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Abstract

Currently, the electricity market is shifting from fossil fuels to renewable resources.
The lack of controllability of the output of solar cells and wind turbines conflicts with
the requirement that suppliers match their production withthe demand at all times. Our
solution is to drop this requirement and instead use flexibility on side of the consumer
to align the demand with an optimal production schedule.

In this thesis, we first investigate this scheduling problem. We then consider the
setting in which consumers and suppliers have private information about their jobs
and costs. In this context we propose the Transfer Redistribution Mechanism, which is
budget balanced and individually rational. Under the assumption that consumers report
truthfully, the mechanism is efficient. We conjecture that in practice truth-telling is a
best strategy for consumers.

We present experimental results that show that increased flexibility of jobs reduces
the costs of suppliers. Furthermore, the consumers are found to benefit when the flexi-
bility of their jobs is increased, thereby supporting the conjecture that truth-telling is a
best strategy.
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Chapter 1

Introduction

The majority of the production of electricity is currently based on the use of fossil fuels.
Because of the associated production of greenhouse gases, it is considered an important
cause of the greenhouse effect [11]. Also, the resources for fossil fuel are limited, and
expected to become less abundant during the coming century. Therefore, in the years to
come, energy production is expected to shift from fossil fuels to renewable resources more
and more. The benefits of the use of renewable resources, compared totraditional energy
production, are obvious. Less obvious, however, are the drawbacks of its use, the biggest
drawback being lack of controllability.

When using solar cells or wind turbines, the amount of energy produced isnot con-
trollable like it is with traditional resources. As a result, we see that energy aggregators
keep a significant portion of traditional energy suppliers in their portfolio.This is neces-
sary, because the aggregators make contracts in advance about the amounts of energy they
will be producing or consuming. The production of energy from renewable resources is
predicted, but these predictions can be wrong. A buffer of traditional, controllable, produc-
tion is therefore required [9], in order to cope with the lack of controllability of renewable
resources.

In the current market, the energy flow is demand driven. When the demandis high,
the suppliers are expected to increase their production, and fulfill the need. Aggregators
base their long term contracts and day-ahead trades on predicted consumptions for their
consumers. With the use of controllable production, this strategy works, but with an increase
in uncontrollable production, it no longer suffices.

However, we observe that for both solar power and wind energy a certain degree of pre-
dictability exists. The aim of this thesis is to exploit the predictability of energy production,
and create a production driven market. To turn a demand driven market into a production
driven market, the flexibility has to shift from suppliers to consumers. We believe that some
flexibility on the consumers’ side already exists, but is not yet utilized. Partof the chal-
lenge will be to expose the existing flexibility, and then to make an optimal schedulefor the
announced demand and the predicted available production.

Because of the complexity of the scheduling problem, the mechanism cannot be applied
on a very large scale. However, a very promising scale would be to apply the mechanism
to a block of households which is capable of its own energy production using renewable
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Introduction 1.1 Research Questions

resources. In this setting the scale of the scheduling problem is not too large to solve, but
the diversity of jobs is large enough to enable good utilization of the fluctuating production.
Also, by maximizing the use of energy where it is produced, the load for the distribution
network is reduced. Finally, since the demand can be coordinated, the ratioof peak and
average demand will decrease. Therefore, the required peak capacity becomes lower, so
when the diversity of local energy sources is increased, one could imagine the block of
households becoming completely self-supporting.

1.1 Research Questions

In this thesis we make a model of the energy market, and investigate the possibilities and
benefits of utilizing the flexibility in the system. With the assumption that solar and wind
energy production is cheap, good utilization of these energy sources is reflected by a low
costs of the executed schedule. Therefore, the emphasis of this thesis is on cost reduc-
tion, not making any further distinction between the energy sources. The research focuses
on two aspects of utilisation of flexibility. The first is the scheduling of the momentsof
consumption.

The research concerning this aspect aims to answer the following questions:

1. How hard is the problem of scheduling demand, such that the costs of energy produc-
tion are minimized?

2. What algorithms can be used to solve the scheduling problem?

3. What are the benefits of added flexibility on the cost of the resulting schedule?

The second aspect is concerned with the mechanism necessary to expose the flexibility
in the system, required for creation of the optimal schedule. This aspect is investigated by
answering the following questions:

4. Does a mechanism exist, that is efficient, incentive compatible, budget balanced and
individually rational?

5. If not, what properties can be achieved in a mechanism?

6. How much can participants gain from manipulation?

1.2 Outline of this Thesis

The contents of this thesis are divided over seven chapters and three appendices. The chap-
ter being read, Chapter 1, is the introduction to the context of this thesis. In the next chapter,
Chapter 2, the field of mechanism design is introduced briefly. Then the mechanism prop-
erties relevant in the context of this thesis are explained. Finally, two well known auction
mechanisms are introduced, and their properties explored.

The formal model of the scheduling problem will be introduced in Chapter 3.There,
the computational complexity of the scheduling problem is analysed, answering Research
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Introduction 1.2 Outline of this Thesis

Question 1. Also, an answer to Research Question 2 will be presented. The problem will
be transferred to the game theoretic setting, by identifying the properties thatchange when
entering the realm of private information.

In Chapter 4 we investigate Research Question 4. Literature has provideda negative re-
sult for the general setting. However, in this chapter we identify some properties specific to
our problem that could help circumvent the negative result. Unfortunately, two well known
mechanisms, VCG and AGV, are found to be unable to deliver all the desiredproperties.

In Chapter 5, a new mechanism is introduced based on a mechanism with verification.
Two sides of the mechanism are investigated separately, the suppliers’ sidefirst, the con-
sumers’ side second. For the implementation of the suppliers’ side of the mechanism, two
variants will be investigated. In one variant the transfers for consumersdepend solely on
their reported, but verifiable, type. In the other, the transfers are derived from VCG trans-
fers, and depend on the influence of the consumer on the cost of the schedule. Finally, the
two sides are united and the properties of the mechanism as a whole are analysed. This
answers Research Question 5.

After establishing a theoretical foundation for the mechanism, some experimental in-
vestigation will be performed in Chapter 6. The benefits of added flexibility for the cost of
the schedule are investigated. The effects for the consumers of the two variants of the mech-
anism are investigated. This yields a promising answer to Research Question6. The chapter
concludes with a short investigation of the computational scalability of the mechanism.

In the last chapter, Chapter 7, the conclusions of the thesis are formulated. The prop-
erties of the mechanism are reviewed, and put into context. The chapter ends with some
recommendations for future work.

Finally, the appendices provide more detailed examples for some claims made in the
different chapters.
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Chapter 2

Mechanism Design

In this thesis, the aim is to design a mechanism that can be used to create the optimal
schedule of electric power consumption. Before we focus on the problem,we first give an
introduction into mechanism design.

2.1 Game Theory

Mechanism design is a field of game theory, sometimes referred to asreverse game theory,
focusing on the design of the game. In game theory the emphasis is on the analysis of the
behaviour of players competing in a game, and on establishing their best actions, in order
to achieve their desired outcome.

In general, we say that the behaviour of the players is fully described bytheir type. For
each playeri ∈ I in the game, letθi ∈ Θ be the type of playeri, as an element from the set
of typesΘ. The combined actions of the players produces theoutcomeof a game. LetO be
the set of all possible outcomes of a game.

The benefit of a certain outcome,o ∈ O, for a player is given by itsvaluationυi . The
value depends on the type of the player and the outcome of the game. However, the pref-
erence over the outcomes of the game is influenced by another value as well.This is a
monetarytransfer, Ti , made to the player by the mechanism. The value of the transfer can
depend on the outcome of the game too, but is usually not directly dependenton the type of
the player.

The preference for an outcome is determined by theutility of a playerui(·). The utility
is a function of the type of the player and the outcome of the game. In general,the utility
can be written as the sum of the valuation and the transfer,ui(·) = υi +Ti .

Given the type of a player, there are several actions that the player cantake. The set
of actions selected are denoted as thestrategyof the player. Letσi ∈ Σ be the strategy
of a player, from his set of possible strategiesΣ. The combination of the strategies of all
players defines the outcome of the game. Therefore, sometimes we will referto the utility
as a function of the players type, strategy and the strategy of other players. Each player
will generally choose the strategy that results in the outcome of the game, considering the
strategies of other players, that maximizes its utility.
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Mechanism Design 2.1 Game Theory

Definition 2.1.1(Strategy). A strategy is the plan or decision rule that decides the action a
player will take, given a state of the game and the preferred outcome of the player, defined
by its type.

To measure the preference of an outcome of a game, the utility is used for individual
players. However, generally the players have a preference for different outcomes. In that
case, the preference of individual players cannot be used to determine the best outcome for
the group as a whole. To measure the benefits of the outcomes for the groupof players as a
whole, the social welfare is used.

Definition 2.1.2(Social welfare). The social welfare of an outcome is the sum of the valu-
ations of all players in the game for that outcome.

S W(o) =
∑

i∈I

υi(o)

2.1.1 Solution concepts

The players each have a choice about the strategy they will follow. We will assume, through-
out this thesis, that the players areutility maximizingand behave in a risk neutral way. Given
the objective of each player to maximize its own utility, we can identify three kinds of so-
lutions, in terms of determination of strategies.

The weakest of concepts, but probably also the best known, is that ofNash equilibrium
[19]. Let the subscript−i denote the set of playersother thani.

Definition 2.1.3 (Nash equilibrium). Given a type profileθi , a strategy profileσ is a Nash
equilibrium when:

∀i ∈ I ,σ′i , σi ,ui(θi ,σi(θi),σ−i(θ−i)) ≥ ui(θi ,σ
′
i (θi),σ−i(θ−i)) (2.1)

The Nash equilibrium defines the situation where no playeri can improve his utility
by unilaterally changing his strategy. In this situation it is best for each player to follow
a certain strategyσi , only when all other players follow their equilibrium strategy. How-
ever, when one player would deviate from its strategy, it might be interestingfor another to
deviate as well, to obtain a better outcome.

A stronger concept is that of a Bayes-Nash equilibrium.

Definition 2.1.4 (Bayes-Nash equilibrium). A strategy profileσ is in Bayes-Nash equilib-
rium if, given its expectations̃θ−i about the types of other players:

∀i ∈ I ,σ′i , σi ,E
[

ui(θi ,σi(θi),σ−i(θ̃−i))
]

≥ E
[

ui(θi ,σ
′
i (θi),σ−i(θ̃−i))

]

(2.2)

In this concept, the best strategy is based on an expectation about the types of other
players. Therefore, the players need not know the exact valuation for outcomes by the
other players, but only have knowledge about the distribution of valuations. The strategy
to choose is the best response to the distribution of the strategy profile of other players.
Therefore, the best strategy might deviate from the strategy that would win, given the actual
strategies of other players.

The strongest solution concept is a dominant strategy.
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Definition 2.1.5(Dominant strategy). Givenθi ∈ Θ, a strategyσi is dominant if:

∀θ−i ∈ Θ−i ,σ−i ,σ
′
i , σi ,ui(θi ,σi(θi),σ−i(θ−i)) ≥ ui(θi ,σ

′
i (θi),σ−i(θ−i)) (2.3)

This states that whatever strategy the other players follow, for playeri it is always opti-
mal to follow strategyσi instead ofσ′i .

2.2 Mechanism Design

As each player in a game is optimizing its strategy to increase its own utility, the overall
result might be very poor for some players. Therefore, in mechanism design, the focus is
on the outcome of the utility for the group as a whole. The goal of mechanism design is to
specifically choose the rules for the game, such that the social welfare is maximized.

