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Energy-free Systems

Theory, conception, and design of
statically balanced spring mechanisms

Just Herder

Just as he was placing his camera in position, the
sand at his feet began to move with a rustle. He drew
his foot back, shuddering, but the flow of the sand did
not stop for some time. What a delicate, dangerous
balance!

Kobo Abe, 1924
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Preface

Es gibt Menschen, die immer nur wissen werden, was sein kénnte,
wéhrend die andren wie Detektive wissen, was ist. Die etwas
Bewegliches bergen, wo die andren fest sind. Eine Ahnung von
Andersseinkénnen. Ein richtungsioses Gefiihl ohne Neigung und
Abneigung zwischen den Erhebungen und Gewohnheiten der Welt.
Ein Heimweh, aber ohne Heimat. Das macht alles moglich!

There are people, who will always only know, what ‘could be', whereas
the others know, like detectives, what ‘is'. Who incorporate something
agile, while the others are rigid. A notion of the different. An aimless
feeling without preference or aversion between the world’s elevations
and the ordinary. A homesickness, but without a home. That makes
everything possible!

Robert Musil, 1921

During numerous discussions with my supervisor Prof. ir Jan C. Cool, one thing
became readily clear: there are always other possibilities. This holds true for the
solutions to a particular problem, but, perhaps more importantly, also for the
perspectives to regard this problem. For instance, in the analysis of the spring
butterfly (figure 4.23), the approaches seemed innumerable. There we sat again
around the low table in his office, on the edge of our seats, alternately surprised
about yet another view to the same problem. A different force resolution yielded
new insight, expressing moment-of-force in terms of area provided additional
proof, a kinematic principle opened opportunities, geometry revealed another
regularity prompting us to remark that had the Ancient Greeks known the
helical spring and Newton's force, this thesis might have been written some
twenty-two centuries ago. This process continued even when finding alternate
perspectives seemed to have become something of a goal in itself. The
conventional wells running dry, our paths drifted away, in a natural manner, into
the unexplored; daydreaming about the yet non-existent rather than the
application of established science and knowledge, exploring conceivable
possibilities rather than sticking to reality. Sometimes even excursions into the
impossible were useful to arrive at alternate solutions. This provided the
breeding ground for the ideas and the objectives for the theoretical treatise in
chapter three. Our goals inspired by the above process, a solid foundation was
developed from well-accepted mechanics.

Perhaps rebelling against the conventions, but certainly with the conviction

that it would yield simpler and lighter results, Jan advocated with passion, and




continues to do so, the essence of forces in mechanisms, and a force perspective
in the design process. It takes time and effort to depart from education and habit
dominated by a kinematic view, and to get a grip on its complementary part of
mechanics. It was during the discussions at the low table, this time leaning back
in the comfortable chairs, that this new ground was slowly developed. Again,
the challenge was to break into the capacity of thinking anything that could be,
and to value that what is, not more important than that what is not, a capacity
Musil (1930) called Mdglichkeitssinn (sense of the possible). His views on art:
"Das Prinzip der Kunst ist unaufhorliche Variation", and on 'Mengch sein'
(being human): "Die Aufgabe ist: immer neue Ldsungen, Zusammenhinge,
Konstellationen, Variablen zu entdecken, Prototypen von Geschehensabldufen
hinzustellen, lockende Vorbilder, wie man Mensch sein kann", are readily
paraphrased towards a design paradigm: 'The principle of design is ceaseless
variation; the task is to discover ever new solutions, relations, arrangements,
variables, to pursue prototypical lines of thought, to find attractive examples,
about how a design could be made'. Sometimes, after a fortunate change of
perspectives, the result came almost as a surprise. Rephrasing the question of
eliminating the pivot in the basic equilibrator as: how to exchange the inbt
Jforce by a spring force, led to a solution (figure 5.13) within a week. The force
directed design approach may be slightly overemphasized in this thesis, but this
is justified by its simultaneous promise and underdevelopment to date. -

I enjoyed the opportunity to learn regarding a problem from different
perspectives while at the same time being receptive for the unexpected:“Of
course, now that some of the ideas have been put to paper, reality is gained and
(day)dream is lost (Man hat Wirklichkeit gewonnen und Traum verloren; Musil,
1930). The sheets of this thesis reflect mainly results, rather than the mental
excursions behind them, yet it is hoped they will stimulate similar undertakings
on the verge of the known and the unknown, the possible and the impossible,
the real and the surreal. This thesis aims at taking mechanical design a step
further, perhaps a small one, certainly not the only one possible, but on
reclaimed land.

Und der Detektivmensch hat sein Gesicht an seinen Fahrten und
braucht es nicht aufwérts zu heben. Aber Ich? Und du? Einer ist ein
Narr, zwei eine neue Menschheit!

And the detective-person has his eye on his tracks and need not raise
his look. But 1? And you? One is a fool, two a new humankind!

Robert Musil, 1921




Reader’s Guide

Although this thesis is primarily aimed at the design of statically balanced
spring mechanisms and presents a framework for their conception, a theoretical
treatise of statically balanced systems was developed in the course of this work.
To obtain a logical order, the theoretical part is placed in the early chapters.
However, the chapters are reasonably self-contained, so those readers who are
initially more interested in the conceptional design may wish to omit chapter 3
and section 4.6 on first reading and can do so without reducing their enjoyment
of the rest. Other readers may wish to read the chapters in the presented order.
Anyhow, one will find that the earlier chapters provide the groundwork for
chapter five, where most of the design takes place. Gravity equilibrators, spring
force balancers, with or without fixed pivots, few or many degrees of freedom,
as well as some remarkable geometric propositions will be derived in the course
of this report.

The work presented in this thesis is to be attributed to the author, unless
otherwise indicated. Work of others and contributions by others to this work
have been referenced as conscientiously as possible. For instance, many of the
working models have been detailed and manufactured by others, among them
many students, while the working principle was conceived by the author. In
these cases, the explanation of the working principle contains no references,
while the desciption of the working model is referenced. Without any
degradation of either's efforts, the cooperation in many of the graduation
projects was such that the result can safely be called a co-production. In these
cases, references to both the MSc-thesis and the scientific paper are included.
To compromise the readability of the text no more than necessary, most
references are included in endnotes at the end of this thesis, referred to by
numbers between square brackets. For example, [3.2] would refer to endnote two
of chapter three, to be found at the end of this volume, in this case page 197.
Generally, endnotes provide background, detailed additional information, and
justification, which is not essential for the continuation of reading.

All examples are depicted schematically and with exaggerated dimensions.
To reduce the number of symbols in a sequence of drawings within one figure,
the symbols of unchanged parameters are often omitted. Normal springs are

mostly drawn as a zigzag line with circular loops at the ends of the spring. The
special zero-free-length springs are drawn without spring loops to easily
distinguish them from normal springs.




Each chapter is concluded with a short summary, highlighting the line of
argument and the results of each chapter. Some of the individual chapters,
especially chapters three and six, contain unanswered questions or issues not
exhaustively treated, providing great scope for further work. Chapter seven will
tie these leads together, highlight the relations between the chapters, and
evaluate the design appoach used in this thesis.
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Nomenclature

distance from a grounded pivot to a grounded spring attachment point
a; postion vector of a grounded spring attachment point relative to a fixed
reference frame
. position vector of a grounded spring attachment point relative to a local
reference frame
fixed spring attachment point
matrix used to effect the planar form of vector multiplication
translation vector, translational dilatation
pivot point, origin of local reference frame
wire diameter of helical spring
diameter of circle, coil diameter of helical spring
unit vector
magnitude of force
force vector
accelleration of gravity
elevation over reference plane or datum
index, counter
mass moment of inertia with respect to point C
identity matrix of rank i
counter
spring stiffness
constant, amplitude of sine function
actual length of spring
actual length vector
free length of spring
initial length of spring
mass
mass matrix
number, total number
origin of fixed reference frame
fraction, spatial target trajectory of potential field
target trajectory in ground plane
point, pole
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point, coupler point

Xiii



r link length, distance from pivot to spring attachment point on the link

r; postion vector of a moving spring attachment point relative to a fixed
reference frame
r,;. postion vector of a moving spring attachment point relative to a local

reference frame

radius

orthogonal rotation matrix

tangent stiffness matrix

intersection of force action lines

skew coordinate

skew coordinate

potential, potential energy

work

orthogonal coordinate (abscissa)

orthogonal coordinate (ordinate)

orthogonal coordinate, vertical deflection

fixed angle, rotational dilatation, inclination angle
fixed angle, rotational dilatation

angle between lines of action of forces, phase angle of sine function
variable angle

ratio of force magnitudes

translational dilatation factor, magnification factor
polode )

variable imaginary link length

summation from i=1 to n

variable angle

variable angle

variable angle
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1 Introduction

in which the aim of this study is stated, the design approach is introduced. the
principle of static balance is elucidated, the importance of a force directed design
approach is emphasized, limitations are indicated, and the structure of this thesis is
outlined.

11 Motivation and objective

There is a delicate three-way balance between (i) a problem and its
very nature, (ii} the inescapable principles that govern the problem and
(iii) the method used to obtain a solution. So often we take the nature
of the problem for granted and place it in too broad a category; then
we uncritically accept some favourite method because some authority
persuades us that it is foolproof and universal, so we can hop on a
band-wagon named ‘routine”, and we are spared the task of
examining the relevant principles, even when they turn out to be
extraordinary simple.

K. H. Hunt, 1986

A great number of mechanical devices use their energy inefficiently. This not
only results in excessive energy consumption, but also in other undesired
aspects of system behavior. For instance, an anthropomorphic robot arm with
actuators at each joint will spend most of its energy on carrying its own
weight [1.1). Furthermore, heavy actuators are required, presenting an additional
load to the arm, and challenging the safety of the system.

Great improvements in system behavior are possible when the energy flows
and the configurations of forces are considered more carefully. It is unfortunate
that the power systems in the appliances and machines around us are so
common that their use is unquestioned, even though very often much more
subtle and elegant solutions are possible. This thesis will investigate
opportunities to conserve energy in mechanical systems, not only aiming at a
reduction of energy consumption but also at the improvement of other aspects
of system behavior, such as the force transmission quality, and the reduction of
overall weight.

The study is motivated by the special demands imposed on assistive devices
in rehabilitation technology, where decreased mechanical efficiency not only
raises energy consumption, but also reduces the transmission of forces for the
benefit of force feedback. An example from hand prosthesis design may
elucidate the fact that rehabilitation aids often need unconventional solutions to
make them operable. Hand prostheses (as all assistive devices, and indeed all
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tools) should interact with their user in a natural way. To achieve this goal, they
should simultaneously have good cosmetics, high wearing comfort and be easy
to operate [1.2]. Ease of operation implies that they should function well (i.e.
silent, fast, and with reliable motoric function), with low operating effort (in
terms of energy, force, and excursion, but also in terms of mental load), and
with good force feedback. The prevailing design solution for motoric function,
an electric power system, is not satisfactory, firstly due to the weight of the
motors, transmissions, and the battery, which conflicts with the demand for high
wearing comfort, and secondly because feedback of the pinch force is absent,
which complicates intuitive control. For these reasons, body powered prostheses
are preferable, where healthy muscle groups operate the prosthesis and provide
feedback [1.3).

Selecting a good principle, though essential, is not sufficient. Care must be
taken that the forces are transferred from the prosthetic fingers via a
transmission mechanism to the operating interface without distortion and that
the operating effort remains within reason. Therefore, friction is to be avoided.
Again, a conventional solution, i.e. the application of ball bearings to reduce

friction, is undesirable in hand prosthetics, due to their weight and the limited

space available, and secondly because playing with water and sand, among the
favorite activities of many children, is disastrous for even sealed ball bearings.
In addition to avoiding friction, the (visco-) elastic counteraction of the
cosmetic covering should be eliminated [1.4). This undesired spring force both
raises energy consumption and reduces the force feedback because a component
is added to the operating force, which has no relation with the pinch force.
Unlike friction, the glove force is predominantly a conservative force and can
therefore in principle be compensated (similar to the static balancing of
undesired mass by means of a counterweight).

Although inspired by design in the field of rehabilitation technology, it will
become clear that there is great application potential in general mechanical
engineering for the approach assumed in this thesis, since systems with reduced
energy consumption and pure transmission of forces will generally perform
better, while control is simplified, accuracy is improved, manufacturing cost is
cut, weight is reduced, and safety is easier guaranteed. It is expected that each of
these features will rapidly gain importance not only due to natural resources
running out, globalization and increasing competition, but also due to the
growing attention for the user-friendliness of appliances.

In summary, the approach in this thesis follows from the desire to design
mechanical systems with exceptional energy-efficiency. To this end, the forces
are to be transferred without loss or distortion, undesired non-conservative




forces for instance due to friction should be eliminated, while undesired
conservative forces such as elastic counteraction, magnetic influences or gravity
should be compensated. Simultaneously, care must be taken that the result will
be lightweight, simple, and reliable. These and similar considerations (both
product and use-related) have led to the line of thought assumed throughout this
thesis. The next section will outline the main guiding principles of the proposed
design approach.

1.2 Design approach

Quale é stato il principio fondamentale di tutte le mie realizzazioni? Si
spiega con una sola parola: -Semplicita- portata al'estremo possibile.

What is the fundamental principle of all my creations? That comes
down to a single motto: -Simplicity- pushed to the farthest extremes.

Fabio Taglioni, In: Cathcart 1983

This section will present the main principles guiding the design in this thesis:
the principle of statically balanced mechanisms incorporating springs will be
introduced; the concept of force directed design will be outlined; and it will be
argued that rather than one method, the alternation between the different
perspectives of energy, force, and stability, and between general and particular
approaches is vital to arrive at good designs.

Statically balanced systems

Particularly suited to serve the objectives of this thesis are statically balanced
mechanisms [1.5,1.6]. A statically balanced system is a system in static
equilibrium throughout its range of motion, rather than in a single position or a
limited number of positions only, under the condition of the absence of friction.
Different kinds of statically balanced systems can be distinguished (see chapter
two). This thesis will prefer the use of springs to other energy storage devices,
as these seem most appropriate to arrive at lightweight and low-friction
solutions. Even though helical extension springs may lack safety in case of coil
breakage, they are preferred to compression springs for their less cumbersome
mounting, and because of the low-friction rolling contact on the inside of the
spring loop when arranged properly [1.14].

Statically balanced systems can be investigated from three different
perspectives. The continuous equilibrium as mentioned in the definitions is a
first one. Secondly, the continuous equilibrium results in constant total
potential energy as the system moves. Consequently, quasistatic (or
kinetostatic) motion requires no operating effort, even though the system



behavior is dominated by forces and energy flows. Thirdly, it is noted that
although not unstable, a statically balanced system cannot be considered stable
either, as it has no preferred position. It is just in between stable and unstable, a
state also called neutral equilibrium or neutral stability. These three features
(continuous equilibrium, constant potential, and neutral stability), are equivalent
in that they comply with the same principles of mechanics, yet provide different
valuable perspectives, which will all be used in this thesis.

In reality, quasistatic motion and friction-free mechanisms can only be
approximated. Therefore, even systems with perfectly constant potential energy
will require operating effort for acceleration and deceleration, and for
overcoming the resistance due to friction or viscosity. When friction is present,
the existence of many equilibrium positions does not necessarily imply a
constant potential energy function. When the aim of a design is to attain many
equilibrium positions, such as in cheap desk lamps, friction can be very useful.
This thesis, however, will be devoted to those applications such as in
rehabilitation technology, where friction is to be avoided since low operating
effort and pure force transmission are principal issues. To emphasize this main
interest, the term energy-free system is introduced, indicating the idealized
situation of friction-free mechanical systems with perfectly constant potential
energy. However, the terms statically balanced, indifferent, neutral equilibrium,
and energy-free are used indiscriminately throughout this thesis denoting the
same kind of idealized system behavior: systems with constant potential energy,

considered in quasistatic motion, without friction or other energy dissipating - -

phenomena.

Force directed design
Another prominent notion will be the consideration of forces early in the
conceptional design phase. Classically, in the design of mechanisms, desired
motion characteristics are specified first. Then a topology of the mechanism is
selected (e.g. a four-bar linkage or a cam) and the dimensions of the elements
are determined by kinematic synthesis or optimization techniques [1.7]. Finally,
actuators are added to effect the desired motion under loaded conditions. The
distribution of internal forces is calculated only to avoid overloading or
excessive deformations. As desired motion is taken as point of departure, this
approach can be called motion directed design. In substantial parts of the
mechanical design practice, this approach is undisputed.

In rehabilitation technology, or more generally in application fields where
humans interact with machines, it is virtually inevitable to consider the forces in
an early phase of the design. Precise motions are often of less concern than




matters like stability, low force levels, force distribution, force transmission and
force feedback. Matching the characteristics of human and machine requires a
comprehensive approach in which forces play an essential role. Furthermore,
weight and energy-efficiency, especially in rehabilitation aids, are of primary
concern. Since in classical mechanism design the matter of adding actuators is
often implicitly considered trivial (required torques are calculated and suitable
actuators are selected after the design of the motion mechanism) this is not
likely to result in the most lightweight and energy-efficient design. For these
reasons, it is more natural to start the design with the specification of profitable
configurations of forces or desired force transmission characteristics. This
approach, taking profitable configurations of forces as the point of departure, is
called force directed design [1.8]. Several projects in the medical field have
demonstrated the usefulness of the force directed design approach [1.9].
However, it is evident that force directed design has wider application potential
and yields similar advantages outside rehabilitation technology, as will be
illustrated by a number of examples in the following chapters.

Force directed design is not and is not intended to be a method in the sense
of a recipe that needs only to be followed to end up with a solution. It is a way
of thinking which by no means aims to exclude the designer’s creativity from
the design process. On the contrary, it requires the ability of assuming an
unusual perspective, which in turn tends to enhance the generation of alternative
solutions, and often favors simplicity and efficiency of the resulting products.
The usual tendency to neglect friction is substantially reduced, and undesired
forces are less likely taken for granted. Instead, it becomes obvious to introduce
forces in the design, for instance to oppose these undesired forces, or to perform
certain tasks such as providing a contact force or eliminating backlash.

Not a general method

The third guiding principle adopted in this thesis is nof to strive for a general
design method. Essentially, one may argue, the design of statically balanced
mechanisms comes down to matching the energy characteristics of the potential
energy storage devices involved. Indeed, calculating the energy transfer function
required to match these characteristics usually is fairly straightforward, but this
is not at all true for deriving a mechanism fulfilling this required transfer
function. Methods generating a mechanism from given specifications tend to
come up with complex linkages incorporating many links or cams, usually
unsuitable for the application in rehabilitation aids [1.10]. This approach may be
characterized as top-down: finding particular solutions from a general theory.



Tempting as it may be, this approach as a design perspective is disregarded here
in favor of the opposite approach.

This thesis will start with the derivation of very elementary particular
arrangements of statically balanced systems and investigate their behavior at a
fundamental level. To this end, a specific branch of mechanics will be
investigated closely. The approach in this analytical phase may be regarded top-
down, but one should bear in mind that the aim of this phase is to gain insight in
the nature of energy-free systems. Subsequently, the path of design is treaded,
where a bottom-up approach will be employed. In this synthetical phase, a
number of logical rules are derived to modify, simplify or expand the original
elementary configuration, for instance to be able to match other potential energy
characteristics. Thus, the family of working designs is expanded. This approach
may be characterized as bottom-up, generalizing from particular solutions. It is
argued that the bottom-up way of working yields more basic insight, and results
in much simpler designs. Primarily based on a potential energy perspective, a
framework for the design of energy-free systems is put up. However, following
the conception in this manner, a force analysis will prove to be essential for the
design, and in many cases lead to more profitable embodiments. Thus, the
conceptional designs come to being by alternating synthesis and analysis efforts,
potential energy and force perspectives.

As argued previously, the approach assumed in this thesis is not intended as
a method in the sense of a recipe but merely as a line of thought. The insight in
the coherence of the elements of a particular solution, or of a composition of
particular solutions, is used to modify, expand or simplify a certain
configuration. In this thesis, energy, force and stability perspectives will
alternate continuously. In fact, this is part of the creative aspect of the design
approach proposed. Consequently, there are no recipe-rules for this, but many
examples are provided to illustrate possible procedures.

Limitations

This section will elaborate on a number of restrictions imposed on this thesis.
The issues of static balancing, linear extension springs, low friction solutions,
and simplicity will be addressed successively.

Static balancing should be well distinguished from dynamic balancing or
(shaking) force balancing, where the aim is to eliminate the reaction forces and
torques transmitted to the frame of a machine due to the motion of a constituent
mechanism [1.11). This kind of dynamic balancing indeed implies static
balancing. However, if dynamic balance is not required, static balancing alone
allows much more profitable engineering solutions. For instance, shaking force




balancing generally requires the addition of counterweights or at least the
redistribution of system weight, whereas static balance can be achieved by the
use of springs, which results in a more lightweight and compact system. It is
also immediately admitted that there are many phenomena and applications in
the dynamic domain that could benefit from the design for constant energy, such
as the design of oscillating systems [1.12]. Although the term energy-free is not
restricted to static systems, its dynamic equivalent will not be considered.

It is also readily acknowledged that statically balanced spring mechanisms
may very well be realized by using other than helical extension springs. Several
applications of torsion springs are known to give good results[1.6].
Furthermore, an ocean of opportunities for spring force compensation is waiting
to be explored in the rapidly developing field of compliant mechanisms [1.13].
Many of these mechanisms are begging to be balanced. In principle, any
element with potential energy storage capacity can be used to realize statically
balanced systems. However, it is felt that one step should be taken at a time.
The complexity of compliant mechanism design, for instance, might otherwise
throw a veil over the clear principle of static balancing. This thesis is therefore
constrained to linear springs, as these provide the simplest working principles.

Due to the nature of neutral equilibrium, the focus of attention will be on
conservative forces, such as eclastic and gravitational forces, but non-
conservative forces will not be neglected. Especially Coulomb friction is
consistently taken into account. Low friction is essential for the proper
functioning of energy-free systems. For instance, a passive spring force
compensation system which eliminates one undesired influence (the parasitic
spring force) while introducing another (friction) is not of much use. The
practical consequences of this obvious statement are easily underestimated, yet
it is probably one of the main reasons for the scarse application of even the
simplest gravity equilibrators [1.15]. Whenever hinges are indispensable, the
application of low-friction rolling-link mechanisms will be considered (1.14].
The application of rolling links in balanced spring mechanisms is particularly
fruitful as the forces present can be used to secure the contact between the
members of the rolling mechanism.

For a variety of reasons, such as reliability, low friction, low weight and low
cost, balanced spring mechanism should be simple, especially the compensation
type [1.10]. When it is assumed that the task of an engineer consists of creating a
concept, determining optimal forms for the parts, and selecting appropriate
materials and associated production techniques [1.16], the term simplicity can be
used as a subjective measure incorporating the number of parts and their
practical embodiment, the complexity of the parts' shapes, the manufacturing



difficulty, and the exoticness of the materials used. A four-bar linkage, for
instance, simple as it may seem in a diagram, should already be considered too
complex for the application in a hand prosthesis: in practice it incorporates a
multiple of four parts, while the bearings with fork-shaped supports require
more space and material than is desirable, and lead to unfavorable force
transmission paths (see also endnote [1.14]). In the case of balanced systems, the
simplicity of the design (in terms of number, complexity and material of the
parts) will have to be weighed against the balancing accuracy (in terms of
theoretical transfer function as well as deviation due to friction) and the
reliability (in terms of wear and risk of breakdown). Sometimes a simple but
approximate balancing mechanism is preferable to a complex one with closer to
perfect balance. This is not always a regrettable compromise, as sometimes
function or control benefits from non-perfect balance, see for instance the
Wilmer arm orthosis described in the next chapter (figure 2.6). As another
example, in balancing the hood of a car, the spring mechanism is usually
designed such that it approximately counterbalances the weight of the hood in
the middle range of its motion. When the hood is up, the spring
overcounterbalances, and when the hood is down the spring
undercounterbalances [1.17]. Thus, although this study concentrates on perfect or
optimal balancing, it should be kept in mind that this might be too much of a
good thing in many cases. Yet, it seems a good idea to start with the design of a
perfect balancer and deviate from this as desired.

1.3 Qutline

It was as though the world no longer contained anything certain. There
were only unstable elements; everything had been cut free, was
floating.

Paul Bowles, 1967, p131

Although design was the principal goal of this thesis, ideas of a more general
nature emerged in the course of the project, which eventually led to a theory on
equivalent forces. This theory has developed simultaneously with the
conception of particular designs, or even lagged behind. However, the sequence
of subjects in this thesis will be logical, rather than chronological.

Chapter two will start with an overview of some interesting examples of
energy-free systems from literature. This overview does not claim completeness
but aims to demonstrate the often-unexpected phenomena which can be realized
using the concept of static balance. Subsequently, chapter three will treat static




balance as a special state of motion, investigate the fundamental principles
governing static balance, and derive a particular solution of an energy-free
system. Chapter four will review this particular solution and use it as the basis
for a framework of design rules. The framework will be put to use in chapter
five, which will present a variety of perfectly balanced spring mechanisms.
Chapter six will be devoted to situations where approximate static balance is
obtained. Finally, chapter seven will summarize the findings of this thesis.

1.4 Summary

The present thesis is primarily concerned with the design of statically balanced
systems, briefly defined as friction-free mechanical systems with perfectly
constant potential energy. These systems are in static equilibrium throughout
their range of motion and can therefore be operated quasistatically without
operating effort. For this reason, they will be called energy-free systems.

The study is motivated by the special demands made on assistive devices in
rehabilitation technology. The design approach in this thesis stems from the
desire to design mechanical systems with high energy-efficiency and good
force-transmission quality, and is characterized by several principles. One basic
consideration to obtain simple designs adopted in this thesis is not to strive for a
general design method. Fundamental understanding often is facilitated and
inspired by the close inspection of particular solutions or working prototypes.
This thesis will therefore start with the derivation of a very elementary
particular arrangement of a statically balanced system and investigate neutral
equilibrium at a fundamental level. Subsequently, a number of logical rules are
derived to modify, simplify or expand the original arrangement. Another
consideration is that in rehabilitation technology, or more generally, in
application fields where humans interact with machines, or in fact, mechanical
engineering in general, it is worthwhile to consider force directed design.
Matching the characteristics of human and machine requires a comprehensive
approach in which forces play a key role. It is a way of thinking which by no
means aims to exclude the designer’s creativity from the design process.

Based on the notions mentioned above, energy-free systems incorporating
helical springs will be concerned, aiming at simple low-friction mechanisms
with perfect or near perfect static balance. The fundamental principles will be
investigated, a framework for the conceptional design will be put up, and
perfect as well as approximate energy-free systems will be designed.
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2 Balancers

in which known examples of staticallv balanced systems are given, ranging from
ancient gravity equilibrators, via magnetic force balancers, to the spring force
compensators which are the main subject of this thesis, while at the end a listing of
principal features is provided.

2.1 Introduction

| play with arrangements of weight and distance that lie on the brink of
instability to achieve slow, lyrical motions; a one-way swing in one of
my sculptures takes 20 seconds or longer. Such arrangements
possess another noteworthy attribute: when the distribution of weight
approaches instability, the forces needed to set the pendulum in
motion diminish to almost nothing. A breeze that softly stirs leaves can
also move a sculpture weighing 500 kilograms. Control of weight and
balance - and also of time - gives me a means of expression
comparable to color for a painter or sound for a composer.

George Rickey, 1993

counterweight
for piece 1

piece 1

_ counterweight for
" pieces 1+2+3

counterweight
for pieces 1+2

(a) (b

Figure 2.1  George Rickey’s Breaking Column incorporates three counterbalanced pieces
that trace out conical motions. An almost exactly even distribution of weight allows them to
respond to the slightest wafts of air, tracing slow, unpredictable but expressive
convolutions [2.1): (a) three respective positions of the Breaking Column, (b) schematic
representation of the working principle.

The continuous equilibrium of energy-free systems has induced many
applications. Once part of our daily life, statically balanced systems are hardly
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noticed, since they make many appliances function as they should. Almost
without notice we adjust our desk lamps or open the hood of an automobile.
Newly confronted with them however, many are surprised and fascinated by
their working principle. Stunned by the Kinetic Art of George Rickey
(figure 2.1, see also section 2.2 and [2.1]), for instance, many spectators wonder
where the motors are hidden. Yet, the gentle movement of all of these
mechanisms is based on the redistribution of potential energy within the system,
because of which only little external energy is required (see next section). This
chapter will give some examples, not aiming at completeness, but to stir the
imagination.

Static balancers can be categorized according to the forces to be balanced
(weight, spring force, other conservative forces) and the balancing principle
(counterweight, springs and others). Section2.2 will be concerned with
balancing undesired weigth by means of counterweigths. Section 2.3 will give
examples of balancing undesired weigth by other means, such as springs, and
will also discuss static balancing of undesired forces other than weight, such as
magnetic forces. Finally, section 2.4 will concentrate on balancing undesired
spring forces by means of springs.

22  Counterweighting

Also, the linkage has the ability to support a weight from the moving
point of interest with an equal balance as the point moves along [a
straight line]. “This gives the mechanism powers of neutral
equilibrium™.

J. Daniel, cited in N. P. Chironis, 1961

There are numerous examples of statically balanced mechanisms, most of
which make use of counterweights to equilibrate undesired weight [1.5]. With
the proper counterweight, the system is in equilibrium in any position. When a
counterbalanced beam rotates non-horizontally in the gravity field, gravity
potential is exchanged between the balanced mass and the counterweight. When
the mass is lifted, the counterweight will drop, and vice versa, resulting in
constant potential energy.

One of the oldest examples reported from ancient history is the mechane.
This device was used in the classic Greek theater to bring, as by miracle, the
gods or the heroes of the tragedy on stage. It has long been a mystery how the
proverbial Deus ex Machina actually worked, since the appearance of the hero
was supposed to come as a complete surprise for the audience in the
amphitheater. According to the reconstruction by Dimarogonas (figure 2.2
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Figure 2.2 Deus ex Machina. Reconstruction of the ‘mechane’ for the Athens theater of
Dionysos [2.2].

and [2.2]), the mechane most likely comprised of a beam, pivoted behind the
scene-buildings so that it was invisible until the desired moment. A single
person could operate it since it was balanced by a counterweight, and guided in
its movement by ropes. In all its simplicity, the mechane incorporates all the
features of statically balanced systems, and illustrates their merits.

In Rickey’s Kinetic Art (1993), several balanced beams are stacked on one
another. The counterweight of each beam needs to be sufficient to balance its
own weight as well as the total weight of the beam(s) it is supporting
(figure 2.1b). Smart use is made of the fact that the supporting force for each
beam is constant, regardless of the orientation of the beam, and can therefore be
considered a constant additional load to the beam underneath. As a

(a) (b

Figure 2.3 Counterweighting of a moving mass: (a) drafting machine (2.3), where link mass
is neglected, (b) spatial balance [2.4].
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Figure 2.4  Prismatic bodies with specially shaped cross-sections exhibit neutral-equilibrium
behavior when floating in a fluid. For the cylinder (or ball), the density of the fluid may have
any value, for the other shapes, the fluid density must be twice the density of the floating
body [2.5].

consequence, the successive beams from top to base must be increasingly
heavy, yet all pieces are shaped with similar outward appearance to delude the
spectator.

A well-known balancing mechanism is present in classic drafting machines,
where the planar movement of the mass of the rules and their rotating and
guiding mechanism is completely balanced by a single counterweight
(figure 2.3a, [2.3]). The same principle is applied in other embodiments, such as
the spatial balance in figure 2.3b, designed for use as a mobile arm support for
people with reduced muscular ability [2.4]. Here, the parallelogram linkage is
materialized in a spatial form. In both cases, the working principle is based on
the kinematic action of a pantograph linkage (see also chapter five and
endnote [5.8]). The moment arms of the weight forces, though variable, keep a
constant ratio. Therefore, equilibrium is maintained throughout its range of
motion.

7
SR

s

(@ ()

Figure 2.5 Internally-balanced magnet: (a) basic structure, (b) force-displacement
relationship of the multi-stage spring unit compared to the magnet’s characteristic [2.6).
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(a) (b) (©

Figure 2.6 Elbow orthosis [2.7], [5.1): (a) hardly visible when worn by a user, (b) orthosis in
locked position, (c) diagram of working principle, showing the O-ring spring.

23 Other balancing principles

A cylinder of density 0.5 having one of the above cross-sections will
float without turning over, in whichever postion it may be.

R. D. Mauldin, In: Wells, 1995

Although balancing of masses by means of counterweights is most common,
many more physical phenomena and mechanical components can, in the
appropriate arrangement, provide statically balanced systems. In these cases
energy is exchanged between various kinds of energy storage devices, rather
than between masses only. A well-known principle is the balancing of weight
by means of springs [1.6]. This section will present a number of examples
incorporating less common balancing principles.

Perhaps a special case of mass balancing is realized by floating prismatic
bodies with specially shaped cross-sections and with half the density of the
fluid they are floating in. They can be oriented arbitrarily and rotated with no
effort, despite the continuously changing pressure distribution on their surfaces,
due to their constant ‘diameter’ (figure 2.4, [2.5]).

An unusual example of static balancing is the internally-balanced magnet,
intended for robots climbing metal walls (figure 2.5, {2.6]). This design was
triggered by the desire to avoid energy-consuming clectromagnets in favor of
permanent magnets. In combination with a balancing mechanism, the strong
action of the permanent magnet can easily be switched on (or off) by moving
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Figure 2.7 Anglepoise desk lamp [2.8]: (a)
original type 1227 version, (b) historical
advertisement  emphasizing  effortless
operation.

the magnet towards (or from) the metal wall with negligible operating effort.
The apparent contradiction of strong sticking force between the foot and the
wall, and low operation force F is understood if one realizes that when the
device has been switched on, the magnet’s sticking force is transmitted from the
wall via the springs to the climbing robot’s foot. As the magnet is released
towards the wall, the plate springs are stressed. The energy stored in the springs
is recovered when the magnet is pulled back, thus assisting the operator.

An important field of application of balanced systems is present in
rehabilitation aids, where weight and low operating effort are essential features.
Based on the simple principle of balancing the forearm weight by means of a
rubber spring, a highly appreciated elbow orthosis has been developed
(figure 2.6, [2.7], [5.1]). Advantage has been taken from the phenomenon that in
the equilibration of a mass by means of a spring, the orientation of the spring
system with respect to the acceleration of gravity affects the balance. Due to a
slight underbalance and an automatic locking mechanism, the movement of the
elbow can be controlled by the shoulder: lifting the arm sideways reduces the
influence of gravity on the forearm so that the spring now overcompensates and
moves the arm until it is locked at a 90 degrees position. Lifting the arm again
releases the elbow lock and the arm can be stretched again. Noteworthy is the
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Figure 2.8 Statically balanced parallel manipulator [2.9).

fact that, because the external forces are in a single plane, the elbow joint is not
loaded by torsional moments in spite of the single-sided construction, which
both reduces weight, takes away statical indeterminacy, improves its cosmetic
appearance and wearing comfort, and facilitates putting on the device and
taking it off.

An example of the exact spring balancing of weight is the Anglepoise desk
lamp (figure 2.7, [2.8]). Under the proper conditions regarding the link geometry
and the choice of the springs (to be explained in section 5.2), this lamp can be
moved with negligible effort to any position, where it will remain, in spite of its
low friction. If the lamp, for instance, is lowered, gravity potential of the links
and the lampshade is converted into elastic energy in the springs, which is
released again when the lamp is raised. Unlike many other spring-balanced desk
lamps, this design functions almost perfectly, so much so that it tends to act as a
leveling instrument.

A similar balancing principle was applied in a six degree-of-freedom
parallel manipulator (figure 2.8, [2.9]), which was developed for use in motion
simulators. The moving platform is carried in any position by the three spring-
actuated legs using parallelogram linkages, so that the actuators only need to
accelerate and decelerate the system. As the desired accelerations are
considerable, springs were preferred to the use of counterweights.
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(a) (b

Figure 2.9  Cosmetic glove compensation: (a) prosthesis for hand and forearm, with cosmetic
glove [1.2; 1.4, (b) working principle compensation mechanism [1.6; 2.10}.

24 Spring force compensation

Why it wasn't invented sooner is a question that will never be
answered. But why and how it works can be determined from
elementary mechanics.

Arthur D. Brickman, 1976

This thesis particularly aims at the design of systems in which one spring
statically balances another, or several other springs. This kind of balancing is
called spring force compensation or spring-to-spring balancing. Although less
in number than counterweighting systems, several interesting examples of this
balancing principle exist.

