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Abstract A simplified finite-element model for wound healing is proposed. The
model takes into account the sequential steps of dermal regeneration, wound con-
traction, angiogenesis and wound closure. An innovation in the present study is the
combination of the aforementioned partially overlapping processes, which can be used
to deliver novel insights into the process of wound healing, such as geometry related
influences, as well as the influence of coupling between the various existing subpro-
cesses on the actual healing behavior. The model confirms the clinical observation that
epidermal closure proceeds by a crawling and climbing mechanism at the early stages,
and by a stratification process in layers parallel to the skin surface at the later stages.
The local epidermal oxygen content may play an important role here. The model can
also be used to investigate the influence of local injection of hormones that stimu-
late partial processes occurring during wound healing. These insights can be used to
improve wound healing treatments.
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1 Introduction

Wound healing is a crucial process for each organism to keep its integrety and viability.
The biological mechanisms behind wound healing have been investigated for a long
time, yet a full understanding of this very complicated process has never been reached.
For a historical review on wound healing research, which was even a scientific topic
among the ancient Egyptians, we refer to Murray (2004). As many current studies
are clinical, we believe that mathematical models may help to give insight into the
understanding of the biological processes and the coupling between these processes
that facilitate wound healing.

The human skin covers the human body, and protects the human body against the
invasion of hazardous chemicals, against mechanical damage, and against heat or cold.
The skin consists of several layers, all with their own function, biological composi-
tion and properties. Roughly speaking, we distinguish the following layers from the
surface to the bottom: the epidermis, dermis and subcutis. The epidermis is known to
consist of five layers. The top layer, serving as a first protection, consists of dead flat
keratinocytes and is referred to as the corneum. The epidermis predominantly consists
of keratinocytes. The second layer, the dermis, mainly consists of fibroblasts, collagen
or extracellular matrix (ECM), macrophages and capillaries, which are constructed
from endothelial cells. The third layer, the subcutis, mainly consists of fibroblasts and
adipocytes, which store nutrients and fat, and capillaries. Hence, when a deep wound,
occurs so that the dermis is damaged, then, the blood vessels are cut and blood enters
the wound gap. The platelets generate a fibrin network (blood coagulation), which
closes the wound temporarily and due to this clot, the blood vessels are closed as well,
by which excessive loss of blood (bleeding) is prevented. Subsequently, contaminants
are removed from the wounded area and platelets start to secrete inflammatory chem-
icals which signal the occurrence of the wound, by which the cells in the surrounding
tissues are activated. This activation will initiate tissue repair and regeneration of the
blood vessel network, which is needed to supply the tissue with oxygen and nutrients,
to facilitate important mechanisms like cell proliferation, collagen regeneration and
cell mobility. The important and complicated biological process of cutaneous (der-
mal and epidermal) wound healing is known to proceed by a combination of various
processes: wound contraction (pulling forces exerted by the (myo)fibroblasts on the
ECM during the regeneration of the dermis), chemotaxis (cellular movement induced
by a concentration gradient), angiogenesis, secretion of signaling agents by the plate-
lets, synthesis of ECM proteins, and scar remodeling. A sketch of wound healing,
which incorporates the aforementioned processes, is shown in Fig. 1. A description
in medical terms can, among many others, be found in Stadelman et al. (1997) and
Lamme (1999), and their listed references. Further, an interesting reference on general
mathematical issues in biology is provided in de Vries et al. (2006).

In most of the mathematical models for (epi)dermal wound healing in literature,
such as Adam (1999), Arnold (2001), Sherratt and Murray (1991), Wearing and
Sherratt (2000), Friesel and Maciang (1995), Gaffney et al. (2002), Stoletov et al.
(2002), Maggelakis (2003, 2004), Olsen et al. (1995), Pettet et al. (1996), and Javierre
et al. (2009b), to mention a few, only one process during wound healing is mod-
eled. However, according Stadelman et al. (1997), these sequential processes overlap
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Fig. 1 A schematic of the events during wound healing. The dermis, epidermis and blood clot are illus-
trated. Fibroblasts move into the blood clot occupied area. The picture was taken with permission from
http://www.bioscience.org/2006/v11/af/1843/figures.htm.

at least partly. In some of these references, wound healing is treated as a moving
boundary problem in which the wound edge is followed explicitly. This is also done
in studies on tumor growth, as in Hogea et al. (2006), where the level set method
is used to track the tumor boundary. In Schugart et al. (2008), Xue et al. (2009),
Vermolen and Adam (2007), Javierre et al. (2008), Vermolen (2009), Vermolen and
Javierre (2009b, 2010), several attempts were made to combine these partial processes
to get a more complete model for dermal wound healing. In Schugart et al. (2008)
and Xue et al. (2009), the models focused on angiogenesis and dermal regeneration,
but visco-elastic effects were left out. Whereas, in Vermolen and Adam (2007) and
Vermolen (2009), it was focused on a combination of angiogenesis and reepitheli-
alization (closure of the epidermis). In Vermolen and Javierre (2009b), a literature
review on mathematical models for cutaneous wound healing is presented. Whereas,
in Vermolen and Javierre (2010), the first attempt to combine the three processes
on dermal regeneration, including visco-elastic effects from wound contraction, and
angiogenesis, both taking place in the dermis. Wound closure is modeled to actually
take place in a separate layer, the epidermis, in the domain of computation. The paper
(Vermolen and Javierre 2010) was devoted to an tissue engineering audience, and
therefore, the mathematical relations were not presented therein, and the lastmen-
tioned paper was more descriptive about the implications of the model. In the present
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paper, we will introduce the partial differential equations (PDEs) that were solved in
Vermolen and Javierre (2010), describe their motivation, and solution procedure. Fur-
thermore, we will describe the implications. The current model, as described in this
manuscript, has been extended with respect to Vermolen and Javierre (2010), in terms
of a coupling from angiogenesis to dermal regeneration and contraction. This revision
is a result of discussions with physicians. In Vermolen and Javierre (2010), angiogen-
esis was only assumed to depend on dermal tissue regeneration, and not the other way
around. The signaling processes due to secretion of agents by the platelets and growth
factors by the fibroblasts to initiate keratinocyte proliferation to close the epidermis, are
not incorporated in the present model, and in this way, these processes are assumed
to proceed instantaneously. Models for the signaling processes, are, among others,
presented in studies due to Wearing and Sherratt (2000), Friesel and Maciang (1995)
and Stoletov et al. (2002), for keratinocyte signaling, angiogenesis, and signaling for
mobilizing of fibroblasts, respectively. Here, we also mention some continuum models
for angiogenesis, which is an essential process within wound healing. Some studies
were done by Schugart et al. (2008), Maggelakis (2004) and Gaffney et al. (2002), to
mention a few. The model due to Schugart et al. (2008) sets up a complete picture for
dermal wound healing in the sense that the fibroblasts, extracellular matrix, inflamma-
tory cells, capillary sprouts and tips are taken into account. However, no mechanical
aspects such as wound contraction are incorporated in their model. Chronic wounds
are studied by Xue et al. (2009), in which a comparison is made between ischemic
and ’normal’ wounds. Other work of interest in this framework, concerns the studies
in enterocyte layer migration, in which a nonlinear diffusion problem is derived and
solved with a one-dimensional finite-difference method. This study is due to Mi et al.
(2007). Swigon et al. (2010) derive and solve a Stefan-like (diffusion with a moving
boundary based on a conservation argument) problem to deal with the migration of
sheets of cells. This is applied to epithelial sheet migration.