The outcome of the game can be described by the social choice function of that game.

Definition 2.2.1 (Social choice function). The social choice function f(θ) chooses an out-
come fromO for a game, given the player-typesθ = (θ1, . . . , θI ).

The aim is to specify the social choice function by the rules of the game, i.e. to restrict
the actions a player can choose, and to manipulate his utility, such that all strategies together
result in the desired outcome. In fact, we can restrict our attention a little. Instead of
reasoning about all actions in all situations, it is sufficient to simply obtain a statement from
the players about their type, when we can apply the revelation principle [7,17].

Definition 2.2.2 (Revelation principle). If a mechanism exists that implements a choice
function f(θ) under dominant strategy, Nash or Bayes-Nash equilibrium, then there exists
an equivalent direct mechanism, where the equilibrium strategy for each player is truth
telling.

In this thesis, we will work with direct mechanisms only.

Definition 2.2.3(direct mechanism). A tuple ( f(θ), T), where:

• f (θ) : θ→O is an allocation function.

• T(θ) = (T1, . . . ,Ti) defines the monetary transfers made to each of the participants.

Although the direct mechanism makes it slightly easier to reason about, Parkes [23] also
warns us about the computational properties of such a mechanism, and the requirement for
each player to make a report about its type. In some situations it might be desirable for
player not to reveal more of their type, when it is imperative that they will notimprove the
outcome by doing so. This would be possible in an indirect mechanism, when players can
respond to each others actions, and iteratively add information as they seefit.

Now that the mechanism is outlined, the properties of the mechanism can be discussed.
First the social choice function: a mechanism is said to be efficient when it maximizes
the social welfare. Later, we will use the notationf ∗(θ) for an allocation function that
maximizes the social welfare.
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Mechanism Design 2.2 Mechanism Design

Definition 2.2.4 (Efficient mechanism). A mechanism is efficient when its allocation func-
tion maximizes the social welfare.

∀θ ∈ Θ, f (θ) = argmax
o∈O

∑

i∈I

υi(θi ,o) (2.4)

For the other properties of mechanisms, there exist different levels of application. The
strongest sense isex post, meaning after the fact. In this concept we can apply the mech-
anism, and look back to see that a property held its truth, no matter to what instance the
mechanism was applied. A weaker concept isinterim, meaning that each player knows
about its type and the rules of the mechanism, but only has expectations aboutthe types of
others. The weakest concept isex ante, meaning before the fact. With an ex ante property,
the property holds when the players know the rules of the mechanism and have expectations
about their types and the types of others, but no strict knowledge aboutthe other types and
therefore the outcome of the mechanism. If a property holds in an ex ante or interim con-
cept, the property will be true in expectation over all instances, given the know distributions
of player types. However, it is not guaranteed that the properties hold for all instances.

Here we only introduce those concepts of properties that we will need lateron. The first
property that is introduced defines the cost, or profit, of employing the mechanism. When
the transfers made to the players do not sum up to 0, the maintainer of the mechanism
might need to add value to the mechanism. The mechanism is then said not to be budget
balanced, or, when the maintainer has a net negative transfer to the mechanism, it is weakly
budget balanced. The desired property in this thesis, however, is strong budget balanced-
ness. Clearly, a mechanism which is not budget balanced is undesirable,since it would cost
money to execute. On the other hand, a weakly budget balance mechanism would generate
money, but when this money finds its way back to the the players it influences their strategy.
To prevent this, the best choice is a strong budget balanced mechanism.

Definition 2.2.5 (Ex post budget balanced mechanism). A mechanism is budget balanced
when, the sum of all transfers is0.

∑

i∈I

Ti = 0 (2.5)

Two other properties of mechanisms that will be discussed are properties that must hold
for each player. First, the property that players are not better off when not participating.
This implicitly makes the assumption that not participating yields a utility of 0.

Definition 2.2.6(Ex post individually rational). A mechanism is ex post individually ratio-
nal if the ex post utility is nonnegative.

∀θ ∈ Θ, i ∈ I ,ui(θi , f (θ),Ti) ≥ 0 (2.6)

The weaker variant that will be used is ex ante individual rationality.

Definition 2.2.7(Ex ante individually rational). A mechanism is ex ante individually ratio-
nal if the ex ante utility is nonnegative.

∀i ∈ I ,E
[

ui(θ̃i , f (θ̃),Ti)
]

≥ 0 (2.7)
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When applying a mechanism it is desirable that the players cannot manipulate the out-
come of the game by making untrue claims about their type. Therefore, a desirable property
of the mechanism is to incentivise the players to only make truthful reports about their type.
The best way to enforce this, is to make sure that the best strategy they have is to make
truthful report. Again we identify two levels of this property.

Definition 2.2.8(Bayes-Nash incentive compatible (BNIC)). A direct mechanism is Bayes-
Nash incentive compatible if the truthful report is a Bayes-Nash equilibrium of the game
described by the mechanism.

In the Bayes-Nash variant, the players must act before they know the types of other
players. Given the prior knowledge about the distribution of other players types, truthful
reporting is their best strategy.

The stronger variant is dominant strategy incentive compatibility.

Definition 2.2.9 (Dominant strategy incentive compatible (DIC)). A direct mechanism is
dominant strategy incentive compatible if the truthful report is a dominant strategy equilib-
rium of the game described by the mechanism.

In this variant it is clear that a truthful report about the players type is always the best
strategy, no matter what the other players types are.

2.2.1 Mechanism with verification

In some situations, it is not possible to design a mechanism which is incentive compatible
for all properties of the players’ types. For example, in task allocation, the players might
represent their task with a smaller execution time in order to be scheduled earlier. The mech-
anism would not be able change its allocation thusly, such that truthful reporting becomes a
dominant strategy.

However, under certain conditions it is possible to employ amechanism with verifica-
tion, introduced by Nisan and Ronen [22]. In a mechanism with verification, there are two
stages in the mechanism: one where the players communicate and decide on the allocation,
and then an execution stage where the agreed allocation is executed. The transfers are es-
tablished only after the execution is completed. During the execution stage, themechanism
is able to verify some of the properties of the players. In the example above,the execution
time of the tasks would be known to the mechanism, after all the tasks have been executed.

Since the transfers in a mechanism with verification are only established afterthe exe-
cution stage, the actual, verified, properties of the players can be taken into account. The
transfers therefore can depend both on the reported types, and on theverified types of the
players. Players that reported something different from their verifiable type can be “pun-
ished”. In effect, the mechanism makes it undesirable for the players to report anything but
their true types, and truthfulness is enforced by the verification mechanism.
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2.3 Auction Mechanisms

Auction mechanisms are used to distribute goods among interested participants (players).
Well known auction mechanisms are the single item auctions English auction and Dutch
auction.

2.3.1 Single Item Auction

In a single item auction, only one item is up for auction, therefore, only one player can
acquire the good. We will consider English auction and Dutch auctions. Boththese auction
mechanisms areefficient, i.e. they maximize the social welfare of all players, by allocating
the object to the player that values it the most. However, there is an important difference
between the two, in how they determine which player values the object the most.

In an English auction, the price increases as the players cry out their newhigher bid, for
which they wish to obtain the object. As soon as the latest bid exceeds a players valuation,
that player will stop bidding. Any remaining players can bid just slightly more than the last
bid to obtain the good. The winning player, therefore, can obtain the item fora price that is
unrelated to his own valuation.

In the Dutch auction, on the other hand, the price decreases, until one player is willing
to pay that price for the good. Then he makes his bid, and obtains the objectfor the price
he bids. This price is fully determined by the value of the object for this player.

Using the revelation principle, we can construct two forms of direct mechanisms, based
on the previous two auctions. While the strategies for players in the direct equivalents are
the same, the expected revenue for the center can be different [16]. The second price sealed
bid auction is the direct equivalent of an English auction, where each player submits only
one bid. The player with the highest bid wins the objects, and the player makingthat bid
pays only the second highest bid. The other is a first price sealed bid auction, in which the
players submit their bids, and equivalently to the Dutch auction, the highest bid wins, and
the winning player pays the amount of his own bid.

In a first price auction, the bids that players make do not typically reflect the true valua-
tion for an object. After all, if they would bid exactly that value, their utility would be zero.
Contrastingly, the bids that players make in a second price auction, are typically the true
valuations for the object. After all, they will pay the price of the second bestbid, which is
already lower than their valuation, therefore there is no incentive to decrease the bid. Fur-
thermore, would the player make a higher bid, it is possible that he ends up paying more
than his valuation of the object. As a result the second price sealed bid auction, also known
as a Vickrey [24] auction, is incentive compatible. On the other hand, first-price sealed bid
auction is not.

2.3.2 VCG Mechanism

The previously described sealed bid auction mechanism can be extended tothe auction of
multiple objects. There, the winner pays the bid that had the second highest value for the
item. Because there is only one item for sale, that is exactly the social welfarethat would
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Mechanism Design 2.3 Auction Mechanisms

have resulted when the winner was not present. Generalizing the setting from a single-item
to a combinatorial auction, following the same idea, charging the player the social welfare
that would have resulted without him, produces a dominant strategy mechanism.

It turns out that practically all mechanisms that implement a dominant strategy fall in
the same class of mechanisms. This class of mechanisms is called the Groves class of
mechanisms, proposed by Vickrey [24], Clarke [5] and Groves [8]. The Groves class of
mechanisms are defined by the outcome they choose, and the transfers thatare made by the
players. The definition of the transfers, however, contains a function that is not defined by
the Groves class, therefore, there exist infinitely many mechanisms that fallin the Groves
class.

Definition 2.3.1 (Groves class of mechanisms). A direct mechanism ( f(θ), T) is a Groves
mechanism if and only if:

• ∀θi ∈ Θ, f (θ) ∈ argmaxo∈Oυ j(θi ,o), it executes f∗(θ).

• ∀i ∈ I ,Ti(θi) = (
∑

k,i υk(θ−i , f ∗(θ)))−hi(θ−i), where hi is a functions that does not de-
pend on the type of i.

The outcome of a Groves mechanism is the outcome that maximizes social welfare,
according to the reported types of the players. The transfers to each player are defined by
the reported valuation of the other players for the outcome, and a value thatis independent
of the players report. The value ofhi , thecharge, is a constant from the point of view of
playeri. Therefore, in order to maximize the payments, the player should aim to maximize
the other players’ valuation for the outcome of the mechanism. Thus, the Groves class of
mechanisms has the property stated in Lemma 2.3.2.

Lemma 2.3.2. Every mechanisms in the Groves class is efficient and incentive compatible.

For the proof of Lemma 2.3.2, we refer to the work of Cavallo [3].
The Groves class of mechanisms define a broad set of mechanisms. We arefree to

pick thehi , that will fulfill our needs best. When the mechanism is required to be ex post
individually rational, then a Clarke tax can be used.

Definition 2.3.3(Clarke tax). A Clarke tax is the choice for the charge that is defined as:

hi =max
o∈O

∑

k,i

υk(o)

We define the mechanism from the Groves class of mechanisms that uses the Clarke tax
as its charge as a VCG mechanism. Letf (θ−i) be the outcome that maximizes the social
welfare wheni does not participate, i.e. the outcome that determines the Clarke tax.

Definition 2.3.4(VCG mechanism). A VCG mechanism is a mechanism in which the social
choice function maximizes the social welfare, and the transfers are definedas:

Ti =
∑

k,i

υk(θk, f (θ))−
∑

k,i

υk(θk, f (θ−i)) (2.8)

10



Mechanism Design 2.3 Auction Mechanisms

The difference between the two sums of the VCG transfer is the difference of the
summed valuation of the players other thani, for the outcomes with and withouti. Again,
the transfers assigned to playeri are independent of the bid of playeri itself. The VCG
mechanism achieves most of the desired properties, as claimed in Lemma 2.3.5.