To attain an inconspicuous appearance, hand prostheses are supplied with a
flexible covering, the cosmetic glove. Unfortunately, this glove counteracts the
movement of the prosthesis’ fingers so forcefully, that many children are not
able to entirely open their artificial hand (figure 2.9). The glove counteraction
consists of an elastic and a viscous component [1.4]. In principle, the elastic
component of this counteraction can be balanced by a spring mechanism. This
compensation device is to deliver the energy required to open the prosthesis
against the action of the glove, and to recover the elastic potential that is
released by the glove when the prosthesis closes again. Perfect compensation
would thus cancel the need for operating energy during free movement of the
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Figure 2.10  Elastor, serpentine flexible robot arm: (a) curved arm with gripper, (b) working
principle of the compensation mechanism [2.11].

prosthesis: the elastic influence of the glove would be fully eliminated, as if
there were no glove present. Although practical applications are impeded by the
viscoelastic properties of the glove’s material and the strongly non-linear glove
characteristics, the operating effort can be reduced significantly [2.10].

A second example of a spring-to-spring balancing arrangement is found in
the Elastor, a biologically inspired robot design (figure 2.10,[2.11]). The
Elastor is a compliant structure, consisting of a series of cight helical
compression springs, separated by metal rings. Each compression spring can be
buckled in any direction by pulling one or two of three strings attached to each
ring. Thus, by pulling the appropriate strings, the whole column can assume
almost any desired shape. Relatively small actuators (three for each segment)
with low power consumption suffice, thanks to the fact that the buckling force
of the helical compression spring is compensated. To realize this, each string is
connected to a compensatory spring via an adjustment mechanism, consisting
of an eccentrically pivoted pulley. This mechanism provides approximate
balance.

A special case of spring-to-spring balancing is present in the redistribution
of elastic tension in special construction elements. In the following examples,
elastic potential is not exchanged between distinct elements but redistributed
within a single element (figure 2.11). A loop in an otherwise stretched hose can
be moved back and forth effortlessly, regardless of the pressure inside the
hose [2.12). A similar phenomenon is applied in the Rolamite [2.13], a
configuration of two rollers and two parallel support planes, kept together by a
flexible band. The moments due to the bending of the band around the rollers
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Figure 2.11 Redistribution of elastic tension: (a) hose with a loop[2.12], (b) the
Rolamite [2.13], (c) pre-loaded knife edge pivot [2.14).

cancel out and a low-friction neutral-equilibrium mechanism remains. A similar
principle is used to obtain electrical continuity and a constant preload in a knife
edge pivot[2.14]. Also neutral equilibrium compliant mechanisms can be
regarded as spring mechanisms that redistribute elastic tension during
motion [2.15].

2.5 Features

" Although there are many advantages, the inclusion of compliance
provides several challenges in mechanism analysis and design.
Because energy is stored in the flexible members, energy is no longer
conserved between the input and output ports of the mechanism.

M.D. Murphy, A. Midha, L.L. Howell, 1996

The explorative journey above yields a listing of the distinctive features of
statically balanced systems, as presented below.

Compensation of undesired forces. A first feature is the possibility to
eliminate the influence of previously existing undesired conservative forces,
such as the weight of a robot arm, the counteraction of the cosmetic glove in
hand prostheses, or the elastic forces in compliant mechanisms [1.13]. The
undesired force is not eliminated but its effect is offset. Therefore, this feature
will be denoted by the term compensation.

Energy-free motion. Statically balanced systems can be moved in the
presence of considerable conservative forces, and yet they require no operating
force or energy. Energy exchange between the energy storage elements within
the system is perfect, so the only external energy demand is to make up for
losses, and to accelerate and decelerate the mechanism. In many mechanical
systems, such as industrial robots, the static gravity load takes up the major part
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Figure 2.12  Energy exchange between two springs in a parallel arrangement. The area with
the /// hatching represents the elastic energy present in the left spring in the drawn situation of
the springs, whereas the area with the \\\ hatching represents the energy transferred into the
previously relaxed spring in the central position. Note that in an idealized dynamic situation,
with a mass between the springs, the system will oscillate.

of the energy consumption [1.1]. Also for people with reduced muscular
capacity, assistive devices taking up the gravity forces allow them to employ
their remaining force for useful tasks, rather than carry their own weight.

Full energy exchange. To state it explicitly, balanced mechanisms make
possible the full energy exchange between several energy storage devices, with
no operating effort during quasistatic motion. This is not at all trivial. For
instance, consider two equal springs, arranged according to figure 2.12 rather
than in a neutral equilibrium configuration. When one spring, containing
energy, is quasistatically released against the other, unloaded spring, only a
quarter of the loaded spring’s elastic potential is transferred to the unloaded
spring, while half of the original elastic energy is dissipated (or transformed
into kinetic energy [1.12]).

Improved information transmission. In manually operated instruments, such
as body powered hand prostheses and surgical forceps, the elimination of
undesired forces, such as weight or undesired spring forces, not only reduces
operating effort, but also improves feedback: analogue information present in
the magnitude of the forces is transmitted without distortion through the
mechanism.

Energy-free force control. A balanced spring mechanism can be moved
without effort under the influence of a number of springs. The forces in the
fixed points of the springs can be put to use, for instance in a clamp function.
As the clamping force can be controlled without any operating effort (neither
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force nor energy), a balanced spring mechanism can provide infinite force
amplification F,,/F, = Foump ! Fopere = ©. Thus, energy-free force control is
possible when the attachment point of the force controlled is stationary (as is
the case when clamping a rigid object).

Elimination of backlash. In specific cases it is advantageous to introduce
forces to prestress a mechanism or to secure contact between parts [2.16]. In
particular, rolling-link mechanisms [1.14] can benefit from the addition of
springs in a statically balanced arrangement. Spring forces can be added in a
neutral equilibrium configuration so that they have no influence on the force
transfer function, yet keep the rollers together.

Zero stiffness. Another feature of statically balanced systems is that they
possess zero stiffness, which makes them useful in vibration isolation [2.17]. By
non-complete balancing, a system’s natural frequency can be altered, which can
be useful in the tuning of ballistic systems [2.18].

Neutral buoyancy. By using gravity equilibrators, forces due to gravity are
compensated. This allows zero-gravity simulation, for instance for space
research applications. Often neutral buoyancy is achieved in special water tanks
but the inertia and viscosity of water can drastically affect system dynamics,
while the solution of a control scheme to compensate for gravity requires the
system designed for space to be strong enough to operate under 1-g
conditions [2.19].

Improved performance. In general, precision of operation is enhanced if
loading characteristics are reduced [2.20]. Furthermore, if undesired forces are
eliminated, smaller actuators are needed (if any), the whole construction can
become more light-weight, and control is simplified, which all leads to
improved performance, decreased power consumption and reduced heat
rise [2.21].

Inherent safety. Finally, the fact that statically balanced mechanisms are in
equilibrium when unactuated presents a form of safety. For instance, in an
electrically powered robot arm with passive gravity balancing, a power failure
does not result in a dramatic breakdown of the mechanism.

Disadvantages may be that in the case of balancing pre-existing systems,
additional parts will be introduced. It is therefore proposed to incorporate static
balance from the start of the design process. A disadvantage of using springs
rather than counterweights in the case of gravity compensation may be the fact
that a vertical reference is needed. Furthermore, the pivot force in mass-to-mass
balancing is always vertical, which reduces the need for a large, heavy, or fixed
support. In some applications, the potential energy present in the system is
increased, which may be undesirable.
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26 Summary

This chapter illustrated the wide variety of applications for static balancing.
While far from complete, a number of often unexpected possibilities were
reviewed. Numerous instruments, machines and appliances benefit from static
balance. They share natural behavior and self-evident operation. Due to their
comforting and reassuring action, their working principle is easily overlooked
or undervalued. Simultaneously, the application of static balance sometimes
seems to have been forgotten. Undesired counteraction, for instance due to
system mass, remains unquestioned while static balancing allows the effortless
lifting of weights. In principle, any conservative force can be equilibrated.
Static balancing can thus solve many problems which initially may seem
unsolvable, as for instance in the internally balanced magnet.

Advantageous features of statically balanced systems include the following:
compensation of undesired forces, energy-free motion, full energy exchange,
improved information transmission, energy-free force control, elimination of
backlash, zero stiffness, neutral buoyancy, improved performance, and inherent
safety.
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3 Fundamentals

in which the governing principles of planar neutral-equilibrium force systems are
investigated by considering the contribution of forces to the state of motion of a
rigid body, both to the nominal state and to the stability of the nominal state,
resulting in a method for finding dynamically equivalent resultant forces, as well as
an elementary neutral equilibrium spring mechanism which will serve as starting
point for the conception framework as presented in chapter four [3.1.

3.1 Introduction

Vectors are equal if both vectors have the same magnitude and both
are pointing in the same direction. (...) Note that we do not demand
that both vectors are in exactly the same position in space. This
definition is strictly only valid for free vectors. (...) It is unfortunate, but
nonetheless a fact, that forces cannot generally be considered as free
vectors.

P.E. Lewis and J.P. Ward, 1989, p6/15

Neutral equilibrium is a special state of motion, where every configuration of a
system is a static equilibrium position, and hence stability is zero. This can be
illustrated by the equilibrium of two forces. It is well known that a system of
two forces is in equilibrium when these forces are equal in magnitude, opposite
in direction, and share their line of action, irrespective of the location of their
points of application on this line. However, when concerned with stability, the
application points gain vital importance. Therefore, forces cannot be considered
as free vectors, not even as sliding vectors, but need to be considered as bound
vectors. This chapter will investigate the stability of rigid bodies in 2D.

The important role of the points of application of forces regarding the
stability will be illustrated by considering an unconstrained rigid body, subject
to two forces (figure 3.1a). The Newton-Euler equations of motion for this body
read:

SF, = m#, (3.1)
(dAr,, ) F, =1 (3.2)

where F, is an external force acting on the body, m is the mass of the rigid
body, ¥. is the acceleration of the center of mass, 7, is the mass moment of
inertia about C, and ¢ is the rotational acceleration of the rigid body. The
vector notation is as follows. A vector r; is the position vector of the point of

application P, of the force F,, expressed in the global coordinate system,
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(a) (®) (c) @

Figure 3.1  Two-force systems: (a) general case, (b) stable equilibrium, (c) unstable
equilibrium, (d) neutral equilibrium.

whereas r,,, denotes a postion vector relative to a point C of the rigid body. In
this example, the center of mass is taken for point C. The subscript ” denotes
transposition, and the matrix A4, which reads:

4=|? 1 3.3
=1 o (3.3)

is used to effect the planar form of the vector multiplication r, x F;. It is noted
that the summation convention is not used, but individual variables are
considered. Furthermore it is noted that vectors and matrices are typed in
boldface, in the text as well as in the figures.

For equilibrium, the accelerations 7, and ¢ need to be zero. This results in
the following set of equations:

F+F,=0 (3.4)
(A"I/C)TE-"(A’Z/C)TFZ =0 (35)

From equation 3.4 it is seen that F, =—F,. Substituting this into equation 3.5
yields:

(A(’l/c "2/c))TFl =0 (3.6)

This expression is true if F, and therefore also F, are directed along the vector
connecting their application points r,. —r,,.. However, the sense of the forces
is still undetermined, so different equilibrium configurations are possible: the
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one where the forces point away from each other (figure 3.1b), the one where
the forces point towards each other (figure 3.1c), and also the one where the
points of application coincide (figure 3.1d).

To investigate the stability of the obtained equilibrium configurations, small
variations about the equilibrium position are considered. The equations of
motion for variations about the equilibrium position follow from the
equations 3.1 and 3.2 through expansion according to:

F, +(2F,), Ar. +(SF,) ,Ap = mi. + mA¥, 3.7

s(ar,. ) F,+((ar, Y F), ar.+@an, ) F), 00 = 16+1.86  (3.8)

where the comma in the index denotes differentiation, for instance , is short
for 0/0¢. As the equilibrium is characterized by equations 3.1 and 3.2, the
equations for the small variations alone read:

(EF,), Ar.+(EF) ,Ap = mAF. (3.9)

((ar, Y F), ar+((ar, Y F) 00=1,0p (3.10)

where X indicates summation, in this case from i =1 to 2. These equations
show that the forces and moments must be differentiated with respect to the
position and orientation of the rigid body, r. and ¢, respectively, implying that
the character of these forces affects the result. Considering forces of constant
magnitude and direction simplifies the equations considerably. Each term F; is

independent of r, and ¢, while each term (Ar,,.)" F, is dependent on ¢ only.

L

Consequently, equations 3.9 and 3.10 reduce to:

mAF, =0 (3.11)
LAG-(z(4 ,/L)TF) Ap=0 (.12)

Evidently, translations about the equilibrium position have no influence.
However, rotations do affect the equilibrium. Using the coordinate systems in
figure 3.2, any point of the rigid body P,
arbitrary point C of the rigid body:

r=r.+r,.=r.+Rr}, (3.13)

can be expressed relative to an

where the accent-mark ' indicates that a vector is expressed in the local
coordinate system associated with the rigid body (figure 3.3); and where R is
the orthogonal rotation matrix:

_ |:COS¢ —sin (p:| (3.14)

sing cosg
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Figure 3.2 Local (x', y') and global (x, y) coordinate systems.

The term —(E(Ar,-/c)T F,) .0 can now be elaborated as follows:

- (2 (Ari/c )TFJ ),¢ =-X (FiTR,wr"/c)(,, =-X FITR,wri'

ile] le
=-SF'R,_R'r, =XFr, (3.15)
i PP ile i Yile .

where the identities Rpp =R, R'=RT, and RR” =1 are used. For the two

forces in the example of figure 3.1bc, where the forces are equal, opposite, and
collinear, this term becomes:

SF'r, =F'n, +Fr, =F(n, -r,)=tFr (3.16)

H

where F =|F,| and r =|(r,, —ry,)|. Depending on the sense of the forces, this
term can be positive or negative. When F, and r;,. —r,,, have the same sense,
as in figure 3.1b, the term is positive. Hence, the solution of the harmonic
equation 3.12 is a harmonic function having a natural frequency:

Fr
» = ’_ 3.17
n Ic ( )

which implies a stable equilibrium. When F, and r,,.—r,,. have opposite
senses, the term XFr,,_ is negative, which introduces an exponential function
with a negative and a positive power of @, in the solution of equation 3.12,
resulting in unstable equilibrium. In the case of coincident points of application
(figure 3.1d), the term ZF,r,,_ reduces to zero, yielding indifferent equilibrium
for rotation, in addition to the indifference for translation as previously found.
Hence, the equilibrium is indifferent for translations and rotations, a state called
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Figure 3.3 The resultant force F, of two forces F\ and F» may apply anvwhere on its line of
action to vield instantaneous equivalence.

neutral equilibrium. The above treatise clearly illustrates that the points of
application of the forces determine the stability of the equilibrium.

The systems dealt with in this thesis typically incorporate at least three
forces: two external forces (spring forces or gravity forces) and a support force.
One way of investigating the stability of such a three-spring system is to
compose two of these three forces into one resultant force. This would yield one
of the force systems of figure 3.1, so the stability can be determined. Clearly,
for this approach to be effective, the point of application of the resultant force
needs to be determined. However, even though in planar mechanics it is
common practice to compose two forces acting on a rigid body into a single
resultant force (figure 3.3 [3.2]), this procedure does not yield a point of
application for the resultant force, because usually the contribution of this force
to the equilibrium is considered, rather than the contribution of this force to the
stability of the equilibrium. For this reason, a force composition technique will
be derived in this chapter, which is not only equivalent with respect to the
instantaneous or static influence of a force on a rigid body, but also for the
dynamic influence or the stability contribution. The resultant force found will
be called the dynamically equivalent (resultant) force (DEF), while its
application point will be called the dynamically equivalent application point
(DEP) [3.3].

From the notion that the dynamically equivalent resultant force should have
the same contribution to the stability of a rigid body as the original forces,
additional conditions will emerge which uniquely pinpoint the dynamically
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equivalent force on its line of action. This chapter will first review the
conventional static force composition from the perspective of same contribution
(section 3.2). Static equilibrium will be regarded as a special case of the
nominal state of motion of a rigid body in the planar case, which will be
described using the Newton-Euler equations of motion, the principle of virtual
work, and the energy potential [3.4]. Although principally equivalent, all of the
three methods mentioned will be used, as each provides specific advantages.
Subsequently, section 3.3 will consider small variations about the nominal state,
in order to investigate the stability of the nominal state. Again the stability of
static equilibrium will be treated as a special case of motion, and the
contribution of forces to this state of motion will be investigated. This will lead
to a procedure for the composition of two forces into a resultant force which is
equivalent to the original two forces with respect to stability, including
equations for the point of application of the dynamically equivalent force for
the cases of constant forces and central linear forces. In addition to this,
section 3.3 will present the derivation of an elementary statically balanced
spring mechanism. Finally, section 3.4 will present a graphical interpretation of
the findings.

3.2 Statically equivalent force

Befindet sich der Korper im Gleichgewicht, so ist die Resultierende
gleich Null, und daher muss bei einer gedachten unendlich kleinen
Verrilckung, welche mit den geometrischen Bedingungen des Systems
zu vereinbaren (virtuell) ist, die Arbeit der dusseren Kréfte gleich Null
sein. Dieser Satz darf auf endliche Verrickungen ausgedehnt werden
wenn der Korper auch in der neuen Lage im Gleichgewicht ist.

When the body is in equilibrium, the resultant force is equal to zero.
Therefore, the work done by the external forces due to a infinitesimal
displacement, which is in accordance with the geometric constraints of
the system (virtual), must be zero. This principle may be extended to
finite displacements when the body is in equilibrium also in the new
position.

K. Lachmann, 1929

In statics, a force F, is called the resultant force of two forces F, and F, if,
firstly, its contribution to the force system acting on a rigid body is equal to the
contribution of the original forces and, secondly, the moment contribution of
the resultant force about an arbitrary point C of the rigid body is the same as the
contribution of the original forces [3.4]:

F,=F +F, (3.18)
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(ar,, ) F, =(a4n, ) F,+(Ar,, ) F, (3.19)

The use of the well-known equations 3.18 and 3.19 is usually restricted to
situations of static equilibrium, as in section 3.1. However, the remainder of this
section will use these not only to investigate the equilibrium situation, but any
nominal state of motion, including dynamic motion. To this end, the
contributions of a force F, to the equations of motion of a rigid body, the
virtual work done on the rigid body, and the potential energy of this force will
be regarded successively. At this stage, the use of three approaches may seem
overdone, but the following section will follow up on all of them. Furthermore,
in particular cases the one approach will turn out to be more convenient than the
other.

Equations of motion

Equations 3.18 and 3.19 are valid with respect to any point C on the rigid body.
If now the center of mass of the rigid body is selected for C, the Newton-Euler
equations of motion can be used to investigate the conditions under which a
force F, is equivalent to the two forces F, and F, together. In matrix form,
the equations of motion for a rigid body due to n forces yield:

ml, O\i| [ ZF o 390
0 I |l¢| [=(ar, JF| 320

Suppose that F, includes F, and F, among other forces, and 2(4r,.)"F,
includes their moment contributions (Ar,. )" F, and (4r,,. )’ F,, among other
terms. Then a single force F, has the same contribution to the nominal state of
motion, as represented by equation 3.20, under the following conditions:

F. =F, +F, (3.21)
(4r,,.)TF, = (ar, )" F +(4r, ) F, (3.22)

Clearly, this results in the conditions already given in equations 3.18 and 3.19.
This prooves that the resultant force F, found above is indeed equivalent to F
and F, together, not only in static equilibrium but also in any nominal
(dynamic) state of motion. To emphasize this capacity, the resultant force F,
will be called the instantaneously equivalent force, rather than the statically
equivalent force.

Virtual work
Equations 3.18 and 3.19 can also be derived using the principle of virtual work.
This is particularly illustrative as the moment equation 3.19 manifests itself in a
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very natural manner. The virtual work 6#; done by a force F, acting at point
P, amounts to:

W, = Fl6r, (3.23)

where J7; is the virtual displacement. Expressed in the virtual displacement of
the center of mass Jr, and the virtual rotation Sp of the body, the virtual
displacement reads:

o, = 6r.+R 1), 8p = 1.+ R ,R'r, Sp = Or.+ Ar, 0p (3.29)

@

where it is noted that dr/,. =0 for a rigid body.

A force F, is instantaneously equivalent to two forces F, and F, if the
virtual work done by F, is equal to the virtual work done by F, and F,
together:

F!&r, = Flon + F} or, (3.25)
Substituting equation 3.24 gives:
F/6r.+ F] Ar, .80 = F 61+ F{ Ar,, .5+ F or, + F] Ar,, 5p (3.26)

As this equation must be valid for any possible dr, and Sp, the following set

of relations results:
F,=F+F, (3.27)
FlAr, =F An, +F Ar,, (3.28)

Rearranging the latter expression gives:
(Arr/c)TFr =(A'1/c)TFx +(A’2/C)TF2 (3.29)

Thus, together with equation 3.27, a set of equations equal to the set of
equations 3.18 and 3.19 results.

Potential energy

In a third and final way, the instantaneously equivalent force can also be found
using the potential energy method, which in some cases leads to a solution in a
more direct and convenient way. Using this method, the motion of a rigid body
is investigated by examining the total potential of the forces acting on the body.
The potential exists only in case the forces are conservative. In the case of a
rigid body, only the potential of the external forces is to be concerned, so the
equations of motion can be written as follows:

ml, OT&) [V, o (330)
0 Ic ¢ V,{V )
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where ¥ is the total potential, and ¥, =XF; and ¥, = 2(4r,.)" F;. When ¥, is
the potential due to an external force F;, the following expression can be
formulated:

dV, = Fdr, = F'(dr, + R 1., dp)= F! (dr, + Ar, dp)
=F/dr. + F Ar, dp (3.31)

By definition, this implies that the contribution to the state of motion of the
force F; with respect to translation and rotation, respectively, is given as:

(v.),r =F, (332)
(v,),=F Ar, =(4r, ) F, (3.33)

In case it is now desired that the contribution to the state of motion of a
resultant force F, is equal to the contribution of two given forces F, and F,,
then the contributions (V; ), and (¥,),, due to F, must equal the contributions
(1).n+(#2) .. and (#1).o+(2),, due to F, and F,, respectively, which leads
to:

F. =F +F, (3.34)
Ar, Y F, =(ar, Y F +(4r, ) F (3.35)
rie c 1 2/¢ 2

These equations are equal to the equations derived using the equations of
motion and the principle of virtual work.

3.3 Dynamically equivalent force

The principle of transmissibility states that the conditions of equilibrium
or motion of a rigid body will remain unchanged if a force F acting at a
given point of the rigid body is replaced by a force F* of the same
magnitude and same direction, but acting at a different point, provided
that the two forces have the same line of action. The two forces F
and F' have the same effect on the rigid body and are said to be
equivalent.

F.P. Beer and E.R. Johnston Jr., 1997, p73

In the previous section, three approaches were used to find two conditions for a
force F, to be instantaneously equivalent to two given forces F; and F,: the
vector equation 3.18 determines the magnitude and direction of the force F,,
whereas the line of action of the force F, is determined by the scalar
equation 3.19. However, equations 3.18 and 3.19 do not determine the point of
application of the force F, (figure3.3). This is not important for the
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contribution to the nominal state, but for the stability of the nominal state, the
point of application of a force is essential. In addition to the example of
figure 3.1, this is demonstrated in the equilibrium position of a pendulum,
which is stable, whereas the equilibrium position of the inverted pendulum is
unstable. Yet the lines of action of the forces are identical for both of the
equilibrium positions, and equations 3.18 and 3.19 apply in both systems.
Therefore, it is essential that (instantaneous) equivalence (as considered in
many textbooks) is well distinguished from dynamic equivalence. A resultant
force will be considered dynamically equivalent to a system of forces acting on
a rigid body if the contributions of the resultant force and the original system of
forces to the stability of the body are equal.

To investigate the stability of the nominal state of a rigid body in the two-
dimensional case, this section will consider small variations about the nominal
state of the body. Again, different methods will be used to assess the conditions
under which a single force is equivalent to two given forces, this time with
respect to stability. Conditions will be found, additional to equations 3.18
and 3.19, which will be called the stability equations.

The equations of motion for variations about the nominal state of motion
were given in equations 3.7 and 3.8. The equations for the variations alone, in
matrix form, read:

[m‘? ;)][ZvH— E(Zfr:f))’F) —(zz,fif))?¢p)¢}{i';]=0 (336)

where the first matrix is the mass matrix M, and the second is the tangent
stiffness matrix .

Alternatively, the variations about the nominal state of motion can be
investigated using the potential energy method. To this end, equation 3.30 can
be expanded according to:

e S Rl P 6
0 I jAp “Vor, Voo |l A0
The tangent stiffness matrix .§ found this way must be symmetric, otherwise the
system is non-conservative and the potential does not exist. This way, the
existence of the potential of any kind of force can be investigated, and therewith
provides a check on the application of this procedure.

As noted previously, the differentiation in the equations 3.36 and 3.37

shows that the character of these forces becomes relevant. In the following
sections, two kinds of forces will be addressed which play an important role
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throughout this thesis: constant forces, such as gravity forces, and central linear
forces, such as the forces due to zero-free-length springs.

Constant forces

In our natural habitat, gravity forces can be approximated as forces of invariant
magnitude and direction. For these forces, most of the elements in the tangent
stiffness matrix § (equation 3.36) vanish. Consequently, the only relevant term
in the matrix § is —(Z(Ari/()rﬁ}),w. It was shown in equation 3.15 that this
term, for constant forces, is equal to Fr,. . Consequently, the stiffness
matrix of a constant force F; acting on point F, of a rigid body reduces to:

0 0
s:[o FA,.r ] (3.38)

i Yile

Apparently, the contribution to the stability of a constant force is
characterized by the scalar product of the force vector and its position vector. If
it is now desired to find the dynamically equivalent force F, of two constant
forces F, and F,, their contributions to the tangent stiffness matrix § of
equation 3.38 must be equal, leading to the following equation:

F'r, =F'n, +Fr,, (3.39)

rfric

Thus a scalar equation is found, which, together with the equations 3.18
and 3.19, uniquely defines the application point of the dynamically equivalent
force F,, when constant forces are assumed. This equation will be called the
stability equation for the case of constant forces. The application point found in
this manner will be called the dynamically equivalent application point (DEP)
of the resultant force. In case the resultant force F, applies at the dynamically
equivalent point of application, this force will be called the dynamically
equivalent force (DEF). So in order to find the dynamically equivalent force,
three equations must be satisfied: the force equation (3.18), dealing with the
force vectors; the moment equation (3.19), containing the vector products of the
force vectors and their position vectors; and the stability equation (3.39), which
comprises the scalar products of the force vectors and their position vectors.

This result can also be obtained using the potential method. To illustrate
this, the contributions of a force F; to the terms of the tangent stiffness
matrix § in equation 3.37 are derived by differentiating equations 3.32
and 3.33:

‘(Vi),rcrf[g g} -(),.,=l0 0l; —(I/i),q,,‘;:[g} (3.40)
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(V) ( TRq:rI/c) = FTRW Bije =~ FTR R_l';/L_F}Tri/c (341)

It is noted that the two mixed partial derivatives are each other's transposed.
Therefore the tangent stiffness matrix is symmetric and the potential exists for
constant forces, as was expected.

Examples
Two examples will be given next. First, reconsidering the pendulum, it is seen
that in the hanging pendulum the above measure for the stability is equal to:

F r.= [0 -m ]l: tsing }= mglcos@ (3.42)
—fcosg

where ¢ is the length of the pendulum, ¢ the angular deviation from the

hanging equilibrium position, m the point mass at its end, and g the acceleration

of gravity. For ¢ =0, the expression is positive and therefore this equilibrium

position is stable. For the inverted pendulum (@ =r), the expression is

negative and therefore the upright equilibrium position is unstable:

Tre=[0 -m ][ tsing J: —~mgt (3.43)
cos@ .

The second example concerns two gravity forces F, =[0 —mlg]T and
F, =[0 —ng]T, acting on a rigid body at B and P, respectively
(figure 3.4). For the dynamically equivalent force, the following force, moment,
and stability equations are applicable:

F,=F +F, (3.44)
(ar,, Y F. =(an, ) F,+(4r, ) F, (3.45)
F,.TI"./C = Ern/c + FZTrZ/c (346)

where point C is an arbitrary point of the rigid body (not the center of mass).
Substituting the expressions for the forces into these three equations gives the
following set of three equations:

F,=-mg[o 1]"-mglo 1]"=~(mg+mg)fo 1] (3.47)

_(mlg+m2g)[_rry/c rrx/c][():|=_mlg[—rly/c rlx/c]liojl

1 1

0
‘ng[‘rzy/c rzx/c][l:l (3.48)

- (mg+myg)f0 1]["‘”] -mg[o 1]{"‘"] myg[0 1][:*“] (3.49)

ry/c Hyle 2y/c
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Figure 3.4 The dvnamically equivalent force of two gravity forces applies at the intersection
of its action line and the line connecting the application points of the original forces: (a) two
given gravity forces, (b) dynamically equivalent resultant.

Working out the second and third equation gives, respectively:

m m
Tice = £ Nxic + 28 axie (350)
mg+mg mg+mg
m m
’;jv/c = 1E rl_\'/ .+ 28 r2y/c (351)

mg+m,g C mgtmg

Thus the application point P, =(Fu/c ,7ryc) of the dynamically equivalent
force is found to be located on the line connecting R, and P, so that
RP./PP, =m,/m,. Although this example may be considered trivial in the
sense that many will intuitively pinpoint the application point of the resultant
force on this location, the above derivation shows that this is justified from the
perspective of equivalent dynamics.

Evidently, applying the procedure of finding dynamically equivalent forces
to the special case of gravity forces yields the combined center of mass, which
indeed is the dynamically equivalent point of application of the gravity forces,
or indeed the mass forces in general. It can therefore be concluded that the
proposed procedure for finding dynamically equivalent resultant forces is the
generalization of the commonly accepted procedure for finding the combined
center of mass.

The fact that the resultant force at this location yields the same stability as
the original forces is readily verified by deriving a statically balanced system
from this example. If the rigid body of figure 3.4 is supported at the
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dynamically equivalent application point P, by a force F,=-F,, neutral
equilibrium results. In the case the DEF F, is considered, this force and the
support force act at the same point, as the forces in figure 3.1d do, so clearly
this is a situation of neutral equilibrium. If, instead, the original forces and the
support force are considered, the familiar case of the counterweighted beam
results. One could say that the DEF F, can be resolved in a dynamically
equivalent way into F| and F,. In both cases, the contributions to the stability
of the forces acting on the body, (F, and F,) and (F,, F, and F,),
respectively, cancel each other out, and neutral equilibrium is the result.

Central linear forces
Where the preceding section dealt with constant forces, such as gravity forces,
this section is concerned with forces of a different nature: central linear forces.
These are forces generated by a central linear force field. One special type of
central linear forces consists of the forces generated by zero-free-length springs
(see also section 4.2), which will prove to be of great benefit in this thesis. Due
to the nature of these forces, their magnitude and direction varies as a function
of position or orientation. Therefore, the tangent stiffness matrix § will contain
more non-zero elements than is the case with constant forces. This section will
derive the conditions for the dynamically equivalent force of two central lincar
forces, or, in particular, two zero-free-lengths springs.

As zero-free-length springs generate zero force when their ends coincide,
such a spring force can be written as:

F=kfa;—r)=k(a;. -, )=kla,—r, -1, )= kfa;~r.-Rr)) (3.52)

where k; is the spring stiffness; a; is the position vector of the one end of the
spring; and 7, is the position vector of the other end of the spring. If one end of
the spring is fixed, @, will be associated with the fixed end (and will then be the
origin of the central linear force field). The vector , will then be associated
with the moving end. The moment contribution of such a force with respect to
an arbitrary point C of the body is found to be:

(A';/C)TE = F}TR,qlri,/c = ki(ai - _Rri'/c)TR,(p ri'/c (3.53)

From these equations, the contributions due to this force to the elements of the
stiffness matrix § (equation 3.36) can be derived:

~(F), =k1, (3.54)

~(F), =kR 1, (3.55)
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~((ar, Y F, ,), =k (R )" (3.56)

((A l/L)T ) _k (Rq) x/c) F Rw(p ilc (357)
Using R , = AR, equation 3.55 and 3.56 become:
~(F), =kR

=k, ARy, =k Ar,, (3.58)

P l/c

N,V E). =k (R r )T =k (aRr, )T = K (r)T (3.59)

with RV R, =1, |, |=

=|r,|.and R ,, =R, equation 3.57 becomes:

~(Ar, T F), =krilr BT R, = ko

i

+Fr

ile

(3.60)

i l/L b

So the tangent stiffness matrix S for central linear forces evolves into:

S -= kil kiAr, (3.61)
- ki(Ari/r)T kl ilc l/L+F L '

ilc

As compared to the constant-force stiffness matrix (equation 3.38), the

following differences are apparent. Two additional terms k. Ar,. and

ile
k,(ar, ,C)T are present. Consequently, the system is no longer indifferent with
respect to arbitrary displacements. Pure translation is associated with a
stiffness k; due to the term kI, . Furthermore, the lower right term is expanded
with the terms k, ! ... Hence, different stability equations result as compared
to the constant-force case.

Using the potential energy method, the same result is obtained as follows.
Taking the partial derivatives of equations 3.32 and 3.33, and substituting
F =kla,-r - Rr),,) gives the contributions to the tangent stiffness matrix §
as given in equation 3.37 as:

~V,r, = ~(F) .= kd, (3.62)
V1, =~F) = kR r). = kAL, (3.63)
—V,, =ETR 1), =FT4n,.)., (3.64)
=k, -~ R )= oln )
Y gy =AFTR 1) o= FT) R o1~ FT (R ) (3.65)
=kR,r, R, 1, ~F R 1, =kAr] A, + F Ry,
=krlr, +Fr,

:x/c tie
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As was the case with constant forces, comparing equations 3.63 and 3.64 shows
that also in this case the tangent stiffness matrix is symmetric, so central linear
forces have a potential as well, and are therefore conservative too.

If now two central linear forces are to be replaced by a single equivalent
one, the contribution to the stiffness matrix S due to the equivalent central
linear force (index r) must be equal to the contribution due to the two original
forces. Considering equations 3.62 through 3.65 respectively, this leads to the
following conditions for equal stability (stability equations):

ke =k +k, (3.66)
k,Ar,,, = kAn,, +kAr,), (3.67)
krrrT}crr/c + FrTrr/c = klrli/‘crl/c +F‘lT’ll/c +k2r27;cr2/c + F2Tr2/c (368)

Thus, when replacing two central linear forces by one, a total of seven
equations are found: the vector equations3.18 and 3.67, and the scalar
equations 3.19, 3.66, and 3.68, which are to be solved for five unknowns (one
scalar, k,, and two vectors, r, and a, ). Consequently, no solutions are found in
general: two central linear forces cannot generally be substituted by a single one
in a dynamically equivalent manner.

Special solutions

As was pointed out, it is generally not possible to replace two central linear
forces by a single dynamically equivalent one. This is unfortunate in the design
of spring mechanisms where zero-free-length springs are used as central linear
forces. However, there are at least two ways to arrive at a solution. The first one
is to restrict the motion to rotation only, and to replace the two zero-free-length
springs not by a resultant zero-free-length spring but by a constant force. Under
these conditions, a solution can be found as follows. Due to the restriction to
rotation, -equations 3.63 and 3.64 do not apply; and due to the comparison of
two central linear forces with a constant force, dynamic equivalence is
characterized by:

T . .T T T r
For . =knn.+Fn +krn +Fr, (3.69)

r

where the left side corresponds to the expression for constant forces. Now,
together with the equations 3.18 and 3.19, a total of four equations (one vector
equation and two scalar equations) are found to solve for four unknowns (two
vectors, F, and r,,.). The physical interpretation of this solution is still an
open question, however an example confirming this phenomenon is given in
chapter five, section 5.2 (the Floating Suspension).
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c rl/c = rZ/c

Figure 3.5 Two zero-free-length springs, acting at the same point of the rigid body, can be
composed into a single dvnamically equivalent one.