Next to the continuum models that are mostly based on PDEs, a large variety of
models, based on a discrete cellular level, exist. In this framework, we mention the
work due to Dallon and Ehrlich (2008) and Dallon (2010), in which several mod-
eling approaches are presented and discussed. One such an approach is the Cellular
Potts model, due to Graner and Glazier (1992), which is used to simulate biological
processes, such as vascularization around tumors. Vascularization has been modeled
using the cellular potts model extensively by Merks et al. (2009), among others. The
cellular potts model is a lattice based model in which each pixel can represent a cell
and hence falls within the class of discrete cellular automata models. In the cellular
potts model, the driving force of the movement of the cells is a Hamiltonian, that is
an energy, which determines the probability of allowing a lattice change in terms of
the positions of the entities (in most biological cases individual cells). The update is
done using a Monte-Carlo like algorithm.

The current manuscript should be regarded as descriptive in terms of the mathemat-
ical model and some of its implications. The results that are presented in the present
study are qualitative and a quantitative description is beyond the scope of the paper
since many parameters are not exactly known. Further, the current paper does not aim
at being formal in a mathematical sense, as the obtained equations are hardly analyzed
here. This has partly been done in earlier studies for the submodels, see Murray (2004),
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Fig. 2 The geometry of the model with the dermis and epidermis. In the dermis, the levels of fibroblasts,
extra cellular matrix, oxygen, nutrients, vascular endothelial growth factor and capillaries are monitored.
In the epidermis, the oxygen, nutrients, keratinocyte (epidermal cell) and epidermal growth factor levels
are tracked

Sherratt and Murray (1991) and Maggelakis (2003) of which we used the simplified
models. The present paper attempts to describe and simulate wound healing by cou-
pling the processes of wound contraction (dermal regeneration), angiogenesis, and
epidermal closure, and to use simple models for each subprocess. In a future manu-
script, we intend to present a mathematical analysis of the contraction model based on
visco-elasticity. The analysis will be carried out in the same mathematical rigor as in
Vermolen and Javierre (2009a). The most important innovation of the present work is
the mathematical description of the coupling of the several processes during cutane-
ous wound healing (wound contraction/dermal regeneration, angiogenesis and wound
closure) and a revision of the model of which some implications were presented in
Vermolen and Javierre (2010).

The present paper, which contains modeling wound healing by the use of the
continuum hypothesis, is organized as follows. First, the mathematical model for
wound contraction, angiogenesis and wound closure is presented. The model con-
sists of a coupling of all these partial processes. Second, the numerical method is
described. Then, some results are presented in which all simulations were done for
the complete model, which consists of a coupling of all submodels for angiogenesis,
wound contraction and wound closure. This is followed by a discussion. We end up
with some concluding remarks.

2 The mathematical model

In this section a model, in terms of a system of PDEs, initial and boundary conditions,
for cutaneous wound healing is presented. The model incorporates wound contraction,
neo-vascularization and wound closure. The construction of the model relies on a com-
bination of the ideas developed by Tranquillo and Murray (1992), Maggelakis (2004),
Gaffney et al. (2002) and Sherratt and Murray (1991). The formation of the microvas-
cular network is assumed to be triggered by a shortage of oxygen on the wound sites.
In Fig. 2, a schematic of the hypothetical wound geometry and surrounding tissues is
shown.
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The domain of computation is given by Ω = Ω1 ∪ Ω2 ∪ (Ω1 ∩ Ω2), where Ω1
and Ω2 respectively denote the open region occupied by the dermis and epidermis
respectively. Here, Ω1 := (0, Lx ) × (0, L y) and Ω2 := (0, Lx ) × (L y, L y + δ),
where δ denotes the thickness of the epidermis. The overbar indicates the closure of
a (sub-)domain. Further the overall initial wounded region is denoted by Ωw, which
contains parts of the epidermal and dermal region. Hence Ωw ∩ Ω1 and Ωw ∩ Ω2,
respectively, denote the initial wounded regions within the dermis and epidermis. We
emphasize that in the present paper, the simplest models for each subprocess, being
wound contraction, angiogenesis, and wound closure, are used.

2.1 Wound contraction

To simulate wound contraction, we use and extend the model due to Tranquillo and
Murray, as described in Murray (2004). After post-traumatic coagulation of blood, the
wound is closed so that a less significant number of contaminants are able to enter
the wound area, and connective tissue fills the wound gap. At the consecutive stage
chemically mobilized fibroblasts enter the dermal gap and start to proliferate up to an
equilibrium density. The transport is modeled by a diffusive flux, which is influenced
by the local strain pattern. The incoming fibroblasts regenerate an extracellular matrix
on which they exert a contractile force. All equations in this subsection apply to the
dermis part of the domain of computation, hence to subdomain Ω1. The fibroblast
balance becomes

∂c f ib

∂t
+ div(ut c f ib) = ∇ ·

(
D f ib

c2
o

c2
θ

∇c f ib

)
+ rc f ib

(
1 − c f ib

c0
f ib

)
. (1)

Here c f ib, c0,D f ib,u = 〈u, v〉, r and c0
f ib respectively denote the fibroblast density,

oxygen concentration, motility tensor, displacement vector with horizontal and ver-
tical components given by u and v, respectively, proliferation rate and equilibrium
fibroblast density as in the unwounded state. Furthermore, cθ denotes the dermal equi-
librium oxygen content. The accumulation rate of the fibroblasts in the dermis, see
the first term in the left-hand side of Eq. 1, is determined by cell motility, and cell
proliferation, see the first and second terms in the right-hand side of Eq. 1, respectively.
We will explain these two terms.

– Fibroblast motility (first term in the right-hand side of Eq. 1): The motility is
assumed to increase quadratically with the oxygen content. This quadratic rela-
tion is assumed to make the decrease of fibroblast mobility more significant if the
oxygen content is low than just by a linear relation. In the study of Vermolen and
Javierre (2010), the fibroblast regeneration was assumed not to depend on oxygen,
and hence the dermal regeneration was assumed to be insensitive to angiogenesis.
Hence the present incorporation of the oxygen tension into fibroblast motility is
an extension with respect to the earlier work (Vermolen and Javierre 2010). Of
course, as the oxygen content exceeds a certain threshold, then the increase of the
fibroblast mobility should go to a limit. This is not incorporated in the present
model since the oxygen content does not exceed cθ . Further, the motility of the
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fibroblasts is determined by strain-biased motion, which we will specify a bit later
in terms of a relationship between the motility and local strain.

– Cell proliferation (second term in the right-hand side of Eq. 1): The fibroblasts
divide until they reach an equilibrium of c0

f ib in a logistic manner. The division

rate constant r has a unit of s−1.