Lemma 2.3.5. The VCG mechanism is efficient, incentive compatible and individually ra-
tional when the no negative externalities property holds.

The proof for the individual rationality part of the lemma is a variation on the proof by
Nisan [20].

Proof for Lemma 2.3.5.The mechanism falls in the Groves class, since the mechanism is
efficient, and the transfers follow the Groves definition. The Clarke tax is independent on
the players type, and the other term follows straight from the mechanism. Therefore, the
mechanism is efficient and incentive compatible.

A mechanism is individually rational when the utility is non-negative for each player.
Using the transfers from the mechanism, the utility for a player is given by:υ j( f (θ))+
∑

k,i υk( f (θ))−
∑

k,i υk( f (θ−i))≥
∑

kυk( f (θ))−
∑

kυk( f (θ−i))≥ 0. The first inequality follows
from the no negative externalities property,υ j( f (θ−i)) ≥ 0. The second step holds because
the allocation function selects the optimal outcome. �

While the VCG mechanism does achieve most of the desired properties, it is not budget
balanced. In the next section a mechanism is introduced that is budget balanced.

2.3.3 AGV Mechanism

When the requirements of ex post individual rationality and dominant incentive compatibil-
ity are relaxed, it is possible to construct an ex ante budget balanced auction mechanism.
This is the AGV mechanism, named after its inventors d’Aspremont and Gérard-Varet [6].
Sometimes it is referred to as AAGV, since it was simultaneously developed by Arrow [1].
In this mechanism the transfers that are made to a player are reclaimed from the other play-
ers. In effect, no transfers are made to or taken from the group of players as a whole.

The AGV mechanism is a Bayes-Nash incentive compatible mechanism that achieves
budget balancedness. Transfers in this mechanism are solely determinedby the expected
valuations that players obtain from the expected outcome.

Definition 2.3.6(AGV mechanism). The AGV allocation function selects the outcome that
maximizes the social welfare. Let n be the number of players, and let ES W−i be the ex-
pected social welfare for the players other than i, that isE [S W−i ] =

∑

k,i E [υk(o)], the AGV
transfers then are defined as:

Ti = ES W−i −
1

n−1

∑

k,i

ES W−k (2.9)
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Mechanism Design 2.3 Auction Mechanisms

The expected social welfare is calculated by evaluation of the outcomes forall possible
player types, and multiplying them by their probability. This assumes that the probability
distributions are known beforehand, and that the same probability distributions are known
to all players.

That this mechanism is budget balanced is easily observed, by summing the transfers
of all players. A proof for the incentive compatibility property is provided by Krishna [13].
Finally, the AGV mechanism is ex ante individually rational.

2.3.4 Bilateral trade

So far we have been considered with the situation where one auctioneer, or center, has an
item for sale, and several players are bidding to obtain it. Turned around, in a reversed
auction, with the center desiring to acquire an object and several sellers offering, the VCG
and AGV mechanisms are equally applicable. The important difference to keep in mind
then, is that we assume the players to have a negative valuation, or cost, associated with
losing the item. Stated slightly differently, the sellers have had costs for creating the item in
the first place. Either way, the winner of these auctions is the one with the highest valuation
still, i.e. the least negative valuation, or in terms of cost it is the player that associates the
lowest cost with the item.

Nevertheless, the calculations stay the same. Using a negative value for thevaluation, it
turns out the center himself needs to transfer value to the players, instead of the other way
around. Quite expected, since it is the center in this situation that obtains an item.Even
budget balancedness is preserved under the AGV mechanism in this reversed auction.

However, it is in general not possible to combine both settings in one and retain all the
properties. That is to say, one cannot have several buyers bidding while several sellers are
offering and maintain the properties defined earlier for these mechanisms. Moreformally,
we get the following impossibility result by Myerson and Satterthwaite [18]:

Lemma 2.3.7. In the bilateral trade problem, there is no mechanism that is efficient, Bayes-
Nash incentive compatible, individually rational, and at the same time weakly budget bal-
anced.

12



Chapter 3

Problem Statement

In this thesis we try to decrease energy production costs by adapting the moment of con-
sumption to times when production is cheap. We consider jobs that cannot be preempted,
with a given deadline and try to match their moment of execution with convenient, low cost,
moments for the suppliers. Each supplier has, for each time unit, a nondecreasing function
of cost per unit energy production.

3.1 Demand Scheduling Problem

Here we present the formal model of the problem. The problem is named the Demand
Scheduling Problem (DSP), since we assume the costs for the suppliers to be fixed, and try
to minimize energy production costs by adapting the schedule of the jobs, i.e. scheduling
the demand.

The problem takes a number of jobsj ∈ J, each job representing something the con-
sumer needs done. For each consumeri ∈ I we have a set of jobsJi , such that when jobj
belongs to consumeri, we have that:j ∈ Ji . Each job consists of a set of properties, defining
how the job can be scheduled.

Definition 3.1.1(Job). A job, j, in the DSP is a defined by its properties:

• a j , the arrival time of the job, when it can first be executed,

• sj , the duration of the job,

• p j , the power requirement per unit time for the complete duration of the job, and

• d j , the deadline, when the job must be completed.

The model uses a concept of discretized time. We require the jobs to be feasible, so
a j + sj ≤ d j . Also, the jobs must fall within the time window under consideration;a j > t0
andd j ≤ t f +1, with t0 the first unit of time andt f the final unit of time that is considered
in the schedule. Furthermore, these parameters together imply the flexibility (number of
possible starting times) to bef j = d j −a j − sj +1.

13



Problem Statement 3.2 Complexity of DSP

To provide the consumers with energy, we consider a number of supplierss ∈ S.

Definition 3.1.2(Supplier). A supplier,s , in DSP is defined by a cost function:

• φs (pst , t), the unit cost with a power production of pst , at time t.

In general, the cost functions are monotonic inpst , but typically not int. The total cost
endured by the supplier in order to create the energy isΦs (pst , t) = pst φs (p

s

t , t).

In Section 2.2 the notion of anefficient mechanismwas introduced. The objective of the
mechanism constructed in this thesis is for it to be efficient. However, this requires that the
valuation of the outcomes of the mechanism are defined and known to the schedule maker.
For the suppliers, the valuation is defined, as it is the cost associated with theproduction of
power that a supplier produces in the schedule. For the jobs, on the otherhand, the valuation
is not defined as a property of the problem. Although, from the context thejobs originate
from, consumers wanting to get an energy consuming task done, it is to be expected that
some valuation is associated with the jobs.

Unfortunately, in the real world it would be impractical to require a valuation report for
all the jobs that consumers present to the mechanism. First of all, because the consumers
would need some way to communicate this valuation, but second, it would constantly inter-
rupt their daily business to make their valuation for a job known to the mechanism.While
these two difficulties make the utilization of per job valuations problematic, most important
is probably that it would require that consumers define a quantitative valuation for every
job. This task is unreasonable, because consumers simply lack the information necessary to
give these quantitative valuations [15].

Since a lot of the mechanism properties depend on the efficiency property, later there
will be some assumptions made to provide some form of indication for the valuationby the
consumers. For the schedule to be efficient it will then be sufficient to minimize the total
cost for the suppliers.

3.2 Complexity of DSP

In order to investigate the complexity of DSP, we use the bin packing problem [10], for
which it is known that its computational complexity is NP-complete. We show that thebin
packing problem can be reduced to DSP. The bin packing problem is defined as follows:

Definition 3.2.1 (Bin packing). Given a list L= (l1, . . . , ln) of integers and a bin size V, is
there a way to distribute the integers over B bins, such that for each bin k= 1, . . . ,B it holds
that its size|Sk| =

∑

l j∈Sk
l j is less than or equal to the bin size:|Sk| ≤ V.

To perform the reduction from bin packing to Demand Scheduling Problem, we take
B units of time, to represent theB bins. Then, we create a job for each integerl j in L.
The integers fromL can be assigned to all of the bins, so it must be possible for the jobs
to be assigned to any of the units of time in the DSP instance. Therefore, we take the
complete time-span as the allowed time, using parametersa j andd j . The integers can only
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Problem Statement 3.3 Scheduling Algorithm

be assigned to one bin, so we require the time-span of the jobs to be 1. Finally,we set the
power demand per unit time of the jobs equal to the integer valuel j .

The properties of the equivalent DSP instance become:sj = 1, p j = l j , a j = 1 and
d j = B+ 1 for all j = 1, . . . ,n. Consider one supplier, and let the cost for this supplier at
momentt beΦ(Dt > V, t) = ∞, and bounded for demand lower than or equal toV. The
question to be answered is: does a schedule exist, such that

∑

tΦ(Dt, t) is bounded. The
answer to this question answers the bin packing problem, the correctness of this reduction
will be proven in the following.

Lemma 3.2.2. Bin packing yes-instances map to DSP yes-instances.

Proof of Lemma 3.2.2.If St is the bin to which integerl j is assigned in the bin packing
problem, we execute it in time unitt, so ej,t is 1 only for this particulart. Therefore,
Dt =

∑

j ej,t p j =
∑

j ej,tl j =
∑

l j∈St
l j is equal to the size ofSt.

So, if |St| ≤ V then alsoDt ≤ V and thusΦ(Dt, t) is bounded. This holds for anyt, so if
the bin size|St| ≤ V for all t, then the cost for eacht is bounded, and therefore

∑

tΦ(Dt, t) is
bounded as well. �

Lemma 3.2.3. DSP yes-instances map to bin packing yes-instances.

Proof of Lemma 3.2.3.If
∑

tΦ(t,Dt) is bounded, we see that for allt it holds: Φ(Dt, t) is
bounded, soDt must be less than or equal toV. Because of the definition ofDt, and
the construction of the reduction, we know thatDt = |St|. Combining the two previous
observations we see that|St|=Dt ≤V. So, the bin packing instance must have a solution.�

Using this reduction from an NP-complete problem to DSP, we observe Corollary 3.2.4.

Corollary 3.2.4. Demand Scheduling Problem is NP-hard.

3.3 Scheduling Algorithm

Given the definition from Section 3.1 it is possible to compute a schedule that minimizes
the costs for the suppliers. In this thesis we will restrict ourselves to supplier cost func-
tions that can be modeled as a mixed integer quadratic constraint program (MIQCP). This
allows us to use the MIQCP solver from the IBM ILOG CPLEX Optimizer package. The
CPLEX Optimizer package is well known for its efficiency on solving scheduling problems
in general. However, this MIQCP solver does not provide the exact optimal solution to the
problem, but an approximation.

Before the problem can be solved by a MIQCP solver, the problem must betransformed
into an MIQCP. Patterns for the construction of linear programs can be found in literature,
see for example [4] and [12]. The MIQCP is a natural extension, and theconstruction
follows along the same lines.

The supplier cost function must have a restricted form, in order to fit in a MIQCP. This
is achieved by letting the unit cost for a certain production be defined as themaximum value
of a set of linear constraint functions. Each constraint functions formsa lower bound, as a
function of produced supply, on the unit cost for the supplier. These functions, of the form
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Problem Statement 3.4 Game Theoretic Setting

apst +b, are defined by the two parametersa andb, and this is also how they will return in
the MIQCP. Thepst used in the previous equation is the power that the supplier provides,
this must be a non-negative real value. Letqs be the number of linear functions suppliers
has.