Another special solution is possible when the zero-free-length springs are
attached to the rigid body at the same position. Then r, =r,, or equivalently
r,.=ry,. Which, substituted in equations3.18 and3.19 and using
equation 3.13, leads to r,,. =#,.=#,,, or equivalently r, =r, =r,. Together
with  equation 3.66, this immediately satisfies equation 3.67, while
equation 3.68 now becomes:

CRYNCAEY o WES YNNI Sl WS Y UN N +Fr,, (3.70)
As the r|, r,,, terms cancel out, the following relation remains:

(ky +kyXa, —r ) r = kil — n)r. +k(a,—r ) (3.71)
Rearranging gives:

((kl +ky)a] —kal kzaz) te=0 (3.72)

This should be valid for any r,,,, and therefore, introducing the unit vector e,
and using the relations a, —a, = ae, and q, + a, =a (see figure 3.5):

a, = k a + k2 a, (3.73)
k +k, k +k,
ky k k, k,
= a - a, + a, + a,
ky +k, ky + &, b +k, k +k,
kl
= a,—a,)+a
ki +k, ( 1 az) 2
=a,+ b e
%2 a
by +k,

41



Y / O'
ka R
AZ
a, Q. Cep &
T,
r.=a, at/c
J

a, AT
0 F

Figure 3.6 A neutral equilibrium spring mechanism is obtained when the rigid body is
hinged at the fixed attachment point of the resultant spring.

From this result it is seen that @, traces the line 4,4, as the stiffnesses &,
and k, vary. It is also seen that a, =ak /(k,+k,) and a, =ak,/(k, +k,).
Consequently, the relation a,/a, = k,/k,, or k,a, =k,a,, defines the location of
point 4, on the line 4 4,.

So, two zero-free-length springs, &, and &, , each attached with one end to a
first rigid body and with the other end to a second rigid body, can be composed
into a single zero-free-length spring k, in a dynamically equivalent way for any
movement of the rigid body, under the following conditions. Firstly, k£, must
equal k, +k, (due to equation 3.66), secondly, the free ends of the springs must
be attached to the same point of application B,, so r,,. =8, =r,,, (assumed
earlier); and thirdly, the fixed end 4, of the dynamically equivalent zero-free-
length spring must be located on the line connecting 4, and 4,, so that
ka) = kya, (resulting from equation 3.77). Inversely, these equations can be
used to resolve a single spring into two springs, where it is noted that this does
not give a unique solution.

Basic spring force balancer

One way to design a neutral equilibrium system is to use the procedure for the
composition of zero-free-length springs by first finding a zero-stability solution
for one spring k, attached between point P. on the moving body and the
grounded point 4,, and then resolve this spring in a dynamically equivalent
way into two springs, k; and k,. As was found earlier, a solution exists under
the condition that only rotation is considered (so that equation 3.67 can be
disregarded), where the contribution to the stability (equation 3.68) must equal
zero:
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krlor, +Fr,. =0 (3.74)

ririctric

or:

(k7 + k(g =1 =1 ) ) =0 (3.75)
This is true for any r,,, if:

r.=a, (3.76)

So the rigid body is indifferent for rotation if its pivot point coincides with the
grounded spring attachment point, regardless of the length r, of the
vector r.;.=r.e., where e, is the unit vector in the direction of r,,,.
Obviously, this is true for the system with the dynamically equivalent
spring k,, since the length of a spring hinged in this fashion will not change
during motion. However, since two springs &, and &, can be found, which are
dynamically equivalent to spring &, , the system with these springs &, and &, is
also statically balanced. The conditions for these springs are that they both
attach to the rotatable body at point P.; that k, = &, + &, ; and that the grounded
attachment points comply with equation 3.73. Therefore, a link
connecting point P, with pivot point C turns the spring system of figure 3.5
into a statically balanced mechanism (figure 3.6).

Alternatively, the mechanism in figure 3.6 is found when the resultant force
associated with the two-spring system of figure 3.5 is considered. This force,
using equation 3.52, is given by:

F = kl(al/c _rl/c)+k2(a2/c - "2/c)= (klal ‘kzaz)ea _(kl"l +k2"2)er 3.77)

where a,. =a,e, and a,,, =—a,e,, and where e, is the unit vector in the
direction of a,.. Substituting kja; =k,a, and r,=r, =r into equation 3.77,

the expression for the force F, becomes:
F, =~k +k,)re, (3.78)

As the e, component cancels, it is seen that this force is always directed
towards the pivot C. Therefore, interpositioning a link between point P, and
pivot C yields the same statically balanced mechanism. This arrangement will
be called the basic spring force balancer for statically balanced spring
mechanisms (see also section 4.3). Taking this particular mechanism as a
starting point, a framework for the modification, extension and simplification of
statically balanced zero-free-length spring mechanisms will be put up in the
following chapter, but prior to this, a graphical representation of some of the
above will be given.
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Figure 3.7  For constant forces, the application point of the dynamically equivalent force is
located on the circle circumscribing the application points of the two original forces and the
intersection of their action lines [3.5].

3.4 Graphical representation

Since the time of F. Commandino (1509-1575) who translated the
works of Archimedes, Apollonius, and Pappus, many other theorems in
the same spirit have been discovered. Such results were studied in
great detail during the nineteenth century. As the present tendency is
to abandon them in favor of other branches of mathematics, we shall
be content to mention a few that seem particularly interesting.

H. S. M. Coxeter, 1969, p3

In the example of figure 3.4, a quick geometric construction was found for the
application point of the dynamically equivalent force of two constant forces
with parallel lines of action, which was already known from the procedure of
determining the combined center of mass. This raises the question whether a
similar procedure exists for finding the dynamically equivalent application
point of two non-parallel forces, such as in the case of the forces F; and F, in
figure 3.3. This section will provide such a construction for the case of constant
forces, and will investigate its use in the case of central linear forces.

Constant forces

The graphical construction of the DEP of two non-parallel constant forces turns
out to be very elegant. The DEP is located on the circle defined by the
application points of the original forces and the intersection of their lines of
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Figure 3.8  Dependent on the polarity of the forces, with given action lines and magnitudes of
the original constant forces, one of two dynamically equivalent points of application is found.

action (figure 3.7 [3.5]). This section will prove this remarkable fact by
assuming that the four points are indeed on a circle and showing that
equation 3.39 results.

First it is realized that the projection of the vector summation (F, + F,),
or F,, on any line through the intersection 7 of the action lines of the forces F,
and F,, is equal to the summation of the individual projections of the forces F,
and F,. Assuming that R, B, T, and P, are located on a circle and projecting
the forces on the diameter of the circle through 7, one can write:

F,cosa, = F cosa, + F, cosa, 3.79)
where F,

F.Dcosa, = FDcosa, + F,Dcosa, (3.80)

is short for |F;|. Multiplying by the diameter D gives:

When T is selected as point C, the terms Dcosq; are equal to r;,, (short
for |r,-,c|). Furthermore, the vectors r;,. and F, are collinear. Consequently,
equation 3.80 reduces to:
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Figure 3.9  lllustration of the influence of the inclined angle between the original forces on
the location of the dynamically equivalent point of application: (a) y= -7, (b) y=-27/3, (c)
7y=0,(d) y=273(¢) y= 7.

For, =Fn, +Fny, 3.81)
or.
Flr,=F'n,+Fr, (3.82)

Since F, = F, + F,, equation 3.82 is valid with respect to any point C of the
rigid body. Consequently, equation 3.82 becomes equal to equation 3.39, which
concludes the proof. Appendix 3.1 presents a geometrical proof.

To become familiar with the graphical representation, figure 3.8 displays
four different configurations of forces. The angle y between the lines of action
is defined as the angle about 7 from F, counterclockwise to F,, while the
F|. In all
configurations, the original points of application B and P, are the same, as are
the magnitudes F and lines of action of the forces F, and F,. Only the senses
are varied. Changing the sense of one of the forces results in a different

symbol x is used for the absolute ratio of the forces: k =|F,|/

dynamically equivalent application point. However, when both signs are
changed, the original dynamically equivalent application point is found again. It
appears that two dynamically equivalent application points are possible with
given lines of action and magnitudes. The angle y defines which of the two
possible locations is appropriate. In figure 3.9, the case of equal forces (x =1)
is considered in some detail. The inclined angle y is varied, and the
symmetrical situation (i.e. point T is located on the perpendicular bisector of B
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Figure 3.10 Circle of constant inclination angle.

and P) is considered. As y is varied from -r to &, the resultant point of
application runs on the perpendicular bisector of AP, from —oo to w, while
the magnitude of the resultant force rises from zero to a maximum of 2F and
then falls to zero again.

The procedure of dynamically equivalent composition of constant forces
incorporates a great deal of regularity. Several phenomena will be presented
here. It has already been shown that the dynamically equivalent application
point of two constant forces ¥, and F, with inclined angle y is found on the
circle through B, P, and T. ]t is interesting to note that, as long as y is
constant, every dynamically equivalent application point of these forces,
regardless of their magnitudes and directions, is located on this same circle.
This is due to the fact that this circle is the locus of points T from which BP
subtends the angle y, as is illustrated in figure 3.10. So, given y, points 7, R,
and P, always put up the same circle on which the dynamically equivalent
application point is located. This circle will be called the circle of constant y,
or y -circle for short. From the hatched triangle, it can be shown that the radius
of the circle is R, =a/siny, and that its center is located on the perpendicular
bisector of BP,, at a distance of a/tany from the midpoint of FP, (see also
appendix 3.2). Noteworthy is the fact that the triangle FPF., put up by the
original application points and the dynamically equivalent application point, is
similar to the mirrored triangle of forces.

Thus, the inclination angle y alone already defines the circle on which the
DERP is to be found. The location of the DEP on this circle is determined by the
ratio of force magnitudes « =|F,|/|F}|, as will be shown next. From applying
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Figure 3.11 Circle of constant magnitude ratio.

the sine rule to the triangle of forces it is seen that x divides the inclination
angle y into two parts, 7, and y,, according to the equation x =|F,|/|F}|=
siny, /siny, . The inscribed angles ATP, and P,AP, in figure 3.10 subtend the
same arc F,F, and are therefore congruent. Likewise, angle AP, F,. equals angle
BTF,. Thus, it is seen that, for example in case x=1 (i.e. y,=y,), the
dynamically equivalent application point lies on the intersection of the y -circle
and the positive x-axis, regardless of the location of T on the y-circle.
Furthermore, as y is divided in two constant parts y, and y, by the given ratio
K , the location of the dynamically equivalent application point on the arc PR,
is independent on the location of point T on the circle, because P, and PP,
always subtend the constant angles y, and y, , respectively, from point 7.

It is now interesting, when y is given, to assess the influence of variation of
x on the location of the DEP (figure 3.11). With the definition of x in mind,
the challenge is to find the locus of points such that the ratio siny,/siny, in
triangle BAF, is constant. As siny; =x/PP. and siny, = x/RP., the ratio
siny,/siny, must equal BP./P,P.. So the problem can be reformulated as
finding the locus of a point whose distances from two fixed points F, and P,

48




50°

7

Figure 3.12 The circles of constant inclination angle and constant magnitude ratio are
orthogonal.

have a constant ratio x. This is the definition of a circle according to
Apollonius [3.6]. The center of this circle is located on the line FP, at a distance
—a(x? +1)/(x* 1) from the midpoint of BP, while its radius is
R_=2ax/(x* 1), as shown in figure 3.11, see also appendix 3.2. Thus, the
locus of all DEPs associated with a constant x is a circle, which will be called
the circle of constant x , or x -circle for short.

The dynamically equivalent application points can now quickly be found as
the intersection points of the appropriate y- and x -circles. These circles are
only dependent on the distance between the original points of application, a, the
internal angle of the lines of action, y, and the ratio of force magnitudes, «x . In
figure 3.12, the circles are sketched for several values of » and x. The y-
circles, for various values of ¥, form an intersecting pencil of coaxal circles,
whereas the x -circles, for various values of «, form a nonintersecting pencil of
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Figure 3.13 Faulty application of constant-force circle construction to central linear forces
vields a constant distance between the application point found and the pivot.

coaxal circles[3.6]. Since F and P, are the common points for the
(intersecting) pencil of y-circles, as well as the limiting points for the
(nonintersecting) pencil of k-circles, the y - and & -pencils are orthogonal [3.6].

The correct one of the two intersection points of the appropriate y - and x -
circles follows from the senses of the forces, as illustrated in figures 3.9
and 3.10, or, when the line of action of the resultant force has been constructed,
the correct dynamically equivalent application point is found as the point of
intersection of the y -circle and this line, which is not point 7. Alternatively, by
using the definition of ¥ as the angle about T from F, counterclockwise to F;,
each circle of constant y is divided by the original points of application (the
common points of the ypencil) into two arcs. By way of example, the arcs for
¥ =30° and y =~150°, and the circle for k =2 are drawn in bold style. Note
that the circle for x =1 reduces to a line, the horizontal axis of the figure, as has
already been derived in figure 3.9.

Central linear forces
For central linear forces, a procedure as elegant as the circle for constant forces
has not yet been found. Clearly, the faulty application of the constant force
construction to central linear forces results in an error. It will be shown that this
error is a constant term, which can be represented graphically. Therefore, this
issue will be addressed briefly.

The contributions to the stability of two constant forces, and two central
linear forces, respectively, are given by:

(_ Y oo )w,m =Fn, +Fry, (3.83)

T T r T
(_ Voo )a,,,,,.,i,,_ =kt n et Fny ko + By, (3.84)
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The difference, and therewith the error made when applying the constant force
construction to central linear forces is equal to k! r,. +k,r), r,,. which is a
constant term. This error term will be investigated for the case of the basic
spring force balancer (figure 3.13). By introducing a unit vector e, with respect
to the local reference frame, so that r,,_ =r,, =r,, =re,, the error expression
becomes:

kpl n, +kory, m, =k +k, r? 3.85)
1"1/7¢%1/ ¢ 272/e%2/¢ 1 2

This is a constant term, originating from a vector e, running along with the
link, thus representing a shift along this vector towards the pivot.

In the example of the basic spring force balancer, the circle through the
spring force application points and the intersection of the action lines
degenerates into point P. The DEP of the resultant force is therefore found to be
at point P, the moving end of the link, rather than the pivot where it should be.
Due to the consideration of the spring forces as constant forces, a correction is
needed. One interesting correction for the DEP to end up at C is found when
the stability contribution of the resultant force is investigated. According to
equation 3.78, the resultant force is equal to F, =—(k, + &, )re, . Therefore the
stability contribution of this force, regarded as a constant force, is:

Flr, =~k +ky)rere, =—{(k +ky)r’ (3.86)

which is the opposite of the expression in equation 3.85. Evidently, the correct
DEP is found when the spring forces are considered constant forces, as long as
the DEP found is corrected by a shift over a distance r, where r is calculated
from equation 3.86, in the direction of e, , where F, =|F,|.

3.5 Summary

This chapter has regarded forces acting on a rigid body from the perspective of
their contribution to its state of motion. It was found that the resultant force of
two forces not only yields equal contribution in situations of static equilibrium
but in any (dynamic) nominal state of motion. The force equation
(equation 3.18) determines the magnitude and direction of the resultant (free
vector), while the moment equation (equation 3.19) confines the resultant force
vector to act along the line through the intersection of the action lines of the
original forces (sliding vector). Thus, the instantaneously (statically) equivalent
force of two arbitrary forces is determined.

For dynamic equivalence, it was argued that the contribution of the forces to
the stability was to be analyzed. Therefore, variations about the nominal state

51




were considered. Due to the differentiation involved, the character of the forces
had to be taken into account. For the equivalent force of two constant forces, an
additional scalar equation was found, called the stability equation (for constant
forces), which uniquely locates the resultant force on the previously found line
of action (bound vector). Thus, the dynamically equivalent resultant force
(DEF) of two arbitrary but constant forces, given as bound vectors, is uniquely
defined by the force equation (equation3.18), the moment
equation (equation 3.19) and the stability equation (equation 3.39), together a
set of one vector equation, two scalar equations, and four unknowns
(magnitude, direction, and the x- and y-coordinates of the application point).
The application point of the DEF was called the dynamically equivalent point of
application (DEP).

Graphical inspection of the stability equation revealed the most notable
phenomenon that the DEP, the application points of the original forces, and the
intersection of the action lines of the original forces, are all located on the same
circle. This yielded a convenient graphical way to find the dynamically
equivalent of two constant forces. In the special case of constant forces of equal
direction, for instance two gravity forces, the DEF was found to apply between
the application points of the original forces at distances proportional to the
magnitudes of the original forces. In the case of gravity forces, this is exactly at
the combined center of mass. Clearly, the center of mass is the dynamically
equivalent application point of mass forces. It can therefore be concluded that
the proposed procedure for finding dynamically equivalent resultant forces is
the generalization of the commonly accepted procedure for finding the center of
mass.

As regards central linear forces, such as zero-free-length spring forces, three
conditions (stability equations) for dynamic equivalence are found in addition
to the force and the moment equations: two scalar equations and one vector
equation (equations 3.66 through 3.68). As there are five unknowns, no solution
is found in general. However, two special solutions are possible. The first one
was found by restricting the motion to rotation and substituting the two central
linear forces by a resultant constant force, rather than a resultant central linear
force. The second solution was found in case the central linear forces apply at
the same point of the rigid body. As to the latter solution, it was found that two
zero-free-length springs, connected to the same moving point, can be composed
into a single zero-free-length spring, hinged between the moving point and a
stationary fixed point. A graphical construction for the DEP of two central
linear forces was not found. However, a correction was proposed to compensate
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for the error introduced in case the circle-construction for constant forces would
be applied to a situation with central linear forces.

Finally, demanding zero stability for the two-spring system where the
springs attach at the same point of the movable body yielded the solution of a
link connecting the ends of the dynamically equivalent one, which is a statically
balanced mechanism of a rather trivial kind. However, by replacing the
resultant spring by two dynamically equivalent springs in one of infinitely
many ways, neutral stability was maintained, yet now in a most useful design.
This spring mechanism was called the basic spring force balancer.
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4 Conception framework

in which a simple balanced spring mechanism incorporating zero-free-length
springs is adopted as a basic spring force balancer; elementary rules for its
modification are derived; and the combination of the basic spring force balancer
and the modification rules is proposed as a framework for the conceptual design of
statically balanced spring mechanisms.

4.1 Introduction

Counterweights or springs can only rarely act directly on the system
which is to be balanced. Therefore it is usually necessary to have a
special mechanism which transmits the forces into the system and, by
reason of its transmission ratio, establishes equilibrium in the system.
Such a mechanism, to be known as an adjustment mechanism, has
therefore special importance, and the determination of its dimensions
becomes of great importance when concerning oneself with force
balancing.

H. Hilpert, 1968

Principally, in order to achieve a statically balanced system, at least two
conservative forces are required, which must be associated in such a way that
they yield zero stability. In other words, at least two potential energy storage
devices (e.g. springs and masses) are required, which must be coupled in such a
way that their energy characteristics as a function of the degrees of freedom add
up to a constant value. When balancing pre-existing unbalanced systems, an
adjustment mechanism connecting the potential energy storage devices will
generally be required to connect for instance the compensation spring to the
mechanism to be balanced. As this adjustment mechanism may have to
accommodate strongly non-linear characteristics, it may be accordingly
complicated. However, when the design of energy-free systems is commenced
from scratch, much less complicated, inherently balanced systems can be
designed. Then the characteristics can be adjusted to one another employing as
little of an adjustment mechanism in between as possible. This kind of systems
is aimed at in this thesis. Indeed, this approach of starting a design with a
balanced system, even when the ultimate goal is a non-zero-stiffness
mechanism, may very well be favorable for system behavior in general.

By way of illustration of the effect of even a simple adjustment mechanism,
figure 4.1 displays two situations of the connection of two equal zero-free-
length springs of stiffness k. The direct connection in figure 4.1a yields a
resultant (translational) stiffness of twice the individual stiffness of the separate
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Figure 4.1  Adjustment mechanisms between two zero free length springs: (a) direct in-line
connection, (b) connection through rotatable link. With equal zero free length springs of
stiffness k. the direct in-line connection results in a stiffness of 2k, whereas the connection
through a rotatable link yields a balanced mechanism.

springs, whereas the connection through the crank in figure 4.1b yields zero
(rotational) stiffness and therefore perfect balance. Apparently, when the task is
to move a point under the influence of two zero-free-length springs from 4,
to 4,, a stiffness range from 2k (direct in-line connection of the springs) to
zero (by applying the basic spring force balancer) can be covered by adjusting
the parameters of two springs and a single link.

The previous chapter arrived at the system of figure 4.1b via inspection of
the equations for the composition of two zero-free-length springs, from a
synthetical perspective. However, as it is against all probability that the
solutions for a specific problem can be derived from the theory in this way, this
chapter will employ a different approach. The spring mechanism of figure 4.1b
will be adopted as the basic spring force balancer, the starting point for the
conception of statically balanced spring mechanisms, to be put up in this
chapter. The approach differs from the classical mechanism synthesis
methods [4.1] in that the already statically balanced basic spring force balancer
is developed into a mechanism of desired specifications, rather than that an
adjustment mechanism is synthesized to match the required transfer function
between the energy storage devices. The result is more a lucid and logical
framework than a general method, yet it is perceived to give a great deal more
insight into the conceptional design.

This chapter will start with a brief deliberation on zero-free-length springs,
as these will play an important role in the approach proposed (section 4.2).
Subsequently, the basic spring force balancer will be discussed in section 4.3,
followed by an investigation of several ways to modify the basic spring force
balancer in section 4.4. This will result in a set of modification rules and
directives on how to use them (section 4.5). The combination of basic spring
force balancer and modification rules will be denoted as the framework for the
conception of balanced spring mechanisms. This framework will function as the
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Figure 4.2 Spring characteristics: (a) extension spring with zero initial tension so that free
length equals initial length, (b) extension spring with some initial tension so that the free length
is smaller than the initial length, (c) spring with zero-free-length due to an initial tension of kL,.

design toolbox for chapter five. As the framework has been put up from the
perspective of potential energy, it is interesting to investigate the influence of
the modification rules on the stability. This will be done in a separate section,
section 4.6. The chapter will conclude with an overview of the modification
rules.

4.2 Ideal springs

Correct Anglepoising spring are characterised by the feature that the
force exerted by them is always proportional to their length and the
length of an Anglepoising spring is considered to be the distance
separating the centres of the pins by which they are anchored to the
machine.

George Carwardine, ca 1932

Principle

It will become clear in the next sections that the design of statically balanced
mechanisms is favored by the use of zero-free-length springs [4.2]. The free
length of a linear spring should be well distinguished from the initial length. To
illustrate this, definitions are given and a special diagram is used. The initial
length L, is the distance between the insides of the spring loops when no
external load is present. The initial tension F, is the force needed to separate
the coils at all. The diagram of three springs characteristics will now be
discussed: without initial tension, with some initial tension (as most helical
extension springs have), and with increased initial tension. When there is no
initial tension and the spring is stretched along a straight line, the origin of the
diagram is in fact set at the neutral position of the free end of the spring. The
initial length in these cases is of no concern. However, in applications where the
spring rotates when stretched, it becomes more logical to select the fixed end as
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Figure 4.3 Resolution of spring forces in u and v direction: (a) ideal spring, where F,~ku
and F,=kv, (b) normal spring, where F,=k(u-fse,) and F,= k(v-£,e,).

the origin. Thus, a force-length diagram results, rather than the usual force
deflection diagram.

Figure 4.2a shows the force-length characteristic of a spring of which the
coils do not (or only just) touch one another. Deflection will linearly increase
when force builds up. The spring in figure 4.2b is coiled with some initial
tension. Although the stiffness and the initial length do not change, the force
needed for a given deflection does change, and the characteristic appears to
intersect the length-axis at a point closer to the origin of the graph. The free
length £, of a linear spring is defined as the distance from the origin to the
intersection of the (extension of the) characteristic and the length-axis in the
force-length diagram. Thus, the free length of a spring with initial tension is
smaller than the initial length, and is calculated as ¢, =L,—F,/k. As the
initial tension increases, the intersection of the characteristic extension
approaches the origin.

A special case emerges for Fy, = kL, when the intersection coincides with
the origin of the force-length diagram. The free length is zero and the force has
become proportional to the length of the spring, rather than to its deflection
only. Springs or spring arrangements exhibiting this behavior are called zero-
free-length springs. Extension springs with zero free length, constant spring
rate, limitless strain, zero mass, and forces acting along their centerline are
termed ideal springs in this thesis. Springs with a free length greater than zero
will be called normal springs.

Usually, the free length of extension springs is greater than zero. The force
due to deflection of the spring yields:

F = ki(li —EOi)z ki(ai - ‘fm): ki(ai/c Ty _eo.') 4.1

where F; is the spring force, k; is the spring stiffness; /; is the actual length of

1
the spring; ¢, is the free length; a; is the position vector of the one end of the
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Figure 4.4 Force and potential functions of ideal and normal springs of equal stiffness,
restricted to moving in the x-y-plane: (a) ideal spring force characteristic: cone, (b) ideal
spring potential function: paraboloid, (c) normal spring force characteristic: chopped cone, (d)
normal spring potential function: note that this is not a chopped paraboloid [4.3].

spring; and r; is the position vector of the other end of the spring. If one end of
the spring is fixed, @; will be associated with the fixed end, and » with the
moving end. In extension springs with initial tension, the free length ¢, should
be well distinguished from the initial length L. In ideal springs, the free length
is zero and equation 4.1 reduces to:

F =kl =k(a,—r)=kla,.-r,,) 4.2)

Thus, the force vector of an ideal spring is equal to the difference of the
position vectors of its ends, multiplied by the spring constant. This feature will
prove to be most useful in the treatment of forces in ideal spring mechanisms,
especially because the components in any directions u and v are equal to the
excursions in these directions multiplied by the spring stiffness, as is illustrated
in figure 4.3. The resolution of the spring force in skew components, rather than
in orthogonal directions, will be termed skew resolution.

In an x-y-F-graph, an ideal spring, fixed at the origin, is characterized by an
upside-down cone with its apex in the origin of the diagram, while the potential
energy function shows a paraboloid that touches the origin (figure 4.4ab).
Normal springs are somewhat more complex. The cone in the x-y-F-graph has
an imaginary apex below zero, and the x-y-V graph has a flat circular zero-
region (figure 4.4cd). In both graphs, the area inside the free-length circle (the
intersection of the cone with the ground plane), or indeed inside the initial-
length circle, is of no practical significance.
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Figure 4.5  Practical embodiments of zero free length springs (additional versions included
in appendix 4.1): (a) pulley and string [4.2), (b) storing the free length away behind the pivot
using a guiding element [4.2], (c) similar, with rolling-link guide.

Practical embodiment

Unfortunately, zero-free-length springs are not readily available. The free
length £, of off-the-shelf springs usually amounts to 70 to 90 percent of the
initial length L,. There are, however, several ways to achieve zero-free-length
behavior. The practical embodiments can be classified into two groups: one
group with increased initial tension, and another that hides the free length
(references included in [4.2], additional embodiments are given in appendix 4.1).

One way to increase initial tension is to employ a special coiling process,
where the wire is twisted while being coiled (appendix 4.1, [4.2]). As a result,
the coils are pressed together due to initial tension in the wire. As was argued in
figure 4.2¢, the free length ¢, of a helical extension spring becomes zero when
the initial tension is increased to the value kL,. This yields ideal spring
behavior in the range from L, to the maximum deflection. It is noted that the
maximum deflection is decreased as compared to a similar spring without initial
tension. Increased initial tension can also be achieved using a compression
spring with two internal brackets (appendix 4.1, [4.2]).

A second way to achieve ideal spring behavior is to store the free length
behind a guiding element. One example is a string passing through a guide eye
or a pulley, configured such that the free end of the string starts building up
force as soon as it leaves the guide eye or the pulley (figure 4.5a). Another way
to store the free length of the spring is to devise a physical point on the action
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Figure 4.6  Basic spring force balancer in slightly generalized form.

line of the ideal spring, and align this point by a guiding element (such as for
example the one in figure 4.5b, see also appendix 4.1 and [4.2]). In this class of
ideal spring emulators, a guiding eclement is needed to avoid instability. Hence,
some friction is involved in most practical embodiments of ideal springs. A
special alignment arrangement is the one using a Rolamite with a modified
flexible band arrangement shown in figure 4.5c.

Other ideal spring emulators include out-of-plane bending elements and
special materials (appendix 4.1). Due to their practical inconvenience, they will
not be discussed further.

4.3 Basic spring force balancer

For all tasks of balancing, one will make an effort to bring the balancing
back to those cases, since they result in the simplest principles of
action.

H. Hilpert, 1968

Figure 4.1b showed the balanced spring mechanism derived earlier (section 3.3)
from zero stability considerations. As this particular mechanism, especially in
the symmetrical version with k, =k, and a;=a, =7 =r,, probably is the
simplest (non-trivial) statically balanced spring mechanism, it will be adopted
as the starting point for the approach used in this thesis, and be called the basic
spring force balancer. This system will now be analyzed in some more detail,
to derive the conditions for static balance and to investigate the forces in the
mechanism. To this end, the potential will be derived, first for one spring, then
for the complete mechanism. A slightly more general diagram will be used,
with different indices for each spring (figure 4.6).
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Figure 4.7  Skew resolution of forces: (a) symmetric basic spring force balancer, (b) slightly
generalized basic spring force balancer.

A configuration of a spring, attached between ground and the end of a
rotatable link, for example the triangle CP, 4, for spring k;, will be called a
spring-lever element. The moving end of the spring is located on the line
carried by the unit vector e,, which moves along with the link. Another unit
vector e, =ay,, /|al ,c| is introduced, and the following vectors are defined:
K, =he,, h.=he,, a, =ae, and a,, =-a,e,. Then the potential of the
spring-lever element i is:

Vx‘ = é‘ki(ai/c —';"Ic)r(ailc _';'/c)+K (4.3)

where K is a constant value, dependent on the choice of the potential datum.
Since the potential of a relaxed spring is zero, it is reasonable to select K =0 in
this case. Consequently:

V= %ki(ai/c - ri/z.‘)T(ai/c - "i/c)= %ki(aiea - riedp)r(aiea - ';'ew)
= %ki(ai2 —2a;r;cosp + r? )= %k,»(a,»2 + ’;_2 )— ka;r,cosp 4.9

where @ is the angle between e, and e,. Therefore, the total potential
V =¥, +V, of the system in figure 4.6 yields:

V= %kl(alz +r )+ %kz(a% +r3 )_ kyayr; cos @ — kya,r, cos(z — ) 4.5)
From this equation, the moment equation can be derived:

V , = ki sing — kar, sin g (4.6)

One solution for moment equilibrium is ¢ =0 (the action lines of both spring
forces pass through the pivot), but to achieve moment equilibrium for any ¢,
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Figure 4.8  Basic spring force balancer: (a) symmetrical case with k;=k; and a;=a>=r;=r;, (b)
diagram explaining the use of Pythagoras' theorem to obtain the basic spring force balancer.

and under the condition that both 4,C, 4, and C, A, P, are collinear, the
following condition must be satisfied:

kan, = kyayr, “4.7)

The same result is obtained by demanding that the total potential energy
(equation 4.5) is constant, which happens when the cosine terms cancel. From
the condition in equation 4.7, it is seen that the parameters &;, a;, and #, can be
chosen somewhat arbitrarily, as long as their product k,q;7; remains constant.
Thus, more convenient combinations of spring attachment points and stiffness
can be selected [4.4]. In the next section, this capacity will be used to modify the
basic spring force balancer while maintaining its neutral stability.

Although the above treatise using the potential is very convenient, it will
throughout this thesis prove worthwhile (from a scientific perspective) if not
essential (from an engineering point of view) to consider the configuration of
forces in the design of balanced spring mechanisms as well. The skew
resolution of each spring force in a component parallel to the base, and a
component along the lever, yields a simple proof of the perfect balance as well
as an easy way to determine the design parameters as follows. The component
of each spring force F; parallel to the base equals k,a;, which acts on the link
at a moment arm 7;sing about the pivot, while the component along the link
equals k7, and does not have a moment contribution about the pivot
(figure 4.7b). Setting the moments of either springs equal yields ka1 = k,a,r,,
as found earlier. The reaction force in the pivot is the vector summation of the
spring force components along the link, which add up to a force of constant
magnitude ki, +k,r, directed along the link, and the difference of the
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Figure 4.9  Energy fields: (a) energy paraboloid of ideal spring [4.3], (b) conception of basic
spring force balancer through tracing a contour line of the combined energy field of two ideal
springs. The dashed circles are the contour lines of the ideal springs attached at A; and A,,
respectively, the continuous circles are the contours of the combined energy field, see also

figure 4.19.

components parallel to the base, ka,—k,a,. In the special case
when r, =r, =r, the components parallel to the base are equal, and the
resultant is equal to (kl +k2)r , always directed along the lever (figure 4.7a). In
this expression, the character of an ideal spring of stiffness (k, +k,) is
recognized, as was previously found in chapter three. The dynamically
equivalent resultant forces will be treated in section 4.6.

Before presenting rules for the modification of the basic spring force
balancer, two more perspectives for the conception, analysis and proof of the
basic spring force balancer will be given, to indicate that the possible
perspectives are by no means exhausted with equilibrium and potential energy.
Firstly, for the symmetrical case with k, =k, and a, = a, =1 =r, (figure 4.8a),
the question how to find an adjustment mechanism which effects constant
potential energy may be rephrased as follows. For a system incorporating two
equal ideal springs, the total potential must be Y k(2 + ¥ké2=K,
or 2 +42=K", where k is the spring constant of either spring, ¢; is the actual
length of spring k;, and where X and K" are constants. One may recognize the
theorem of Pythagoras in this expression, and imagine a set of right-angled
triangles, all having the same hypotenuse JK© (figure 4.8b). The locus of the
right-angled corners of these triangles forms a circle for all allowable
combinations of ¢, and ¢,. Therefore, a crank tracing this circle constitutes a
suitable physical realization [4.5].
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Figure 4.10 Graphical interpretation of the energy function of a rotatable link: (a) the
intersection of a cylinder and a paraboloid with parallel center lines is an ellipse, (b) the ellipse
corresponds with a sine function on the cylinder wall [4.3).

Secondly, the three-dimensional energy functions (figure 4.9a) can be used
as follows. Figure 4.9b gives contour plots of two equal ideal springs, attached
at 4, and 4,. The circular contour lines about A4, indicate the elastic potential
due to spring &, as a function of the position of its free end. The same holds for
the spring attached at A4,. When the free ends of both springs are connected to
one moving point, the energy functions are to be added up. The result is another
paraboloid, indicated schematically in the figure (see also figure 4.19). If the
moving point traces any of the contour lines of this combined energy function,
the potential will remain constant. As the contour lines of the combined energy
field are circles, a link suffices as the adjustment mechanism. In case of equal
springs, the link is to rotate about the midpoint of line 4,4,. The case of
unequal (ideal) springs is treated later in the next section, while chapter six is
concerned with the case of non-ideal springs.

Yet another graphical approach is suggested in figure 4.10. The circle in the
ground plane of figure 4.10a is traced by the moving end of a rotatable link.
This trajectory cuts off a shape from the energy paraboloid of an ideal spring. It
was found that the intersection of a paraboloid and a cylinder with parallel lines
of symmetry is situated in an inclined flat plane, and has the shape of an ellipse
(this remarkable fact is proved in appendix 4.2). Consequently, the height of the
cylinder wall as a function of the rotation angle of the link is a sine function
(figure 4.10b). This provides another way of deriving the basic spring force
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Figure 4.11 Modification rule 1: variation of parameters: (a) basic spring force balancer, (b)
reduced arm lengths and increased stiffness of spring-lever element labeled 1. Note that the
potential and the pivot force are affected.

compensator. The total energy becomes constant by placing two of these sine
functions in opposite phase, which implies two ideal springs diametrically
opposed with respect to the fixed pivot of the link (some additional peculiarities
are given in appendix 4.2).

44 Modification operations

This means that, if desired, a spring may be attached between a
kinematic constraint link and the fixed reference. In this special case,
the physical location of the spring becomes somewhat more arbitrary,
and more convenient locations for spring attachment may be used.

G. K. Matthew, D. Tesar, 1976

The basic spring force balancer can be modified without distorting its balance
to serve many purposes, including efficient use of available space, the use of
off-the-shelf springs with prescribed spring rate, and the design of mechanisms
with a specific function. In this section, seven modification rules will be derived
(references are included in endnote [4.4]).

Variation of parameters (rule 1)

It has already been proved (equations 4.5 through 4.7) that the basic spring
force balancer is statically balanced for rotation about the pivot under the
conditions that k,ar, =k,a,r, and A, C and 4, are collinear. Figure4.11
illustrates a modification of the basic spring force balancer according to the
latitude in design granted by this condition. The parameters &;, 4;, and r; of a
spring-lever element can be chosen as appropriate as long as their product k,a;r;
remains constant. Thus, a compact compensation unit can be made, or link
lengths can be adjusted to the exact spring specifications.
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Figure 4.12 Adjustable ideal spring arrangement: (a) helical spring with sufficient pitch used
as extension spring in zero-free-length configuration, (b) nut with extension on threaded rod
with pitch equal to the pitch of the unloaded spring allows disengagement of coils, thus
effecting increased stiffness [4.6].