The second term on the left-hand side in Eq. (1) follows from a passive convection
of the cells due to the deformation of the structure. Note that Eq. (1) is of Fisher–
Kolmogorov type, which in the absence of passive convection admits solutions with
a traveling wave structure. The mechanism of fibroblast differentiation to myofibro-
blasts has not yet been taken into account as was done in Olsen et al. (1995) and
Javierre et al. (2009a). Biologically, one could interpret our simplified approach as
assuming that c f ib models the density of both fibroblasts and myofibroblasts. Then,
the difference in the exertion of contraction and in the mobility are not taken into
account here. According to Murray (2004), the motility tensor depends on the local
strain in the following way

Dp = D0
p

2
·
(

2+εxx −εyy 2εxy

2εxy 2+εyy − εxx

)
, where p denotes the cell type. (2)

The cell types considered are fibroblasts, endothelial cells (via the capillary density)
and keratinocytes (in the epidermis). For the relation between the strain ε and dis-
placements (u and v), we use the following simple relationship:

ε(u, v) :=
⎛
⎝ ∂u

∂x
1
2

(
∂u
∂y + ∂v

∂x

)
1
2

(
∂u
∂y + ∂v

∂x

)
∂v
∂y

⎞
⎠ .

The production of extra cellular matrix (ECM) by the fibroblasts is modeled by

∂cecm

∂t
+ div(ut cecm) = bc f ib

(
1 − cecm

c0
ecm

)
. (3)

Here b, cecm and c0
ecm respectively represent the ECM production rate in s−1, ECM

density and equilibrium ECM density. Once again the second term in the left-hand side
accounts for passive convection. The right-hand side is based on the assumption that
the production rate is proportional to the density of fibroblasts. Furthermore, the pro-
duction rate of collagen decreases as the extra cellular matrix density increases towards
its equilibrium value. It can be shown that cecm = c0

ecm and c f ib = c0
f ib are stable

steady-state solutions under div ut = 0. Therefore, the undamaged state is stable.
Before we deal with the mechanical balance equations, we first introduce the indi-

cator function in order to be able to make a distinction between the epidermis and
dermis if it concerns the reaction forces resulting from pulling behavior of fibro-
blasts in the dermis. Let V ⊂ Ω be non-empty, then we define the indicator function,
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χV (x, y) : Ω → {0, 1}, where V ⊂ Ω , by

χV (x, y) =
{

1, if (x, y) ∈ V,
0, if (x, y) ∈ Ω\V .

(4)

For the force equilibrium, we have the following equation at a certain time

− div σ = cecmF · χΩ1(x, y), (x, y) ∈ Ω, (5)

where σ denotes the stress tensor and F represents mass-spring body force as a reac-
tion to the pulling exerted on the extracellular matrix. This mass-spring force acting
as a body force is given by

F = −su. (6)

Here, s denotes the tethering elasticity coefficient, which quantifies the resistance of
the attached tissue matrix. We note that the cell traction and spring force are nonzero
in the dermis domain only, that is in Ω1. Further, cecm denotes the ECM density. The
use of the indicator function mimics the presence of the reaction spring forces in the
dermis only. The stress contains the following components: visco-elasticity [the first
three terms, the first two representing viscous forces and the third term resulting from
linear elasticity (Hooke’s Law)] and cell traction, which is proportional to the ECM
content and the fibroblast density. This gives the following mechanical force balance:

σ = μ1εt + μ2(∇ · ut )I + E

1 + ν

[
ε + ν

1 − 2ν
(∇ · u)I

]
+ τc f ibcecm

1 + λc2
ecm

I. (7)

Here μ1, μ2, E and ν respectively denote viscosity (the dynamic and kinematic vis-
cosity), Young’s modulus and Poisson’s ratio. Further, I denotes the identity tensor.
In the present study, we assume that the stiffness of the tissue does not depend on
strain. In principle, a hyper-elastic model would be more appropriate. However, such
a behavior is not included in the present study since we want the current model to be
as simple as possible as it is already sufficiently complex as it contains a combination
of the simplest models for each subprocess. The stress that is exerted by one fibroblast
on the extracellular matrix is denoted by τ . The traction saturation constant is denoted
by λ, and it warrants the existence of a ECM density for which the ECM production is
maximal, so that a larger value moves the stress-maximizing fibroblast density towards
zero and additionally decreases the actual maximum fibroblast density.

Initially all densities are zero in the wounded region and initially the displacement
u = 0 is also zero inΩ . Further, far away from the wound, the displacement is assumed
to be zero as a boundary condition and at x = 0, which is the line of symmetry, the
displacement in the x-direction vanishes, that is u = 0. At the bottom of the domain
of computation, we have v = 0. At the top of Ω (that is at the top of the epidermis),
we assume the traction to be zero, which gives a free boundary. Further, the fibroblasts
are subject to a no-flux boundary condition.
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As initial conditions, we use

c f ib(x, y, 0) =
{

0, for (x, y) ∈ Ωw ∩Ω1,

c0
f ib, for (x, y) ∈ Ω1\Ωw, (8)

for the fibroblasts. For the ECM, we use initially

cecm(x, y, 0) =
{

0, for (x, y) ∈ Ωw ∩Ω1,

c0
ecm, for (x, y) ∈ Ω1\Ωw. (9)

2.2 Angiogenesis

The model that we use for this partial process was presented in Maggelakis (2004), as
it is one of the simplest models that incorporate the actual initiation of angiogenesis as
a result of a lack on oxygen. Angiogenesis is a crucial process for tissue regeneration
and for tumor growth (Rossiter et al. 2004). It is assumed that the capillaries and its
tips act as the only sources for oxygen supply. Due to the injury, the microvascu-
lar network is damaged in the wound area and as a result the oxygen concentration
decreases there. This lack of oxygen initiates macrophage activation, which among
other tasks, such as being scavengers or admirals to remove harmful bacteria and
chemicals, start producing the macrophage derived growth factors (MDGF), such as
vascular endothelial growth factors (VEGF). These growth factors make the endo-
thelial cells proliferate, which induces the regeneration of capillaries and thereby the
vascular network is restored. In the experimental work of Rossiter et al. (2004), it
is revealed that loss of VEGF’s causes an enormous delay in healing time of deep
wounds due to the presence of blood vessel-free zones. Their findings are sustained
by animal experiments on mice.

Due to the regeneration of capillaries, the oxygen concentration increases, caus-
ing the production of new capillaries to be inhibited. The flow chart of this negative
feedback mechanism is sketched in Fig. 3.

Let co and cc respectively denote the oxygen concentration and the capillary density
and let them be functions of time t and space within the entire domain of computa-
tion Ω and the dermis region Ω1, respectively; then a mass balance results into the
following PDE:

∂co

∂t
+ div(ut co) = ∇ · (Do∇co)− λoco + λo,ccc, for (x, y) ∈ Ω. (10)

Here Do, λo, and λo,c, respectively denote the diffusivity of oxygen, the natural decay
rate coefficient of oxygen, and the increase rate of oxygen per number of capillaries
in a unit volume. Assuming a consolidation of the scaffold after some of bleeding,
it is reasonable to suppose that the main part of oxygen has been consumed in the
wound area. Therefore, we set the initial oxygen concentration zero there. Further, in
the undamaged tissue there is an equilibrium profile of oxygen. Therefore, the initial
concentration of oxygen is determined by the combination of the steady-state of the
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Fig. 3 A schematic of the negative feedback mechanism for the model for angiogenesis due to Maggelakis

oxygen concentration profile according to the undamaged state and the zero level in
the damaged state. Hence the initial oxygen concentration profile is determined by

co(x, y, 0) =
{

c̃o(x, y), for (x, y) ∈ Ω\Ωw,
0, for (x, y) ∈ Ωw. (11)

The equilibrium profile of oxygen in the undamaged tissue, indicated by the function
c̃o will be specified after the treatment of the capillary density. For completeness, we
also note that the capillaries do not enter the epidermal region.