The MIQCP for the DSP is given below. An extra set of coefficients,ej,t, is introduced,
indicating if job j is executed at timet. The schedule establishes a begin timeb j and an
implied finish timeb j + sj with each task. The value ofej,t is defined as 1 ifb j ≤ t < b j + sj ,
and 0 otherwise.

Equation 3.1 determines the objective of the MIQCP, it shows that the sum over all
suppliers and all units of time of the costΦs ,t that suppliers has in unit of timet must be
minimized. EachΦs ,t is bounded below by the constraint function of the supplier for that
unit of time, as shown in Equation 3.2. The production by suppliers and demand from jobs
are related by Equation 3.3: at any time the sum of the production matches the sum of the
demand.

Because the jobs cannot be preempted and must be executed between the arrival time
and deadline, the final three equations are required. To ensure that thebegin timeb j falls
within the proper range, the allowed values are restricted bya j ≤ b j ≤ d j − sj . The execution
coefficient is linked to the begin time by Equations 3.4 and 3.5. The valueM is a large
constant, such that the two equations together ensure thatej,t is never 1 before the begin
time of after the more thansj later than the begin time. Finally, Equation 3.6 guarantees
that the execution coefficient is 1 in as many units of time as the time span of the job.

min
∑

s ∈S

∑

t

Φs ,t (3.1)

subject to

(as ,qt pst +bs ,qt )pst ≥ Φs ,t

s = 1. . .m

t = t0 . . . t f

q= 1. . .qs

(3.2)

∑

s ∈S

pst =
∑

j∈J

ej,t p j t = t0 . . . t f (3.3)

(ej,t −1)M+b j ≤ t
j = 1. . .n

t = t0 . . . t f
(3.4)

(ej,t −1)M−b j ≤ sj − t−1
j = 1. . .n

t = t0 . . . t f
(3.5)

∑

t

ej,t = sj j = 1. . .n (3.6)

3.4 Game Theoretic Setting

In Section 3.1 we have seen the formalization of the problem. Given a probleminstance the
optimal schedule can be calculated straightforwardly. However, the straightforward method
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may not be efficient, considering the complexity of the problem, as shown in Section 3.2.
A subset of the possible problem instances, those where the suppliers have linear unit cost
function, can be solved by the algorithm in Section 3.3.

However, this straightforward calculation of the schedule requires full knowledge of the
problem. The entire type information for all jobs and suppliers should be known to the algo-
rithm before it can begin calculating the schedule. In the real setting, the jobs are created by
consumers, and the job properties are not inherently known to the schedule maker. In fact,
all the properties that define a job or supplier are supposed to be private information. There-
fore, the suppliers and consumers have a possibility to provide incorrectinformation to the
schedule maker. It is a requirement of the mechanism to ensure truthful reports from the
participants. It will be the goal of the following chapters to find a mechanism that achieves
this.
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Chapter 4

Existence of a Mechanism for DSP

In the literature it is stated that in a bilateral trade setting, with no restriction on thetypes,
it is not possible to have a mechanism that is efficient, incentive compatible, individually
rational and budget balanced (Myerson and Satterthwaite [18]). In thecontext of DSP,
however, there are some restrictions on the types of the suppliers and jobs. Furthermore,
there are restrictions on the schedule that the mechanism produces. In thefirst section,
these restrictions will be formalized. In the other sections in this chapter, the possibilities
of a mechanism with the desired properties will be investigated, given these restrictions.

4.1 Properties for DSP

In this section some of the properties of the problem, that follow from the practical context,
will be accumulated. The first property is one that restricts the possible outcomes of the
mechanism.

Whenever a consumer reports a job to the mechanism, it should not be possible that
the job does not get executed. Therefore, it is a requirement of the mechanism’s outcome
that all the jobs are scheduled at a feasible moment, as is the situation in current practice.
This, of course, begs the question whether this is a reasonable obligation for the mechanism.
How, after all, can the mechanism ensure that such a feasible schedule exists.

In fact, such a guarantee can be derived from current practice. Ifthe mechanism would
be unable to ensure the existence of a feasible schedule, this would mean that in certain
units of time there is a bigger demand for energy than what the suppliers can provide.
However, when the mechanism is applied and jobs report their flexibility, the schedule that
would result from executing the jobs when they first arrive remains feasible, this is in fact
the exact schedule that is executed in current practice. Therefore, the mechanism has the
possibility to execute the schedule that would have resulted without the mechanism. Then,
by Assumption 1, it is implied that a feasible mechanism exists. The assumption is even
stronger, and states that each job’s cost, in current practice, is below the valuation for the
execution of that job. Later, this stronger interpretation will be used to prove individual
rationality for the mechanism.

Assumption 1. The currently employed energy market is individually rational.

18
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In the previous chapter it was argued that it is not possible to acquire a quantitative
valuation from the consumers. Therefore, the valuation for the jobs must be captured in
qualitative properties, as best possible. With Assumption 1, a first qualitative property has
been provided, that can be seen as an observation from current practice. The next property,
however, is not supported by observation, and must be seen more as a requirement for the
mechanism.

When the jobs report their flexibility to the mechanism, the job is considered to be in-
different about the moment of execution within the feasible window. This property results
in Assumption 2. This assumption makes it easier for the mechanism to establish theeffi-
cient schedule, since it does not need to consider a preference fromthe job, other than the
reported window.

Assumption 2. The valuations for the execution of a job is constant between its arrival
time and deadline.

We do not consider this last assumption to be too restrictive for practical purposes. Even
though it is possible that a preference exists for some jobs, for example, tohave them com-
pleted as soon as possible. When this preference is stronger than the anticipated cost benefit
of the delayed completion, the job report could be restricted to the most preferred moment
of execution only. By not restricting the feasible window, therefore, the job indicates that
the variations of its valuation for the moment of execution are smaller than the anticipated
difference in cost. The efficiency is then dominated by the cost for the suppliers, which sup-
ports the assumption that variations in valuation for moment of execution can beneglected,
i.e. it can be considered constant.

4.2 A Groves Class Mechanism for DSP

In order for the mechanism to maximize the social welfare, it is necessary that the mecha-
nism has access to the true types of the jobs and suppliers. Therefore it isa requirement of
the mechanism to be incentive compatible. One class of efficient mechanisms where truth
telling is a dominant strategy is the Grove class of mechanisms. In this section, a Grove
mechanism will be constructed for DSP. Then the IR and BB properties will be investi-
gated.

Let us first look at the transfers for the jobs only. The Groves transfers are given by a
constant,K j , added to the sum of valuations of the other participants.

T j = K j +
∑

k, j

υk( f (θ))

Every transfer scheme of this form is efficient and incentive compatible. Since the mecha-
nism is also required to be individually rational, letK j be defined by the Clarke tax.

T j = −max
o∈O

∑

k, j

υk(o)+
∑

k, j

υk( f (θ))
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Existence of a Mechanism for DSP 4.2 A Groves Class Mechanism for DSP

Using Assumption 2, and the property that all jobs are always executed, the valuation
for all jobs other thanj is constant. The sums over the other jobs cancel each other out, and
the transfer for a jobj thus only depend on the suppliers’ valuation:

T j = −max
o∈O

∑

s ∈S

υs (o)+
∑

s ∈S

υs ( f (θ)) (4.1)

For the suppliers, a similar construction can be performed. Application of Grove mech-
anism with a Clarke tax to the suppliers gives a transfer of:

Ts = −max
o∈O

∑

k,s

υk(o)+
∑

k,s

υk( f (θ))

Again the valuations of jobs cancel out, applying Assumption 2 and the observation that
all jobs are always executed. The transfers for suppliers thereforebecome:

Ts = −max
o∈O

∑

k,s
k∈S

υk(o)+
∑

k,s
k∈S

υk( f (θ)) (4.2)

The transfers for all participants follow the transfers of the VCG mechanism in Equa-
tion 2.8. The transfer scheme is therefore efficient, incentive compatible and individually
rational. However, the transfers produced by this mechanism are not budget balanced. As
stated in Theorem 4.2.1, it is not possible to create a mechanism that combines these four
properties, since the problem remains similar to bilateral trade, even with the twoprevious
assumptions.

Theorem 4.2.1.For the private information setting of DSP, no efficient mechanism exists
that is individually rational and budget balanced where truth telling is a dominant strat-
egy, despite Assumption 1, the current energy market is IR, and Assumption 2, consumer
valuation is constant for execution of jobs within their deadline.

This theorem can be proven by presenting a counter example for the VCG mechanism
previously derived.

Proof of Theorem 4.2.1.The mechanism is a Groves mechanism, so it is efficient and incen-
tive compatible by Lemma 2.3.2. By application of the Clarke tax, the mechanism became
a VCG mechanism. By Lemma 2.3.5, the mechanism is therefore also individually rational.
This proof will consist of an example, showing that the mechanism is not weakly budget
balanced on all instances.

In the example there is one unit of time. Let there be 5 jobs, having a power demand of
1. There are 5 suppliers that have a cost function given by Equation 4.3, where the following
relation holds 0< a< b.

φs (p) =

{

a if p≤ 1,
b otherwise.

(4.3)

The valuation when all suppliers and jobs participate is 5a. When a job is removed, the
cost is 4a, and with one supplier removed, the cost becomes 4a+b.
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The transfers for each job are:

p j = 4a−5a= −a

The transfers for the five suppliers are:

ps = 4a+b−4a= b

Summing the transfers of all participants yields:
∑

j

p j +
∑

s

ps = 5(b−a) > 0 (4.4)

Clearly, sinceb> a, the mechanism implementer must make positive transfers to the players,
i.e. the mechanism runs a deficit.

Now suppose some other mechanism exists, that is both incentive compatible and ef-
ficient. By the revenue equivalence principle, the expected transfers for the jobs in that
mechanism is different from the transfers in this mechanism only by a constantK. The
expected transfers for the suppliers differ only by a constantL.

For a job with a power consumption of 0, the transfer in this mechanism is 0. Suppose
the other mechanism is also individually rational. Then, it must hold thatK ≥ 0. Similarly,
for suppliers not participating in the optimal schedule, the transfer in this mechanism is 0.
Therefore, it follows thatL ≥ 0.

By adding constantsK and L to the transfers, the expected deficit can only increase.
Thus, there does not exist an efficient mechanism for DSP that is incentive compatible,
individually rational, and budget balanced. �

4.3 AGV for DSP

As seen in the previous section, it is not possible to devise an efficient mechanism that is
incentive compatible, individually rational and budget balanced. The AGVmechanism has
a weaker strategy concept, that of Bayes-Nash incentive compatibility, and is efficient and
budget balanced. Krishna et. al. [14], state that an efficient mechanism that is incentive
compatible, individually rational and budget balanced only exists when the VCG is weakly
budget balanced. In this section we will confirm a negative result for theAGV mechanism.

The AGV mechanism bases the transfers on expectations of valuation by thepartici-
pants. So far, only qualitative assumptions about the valuation of the jobs have been made,
in this section it becomes necessary to establish a more quantitive analysis. Using Assump-
tion 1, a lower bound on the valuation for the jobs can be defined. After all, for each job, the
valuation must be higher than what is charged for it. Therefore, there exists a value,υ0

j , that
must be larger than or equal to the highest price possible that is charged toj in the current
market. This value is a lower bound for the valuation of the jobs, as shown in Equation 4.5.
The sum of all lower bounds will also be used later on, letυ0

tot =
∑

j∈Jυ
0
j .