In addition to the geometric modification of the parameters a and r, also
the stiffness & can be adjusted. A profitable way of achieving this is by using
the mechanism in figure 4.12b. Inside a helical spring, of which the coils do not
touch when unloaded, a threaded pin is mounted with a pitch equaling the
springs pitch. By turning a bolt with extensions holding one coil, the number of
coils engaged is changed. When n,, is the total number of coils and »,, the
number of active coils, the resulting stiffness has become &~ =(nm,/nd,)k.
Thus, the stiffness of the spring can be adjusted, not only when no load is
present but also when loaded, without changing the free length [4.6].

One remark should be made. Changing the parameters £;, g;, and 7, even
when their product is invariant, generally does require energy. The variable
terms of the energy functions in equation 4.5 still cancel under this modification
operation, but the constant terms are changed. Therefore, in general, this
operation yields a mechanism with altered total energy, so the modification
cannot be effected in an energy-free manner.

Rotation (rule 2)

Similar to the translation of forces along their line of action, moments can be
rotated about a pivot. Thus, considering a spring-lever element as a moment
generator, it can be rotated as a whole about the pivot. The procedure as applied
to the basic spring force balancer can be imagined as follows. First the springs
are frozen. The lever is duplicated and the resulting individual spring-lever
elements are rotated about the fixed pivot by an angle of £ (figure 4.13). Then
the springs are fixed to ground again, the levers are synchronized by connecting
them by a link so that a rotatable body is formed, and finally the springs are
thawed. The resulting generalized basic spring force balancer is called the
spring butterfly. The potential of the spring-lever elements essentially remains
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Figure 4.13 Modification rule 2: rotation of spring-lever elements: (a) basic spring force
balancer, (b) result after element labeled 2 was frozen, rotated counterclockwise by an angle
P, and thawed. This arrangement is called the spring butterfly.

unchanged under this procedure so the state of static balance is maintained.
Indeed, unlike rule 1, rotation has no influence on the total potential and can
therefore be effected in an energy-free manner.

Shift (rule 3)

A third modification is to shift the individual spring-lever elements apart by a
shift vector b=be,, where e, is the unit vector in shift direction, and
connecting the levers by a link into a parallelogram arrangement (figure 4.14).
Although a number of additional links is introduced, this operation does not
influence the potential energy functions of the springs. Therefore, under this
operation, the mechanism remains perfectly balanced, and the modification can

(@) ®)

Figure 4.14 Modification rule 3: shift of spring-lever elements: (a) basic spring force
balancer, (b) result after element labeled 2 was shifted by the vector b=be,
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Figure 4.15 Special shift modification: (a) basic spring force balancer. (b) balanced
parallelogram.

be carried out encrgy-free. Note that shifting in any direction is allowed, even
into the third dimension, as long as the spring-lever elements remain in parallel
planes, and reasonable transmission angles are maintained.

When the two equal spring-lever elements of the symmetric basic spring
force balancer are shifted towards each other along their common base, the
balanced parallelogram results (figure 4.15). This conveniently demonstrates
that any parallelogram, with equal ideal springs on its diagonals, yields a
statically balanced spring mechanism, as may be verified by inspection of the
potential. With equal springs, &, =k, =k, the total potential reads:

V=Lkt? +1he,t =1k{e 2 +2,?) 4.8)
In a parallelogram, the lengths of the sides relate to the lengths of the diagonals
according to:
2 2 2 2
02+ 0,2 =2+ r2) 4.9)

where 1 and r, are the sides, and ¢, and ¢, are the diagonals. Substituting this
expression into equation 4.9 learns that the potential is constant, which
concludes the proof.

Kinematic inversion (rule 4)

Clearly, kinematic inversion of the whole mechanism has no effect on relative
motion of the elements, including the springs (figure 4.16). Therefore, the
system behavior is unchanged, and the modification can be effected energy-
free. Interesting is that the resultant force of the springs acting on the moving
part now yield a constant force with unchanging direction relative to the fixed
reference system.
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Figure 4.16 Modification rule 4: kinematic inversion: (a) basic spring force balancer, (b)
result after kinematic inversion.

In addition to kinematic inversion, another kind of inversion is sometimes
possible with interesting results: the exchange of springs and links. This
inversion is allowed when the links are axially loaded only. For instance, in the
balanced rhombus (figure 4.17a), which is the symmetric version of the
balanced parallelogram (figure 4.15b), interchanging springs and links yields
another statically balanced system (figure 4.17b). This system can be regarded
as a back-to-back assembly of two basic spring force balancers. As the springs
and dimensions are selected equal, the pivot reaction forces due to each basic
spring force balancer cancel. Consequently, the pivot can be omitted, which can
be a great practical advantage. Chapter five will further develop this principle of
floating suspension.

Composition and resolution of ideal springs (rule 5)

In section 3.3, it was demonstrated that two ideal springs, each fixed to the
same member with one end and attached to the same moving point with their
other end, can be substituted by a single one, and that this resultant spring is

<P <4

(a) ®)

Figure 4.17 Another kind of inversion: (a) symmetric version of balanced parallelogram
(balanced rhombus), (b) result after interchanging springs and links.
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Figure 4.18 Modification rule 5. composition of ideal springs: (a) composition of two springs,
(b) composition of more springs.

dynamically equivalent with the original springs. The composition of springs
can be very convenient in the design of spring mechanisms, for instance when
an additional spring is desired or when a spring mechanism is to be simplified.
The procedure of section 3.3 is illustrated in figure 4.18a. The substitute spring
is located on the line connecting 4, and 4,, so that ka, =k,a,, while its
stiffness amounts to k, +%, .

For the case of n springs attached to the same point P, , equation 3.64 can be
generalized into the following expression:

(Zkixar _rr)Trr/c :Zki(ai —rr)Trr/r: (410)
Rearranging gives:
Xka;
a. = 2K 4.11
- 4.11)

Thus, an arbitrary number of ideal springs, fixed to a common link, and all
acting on a single movable point (figure 4.18b), can be composed into a single
ideal spring, with its fixed point located at the position A4, (the position where
the movable point is in equilibrium under the influence of the original springs),
and with a spring rate k, equal to the sum of the spring rates of the original
springs.

This rule can easily be verified by adding the energy paraboloids of the
springs, since the result is another paraboloid. Taking the derivative of this
function yields the force-length relationship of an ideal spring of summed
stiffness. Note however, that the sum-paraboloid does not touch the ground
plane (figure 4.19), which means that the composed spring possesses increased
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Figure 4.19 The addition of two paraboloids is another paraboloid, however this sum-
paraboloid does not touch the ground plane [4.3].

energy. This energy is equal to the energy required to stretch the original
springs from their fixed points 4; to the equilibrium position 4, , the assembly
potential V, of the system, so to speak, where V,=Ykal+Y%k,a?.
Consequently, this modification is not energy-free.

Composition and resolution of ideal spring-lever elements (rule 6)
Similar to the composition or resolution of ideal springs, ideal spring-lever
elements can be composed or resolved as appropriate. Figure 4.20 suggests the
composition of elements 4 RC and 4,AC into the substitute element 4, P.C.
In fact, a sequence of previous rules is applied: first the spring-lever elements
are rotated (from 4 RC and 4,P,C into CA P’ and CAP;, by the clockwise
angles S, of and f, respectively, according to rule 2), then the arm lengths are
adjusted (from C4, and C4,, both to CP,) together with the spring rates in
order to maintain balance (rule 1), and finally the springs (now acting on the
same point 4,) are composed into spring k, using rule 5. Naturally, the
resulting substitute element can be altered using rule 1.

From this procedure with two springs, the equations for the n-spring case
are readily derived. When n spring-lever elements are to be replaced by a single
one, the potential of both systems must be equal:

%kr(ar/c _rr/c)T(ar/c _rr/c)= Z%ki(ai/c —Flye )T(ai/c —ri/c) (412)
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Figure 4.20 Modification rule 6: composition of spring-lever elements.

where index r denotes the substitute spring-lever element. Using the symbols of
figure 4.20, and defining «; as the angle between the horizontal and the
line C4;, and the angle S, as the clockwise rotation angle of spring-lever
element 4, PC, the equation becomes:

%kr(ar2 + rrz )- krarrr COS(¢ ~ar): Z(; kt (a + i ) kiairi COS((p _(ai - ﬂi )))
(4.13)

Demanding equality for any ¢, and elaboration reveals that this equation is
equivalent with the set:

k.a,r, =3 kar cosle, —(@ - B,)) (4.14)
0= karsinfa, - (@ - 5,)) (4.15)

The line on which the grounded point of the spring of the resultant spring-lever
element is to be located (defined by point C and angle @, ) is obtained using
the latter equation. It is interesting to note that the latter equation is the moment
equilibrium equation about C, which indeed gives zero for ¢ = a,. Application
of trigonometry and extracting the @, -terms from the latter equation gives the
criterion for the orientation of the substitute element:

> kayr, sm( ,8’)
> kan cos(a,. -8) (4.16)

The substitution of multiple springs acting on a rotatable body by a single
equivalent spring can be summarized as follows. When the point of

tana, =
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Figure 4.21 Modification rule 7: interchange of mass-lever and spring-lever element,
illustrated by limit transition.

attachment F, for the equivalent spring is chosen, the line on which the point of
attachment 4, must be placed follows from equation 4.16, equivalent moment
is reached if equation 4.15 is satisfied, and equivalent energy is realized if
equation 4.13 is used additionally. If equation 4.13 is not satisfied, the left and
right sides differ by a constant term. This means that the potential, though still
constant, has changed: in the potential equation (equation 4.3) of the substitute
spring-lever element, the constant X is no longer zero. The graphical procedure
already showed this: since both rules 1 and 5 are used, the total energy of the
modified configuration is altered as compared to the original configuration.

Similarity of mass-lever and spring-lever elements (rule 7)

A seventh rule is derived from the apparent similarity in the behavior of mass-
lever and spring-lever elements (see also chapter two). A slightly closer
examination reveals that a mass-lever element may very well be regarded as the
limit case of a spring-lever element. In figure 4.21, the transition of a spring-
lever element into a mass-lever element is illustrated. Following rule 2, the
base a, of the spring-lever element is enlarged. Simultaneously, the spring
rate &, is decreased, so that the product k,a, remains constant and balance is
preserved. As a, approaches infinity, k; reduces to zero. When the spring
force is resolved into a component along the lever arm F,,, and a vertical
component F,,., two things are observed: the vertical component keeps the
constant value k,a,, and the component along the lever arm F,,, has no
moment contribution (keep in mind, however, that it is present). Hence, in the
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Figure 4.22 Modification rule 7: interchange of mass-lever and spring-lever element,
illustrated using skew resolution of forces.

limit case, and under the condition mg = k,a,, the behavior of the spring-lever
element and the mass-lever clement have become identical. Gravity balancing
often is called equilibration, the system in figure 4.21d will be called the basic
gravity equilibrator.

Naturally, the fact that a balanced mechanism is obtained can also be
demonstrated using the potential. Taking the pivot as the datum for the gravity
potential, the total potential is:

V =1k a? +r2)-rkia, cos @ + mgr, cos g, (4.17)

This yields the condition rk,a, =mgr,, and since in the original configuration
the condition rk;a; = rk,a, was true, the condition mg = k,a, results.

Alternatively, the spring force can be resolved in a skew manner
(figure 4.22). The vertical component is constant and therefore behaves as a
mass. The component along the link has no moment contribution about the
pivot and can therefore be disregarded. This also shows the similarity in the
behavior of the two systems.
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Figure 4.23 Spring butterfly.

4.5 Combination of modifications

Indeed, it is clear, from the equations, that infinitely many statically
balanced mechanisms exist, for each of the architectures studied here.
Moreover, it is also found, by inspection of the equations, that
balancing is always possible for any given value of the geometric
parameters. This is an interesting result since it allows the kinematic
design of a mechanism to be completed using any criterion and the
balancing to be performed a posteriori.

|
|
' CM Gosselin, J Wang, 2000
|
|

What greatly adds to the versatility of the modification rules, is the fact that
they can be combined in many ways, due to the linearity of the equations of
motion. This capacity was already observed in the graphical procedure of the
composition of spring-lever elements. The creative combination of the basic
operations in fact constitutes the core of the conception of statically balanced
spring mechanisms as proposed in this thesis. Two important phenomena
related to the combination of modification rules are described next.

First, it is noted that order and grouping of the modification operations are
not important in the sequential application of the rules (they are commutative
and associative). Thus, the rules can be sequenced to transform the basic spring
force balancer into a desired configuration, almost without computations. For
instance, the springs in the balanced parallelogram need not be attached to the
pivots, but may be moved along their respective links following rule 1.
Similarly, by combining rules 1 and 2, spring butterflies of countless shapes can
be made (figure 4.23). As a consequence, any spring butterfly with a+ 8=7x !
and k,an =k,a,r, is statically balanced [4.4]. |

A sequence of rules was already applied in rule 6. It is interesting to note
that the procedure of rule 6 was illustrated using a system that is not balanced.
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Figure 4.24 Combined balancer for undesired spring and mass: (a) rotatable body hampered
by mass and spring, (b) gravity equilibrator, (c) spring force balancer, (d) combined balancers,
(e) simplified version.

When composing the two spring-lever elements of a statically balanced
configuration, such as the spring butterfly in figure 4.23, a rotatable body
results with a spring attached between a selected point P, and the pivot C. This
is due to the fact that rotating the spring-lever elements to the line CP,
makes 4;, C, and 4, collinear. Next, B and P, are modified to P. which
requires the spring stiffnesses to be changed according to nk, = r,kl*
and ryk, =r,k,. Consequently, a,k; = a,k,, which implies that the substitute
spring is to be attached at the pivot (see rule 5), and a trivial statically balanced
spring mechanism results.

Secondly, superposition is allowed, which is a powerful tool in the design of
balanced spring mechanisms. If, for instance, a single degree of freedom system
is hampered by multiple masses and/or springs, the spring systems required to
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Figure 4.25 Two degree-of-freedom gravity balancer: (a) principal problem: balancing a
mass at the end of a two-link open loop chain, (b) augmentative links in parallelogram
configuration, (c) balancing the first degree of freedom, (d) balancing the second degree of
freedom, (e} combining the balancing systems.

balance each of them can be designed independently and applied
simultaneously. Furthermore, if a multiple degree of freedom system is to be
balanced, it is allowed to design balancers for each single degree of freedom
while 'freezing' the other ones, provided that parameters of the balancer for a
specific degree of freedom are not affected by the other degrees of freedom. In
both of these cases, the resulting balancing systems may be combined into a
single one. Two examples will be given next.

A first example illustrates the principle of superposition, as well as the
similarity of spring-lever and mass-lever elements. Figure 4.24a shows a
rotatable body, hampered by a massm and a spring k,. The spring systems
required to balance each of them can be designed independently and applied
simultaneously, due to the linearity of the governing equations of motion. One
of many possibilities is given in the diagram. Neglecting the mass, spring k_ is
designed to balance undesired spring k, (figure 4.24c, recognize a spring
butterfly). Neglecting spring k,, mass m is equilibrated by spring &, by the
subsequent application of rules 7 and 2 (figure 4.24b). The two balancers are
combined (figure 4.24d), and finally, the springs are composed into a single
one, which balances the mass and the spring simultaneously (figure 4.24¢). In
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this example, the parameters were chosen such that springs k,, and &, act at the
same point P. to facilitate their composition into spring #, , according to rule 5.

A second example demonstrates the handling of more degrees of freedom
(figure 4.25). Suppose that a mass supported by a two-link open chain is to be
balanced. This problem cannot be solved by straightforward application of one
of the modification rules. However, an clegant solution is possible using
superposition. To this end, it is useful to construct a parallelogram according to
figure 4.25b. This mechanism is sometimes called a five-bar parallelogram
linkage, where the fifth link is the frame, which has zero length because the two
fixed pivots of links CF, and CP, coincide. The two-dimensional position of
the mass is defined by the angles ¢, and ¢,. Using the principle of
superposition, ¢, can be frozen while an equilibrator is designed for ¢, by
recognizing the basic gravity balancer in the triangle P,MA" (figure 4.25c). By
inspection, the balancing condition is: mg =kq,. However, when ¢, is
released, the spring is not attached adequately with respect to point P,, which
will move with ¢, . To avoid this problem, the spring is shifted along link r, so
that point 4 is right above point C. This shift ensures that the system is
statically balanced for ¢, in any configuration of ¢,. The same procedure is
followed for ¢, (figure 4.25d), resulting in mg = k,a, . Now the two balancing
systems are merged, simply by thawing both angles, and the two degree-of-
freedom equilibrator of figure 4.25¢ results. Proof of this is straightforward by
writing down the potential:

V =mg(r; cos @, +r,cos @,) +%kl(al2 +r )— kyar cos g, (4.18)

+1k, (a22 +rf )— kya,r, cosg,
= %k](al2 + "12)"‘%152("22 + "22)"' (mgn —kyayry) cos @, +(mgr, —kya,ry) cos @,
For the potential to be constant, the cosine terms need to cancel out, which
leads to the balancing conditions found previously. These conditions are
independent, which is due to the shift operations performed during the
conception. In the special case of a; =a, =a, as displayed in the figure, equal
springs are required, regardless of link lengths. It is tempting to compose the
springs into a single one, attached at the center of the parallelogram, according
to rule 5, but this is not allowed due to the varying distance AP, . In fact, the
assembly energy (see rule 5), would then be overlooked. Making up for this
would require an additional spring, which conflicts with the desire for a single
spring.
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Figure 4.26 Dynamically equivalent force of the spring forces acting on the moving link.

4.6  Stability of modifications

Ja gut, die Gedanken, welche schiaflos vor Gliick machen, die dich
treiben, dass du tagelang vor dem Wind l4ufst wie ein Boot, missen
immer etwas falsch sein.

All right, the thoughts, which give you sleepless nights, which drive
you, let you sail before the wind for days like a ship, always need to be
somewhat faulty.

Robert Musil, 1921

In the previous section, the basic spring force balancer was modified following
the potential energy approach. In order to investigate the influence of these
modifications on the stability, the theory of chapter three will be applied. In
section 3.3, it was found that when motion was restricted to rotation, two
central linear forces are to be substituted by a resultant constant force, rather
than a resultant central linear force. This remarkable phenomenon will be
investigated somewhat further in this section by inspecting the dynamically
equivalent forces in the configurations modified according to rules one through
four.

Variation of parameters

First, the basic spring force balancer modified by rule 1 will be reviewed.
Figure 4.26 reconsiders the neutral equilibrium configuration of chapter three,
slightly generalized as compared to figures 3.6, in that B, and P, are no longer
coincidental (as in figure 4.6). However, the points C, F; and P, are still
collinear, located on the line carried by the unit vector e, ={(cos¢ sing)’,
where ¢ is the angle between the link and the horizontal. It has already been
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proved (equations 4.4 through 4.6) that the system is statically balanced for
rotation about the pivot under the condition that k,a,, =k,a,r,. Now the
resultant of the spring forces will be investigated to verify the stability
condition. The force equation, derived from equation 4.4, yields:

V.. :_kl(al/c _rl/¢')_k2(a2/c _"z/c)z'"(klal —kya, )ea +(kyry +k2’"z)er

4.19)

As in section 4.3, the skew resolution is recognized in this expression, ,a,
being the component parallel to the base C4;, and k;»; the component parallel
to the lever CP. This way of resolution, rather than into orthogonal
components, will turn out to be of great use. Equilibrium of moments was
found for any ¢ under the condition nk,a, = rk,a;.

Lastly, the application point of the dynamically equivalent force is
investigated using the stability equation for rotation about the pivot, derived
from equation 4.6:

V oo = kia,r cOS@ — kyayr; cos g (4.20)

a result which can also be found using equation 3.68. For static balance, this
expression must always equal zero. This implies the following for the
dynamically equivalent application point of the resultant force F. .

Were F, to be regarded as a central linear force, its contribution to the
stability, according to equation 3.68, amounts to k,rr.,. +F'r,,.,
demanded to be zero. As F, passes through C, the vectors F. and (a, ‘e —rr,c)
are collinear. Therefore, using e, as the unit vector in the direction of F,, one
can write a,,. =a,e, and r,,.=r.e, , S0

which is

T T _ T T
krrr/crr/c +Fr Ve _krrr/crr/t: +kr(ar/C _rr/c) Ve

r

=k,al, .1, =kar =0 (4.21)
There are three solutions to this equation. The first one is k, =0, which is not
valid since |F, |¢0. The other solutions are that either a, =0 or ». =0. This
means that at least one end of the resultant spring must be attached at the pivot
and that the other end is hinged on the line carried by e, , at a distance 7, or a,,
respectively, from the pivot. Considering the appearance of the expression for
the resultant force (equation 4.19), this is only valid if k,a, =k,a,, or ,=r,.
This result is in agreement with section 3.3, where it was found that a resultant
spring does not generally exist, except under specific conditions, one of them
being n, =r,.
The other solution suggested in section 3.3 is to replace the two spring
forces by a constant force, which will be done next. Were F, to be regarded as
a constant force, then its contribution to the stability, according to

81



Figure 4.27 Dynamically equivalent force of the spring forces acting on the moving link of
the spring butterfly.

equation 3.38, amounts to F,r,

/> Which must be zero for neutral equilibrium.

As F, passes through C, the vectors F, and r,,, are collinear. Therefore,
using e, as the unit vector in the direction of F,:
FTr

rTrie

F,

r

=0 (4.22)

—FTre F,Tr, i’ =7,

r

Knowing that lF,I;tO, it follows that . must be zero. Consequently, the
dynamically equivalent application point of F, coincides with point C.
Apparently, substituting the two spring forces by a constant force yields
satisfactory results with respect to dynamic equivalence.

Rotation
Similar considerations apply to the spring butterfly. From figure 4.27, the
following expressions for the arm lengths are derived:

fije =he, = nR(Ble,, ay.=ae,, ay.= ~a,R(f)e, (4.23)
The potential of the modified basic spring force balancer is given by:

V =1k(ae, - re,) (ae, - re,) (4.24)

+1h(-arR(Be, ~r,R(B)e,) (- a,R(B)e, ~ r,R(B)e,)
The resultant force and moment are, respectively:

V,, =—k(ae, ~re, )~ k(- a,R(B)e, ~r,R(B)e,) (4.25)
V,=-k (Ar1 )T(a1 rle) kZ(Ar2 (,B)e) (—azR(ﬂ)e rzR( ) )
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Figure 4.28 Determination of the DEP in the spring butterfly using the geometric construction
far constant forces results in an error: the DEP is not located at the pivot (the product of this
offset distance and the resultant force is constant): (a) construction of the DEP, (b) the loci
traced by these faulty DEPs of the moving and the fixed triangles are circles.

= _rlklal (Aer)Tea + kll'|2 (Aer)rer + Vzk2(12 (AR(ﬁ)er )T R(ﬁ)ea
+ky13 (AR(B)e, )" R(B)e,
= (rka, —rkya,)sing (4.26)

where the equality (AR(,B)e,)TR(ﬁ)ed =(Ae,) e, is used. It is seen that the
same condition for neutral equilibrium results, as for any ¢ the resultant
moment must vanish. The stability condition for rotation about the pivot yields:

Vw» = (k,a,r1 —kya,r, )cos ] 4.27)

This expression also equals zero, which was expected as its integral was zero
too. Thus, it is proved that the rotation modification rule does not affect the
neutral stability of the system.

The investigation of the DEF in the spring butterfly proceeds essentially as
in the previous section, leading to the same conclusion that the force
dynamically equivalent to the spring forces acts exactly at the pivot. When the
graphical procedure for finding the DEP as proposed in section 3.4 is used,
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Figure 4.29 Investigation of the shifted configuration.

where a constant error term is expected (see equation 3.85), the following
results are obtained. It is found that the DEP traces a circle of which the center
does not coincide with the pivot (figure 4.28). Simultaneously, the resultant
force is not constant either. It will be shown, however, that the error term is
constant. Using the expressions from equation 4.23, the stability equation for
constant forces (equation 3.39) yields the following:

I.‘rrrr/c = IrlTrl/c +F2Tr2/c (4'28)

= kl(al € ’ier)rrler + kz(‘ aZR(ﬂ)ea - rZR(,B)e,)T(rzR(ﬂ)e,)
=kap eaT e, - kl'iz - kzazrzef e, -~ kz"z2 = _k1’12 - "72"22

This shows that the error introduced by applying the construction for constant
forces to the situation of central linear forces introduces a constant error. It is
interesting to note that applying the circle construction to the spring forces
acting on the frame yields a similar result: Fr,,, =—ka} —k,a?, and that the

addition of these products is equal to the opposite of twice the potential energy
of the springs, which is found by substituting equation 4.7 into equation 4.5:

v =Lk(a? +n2)+ Lk (a2 +r2) (4.29)

As may be gathered from figure 4.28, the construction of the DEPs of the forces
on the moving lever and on the frame incorporates much geometric
regularity {4.7], but this will not be pursued here.
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Figure 4.30 Dynamically equivalent force of the spring forces acting on the moving link of the
kinematically inverted basic spring force balancer.

Shift
The shift modification is repeated in figure 4.29. The potential of the modified
system yields:

V= %kl(a]/c - 'i/c)r(al/c - "l/c)
"’%kz((“yc +b)—(ry. +b))T((a2/‘, +b)‘("2/c +b))

= %kl(al/c - rl/c)T(aI/c - "1/c)+ %kz(az/c - rZ/c)T(allc - ’2/c) (4.30)

As the shift vector b cancels, the potential of the modified configuration is
equal to the potential of the standard configuration. Consequently, the resultant
force and the conditions for static balance are the same. However, it should be
noted that the springs do not act on the same rigid body. Therefore, it is not
useful to determine the dynamically equivalent of the spring forces. Likewise,
the Newtonian approach should consider the forces on the coupler bar, or
consider the forces of the coupler bar acting on the cranks.

Kinematic inversion

For the kinematic inversion, figure 4.30, the equations remain essentially the
same, apart from a;,, and #,, changing places, which also implies that the
spring force vectors reverse direction. Therefore, the expression for the
potential is as follows:

V= %kl(rl/c _allc)T(rl/c _"1/c)+%k2(’2/c _“2/C)T(’z/c _al/c)

= %kl(allc _rl/c)T(al/c "'1/c)+ %kz(az/c "z/c)r(az/c _’2/¢) 4.31)
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Again, the potential is unaffected, and thus the dynamically equivalent force is
found to attach at the pivot.

4.7 Summary

This chapter introduced ideal (zero-free-length) springs and the arrangement of
two of these in a basic spring force balancer as the elementary ingredients of a
framework for the design of statically balanced mechanisms.

The chapter aimed to illustrate how the basic spring force balancer can be
modified without jeopardizing the neutral equilibrium. It proved to be very
convenient to use the potential. Almost without computations, the basic spring
force balancer can be modified in many ways. Each of these modifications is
not spectacular in itself, but considerable transformations can be realized when
a series of these modifications are carried out. The shift modification already
shows that additional links can be introduced, whereas the resolution of springs
gives a possibility to introduce additional springs. Smart use of the kinematic
inversion rule can increase the number of degrees of freedom. Clearly, these
modification rules can be employed as tools in the conception of statically
balanced spring mechanisms. Due to the linearity of the equations of motion,
order and grouping of a series of modifications is free, and superposition is
allowed, provided that, in the case of more degrees of freedom, the parameters
of the balancer for a specific degree of freedom are not affected by the other
degrees of freedom. This independence of the balancers can be achieved by
using the modification rules for conceiving the balancer for a specific degree of
freedom in such a way that it works properly for any configuration of the other
degrees of freedom. The modification rules, together with the superposition
principle, constitute the framework for the conception of statically balanced
spring mechanisms. The next chapter will show that the manipulation with the
modification rules can result in many different energy-free systems, illustrating
the usefulness of ideal springs and the framework presented in this chapter. It
will also demonstrate that perfect static balance does not necessarily involve
ideal springs, yet also these examples will be derived using the framework.

Figure 4.31 gives an overview of the modification rules. Seven modification
rules were identified: (1) variation of parameters; (2) rotation of spring-lever
elements; (3) shift of spring-lever elements; (4) kinematic inversion; (5)
composition of ideal springs; (6) composition of spring-lever elements; (7)
interchange of mass-lever and spring-lever element. It was noted that rules 2, 3,
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and 4 can be effected in an energy-free manner, whereas using the others alters
the potential.

The investigation of the dynamically equivalent resultant force of the two
spring forces in the modified configurations still leaves some questions open.
Apparently, substituting the two spring forces by a constant force yields
satisfactory results with respect to dynamic equivalence.

Finally, this chapter showed that some remarkable geometric theorems, such
as the intersection of a paraboloid and a cylinder with parallel lines of
symmetry being an ellipse, can be proved by regarding the potential in zero-
free-length-spring mechanisms.
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Figure 4.31 Overview of modification rules, based on a modified basic spring force
balancer: (left column) basic spring force balancer, modified basic spring force balancer after
changing parameters, modified basic spring force balancer after rotation, modified basic
spring force balancer afler shift, (right column) modified basic spring force balancer after
inversion, resolution of springs, resolution of spring-lever elements, interchange of mass and
spring.
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5 Perfect balance

in which the use of the conception framework is demonstrated by the conception of a
number of gravity equilibrators and spring force balancers with perfect static
balance, aiming at a general understanding, and dexterity in the design of balanced
spring mechanisms.

51 Introduction

Theoretically, all rigid body planar linkages having lower and/or higher
order kinematic pairs can be perfectly equilibrated. Although proof of
this claim is not complicated, this fact has not previously been
recognized.

Donald A. Streit, Eungsoo Shin, 1993

With the aid of the framework presented in the previous chapter, many useful
systems can be conceived. This chapter will present a variety of examples of
perfect static balancing of mass (equilibration) and perfect spring force
compensation. Most examples are planar mechanisms, but a number of spatial
examples are included to show that not only all planar but also all spatial rigid
body linkages having lower and/or higher order kinematic pairs can be perfectly
equilibrated.

This chapter aims to increase general insight, to enhance dexterity in playing
with arrangements of springs, rollers and links, to demonstrate the versatility of
the approach, and to stimulate its creative use for other designs. It is intended to
demonstrate that the framework allows stepwise conception of useful designs,
without distracting computations. As not so much the resulting designs but the
conception of these is the subject of this chapter, a lot of space is reserved for
the figures showing the steps taken. Implicitly, a potential energy perspective is
often assumed, yet a consideration of the forces is advantageous to arrive at a
profitable practical embodiment. The forces acting on hinges can be reduced or
even eliminated, as one example will show.

Theoretically, the proper use of the framework results in perfectly balanced
systems. However, mechanical deficiencies in the actual realization of the
mechanisms, and the errors due to the ideal spring simulation, will introduce
some error. To confront the concepts with reality, prototypes were made of
some of the examples in this chapter. The translation from a diagram into a
working prototype is not at all trivial, let alone its development into a
commercial product, as may be illustrated by the development of the elbow
orthosis by Cool and his group (figure 2.6) from the diagram in figure 5.1b [5.1].
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Figure 5.1  Similar static balancing principles: (a) mass-to-mass, (b) spring-to-mass, and (c)
spring-to-spring balancing.

This chapter will focus on the spring-to-mass and the spring-to-spring
balancers (figure 5.1). Although the previous chapters make clear that these
systems are strongly related, they have been assigned separate sections.
Section 5.2 will start with the conception of a number of gravity equilibrators,
followed by spring-to-spring balancers of different kinds in section 5.3. It is
shown that they can be conceived (and extended or simplified) in a precise and
logical, yet convenient and lucid way by using the proposed framework. Whilst
the previous sections are restricted to ideal springs, section 5.4 discusses special
solutions with normal springs and yet perfect static balance. Finally, section 5.5
demonstrates the surprisingly easy extendibility of the conception approach into
the third dimension.

5.2  Gravity equilibrators

Die Anordnung von zwei Fedemn ergibt im Aligemeinen einen
resultierenden Drehmomentenveriauf mit der gleichen Charakteristik
wie bei einer Feder. Man kann aber die Belastung des Lagers [-] durch
die zweite Feder und deren Authdngung beeinflussen.

The arrangement of two springs generally yields a torque similar to that
of a single spring. However, the second spring and its attachement can
affect the pivot load.

Kurt Hain, 1952

Static balancing of the weight of mechanisms is a well-known field of
application of spring balancers. Many researchers have addressed the perfect
equilibration of weight by means of springs (1.5, 1.6], and an impressive body of
patent literature exists on this topic [1.6]. This section elucidates the conception
of a number of gravity equilibrators. In specific cases, such as in adjustable
desk lamps, a certain amount of friction may be desirable, but in many other
cases, friction will have a negative influence on the proper functioning of the
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(a) (b)

Figure 5.2 Forces in the basic gravity equilibrator: (a) determination of the pivot force, (b)
skew resolution often enhances understanding.

device. Therefore, in several examples, the conventional pivots are replaced by
rolling joints [1.14], resulting in low friction solutions that require few parts,
little space and no lubrication. The value of a force analysis will be shown
convincingly, especially in the example of the Floating Suspension, where the
pivot load is eliminated by using a second spring in a profitable way, so that
pivots are not required at all. For clarity of presentation, most of the examples
consider only the payload. However, inclusion of link mass (and even spring
mass [5.2]) still allows exact solutions, as will be illustrated in some of the
examples.

Basic gravity equilibrator

Figure 5.1b presents the most elementary spring-to-mass balancer which will be
called the basic gravity equilibrator (see also section 4.4). The forces present in
the basic gravity equilibrator can be considered in two useful ways. Regarding
the link as a system of three forces learns that the action lines must intersect,
this quickly yields the pivot force (figure 5.2a). Skew resolution (into

(a) ®) © e/

Figure 5.3  Rolling version of basic equilibrator with constant normal contact force: (a) basic
equilibrator, (b) special version with r=r,,, (c) rolling version with r=R;tR;, (d) forces on the
roller: as mg=ka, only kr remains as the resultant force.
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(a) (b) (c)

Figure 5.4  Two degrees-of-freedom: (a) statement of the problem, (b} equilibration of first
element while second element remains fixed, (c) vertical yet mobile base for first element
realized by parallelogram linkage, and balancer for second element.

components vertical and along lever, figure 5.2b) allows an easy proof of the
perfect static balance, similar to the treatise in section 4.3 for the basic spring
force balancer, since the vertical component of the spring force is constant.
Using the components of the spring force, the moment equilibrium about the
pivot yields the following condition:

mgr,, =rka (5.1)

where £ is the spring stiffness, » is the distance from the pivot to the
attachment point of the spring on the link, and r,, is the distance from the pivot
to the center of mass.

The magnitude of the spring force component along the link is constant as
well, which can be useful as follows. Under the special condition that the spring
attaches at the center of mass, the pivot force is always directed along the link.
This allows a simple rolling version, where the link is replaced by two rollers
(figure 5.3). An interesting feature of this configuration is that the contact force
between the rollers is constant and purely normal, as is easily seen when the
forces on the moving roller are resolved into vertical and radial components
(figure 5.3d).

More degrees of freedom

There are several ways to design multiple-degree-of-freedom equilibrators. This
section will present a first one, while others will follow later in this chapter.
Figure 5.4a shows the principal problem of a two-link open-loop kinematic
chain, loaded by a weight at its end. The distal element (far from the fixed
pivot) can be equilibrated according to equation 5.1 when the proximal element
(close to the pivot) is fixed (figure 5.4b). When this element is to move as well,
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(a) (b) (c)

Figure 5.5 Derivation of balancing conditions using superposition: (a) spring k> fixed, yields
the balancing system for angle @,, (b) spring k, fixed, vields the balancing system for angle ¢-
(¢) with spring k, fixed, the mass may be moved along the translating link.

an auxiliary parallelogram can be constructed in order to keep the base of the
distal spring-lever element vertical (figure 5.4c). One may now wonder how to
balance the proximal element. The easiest solution is provided by using the
potential energy perspective and the principle of superposition (figure 5.5). As
the distal element is balanced, no energy needs to be taken or given by the
spring of the proximal element when only the distal element moves
(figure 5.5a). On the other hand, as the proximal element moves and the distal
one is frozen, the mass traces a trajectory congruent with points F, and P,
(figure 5.5b). Therefore, the balancer of the first element experiences the mass
as if it were fixed anywhere on link BP (figure 5.5¢). Consequently, the
balancer of the proximal element can be identical to the one of the distal
element. This will be illustrated by writing down the potentials of the springs
and the mass, respectively:

V =1k (a2 +rl )— nkacos g, +1k, (a2 +r )— rkya cosp, (5.2)
+ mg(rm cos@, + 7, cos (/72)
=K+ (mgrm —nka )cos o+ (mgro -nk,a )cos @

where K is a constant value. It is seen that the balancers are independent, and
that the balancing conditions are:

mgr,, = rika (5.3)
mgr, = nk,a (5.4)

A force analysis gives the same result, and provides insight on how the
system is loaded. It is especially interesting to see how this mechanism solves
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Figure 5.6  Forces in the two-degree-of-freedom equilibrator of figure 5.5: (a) lower
proximal link, (b) upper proximal link, (c) vertical link, (d) distal link.

the question of how the variable moment of the mass (which is a function
of ¢,) is taken up, without influencing the balancer for ¢, . It will prove to be
convenient to resolve the forces in components along the links, and vertical
components. First, the distal element is investigated (figure 5.6d). As the spring
force is resolved in the components ka and kr, the components of the joint
force are readily found to be kr along the link, and ka —mg in the vertical
direction. Next, the vertical link is investigated. The reactions of the spring
force components and the joint force components from the distal element are
applied, and equilibrium of the link is established as follows. The upper link of
the parallelogram is a two-force system and can therefore transmit a force F,
along its centerline only. From the equilibrium of moments of the vertical link
about its lower joint, it follows that the upper link of the parallelogram is
tensioned (figure 5.6b), and that F,asin@, = rkasing,. For equilibrium, the
lower link must exert the following forces on the vertical link: one
component F, along its centerline, opposite to the direction of the
component F, by the upper link of the parallelogram, and a component mg
acting vertically upward. Consequently, the lower link of the parallelogram is
loaded by F, along its centerline, and by the constant component mg at its
end, acting vertically downward (figure 5.6a).