It is assumed that there is no transport of oxygen over the symmetry boundary and on
boundaries that are far away from the wound. As well as, it is assumed that no oxygen
enters from the dermis into the subcutis via diffusion. This assumption is probably an
oversimplification of reality, and it can be relaxed easily. This boundary condition will
not provide significant changes in the qualitative picture of cutaneous wound healing
that we want to present in the current paper. Oxygen is allowed to enter the epidermis
via diffusion through the basal membrane. The diffusivity in the basal membrane is
not adjusted. This results into a homogeneous Neumann boundary condition for oxy-
gen at all boundaries of the domain of computation. The above equation is based on
the assumption that the oxygen supply and oxygen consumption depend linearly on
the capillary density and oxygen concentration respectively. Since oxygen reaches the
tissue predominantly via the capillaries, and hardly from the contact between the epi-
dermis and the outer surroundings, it is reasonable to neglect the transport of oxygen
over the outer skin boundary which is in contact with the surroundings. Since oxygen
transport is determined by diffusion only, we use a homogeneous Neumann boundary
condition on the top of the epidermis.

As mentioned earlier, if the oxygen level is low, then macrophages start releasing
VEGF to initiate regeneration of blood vessels and collagen deposition. The skin tis-
sue is then provided with necessary nutrients and oxygen for cell division needed for
wound closure. An assumption in the model is that VEGF is produced if the oxygen
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level is below a threshold value, say cθ . The VEGF-production rate, Q, is assumed to
depend linearly on the lack of oxygen, that is

Q = Q(co) =
{

1 − co

cθ
, if co < cθ ,

0, if co ≥ cθ .
(12)

The number of macrophages is assumed to be homogeneously distributed in undam-
aged tissue, so the actual natural density of macrophages is hidden in the production
rate Q. The mass balance of VEGF’s, its concentration being denoted by cv , results
into the following PDE’s in the wounded dermal regionΩw∩Ω1 and out of the wound
region Ω1\Ωw:

∂cv
∂t

+ div(ut cv) = ∇ · (Dv∇cv)+ λv,o

(
c f ib

c0
f ib

)2

τv +
(

c f ib

c0
f ib

)2 Q(co)

−λvcv, for (x, y) ∈ Ωw ∩Ω1, (13)

Here, Dv, λv,o, λv , and c0
f ib, respectively, denote the diffusion coefficient of VEGF

in the tissue, the VEGF production rate coefficient by the macrophages, natural decay
rate of VEGF, and the fibroblast density in undamaged tissue. The parameter τv will
be explained a little later in this section. The three terms in the right-hand side mimic
VEGF diffusion, VEGF production by macrophages, and natural decay, respectively.
The reasoning behind this model equation is similar to tumors secreting growth factors
to enhance vascularization around the tumor, see Balding and McElwain (1985) and
Mantzaris et al. (2004) as examples. It is assumed that angiogenesis and the associ-
ated production of MDGF takes place in the (partially) restored dermis only, as both
macrophages and fibroblasts enter the wound area. Although the motilities of fibro-
blasts and macrophages differ, we assume that their motilities are comparable and
that the number of actively VEGF producing macrophages is coupled to the quality
of the dermis. The quality of the dermis is assumed to be measured by the fibroblast
density. One could argue to incorporate also the level of the collagen content in the
measure for the dermal quality. However, as the contents of fibroblasts and collagen
are closely related, we decided to use the fibroblast density only to make the model as
simple as possible such that it describes biological phenomena in a sound manner. In a
restored dermis, the normalized fibroblast

c f ib

c0
f ib

density equals one, whereas in a totally

disrupted dermis the fibroblast density vanishes. Therefore, the function of c f ib is
introduced in front of the VEGF regeneration term. It would probably be more appro-
priate to incorporate the macrophage density there too. This would require the extra
tracking of the macrophages and hence make the model more complicated. There-
fore, we omit this extension, and use the dermal quality as the input parameter. This
function implies that the VEGF regeneration vanishes as c f ib is zero and increases
monotonically as the fibroblast density increases. The parameter τv warrants that the
increase of the VEGF production resembles a quadratic behavior for small values of
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c f ib and an asymptotically flattening behavior as c f ib becomes very large. The larger
τv , the less sharp the increase of the VEGF production becomes for large values of
fibroblast density. The initial VEGF concentration is assumed to be zero in the entire
domain of computationΩ and a homogeneous Neumann boundary condition is used,
also at the basal membrane between the dermis and epidermis. The capillary density,
cc, is assumed to grow as a result of the VEGF’s in a logistic manner, that is

∂cc

∂t
+ div(ut cc) = ∇ · (Dc∇cc)+ λccvcc

(
c f ib

c0
f ib

)2

τc +
(

c f ib

c0
f ib

)2

×
⎛
⎜⎝1 − cc

ceq
c ψ(

c f ib(x,y,t)

c0
f ib

)

⎞
⎟⎠, for (x, y) ∈ Ω1, (14)

where ceq
c denotes the equilibrium capillary density. The first term of the right-hand

side models stress-biased mobility of the endothelial cells which are the building
blocks for the capillaries. The last term in the right-hand side models logistic growth
of the capillary density. This proliferation linearly increases with the VEGF concen-
tration. Further, this proliferation increases with an increasing dermal quality. In the
above equation, λc denotes the capillary proliferation rate. To incorporate the dermal
quality, a similar function of the fibroblast density to the one in (13) is proposed in
Eq. (14). As before, the parameter τc warrants that the increase of the capillary prolif-
eration resembles a quadratic behavior for small values of c f ib and an asymptotically
flattening behavior as c f ib becomes very large. It is well-known that the vascular
density is slightly elevated in the vicinity of the dermal wound edge, see for instance
the study by Szpaderska and DiPietro (2003), where is it claimed that the capillary
density in wounded areas may reach more than twice the usual capillary density in
the undamaged state. In their study they consider both oral and skin wounds. Since
it has been observed that indeed the endothelial cell density, or the capillary density,
is elevated with respect to equilibrium in the undamaged state, a simple logistic pro-
liferation rate for the capillary density is not appropriate. The complicated biological
mechanisms behind this observation are ’simply’ dealt with by shifting the equilibrium
as a result pf the dermal quality, which we determine by the fibroblast density. The
elevated capillary density is modeled by adapting the equilibrium capillary density by
the functionψ in the above equation. The equilibrium capillary density increases with
an increasing value of ψ . To mimic an increased equilibrium capillary density at the
dermal wound edge, we use

ψ = ψ(c) =
{

2 − c, if c ≤ 1,
1, if c > 1.

(15)

We realize that this is a crude approximation. The formalism for angiogenesis due to
Gaffney et al. (2002) gives the increase of the capillary (tip) density and of the capillary
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tips near the wound edge in a more natural way. The lastmentioned model, however,
does not take into account the shortage on oxygen as the initiator for angiogenesis.
Further, the capillary density is assumed to satisfy the following initial condition

cc(x, y, 0) =
{

0, for (x, y) ∈ Ωw ∩Ω1,

ceq
c , for (x, y) ∈ Ω1\Ωw. (16)

A homogeneous Neumann boundary condition is used for cc. The capillaries are
assumed to grow and to ’migrate’ via a random walk process. Capillary ’movement’
was not incorporated into Maggelakis’ model but this migration was extended with a
bias in Gaffney’s model by the incorporation of cross diffusion coefficients. The bias
is neglected in this paper but it will be investigated in future work. Further, Gaffney
et al. (2002) distinguish between the actual capillaries and the actual capillary tips.
Maggelakis sets in a nonzero artificial starting value for the capillary density to have
the capillary density to increase up to the equilibrium value. The original approach due
to Maggelakis was simpler since her study aimed at finding explicit analytic solutions.
The assumption that capillary tips migrate by random walk is also a key-assumption
in the work due to Plank and Sleeman (2003, 2004).

