assume that the total transfers in the two settings do not change that mueh, thi
weight of the job dominates their individual transfer. The example belowslacsituation
where a job’s share of the summed weights becomes smaller, by reportintga digadline.

In the first time unit, we find a number of suppliers, that have an aggregasétlunction
given by Equation Bl1. The shape of the function for higher values isfrinterest for this
example, but should be shaped such that the transfers in both settings differovery
much.

a if p<l12,
65 (P) = { 3a ifp=12, (B.1)
otherwise

For the second unit of time, two suppliers can provide energy, both fostota per unit
energy.

There exist 10 jobs in the instance with a power demand of 1, that can osthbeduled
in the first unit of time. The flexible job, jolp, can be scheduled in both the first and the
second unit of time. It has a time span of 1 unit of time, and a power demand of 2

In order to calculate the weights, it is necessary to find the schedule inefitiegs.
These schedules are shown in Figurel B.1. Two schedules with all jobsi@t;lone with
a flexible j, and one with an inflexibl¢. Two schedules for one of the other jobs removed.
Finally, the schedule for whepis removed is identical for both reports ¢fso it needs
only to be calculated once.

Using the values of the example, jplgets the weight fraction given by Equation B.2.

W  2a —1a
YWk 1l0a+2a 6

(B.2)
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Non-IC example for TRM using CPW
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Figure B.1: Optimal schedules for: all suppliers, small jobs afa), all suppliers, all but
one small jobs angl (b), all suppliers and small jobs (c), all suppliers, small jobs afdj,”
all suppliers, all but one small jobs am¢e). The dotted line indicates the limit below which
the unit cost isa.

When thej is replaced by j, the weight fraction is given by Equatién B.3.

w; o 8a a ia
Wi 10-7a+8a 39

(B.3)

The result shows that the fraction of total transfers has decreasgibfp by reporting
a tighter deadline. When the total transfers does not increase too muchefpaming a
tighter deadline, the job is able to decrease its cost. The increase in totétsasstsould be
smaller than the decrease in weight fraction.

When the transfers in both situations are given by the total cost of thelseheon-
taining all jobs, the weight fraction decrease would not be canceled bgdrease in total
transfers. The transfer fgrwould become &, and for it is 1.8a.

Note, that using these values for the transfers would be exactly the vdsaitt a first
price auction is used for the suppliers, and the suppliers report the sashéunction.
Therefore, this example also shows that incentive compatibility cannosb®ed by using
a first price auction on the suppliers’ side, instead of the VCG paymentththatechanism
employs.
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Appendix C

No Stable Nash Equilibrium for
TRM, Using CPW

In this appendix, an example will be presented showing a problem instamme & stable
Nash equilibrium for TRM, using CPW does not exist. The example has tv® aintime,
and three jobs. Let the jobs be labelgck andl, then the power demand for the jobs is,
respectively, 3, 2 and 2.

The cost function of the suppliers are identical in both units of time. Thefaostion
for one of the suppliers is given in Equation1C.1. This supplier is produairige energy in
the optimal schedule. The other suppliers must have a cost function i¢hehransfers
remain similar for all three mutations of the instance.

a if p<4,
#s(p)=4 lla if4<p<5, (C.1)
2a otherwise.

Both units of time are feasible moments of execution for all three jobs. Howkyer
reporting only one possible unit of time for their execution, each job intents tomzie
its transfer. Here, it is only shown that, for every combination of reports,job is able to
decrease its weight fraction by changing its reported type. Figuie Cvisshe schedules
that result from the reports, ignoring symmetric equivalent schedulé® cdsts of the
schedules, and consequently weights, for the jobs is shown in[Table C.1.

In Figure[C.1, the arrows indicate the order in which the schedules follow ether
up. The job changing its report for each of the transitions is, from (a9)tqdb j, k andl,
in that order. After three transitions the jobs have swapped placess lthe suppliers in
both time units are identical, the costs and weights in (d) are identical to (a)olanavill
change its report again.
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No Stable Nash Equilibrium for TRM, Using CPW

ot O D | v TN T

7 3 2 2| 43 29 .29
27 10 85 85 .37 .32 .32
12 55 2 45| 46 .17 .38

O T o

Table C.1: The costs and weights associated with tfierdnt schedules in this example.

Figure C.1: By unilateral change of reported type, one job can alweg®dse its transfer.
As figure (a) and (d) are symmetric, the process repeats itself aftemtutagions.
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