Although dependent on ¢, the force F, has no moment contribution, so the
balancer for ¢, only needs to account for mg, which is equivalent to a mass
fixed at its end. From this force analysis, it is seen that each element exerts a
constant vertical force and a variable moment to its neighboring element. The
variable moment mgr,, sing, is taken up by the parallelogram mechanism (one
link is tensioned, the other compressed), while the balancer equilibrates the
moment due to the constant force mg. So as ¢, varies, the tensile and
compressive forces in the links change but the required spring force remains the
same.
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(a) (b (c)

Figure 5.7 Inclusion of link mass: (a) definition of masses and arm lengths, (b) spring k;
fixed, only m, needs to be considered, (c) spring k; fixed, masses m, m;, and m; reduced to the
end point of the lower proximal link.

So far, link mass was neglected, but inclusion of link mass (and even spring
mass can be accounted for [5.2]), need not introduce a balancing error. In
figure 5.7, a solution is given using superposition. The balancer for ¢, feels the
mass m at a distance 7, and the mass m, at a distance r,, (figure 5.7b).
Similarly, when ¢, is fixed, the balancer for ¢, feels m+m +m, at a
distance r,, and masses m; and m, at distances r,, and r,,, respectively
(figure 5.7c). Therefore, the balancing conditions (equations 5.3 and 5.4)
become:

mgr,, +mgr,, =rka (5.5)
(m +my+ mz)g"o + Mgl + mugh,, =nka (5.6)

So one way to design multiple-degree-of-freedom gravity balancers is to
stack a series of basic equilibrators on one another, where the base of each
element is maintained vertical by the construction of a parallelogram linkage
connected to the vertical base of the next proximal element [5.3]. Figure 5.8
shows an example having three degrees-of-freedom. Here, the mass is fixed to

Figure 5.8 Series of basic equilibrators gives independent action of the degrees-of-freedom,
regardless of the configuration and the distance a,, When link mass is neglected, the successive
spring-lever elements can be equal.
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(a) {b) (c)

Figure 5.9  Constant force device: (a) two equilibrators without mass combined, (b) shifted,
(c) rolling version. Stable action is to be ensured by constraining the rotation of the
intermediate link or the roller, respectively.

the most distal vertical link, but the treatise of potential or forces essentially is
the same. The distance a,, from the mass to the most distal vertical link does
not affect the equilibrium and therefore the parameters of the balancer, and
again, when link mass is neglected, the spring-lever elements in the subsequent
units can be equal.

Constant force device

Gravity balancers can more generally be regarded as constant-force
generators [5.4]. Constant force devices for more general use can be developed
from the basic gravity balancer by connecting two equal gravity equilibrators to
one another in such a way that the constant forces they generate act along the
same line (figure 5.9). Neglecting link mass, a system with two forces results,
which are constant, equal, and opposite. After shifting the two equilibrators
towards each other until their joints coincide, the links can again be replaced by
rollers. Note however, that in all of the systems in figure 5.9, an additional
degree-of-freedom is introduced, which in this case is unstable. Therefore, care
must be taken that the base does not get the opportunity to rotate. The rolling
version can be stabilized by wrapping a flexible band between the rollers.

Rolling-link equilibrator

In the system in figure 5.3c, it is inconvenient that the spring must attach to the
lever all the way up its end, at the location of the center of mass. In this section,
an alternative configuration for a single degree-of-freedom rolling-link
equilibrator will be derived. Figure 5.10a shows again the basic gravity
equilibrator. To obtain a rolling version, the fixed pivot C is to be replaced by
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Figure 5.10 Rolling-link version of the basic equilibrator: (a) basic equilibrator, (b) rotated,
(c) fixed points A and B replaced by two rollers in a Rolamite configuration, where the flexible
bands can be omitted due to the presence of contact forces.

a rolling contact, such that the relative position of points 4 and C, and their
vertical level are maintained. This is just what the Rolamite (figure 2.11b,
Wilkes, 1967) does: the centers of the rollers move horizontally, but their
distance remains constant. The orientation of the centers is constant too, be it
not vertical. To match the standard equilibrator with the Rolamite
configuration, the spring-lever element is rotated while keeping the mass-lever
element as it is, according to figure 5.10b. Subsequently, two rollers are
selected with the two fixed points 4~ and C as their centers (figure 5.10c).
Though no longer stationary, these points move perpendicular to the gravity
field, and therefore do not affect the balance of potential energy. One is free to
choose dimensions, as long as the angles # remain in correspondence with one
another, and mgr,, = rka, where a=R, +R,.

Frrt +Mg

{a) () (c) @
Figure 5.11 Forces in the rolling-link equilibrator: (a) rollers and spring as one system, (b)

axis of upper roller, (c) upper roller, (d) lower roller with mass. Note that F o, and F,,, are
generally not of equal magnitude.
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Figure 5.12  Photographs of demonstration model: (a) overview, (b) close-up of rollers.

In one respect, the arrangement of figure 5.10c is essentially different from
the Rolamite configuration. The Rolamite consists of two rollers, a frame, and a
flexible stabilization band. The rolling equilibrator, however, does not require a
flexible band to keep the parts together. Due to the continuous presence of
JSorces, the parts are kept in contact. Moreover, the configuration of figure 5.10c
is a true rolling link mechanism, in the sense that there are no tangential forces
present in the contact points, as is illustrated in figure 5.11.

A prototype was made out of available materials to verify this concept
(figure 5.12). The ideal spring was realized by a pulley and string arrangement
according to figure 4.5f, where the free length of the spring was stored on the
moving link. An interesting feature is that the string is attached to the center of
the smaller roller via an arc made out of welding wire to obtain a rolling
connection. The main dimensions of the prototype are: 7, ~400mm,
r,=40mm, r, =25 mm, and r =56 mm.

Floating Suspension
The ultimate desire in conceiving a low-friction equilibrator is an arrangement
with no pivot at.all. Obviously, simply taking out the pivot from the basic
gravity equilibrator (figure 5.1b) is not feasible: not so much because a pivot is
needed for motion (motion directed design attitude) but because equilibrium
requires a third force. Continuing on this force directed design attitude, one
could argue that in order to maintain equilibrium during motion, the pivot can
be omitted if another device, such as a second spring, were capable of supplying
the correct force during motion.

In order to find an appropriate configuration for this spring, the sixth rule is
applied to the basic equilibrator (figure 5.13a) as follows. First, the spring is
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Figure 5.13 Floating Suspension, a perfectly balanced beam with a virtual pivot: (a) basic
equilibrator, (b) spring replaced by two springs of halved stiffness, k'=k/2, and one of these
rotated by 180 degrees, (c) after removing the pivot, the link assumes a stationary, virtual pivot
while maintaining its static balance.

replaced by two springs. Clearly, balance is preserved if the spring rate is
halved: k™ = Wk, where k is the stiffness of the original spring. Subsequently,
one of the two spring-lever elements is rotated by 180 degrees, while the pivot
remains present (figure 5.13b). When considering the forces acting on the
beam, one finds that the spring forces are equal and opposite, regardless of the
orientation of the beam. Hence, the pivot force on the lever is constant, directed
vertically upward, equal and opposite to the weight of the mass. With the two
equal spring-lever elements, the balancing condition is:

2rk"a = rka = mgr,, (5.7

If now the pivot is removed, the point of the beam where the pivot used to
be, C, will come down. To investigate this phenomenon, several perspectives
can be assumed. Perhaps the most convenient one is to regard the skew
resolution of the spring forces (figure 5.14). The components of the spring
forces along the link still need to cancel each other out, as there are no other
forces present in this direction. Meanwhile, as point C is coming down, the
vertical component of the upper spring increases and the vertical component of
the lower spring decreases, both proportional with the vertical deflection,
thanks to the ideal spring characteristics (see also figure 5.14). Thus, point C
moves downward along a vertical line. New equilibrium is settled at c,
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(a) ®)

Figure 5.14 Forces in the Floating Suspension: (a) the pivot force after modification is
directed vertically upwar_d and equal to mg, (b) by moving down, the pivot force is taken over
by the springs, so that 2k z=mg or kz=mg.

located at a distance z below C, where z follows from the vertical
equilibrium:

K'(@a+z)-k'(a-z)-mg=0 (5.8)
SO
z=mg/2k" =mg/k _ (5.9)

regardless of the orientation of the beam: point C is stationary and has become
a virtual pivot (figure 5.13c). Alternatively, the linkage with the pivot
(figure 5.13b) can be regarded as the deflected configuration of figure 5.13c,
where a force equal to the pivot force in figure 5.13b is applied to the virtual
pivot. Since the pivot force is equal to mg and the spring system consists of
two ideal springs k~, the deflection becomes

z=mg/2k" =mg/k ‘ (5.10)

as was expected.

Thus, a statically balanced system is conceived which essentially consists of
a single part and two springs. This part is suspended by the spring forces only,
which has led to the designation Floating Suspension [5.5]. In addition to its
remarkable principle, there are a number of practical advantages of a floating
suspension. Firstly, an additional degree of freedom is obtained: without the
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(a) (b)

Figure 5.15 Photographs of the Floating Suspension [5.6]: (a) overview of demonstration
maodel, (b) close-up of spring system. The device has been patented [5.5).

pivot, the beam is free to rotate about the vertical axis as well. Thus, the mass
can be moved in an energy-free manner along the surface of a sphere. Secondly,
the pivot can be omitted, which reduces friction, wear, cost, and space. When,
sacrificing one degree of freedom, an axis is mounted at point C* to drive the
mechanism, it has the advantage of being unloaded (by static forces), thus
preserving low friction. This can specifically be useful in direct-drive robots.
Thirdly, the virtual pivot is self-adjusting. The beam settles itself at the
position C", which reduces the need for accurate manufacturing.

A prototype was made demonstrating the proper functioning of this floating
suspension (figure 5.15[5.6]). Main dimensions are r=23mm, a=~28mm
(adjustable), & =0.83N/mm, while the mass, m=02kg, can be fixed
anywhere along the link, presently set at r, ~ 550mm (adjustable). As the
balancing condition is linear in all the parameters, one adjustment (e.g. 7,,) is
sufficient to accommodate for all imperfections, except for the free length:
therefore also ¢ was made adjustable. The link has been made out of thin-
walled stainless steel tube. The free length of the springs was stored in a
PMMA tube (40x30mm) of 360mm overall length. Waxed nylon strings were
used which are led through hollow bolts. Noteworthy are the attachments of the
string to the link. Holes were drilled through the center of the tube, and
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(a) (v)

Figure 5.16 Modification of the Floating Suspension by variation of parameters: (a) equal
springs as in figure 5.13c, (b) the lower spring rate is doubled while its lever arm on the Iiyzk is
halved. Static balance is preserved but the beam settles at a new stationary virtual pivot C"".

triangular hooks were put through. Thus, the strings were attached to the center
of the link while some stability was gained against rotation about the centerline
of the tube.

Modifications

The floating suspension in figure 5.13¢c allows a number of modifications.
Figure 5.16 shows a version with different springs. In this case, the stiffness of
the lower spring was doubled, so kK~ =2k" =k, while the arm length on the
link was halved: r’ = Yr (rule 1). The fixed points of the springs were not
changed. When the system of forces (figure 5.16b) is compared with the equal-
springs case (figure 5.16a), it is observed that the forces along the link are still
equal, so the virtual pivot has no tendency to move. However, the vertical
equilibrium has changed since the vertical component has increased. Therefore,
a new equilibrium will settle at a new point C™ on the vertical 4,4,. From the
equilibrium of vertical forces:

K@a+z)—k(a-z)-mg=0 (5.11)
where k" = k/2, the distance z' is found to be:

z =al3-2mg/3k (5.12)
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(a) () (&

Figure 5.17 Modification of the Floating Suspension by rotating both spring-lever elements:
(a) equal springs and pivot still present as in figure 5.8b, (b) spring-lever elements rotated by
20 degrees, (c) pivot removed. Since the springs have not changed, the virtual pivot setiles at
the same position as with non-rotated spring-lever elements. The three forces intersect at a
different location due to the altered action lines of the spring forces.

Note that the deflection z* is not equal to mg/(k' + k), as might have been
expected when determining z" according to the derivation of equation 5.10.
This is due to the fact that the pivot force (not shown in figure 5.16) of the
unequal-springs case is not equal to mg, as is seen when inspecting the
equilibrium of forces:

F.=k'r—kr'=0 (5.13)
F, =mg+ka—k'a=mg+k*a (5.14)

where F, is the component of the pivot force in the direction of the link
centerline, and F, is the vertical component. This force divided by the summed

spring stiffnesses yields the correct deflection:
« F, _mg+Yka

Tk k| %k

-

=a/3-2mg/3k (5.15)

103




(0] —

X

Figure 5.18 Definitions of vectors for the determination of the condition for static balance.

Another modification is achieved when the spring-lever elements are rotated
by an angle S, as is suggested in figure 5.17. This has no effect on the moment
contribution, but the system of forces changes considerably. Figure 5.17b gives
the situation of rotated spring-lever elements while the pivot is still present. As
the magnitude of the spring forces is not affected by the rotation operation, the
resultant force on the pivot remains mg upward. Furthermore, skew resolution
in directions vertical and along the rotated spring lever-arms shows that the
vertical components have changed with respect to the non-rotated configuration
(figure 5.17a). However, since these components cancel in the equation of the
vertical equilibrium, as the terms k’a do in equation 5.8, removing the pivot
results in the same position of the virtual pivot as in the non-rotated
case, z=mg/2k" =mg/k , as is shown in figure 5.17c.

Although still balanced for rotation in the plane of drawing, the mechanism
is not indifferent for rotation about the vertical axis or about 4, 4,. In fact,
stability about B'P; is threatened as well. In the figure, the mechanism has
become stable about 44, and unstable about B'P;. Should the spring-lever
element have been rotated in the other direction, it would have become unstable
about 4, 4, and stable about B P; . Stability about PP, is regained by using
two parallel springs for each of the springs in the diagram. One of each set in
front of the plane of drawing, and one behind the plane of drawing.

In the above treatment, the balancing conditions were derived for some
special cases. Slightly more general conditions will be derived for the unequal-
springs case using the potential. The total potential is the summation of the
potentials of the springs and of the mass (with respect to O, see figure 5.18):
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(a) (h)

Figure 5.19 Generalized n-spring case, shown for n=4: (a) in arbitrary position, (b) deflected
by translation, where skew resolution reveals the fact that the translational stiffness is equal
to 2k;.

v =%k1(“1 -n —rl/c)T(al —-h —"l/c)*'%kz(az —-n —’2/C)T(a2 -5 _"2/c)

—mg(r. + rm/c)ez (5.16)

The equilibrium position can be found from the equilibrium of forces:

v, = _kl(al/c - 'l/c)‘kz(az/c - "2/c)+ mge. =0 .17

= -k ((1 - p)a'ez - rle,)— k, (—- pa'e, + rze,)+ mge, =0 (5.18)
where a” =|a, —a,|, which results in the following two conditions:

ki = ko, (5.19)

—k(1-p)a" +kypa” +mg=0 (5.20)

Selecting &k, =k, = kK’ results in p= %—mg/2k*a* or z=al2-pa =
mg/2k". Setting k,=2k =2k=k gives p=J),-2mg/3ka or
z =a /6-2mg/3k. These results are in agreement with the results found
above for the configurations of figures 5.13c and 5.16b (note that a =2a).

Generalized n-spring case

The Floating Suspension can be extended to incorporate more springs [5.7].
Figure 5.19a shows the planar case. Generally, this mechanism will not be
statically balanced. This section will investigate the behavior of a rigid body
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with mass m, suspended by n springs, and determine the conditions for static
balance. For this purpose, the tangent stiffness matrix will be derived first.

The potential of a rigid body of mass m, on whichn zero-free-length
springs are attached, reads:

V= ’ng( +er/c) ez+z x(a I/C)T( Rrx/c) (521)

where the potential of the mass is taken with respect to the fixed reference
frame, and where the summation runs from 1 to ». Differentiating with respect
to r. and @, respectively, gives:

V., =mge ~Ykla;~r.~Rr))=0 (5.22)

vy =mg(R 1) e, - Zh(R ( o) @ =1~ Rr)) (5:23)
Subsequent differentiation yields the elements of the tangent stiffness matrix:

vV, =Ykl (5.24)

Zk Rtp ilc _ZkAR Tile _ZkiAri/c (525)

Zk(& ) =Xk(dn,.)" (5.26)

Voo =mg(R,¢¢r,:,,c) Zk( ool l/c) (a -Rr), )
+Zki (R,wrl"/c) (R,wrx"/c)
= _Mg':/cez + Zkirxgc(ai =T _';'/c)+zkiri7¢ri/c
=—mgr, m/cez +2 I/C(ai _rc) (527)

Equation 5.24 can be interpreted as follows. The equation shows that in all
n -springs arrangements, statically balanced or not, the body while subjected to
a pure translation, experiences a stiffness equal to the summation of the
stiffnesses of the individual springs. This is verified graphically by skew
resolution of the spring forces in the direction of the translation b, and the
direction of the spring force in the original configuration (figure 5.19a). This
way of resolution shows that the spring forces F; in the original configuration
have become components of the spring forces in the new configuration, while
components kb are added to each of the spring attachment points (see for
instance spring k, in figure 5.19b). Consequently, the change in the total
resultant force is equal to Zk;b . The configuration of figure 5.19a does not need
to be an equilibrium position (in which case a force and a moment will
generally be present at point C). When deflected from the equilibrium
position, Zkb is the total resultant force at point C, while a moment may be
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Figure 5.20 Definition of vectors and angles, illustrated for one spring and a mass relative to
point C, where the angles a and @ are measured from the vertical, the angle B from the unit
vector e, which is defined relative to a local reference frame. To aid visualization small positive
angles are drawn.

present. In either case, when differentiated with respect to b, the same result as
in equation 5.24 is found. For the basic Floating Suspension (figure 5.13c), it
means that a stiffness & is felt when one tries to move the virtual pivot.

The conditions for static balance with respect to rotation are found by
setting equation 5.27 equal to zero. Using an arbitrary unit vector e, relative to
the local reference frame and the vertical unit vector relative to the fixed
reference frame, the respective position vectors can be written as
r,.=rR(B)e,., a,=q;R(¢)e,, and r. =r.R(g,)e,. Using these expressions
and the symbols according to figure 5.20, the expression becomes:

Voo =—mera(R(B,)e,) e, + Lk, (R(5)e, )" (R(#)e.) (5.28)
+ Zki'}rr(R(ﬂi)er)T(R(¢v )ez)
=—mgry CC’S(ﬂm + (P)"' Zklrlql COS(¢ + ﬂl - ¢1)+ zkirirc COS((D + ﬂi - ¢c)

These cosine functions can be combined into one cosine function. This will be
pursued in order to be able to demand the amplitude of the combined cosine to
be zero, thus satisfying the demand that V,, =0. As a first step, the first
summation term will be written in the form of a single cosine K, cos(¢-7y,),
where K is the amplitude, and y, is the phase angle:

2 king; COS((” +B - ¢:) =
cos @ kirig; Cos(ﬂi - ¢:)“ sinp) kg, Sin(ﬂi - ¢1) =
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M[cos @cosy, +singpcosy, M] (5.29)
cosy, > K, cosy,

where y; =(f;—¢;), and K, =k;r,q;, and where the whole expression is

multiplied by unity in the form cosy, /cosy, . Under the condition:

cosy, M =siny, (5.30)
> K;cosy;

expression 5.29 can be reduced to the single-cosine form K, cos(p+y,),
where y, is found from equation 5.30 according to:

_ Ykrg;sin(B - ¢) (5.31)

t.
s Zki';'qi COS( i‘¢i)
and where
K = YK cosy; _ Y king;cos(B; — ¢) (5.32)

cosy, COS ¥,

The same procedure is applied to the second summation term of equation 5.28,
resulting in the single-cosine form K, cos(e + y,) , where

— Zki’;'rc Sinwi - ¢c)
e Y kirir, cos(B; - 4,) (5.33)

and where

K, = Sk cos(f, ~ ) (534)

cosy,

These results are now substituted into equation 5.28, and the same strategy as

above is followed to combine the resulting three cosine functions into a single
cosine function K, , cos(¢+y,,), where:

—mgr,sin f, +K siny, +K,siny,

any,, = (5.35)
—mgr, cos f, + K cosy, +K, cosy,
and where
Km, = — Mg COSﬂm‘l"KS COS}’S +K‘COS}” (5‘36)

COS ¥ 1o

The amplitude K, of the combined cosine function is now demanded to be
zero. Doing so, while using equations 5.32 and 5.34, the condition for static
balance is found:

mgr,,cos B,, = 3 kriq; cos(B, — ;) + Lk, cos(B, - 4.) (537)
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(a) ) fc)

Figure 5.21 Example of a three-spring solution for the Floating Suspension: (a) selected fixed
spring attachment points, (b) selected spring attachment points on the moving body, (c)
resulting arrangement, solved for the parameters of the mass-lever element.

This expression can be simplified by selecting the virtual pivot for point C .
For a virtual pivot to exist at all, it needs to be the stationary equilibrium
position for point C when the beam rotates, and therefore independent of ¢ .
Rearranging the equation of the equilibrium of forces, equation 5.22, gives:

__mge, + > k(e —Rr),)

5.38

2 Sk (5.38)
Substituting r,,, = R(@)r},. = ,R(B)R(p)e, yields:

rc — _mgez + Zkiai ;Ek.rzk(ﬁz)R@’)er (539)

For this expression to be constant, the term containing ¢ should cancel out:
Zhr R(B)R(p)e, = Lk, =0 (5.40)
Under this condition the expression for r, reduces to:

_—mge, +Zka,

5.41
r=—tap (5.41)

The condition Zk;r,,, =0 implies that the last term in equation 5.37 is zero.

1

Therefore, the balancing condition is reduced to its final form:
mgr,, cos B, = 3 kirg; cos(f; - 4,) (5.42)

It is readily verified, for instance using figure 5.18, that the original two-
spring Floating Suspension complies with this condition: when
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selecting k; = k, =k, and placing the origin of the fixed reference frame at the
midpoint of 4,4,, equation5.42 gives the condition mgr,, =kra, while
equation 5.41 yields the location of the virtual pivot r, = —(mg/2k)e, . Other
solutions for the two-spring case can be found according to equation 5.40
when k= kyr, and B, = B, +(2j — 1)z, where j=123,...

Finally, one example for n=3 will be given. Equal springs of stiffness k
are used, while the spring attachment points are selected according to

figure 5.21ab. This gives for the position vectors:

a,=qR(11z/6)e, , a, =qR(x/2)e, , a;=qR(1m/6)e, (5.43)

n,.=rR()e, , r,, ., =rR(Q2x/3)e, , r,,. =rR(4x/3)e, (5.44)

Due to this selection, the condition in equation 5.40 is satisfied, so a virtual
pivot is found:

—mge, +Zka; —mg e
¢ Ik 3k

(5.45)

z

where it is noted that Zka; =0 because of the regular pattern selected for the
fixed spring attachment points. The balancing condition (equation 5.42) can
now be examined:

mgr, cos B, = 3 kirg; cos(B; —¢,)=3krgcos(z/6) (5.46)

Thus a solution is found for B, =#/6, mgr,=3krq, and z=-mg/3k
(figure 5.21c).

Stability

The Floating Suspension provides confirmation for the notion that a number of
central linear forces can be substituted in a dynamically equivalent and unique
way by a single constant force, as was suggested in section 3.3. For the case

of n =2, the following relation was formulated (equation 3.69):
Fr o=k oo+ By v horyony + Finy, (5.47)

r

This relation is applied to the basic version of the Floating Suspension, taken
with respect to the virtual pivot C (figure 5.18). Substituting the expression for
the zero-free-length spring forces, F; =k,(a; . —r,,.), gives:

T T T T
F ot .=knn. +k1("1/c "'1/c) R Hhnch . +k2(a2,c _rZ/c)TrZ/c
= kl(al _rc)Trl/c +kz("z _’c)T"z/c (5.48)

The vector (a;, —r.)=a;,. is the vector from the virtual pivot to the fixed spring
attachment point 4, while r;,. runs from the virtual pivot to the points where
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the moving spring ends attach to the lever, so each set of a;,,
spring-lever element with spring k; (figure 5.20). A solution to this equation is
possible when it is assumed that F, is parallel to the line connecting the fixed

and r,;,, putsup a

ends of the springs and its point of application is located on the line connecting
the moving ends of the springs. Hence, F, = F,e, and r,,, =r,e,. Under these
conditions, the equation becomes:

F,r,e:e, = kla,rleare, +kya,nele, (5.49)
A solution is found for any angle ¢ when:
Fr. =kan +ka,r, (5.50)

Thus, the dynamically equivalent force of the two ideal spring forces is a
constant force of magnitude ¥, and directed along e, , acting on the lever along
the extension of AP, at a distance r, from point C. Consequently, a statically
balanced system is created when an equal but opposite force is applied at the
same position. Therefore, setting e, vertical and taking F, =mg yields the
same solution indeed. This solution is not unique. As the angle between F,
and r,,, is prescribed in relative terms by the scalar product e’ e, , rather than
relative to the vertical load mg, the spring system may be rotated using
modification rule 2, as was already shown in figure 5.17. Note, however, that
the original floating suspension, as a special case of a general concept, is
particularly interesting as it is the only one that allows rotation about the
vertical axis, without falling into instability. Furthermore, equation 5.50 allows
the use of unequal springs. Figure 5.16 already showed one configuration with
springs of different stiffness that is in agreement with the condition in
equation 5.50.

Finally, it will be illustrated that application of the geometrical construction
for the determination of the DEP (point of application of the dynamically
equivalent resultant force, see section 3.4) indeed introduces an error which is a
constant term, as was suggested in section 3.4. Figure 5.22 shows the Floating
Suspension in three different configurations. In each of the configurations, the
DEP is constructed as if the spring forces were constant forces. The diagram
shows that the DEP is not located at the center of mass, where it should be for
zero stability, but at a distance r, right below the center of mass. This distance
is equal in all configurations, so P. traces a circle of radius 7,. Using the
symbols from figure 5.18, and selecting the equal-springs case, the distance 7,
is found as follows. First, the contribution of the spring forces is calculated as if
they were constant forces to find F,:

T T g T . T
Fr +Frn, =k (allc —'i/c) otk (“2/c —"2/c) e
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Figure 5.22 lllustration of the error introduced by applying the circle construction (for
finding the dynamically equivalent resultant force, see section 3.4) to central linear forces: a

constant distance is present between P,; and the center of mass.
* L * »

=k ((1 —p)a e, —re,)rre, -k ((— p)a e, + re,)rre,

=k'ra cosp-2k'r? (5.51)

The resultant force is found as:
F . =F +F,= k'((l -pla'e, ~re, )+ k'((— pla‘e, + re,)= k'(1-2p)a’e,
(5.52)

The location r,,, of F. will now be calculated using the stability equation for
constant forces:
k'ra cosp—2kr’ =k'(1-2p)a‘e’r, =k'(1-2p)a’e (r.e, +r, e,)
=k’(1-2p)a‘r.cosp+k’(1-2p)a’r, (5.53)
Equation 5.53 is true if the cosine terms and the constant terms cancel each
other out. This results in 7, =r/(1-2p) and r, =-2r?/(1-2p)a’. Using the

result p=Y—-mg/ 2k’a" from equation 5.20, it is found that r.=rk’a Img
—2r’k" /mg =—kr’ /mg . This shows that P, is located at a constant

and 7, =
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k—ky=k;

(@)/(d) (b)(e) (c)

Figure 5.23 Conception of several two-degree-of-freedom equilibrators based on balanced
parallelogram: (a) balanced parallelogram, (b) inverted in the sense that only C is fixed to
ground, (c) resolution of one spring into two ones, (d) exchange of spring-lever element by
mass-lever element and compensation for the collapse-effect, see text, (e) extension of
parallelogram into pantograph.

distance 7, right below the location re, of the mass. The result is in agreement
with the expectation of a constant error term, given in equation 3.85. As the
resultant of the spring forces is constant (equal to mg ), a constant distance r, is
expected directed along the vertical.

Generalized lazy-tongs mechanisms

In this section, the transformation of the basic spring force balancer into several
two-degree-of-freedom gravity equilibrators will be discussed. In order to
obtain a second degree of freedom, the balanced parallelogram (figure 4.15b) is
kinematically inverted in the sense that instead of a whole link, only one of the
pivots is fixed to ground (figure 5.23b). Thus, an additional degree of freedom
is obtained. Next, the spring connected to the fixed pivot is resolved into two
springs k, and k,, in such a way that their fixed points are on the vertical line
through the fixed pivot (figure 5.23c). According to modification rule 5 this is
allowed if both of the following equations are satisfied:

ky+ky =k (5.54)
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Figure 5.24 Modification of extended lazy-tongs equilibrator: (a) rotation of balancer unit by
180 degrees, (b) rearranging parallelogram CP,P;P, for improved mechanical performance.

ka, = k,a, (5.55)

The imaginary spring-lever element CP4, containing spring k, is now
transformed into a mass-lever element with a variable link length p
(figure 5.23d). It should be noted however, that in this case rule 7 does not
apply in its simplest form. Acting on a solid lever, the force component of a
spring-lever element along the link has no influence on the equilibrium: the link
does not deform so only the equilibrium of moments needs to be taken into
account. The imaginary lever CP in figure 5.23¢ however, is put up by a spring
mechanism, and therefore the equilibrium of forces along the imaginary
arm CP should be considered as well. Replacing the spring by a mass takes this
force away, and therefore the action of spring & must be reduced by decreasing
its spring rate to the value k—k,. Equation 5.54 learns that k—k, =k,
resulting in two equal springs in figure 5.23d. For the other parameters, the rule
applies unchanged. Therefore:

mg =k,a, (5.56)
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The result is a general form of the mechanism called an equipoised lazy-tongs
mechanism by Carwardine (1938) and a parallel-link equilibrator by Streit and
Shin (1993). Both the lazy-tongs mechanism and the parallel-link equilibrator
were furnished with equal link lengths: # =r,. The above treatise shows that
this limitation is not essential for proper functioning.

Extending the parallelogram into a pantograph linkage allows the gravity
compensation mechanism to be more compact, relative to the whole
mechanism. The pantograph assures that points C', P, and P" are always
collinear in such a way that CP'/CP=Ap/p=2A, where 1 is the
magnification factor of the pantograph [5.8]. Figure 5.23¢ shows one of many
possible arrangements. Static balance is proved by considering the potential:

V= %kl(af + pZ)— phia cos @ (5.57)
V agonat = 1205 +12) - £°) (5.58)
V,= (m / l)g/lpcosw =mgpcos¢y (5.59)

V=Lhka +k(n+r)+1kp’ —Lkp® +mgpcosp— pha, cosp (5.60)

Demanding constant total potential ¥ yields the balancing condition: mg = ka,,
which is easily checked by inspection of equations 5.55 and 5.56. Tt is
interesting to note that the energy functions are independent of A, which is the
magnification factor of the pantograph as well as the reduction factor of the
supported mass.

Possible modifications include alteration of the points of attachment of the
diagonal spring on links CR, and PP, respectively, according to rule 1
(parameters) or rule 3 (shift). For a more compact balancer unit, the whole
spring system can be rotated about the pivot by 180 degrees (figure 5.24a), and
the link P,P, can be changed to the other side of CF into P, P, (figure 5.24b).

Five-bar parallelogram linkage

The equilibrators in the previous section were conceived based on the
kinematically inverted balanced parallelogram. Another method for designing
multiple-degrees-of-freedom mechanisms is to apply the principle of
superposition. The example in section 4.5 (figure 4.25) already demonstrated
this possibility, the result of which will be extended in this section towards a
more useful gravity equilibrator.

Figures 5.25a shows the result of figure 4.25. For a more compact
compensation unit relative to the workspace of the mechanism, the
parallelogram can be extended into a pantograph linkage (figure 5.25b), so
that CP*/CP=Ap/p=A, where 1 is the magnification factor of the
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Figure 5.25 Conception of several two-degree-of-freedom equilibrators using the principle of
Superposition (from right to left): (a) combined balancing systems for two degrees-of-freedom
according to figure 4.22, (b) extension using a pantograph linkage, (c) rotation of spring-lever
elements.

pantograph. The governing equations do not change when the parallelogram is
enlarged by a factor of 4 and the mass is reduced by the same factor (according
to modification rule 1). If desired, the compensation springs can be hinged
below the fixed pivot by rotating the spring lever elements, including point A
and parallelogram CAPP, by 180° about pivot C (modification rule 2). In
figure 5.25c, point P~ has become a virtual point of the imaginary
lever P”CP". To avoid a double joint at point C, link CP, has been shifted to
B"P," . Note that these modifications have no influence on the energy functions
but considerably alter the force configuration. Specifically, the last modification
turns link P, P; into a three-force system. Consequently, link BP should
not be shifted up excessively.

The design parameters are easily derived from the potential functions. With
a;=a;=a, the potentials of the springs (¥ and V, ), the mass (¥,,) and the total
system (V') are given by, respectively:
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(a) (b)

Figure 5.26 Photographs of the Anglepoise desk lamp: (a) overview, (b) close-up of the
balancing mechanism.

v, =1k (a® + r?)- rkacosg, (5.61)
V :%kz(a2 +ry )‘ ryk,acos @, (5.62)

Vm = (m/j’)gh = (m/'l)g(bl °°S¢1 + 1’.2 COS¢2)= mg(rl COS(/’] + r2 COS¢)2)
(5.63)

V=1k (al2 + rl2 )+ %k(azz + rz2 )— rikacos@, — rk,acosp, +
mgr, cos@, +mgr,cosp,  (5.64)

Thus in this example with a;, =a, =a, the design parameters should relate
according to the equation mg = k,a = k,a, so equal ideal springs are required of
stiffness k=mg/a.

The linkage of figure 5.25¢ has been applied in the Anglepoise desk lamp,
indeed “a lamp which was engineered rather than designed” [5.9], see also
figure 2.7. Unlike most spring-balanced lamps, this design does not require
friction to position the lamp in all positions. Figure 5.26 shows a close-up
image of the spring mechanism. The linkage has also been applied in the model
of the statically balanced parallel manipulator by Gosselin et al. in figure 2.8.

117




© ®) (@)

Figure 5.27  Floating version of the five-bar parallelogram equilibrator (patented [5.5]), (from upper
right to lower lefi): (a) the mechanism of figure 5.25c¢ in a different position, (b) each spring replaced by
two springs of half the stiffness, and one of each set rotated by 180 degrees, (c) after removing the pivot.

Furthermore, the linkage is used as a leg in a walking robot, and in direct-drive
robots [5.10].

Floating version

Above, a well-known equilibrator was discussed, which has been reported
before, but its conception was not described earlier. Continuing using the
framework of modification rules, a useful feature can be added to the
mechanism: a floating suspension. The same approach will be used as was
previously employed in figure 5.13. Figure 5.27a shows the same linkage as in
figure 5.25¢ in a different configuration. As compared to figure 5.25c, spring £,
has not been rotated by 180 degrees, while spring k, has. Furthermore,
link CP" has not been shifted to P,"P;.