For the initial oxygen content, we use the assumption that its value equals zero
in the initial wound region. At the other locations in the computational domain, we
assume it to be given by the steady-state solution of the undamaged state in the entire
domain of computation, this is the function c̃o determined from

− Doc̃o + λoc̃o =
{
λo,cceq

c , for (x, y) ∈ Ω1,

0, for (x, y) ∈ Ω2.
(17)

It can be demonstrated from analytic considerations that limt→∞ co(x, y, t) =
c̃o(x, y) in Ω .

2.3 Wound closure

In this study, we extend the model due to Sherratt and Murray (1991), which contains
all the important features qualitatively. The mechanism for wound closure is mitosis:
cell division and growth. We are aware of the fact that this mechanism is triggered by
a complicated system of growth factors. In the present study, we follow Sherratt and
many others, in which it is assumed that one epidermal growth factor regulates wound
closure, which is sufficient to get the right qualitative picture of wound closure. The
influence of keratinocyte growth factor signaling is neglected in the current study. The
epidermal growth factors determine the regeneration of epidermal cells. If the number
of epidermal cells is low, then, the epidermal cells produce an excessive amount of
growth factors. Whereas, as the healed state is reached, then, the growth factor produc-
tion decreases such that the healed cell concentration is stable. Following Sherratt and
Murray (1991), we assume that the growth factors are exclusively generated by the
epidermal cells. The epidermis-derived growth factors diffuse through the epidermis,
and hence the portion of them that cross the basal membrane to enter the underlying
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dermis is assumed to be negligible. Further, the epidermal growth factors are subject
to natural decay. Let cepi and ceg f respectively denote the epidermal cell density and
epidermal growth factor concentration, then the adapted expression of Sherratt and
Murray where the accumulation of the epidermal cells is determined by proliferation
(diffusive transport), mitosis and cell death, in Ω1, is given by

∂cepi

∂t
+ div(ut cepi ) = ∇ · (Depi

c2
o

τo + c2
o
∇cepi )+ s(ceg f )φ(co)cepi

(
2 − cepi

ceq
epi

)
− λepi cepi ,

subject to cepi (x, y, 0) =
{

0, for (x, y) ∈ Ωw ∩Ω2,

ceq
epi , for (x, y) ∈ Ω2\Ωw.

(18)

In the above PDE, the right-hand side consists of keratinocyte stress-biased motility,
proliferation and natural decay. Here Depi , λepi and τo, respectively, denote the stress-
biased diffusion coefficient, a natural decay term, the parameter τc warrants that the
increase of the capillary proliferation resembles a quadratic behavior for small values
of c f ib and an asymptotically flattening behavior as c f ib becomes very large. The
function s = s(ceg f ) is nonlinear and describes the mitotic rate, see Murray (2004)
and Sherratt and Murray (1991). This function will be specified later in this section.
Furthermore, as the epidermal cells need oxygen and nutrients to become motile, the
motility increases with increasing oxygen (c0) and nutrients level (cn). These depen-
dencies are included in the above equation. Of course the behavior and need of nutrients
is similar to the contribution of oxygen. Therefore, this issue is not dealt with explic-
itly in this paper. Note that these dependencies are just assumptions. However, we
think that the picture is right from a qualitative point of view. The proliferation rate
of the epidermal cells depends on the oxygen level. This is incorporated by the use of
the function φ(c0), which gives a linear dependence up to a certain maximum. This
relation will be specified a bit later in this section.

For the growth factor accumulation a similar relationship due to diffusive transport,
production and decay is obtained with a similar adaptation for the dependence of the
capillary density:

∂ceg f

∂t
+ div(ut ceg f ) = ∇·(Deg f ∇ceg f )+ φ(co) f (cepi )− λeg f ceg f , (x, y)∈Ω2,

subject to ceg f (x, y, 0) =
{

0, for (x, y) ∈ Ωw ∩Ω2,

ceq
eg f , for (x, y) ∈ Ω2\Ωw.

(19)

Here Deg f and λeg f , respectively, denote the diffusion coefficient of the epidermal
growth factor, and a natural decay rate. In the above equation f (cepi ) denotes a non-
linear relation for the growth factor regeneration. Sherratt and Murray distinguish two
different types of growth factors are considered: 1. activators; and 2. inhibitors, both
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with their characteristic functions for s and f , given by

s(ceg f ) = 2cm(h − β)ceg f

c2
m + c2

eg f

+ β, β = 1+c2
m − 2hcm

(1 − cm)2
, f (cepi ) = cepi (1+α2)

c2
epi + α2

,

(20)

for the activator case and by

s(ceg f ) = (h − 1)ceg f + h

2(h − 1)ceg f + 1
, f (cepi ) = cepi , (21)

for the inhibitor. Here h, β and cm are considered as known constants, and we refer
to Murray (2004) for more details. The initial wounded state is unstable, so that the
functions cepi and ceg f converge to the undamaged values ceq

epi and ceq
eg f as t → ∞.

So the unwounded state is stable, and the wounded state is unstable with respect to
(small) perturbations. Parts of the stability analysis has already been carried out in
literature, such as for the original model for epidermal healing in Sherratt and Murray
(1991). Further, in Sherratt and Murray (1991), a traveling wave analysis was carried
out on the equations in its original form. We also plan to consider this stability in a
more mathematical setting in future work.

Furthermore, the formation of epidermal cells and their ability to produce the epi-
dermal cell mitosis regulating growth factor are determined by the amount of oxygen
and nutrients supplied. In the present study, we assume the mitotic rate to increase as
the oxygen level increases. Since, the cell division and growth rate are finite, there is a
maximum division rate at which the division rate is no longer sensitive with respect to
an increase of oxygen supplied. Hence, this advocates for the existence of a maximum
mitotic rate. To model this, we introduce for (x, y) ∈ Ω2:

φ(co(x, y, t)) := min

(
1,

co(x, y, t)

c̃o(x, y)

)
, (22)

where c̃o(x, y) is the steady-state solution of the oxygen content in the undamaged
tissue at position (x, y) ∈ Ω2.

3 The numerical method

The PDEs are solved using the finite-element method with triangular elements and
piecewise linear basis functions. For the time integration of the nonlinear PDEs, we
use an IMEX (IMplicit EXplicit) method such that a toilsome stability criterion is
circumvented. The method used in the present study is similar to the method in
Vermolen (2009). In this section, we deal with the numerical method for the biological
diffusion-reaction equations and for the mechanical visco-elastic equations.

As numerical settings, we use 50 × 50 gridnodes in the dermis and in the dermis.
For the time-step, we use 0.01 days. Further, an enlargement of the grid resolution and
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a time step decrease did not alter the results significantly. Differences were invisible
in the ‘eye-ball norm’.