∀ j ∈ J,υ j ≥ υ
0
j (4.5)
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Existence of a Mechanism for DSP 4.3 AGV for DSP

In the following example we calculate AGV transfers, for a single time unit schedule.
Consider the situation where we haven jobs, j ∈ J, andm suppliers,s ∈ S. The valuation
of the suppliers is given by their production costsυs = −Φs (pst ). Once a schedule has been
created, the costs of each supplier are also determined. We will refer to thecost of a supplier
usingΦs . The total cost can therefore be written as

∑

s ∈SΦs = Φtot.
The AGV transfers are defined in Definition 2.3.6 but are repeated here usingz as the

total number of participants:

Ti = ES W−i −
1

z−1

∑

k,i

ES W−k (4.6)

The important values that determine the AGV transfers are the expected social welfare for
the other participants. In the DSP this can be split in two terms. First, the expected social
welfare with one job removed is:

ES W− j = υ
0
tot−υ

0
j −Φtot (4.7)

Second, the situation with one supplier removed is:

ES W−s = υ
0
tot−Φtot+Φs (4.8)

Note that these values are expectations: although the job valuations will not change, the
supplier costs are estimates based on a priori known probability distributionsover the sup-
plier and job types. Substituting Equations 4.7 and 4.8 in Equation 4.6, the expression for
the transfers for the jobs is:

T j = ES W− j −
1

n+m−1

∑

k∈J\{ j}

ES W−k−
1

n+m−1

∑

s ∈S

ES W−s

= ES W− j −
n−1

n+m−1

(

υ0
tot−Φtot

)

−
m

n+m−1

(

υ0
tot−Φtot

)

+
1

n+m−1

(

υ0
tot−υ

0
j −Φtot

)

= υ0
tot−υ

0
j −Φtot−

n+m−1
n+m−1

(

υ0
tot−Φtot

)

+
1

n+m−1

(

υ0
tot−υ

0
j −Φtot

)

= −υ0
j +

1
n+m−1

(

υ0
tot−υ

0
j −Φtot

)

(4.9)

Unfortunately, using the assumption that the current energy market is IR,the same can-
not be said about the AGV mechanism. After all, the expected utility for a job,u j , is the
sum of its valuation and its transfers.

u j = υ j +T j

= υ j −υ
0
j +

1
n+m−1

(

υ0
tot−υ

0
j −Φtot

)

≥
1

n+m−1

(

υ0
tot−υ

0
j −Φtot

)

(4.10)

The inequality in Equation 4.10 is not a general guarantee that IR will be satisfied. For
example, with only one job, the expected utility is− 1

n+m−1Φtot, negative. In general, from
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the assumption that the current energy market is IR we can deriveυ0
tot ≥ Φtot, but not that

υ0
tot− υ

0
j ≥ Φtot. Without any further assumptions about the job valuation, the utility can-

not be guaranteed to be positive. Therefore, the AGV mechanism for thisproblem is not
individually rational, since it does not achieve ex ante IR, the weakest form of IR.

23



Chapter 5

The Transfer Redistribution
Mechanism

In the previous chapter it was proven that an efficient mechanism that is individually ratio-
nal, budget balanced and incentive compatible cannot to exist. Also, the AGV mechanism
can be shown not to be individually rational, based on observations made about the current
market. Another practical difficulty of applying the AGV mechanism is its requirement of
the existence of expectations about the types of the participants.

Therefore, the two mechanisms that are usually considered, VCG and AGV, are not
suited for this problem. In this chapter we search for an alternative and introduce the Trans-
fer Redistribution Mechanism. We then investigate some of its properties. This mechanism
will be efficient, budget balanced and individually rational, without the need of a shared
expectation of the types of the participants. Although the mechanism cannot be shown to be
strictly incentive compatible, the participants will be unable to exploit this property without
a proper expectation about the types of other participants.

5.1 Mechanism Outline

In this section, we introduce the Transfer Redistribution Mechanism (TRM), that achieves
budget balancedness. We will show that it is possible to create an efficient budget balanced
mechanism that is ex ante IC and IR, under Assumption 1, individual rationalityof the
current energy market. We enforce IC for most of the private information by using a mech-
anism with verification. For the particular piece of information that cannot beverified, there
is no interim strategy for either truth telling or not truth telling. We speculate that for the
intended setting truth telling will be a better strategy in expectation.

Definition 5.1.1 (Transfer Redistribution Mechanism). The Transfer Redistribution Mech-
anism is a direct mechanism where:

• Allocation is defined by the schedule that minimizes total supplier cost

• Transfers are defined as follows:
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The Transfer Redistribution Mechanism 5.2 Transfers to Suppliers

– Suppliers receive VCG transfers

– Consumers pay a fraction of the sum of supplier transfers, determined bythe
sum of their jobs weights

The mechanism is applied in the following steps. The suppliers make a claim of their
cost functions and consumers make a claim of their jobs to the mechanism, we call these
theirbids. Based on the bids, the scheduling algorithm is used to create an optimal schedule
for the jobs. The algorithm returns the schedule that minimizes the total cost for the suppli-
ers. In the schedule, all jobs that reported feasible constraints are scheduled, and, following
from Assumption 1, it is assumed that there always exists a supplier that candeliver the
energy for finite cost.

To calculate the transfers to suppliers, the algorithm is ran again, for selected variations
of the input, as will be explained in the next sections. The jobs are assigneda weighing
factor, determined by the type of the job, and, in another weighing scheme, also the types
of the suppliers. The sum of supplier transfers is divided over the jobs proportionally to
their weights. The weights will be determined later in this chapter, when we examine two
alternative weighing schemes.

For the majority of the job properties, it is possible to apply amechanism with verifica-
tion as introduced in Section 2.2.1. The properties that are suited for verification are:

• power consumption,

• job arrival time,

• job deadline, and

• job time-span.

Concerning arrival time and deadline, it is only possible to detect a job that reported these
values too loose, when the resulting schedule plans the job execution at a moment that is
not actually feasible for the job. It is not possible to verify that the reported values are too
tight. Since this is the only available way left, in which the jobs can game the mechanism, it
will be the aim of the two weighing schemes to incentivise the jobs to maximize the reports
of deadline and minimize the reports of arrival time.

5.2 Transfers to Suppliers

Although the mechanism aims to incorporate supplier and consumer constraints, in order
to create a unifying solution framework, the mechanisms of dealing with supplierbids and
consumer bids are to some extent independent. Suppliers are only competingwith other
suppliers, and not with the jobs. Therefore, it would be convenient to beable to consider
the suppliers’ side and job side of the mechanism independently. What is required to do so,
is to eliminate the uncertainty of suppliers about the job types, and instead create a façade
of the jobs, that is invariant during the execution of the mechanism. This way,the suppliers
no longer need to take into account the possibility that the jobs behaviour will deviate from
their reported types.
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The Transfer Redistribution Mechanism 5.2 Transfers to Suppliers

To achieve this, the mechanism will only use the reported job types when calculating
the supplier transfers. Since these are known at the start of the mechanism, and do not
change during execution, the suppliers have reliable information about what they will be
compensated for. Having their transfers depend solely on the reports ofthe jobs, and not on
the actual executions, their side of the mechanism is similar to a single sided combinatorial
auction. For a single sided combinatorial auction, we can use the VCG mechanism. The
transfers to the suppliers are given in Equation 5.1.

Ts = Φ−s −Φtot+Φs (5.1)

Using VCG, the mechanism will be able to create a schedule that maximizes social
welfare. To see this, first observe that the welfare of the jobs is independent of the schedule.
This follows from the fact that all jobs will be executed within their constraints, combined
with Assumption 2, job valuation is constant within the constraints. Second, the welfare of
the suppliers is maximized when their costs are minimized. This is exactly the objective
of the allocation function. As a result, the mechanism is efficient, independent of the job
transfers. The mechanism also achieves the other desirable properties for the suppliers, see
Lemma 5.2.1, inherited from the VCG mechanism.

Lemma 5.2.1. The Transfer Redistribution Mechanism is IC for the suppliers, and truthful
bidding is a dominant strategy.

Proof of Lemma 5.2.1.The mechanism employs VCG transfers for the suppliers, so these
properties are inherited from that mechanism. �

5.2.1 Constraints on Transfers

The goal of the mechanism is to decrease the production costs for the suppliers. Ultimately,
it is the consumers who are the cause for the production costs, and it will bethe consumers
that are paying for these costs. In order to align the objective of the mechanism, which is
minimizing supplier cost, with the objective of the consumers, minimizing their transfers,
there must be a positive effect on the consumer transfers from a decrease in supplier cost.
This way, when the consumers maximize their utility, they will also minimize supplier cost.
Suppose there is a job ˆ, whose properties possibly increase the total cost, and will never
decrease the cost, when it replacesj in a problem instance. This can for example be a lack
of flexibility.

Comparing the costs for the settings, one with ˆ, and one withj, we see the following
relation:

Φ̂tot ≥ Φtot (5.2)

This relationship follows from the change in job properties, and from the allocation mech-
anism selecting the optimal schedule. For the correlation between transfersand costs, it is
desired that transfer monotonicity is satisfied.

Definition 5.2.2 (Transfer monotonicity). Transfer monotonicity is a property of the pay-
ments for the schedule. It is satisfied when the transfers are a monotone function of the cost

26



The Transfer Redistribution Mechanism 5.3 Transfers to Consumers

of the schedule, formally:
Φ̂tot ≥ Φtot =⇒ T̂ ≥ T (5.3)

However, the value ofT is determined by VCG transfers. While the left hand side holds
in our context, unfortunately, monotonicity is not guaranteed by VCG transfers, so the right
hand side is not naturally implied. Indeed, it is possible to construct an example where the
relation is not satisfied. Such an example is given in Appendix A.

By enforcing constraints on the shape of the cost functions of the suppliers, it is possible
to achieve monotonicity of the transfers for a single time unit. However, since the problem is
all about job flexibility, monotonicity per time unit is not sufficient to achieve monotonicity
over all. Therefore, it seems, VCG transfers cannot be used on the suppliers’ side, because
it cannot satisfy transfer monotonicity.

The alternative, to resort to a different mechanism on the suppliers’ side, would require
relaxation of the incentive compatibility requirement on the suppliers’ side. Then, for ex-
ample, a sealed bid first price auction could be used. If all suppliers followtheir equilibrium
strategy in that setting, the implication is satisfied. However, incentive compatibilityis no
longer guaranteed, and knowledge about the competition becomes an important factor in
determining one’s strategy.

So, although transfer monotonicity cannot be strictly satisfied using VCG, there are no
good alternatives. However, in the problem context, the number of suppliers and jobs will be
relatively large. As the number and diversity of jobs and suppliers increases, the atomicity
of the jobs becomes less prominent, since by reordering the jobs a range ofschedules can
be created, each with only a slight cost difference from the others. In the example from
Appendix A, it was a combination of atomicity and the alignment of the steps in the cost
functions of the suppliers, that led to the non-monotonic behaviour. Intuitively, when the
instances become larger and uncertainty grows, the exact conditions when untruthful reports
benefit appear less obvious, and the best response strategy less clear. Even when a job
can create its strategy with complete knowledge about the types of others, it still faces the
challenge of calculating the strategy that would benefit it the most. In the following sections,
because of this intuition, it is presumed that transfer monotonicity holds.

5.3 Transfers to Consumers

In the previous sections, the schedule and subsequently the supplier transfers were deter-
mined. The supplier transfers were created such that they are independent of the transfer
scheme for the consumers. In this section we establish two variants for the transfers to con-
sumers, again we consider this to be independent of the supplier transfers. In order to have
this independence, the solution concepts that are considered are ex anteIR and BNIC. The
supplier types are therefore exposed to the consumers only as probabilitydistributions. The
mechanism will only depend on properties that are independent of the underlying distribu-
tion.