To obtain a floating version, springs k, and k, are replaced by two
springs k; and two springs k,, respectively, where k; = Y k;. Subsequently,
one spring of each set is rotated about the pivot by 180 degrees (figure 5.27b).
When the whole linkage is considered as one system, six external forces are
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Figure 5.28 Forces in the separate links of the five-bar parallelogram equilibrator: (a)
auxiliary distal link, (b) proximal link, (c) auxiliary proximal link, (d) distal link. Starting with
the examination of the distal link and applying skew resolution, the balancing conditions can be
derived.

present: the four spring forces, the weight, and the pivot force. Since the spring
forces are in pairs equal and opposite, the pivot force is equal to the
weight mg/A and directed vertically upward. Therefore, when the pivot is
removed, a virtual pivot will settle at C', a distance z below C, where
z=(mg!A)/(2k; +2ky)=(mg/A)/ 2k, +k,) (figure 5.27c). Clearly, several
kinds of modifications are possible, but they are not discussed here. One
interesting extension is made in section 5.5.

Force analysis

The force analysis of this linkage is greatly facilitated by skew, rather than
orthogonal, resolution of forces. It will be shown that the desired force
configuration, resulting in independent balancers, is achieved. To illustrate this
and to derive the balancing conditions in an additional manner, the free body
diagrams of the separate links of the mechanism are considered (with slightly
different symbols, figure 5.28). First, the distal link is examined. Vertical
equilibrium requires the component mgr, /r, to be present at B, and
mg(1+r, /r,) at point P;. This gives one component of the resultant force at
point P;. As the auxiliary proximal link is a two-force system, the resultant
force F, is directed along the line connecting its ends. Therefore, an additional
component F, is needed for equilibrium. This component also acts at the distal
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Figure 5.29 Forces in the modified version of the anthropomobile arm according to
figure 5.27b, where the pivot is still present. Only the modified links are considered, and a
constant pivot load of mg is found.

link at point P; and in opposite sense at point P,. To appreciate the forces at
point F;, the component F, is resolved into a vertical component mgr,, /r, and
a component along the upper arm link F,, as was done at point P;. It is then
seen that the total vertical component is directed downward, and equal to mg.
Since the vertical component of the spring force at B, is k,a,, the balancing
condition for spring &, is: kya;r; =mgr,. To find the balancing condition for
spring k,, the forces at point P, are investigated. The reaction of F, is again
resolved into a vertical component mgr,, /r, and a component F, along the link
P,C. As the vertical component of the spring force at P, is k,a,, the balancing
condition for spring &, is: k,a,r, =mgr,, .

For the investigation of the forces in the floating version, the version with
the pivot still present is considered first (figure 5.29). The pivot forces required
for equilibrium of the links are transferred (in opposite sense) to the pivot axis,
resulting in components F,, F,, mg, and mgr,, /r, according to figure 5.29b.
As F, and F, add up to mgr,, /r,, a pivot load of mg vertically upward is
found. This is in accordance with the result found previously.
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(a) (b) (c)

Figure 5.30 Design example of spring-to-spring balancers based on gravity equilibrators
where mass travels horizontally: (a) parallelogram-based equilibrator, see figure 5.23d, (b)
mass guided along horizontal path, in this case so that the spring acts along a stationary line,
(c) elimination of mass.

5.3  Spring force balancers

So far as normal elastic material is used, the elastic element deforms
according to Hooke's law. As a result, the compensation spring at the
other end of the wire should have negative stiffness instead of the one
following Hooke’s law to cancel the tractive force [-].

S. Hirose, T. Kado, Y. Umetani, 1983

Of particular interest for this thesis is the question of spring-to-spring
balancing. As was mentioned in chapter one, the compensation of the undesired
spring action of the cosmetic covering in hand prostheses was one of the
driving forces behind the present work. As compared to gravity equilibration,
spring force compensation is much less described in literature [1.6, 5.11].
Nevertheless, many applications exist, not only to compensate flexible
coverings but also in situations where forces need to be controlled, such as
rolling-link mechanisms, or in situations where the system is to be preloaded in
order to avoid backlash.

Apart from being useful in mechanisms, balanced spring mechanisms may
also be present in biological systems. For instance, ligaments are ascribed a
movement limiting function, but as ligaments are elastic (or at least visco-
elastic) it might be nice to think of the ligaments as a biological balanced
configuration. This would very clegantly explain the combination of firm
contact and easy movement [5.12].

This section will again use the framework as an aid in the conception of
spring force balancers. However, short cuts are possible, one of which will be
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Figure 5.31 Compensation of cosmetic covering of a hand prosthesis: (a) moving finger
hampered by cosmetic glove, represented by dashed spring, (b) compensation by means of
spring butterfly.

given here. In gravity equilibrators where the mass moves along a horizontal
path, the potential is constant also without the mass. Therefore, many of the
systems in the previous section can be adapted. One example is given in
figure 5.30. The mass of the generalized lazy-tongs mechanism of figure 5.23d
is confined to move along the horizontal through the grounded spring
attachment point 4. When the mass is taken away, a spring-to-spring balancer
remains, featuring one spring which moves along a stationary straight line. This
feature makes the mechanism suitable for balancing a normal spring, which is
the subject of section 5.4.

Basic spring force compensator
The first example of spring-to-spring arrangement is of course the basic spring
force balancer, which has come across at various occasions in this thesis
already. Over-simplified indeed, but illustrating the idea that initiated this
dissertation project is the hand prosthesis sketched in figure 5.31. The finger
mechanism essentially is a single link, which is hampered in its motion by the
cosmetic covering, represented by an ideal spring. An appropriately shaped
spring butterfly provides perfect balance. Unfortunately, the cosmetic covering
does not at all behave like an ideal spring [1.4]. To a certain extent, the matter of
balancing non-ideal springs is addressed in chapter six.

As was the case for the gravity equilibrators, there is also a floating version
possible of the basic spring force balancer, which is in fact a special case of the
n-spring mechanism in figure 5.19. In the case of zero mass, and four equal
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(a) (b

Figure 5.32 Floating version of the basic spring force balancer: (a) two basic spring force
balancers arranged back-to-back, (b) floating version, elementary case, modifications are
possible.

springs of stiftness k, the system can be arranged so that it can be regarded as an
ensemble of two equal kinematically inverted basic spring force balancers in a
back-to-back arrangement, according to figure 5.32 (see also figure 4.14).
Clearly, the dynamically equivalent resultant forces of the elements are equal
and opposite, and therefore the pivot can be removed. Modifications according
to rule 1 are allowed to arrive at solutions with unequal springs. Alternatively,
the system can be developed from the equations of the floating suspension by
selecting equal springs and equal arm lengths, and substituting m =0 into
equations 5.41 and 5.42. This yields r.=)Y(a +a,) for any ¢, and a
confirmation of the balancing condition. Thus, a statically balanced lever is
found with a stationary, unloaded virtual pivot.

One of the few spring-to-spring balancers reported in literature is the one
based on the so-called elliptic trammel or slipping ladder [5.13]. This balanced
spring mechanism can be derived as follows. A balanced rhombus (according to
figure 4.17a) is considered with its joints sliding along the axes of a fixed
orthogonal coordinate system (figure 5.33a). Arranged like this, the midpoints
of the (ideal) springs are stationary at the origin. Each spring & might as well
be seen as two springs of stiffness k* = 2k in series, and all of the resulting four
springs may be thought fixed at the origin. If now the mechanism is divided
into four equal parts, each comprising one link and two springs of
stiffness & = %k' =k, then each of these quarters becomes an independent
balanced unit. Such a unit can be materialized by adding guiding elements that
supply the support forces required, as is suggested in figure 5.33c.

The linkage of figure 5.33¢ is one of the embodiments of the elliptic
trammel. The kinematic pole P is located on the path perpendiculars of
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Figure 5.33 Conception of the slipping stepladder: (a) balanced rhombus, (b) division into
four parts, (c) slipping ladder or elliptic trammel arrangement [5.13), (d) rolling version of the
elliptic trammel [5.13].

points B and P,. As these path perpendiculars are mutually perpendicular, the
pole is always on the circle through A, 4, and P,. In any position, AP is a
diameter of this circle, so P traces a circle of radius r about the fixed point 4.
It is seen now that the moving polode 7, is a circle of diameter r, rolling
inside a circle of radius » being the fixed polode 7. All points of the link
trace ellipses of which the ones by points F, and P, degenerate into straight
lines, while the one by the midpoint of RP, is a circle. Consequently,
kinematic inversion of the elliptic trammel by fixing link AP, and allowing
point A to circle about its midpoint, yields the basic spring force balancer (see
also figure 4.8).

A low friction version can now be obtained as follows. Unfortunately,
materializing the polodes is not viable, as they are not pressed against each
other by the spring forces. However, the kinematics of the moving polode can
be realized in another way, by observing that rotation of the moving polode
about its center is of doubled angular velocity and in opposite direction as
compared to the rotation of its center about the fixed point 4. Thus, three
rollers, kept in line by two rings as in figure 5.33d, can accomplish the desired
movement of the link. The only dimensional requirement is that the roller R,
connected to the link be half the size of the fixed one R,.

As the springs attach each with one end to the same body (the link), and
with their other ends to the same point of another body (the frame), the
configuration of springs can be modified (rule 5). Since the springs are equal,
the resultant spring is found to attach at the midpoint of the link (figure 5.34b,
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Figure 5.34 Modification of slipping ladder: (a) slipping ladder arrangement, (h) application

of modification rule 5 to the springs (c) shift of spring attachment point by a distance b
according to the diagram results in an additional clamping force of kb while the svstem still can
be moved in an energy-free manner.

dashed spring). Subsequently, this spring can be resolved in many ways, as long
as ki = kyr,. The figure shows an example where , =r/6 and r, =r/3.

If the springs are fixed at other points than the origin, constant force
mechanisms of different kinds can be made. In the versions of figure 5.33, the
springs act along stationary straight lines. If the grounded spring attachment
points are shifted along the straight line guides, the spring force components in
the direction of point 4 do not change. However, a component perpendicular to
these lines is introduced (additional to the force in this direction already
present), acting at the ends of the link. This force can be put to use for instance
in a clamping device, but does not affect the state of static balance. Figure 5.34¢
shows an example where one spring attachment point is moved by a distance b,
so the additional perpendicular component at point B is equal to kb. This
component can be controlled by adjusting b while the system can still be
moved in an energy-free manner.

The fact that the grounded spring attachment points can be displaced
arbitrarily in the direction perpendicular to the action lines of the springs allows
the conception of a remarkable balanced system: two slipping ladders of
arbitrary length, operating in opposite quadrants of an orthogonal system of
sliders, sharing one set of two equal ideal springs (figure 5.35). Intertwined as
the spring systems may seem, two independently balanced degrees of freedom
are present. Proof is straightforward when considering the potential of the
springs, and using Pythagoras' theorem:

v =k{et 4 y3 o Lkl + 92 )= Lkl +17) (5.65)
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Figure 5.35 A system of two unequal slipping stepladders sharing one set of two equal ideal
springs yields a statically balanced system with two independently balanced degrees of
Jfreedom.

where x; is the x-coordinate of the horizontal slider of link #, and y; is the y-
coordinate of the vertical slider of link ;. Clearly, the expression is constant.

A similar double ladder is hidden in the rotated basic spring force balancer.
It will be unveiled to demonstrate that ideal spring systems provide a discovery
paradise to suit all tastes. Under the condition of equal arm lengths #, 7, a,,
and a,, AP P, A, forms a cyclic quadrangle (figure 5.36a). As BB =PR,P;,
the angles ¥, and y, are subtended from equal cords of the circumscribed
circle. Consequently, inclination angle y remains constant as the system moves
with the angle ¢. Furthermore, points 4, and A4, subtend angles ¢; and a,
from the cord P'P, . Therefore, @, =a, = % /3, also independent of ¢. It will
now be shown that the quadrangle has perpendicular diagonals. In
triangle A4,4,0, the angles relate according to:

b+ +44,0=71 (5.66)

Using the fact that angle 4,CF’ is equal to Y47 - ), @, angle CR 4, is found to
be equal to ¥,z + ¥, @ . Around point 4, , the following equation is valid:

¢ +a =Y} B+CAR (5.67)

Thus, @ = Y7+ Y% is found. Similarly, it is seen that ¢ =Y%7-Yo.
Substituting these results into equation 5.63 yields 4,4,0 = ¥z, irrespective
of ¢ . This remarkable fact allows the symmetric spring butterfly to be regarded
as a combination of two connected ladders moving in an orthogonal non-
stationary frame (figure 5.36b). The links 4,4, and P P, can be seen as
ladders sliding on the diagonals of the quadrangle.
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Figure 5.36 The symmetric spring butterfly seen as a system of two connected slipping ladders
in a moving orthogonal frame: (a) cyclic quadrangle, (b) equivalent system of two slipping
ladders.

Medical forceps

This section will present an example that is somewhat different from most of
the preceding ones, where an undesired effect was statically balanced to
eliminate its influence. Here, the principle of neutral equilibrium is utilized in
the design itself to obtain a low friction mechanism of small dimensions,
without backlash and need for lubrication.

The design concerns medical forceps for endoscopic surgery. In contrast
with open surgery, where the surgeons manipulate tissue with their own hands,
long and slender forceps are introduced through small incisions. Consequently,
these instruments are the only source of tactile information for surgeons.
Therefore, the force transmission characteristics of these instruments are
important features: especially friction and backlash should be avoided, and a
constant force transmission ratio is desirable [5.14].

A design, satisfying the demands mentioned, can be realized as follows. The
inverted basic spring force balancer functions as point of departure. By giving
this mechanism an additional degree of freedom y (figure 5.37a), an
interesting practical version becomes possible: a simple rolling link mechanism
(figure 5.37b). The rollers maintain a constant distance between their centers,
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Figure 5.37 Medical forceps based on statically balanced springs: (a) inverted basic spring
Jforce balancer, (b) rolling version, (c) roller doubled and, together with one of the springs,
rotated by 180 degrees about the center of the larger roller, (d) transformed into medical
Jforceps, (e) schematically with normal springs, (f) flexible bands wrapped around the rollers to
prevent them from slipping.

thus realizing a virtual link. Assuming no slip, mobility is reduced to one
degree-of-freedom, according to Ry = R,¢. As a next step, the smaller roller is
duplicated while the link attached to it is divided into two parts, each connected
to one of the roller twins. Then the upper-half element is rotated by 180 degrees
about the center of the larger roller. A connecting rod is added to synchronize
the movement of the rollers (figure 5.37¢).

From this configuration to a grasper mechanism is a small step: a jaw is
fixed to one roller and a handgrip to the other (figure 5.37d). In order to keep
friction low, the pivots of the connecting rod are also designed to roll: its
contact areas are furnished such that the pins fixed to the rollers are rolling on
the inside of an imaginary ring, which keeps these axes at constant
distance [5.15]. Thus, the mechanism comprises four rolling pivots only (plus
the rolling contacts of the spring loops), resulting in low friction. If the ideal
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Figure 5.38 Synthesis of a two-degree-of-freedom spring force compensator, the Variable
Spring Butterfly: (a) balanced parallelogram of which one spring k is resolved into k; and k,,
(b) the parallelograms doubled and rotated apart by an angle f, (c) kinematic coupling by
means of a skew pantograph, (d) extension of one of the parallelograms and adaptation of the
skew pantograph.

springs are to be replaced by normal springs, an approximation method needs to
be used which will come up with altered fixation points of the springs, as is
symbolically indicated in figure 5.37¢. Approximation methods are included in
chapter six.

Through all the steps, static balance is preserved, so it seems to the surgeon
as if the springs are not present. Nevertheless, the springs prestress and stabilize
the rolling link mechanism, thus eliminating backlash. Although the rollers are
mainly kept in place by the forces in the springs and the connecting rod,
flexible bands are to be wrapped around the rollers to prevent them from
slipping (figure 5.37f).
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Figure 5.39 Pantograph linkages: (a) normal pantograph, (b) skew pantograph or
plagiograph [5.8].

An interesting feature of this mechanism is the high quality force feedback.
If an object is grasped with a certain grasp force, the reaction of this force
acting on the movable jaw distorts the balance of forces. Balance is restored by
applying an operating force onto the movable handgrip. Since the movement of
the rollers is identical, input and output moments are equal, hence the force
transmission function is constant. Thanks to the low-friction mechanism and the
constant force transmission function, the operating force is an accurate measure
for the grasping force [5.15). Thus, the surgeons have a good feel of their grasp
actions within the patient.

Another feature of this design is that the grasping force is limited by the
spring connected to the jaw’s roller. Maximum grasping force is reached when
the connecting rod is forceless. If the construction of the rod prevents it from
acting as a push rod, then a further increase of the operating force results in
stretching of the other spring only. Thus, an inherent prevention against
overload is present without additional parts. If this feature is not desired,
mirroring the mechanism (exchanging the connecting rod with the springs) can
be considered. In a practical version, the spring at the tip may be transferred to
the hand grip [5.16].

Spring force compensation of four-bar linkage

Similar to the two-degrees-of-freedom gravity equilibrators in section 5.2, also
two-degrees-of-freedom spring force compensators can be conceived using the
framework proposed in this thesis. Figure 5.23¢ functions as a starting point
(reprinted in figure 5.38a), where k, +k, =k and k,q, = k;a,. This is already a
two-degree-of-freedom spring force compensator, but it can be extended into a
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Figure 5.40 Modification of the variable spring butterfly: (a) simplification, (b) application as
a balancer of a spring-loaded four-bhar linkage.

form of more general interest. As a next step, it is desired to apply the rotation
operation (rule 2) to the parallelogram (figure 5.38b). Because in this case no
rigid links but compliant structures are rotated, the rotation rule is to be applied
in a somewhat more complex way than the basic modification operation. In the
basic operation (figure 4.13), the link is duplicated so that the two spring-lever
clements can be rotated as units.

In this case, CQ can be regarded as an imaginary lever, put up by the
parallelogram. This parallelogram is duplicated and the two imaginary spring-
lever elements, each consisting of a parallelogram with a spring on one of its
diagonals (k; and k,, respectively, where k; +k, =k), and a spring connected
to ground, are frozen and rotated about the fixed pivot. The amount of rotation
determines the angle # between the two imaginary levers CQ, and CQ,
(dashed lines in figure 5.38b). Rather than the simple rigid connection of the
two levers as in figure 4.13, the parallelogram units are now to be connected
such that the two-degrees-of-freedom mobility is maintained without
influencing § and the imaginary arm length ratio 4 = CQ, / CQ,.

For the task of maintaining B and A while allowing CQ, and CQ, to vary,
a plagiograph or skew pantograph is perfectly suited (figure 5.39b, [5.8]). This
mechanism is a general version of the normal pantograph (figure 5.39a). Both
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Figure 5.41 Application of the variable spring butterfly as a glove-force compensator: (a)
Jour-bar linkage in hand prosthesis, hampered by cosmetic glove (represented by the dashed
spring which is not actually present), (b) statically balanced by the four-bar spring force
compensator.

linkages provide a constant transformation ratio 4 = CQ,/CQ,, but where the
skew pantograph preserves a constant angle 8 =Q,CQ,, the normal pantograph
keeps Q,, C, and Q, collinear (8 =r).

Thus, a modified spring force compensator results (figure 5.38¢c). It is
interesting to note that the resulting mechanism can be seen as an imaginary
skew lever O,CQ, with variable arm lengths (indicated with dashed lines), a
Variable Spring Butterfly, so to speak. However, the skew angle £ and the arm
length ratio A are constant, regardless of link orientations. As one compares the
variable spring butterfly with the solid one, it occurs that springs &, and &, in
figure 5.38¢ effect the equilibrium of moments about the pivot. For the variable
spring butterfly, this is not sufficient, as the imaginary triangle Q,CQ, will
collapse under the influence of these springs alone: the equilibrium of forces is
not satisfied. Springs &, and k, balance the collapse effect and realize constant
potential energy. As the movement of springs k; and k, is synchronized by the
pantograph linkage, the only demand for their spring rates is that &, +k, =k, so
one of them may be eliminated, which also saves two links.

The general case of the variable spring butterfly can be obtained by applying
rule 1 to one of the imaginary lever arms. This works most easily following the
procedure indicated in figure 5.38d. One of the imaginary arms of the
imaginary skew lever is extended, by enlarging the corresponding
parallelogram. For example, the right-hand parallelogram is enlarged by a
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Figure 5.42 Static balance of a spring-loaded two-link open-loop chain: (a) unbalanced
situation, (b) statically balanced by the four-bar spring force compensator with certain value

Jor B, (c) the same for f=r, (d) the same for =0.

factor 2 in the direction of the line CQ,, so that point O, becomes 0.
Balance is preserved if spring k, is replaced by k', such that k =k/A.
Additionally, spring k, is to be replaced by k;, where k; =k,/A*. For the
mechanism to remain a skew pantograph, link PP, is extended to PP . This
whole procedure alters the arm length ratio A but leaves the skew angle S
unchanged. The parallelograms are no longer congruent but remain similar, the
triangles of the pantograph lose their equilateral feature but also remain similar.
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To check the static balance of this linkage the potential is used again. The
potentials of the springs &, k,, k;, and k,, and the total potential V',
respectively, are:

v, =1k (a2 + 2 p? - pkia, cosp (5.68)
= Lhylay? + p?)- phyay cos( - ) (5.69)
e telhe ) ) 50
Ve =Lk, (22 + 22r2)- 22p?) G.71)
V=1ka? +Lhya,? + K2 (2 + 2 )+ ky (2 +02)+ (5.72)

L2 p* + 1k, p? — Lk p* — Lk 2% p* + Apk,a, cos o — phya, cos @

From equation 5.72, it is seen that static balance is obtained if ik, a, = kya,,
and A%k, +k, =k, + A%k, . Using ka, =k,a,, the first expression is satisfied
if Ak =k, as was expected. For the second to be true for any value
of A, k; =k, together with k, =k; is a solution, but as k, and k; can take
over each others function, there is more choice.

A considerable simplification can be realized by taking advantage of the
similarity of the parallelograms and therewith the complementary functions of
springs k; and k:. For example, spring k; can be omitted if spring £, is
replaced by ks = k; + Ak, = ky +k, =k . If this is done, a simpler construction
results, as links CP, and P,Q; can be omitted (figure 5.40a). A further
simplification is reached if Q,P, is extended to Q,F (in such a way
that O, P, = P, P;) and spring k; is shifted to CF;.

An application of this mechanism is the compensation of an ideal spring k;
acting on a coupler point O, of a four-bar linkage C,P, P, 'C,, as shown in
figure 5.40b. Link C,P, reduces the freedom of movement to one degree-of-
freedom, but does not harm the balance. Thus, the influence of spring k, can be
fully eliminated by adding two links (QzPsP; and C,P,) and two springs (&,
and ks). Thus, any ideal spring acting on any coupler point of any four bar
linkage can be perfectly compensated. As an example, figure 5.41 suggests the
application in a hand prosthesis with a four-bar linkage finger mechanism.
However, it should be remarked that the design in this specific application is
impractical. Even if the cosmetic glove would be adequately represented by an
ideal spring, the balancing quality will be disappointing due to excessive
friction in all the joints, while the prosthesis will suffer from excessive weight.

Another general application of the variable spring butterfly is the static
balancing of a spring-loaded two-link open-loop chain. In figure 5.42a, this
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Figure 5.43 Elliptic trammel with various springs: (a) ideal springs, (b} normal extension
springs, (¢} compression springs.

problem is posed. Figures 5.42bcd suggest several solutions based on spring
butterflies having an arbitrary angle of B, an angle f=7x, and an angle
of £ =0, respectively.

54 Special solutions with normal springs

[-] and the invention accordingly comprises a mechanism of the above
kind, wherein the said points on a said movable member are
constrained to move instantaneously in directions which are always
mutually at right angles to one another.

George Carwardine, 1932

Since the free length problem does not occur when the springs are stretched
along a stationary and straight line through their grounded attachment point, it
is imaginable that perfectly balanced solutions exist in which the springs do not
rotate. As a kinematic inversion can always be found to fix the stretching
directions with respect to ground, the demand for the springs not to rotate can
be relaxed. It is sufficient that the springs do not rotate with respect to one
another. This section presents two configurations. Several other perfect
balancers with normal springs have been reported. As these arc of a more
complex nature, unsuitable to this thesis' purposes, the reader is referred to
literature [5.17]. Furthermore, wrapping cams have been used to match the
characteristic of a normal spring to carrying a mass (5.18].
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Figure 544 Conception of a perfect spring-to-spring balancer with normal springs and
inherent low friction: (a) special version of the spring butterfly, (b) separated halves to include
Jree length, (c) rolling version (see also Carwardine, 1932)[5.20], (d) photograph of
prototype [5.21].

In principle, it is also possible to compensate for the positive free length of a
normal spring by adding a spring with negative free length [5.19]. Springs with
negative free length can be made according to the mechanism in figure 4.5a
with altered dimensions. The normal spring and the negative free length spring
together constitute an ideal spring, which can be statically balanced as any other
ideal spring. This may be relevant for the perfect compensation of a pre-existing
undesired non-ideal spring, but these solutions will not be considered in this
section.

The elliptic trammel

The first configuration with non-rotating springs described is the elliptic
trammel, which was presented in section 5.3 incorporating ideal springs [5.13].
Because the springs move along fixed straight lines through their fixed points, it
is not necessary to use ideal springs. Two normal extension or even
compression springs can be used, as long as they are equal and mounted such
that they are just relaxed when their free ends pass through the origin.
Figure 5.43 shows the elliptic trammel with ideal springs, normal extension
springs, and with compression springs, respectively.

Figure-of-eight rolling link mechanism

A second configuration of a perfect spring balancer with normal springs and
inherent low friction is presented next. This balancer is based on a special
version of the spring butterfly: the one with @ = #=7/2 and r =a. Since, in
this case, the lengths of the lever arms all amount to a, two equal isosceles
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Figure 5.45 Chain of rolling-link balancers incorporating normal springs holding the rollers
together (springs drawn as lines).

triangles result. The fact that in this arrangement the springs are always parallel
is best observed if the horizontal line through the pivot is used as axis of
symmetry (figure 5.44a). The midpoints of the springs move along the x-axis.
With this observation, the upper and the lower part can be separated and offset
by any vertical distance b. This is without consequences for the balancing
quality if inactive elements of length b are inserted: one connecting the pivots
and two between the spring halves (figure 5.44b). When the added link is fixed,
clockwise rotation of one of the triangles by an angle ¢ has to induce a
counterclockwise rotation of the other triangle by the same amount. Therefore,
the triangles rotate by an angle of 2¢ with respect to one another.

The fact that inactive elements of constant length can be inserted in series
with the ideal springs offers the opportunity to use normal springs of which the
free length ¢, is equal to the offset distance . The preferred embodiment of
the design is the one where the triangles are fixed onto a set of two equal rollers
having a radius R equal to half of the free length £, of the springs, so that the
constant distance between the centers of the rollers acts as the third inactive
element (figure 5.44c). Thus, a perfect spring-to-spring balancer with low
friction, normal springs, and essentially only two parts (excluding the flexible
bands) has been conceived. Non-slipping rollers or gears guarantee correct
motion, while the two members are being pressed together by the springs.

A prototype was made to evaluate its action (figure 5.44d), where flexible
bands are wrapped between the rollers to prevent the rollers from slipping.
Noteworthy is the fact that motion of the real system is restricted
to —45< @ <45 degrees, because the helical tension springs used cannot
effectively push when they are shorter than £,. Consequently, the mechanism
would become unstable. Movement beyond the 45 degrees limits is restrained
by axes through the centers of the rollers, preventing the springs from passing
by. It was found that a slight unbalance was present, mainly due to minor
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Figure 5.46 Perfect gravity equilibration with normal springs: (a) mechanism of figure 5.44c,
now with normal springs, resulting in a residual moment which is a sine function of @, (b) an
additional link moving with @ and carrying a mass provides perfect static balance [5.22).

production errors, imperfections in the springs, and the travel of the spring
attachment pins along the inside of the spring loops, thus moving the line of
action of the spring force away from the centerline of the spring, and effectively
decreasing the spring length.

Equal clements can be stacked on one another to form a balanced chain
(figure 5.45). The springs provide a contact force, while the rollers can move in
an energy-free way. Note that for simplicity, the figure presents a special case
where the roller radius is equal to the spring arm lengths.

When the conditions for perfect balance are not satisfied, a residual moment
will remain, which is a function of the angle ¢, as will be demonstrated next.
Using the symbols shown in figure 5.46a, where it is especially noted that the
upper half of the mechanism is rotated by an angle of 2¢, the following
geometrical relations can be identified:

Vi=5-90; ¥p=%+@; £,=2R+2asiny,; {,=2R+2asiny, (5.73)
The total potential is written as:

V=1k(e 2o} +1k(e, -1, ) (5.74)
Substituting equations 5.73 into equation 5.74, using the geometric equality:

sin(% - ¢)+ sin(% + ¢)= 2sinf-cosp = V2 cos ] (5.75)
and elaborating results in:

V = k(2a% + 4R> + £ —8Rty )+ 24/2ka(2R ~ £, )cos (5.76)
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Figure 5.47 Pulleys-and-string arrangement providing perfect balance by a normal spring: (a)
basic gravity equilibrator, (b) two-pulley system, (c) three-pulley system, (d) one pulley and the
spring fixed to ground [5.23].

This expression is not constant, so the system is not statically balanced. The
remnant moment is found as the derivative of the potential energy with respect
to the rotation of the upper roller 2¢, according to:

M=V,,=1V , = 2katsing (5.77)

which is a function of ¢, rather than of 2¢. Therefore, an opportunity to
balance the system is to have a mass on the extension of the connecting line
between the centers of the rollers, as is suggested in figure 5.46b [5.22]. The
lower roller is fixed, the additional link moves as a function of ¢, while the
spring attachment points on the upper roller move as a function of 2¢.
Considering the mass yields the following expression for the potential with
respect to the center of the lower roller:

V =k(2a? + 4R? + €2 —8R0, }+ 24 2ka(2R £y )cos g + mgreosp  (5.78)
This expression becomes constant under the condition:
22ka(2R - £4)+ mgr =0 (5.79)

This condition shows that the appropriate combination of mass, spring
parameters, and geometry yield perfect static balance for infinite cases, as long
as £4,>2R. In fact, any two equal springs (with £, >2R) may be used since
adjusting r can always restore perfect balance due to the linear nature of the
expression. When £, =2R, the only solution is the situation where r = 0.
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Figure 5.48 Spatial versions of several balancers: (a) basic spring force balancer, (b) basic
gravity equilibrator, (c) spatial spring force balancer with three springs, (d) spatial
equilibrator with two springs, (e) six-degree-of-freedom gravity equilibrator incorporating one
ideal spring.

Pulleys and string arrangements

In figure 4.5a, a pulley-and-string arrangement was shown which provides
approximate ideal-spring behavior. An error was introduced due to the
wrapping of the string. This error can be avoided by using a pulley
arrangement, which compensates the wrapping around one pulley by wrapping
around another pulley[5.23]. Figure 5.47 shows a number of possible
embodiments: an arrangement with two pulleys, an arrangement with three
pulleys, and one with one pulley fixed to the frame and one end of the spring
grounded at an almost arbitrary place on the frame.

The principle is based on the replacement of an ideal spring by a pulleys-
and-string arrangement incorporating a normal spring, which is configured such
that the string segments wrapped around the pulleys (of equal radius) add up to
(a multiple of) one pulley circumference for any position of the link.
Consequently, the amount of wrapped string is constant. The parts of the string
running parallel to the arms @ and r are constant as well, so the part of the
string running parallel to AP is the only part which is variable. Therefore, the
spring elongation is equal to the distance AP, which used to be the elongation
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of the ideal spring, so perfect balance is obtained. Care must be taken to select
the proper string length, which should be equal to:

L =a+r+2zR-¢, (5.80)

where L, is the string length, R is the radius of the pulleys, and ¢, is the non-
zero frec length of the normal spring. Depending on the desired range of
motion, spring selection in the arrangement according to figure 5.47b can be
difficult, while the arrangement according to figure 5.47d is most tolerant with
respect to spring selection.

5.5 Spatial mechanisms

Robot designers, having a prevailing background in the design of
machine-tool and material-handling equipment, often attempt to design
robots with comparable rigidity or use worst-case loading conditions.
To their chagrin, they have often realized that such animals could
become grossly overweight and highly inept!

Hadi A. Akeel, In: Rivin, 1988, p ix

With the appropriate mindset, it is surprisingly easy to conceive spatial versions
of balanced spring mechanisms. The spatial versions can often be regarded as
chains of planar ones, so therefore the framework of chapter four, applied
carefully, can be used. Since chapter three is strictly limited to the planar case,
dynamically equivalent forces will not be considered in this section.

Starting with the basic spring force balancer, it is readily seen that it can be
moved outside the plane of drawing without difficulty (figure 5.48a).
Additionally, all gravity equilibrators obviously have a trivial degree of
freedom: rotation about the vertical axis (figure 5.48b). Not only the movement
of the mechanism may escape the two-dimensional plane, also the fixed points
of the springs may be located spatially. As an example, figure 5.48¢ presents a
symmetrical three-spring spatial spring force balancer, which can be derived
from the two-spring version by using modification rule 5 (resolution of ideal
springs). Naturally, the arrangement can be altered by employing the other
modification rules from chapter two. An example of a spatial version of the
single link equilibrator, comprising two ideal springs is given in figure 5.48d,
but also more complicated degrees of freedom can be added [5.24).

This section will use the framework to derive a number of illustrative
examples in the field of gravity compensation. Even though multiple degrees-
of-freedom are involved, the vertical movement of the mass is the only degree-
of-freedom that needs to be balanced. Therefore, one spring should be sufficient
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Figure 5.49 Conception of the anthropomobile arm: (a) basic spring force balancer of
gravity equilibrator, (b) extended to three-dimensional operation (to be continued in

figure 5.50).

for the static balancing of this mass. Figure 5.48e gives a solution for the static
balancing of a mass with six degrees-of-freedom by a single spring. It consists
of a ball that can slide and spin on a horizontal platform without friction. The
platform can move up and down while suspended by a spring mechanism
providing static balance for the vertical movement. Clearly, this is not a
practical mechanism, but it raises the challenge of reducing the number of
springs.

Anthropomobile arm

This section presents the design of an anthropomorphic robot arm with the same
mobility as the human arm, including the out-of-plane motion of the forearm.
Several gravity equilibrators exist capable of supporting a mass in the three-
dimensional space. Section 5.2 presented a number of these planar mechanisms
which can rotate about the vertical.

In spite of the fact that the supported mass can reach any position within the
workspace, these designs are not satisfactory for some specific applications,
such as an orthotic device for people with reduced muscular ability or paralysis
of the arm [5.25]. In these cases, an anthropomorphic structure is desired which
provides the same mobility as the human arm. This capacity will be called
anthropomobility.
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Figure 5.50 Conception of the anthropomobile arm (continued from figure 5.49): (a) addition
of upper arm, shift of forearm compensation spring to the shoulder by means of parallelogram
linkage, and inclusion of balancing spring for upper arm, (b) completed concept of
anthropomobile balanced arm.

Conception

Figure 5.49 suggests the step-by-step conception of the anthropomobile arm,
starting with the forearm. The elementary equilibrator shown in figure 5.49a
functions as point of departure. This system can be seen as the basic gravity
equilibrator of which the spring-lever element has been rotated by 180 degrees.
The balancing condition is:

mgr,, =nka, (5.81)
When it is acknowledged that this configuration is valid for any vertical plane
containing the pivot, an additional degree-of-freedom ¢, can be obtained

without the need to change parameters or add elements (figure 5.49b). The
resulting structure is now regarded as the forearm, the pivot as the elbow joint.
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As a next step, an upper arm is added (figure 5.50), connected between the
elbow joint and a shoulder joint, fixed to the frame. At this stage, it is desired to
release the elbow joint from the frame. In order to maintain static balance of the
forearm, this needs to be done such that the configuration of spring &, becomes
independent of the position of the upper arm. To this end, a construction similar
to the one in the Anglepoise desk lamp is applied: a parallelogram of which the
upper arm 7, and the hind part of the forearm r are two sides, and auxiliary
links of length », and r, respectively are the remaining sides. However, as
opposed to the Anglepoise desk lamp, the parallelogram in this configuration
can move spatially, i.e. rotate about the centerline of the upper arm (@, ). Due to
the parallelogram, spring k; can be moved to the new vertex and fixed to
ground right under the shoulder joint while its potential energy function
remains unaffected (figure 5.50a). Consequently, static balance of the forearm
is assured, regardless of the position of the upper arm.