3.1 The biological equations

For the coupled system of equations, we use an IMEX method, hence it suffices to
discuss the most complicated diffusion-reaction that we encounter in the present study.
We consider equations of the form

∂c

∂t
+ div(ut c) = ∇ · (D∇c)+ F(c((x, y), t), w((x, y), t)), (23)

where

D = D0(w(x, y, t))

2
·
(

2 + εxx − εyy 2εxy

2εxy 2 + εyy − εxx

)
,

represents the diffusion tensor and the PDE is supplied with an initial condition and
homogeneous Neumann conditions. The equation is solved using a standard Galerkin
finite-element method. Further, w is assumed to be a solution determined from an
other differential equation. First, using integration by parts for the divergence term,
gives

∫
Ω

∂c

∂t
φdΩ +

∫
∂Ω

ut · ncφd� −
∫
Ω

ut c · ∇φdΩ

+
∫
Ω

D∇c · ∇φdΩ =
∫
Ω

F(c, w)φdΩ. (24)

The solution c is written as a linear combination of piecewise linear basis functions

φi (x, y), such that c(x, y, t) =
∑n

j=1
c j (t)φ j (x, y). The integrals are evaluated over

each (line) element and then the element matrices are assembled into the large matri-
ces used for the solution of the system of differential equations. The element matrices
are computed using Newton–Cotes integration, which is sufficiently accurate since in
the nonlinear parts the solution is only determined up to an accuracy of O(h2), if h
denotes a characteristic length (say the diameter) of the elements.

The most complicated term in the above weak form, is the diffusive flux. We will
work out this term in somewhat more detail. For the element matrices, we deal with
I = ∫

Ωe
D∇φi · ∇φ j dΩ , where Ωe represents an element. Taking into account the

strain components, we arrive at

I =
∫
Ωe

(
Dxx

∂φ j

∂x
+ Dxy

∂φ j

∂y

)
∂φi

∂x
+

(
Dxy

∂φ j

∂x
+ Dyy

∂φ j

∂y

)
∂φi

∂y
dΩ.
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The above integral is numerically approximated using a Newton–Cotes quadrature
rule. Of course, a Gaussian quadrature rule is more accurate in principle, however in
this application in which the solution is already accurate up to a second order in space,
the Gaussian rule does not increase the order of accuracy, and hence it does not give a
significant improvement. Further, the high (fourth) order of the Gaussian rule will not
be useful under sudden change of the coefficients. The integration of the diffusivity is
performed at the previous timestep.

3.2 The visco-elastic equation

Next, we consider the visco-elastic equations and deal with a weak solution of

−∇ · σ = f,

where

σ(u) = μ1
∂ε(u)
∂t

+ μ2

(
∇ · ∂u

∂t

)
I + E

1 + ν

(
ε(u)+ ν

1 − 2ν
(∇ · u)I

)
.

The above PDE represents a force balance. The first two terms in the above equation
for σ(u) account for viscous effects of the soft tissue. The second term set of two terms
deal with elastic effects of the tissue. Further, f is an internal body force, which could
be the cell traction or a spring force. We use homogeneous Dirichlet conditions for the
displacements and homogeneous natural boundary conditions for the force. Also, an
appropriate initial condition has to be specified for μ1ε(u) + μ2(∇ · u)I. We denote
the domain of computation byΩ and its boundary by �. The boundary is decomposed
� = �1 ∪ �2, where �1 := {(x, y) ∈ Ω : x = 0} ∪ {(x, y) ∈ Ω : x = Lx } and
�2 := {(x, y) ∈ Ω : y = 0}∪{(x, y) ∈ Ω : x = Lx }. To this extent, we introduce the
following function spaces reflecting smoothness properties and boundary conditions:

U0 := {u ∈ H1(Ω) : u = 0 on �1},
V0 := {v ∈ H1(Ω) : v = 0 on �2},
U := C1((0, T ],U0) ∪ C0([0, T ],U0),

V := C1((0, T ], V0) ∪ C0([0, T ], V0).

Hence, the following variational formulation is derived

u ∈ U × V :
∫
Ω

σ(u) : ε(φ)dΩ =
∫
Ω

f · φdΩ, ∀φ ∈ U0 × V0. (25)
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In this expression, the matrix inner product is defined by

A : B :=
m∑

i=1

m∑
j=1

Ai j Bi j ,

where A, B are m × m-matrices. Further, the scalar inner product is employed

u · φ := uφ1 + vφ2, where φ = [φ1, φ2]T .

The PDEs are solved using a Galerkin finite-element method with linear triangles.
For the time integration of the nonlinear PDEs, a backward (implicit) Euler method is
applied such that a stability criterion is circumvented. We write the displacement and
strain as a linear combination of the basis functions

∑
j

εk
xx, j

∫
Ω

φiφ j dΩ =
∑

j

ck
j

∫
Ω

φi
∂φ j

∂x
dΩ, ∀i ∈ {1, . . . , N },

where k denotes the time index. At each time-step this system of equations is solved.
Here, Newton–Cotes integration lumps the matrix to a diagonal matrix, which makes
the solution of the linear system of equations very cheap. The other terms for the strain
tensor are treated analogously.

4 Results for the coupled model

In the simulations, we use the following default data, which are predominantly obtained
from the references in which the original submodels were described. The data can be
found in Table 1. With respect to the data for the angiogenesis model, we could not
find any sensible parameter values for oxygen diffusion and VEGF. For oxygen diffu-
sion, we used a value according to the range of measured values of MacDougall and
McCabe (1967). We assume that the diffusivity of VEGF is comparable to the oxygen
diffusivity and therefore, we set them equal in our present study. For the reaction rate
coefficients, no data was available either and therefore, we made educated guesses for
them. Further, we consider a wound of the following dimensions: 0.5 cm × 0.5 cm in
the dermis and of 0.1 cm × 0.5 cm in the epidermis. Hence the initial wound region is
given by (x, y) ∈ [0, 0.5]×[0.5, 1, 1] with δ = 0.1 for the thickness of the epidermis.
The mechanical parameters were obtained from Murray (2004).

We finally remark that all simulations were done for the complete model.

4.1 Wound contraction simulations

To illustrate the contraction phase, that is the reparation of the dermis, we consider
a wound gap on the upper left part of the dermis. Fibroblasts enter the gap region
and start proliferating. Consecutively, they start producing ECM, and pulling on the
ECM, which gives a contractile behavior. In Figs. 4 and 5 the fibroblast density and
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Table 1 Default values in the
simulations for the various
parameters

Parameter Value Unit

Lx 1 cm

L y 1 cm

δ 0.1 cm

c0
f ib 1 105 cells/cm2

c0
cap 0.1 105 cells/cm2

c0
col 1 μg/cm3

D0
f ib 5.79 × 10−9 cm2/s

D0
c 5.79 × 10−9 cm2/s

D0
epi 1 × 10−8 cm2/s

Do 1.16 × 10−7 cm2/s

Dv 1.16 × 10−8 cm2/s

Deg f 0.45 × 10−4 cm2/s

λo 2.31 × 10−7 1/s

λo,c 2.31 × 10−5 1/s

λv,o 2.31 × 10−6 1/s

λv 2.31 × 10−9 1/s

λc 1.16 × 10−4 m2/(s cells)

λepi 2.31 × 10−5 1/s

λeg f 3.47 × 10−4 1/s

r 1.16 × 10−5 1/s

b 1.16 × 10−5 1/s

s 1 × 108 dyne s/cm3

E 10 dyne/cm2

ν 0.2 –

τo 1 –

τc 1 –

τv 1 –

τ 0.5 dyne/cell

ECM concentration are shown at several times in the inflammatory phase, in which the
dermis underneath the epidermis is repaired. Furthermore, the collagen concentration
is restored quickly once fibroblasts have invaded the scaffold.