Because the mechanism objective is to be budget balanced it is clear that thesum of
transfers of the consumers must match the sum of transfers made to the suppliers. One way
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The Transfer Redistribution Mechanism 5.3 Transfers to Consumers

to guarantee this is to assign a weight to each consumer, and divide the transfers according
to the weights. The cost for one consumer is then calculated using this expression:

Ti =
wi

∑

k∈I wk

∑

siS

Ts (5.4)

How the jobs of a consumer contribute to its weight depend on the weighing scheme,
and will be considered later. However, when a consumer owns one job only, then the transfer
for that job and the consumer are identical. Note, that while a consumer ownsseveral jobs,
and is responsible for the reports about these jobs, he cannot use his influence on the reports
of those jobs for his benefit. The consumer is not able to improve the resultingschedules by
manipulation of the reports for the jobs he owns. The mechanism can be said tobe coalition
proof.

5.3.1 Power Proportional Weights

An easy way to establish weights for the consumers is to just set it equal to thetotal power
consumption of its jobs, this scheme is defined in Definition 5.3.1. However simple this
weighing might be, it already provides the desired properties of the mechanism, even in a
strong solution concept.

Definition 5.3.1 (Power proportional weights). The TRM weights for a consumer that are
proportional to its power consumption are called power proportional weights (PPW). The
weights are defined as:

wp
i =
∑

j∈Ji

p j sj

Individual rationality is achieved as anex postproperty following Lemma 5.3.2.

Lemma 5.3.2. The TRM, using PPW, is ex post individually rational.

Proof for lemma 5.3.2.A mechanism is ex post individually rational when the utility is
greater or equal to zero for all types. In Section 4.3 the lower bound fora job’s valuation
was set toυ0

j . It seems reasonable to assume that the valuation is proportional to the total

power consumption of the job. So, the lower bound becomesυ0
j = q0p j sj .

c j =
wp

i
∑

j∈J wp
i

T =
p j sj

∑

j∈J p j sj
T

≤
p j sj

∑

j∈J p j sj

∑

j∈J

q0p j sj = p j sjq
0

≤ υ j

Using this result, the utility of each job becomes greater or equal to zero.

u j = υ j −c j

≥ υ j −υ j = 0

�
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The Transfer Redistribution Mechanism 5.3 Transfers to Consumers

Also, the mechanism, when using weights proportional to the power consumption, has
as anex antestrategy to report a bigger flexibility. The justification is given in Lemma 5.3.3.

Lemma 5.3.3. In the TRM, using PPW, truthful reporting of arrival time and deadline is a
weakly dominant strategy when transfer monotonicity holds.

Proof of Lemma 5.3.3.The utility of the consumers is determined by their valuation and
transfers. The valuation of each job is independent of the report. Furthermore, the weights
contributions of the jobs are not influenced by the reports of arrival time and deadline, and
other properties are verified.

The only influence on the consumer transfer is the total transfers for the suppliers. With
transfer monotonicity it follows that the transfers are minimized by minimizing the cost
of the schedule. The expected cost, and therefore the total transfer willnever increase by
reporting less flexibility. Therefore, truthful reporting is a weakly dominant strategy. �

Although this weighing scheme indeed achieves incentive compatibility, the benefits for
a consumer to report more flexible jobs are very limited. The decrease in totaltransfers that
is achieved by extending one job’s flexibility is, after all, shared with all otherconsumers.
The consumer responsible for the decrease will only benefit a fraction,proportional to its
weight. When the mechanism is deployed on larger scale, the effects for a single consumer
might become negligible. Therefore, a stronger benefit is warranted, in order to improve the
applicability of the mechanism. This will be the objective of the next section.

5.3.2 Cost Proportional Weights

In the previous section it was established that it is possible to have a mechanism that is IC
and IR, when transfer monotonicity holds. However, using the previouslyderived weighing
scheme, the benefits for a consumer of extending its jobs’ flexibility are minimal. The prob-
lem in the previous approach is that transfers are divided among the consumers according to
the energy there jobs require, while this may not be proportional to the increase in transfers
they induce. In this section, a different weighing scheme is introduced, that trades incentive
compatibility for a bigger benefit.

With VCG, the utilities represent the benefit for a player, reduced by the harm he causes
to others. So while every player focuses on his own utility, in the end it is the social welfare
that is maximized. The weighing scheme in this section is based on the philosophy of VCG
transfers to achieve the same goal. In fact, the weightsare the VCG transfers. But instead
of charging the VCG transfers to the consumers directly, they now define the portion of the
total transfers that a consumer has to pay. Except for a difference in notation, the consumer
weights defined in Definition 5.3.4 are exactly similar to the transfers in Equation 4.1.

Definition 5.3.4(Cost Proportional Weights). The cost proportional weight (CPW) for the
TRM is a weight for a consumer, proportional to the cost increase induced by that con-
sumer’s jobs. The weight is given by:

wM
i = Φtot−Φ

−i
tot (5.5)
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The Transfer Redistribution Mechanism 5.3 Transfers to Consumers

When a consumer minimizes its weight, it thereby minimizes its transfer. Therefore,
the consumer has an incentive to minimize the difference in Equation 5.5. Minimizing this
is equivalent to maximizing the social welfare.

As with VCG transfers, for each weight in the weighing scheme it is requiredto obtain
the suppliers cost of the schedule when all the jobs of one consumer are removed. This
means that we have to calculate the transfers to the suppliers again for every consumer. The
algorithm for calculating the necessary values is shown in Algorithm 1. The Schedule(·)
method is used to calculate the optimal schedule, given the set of job and supplier bids in
the parameters. The implementation of this method could for example be the MIQCP from
Section 3.3. The Cost(·) method calculates the overall cost of the schedule, i.e. the sum the
suppliers’ costs

∑

s ∈SΦs (·), and Cost(·,p) calculates the cost for supplier p in the schedule,
this being equivalent toΦs .

The bulk of the work in the algorithm is done in the Schedule(·) method, solving the
NP-hard scheduling problem. Therefore, it is clear that this mechanism willbe intractable.
For the second price calculations it is necessary to compute a schedule as of the as the
number of suppliers, to establish the supplier transfers. For the consumerweights, it is
necessary to construct an additional number of schedules, as much as there are consumers.
The complete mechanism is thusO((n+m)S), wheren andmare the number of consumers
and suppliers respectively, andS is the complexity of the scheduling algorithm. As shown in
Lemma 3.2.4, the scheduling problem is NP-hard, therefore, complexity of thescheduling
dominates the complexity of the algorithm.

Algorithm 1: Price Calculation Algorithm

Input : Bids from consumerŝJ, and bids from the supplierŝS
Output : A schedule of execution, and a vector of prices

1 schedule← Schedule(Ĵ, Ŝ)
2 Ttot← 0
3 for s ∈ S do
4 sched← Schedule(Ĵ, Ŝ \ {Ŝs })
5 Ts ← Cost(sched)−Cost(schedule)+Cost(schedule,s )
6 Ttot← Ttot+Ts

7 wtot← 0
8 for i ∈ I do
9 sched← Schedule(Ĵ\ {Ĵi}, Ŝ)

10 wi ← Cost(sched)−Cost(schedule)
11 wtot← wtot+wi

12 for i ∈ I do
13 Ti ← Ttot ·wi/wtot

14 return (schedule,T)

The result returned by the algorithm contains the schedule that is to be executed. It also
contains the transfers that have to be payed following this mechanism. With these transfers,
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The Transfer Redistribution Mechanism 5.4 Mechanism Properties

calculated using the weights as formulated in Equation 5.5, the mechanism is ex ante IR.

Lemma 5.3.5. The TRM, using CPW, is ex ante individually rational for consumers under
Assumptions 1 and 2.

Proof of Lemma 5.3.5.A mechanism is ex ante individually rational when the expected
utility, before the type is known, is greater than or equal to zero. Let ˜q be the expected
number of jobs owned by consumeri, and letn be the total number of jobs in the problem.

E [ui ] =
∑

j∈Ji

(E
[

υ j

]

)−E [Ti ] ≥ q̃ ·υ0
j −
∑

j∈Ji

E [T ]
n

≥ q̃υ0
j −

q̃ ·
∑

k∈I
∑

j∈Jk
υ0

j

n
= q̃ ·υ0

j − q̃
n ·υ0

j

n
= 0

�

The mechanism is, however, not incentive compatible using these weights, notwith-
standing transfer monotonicity. For example, Appendix B shows an example where the
weight of a job decreases by reporting a tighter deadline, even though thetotal cost, and
total transfers, increase.

The only strategy that would be profitable under all circumstances would beto acquire
complete knowledge about the reported types of others, and calculate the best response.
However, this is not an equilibrium strategy. When all participants behave this way, there
exist problem instances that do not have a stable pure Nash equilibrium (Appendix C).

The consumers, therefore, do not have a strict equilibrium strategy. However, in prac-
tice, the jobs have to determine their strategy with incomplete knowledge. We conjecture
that for the practical purpose of the mechanism, the best strategy is truthful reporting.

Conjecture 5.3.6. Truth telling is a best response under uncertainty, for the TRM with
CPW.

In the next chapter, this conjecture will be investigated experimentally.

5.4 Mechanism Properties

In the previous three sections, piece by piece, the TRM was constructed.Several properties,
for parts of the mechanism, have already been verified. In this section, theresult of the
mechanism as a whole is analyzed, to determine the global properties. Although these
properties were intended to existby design, it is still relevant to restate them here.

The important property for the mechanism maintainer is that he is not requiredto add
value to the system for which he is running the mechanism. For the participants,it is
preferred that no value needs to be destroyed. These properties aresummarized in Lemma
5.4.1.

Lemma 5.4.1. The Transfer Redistribution Mechanism is strongly budget balanced.
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The Transfer Redistribution Mechanism 5.4 Mechanism Properties

Proof of lemma 5.4.1.The sum of transfers made to the suppliers is distributed over the
consumers, according to their jobs weights. Therefore, the sum of transfers charged to the
consumers is equal to what is payed to the supplier. The mechanism is budget balanced. �

When Conjecture 5.3.6 holds, the reports from jobs and suppliers is truthful. The mech-
anism can then create the schedule using complete information. Since the allocation func-
tion maximizes social welfare, Lemma 5.4.2 follows.

Lemma 5.4.2. When Conjecture 5.3.6 holds, the Transfer Redistribution Mechanism is
efficient.

Proof of Lemma 5.4.2.All jobs are always scheduled, so there is no influence of the mech-
anism on the welfare of the consumers, following Assumption 2. From Conjecture 5.3.6
it follows that the jobs report truthfully. The mechanism is incentive compatiblefor the
suppliers. The mechanism, therefore, has complete knowledge about the job and supplier
types. Since the suppliers costs are minimized by the resulting schedule, the social welfare
is maximized. �

Combining the results of the lemmas in this section and those in the previous sections,
the following theorem follows as a unifying claim.

Theorem 5.4.3.The Transfer Redistribution Mechanism is budget balanced, ex ante indi-
vidually rational, and efficient given the reported types when the Conjecture 5.3.6 holds.

Proof of Theorem 5.4.3.The proof for efficiency follows from Lemma 5.4.2, and budget
balancedness follows from Lemma 5.4.1. From Lemma 5.2.1 we get ex post incentive
compatibility for the suppliers, which implies ex ante incentive compatibility, and finally
we have ex ante incentive compatibility for the consumers from Lemma 5.3.5. �

The mechanism is not inherently incentive compatible. However, it is conjectured that
the best response under uncertainty is truth-telling. In the next chapter some experimental
results are analyzed to investigate this claim.