Finally, the upper arm is to be balanced. This becomes straightforward when
it is recognized that the principle of superposition may be applied. When the
free end of spring £, is fixed, two degrees of freedom remain: rotation about the
vertical axis through the shoulder joint (@,), and elevation of the upper arm
(@3). Clearly, only the latter needs attention. Since now the forearm can move
parallel to itself only, the position of the mass along its centerline becomes
arbitrary (this only affects the constant of the potential energy function).
Locating the mass at the elbow joint reduces the equilibrator system to the basic
gravity equilibrator. This is true for any angle ¢,. Therefore, the elementary
configuration of spring k, as indicated in figure 5.50a suffices to fully
equilibrate the upper arm, regardless of the position of the forearm.
Consequently, the parameters of the upper arm equilibrator are to be selected
such that the following condition is satisfied:

mgr, =nk,a, (5.82)

where r, is the length of the upper arm link.

Thus, an anthropomorphic gravity equilibrator is conceived having four
degrees of freedom, and yet only two ideal springs for complete static balance.
In addition to the three degrees of freedom found in the five-bar parallelogram
linkage, the out-of-the-vertical-plane movement of the forearm is possible. The
resulting anthropomobile arm is schematically depicted in figure 5.50b [5.26).

Link and spring masses will now be included without introducing errors in
the equilibrator design [5.2]. This can be demonstrated by using the rules of the
conception framework. This procedure is as follows. Figure 5.51a shows the
linkage with all the masses. Using the principle of superposition, the degrees-
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of-freedom are inspected sequentially. As noted previously, @, needs no
attention. The angles ¢, and ¢, can be regarded simultaneously while ¢,
remains fixed. This leads to the observation that the masses m, m, my,
and m, trace similar trajectories through space. Consequently, their potential
functions differ by a constant only, and the masses may be shifted as indicated
without affecting the balancing parameters. For instance, when the masses are
transferred to the forearm (figure 5.51b), it is readily seen that the parameters
for spring k; are to be changed to include link mass according to:

Mgr,, +mgr,, — mygn —m g, =rka (5.83)

Similarly, when ¢, is considered while @, and ¢, are fixed, it is seen that the
trajectory of m, is similar to the trajectory of mass m, while m,, and m, can
be transferred to the upper arm link (figure 5.51c¢). Therefore, the parameters of
spring k, are to be changed according to:

Mgr, + M Q¥ + My 8h,, + M8, + My &, 4y =1rkya, (5.84)

In some applications, the link masses may be small as compared to the
payload m, and equations 5.83 and 5.84 reduce to equations 5.81 and 5.82.
However, in the application of a mobile arm support, mass m will be absent
while masses m, and m,, which now include the weight of the patients forearm
and upper arm respectively, will be dominant. This consideration does not
imply that the mechanism can directly be applied as an arm orthosis. Several
difficult problems (notably the matter of the shoulder joint, and the fitting of the
device to a person) need to be solved first [5.25].

Spring mass can easily be accounted for if one realizes that each end of the
spring exerts, apart from the spring force, a constant vertical force of half the
spring weight ( ¥,m_ g) on its support. Consequently, an additional term is
introduced into the equations 5.83 and 5.84:

1 _
Mgh,, + M8l — M3 g —My gt —5 M, 81 = hka (5.85)
1 _
MZE, + M8, + M8, o + M3 8T, + My 8F 40 + 5 M2 8F) = Nk, (5.86)

As can be seen from the equations, a practical convenience is that each of the
masses has a linear influence on the balancing quality. Therefore, adjustable
masses can be used to fine-tune the balancing mechanism.

Finally, it is noted that a floating version of the anthropomobile arm can be
realized. In fact, nothing (in theory) restricts the mechanism shown in
figure 5.27¢ from moving in other planes than the vertical only. However, in
practice a number of challenging design questions need to be overcome, notably
the connection of the moving spring ends to the spatial linkage.
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Figure 5.51 Inclusion of link mass in the anthropomobile arm design (from right to left): (a)
link masses, (b) spring k, fixed, (c) spring k;, fixed.

Design

To explore the functioning of the anthropomobile arm, a prototype was
built [5.27]. Several practical problems needed to be overcome, such as the
implementation of the ideal springs, and the attachment of the springs in a
spatially moving structure. It was decided to use increased-preload ideal
springs. The axial bearing to allow for rotation ¢, at the distal end of the upper
arm so that the spring attachment point of spring &, on the upper arm needs not
to rotate, while the shoulder joint was furnished as a Hooke's joint. Due to the
availability of only a limited number of sample springs, the practical
embodiment of spring k&, consists of two springs in parallel. Figure 5.52a shows
a side view of the prototype. Figure 5.52b shows a close-up of the
compensation springs in another position of the arm. Interesting details are the

146




(a) (b)

Figure 5.52 Photographs of the anthropomobile arm: (a) side view, (b) frontal view, close-
up [5.27).

attachment of spring k, next to the upper arm (application of rotation
modification rule) allowing a sufficiently long effective length of the spring,
and the shorter supplementary link which is shifted aside to facilitate the
attachment of spring £, .

The prototype performs quite satisfactorily. The links are made of stainless
steel thin-walled tube. Overall length is about 70cm, while a mass of 0.5kg is
fixed to its end. From the initial position in which the upper arm is horizontal
and the forearm points upwards, the allowable rotation according to each degree
of freedom is at least 45° to each side. Due to several imperfections of the
prototype, such as slightly irregularly coiled springs, friction, and deflection of
the parallelogram, a maximum balancing error of 5% was found. However, in
great parts of the workspace, the balancing inaccuracy is negligible and the load
floats nicely.

General suspension unit

Many gravity equilibrators require that the load be suspended in its center of
gravity, which is not always feasible. This section presents the extension of the
anthropomobile equilibrator into an equilibrator configuration for six degrees of
freedom, to be used in situations where the center of gravity of a body is not
accessible, such as in a flight simulator or in certain medical diagnostic
instruments. In case only the suspension of a point-load is concerned and the
orientation of the center of gravity is therefore not relevant, one could say the

147



(a) © ®)

Figure 5.53 Conception of the general suspension unit: (a) the anthropomobile balanced arm
as a starting point, (b) addition of a parallelogram segment to obtain three independent
rotations, (c) addition of a rectangular segment to obtain three independent translations.

anthropomobile equilibrator has one degree of freedom too many. This changes
when an object is to be supported of which the center of gravity is not
accessible. Then the desire may arise to extend the mobility to six degrees of
freedom.

A profitable way to add mobility to the balanced arm is suggested in
figure 5.53b. The parallelogram configuration is extended by adding another
segment, such that the resulting configuration constitutes a parallelogram of
which two adjacent sides are formed by the forearm and the upper arm of the
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Figure 5.54 Inclusion of link mass in the general suspension unit design: (a) link masses, (b)
additional spring, (c) rearrangement of payload.

original structure. As the ball joint is moved to the new vertex, the spatial
mobility of the linkage is maintained. However, the distance between the ball
joint and the center of gravity has become constant. Consequently, the
movement of the supported mass is restrained to the surface of a sphere, and
therefore the equilibrator system can be simplified to a single ideal spring as
shown in figure 5.53b. This spring is to be fixed right above the ball joint and
connected to the auxiliary link of the new parallelogram segment at the
intersection of this link with the imaginary line between the ball joint and the
mass. Thus, the movement of the mass over the sphere surface is equilibrated.
There is additional mobility of the mechanism according to the
(instantaneous) rotations ¢, and ¢, as indicated in figure 5.53b. These
movements do not influence the position of the mass but do change its
orientation, which becomes interesting if the mass is a body rather than a point.
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If an additional bearing is added allowing rotation about the centerline of the
final link, indicated by @, in figure 5.53b, three rotations of the supported body
about independent axes through its center of gravity are available. As compared
to the anthropomobile arm in figure 5.53a, the balancing conditions for the
resulting configuration reduce to:

mgr, =rk,a (5.87)
2K24;

As a final step, full mobility of the supported body is accomplished when
the mechanism of figure 5.53b is mounted on a rectangle that is rotatable about
a vertical axis. The plane of the rectangle is to make a considerable angle with
the plane containing the rest of the structure to allow for sufficient x-, y-, and z-
translation. Figure 5.53c gives a schematic representation of the result.
However, for reasons of convenience, the rectangle is drawn in the same plane
as the rest of the mechanism. This all results in a configuration with a single
ideal spring, which in any position provides three independent translations and
three independent rotations for the object supported. The object can therefore be
connected to the equilibrator at any desired point, provided that the ball joint,
the free end of the spring and the center of gravity of the supported body are
collinear, and that the final link points at the center of gravity of the supported
body. '

When the link masses are not negligible, equilibrators for the rotations @,
and ¢, are to be added. However, because these equilibrators support the same
link system, similar to the situation in the anthropomobile arm, these
equilibrators can be combined, so that only one additional spring is required. A
suitable configuration for this spring is between the link connected to the ball
joint and a point right above the ball joint (figure 5.54a). By reducing the link
masses for @, and @, onto the link connected to the ball joint, the balancing
conditions for this system are found:

mgr, +mgr, +mygr,, + m3g(r2 + ’m3)+”‘4grz + M8 = rk,a; (5.88)

mg(r,, —r, )+ mygr, +mg(r, + R+ mygr, . +mgr, s + megr. = riksa,
(5.89)
Alternatively, the center of gravity of the load can be placed a little bit further
up the final link (which therefore needs to be extended, see figure 5.54b), such
that the combined center of gravity of the load and the linkage is located at
point P . The balancing condition for this system is:

mlg(rm ~m )"‘ mygr, + ’"38("». +n )+ Mpglpq + Ms8lys5 + ML, = MET
(5.90)
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Figure 5.55 Conception of the Spring Diamond: (a) balanced rhombus, (b) duplicated and
unfolded, (c) lattice.

The latter configuration is favorable in that no additional spring is required, but
may in some applications be undesirable due to the more complex kinematics.

The spring diamond
An interesting structural element arises when a balanced rhombus is duplicated
and unfolded into the third dimension as follows. Suppose a planar balanced
rhombus with springs of stiffness k (as in figure 4.14a) is duplicated such that
one is on top of the other and that they are jointed in two corresponding
opposite vertices P, and P, (figure 5.55a). With a total of four springs of
stiffness ¥ &, balance is still complete in their initial plane of movement, but
lifting one of the vertices, for instance P, results in a collapse because the
moment about the y-axis by the spring between P, and P, can not be resisted.
This collapse is prevented from occurring if a spatial structure is put up of
which the orthogonal projections are rhombi. To this end, the upper of the two
rhombi is bent in the direction opposite to the lower one, as suggested in
figure 5.55b. If the corresponding vertices that are now separated are connected
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by a couple of additional ideal springs of stiffness }jk, a symmetrical
construction results, which is in perfect balance. Regarding AP, as axis of
symmetry may enhance transparency. Effectively, a spring of stiffness k is
present between vertices B, and F,, whereas four springs of stiffness 5k are
present between the other vertices.

Depending on the preferred perspective, this structure may be regarded as an
unfolded double rhombus, a quadruple basic spring force balancer, or an
octuple slipping ladder. The vertices P, and P, may be moved towards and
from each other, and the two-link bridging structures may be rotated about the
line connecting the joints £, and P,. The structure is force-closed, so no
stationary frame is needed. Interesting is that the forces in the links are constant.
A lattice of these elements can be made (figure 5.55c¢). Since the elements share
sides, all springs will be of equal stiffness if this lattice is extended indefinitely
in x- and y-directions. If the spring between the vertices B, and P, of each
element is offset, this network can obtain a distributed load carrying capacity
with zero stiffness, or slightly deviant if desired.

56 Summary

This chapter presented the conception of a number of mechanisms with perfect
static balance in theory. Using the framework presented in the previous chapter,
energy-free systems of different kinds were conceived, representing useful
working principles or interesting phenomena. For instance, the fact that a
spatially moving mass can be equilibrated supports the statement that all spatial
linkages (regarded as a related set of centers of mass) can be perfectly
equilibrated.

In the course of the Chapter, several conceptional techniques came across,
some which will be briefly reviewed next: (1) It was found useful to build
parallelograms around serial structures in order to be able to develop
independent balancers for the sequential links. By using skew resolution of
forces, it was shown that in multiple degree-of-freedom cases the parallelogram
transmits the variable moment due to the more distal segments, while the
constant shear force is directed to the springs. (2) Additional degrees-of-
freedom were introduced by releasing structures from being fixed to ground. (3)
Springs were multiplied to add springs or to replace spring-lever elements by
mass-lever elements. (4) Links were replaced by arrangements of rollers to
reduce friction and the number of parts. In performing these techniques, the
modification rules of chapter four proved to be most useful. Remarkable is the
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fact that similar designs, such as the two-degree-of-freedom gravity balancers
(shown in figures 5.4, 5.23, and 5.25, respectively), can not be converted into
each other.

However, especially in multi-degree-of-freedom cases, it was shown that the
modification rules need to be applied with care. For instance, when the diagonal
of a parallelogram linkage was regarded as an imaginary link (figures 5.23
and 5.38), it was found that using it as the arm for a spring force balancer
resulted in a collapse of the linkage (as opposed to using such an imaginary link
for a mass-to-mass balancer, as for instance in figure 2.3b). Another example is
present in the system of figure 5.25, where it may be tempting to compose the
springs into one spring, but this is not allowed as was explained at the end of
section 4.5. This all demonstrates that the approach proposed in this thesis is
not a recipe but requires the creative combination of the modification rules and
other knowledge, especially kinematics (rolling link mechanisms, pantograph
linkages). Nevertheless, when applied judiciously, the framework supports the
conceptional design considerably.

Implicitly, a potential energy perspective was often assumed, yet a
consideration of the forces often proved advantageous to arrive at a profitable
practical embodiment. This was especially true in the Floating Suspension,
where force directed design led to the elimination of the pivot, and to a general
formulation of the behavior. In a way, this design has a central place in this
thesis. It would not have been realized if only one perspective would have been
adopted: at least the potential energy and the force directed design approach
were essential in its conception. The Floating Suspension owes its central place
also to the fact that several of the other balanced systems presented in this
chapter can be derived from the generalized equations. For instance, setting the
stiffness of one of the (ideal) springs at infinite results in a fixed pivot due to
the zero free length. Selecting one infinitely stiff spring, two other ideal springs
and zero mass, and demanding static balance, yields the basic spring force
balancer (figure 3.6); one infinitely stiff spring, one other spring and one mass
yields the basic gravity equilibrator (figure 5.1b); one infinitely stiff spring, two
other ideal springs and a non-zero mass yields the example of combined mass
and spring compensation (figure 4.24); four springs of finite stiffness and zero
mass results in the floating version of the basic spring force balancer
(figure 5.32b); while also rule 6 can be described (figure 4.20). Clearly, the
description can be further generalized in order to accommodate for more
masses, but this, together with the verification of the thoughts above, is left to
the reader.
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The investigation of the Floating Suspension revealed some other interesting
features, for instance the fact that translation of a body with n ideal springs
acting on it results in a translational stiffness of 2k;, regardless of the
configuration of the springs (figure 5.19a), and furthermore that rotation of such
a body results in a sinusoidal moment. The Floating Suspension also provides
confirmation of the observation in section 3.3 that two central linear forces are
to be combined into a constant force for dynamic equivalence. Furthermore, the
application of the geometric construction for the DEP of constant forces to the
spring forces of the Floating Suspension results in a constant error, as was
expected (figure 5.22).

In addition to the variety of ideal spring solutions, a class of energy-free
mechanisms was found with perfect balance, yet incorporating normal (non-
zero-free-length) springs. Advantages are that off-the-shelf springs can be used
so that the special constructions (and the weight and friction associated with
these) or special coiling techniques required to obtain zero-free-length behavior
(or other special mechanisms such as wrapping cams), can be avoided.
However, as opposed to the perfect equilibrators with ideal springs, the
solutions in this class cannot turn a full 360 degrees.

The prototypes, which were made of some of the examples, demonstrated
the proper functioning as well as the practical problems associated with the
actual design. The attachment points of the springs, especially but not only in
spatial linkages is a profound challenge, while spring selection is remarkably
cumbersome, both in the case of springs with increased preload (difficult to
manufacture accurately) and in the case of a pulley and string arrangement
(sufficient strain). This is often overlooked, perhaps due to the easy calculation
of the spring stiffness from the balancing conditions.
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6 Approximate balance

in which balanced mechanisms with normal springs are developed, where
optimization techniques are demonstrated using conceptional designs with ideal
springs as initial estimates, and in which two practical designs are presented.

6.1 Introduction

Da in vielen Féllen noch die tblichen Federn am billigsten herzustellen
sind, lohnt es sich, ihren Einbau in ein einfaches, ungleichformig
Ubersetzendes Getriebe so vorzunehmen, dapf die Federkréfte in
gewiinschter Weise umgewandeit werden.

As normal springs usually are cheapest to produce, it is worthwhile to
consider their use in a simple non-linear linkage converting the spring
forces as desired.

Kurt Hain, 1956

In the previous chapters, a framework for the conception of perfectly balanced
spring mechanisms has been put up. Extensive use has been made of ideal
springs (zero free length), although a number of arrangements were found
where perfect balance was achieved using normal springs (non-zero free
length). However, when a perfect solution with normal springs is not found and
when the special spring constructions to obtain zero-free-length behavior
(figure 4.5) are not feasible, for instance when cost, space or friction are critical,
the design of approximate solutions with off-the-shelf springs may be
considered. This chapter investigates methods for the design of balanced spring
mechanisms using normal springs [6.1].

As was described in section 4.2, non-zero free length implies that the
stiffness function does not intersect the force-length diagram in the origin. This
results in increased complexity of the equations, since F, = k,(I, - £,,) instead of
F, =kl . Especially the roots emerging from the derivation of the potential
equations are cumbersome. Graphically, the energy fields were found to be
correspondingly complicated (figure 4.4cd). Figure 6.1 shows that the
intersection of a normal spring's energy field and a cylinder with parallel lines
of symmetry no longer is an ellipse. Indeed it is not a planar curve, and a non-
sinusoidal potential energy function of the rotating link results.

This chapter will merge the conceptional design approach presented in the
preceding chapters with optimization techniques. Some of the optimization
techniques are adopted from literature [6.1], others are modifications of existing
techniques, and some are specially developed. It will be shown that the ideal-
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Figure 6.1  Graphical representation of energy function of a rotatable link and a normal
spring: (a) the intersection of a cylinder and the normal spring energy field no longer is an
ellipse, (b) the corresponding energy function of the rotatable link deviates from a sine,
compare figure 4.10 [4.3].

spring designs according to the previous chapters can function as initial
estimates needed for the optimization techniques. In section 6.2, several
procedures based on graphical representations will be given. Section 6.3
provides an example pursuing the same goal employing a vector-based
optimization technique. Subsequently, two examples of mechanisms with
approximate static balance are presented in section 6.4.

6.2 Graphically inspired optimization

Mechanics is inherently a subject which depends on geometric and
physical perception, and we should increase our efforts to develop this
ability.

J.L. Meriam, L.G. Kraige, 1987, p. x

This section will explore optimization methods with a graphical background of
different kinds. The first one (contour tracing) will use contour lines of the
combined energy field of two springs, whereas the second one (field fitting) is
based on shifting energy fields over the ground plane until a good fit with a
desired potential energy curve is found. The approach for a third one
(paraboloid placement) is illustrated using ideal springs, even though it also
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Figure 6.2 lllustration of the procedure of contour tracing: (a) the contour lines of the energy
Sields of two normal springs, (b) contour lines of the resultant energy field, (c) selected target
path and initial estimate based on basic spring force balancer, (d) replacement of the ideal
springs by normal springs, and the link by two rollers.

works for normal springs, to demonstrate the remarkable geometric theorem
that the apex of the paraboloids containing two spatial points traces a circle. The
final one presented in this section (overlay method) is based on a mechanism
synthesis method using overlay sheets.

Contour tracing

The first optimization method proposed is based on the principle of following a
contour line of the combined potential field of two or more potential energy
storage devices, connected to the same point of the adjustment mechanism. This
approach was also used as one way to conceive the basic spring force balancer
(figure 4.9). The same line of thought is feasible when using normal springs.
Leading a point, at which the free ends of two (or more) normal springs are
attached, along a contour line of the resultant energy field of these springs
results in a balanced spring mechanism. The only difference is that the energy
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Figure 6.3  Definition of the vectors and the initial position of the two-roller layout used in
the example. The springs need to be attached to the same point on the moving roller but this
point is not confined to be the center of the moving roller. ’

fields are no longer paraboloids, hence the contour lines are no longer circles.
Instead, they assume a non-circular shape, and a simple link (as in the basic
spring force balancer) is not sufficient to provide adequate balance. In this
strategy, called contour tracing, the design of balanced spring mechanisms has
been reduced to the classical path generation problem[1.7]. One of the
challenges remains finding simple solutions with low friction.

As an example, this section will describe the design of a spring mechanism
consisting of two rollers and two equal normal springs. It is noted, however,
that the procedure is not at all limited to equal springs. Indeed, any potential
field qualifies for this procedure. The procedure followed is illustrated in
figure 6.2. Figure 6.2a shows a number of contour lines of the given springs.
The continuous circles indicate the free length of the springs. Figure 6.2b shows
contour lines of the combined potential. Within each £, -circle, the potential of
the corresponding spring is zero, so the contours inside each circle are sections
of the circular contour lines of the opposite spring, as in figure 6.2a. Outside the
{,-circles, the contour lines have smooth non-circular shapes. Far away from
the fixed spring attachment points, unfortunately beyond the reach of the
springs, the contour lines are almost circular. A section of one of the contour
lines is selected as the target trajectory ¢ for the spring mechanism. This
trajectory is to be traced by the point of the mechanism where the springs attach.

Since the optimization procedure for force balancing problems has thus been
reduced to a path generation problem, existing synthesis methods for the
solution of this kind of problem can be applied, such as loop-closure [6.2].
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Figure 6.3 illustrates the procedure using loop-closure for the example of two
rollers. The demand for continuity is posed in vector form. A point of the
moving roller is desired to follow the selected part of the contour line:

AR+t =0 (6.1)

Using the definition of the initial position of the moving roller according to
figure 6.3, and setting the orthogonal components in a Cartesian coordinate
system to zero gives the following set of two continuity equations for the i
position (or precision point):

0=r,cosp, + (rl +r )cosqo“ +r cos((p(, + (1 + i](z)“ ] —r,,;COSQ;; 4.2)
r

0=r,sing, +(r +n)sing, +r, sin[(p0 + (1 + ij(p“j — ¥ ;sing,; 4.3
r

The variables governing the system are listed as C,, C,, r, n, 5, @, @uis
rs,;, and @s;, where it should be noted that C,_, C,, r,, r,, 1, 1, and ¢, are
unknown but remain fixed in number and do not vary with the number of
precision points, whereas ¢,;, rs;, and ¢@s; are unknown variables with a
different value for each precision point. As a distinguishing mark, the latter’s
index is expanded with the symbol i, where 1<i<n, and where n is the
number of precision points in the target trajectory ¢.

The selection of free choices determines the number of precision points
required to achieve a solution. Table 6.1 illustrates the relation between the
number of precision points, equations, unknowns and free choices. In the
example, the whole set of C,, C,, %, r,, 1, @,, and @, through ¢, is

selected as unknowns, so no free choices were made. In total, there are 6+n

Number of Number of Number of scalar unknowns Number of free choices
Precision points | scalar equations | (plus their symbols) (plus suggested parameters)

1 2 T (A A, 72 75 @0 911 5 (Aurprars @

2 4 8 (above + @) 4 (Aorira g

3 6 9 (above + @, ;) 3 (As 1, @)

4 8 10  (above + ¢, ,) 2 (A, ry)

5 10 11 (above + ¢, 5) 1 Ay

6 12 12 (above + ¢, 4) 0

Table 6.1  The relation between the number of precision points, equations, unknowns and
free choices for the configuration of two rollers and given springs and spring attachment
points.
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Figure 6.4  Optimization result, drawn in the six precision positions, while the error is
calculated over the whole trajectory. This particular solution has a fixed roller radius of
16.8mm, moving roller radius of 14.Imm, and an arm length r;=10.6mm. The spring

parameters are k=0.85, {y=35mm, and K=1200Nmm. The initial estimate is shown in dotted
lines. The error in this particular case amounts to 0.33%.

unknowns and 2n equations. Solving 6+ n=2n yields six precision points for
this case. The precision points are distributed along the target trajectory using
Chebychev spacing [6.3]. The resulting set of twelve nonlinear equations is
solved using the Gauss-Newton optimization routine in the MATLAB package,
while the required initial estimate is based on a basic spring force balancer.

Figure 6.2c shows how the initial estimate for the optimization is selected. A
basic spring force balancer is placed in one position, in this case the symmetric
central position, while the fixed spring attachment points are placed at the
¢, -circles, so that at least for small rotations of the link, the mechanism is
statically balanced also when the ideal springs P4, and P4, are replaced by
normal springs P4, and P4, having free length ¢,,.

As the number of precision points increases, finding solutions depends more
on the accuracy of the initial estimates. With six precision points, the initial
estimate based on the basic spring force balancer still suffices. Each choice of
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Figure 6.5 Demonstration model based on the contour tracing procedure [6.5].

the target trajectory yields a different solution. Figure 6.4 shows one of the
solutions. The balance error was calculated as the maximum deviation from the
constant potential K of the target trajectory, divided by X .

Sometimes internally rolling arrangements are found. This is undesirable
since then the resultant spring force will separate the rollers rather than press
them together. Fortunately, a useful solution exists in many cases because
identical cycloids can be generated by two different rolling mechanisms [6.4].

Based on one of the solutions with an error of 0.07%, a working model was
manufactured (figure 6.5). Contrary to the solution in figure 6.4, the spring
attachment point on the moving roller is in between the centers of the rollers
(figure 6.5). The model consists of a frame part incorporating the fixed roller,
and a moving part being a section of the moving roller. The springs operate in
parallel planes. Consequently, a moment is introduced which tends to rotate the
moving part relative to the frame. Furthermore, the contact force between the
rollers is not normal to the contact surface. This is readily seen, as the moving
part is in fact a two-force system, and the spring attachment point is not in the
center of the moving roller (as opposed to the systems in figures 5.3¢c
and 5.37b). Due to the moment and the non-normal contact force, the moving
roller needs to be prevented from slipping. Flexible bands were wrapped
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(a) (®) ©

Figure 6.6  Energy-distance circles: (a) the potential energy demand of each point Q;
corresponds with a spring elongation R; so two possible spring attachment points A; result, (b)
situation for more points, (c) optimized situation.

between the rollers. Only two bands were required (recognizable by the screws:
the one on the front plane from left below to right above, the other in the hind
plane from left above to right below), because the moment pulls the rollers into
the bands. The mechanism performs well, it actually has a range of equilibrium
positions throughout its range of motion.

Field fitting

The contour tracing method works well if the potential energy storage elements
attach to the same point of the mechanism to be designed. For cases where this
condition does not apply, the following method, called field fitting, was
developed. The case of the static balancing of a pre-existing planar mechanism
is addressed. One point Q of the mechanism is selected for the attachment of a
compensation spring. Over the path g traced in the ground plane by this point,
the potential energy curve p required to balance the original mechanism is
plotted. Note that the shape of this curve is determined by the potential energy
characteristic of the original mechanism, but that an arbitrary constant value
may be added, resulting in different elevations over the plane of motion. Since
V,+V.=K, where ¥, is the pre-existing potential, and ¥, is the potential of
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Figure 6.7 Rolling link equilibrator: optimization output showing the pre-existing rolling link
mechanism with one fixed roller and one moving roller with a lever and mass attached 1o it.
The point Q was selected just in front of the moving roller. With the proper choice of the spring
parameters and the value for K, a satisfactory fixed spring attachment point 4, is found.

the compensation spring, the lowest possible value for K is the maximum
value of V,. Next, the energy surface of a preselected compensation device,
which can be moved in the plane of motion of the mechanism, is fitted
optimally against the spatial curve p. A perfect fit would result in perfect
balance. The location of the compensation energy surface determines the
attachment point 4 of the compensatory element. There are many ways to find
an optimal configuration, including multiparameter gradient-based
methods [6.1]. However, this section will be restricted to the description of a
straightforward procedure, which has the advantage of being very simple.

When the trajectory ¢ is subdivided into n points, and a value for the
constant K is selected, then the required potential energy of each position is
known. When a preselected spring is to be used, the elongation of this spring
required to meet the energy demand at each point O, can easily be calculated.
Circles with the required spring lengths as their radius (energy-distance circles)
can now be drawn, having the corresponding points Q, and O, on the
trajectory ¢ as their center, as is indicated in figure 6.6a. If two successive
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Figure 6.8  Rolling link equilibrator: optimization output giving a graphical impression of
the fitting of the required potential curve p and the compensation spring potential field [4.3].

positions O, and @, are regarded, a maximum of two suitable positions, A4, ;
and A4,; for the attachment of the compensation spring are found at the
intersections of the corresponding circles. A spring attached at either of these
points will satisfy the potential energy demands for the points Q, and Q,,,.

When more than two points are considered, a series of spring attachment
points will be found (figure 6.6b). In general, the attachment points A4,;
and A,;, respectively, will not coincide. However, in case of an arc-like
trajectory g without inflection points, an acceptable solution is often found by
selecting an appropriate value for K, as is suggested in figure 6.6c. Under these
circumstances, one spring attachment point approximately satisfies the potential
energy demands of all points Q,. It is wise to start with low K -values in order
to avoid high total potential energy. For a satisfactory solution it may be
necessary to repeat the procedure with different parameters: another point Q of
the mechanism to be balanced may be selected for the attachment of the
compensation spring, or a different spring may be used.
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(a) ®)/(c)
Figure 6.9 Demonstration model of rolling link
equilibrator, designed using field fitting: (a)
overview, (b) close-up of rollers and spring, (c)
drawing, showing the flexible band, the spring,
and the adjustment mechanism for the fixed
spring attachment point [6.5)].

Figure 6.7 shows the optimization result for a one-degree-of-freedom gravity
equilibrator with a rolling joint. One roller of diameter 9mm was fixed, while
the other one, having a diameter of 18 mm, was to move between plus and
minus 30 degrees with respect to the horizontal. Due to the rolling process, the
lever attached to the moving roller, being 188 mm long, assumes angles
from -45 to 45 degrees. The mass at the end of the lever was 0.5kg. An
available spring was used having a stiffness of 2.09 N/mm and a frec length
of 38.5mm, indicated by a circle in the diagram. The value of K was increased,
starting from the lowest possible value, to find an optimal balance. The result is
shown in figure 6.7. The trajectory of the points 4,, is very compact. Their
average value, 4, , was taken as the fixed spring attachment point, resulting in a
balancing error (maximum relative deviation of potential energy) of 0.4 %.
Figure 6.8 gives an impression of the fit between the required potential energy
curve p and the energy field of the selected normal spring.

165




@ ®)/(c)

Figure 6.10 Demonstration model of rolling link spring force

balancer: (a) overview, (b) close-up of rollers, spring attachment
points, and flexible bands, (c) drawing showing the flexible band
mounting [6.6].

A demonstration model was made (figure 6.9 [6.5]), which performs well. Its
potential energy function is not perfectly constant, rendering a stable and an
unstable equilibrium position for the rolling lever. In the stable equilibrium
position the oscillation period is several seconds, and, in spite of the low error,
it is very difficult to keep the mechanism in its unstable equilibrium position,
due to the very low friction in the rolling joint. A spring-to-spring balancer was
made using the same approach (figure 6.10 [6.6]). In both cases the flexible
bands are single sided. The forces present make sure that the roller will be
pressed into the bands.

Paraboloid placement
Another approach is also based on the parameterized trajectory ¢ of a specified
point Q of the mechanism to be balanced. This time, not the positions Q,
and @,,, are used, but their corresponding points P and P,

i i+l

on the energy
curve p. The question now becomes to find the potential energy surfaces that
contain both points P and P,,. In the case of ideal springs, the surfaces are
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Figure 6.11 Possible paraboloids through two points P; and P;[4.3]. Two generating
parabolas of the paraboloid through point T are drawn. As the angle a between the vertical
planes containing the generating parabolas is changed, other solutions are found. Two
extremes are drawn: the one with a=0 (through point T, ). and the one with a=r (through
point Tpe ). The locus of point T is a circle.

paraboloids and a nice solution exists. For this reason, the ideal spring case is
described here, but the same procedure can be applied to the case of normal
springs.

A variety of paraboloids exist containing two given points £} and F,. Two
extremes are sketched in figure 6.11: the ones with their axis of symmetry on
the straight line containing points O, and Q,. Clearly, these are not the only
solutions. Another arbitrary solution is also indicated: the paraboloid with its
axis of symmetry passing through T. Two of its generating parabolas are
drawn, the ones through points B, and P, lying in vertical planes at a relative
angle a . For the distances TQ, and TQ, the following expressions hold:

T, =[5+ (6.4)
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TQ, =
where ¥, is the required potential energy in point Q,. So it is observed that the
ratio of 7Q, and T(Q, is constant as k is varied, and therefore the locus of
points T is a circle of Appolonius [3.6]. The spring stiffness k varies along this
circle. The spring of minimum required stiffness is located at T, , whereas the
spring of maximum stiffness is located at 7, .

A locus of points T, which is a circle in the case of ideal springs, can be
found for each pair (Q,,0.,,). The points T;.; of these loci that correspond to
the same spring rate can now be connected. For a specified range of spring
rates, a family of curves is formed. The shortest of these is likely to serve best
as a basis for determining the optimal point of attachment. A spring of the
spring rate k; belonging to this curve is attached to the point (x4,yu ),
where x,; is the mean of the x-components of the points 7; ; used, and y,; is
the mean of the y-components. Again, it may be necessary to add a different
constant K to the energy curve p to obtain a good solution. If normal springs
are to be used, the loci ¢ will assume a shape different from a circle, and the
free length will be an additional parameter.

Overlay methods

A graphical procedure of a different kind than the ones in the previous section is
found when overlays are used. This method using overlays is also applied in
mechanism synthesis. For instance, when designing a four-bar linkage as a
function generator, several positions of the input crank are specified, a
connecting rod length is selected and an overlay of the output crank featuring
the desired output angles is fitted to this picture [6.7). By adding an overlay
containing a spring’s potential energy contour lines, the procedure can easily be
extended to solve counterbalancing problems of many kinds.

As a first example, figure 6.12 suggests the static balancing of a spring-lever
element with normal springs. A point Q on the link is selected, and several
configurations of the link are drawn. Each configuration is labeled with the
amount of required potential energy for static balance (figure 6.12a). Since
Vi+V, =K, the required potential at each point Q, is equal to V5, =K -¥,,,
where /,; is the potential of spring & at point Q,, and where V,; is the
potential of spring %, at point Q,. Any value greater than the maximum of the
values of ¥;; may be selected for the constant K. Next, an overlay of the
contour lines of the compensation spring (figure 6.12b) is placed onto the
drawing, such that the required potential energy at each point Q, corresponds to
the potential energy contour of the compensation spring.
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Figure 6.12 Conception of a simple balancer incorporating normal springs using an overlay:
(a) rotatable link with normal spring, while a compensation spring is to be attached at point Q,
(b) overlay of compensation energy field contour lines, (c) after selecting K, in this case a value
of 500 is chosen, the overlay is matched with points Q;, and a location for A is found.

In the example in figure 6.12, the following parameters were used. The
spring parameters are k, =2, £, =11, k,=1.5, and £, =12.7, while the arm
lengths are 7 =16, and r,=25. The selected value for K was 500. An
approximate position for the fixed point 4, of the compensation spring was
readily found.

A second example will demonstrate the procedure for a four-bar linkage.
The rotatable link # hinged at C; is hampered by a parasitic potential energy
function ¥ as a result of the action of a mass (figure 6.13a). The compensation
is designed as follows. Successive positions B; of a selected point of the link
are specified, and a family of circles is drawn with these points as their centers
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Figure 6.13 Conception of a four-bar gravity balancer incorporating a normal spring using
an overlay: (a) rotatable link hampered by mass, (b) prespecified output crank parameters, (c)
overlay of output crank to match the coupler bar circles, (d) overlay of compensation energy
field contour lines.

and with a radius , equal to the assumed length of the coupler link
(figure 6.13c). A desired energy value ¥, = K —V;; is assigned to each of the
positions [6.8].

Now a first overlay is made, including concentric circles, representing
possible lengths of the output crank 7,, and of the arm length , of the
compensation spring. This overlay can also include desired angles of the output
crank in the respective configurations (figure 6.13b shows such an overlay with
a fixed arm length , and concentric circles for r, ). This overlay is fitted to the
original layout in such a way that the links form a four-bar arrangement in every
configuration, while simultaneously a second overlay containing the contour
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Figure 6.14 Optimization output of the four-bar balancer procedure: the input crank is hinged
at point Cy, connected by the coupler to the output link hinged at point C», while the fixed
spring attachment point is found at point A;. The compensation error amounts (0 less
than 0.002%.

lines of the compensatory spring's energy field is fitted to points Q, of the
output crank, to be determined by sliding the spring potential overlay until a
satisfactory match is found (figure 6.13d). Several scale divisions on the spring
potential overlay may be applied to be able to quickly check for different spring
rates.