The displacements were computed from the visco-elastic equations using the data
in Table 1. Using these data, the displacements were very small, being in the order
of 10−5 cm at most. Hence the displacements were not visible and we will show the
displacements in the mesh points for hypothetic values of cell traction and tethering
constant in the discussion section. Furthermore, from a parameter sensitivity analysis
we observe:

– Near the value as specified in Murray (2004), the diffusivity parameter in front of
the matrix with the strain dependence hardly influences contraction;
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Fig. 4 The fibroblast profile in a dermal wound gap during the inflammatory phase at 5, 10, 40 and 100 days.
The figures show the temporal evolution. Here, the position of the basal membrane which connects the der-
mis to the epidermis coincides with the line y = 1. The initial wound occurred at the left
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Fig. 5 The ECM profile in a dermal wound gap at 5 and 40 days. The figures show the temporal evolution.
Here, the position of the basal membrane which connects the dermis to the epidermis coincides with the
line y = 1. The initial wound occurred at the left

– Fibroblast regeneration rate coefficient (r ) has some influence at later stages (low
value increases contraction and decreases retraction speed);

– Collagen regeneration rate coefficient (b) has a large influence at initial and inter-
mediate stages (initial distraction increases with decreasing b);

– Traction stress saturation (λ) has a large influence (even qualitatively initially,
λ = 0 gives no initial distraction).
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Fig. 6 The oxygen concentration inΩ at days 5, 10, 40 and 100. The figures show the temporal evolution.
Here, the position of the basal membrane which connects the dermis to the epidermis coincides with the
line y = 1. The initial wound occurred at the left. Note that the epidermis is also incorporated

4.2 Angiogenesis simulations

In Fig. 6, we show the oxygen content in the vicinity of the wound at several times. In
the undamaged tissue, the oxygen profile resembles the equilibrium profile, whereas
in the wounded region, the oxygen content is almost zero and climbs to the equilibrium
oxygen tension profile as t → ∞. The low oxygen levels in the wounded region trigger
the secretion of the growth factors that stimulate capillary formation. This is perfectly
illustrated in Fig. 7, where it can be seen that the VEGF profile exhibits a maximum
in the low oxygen region at the wound edge, as a result of the c f ib-term in Eq. (13).
In Fig. 8, several profiles of the capillary density are shown. At the initial stages, the
capillary density is almost zero in the wounded part of the dermis, whereas, at the later
stages, the capillary density increases in the wounded part of the dermis due to the
relatively high level of VEGF whenever, the (epi-)dermal layer is disrupted. Further,
it can be seen that the capillary density is slightly elevated at the rim of the wound.
This increase is due to the function ψ , being larger than unity if the fibroblast density
is small, and is also observed experimentally. Without the ψ-function, this increase
at the wound edge would not be there. The model due to Gaffney et al. features this
increase in a more natural way. Further, a more mechano-chemical approach has been
described in Murray (2003), although our approach incorporates mechanical effects
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Fig. 7 The VEGF profile in Ω1 at 5 and 20 days. The figures show the temporal evolution. Here, the
position of the basal membrane which connects the dermis to the epidermis coincides with the line y = 1.
The initial wound occurred at the left
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Fig. 8 The capillary profile in Ω1 at 5, 10, 40 and 100 days. The figures show the temporal evolution.
Here, the position of the basal membrane which connects the dermis to the epidermis coincides with the
line y = 1. The initial wound occurred at the left

as well from the dependence of the diffusion parameters of the capillaries on the local
strain tensor.

4.3 Simulations of epidermal closure

In Figs. 9 and 10, the epidermal cell density and epidermal growth factor are plotted
at consecutive times. At times just after initiation of reepithelialization, we see that
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Fig. 9 The epidermal cell density at 5, 10, 40 and 100 days. The figures show the temporal evolution. In
the figures, the basal membrane coincides with y = 1. Note that c and d have been rotated for illustrational
purposes
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lution. The figures show the temporal evolution. In the figures, the basal membrane coincides with y = 1

healing of the epidermis progresses away from the undamaged part of the epidermis,
so towards the center of the wound, with a peak at the edge during intermediate times.
This is also observed experimentally and according to the original simulations due
to Sherratt and Murray (1991). At later times, the epidermal cells have moved to the
wounded side that is adjacent to the dermis. Then, healing proceeds away in a stratified
manner from the basal membrane. This is exactly what happens in clinical situations:
healing of the epidermis proceeds from cellular motion from the dermis.
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Fig. 11 The concentration in
the upper left part of the wound:
capillary, ECM, and fibroblast
densities at the upper left point
of the dermis, epidermal cell
density at the upper left point of
the epidermis located on the
epidermis. Hence, the capillary,
ECM and fibroblast densities at
position (0, 1) and the epidermal
cell density at (0, 1.1)
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Sherratt and Murray report a qualitative agreement with experiments conducted on
wounds on rabbit’s ears, from which the hair follicles were removed, in Murray (2004)
and Sherratt and Murray (1991). To get a more quantitative agreement between the
model and experiments, regression procedures are desired to get better appropriate
values for all model parameters.

4.4 Temporal evolution

In Fig. 11, we show the densities of the fibroblasts, ECM and capillaries in the wound
gap. The epidermal cell density on left top position is shown as well. The relatively
small values of the fibroblast mobility and ECM diffusivity give rather steep curves
for the fibroblast and ECM density. The sequence of the processes is also clearly vis-
ible in Fig. 11. It can also be seen that the model allows the partly overlapping of the
consecutive processes. We remark that the amount of overlapping is sensitive to the
choice of the parameters. Since the healing kinetics of the epidermis largely depend
on the oxygen tension, it can be seen that the epidermis heals quite quickly as soon as
the oxygen tension is large enough. Further, the small value of the mobility coefficient
of epidermal cells results into a sudden increase of the epidermal density. Further, in
Fig. 11, it can be seen that the normalized capillary concentration exceeds unity for a
while, and that it converges to its equilibrium as t → ∞. The overshoot would never
have been obtained if φ(c) = 1∀c ∈ R. This agrees with the experimentally observed
phenomenon of an increased capillary density at the wound edge.

5 Discussion

The current paper describes the mathematical relations and coupling of the processes
of wound contraction, dermal regeneration, angiogenesis and wound closure, which all
take place during wound healing. The first two mentioned processes take place within
the dermis, whereas wound closure evolves in the epidermis. The actual layers were
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incorporated in the model by decomposition of the domain of computation. For each
of these phenomena, we took some relatively simple models in the current paper, since
we aim at a qualitative description of cutaneous wound healing. The present paper is
the mathematical modeling counter part of Vermolen and Javierre (2010), in which
the lastmentioned paper is extended with a feedback mechanism from angiogenesis
(by the local oxygen content) to dermal regeneration.