32



Chapter 6

Experiments

In the previous chapter we have established some theoretical lower bounds for the perfor-
mance of the TRM. However, because the lower bounds are bounds in expectation, there is
a possibility that in some instances these lower bounds are not met for all jobs. On the other
hand, the bounds are lower bounds, so it is to be expected that the actualperformance of
the mechanism is better than these values. In this chapter we will make an analysis of the
mechanism by applying it in an experimental setup.

Throughout this chapter, the consumers will own only one job. The weightsand trans-
fers are therefore associated equally with that job as with its owner. Sometimesthe two
will be used interchangeably, and when weights and transfers of a job are mentioned, they
should be thought of as belonging to the owner of the job.

The scheduling algorithm used for the experiments is the MIQCP solver fromthe IBM
ILOG CPLEX Optimizer package. The optimizer is set to continue optimizing until thebest
integer value is within 0.5% of the best non integer value. The returned schedule costs are
therefore a 0.5% approximation of the exact solution.

6.1 Schedule Costs Reduction by Increased Flexibility

The aim of the mechanism is to reduce the production costs of energy by utilizing the
flexibility on the consumers’ side. In this experiment only the direct costs areconsidered,
not the transfers. Therefore, this experiment verifies the benefits forthe suppliers, and not
necessarily for the consumers. However, when transfer monotonicity holds, the consumer
transfers will decrease when the cost decreases. This experiment is toverify a relation
between flexibility in the system and the cost of the resulting schedule.

The experiment starts with 30 problem instances, each with 18 jobs that haveno flex-
ibility. For the iterations of the experiment, the flexibility of each job is updated, while
the arrival time and deadline of the jobs remain centered around the values inthe original
problem. The 30 instances the experiment starts with are generated at random. Then, each
iteration the flexibility of every job is increased with a value of 0, 1 or 2 each withequal
probability. The total flexibility in the system therefore increases.
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Figure 6.1: Cost profiles of suppliers, during cost experiments

In all the iterations, the cost profile of the five suppliers stays the same. A plot of the
cost profiles is shown in Figure 6.1. The cost profiles are a linear function for eacht, with
perturbations following a sine-function, to introduce some differences in the costs over time.

The results of running the scheduling algorithm are shown in Figure 6.2. Inthe figure,
the costs of each schedule have been normalized on the cost of the corresponding problem
instance without added flexibility. It is clear that there exists a trend of decreasing costs,
when the flexibility increases.

Benefits of the flexibility increase range from a few percent for instances that by chance
already had a cheap configuration, to over 20 percent for instances that had an unfortunate
initial distribution. The average benefit, exceeds 10 percent when the average flexibility
is 3. Therefore, this experiment proves that adding flexibility to the system has a positive
effect on production costs. The magnitude of the effect would naturally vary with different
cost profiles for the suppliers.

6.2 Consumer Transfer Benefits With Power Proportional
Weights

The experiments in the previous section show that more flexible jobs yield a cheaper sched-
ule. When schedule cost and transfers are correlated, this will also yieldlower transfers for
the consumers. In this experiment, the effect of a flexibility increase for one job is studied,
when the other jobs remain the same. The weighing scheme that is used in this section is the
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Figure 6.2: Relative cost with added flexibility

power consumption proportional weight (PPW) from Section 5.3.1. The expected results
are a slight decrease in transfers.

In this experiment 25 jobs and 6 suppliers are created randomly. The transfers for this
instance are calculated. Then, one by one, the flexibility of the jobs is increased a certain
amount, and the transfers of the new instance calculated. The transfers of the jobs depend
on the total transfer and the job’s power consumption.end on the total transfer and the job’s
power consumption. The latter does not change during this experiment, so the only factor
of influence is the total transfers. These values are plotted in Figure 6.3.

For some consumers the relative cost exceeds 1. However, because the scheduling algo-
rithm produces an approximation, the observed increases fall within the uncertainty of the
transfer ratio, and no conclusions can be drawn from them. The figure,therefore, shows no
significant increase in the transfers of jobs with an increased flexibility. This is in line with
Lemma 5.3.3, truthful reporting arrival time and deadline is a weakly dominant strategy.
The benefits are, however, also small, since the benefit is shared among all consumers.

6.3 Consumer Transfer Benefits With Cost Proportional
Weights

The benefit for a consumer to increase flexibility is small when the PPW schemeis used,
as is shown in the previous section. In this section, the experiment is repeated, however the
consumer transfers are calculated using the cost proportional weights (CPW) scheme. The
aim of the experiments is to support Conjecture 5.3.6, consumers improve theirutility by
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Figure 6.3: Normalized costs of jobs as flexibility increases, using power consumption
proportional weights. Each box shows the cost for 25 jobs.

reporting the arrival time and deadline of their jobs truthfully. It is expectedthat the benefits
of increased flexibility are bigger than in the previous experiment. This follows because the
decrease in total transfers to the suppliers is similar, but by extending flexibility of its jobs,
a consumer now potentially also decreases its share of the total transfer.

The same experimental setup is used as described before. The only difference is the
weighing scheme, resulting in different transfers for the consumers. These transfers are
plotted in Figure 6.4.

The graph shows a significant decrease of the average transfer, thereby supporting the
expectation that consumers get a benefit for reporting more flexibility. Theaverage transfer
drops almost 20% when the jobs have maximum flexibility. But, when the jobs can be
scheduled on half the time units in the problem, the decrease in transfer is already 10%.
These results support Conjecture 5.3.6.

On the other hand, it appears that four jobs do not benefit at all, since the top of the
box’s whiskers remains at 1, and for a flexibility increase of 14 it is visible that there are
four jobs with a relative cost around 1. Possibly this could be because their time window
already contained their optimal moment in the schedule, so the transfer for them does not
change by adding more flexibility.

A few points in the graph are above the relative cost of 1.00. This suggests that the
transfers increase by the report of more flexibility. However, this conclusion cannot be
drawn so easily. The scheduling algorithm used in this experiment approximates the exact
value by an approximation of 0.5%. The uncertainty for the transfers are the result of
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Figure 6.4: Normalized costs of jobs as flexibility increases, using cost proportional
weights.

summing and dividing a lot of schedule-costs. Therefore the recorded increases, the biggest
being 1.68%, fall within the uncertainty of the transfers.

6.4 Consumer Transfer Benefit and Initial Flexibility

In this section we are interested in the effect the flexibility of the other jobs has on the
transfer benefits for a job extending its flexibility. In this experiment we consider one hand-
crafted problem, where 15 jobs are spread evenly across the 25 time units inthe problem.
Six variations are constructed, varying the initial flexibility of all jobs in the instance be-
tween 0 and 5. For each of these six instances, the flexibility of each job in turn is increased
further, up to an additional 15 units of time. The result would be 30 graphs,but instead Fig-
ure 6.5 shows averages, grouped per variation. The 5 suppliers remainthe same throughout
the experiment.

The graphs for the initial flexibilities from 0 to 4 show a trend that the benefit for an
increased flexibility is bigger, when the other jobs also have more flexibility. This is not un-
expected, since more flexibility for the other jobs enables more schedules, thereby making
it possible to find one that decreases the cost and, consequently, transfers.

The graph for an initial flexibility of 5 has a less steep decline than that of 4, contra-
dicting this trend. Indeed, therelative transfer benefit for the jobs is not as big as that for
those in the instance with an initial flexibility. However, the absolute transfer averages when
all jobs have their initial flexibility, i.e. where the flexibility increase is 0, are significantly
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Figure 6.5: Cost decrease as flexibility is added to the system. Each point is the average of
15 schedules, resulting from increasing the flexibility for one job.

lower. This is also explained easily, since the initial instance has enough flexibility in itself
to create a cheaper schedule. The relative benefit for one job to get additional flexibility
thereby decreases, but in absolute terms the transfers are lower than those of the jobs in the
graph with an initial flexibility of 4.

All in all, the size of the transfers decreases when the flexibility of the jobs in the
problem increases. However, the costs for production of energy mustbe compensated for,
so at some point the transfers can decrease no more. As the overall flexibility in the system
increases, the benefit of adding one additional time unit flexibility becomes smaller.

6.5 Scale and Computability

From running the experiments it becomes clear that the runtime of the mechanismbecomes
an issue very quickly. This was to be expected from the theoretical complexity analysis.
The dependence of calculation time for the scheduling algorithm on the parameters of the
problem is shown in Figure 6.6.

Interestingly, only the number of jobs and flexibility of jobs have a real influence on the
runtime of the scheduling algorithm. The other properties do not express a trend as strong
as those two. The correlation between runtime and time span is particularly surprising.
However, the peaks on either end appear where the jobs span almost the entire duration of
the schedule, or almost none. From the scheduling algorithm’s perspective this might be
similar in the sense that it is either scheduling a bunch of small jobs, or a bunchof small
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Figure 6.6: The effect of different problem parameters on runtime. For each graph, one
parameter is varied, while the others remain at their base value (shown in brackets). The
x-axis shows how much the parameter is changed relative to its base value.

gaps, which is, apparently, both difficult.
The trend of runtime to increase as the flexibility or number of jobs increase can be

explained by a single proportionality. When the runtime is proportional to the number of
schedules possible, this explains both.

This suggests that, in an effort to reduce runtime of the scheduling algorithm, one can
focus on the reduction of the number of schedules possible. For example,the number of jobs
can be reduced by grouping the jobs into clusters. The jobs that are to be clustered should
have the same time properties, i.e. the same span, availability and deadline. By considering
the cluster as one, the number of ways the jobs in the cluster can be scheduled reduce, so
the problem becomes simpler.

By grouping the jobs, of course one also eliminates possible schedules. Therefore, care
should be taken to see whether this does not influence the other propertiesof the mechanism.
For example, Nisan [21] shows that the a VCG mechanism, when the optimal outcome is
replaced with an outcome produced by an approximation or heuristic algorithm,is no longer
necessarily truthful.
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Chapter 7

Conclusions and Future Work

The goal of this research is to reduce the energy production costs. Therefore we exploit the
flexibility of jobs on the consumers’ side, which is assumed to be already present, however
not used in current practice. Yet, before the flexibility can be utilized, it is necessary to
expose this flexibility of the jobs involved. Therefore, the mechanism shouldbe incentive
compatible for the consumers reporting the job types.

Matching suppliers with consumers is an extended form of bilateral trade. From lit-
erature, it is known that for bilateral trade it is not generally possible to achieve an effi-
cient, budget balanced and incentive compatible mechanism. However, the valuation of
consumers for their jobs’ execution is assumed to be constant for all feasible executions,
and all jobs are always executed. As a result, the social welfare does not depend on the
valuation of the jobs. Still, these restrictions are not enough to counter the impossibility
result. In this thesis, it is shown that no Groves class mechanism exists that achieves budget
balance for the problem. Furthermore, we show that the AGV mechanism cannot be used
to create an individually rational mechanism under the previously mentioned assumptions.

To improve on this result, the applicability of a mechanism with verification is inves-
tigated. When a mechanism with verification can be used, the incentive compatibility re-
quirement can be enforced afterwards, and no longer needs to be a property inherent to the
mechanism. In the problem at hand, verification can indeed be used and enforces truthful
reports for most of the properties of the jobs.

The properties that cannot completely be enforced by a mechanism with verification are
the arrival time and deadline of the jobs. These properties can only be verified when false
reporting results in a schedule that is infeasible for a job, or by means outside the scope of
the mechanism. Declaration of an arrival time and deadline that are narrower than what is
feasible cannot be verified. Therefore the mechanism must offer an incentive for consumers
to report the arrival time and deadline of jobs as wide as possible.