From the plots in Figs. 9 and 10, it can be seen that re-epithelialization progresses
different at the early and later stages of wound closure. At the early stages, see Fig. 9
a, b, wound closure evolves by keratinocyte migration from the undamaged part of
the epidermis into the wounded portion of the epidermis, whereas at the later stages,
the keratinocytes seem to move in a more layered fashion from the basal membrane,
between the epidermis and dermis, directed to the top surface of the epidermis. Note
that the plots in Fig. 9c, d have been rotated. This is conforming to what happens
in clinical experiments: the first mechanism of healing of the epidermis by climbing
of the keratinocytes over each other, and the second mechanism by a construction of
adjacent layers parallel to the skin surface (stratification). Our results are confirmed
by the experimental studies due to Paddock et al. (2003), Laplante et al. (2001) and
Escámez et al. (2004). To give a possible explanation for this phenomenon, we plot
the oxygen profile in the epidermis at consecutive times in Fig. 12. It can be seen
that the oxygen level decreases in the direction parallel to the basal membrane and
hardly changes in the perpendicular direction during the initial stages. However, in
the later stages, the change over the direction perpendicular to the basal membrane
becomes significant. Comparing with Fig. 10, it is easily observed that the epidermal
cell concentration exhibits a similar trend. From our computations, it follows that the
epidermal healing evolution is determined by the evolution of the oxygen and nutrients
level in the epidermis. Since, the behavior is right from a qualitative point of view,
the hypothesis that oxygen and nutrients play an important role in this way, makes
sense. At time proceeds, the normalized epidermal cell density converges to unity at
all locations in the epidermis. In clinical studies, also an increase of the density of
keratinocytes is reported near the moving wound edge. In the current simulations, a
very small increase was observed at the early stages. However, as time proceeds, this
elevation became smaller. We observed that a change in the oxygen dependence could
increase the elevation. Since, we do not model the exact magnitude of this elevation,
we did not focus much on this issue. We realize that the present study is only a first
attempt to combine several processes in wound healing and to link chemistry, biology
and mechanics. To get some feeling of the potential of our formalism, we performed a
run with some increased hypothetic values for the cell traction τ = 0.5×102 dyne/cell
and smaller tethering parameter s = 104 dyne s/cm3 to produce Fig. 13, where we
show the displacement of mesh nodes near the wound. The figure shows that the upper
part of the dermis bulges as it gets swollen as a result of the inflammation. A contrac-
tion and retraction behavior was also observed in the one-dimensional simulation of
Murray (2004) and in experimental observations that were described there as well. At
lower parts in the dermis, the nodes are contracted, which is not clearly visible.

The current model is based on the continuum hypothesis and hence is based on
the formulation and solution of PDEs. Despite the random nature of many biological
processes, stochastic effects were not incorporated in the present modeling. Every
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Fig. 12 The oxygen level at 5, 10, 20 and 40 days in the epidermis. The figures show the temporal evolution

Fig. 13 The position of the
mesh points where the initial
domain was a rectangle of 1 ×
1.2 including both the dermis
and epidermis. This shows the
swelling of the tissue near the
dermal gap at 3.25 days as a
result of the forces exerted by
the fibroblasts. Note that the cell
traction coefficient and tethering
coefficients have been
unrealistic hypothetic values
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process is assumed to proceed in an ergodic way, and hence only averaged quantities
are determined. In future studies, we want to use stochastic finite-elements to solve
the model stochastic PDEs. In this way, the uncertainty of many biological parame-
ters can be incorporated and predictions will be made in terms of the evaluation of a
probability that a wound heals within a certain timeframe or to evaluate the likelihood
that contraction takes place up to certain measure. This latter analysis may be useful
for the treatment of burns, where the extent of scar tissue should be minimized for
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aesthetic purposes. Despite the interesting picture that the current model gives for the
rates, sequence and mutual influence of the various subprocesses taking place during
wound healing, still much work remains to be done. For instance, the increase of the
capillaries near the wound edge, is modeled in a more natural way by Gaffney et al.
(2002), then in the present paper. However, Gaffney et al. (2002) do not incorporate
the important initiation of angiogenesis as a result of a depletion of oxygen. A com-
bination of the studies of Gaffney et al. (2002) and Maggelakis (2003), is a topic of
future study.

The development of the dermoepidermal junction, which anchors the epidermis
on the dermis, has been assumed to be instantaneous. A more thorough understand-
ing of this process is necessary before a mathematical model for this process can be
constructed. Some clinicians also argue that the epidermal cells need a good dermoepi-
dermal junction (basal membrane) in order to migrate towards the epidermal wound
center. This issue will be studied in collaboration with physicians, since this mechanism
could be crucially important. Another issue concerns the communication between the
dermis and epidermis. At this moment we assume that only oxygen is responsible for
triggering the healing of the epidermis. From discussions with physicians, we know
that fibroblasts secrete signaling chemicals that are received by the keratinocytes,
thereby triggering healing of the epidermis. This issue will be explored in future and
this issue could give a clue in the development of the dermoepidermal junction.

In Murray (2004) and Sherratt and Murray (1991), a qualitative agreement of the
model for epidermal regeneration with experiments on rabbit’s ears is reported. This
model for wound closure is used in the current study. A more complete picture than in
the current manuscript for wound contraction or dermal regeneration is presented in
Olsen et al. (1995) and Javierre et al. (2009a). In these aforementioned studies, the cell
differentiation to myofibroblasts is incorporated, as well as its programmed cell death
(apoptosis). The contractile forces that are exerted by the myofibroblast, acting like
weak muscle cells, are larger than the forces exerted by the fibroblasts. This differen-
tiation process has been disregarded in the present study, and myofibroblasts are just
modeled as fibroblasts here. This was done because we wanted just to take the simplest
models that incorporate most of the right biological features in the present study to
simulate the coupling of various subprocesses taking place during cutaneous wound
healing. We are also aware of the gap in knowledge about parameter values. These
simplest models do not predict an increase of the capillaries near the wound edge, as
is observed in experimental studies. Furthermore, one should realize that Sherratt’s
model (Sherratt and Murray 1991) was formulated as a model for epidermal wound
closure, where the dermis and basal membrane were assumed to be undamaged. Their
aim was to carry out a mathematical analysis in terms of traveling wave solutions. In
the future, we tend to co-operate with physicians more in order to shed light on these
issues.

In order to bridge between the several partial processes, we plan to carry out a
further regression analysis, as well as a further parameter sensitivity analysis based
on clinical experiments. A project proposal is being written to collaborate more inten-
sively with physicians in this framework. The current state-of-the-art of our research
did not yet incorporate actual and quantitative model validation.
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6 Conclusions

The PDEs behind a mathematical model for cutaneous wound healing have been pre-
sented. An innovation in this paper is the coupling between the wound contraction,
angiogenesis and wound closure, which overlap partly. The healing time of a wound
is sensitive to the kinetics of various processes occurring in angiogenesis. However,
the kinetics of angiogenesis give a shift of the healing curve, and hence provides
an increase of the waiting time before actual healing starts. The model deals with
mechanical influences as well, which are of importance when dealing with deeper
wounds. Here, the visco-elastic equations have been used. Incorporation of these mod-
els, reveals the time response of the sequential processes. The profiles of the capillaries
and keratinocytes show the right qualitative behavior in terms of a local increased value
at the leading edge. Further, the processes of stratification and climbing over each other
by the keratinocytes are reproduced in the simulations of the current paper. Last, but not
least, a thorough experimental validation remains crucially important and, therefore,
to be incorporated in future studies.
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