After all, not all properties of the jobs can be verified, a mechanism with verification
turns out not to be sufficient to remove the requirement of the mechanism to be inherently
incentive compatible. Therefore, the mechanism is still bound by the impossibilityresult.

Budget balancedness and individual rationality are the properties that are most valued
for a mechanism for the energy market. Because if it is not budget balanced value must be
removed from the mechanism, and if it is not individually rational, consumers and suppliers
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have no incentive to participate in the mechanism. The mechanism must thus dropincentive
compatibility and, consequently, efficiency.

The mechanism achieves budget balancedness by dividing the total transfer made to
suppliers over the consumers. The share of transfers that is assignedto a consumer depends
on its job types. The transfers for the suppliers’ side are determined by a VCG mechanism,
thereby achieving truthful reports. However, with VCG transfers it is not guaranteed that
the supplier transfers are a monotone function of the schedule cost.

We introduce the notion oftransfer monotonicitythat indicates whether the sum of
transfers to suppliers in a mechanism are a monotone function of the cost ofthe optimal
schedule. With the requirement that transfer monotonicity holds, the power proportional
weighing scheme for the mechanism is efficient, incentive compatible, individually rational
and budget balanced. From the experiments in Section 6.2 it becomes clear,however, that
the benefits for consumers to report about their jobs truthfully are quite limited. Therefore,
when the valuation for execution of a job within its time window is not strictly constant,
unlike what was assumed, the benefits for the truthful reporting are eradicated.

To improve on this result thecost proportional weighingscheme is introduced. The
experimental results in Section 6.3 show that the benefits obtained by increasing the reported
flexibility are indeed larger. However, the mechanism is no longer incentivecompatible
using this weighing scheme, regardless of transfer monotonicity.

We conjecture that in the practical setting, truthful reporting is still the best strategy
for the jobs. This is supported by the experiments, since the benefits that are observed
from reporting more flexibility are significantly larger than the losses, if they can even be
identified as such.

7.1 Future work

The scheduling algorithm that is presented and used for the experiments in this thesis uses
a mixed integer quadratically constrained program solver. This solver does not return the
exact value, but instead an approximation within a defined ratio from the exact solution. As
a result, incentive compatibility might be compromised, as was observed by Nisan [21] for
the VCG mechanism working with approximation algorithms. The effects of the use of an
approximation algorithm should be verified for this problem, and if incentive compatibility
is compromised a different scheduling algorithm is necessary before the mechanism can be
deployed. Furthermore, the DSP instances that can be solved are limited to those in the
mixed integer quadratically constrained program class. When more genericsupplier cost
functions have to be modeled, a different scheduling algorithm is required.

If a scheduling algorithm is found for which the mechanism remains incentivecom-
patible, and that is able to solve problems with cost functions that are found inpractice,
Conjecture 5.3.6 must be verified for practical settings. After all, for the cost functions of
real world suppliers, transfer monotonicity might not be satisfied. This affects the incentive
compatibility for the suppliers.

Finally, the problem solved with the TRM is a static problem, the consumers and suppli-
ers do not change during its execution. Therefore, the consumers andsuppliers are required
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to report their private information before the schedule starts. But when the mechanism is
repeated time after time, the consumers and suppliers expose their private information to the
other participants. Both Athey [2] and Cavallo [3] have researched auction mechanism in
a dynamic setting. They observe that new possibilities for strategic behaviour emerge in a
dynamic setting. The effect on the incentive compatibility by use of the TRM in a dynamic
setting should also be investigated before it can successfully be applied.
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Appendix A

Non-monotonicity of VCG

The transfers in the VCG mechanism are not monotone in the efficiency of the outcome
value. This can result in some unexpected behaviour. For example, in an ordinary auction,
it is possible that some goods are sold with zero transfer, even though the valuation for
the goods is non-zero for all participants. In the reversed auction too, there exists some
unexpected behaviour. In the example below, the total VCG transfers will decrease, as a
result ofincreasingtotal power demand in the system.

Taken= 10 suppliers of type I, their cost function given by Equation A.1. The valuesa
andb obey the following relation: 0< a<< b.

φs I (p) =































a if p≤ u,
2a if u< p≤ n

n−1u,
4a if n

n−1u< p≤ v,
b otherwise.

(A.1)

One other supplier, of type II, is also present in the system. This supplier has a cost function
given by Equation A.2.

φs II (p) =

{

4a if p≤ v,
b otherwise.

(A.2)

A graph of the cost function of both types of suppliers is shown in Figure A.1.
The problem starts withn jobs, each with a power consumption ofu. The cost of the

schedule in this situation isn ·a ·u. To establish the VCG transfers, one supplier at a time
is removed from the problem, and the cost of the schedule with one supplier removed is
calculated. Since the suppliers contributing to the optimal schedule are all typeI, it suffices
to do the calculation for a type I supplier only.

In this setting with a type I supplier removed, the problem consists ofn jobs andn
suppliers. With the assumption that4

3u > v1, the cost of the schedule in this setting is

1 This is necessary to ensure that the optimal schedule equals distributing theload evenly over all type I
suppliers. Without this restriction, a couple of suppliers could take a load bigger than n

n−1u, thereby leaving
the other suppliers free to produceu for the cost ofa ·u. The actual fraction ofv overu depends on the other
parameters of the problem, such asn andφs I .
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Figure A.1: Unit cost for the two types of suppliers as a function of demanded production.

n·2a·u. Using these costs, the transfers for the suppliers can be calculated. For one supplier,
the transfer is:

Ts = Φ−s −Φtot+Φs

= (n ·2a ·u)− (n ·a ·u)+a ·u

= (n−1)a ·u (A.3)

In the the other setting, the jobs increase their power consumption fromu to v. Let u
andv obey the relation:10

9 u < v, so it is not beneficial to assign the power demand to the
type I suppliers only. Then, with a power consumption ofv per job, the optimal schedule
is to divide the power demand equally over then+ 1 suppliers. The cost of the schedule
becomesn·4a·v. Removing one supplier, and recalculating the schedule gives a cost too of
n ·4a ·v. The transfers in this setting are given in Equation A.4.

T̂s = n ·4a ·v−n ·4a ·v+4a ·v

= 4a ·v (A.4)

The difference in transfer for one supplier, therefore, is (n− 1)a · u− 4a · v. With the
assumption that43u > v, this difference is a positive value forn = 10. This would yield a
positive difference per supplier, so the total transfer would be a factor 10 higher. Therefore
the total transfers in this exampledecreaseby increasing power demand fromu to v, hence
showing the non-monotonicity of the VCG transfers.
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Appendix B

Non-IC example for TRM using
CPW

In this appendix, an example is shown of a setting where a job can decreaseits transfers by
reporting a more restrictive deadline. The example consists of two units of time.One job,
j, can be executed in either unit of time, while the othern jobs must be executed in the first
unit of time. Whenj claims it too can only be executed in the first unit of time, let this be
denoted by ˆ, its transfers decrease, while the total transfers do not.

Assume that the total transfers in the two settings do not change that much. Then, the
weight of the job dominates their individual transfer. The example below shows a situation
where a job’s share of the summed weights becomes smaller, by reporting a tighter deadline.

In the first time unit, we find a number of suppliers, that have an aggregatedcost function
given by Equation B.1. The shape of the function for higher values is notof interest for this
example, but should be shaped such that the transfers in both settings do not differ very
much.

φs I (p) =



















a if p< 12,
3
2a if p= 12,
· · · otherwise

(B.1)

For the second unit of time, two suppliers can provide energy, both for a cost ofa per unit
energy.

There exist 10 jobs in the instance with a power demand of 1, that can only bescheduled
in the first unit of time. The flexible job, jobj, can be scheduled in both the first and the
second unit of time. It has a time span of 1 unit of time, and a power demand of 2.

In order to calculate the weights, it is necessary to find the schedule in five settings.
These schedules are shown in Figure B.1. Two schedules with all jobs included, one with
a flexible j, and one with an inflexiblej. Two schedules for one of the other jobs removed.
Finally, the schedule for whenj is removed is identical for both reports ofj, so it needs
only to be calculated once.

Using the values of the example, jobj gets the weight fraction given by Equation B.2.

wi
∑

k wk
=

2a
10a+2a

=
1
6

a (B.2)
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Figure B.1: Optimal schedules for: all suppliers, small jobs andj (a), all suppliers, all but
one small jobs andj (b), all suppliers and small jobs (c), all suppliers, small jobs and ˆ (d),
all suppliers, all but one small jobs and ˆ (e). The dotted line indicates the limit below which
the unit cost isa.

When thej is replaced byh j, the weight fraction is given by Equation B.3.

w ̂
∑

k ŵk
=

8a
10·7a+8a

=
4
39

a (B.3)

The result shows that the fraction of total transfers has decreased for job j, by reporting
a tighter deadline. When the total transfers does not increase too much fromreporting a
tighter deadline, the job is able to decrease its cost. The increase in total transfers should be
smaller than the decrease in weight fraction.

When the transfers in both situations are given by the total cost of the schedule con-
taining all jobs, the weight fraction decrease would not be canceled by theincrease in total
transfers. The transfer forj would become 2a, and for ˆ it is 1.8a.

Note, that using these values for the transfers would be exactly the resultwhen a first
price auction is used for the suppliers, and the suppliers report the same cost function.
Therefore, this example also shows that incentive compatibility cannot be restored by using
a first price auction on the suppliers’ side, instead of the VCG payments thatthe mechanism
employs.
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Appendix C

No Stable Nash Equilibrium for
TRM, Using CPW

In this appendix, an example will be presented showing a problem instance where a stable
Nash equilibrium for TRM, using CPW does not exist. The example has two units of time,
and three jobs. Let the jobs be labeledj, k and l, then the power demand for the jobs is,
respectively, 3, 2 and 2.

The cost function of the suppliers are identical in both units of time. The costfunction
for one of the suppliers is given in Equation C.1. This supplier is producingall the energy in
the optimal schedule. The other suppliers must have a cost function such that the transfers
remain similar for all three mutations of the instance.

φs (p) =



















a if p≤ 4,
1.1a if 4 < p≤ 5,

2a otherwise.
(C.1)

Both units of time are feasible moments of execution for all three jobs. However, by
reporting only one possible unit of time for their execution, each job intents to minimize
its transfer. Here, it is only shown that, for every combination of reports,one job is able to
decrease its weight fraction by changing its reported type. Figure C.1 shows the schedules
that result from the reports, ignoring symmetric equivalent schedules. The costs of the
schedules, and consequently weights, for the jobs is shown in Table C.1.

In Figure C.1, the arrows indicate the order in which the schedules follow each other
up. The job changing its report for each of the transitions is, from (a) to (c), job j, k andl,
in that order. After three transitions the jobs have swapped places, but as the suppliers in
both time units are identical, the costs and weights in (d) are identical to (a), andjob j will
change its report again.
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Φtot Φ− j Φ−k Φ−l
w j
∑

i wi

wk
∑

i wi

wl
∑

i wi

a 7 3 2 2 .43 .29 .29
b 27 10 8.5 8.5 .37 .32 .32
c 12 5.5 2 4.5 .46 .17 .38

Table C.1: The costs and weights associated with the different schedules in this example.

b c

a d

Figure C.1: By unilateral change of reported type, one job can always decrease its transfer.
As figure (a) and (d) are symmetric, the process repeats itself after threemutations.
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