The two overlays are fitted to the original drawing, while trying to match the
desired energy value for cach configuration of the linkage with the energy
values of the compensation spring. It may be necessary to try other connecting
rod lengths, output crank lengths, compensation spring arms, or compensation
spring parameters, before a satisfactory match is obtained or it is concluded that
no solution exists. With some exercise, this method works surprisingly well,
and is more intuitive than one might expect.

To a certain extent, the computer can facilitate finding a solution. Rather
than a completely automated procedure, a computer assisted manual procedure
will be given, as this provides more control over the arrangement obtained. The
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variables which are manually adjusted are the configurations of the rotatable
link to be balanced (¢,;), the value for the total potential energy (K), the
compensation spring parameters (k, and ¢,,), and the lengths of the input
crank (7, ), connecting rod (), output crank (7, ), and the arm length (r,) of the
compensation spring on the output crank. In each fitting attempt, a position of
the second fixed pivot is selected with the mouse. The kinematics is completed
by a MATLAB-routine, and the spring attachment point is calculated by the
surface fitting technique, presented in the previous section.

Figure 6.14 gives the optimization result of the same arrangement as in
figure 6.13, where a mass attached to a rotatable link is to be balanced. The
mass parameters are m=1, r, =30, the link lengths are 7 =25, r, =30,
r, =36, r, =38, while the spring parameters are k, =1.5 and ¢, =12.7, and
the selected value for K was 300. The balancing error was found to be
below 0.002%, while this solution was easily found.

6.3 Extended vector-loop closure

In optimal design [-], existence of even a nominal design satisfying
constraints is not assured, much less existence of an optimum design.
Even when an optimum design exists, numerical methods for its
solution are often quite sensitive to initial estimates and require
considerable computational art for iterative convergence.

Edward J. Haug, Jasbir S. Arora, 1980, p7

The contour tracing procedure described in section 6.2 only works well if the
springs to be balanced against each other are attached to the same point of the
moving link. The loop closure method, however, as applied in the contour
tracing procedure, can be extended to directly incorporate desired energy
characteristics [6.9]. To this end, an energy equation is added to the set of loop
equations, so that the demand for the springs to be attached to the same point is
canceled. Two examples will be given next. In the first example the springs are
attached to the same point of the mechanism, as previously. The second
example is a generalized version where the springs are attached to different
ponts.

Roller on surface

Figure 6.15 suggests the layout of the first example: a lever is attached to a
roller which can roll over a flat surface. Two springs are attached to point P of
the link attached to the roller in a symmetrical arrangement. For this case, two
loops can be identified. The loop equations and the energy equation yield:
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Figure 6.15 Roller on flat surface balancing two normal springs: (a) definition of vectors, (b)
determination of initial guess, (c) application as a low-friction, backlash-free straight-line
guidance.

a+l=n+r (6.6)
a+h=r+rn (6.7)
V,+V,=K , (6.8)

where a, is the vector from the origin to the right fixed spring attachment
point, @, to the left one, /; and [, the lengths of the right and left spring,
respectively, r, the vector from the origin to the center of the roller, and r, the
vector along the link. ¥, and ¥, represent the potential energy in the springs,
whereas K is a constant energy value, which can be regarded as a variable to be
determined or as a given constant. Expressing the vector terms in Cartesian
coordinates and rearranging gives the following set of five equations for each
of n positions:

0=4 +Rg, +r,sing, +£,,co8¢,, 6.9
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Figure 6.16 Optimization output of the roller on the flat surface: The initial estimate is
shown in dotted lines, while the optimized arrangement is drawn in continuous lines, where 4,
and A; are the optimized positions of the fixed spring attachment points. The balancing error
amounts to 3e-6%.

0=4,+R+rcosp, —¢, sing,; (6.10)
0=—A ~Rp,—r,sing, +{,,cosp,, (6.11)
0=4,+R+rcosp, —{,,;sing,; (6.12)
0=1k(e, ~ by ) +1k(t,— ) -K (6.13)

where R is the radius of the roller, where 1 <i <n, and where the coordinates
of the fixed spring attachment points are 4, =(AX,A_V) and 4, =(Ax ,—Ay).
When ¢, are given, a value for K is agreed upon, and the springs are
preselected, then a maximum of 4+ 4n unknowns are to be solved using the
above 5n equations.

The initial estimate is based on the basic configuration, as shown in
figure 6.15b. The initial lengths of the springs are appended in the central
position of the lever, which gives the initial estimate for the fixed spring
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Figure 6.17 Definition of vectors for the general two-roller layout.

attachment points. In the deflected position, the resultant of the spring forces
does not pass the pivot, due to the free length of the springs. Using a rolling link
instead of the fixed pivot moves the contact point in the desired direction,
thereby reducing the balance error. The optimization result for a configuration
with equal springs is shown in figure 6.16. The balancing accuracy of the initial
estimate is about 5% over the range of motion shown in the diagram, whereas
this value has been decreased to practically zero after optimization. A possible
application is suggested in figure 6.15c: a low-friction, backlash-free straight-
line guidance.

General two-spring two-roller balancer

The two-roller layout of figure 6.3 can be generalized into the configuration of
figure 6.17 in order to eliminate the constraint of the two springs attaching to
the roller at the same point. Two loops are present, resulting in two continuity
equations in vector form. Together with the potential energy equation, the
following set of governing equations results:

a+l=r+r+r, (6.14)
a+l,=n+r+r, (6.15)
V+V,=V (6.16)

where r,, is the vector from the center of the roller P to the attachment
point P of spring &, . In principle, any energy function can be assigned to V',
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but the discussion here is limited to constant energy: ¥ = K. The constant
energy value K, however, can be regarded as a variable to be determined.
Expressing the vector terms in Cartesian coordinates and rearranging gives the
following set of five equations for each of n positions:

0=, +r,)cosgp, +r, cos((l +%J(p,. + (/)O,J— A, -, cosy,, 6.17)

0=(r+r,)sing, +r, sin[[l + :—;](pi + q)m]— A, —L, siny, (6.18)

0=(r+ rz)cosw,. +r, cos([l + :—;](p, + (ooz] -4, — 1, , cosy,, (6.19)

0=(r,+r,)sing, +r, sin([l + ;’:‘—](pi + %Z) — 4, £, siny,, (6.20)
2

0=1k(e,, — €0 ) +1k(0,,~ £, K (6.21)

Based on the above expressions, a maximum of15+4n unknowns
and 5n equations arise, when @, is given. Setting 15+4n=>5n yields a
maximum of n =15 precision points. In common cases, the characteristics of
the springs will be given, and K will be preset. This results in a total
of 10 + 4n unknowns and ten precision points. This case is given in table 6.2.

Nr of Nr ofscal. | Number of scalar unknowns Number of free choices
pos. (n) | egs. (5n) (plus symbols) (10+4n) (plus suggested symbols) (10-n)
1 5 V14 (b yinYerrarara iz | 9 (ru ra T G P A Ay Az
Pon Qo2 Aio sy Aow A2) Az
2 10 18 (above + 4,5 42 W12 W22 8 (rus ria @on Qo2 Ain Ary A2 Az)
3 15 22 (above + 43, b3 W13 W23 T (re @ o2 Asp Aiy 42 An)
4 20 26 (above + 414 Lo Wi W24 6 (9o, o2 Ain A1y 420 43)
5 25 30 (above + 45 b5 s Wos) 5 (9o Ao A1y 42 42)
6 30 34 (above + 46 15 Wis Voo 4 (A5 A, Az A)
7 35 38 (above + &, 7, &7 W7 ¥i7) 3 (A A2 4
8 40 42 (above + £ 5 brs, Wi Wau) 2 (Am Ax)
9 45 46 (above + 419, £ Wi Yoo 1 (4y)
10 50 30 (above + 410 Loio Wiio Woid 0

Table 6.2  The relation between the number of precision points, equations, unknowns and
free choices for the generalized configuration of two rollers, with given springs and spring
attachment points.
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(a) {b)

Figure 6.18 Force directed design of a thumb mechanism in a hand prosthesis: (a) two forces
are roughly known, (b) the third force required for equilibrium applies at a roller, which is
supported by a plane perpendicular to the action line of the third force. An O-ring is wrapped
around the roller and the frame in a figure-of-eight arrangement.

6.4 Practical examples

In order to provide a functional artificial finger motion, it may be
necessary to use rolling joints.

N. Newman, 1973

This section will present two prototypes incorporating approximate spring force
balancers with great practical value: a prosthetic hand, and surgical forceps for
use in minimally invasive surgery.

Force directed design of a voluntary closing hand prosthesis

The design of a body powered voluntary closing prosthetic hand [6.10] stems
from a long-term project on the design of rehabilitation aids [1.2]. Prior to the
design, several workshops and interviews with the members of two Dutch
rehabilitation teams were organized [6.11], where early ideas were discussed. It
was found that an elbow-controlled design, without direct grasp [6.12] would
fulfill many basic needs [6.13]. As force feedback was a primary goal, a research
project on the perception of forces by humans was initiated [6.14], in order to be
able to design an optimal human-machine interface. Preliminary results are that
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(a) )

Figure 6.19 Compensation of glove force based on perfectly balanced rolling link: (a)
repetition of figure 5.37b, (b) one of the springs, k,, can be regarded as the parasitic glove
stiffness, the other as the compensation spring.

the sensitivity of the human arm with respect to elbow-control is best when the
operating forces are not below 9N [6.15].

The design presented here is inspired by the idea that the motion of the
fingers before establishing a grip is much less relevant for good control of the
object held than the distribution of forces once the object has been contacted.
Based on this notion (force directed design, [1.8;1.9]), the configurations of
forces on the fingers and the force transmission through the whole mechanism
were taken as point of departure for the design, rather than motion
characteristics [6.16]. Furthermore, for a good distribution of pinching forces on
the object and a natural behavior, it was intended to make the prosthesis
adaptive and flexible. Other basic principles were the use of rolling links to
minimize friction, and to reduce the disturbing influences of the cosmetic glove
by a compensation mechanism, in order to obtain good force feedback.

The course of the design is first illustrated in figure 6.18 for the thumb. In a
given position, two forces are roughly known: the pinch force F,, and the
operating force F;, which is transmitted by a tendon from the forearm section.
The points of application of these forces are connected by a link. On this link, a
third force needs to act for equilibrium, while its line of action must pass
through point 7. Of many possibilities, a convenient one is selected
(figure 6.18b), and a roller is placed at the intersection of this action line and the
link. The preferred position of the roller is such that changes in the assumptions
for F,, and F, affect the action line of F, as little as possible. The most
profitable way to support the roller is perpendicular to the action line of the
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Figure 6.20 Photographs of the thumb joint of the second prototype: (a) in twisted position,
showing the flexibility of the O-rings, (b) in opened position. (c) in closed position (operating
tendon not shown) [6.17].

third force. This way, the force component tangential to the roller is minimal, so
the flexible bands wrapped around the roller are not loaded much. Indeed,
rubber O-rings wrapped in a figure-of-eight layout can be used rather than metal
foils. Thus, an arrangement has been obtained which is very flexible when
unloaded, very much like a relaxed human hand, while the mechanism stiffens
itself considerably when the forces are present.

The compensation of the glove force was inspired by the rolling joint in
figure 5.37b (reprinted in figure 6.19a). One of the springs, &, , can be regarded
to represent the counteraction of the cosmetic glove. Therefore, the other
spring, k., would balance the cosmetic glove if it would behave as an ideal
spring. Unfortunately, due to the non-linear behavior of the glove [1.4], perfect
compensation is not attained, yet a significant reduction of the glove
counteraction was achieved [6.18]. Figure 6.20 shows photographs of the thumb
joint, showing the figure-of-eight O-ring which prevents the roller from
slipping, and keeps the parts together when the mechanism is not operated, as
well as the O-rings which serve as glove compensation springs [6.17].

The design of the fingers proceeds in a similar manner as the thumb, the
main difference being that the fingers consist of two digits each (the proximal
phalanx near the frame, and the distal phalanx at the end), to allow greater
adaptivity. The pinch forces £, and F, were assumed to be equal in magnitude
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Figure 6.21 Force directed design of a finger mechanism: (a) proximal phalanx, (b) triangle
of forces of distal phalanx, (c) distal phalanx, (d) force triangle of proximal phalanx, (e)
composition of tendon forces.

(uniform force distribution), to act perpendicular to the glove contour, and to
apply at the most distal point of the respective phalanges. As was the case with
the thumb, the shapes of the parts followed from the configuration of forces.
When the free-body diagram of the distal phalanx is drawn (figure 6.21bc), F,
follows from static equilibrium with given estimates for F; and F,. This
defines the orientation of the contact surface between the two phalanges
(figure 6.21a). Together with estimates for F, and F,,, F, is now determined
from the free-body diagram of the proximal phalanx. To this end, the forces F,
and F, are first composed to obtain a three-force system. F,, follows from
equilibrium (figure 6.21d), and therewith the orientation of the contact surface
between the proximal phalanx and the frame. In the resulting configuration, the
shear components of the contact forces F,, and F,, are zero in the neutral
position, and, depending on the specific dimensions, small in the remainder of
the range of motion. What remains of the shear forces is absorbed by the O-
rings.

The driving tendon, which splits into a branch to the proximal phalanx and a
branch to the distal phalanx, distributes the operating force among the two
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Figure 6.22 Schematic representation of complete hand prosthesis design.

phalanges. It is led around a cylinder which rolls over a small plane which is
fixed to the frame. This prevents the tendon from sliding across the inside of the
glove, which would ruin both good force feedback and low operating force.
Furthermore, it prescribes the direction of the cable. When the direction of the
cable is equal to the direction of the resultant force of the two tendon forces F
and F,, (figure 6.21e), the assumption of equal pinch forces F, and F, is
realized. Due to the assumptions about the use of the prosthesis (indirect
grasping only), no tendons are provided to open the hand.

A diagram of the complete design is given in figure 6.22. The tendons of the
thumb and the fingers (only one finger shown) are connected to a force leveling
floating link, to ensure a desired force distribution ratio, regardless of the
configuration of the fingers.

Two prototypes of the proposed concept were built (figure 6.23, [6.17, 6.181).
Measurements showed that the force distribution was indeed approximately
constant throughout the range of motion. The operating effort was reduced by
the compensation mechanism by more than 80% [6.18]. Furthermore, even
though force rather than motion characteristics were used as design objectives,
the hand moved very naturally, due to the fact that the objective of uniform
pinch forces result in uniform accelerations when no object is present. The
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Figure 6.23 Prototype of hand prosthesis: (a) photograph of first prototype [6.18), (b)
photograph of second prototype [6.17). In both cases the cosmetic glove is removed.

prototypes are not yet applicable in clinical practice. However, they showed that
the concept works, and that it has potential. Also the fact that the second
prototype weighs only 47 grams adds to the high expectations.

Statically balanced compliant forceps

A compliant mechanism is a mechanism that gains some or all of its motion
from the relative flexibility of its members rather than from rigid-body joints
only [1.13,6.19]. In some applications of compliant mechanisms, the fact that
energy is stored in the elastic members presents a problem. For instance, in
manually operated instruments, such as surgical forceps, the forces introduced
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Figure 6.24 Compliant gripper [6.21]: (a) working principle showing the four compliant
sections and part of the central pull-pushrod, (b) photograph of the compliant gripper.

by the bending of elastic elements would disturb the force transmission. To
restore the force transmission quality, compliant mechanisms may be statically
balanced. This section presents an example of a compliant surgical forceps
mechanism, which is statically balanced by a rolling-link compensation
mechanism.

The conceptual design was divided into two parts: the gripper and the
compensation device. For the gripper, a configuration of parallel plate springs
was chosen (figure 6.24) [6.20]. The initial (unstrained) position of the compliant
gripper is half-opened. Therefore, a pull force in the pull-pushrod is required to
close the gripper, whereas a push force is needed to further open the gripper.
The dimensions of the compliant gripper mechanism were selected to attain
sufficient lateral stiffness. There was no need to minimize the stiffness of the
open-and-close movement, as this stiffness would be neutralized by the
compensation device. Due to the relatively simple configuration and the
moderate strains, the stiffness of the gripper (force versus translation in the pull-
pushrod with unloaded gripper) are almost linear for a wide range of plate
spring dimensions. The selected dimensions render the stiffness of the gripper,
reduced to the translational stiffness of the pull-pushrod to be 43 N/mm.

For the compensation device, a rolling-link mechanism was selected. Due to
the linear stiffness characteristic of the gripper, a lever attached to a roller
between the pull-pushrod and a parallel frame suffices (figure 6.25). Flexible
bands are provided in an opposite U-configuration. A spring is hinged between
a fixed point on the frame and the free end of a lever that is attached to the
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Figure 6.25 Compensation mechanism for compliant surgical forceps: (a) working principle,
(b) photograph of prototype, where the spring is removed to provide a view on the roller [6.21).

roller. The compensation mechanism was optimized for minimum
compensation error using the extended loop closure procedure (see section 6.3).
To this end, a potential equation is added to the loop equation. Together the
equations are;

nin=r (6.21)
V,+V.,=K (6.22)

where ¥, is the parasitic elastic energy in the compliant gripper mechanism,
which was measured, V, is the elastic energy in the compensation mechanism,
and K is a constant energy value, which was regarded as a given constant.
Expressing equation 6.21 in Cartesian coordinates and rearranging gives the
following set of three equations for each of n positions:

0=R@, +rcosp, — £, cosy, (6.23)
O=a+rsing, — ¢ siny, (6.24)
0=V, +Lk(¢,-¢,f -K (6.25)

where @ is the rotation of the roller from the neutral position, v is the angle
between the spring and the vertical, R is the roller radius, r is the length of the
lever, a is the distance from the fixed spring attachment point to the center or
the roller in the neutral position, ¢ is the length of the spring, & is the stiffness
of the spring, and ¢, is the free length of the spring. It should be noted that ¥, ,
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Figure 6.26 Photograph of the first prototype, where the block at the tip is for easy assembly
and disassembly, and is omitted in the second prototype as shown in figure 6.24b (6.21].

are given, that £ and £, are prespecified, and that R, », and a are unknown
but remain fixed, whereas ¢,, y,, and ¢, are unknown variables for each
position, as represented by the additional index i. When values for ¢, are
given, and a value for K is agreed upon, then 3+ 2n unknowns and 3n
equations result, where n is the number of precision points. Using three
precision points, several solutions were found, of which one with convenient
dimensions was selected. The rounded-off values are: roller radius R =3 mm,
lever length r =17 mm, distance a =24 mm. The preselected spring parameters
are: stiffness %4k =8.7N/mm, initial length ¢; =33 mm. Note that for reasons
of convenience two springs of stiffness ),k are used in the prototype.

Figure 6.26 shows a photograph of the first prototype [6.21] (the block
around the shaft near the gripper is only for easy assembly and disassembly in
the prototype phase, it was eliminated in the second prototype, shown in
figure 6.24). This prototype is not yet applicable in clinical practice, mainly
because a handgrip was not yet included. It was used to evaluate the
mechanism, to assess the force transmission characteristic, and for performing
some cxplorative experiments. When the gripper is unloaded, the maximum
operating force (maximum compensation error) on the experimental handgrip
amounts to 0.05N. Without the compensation mechanism, a force of
approximately 12.9N would have been felt. Additionally, a preliminary
sensitivity test was performed. An artery was simulated by a silicon hose, filled
with water, in which a pulse was generated by using a syringe. The pulse was
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clearly perceivable with the prototype, whereas this sensation was absent when
using conventional forceps.

6.5 Summary

This chapter presented several procedures for the design of approximate
balancers. It was argued that the conception with ideal springs, as described in
the preceding chapters, is very useful even when normal springs are to be
applied, because the idealized concepts can function as accurate enough initial
estimates in the numerical methods which are required for some of the
optimization procedures. Furthermore, it was demonstrated that balancing
quality benefits from the application of rolling links, not only due to their low
friction, but also because the non-linearity of the normal springs can be partly
compensated by the complex kinematics of the rolling links.

Some of the methods explicitly use an initial estimate, which in each case
was derived using the approach presented in the previous chapters. In other
methods, this happens more implicitly. For instance, in the first example using
the overlay method, knowledge on a profitable position of the attachment of the
compensation spring on the lever facilitates finding a solution, as does the
expectation based on the basic spring force compensator concerning the fixed
spring attachment point.

Several modifications or mixes of the methods are possible. Contour tracing
for instance is also possible in a mass-spring arrangement. This is even so when
the mass is not located at the spring attachment point under the condition that
the gravity energy field is reduced onto the new location.

A number of demonstration models were made according to solutions
obtained using various optimization procedures. Rolling links were used to
reduce friction so that the balancing quality could be judged better. The models
function fine. Some unbalance is present, which, given the low friction, results
in a preferred position in all models except the one in figure 6.5, which has a
range of equilibrium configurations.

The last section presented two applications of compensation mechanisms in
medical technology. Especially in this kind of applications low friction and high
quality force feedback make the difference of a cumbersome tool or an
extension of the human body. Even though the examples given are still in the
prototype phase, they demonstrate important virtues.
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7 Conclusion

in which the preceding chapters are overlooked, the approach proposed in the
introduction is evaluated, the results are discussed and suggestions for improvement
and further research are given.

71 Accomplishments

They were well-balanced and they could be operated, with some
exaggeration perhaps, by the finger of the engineer.

Andrew D. Dimarogonas, 1992

Work in the field of rehabilitation engineering has initiated the aspiration to
design mechanical systems with high energy-efficiency and good force
transmission quality. Statically balanced systems were found particularly suited
to meet the demands of low operating effort in the presence of (undesired)
forces, especially when springs are used to avoid the weight and inertia
associated with counterweights.

A design approach was proposed in which different methods and
perspectives would alternate. This applies firstly to the alternation of bottom-up
and top-down approaches. The conceptual design was performed in a bottom-up
fashion (chapter five), based on a framework of modification operations, which
were in turn (partially) derived from existing designs (chapter four). Closer
examination of the resulting designs inspired the top-down development of the
theory presented in chapter three.

Another alternation was performed between the three perspectives of force,
potential, and stability. Theoretically equivalent, their difference is one of
emphasis. Switching from one to the other enriches the conceptual design of
mechanical systems. Even though many examples were provided, no directives
on when to use each of the perspectives were given. It was not intended to
develop an automated design method. Instead, it was foreseen that a fair amount
of creativity, knowledge of mechanics and kinematics, as well as the flexibility
of mind to switch between different perspectives would be required to realize
the designs in view.

The approach has resulted in a diversity of statically balanced spring
mechanisms, both gravity equilibrators and spring force balancers; not only
designs where a pre-existing undesired force was compensated, but also designs
where the principle of static balance was included from the start. Prototypes
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were made of several conceptional designs, both according to working
principles derived in the chapter on perfect balance, and according to those
derived in the chapter on approximate balance. They demonstrated good
operation and provided feeling for the challenges involved in the elaboration of
a diagram into a working model. As static balance eliminates the major
operation forces, small errors easily result in a reduced range of equilibrium
positions.

In addition to the designs themselves, the work has yielded two concomitant
developments: a framework for the conceptional design of statically balanced
spring mechanisms, and a general treatise on the stability of forces acting on a
rigid body. These issues will be discussed successively.

Development of conception framework

One of the main accomplishments of the approach is the insight it provides in
subsequent steps taken during the conceptional design phase, which may benefit
the future design of mechanisms. This is in contrast with most literature (the
patents by Carwardine amongst the exceptions), where conceptional designs
appear as by miracle. Partly derived from existing systems, partly introduced by
the author, a set of modification operations was proposed, namely the variation
of parameters, rotation, shift, kinematic inversion, composition of springs,
composition of spring-lever elements, and the exchange of spring-lever and
mass-lever elements. Together with an elementary statically balanced
mechanism (figure 3.6), they constitute a logical framework for the design of
statically balanced systems. Its versatility was shown in chapter five, where also
guidelines for the correct application were found. The most important ones are
that the introduction of auxiliary parallelograms is useful, additional degrees-of-
freedom can be introduced by kinematic inversion, and that rollers can often
substitute links. Care was needed when imaginary links (put up by a
parallelogram, see for instance figure 5.23) were considered, as they may
collapse when changing the arrangement of masses and springs associated with
them. Examples were given to illustrate the procedure. It was also shown that
extension into the third dimension is possible. The whole procedure confirms
the usefulness of the step-by-step bottom-up design approach. Successive
extensions of a particular, elementary system have led to a general framework
for the design of statically balanced mechanisms incorporating ideal springs. It
was further shown that when the use of normal springs is required, the ideal-
spring designs can function as initial estimates in optimization procedures.
Rolling joints were shown to improve the resulting mechanisms, not only due to
their low friction, but also because the non-linearity of their kinematics
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facilitates matching of the normal springs' elastic potential functions. In many
cases where strongly non-linear transfer functions are needed, complex linkages
like four-bars can be avoided by using the hypocycloidal motion of two rollers.

Development of theory

The alternation of perspectives is prominently present in the relation between
the systems designed and the theory developed. Close inspection of especially
the spring butterfly (figure 4.23) led to a procedure for the composition of two
forces in such a way that a point of application could be assigned to the
resultant force [7.1]. It was found that the point of application of the resultant
force of two arbitrary constant forces, which ensures dynamic equivalence
(rather than instantaneous cquivalence) is located on the circle circumscribing
the points of application of the original forces and the intersection of their
action lines. Subsequent investigation of the fundamentals from the perspective
of stability has resulted in the theory presented in chapter three. Consideration
of the contribution of two forces to the stability of a rigid body yielded an
equation in addition to the resultant force and the resultant moment equations.
This equation, called the stability equation, determined the location of the point
of application on the line of action of the resultant force for dynamic
equivalence. For constant forces, this point was the same as the one found using
the circle. In the case of central linear forces, a different stability equation was
found, and an additional translation along the resultant line of action was found
to be required. The procedure was illustrated by the Floating Suspension, where
the dynamically equivalent resultant of the spring forces was found to apply at
the center of mass, according to the equations. The graphical procedure,
assuming constant forces rather than ideal spring forces, yielded an application
point right below the center of mass, at a distance according to the correction
term.

Potential and force perspectives

The Floating Suspension is also a fine example of the profit alternating
perspectives can give, namely the alternation of the potential energy perspective
and the force directed design approach. The Floating Suspension would not
have come to being had the forces not been considered. The wish to eliminate
the pivot in the basic equilibrator led to the introduction of an additional spring
force without losing static balance by applying the modification rule of the
resolution of ideal springs, and the rotation rule. Investigation of the resulting
configuration of forces (by skew resolution) paved the way to the elimination of
the pivot. This example demonstrated the usefulness of the force directed design
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approach. The force directed design approach is perhaps even stronger present
in the design of the hand prosthesis in chapter six. Starting with the formulation
of the design objective in terms of desired force distribution on the object held,
the use of rolling links to avoid the introduction of undesired friction forces, and
the application of a balanced system to (partly) compensate for the elastic glove
forces, a conceptional design was developed which is light-weight, soft when
relaxed, and which moves naturally. It once again demonstrates the value of a
different vision on mechanical design, especially in rehabilitation technology.

7.2 Challenges

Certain - few — memories from the past have strong steel springs, and
if we, in the present, touch these springs, they suddenly stretch, and
shoot us into the future.

Yukio Mishima, 1956

Besides the accomplishments, some loose ends remain. Chapter three, for
instance, is limited to the two-dimensional case. In three-dimensional space, the
action lines of two forces do not generally intersect. Clearly this obstructs the
procedure of the circle construction (section 3.4). The moment introduced by
the composition of forces in three-dimensional space also influences the
mathematical treatise. No attempts have been made yet to account for this.
Another unanswered question is what to do with the observed phenomenon that -
the dynamically equivalent of two central linear forces is a constant force. This
statement was confirmed by the analysis of the Floating Suspension, yet not
physically explained. The development of full understanding and the application
to any other kind of system are logical lines of further investigation.

Another challenge is the simplification of the designs. Some of the examples
presented are too complex for their intended use. For instance the spring force
compensation of the four-bar linkage (figure 5.40b) yields a degree of
complexity which is prohibitive in the application as a prosthetic hand
mechanism (figure 5.41b). Indeed, the four-bar finger linkage is too complex to
begin with, and the glove is far from a central linear force, yet the example is
included to demonstrate the versatility of the conception framework, as well as
to make the general statement that not only any mass, but also any ideal spring
acting on any coupler point of a four-bar linkage can be compensated. Practical
application may be less obvious, which may place the four-bar finger linkage in
a category between fundamental research and applied technology called
fundamental technology.
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Notes

Notes to chapter one

[1.1] Energy efficiency. Many authors mention the inefficient energy expenditure
of current robots, and report improvements due to static balancing of the gravity forces.
Asada and Youcef-Toumi (1984) designed a parallel drive mechanism for a robot in
which power dissipation was reduced by about 70 percent, mostly due to static
balancing using counterweights. Chung ef al. (1986) report that in their balanced
manipulator design the total variations of input torques were about three times smaller
than those of the unbalanced one. Lim et al. (1990) found that payload capacity can be
improved by about nine times through the introduction of a balancing mechanism. All
of these balancing mechanisms are based on counterweighting. This requires the
addition of masses. Therefore they are not appropriate in prosthesis design.
Furthermore, due to the additional weight and inertia of the counterweights, mass-to-
mass balancing is especially useful at low operating speeds. To reduce these
drawbacks, several authors suggest static balancing with springs. Gopalswamy et al.
(1992) suggest static balancing with a torsional spring, which may not be exact but
yields a simple solution with great improvement of system behavior. Mahalingam and
Sharan (1986) compare counterweight with spring balancing and conclude that spring
balancing is superior. Ulrich and Kumar (1991) state that robots commonly exert as
much as two-thirds of available joint torque to counteract gravity at full extension.
They illustrate the power of static balancing by designing a prototype that consumes
less than ten percent of the conventional arm. Rivin (1988) reports significant peak-
torque reduction together with a more uniform loading leading to better performance
and better energy efficiency.

[1.2] Design criteria prosthetics. The Wilmer group at Delft University of
Technology has been involved in the design of hand and arm prosthetics for several
decades. In close collaboration with two specialized rehabilitation teams, general
criteria for arm prosthetics have been derived that may be summarized as the triple-C
demands: cosmetics, comfort, and control (Cool, 1981, 1991; Cool and Plettenburg,
1992). For most users an inconspicuous appearance is the primary goal of using a
prosthesis. Furthermore, as the motoric function of the prosthesis is used only a few
times per day (van Lunteren et al., 1983), the burdens of wearing should be minimal.
Weight and discomfort due to the fitting and possible harnesses should be as low as
possible. Finally, the prosthesis should be easy to operate, in terms of operating effort
as well as intuitive use. So, although it may be tempting to aim at increasing the
motoric functionality, the main design efforts are to be directed at reducing the
burdens. Further information on the Wilmer group is available from the Internet
address http://www.wbmt.tudelft.nl/~wilmer and http://mms.tudelft.nl

[1.3] Feedback in hand prosthetics. In body powered devices, feedback is
intrinsically present. The central nervous system directs muscle action through alpha
and gamma signals and reads the current status of the motoric system from sensors
within muscles, tendons, around joints, and in tissue (Kandel and Schwartz, 1991).
When there is a clear relationship between the state of limbs, tissue and musculature
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that operate the prosthesis, and the state of the prosthesis, the proprioceptive
information is useful for the control of prosthesis operation. This has been called
extended physiological proprioception by Simpson (1974). To achieve this clear
relationship in hand prosthetics, firstly operating force should correspond to pinching,
and secondly the force transmission between operating site and pinching site should
not be disturbed. The first demand is satisfied by the concept of voluntary closing
control (Klopsteg and Wilson, 1964; Radocy, 1986). For the second demand, low
friction and the elimination of other disturbing forces are required.

[1.4] Cosmetic glove. The cosmetic glove covering the hand-like types of hand
prosthetics (as opposed to the hook types) usually is made of PVC or silicone (Clarke
et al., 1947, Clarke and Weinberg, 1949; Dembo and Tane-Baskin, 1955; Carnelli et
al., 1955; Klopsteg and Wilson, 1968; Klasson and Winderlich 1969; Kenworthy and
Small, 1974; Davies et al., 1977; Fillauer and Quingly 1979; Bilotto, 1986; Robert,
1989; Erb, 1989; Lee et al., 1991; Arkles, 1983; Bruckner, 1992; Pereira et al., 1992).
As these materials are viscoelastic, some of the energy input is stored and recovered
(elasticity), and some is dissipated (viscosity) during deformation (Ferry, 1970;
Treloar, 1975; Bueche, 1979; Fung, 1981; Rosen, 1982). A study was carried out to
asses some of the glove parameters, and to reduce both elastic and viscous forces
(Kruit, 1987; Blom, 1990; Herder et al.,, 1998). It was found that the stiffness of a
specific glove-prosthesis combination was highly non-linear, the ultimate slope being
about five times steeper than the initial slope. In rectangular specimens of a PVC
glove, this factor was found equal to 3, approximately. Glove modification (melting
grooves on the inside of the glove) reduced the elastic and viscous forces by 50%
approximately. Optimizing finger motion resulted in an even greater positive effect in
the particular case studied (Herder et al., 1998).

[1.5) Static balancing using counterweights. The addition or redistribution of
mass can lead to significant improvements in system behavior, both by static and
dynamic balancing. For a static consideration the reader is referred to Hilpert (1968),
Skorecki (1971), Chung et al. (1984), Asada et al. (1985), Lim et al. (1990), Huissoon
and Wang (1991). Specifically interesting is the work by Kreutzinger (1942), who
constructs the center of mass of a four-bar linkage, an approach used to statically
balance this type and the open chain type of linkage by Agrawal and Gokce (1998),
Gokce and Agrawal (1999), and Agrawal et al. (2000). Rivin (1988) points out that
mass balancing assures compliance with most requirements (including dynamic
phenomena) to counterbalancing. References to the use of counterweights for dynamic
balancing are included in [1.11].

[1.6] Static balancing using springs. As opposed to counterweights (see [1.5]),
springs do not add weight or inertia. Several authors worked on the design of spring
mechanisms providing perfect balance in theory. Hain (1952, 1955, 1961) used special
characteristics of zero-free-length springs (see chapter four) to balance the weight of
hefty agricultural machinery, an approach that was generalized for several springs by
Haupt and Grewolls (1963) and further by Streit and Gilmore (1989), and extended to
three dimensions by Walsh, Streit and Gilmore (1991). Hilpert (1968), Shin and Streit
(1991), and Pracht et al. (1987) expanded the theory to include additional links, for
both open and closed loops, prismatic and revolute joints. Rivin (1988) describes a
socalled sine mechanism incorporating a zero-free-length spring to compensate gravity
induced actuator torques in various manipulator structures. Several authors apply static
balance in the design of rehabilitation aids (Skorecky, 1971; Cool, 1976; Nathan, 1985;
Rahman et al., 1995). Gosselin (1999), and Gosselin and Wang (2000) present several
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statically balanced multi-degree-of-freedom parallel manipulators. Several applications
of static balance are found in Hoek (1986), later issued by Koster (1996).

The literature on balancing undesired effects other than gravity, such as unwanted
elasticity, is limited. Mechanisms with elastic elements or plate springs may possess
undesired stiffness. Van Eijk (1985) has designed a zero translational stiffness system
by the smart use of buckled plate springs. Some reports are known on balancing
parasitic spring forces generated in the cosmetic covering of hand prostheses (Hekman,
1979; Kruit and Cool, 1989), compensating for the finite stiffness of prosthesis fingers
in grasping an infinitely stiff object (Eibergen Santhagens, 1985), the buckling of
compression springs (Hirose, 1993), and magnetic force (Hirose et al., 1986). Several
other applications are included in Carwardine (1932a, 1932b, 1938), and in Hoek
(1986).

A substantial body of patent literature is available on static balancing systems
incorporating springs. Especially noteworthy are the patents by George Carwardine
(1932-1938), including the Anglepoise desk lamp (figure 2.7). Many patents are
special versions these, see for example Vertut (1981), who describes version of
Anglepoise principle, as do Guilbaud and Vertut (1971), Mosher and Kugath (1971),
and Tuda et al. (1986). An application of Carwardine's vertical-base parallelogram
equilibrator is described in Brown and DiGuilio (1980). There is also a large number of
patents describing modifications of the basic gravity equilibrator (figure 5.1b),
including Neumann ef al. (1993), Tsuda (1980); Gerlach (1993); Spronck (1984); Hahn
et al. (1987); Goro et al. (1983). An extension with a spatial version and a floating
suspension is patented by Herder and Tuijthof (1998), see also sections 5.2 and 5.5 of
this thesis.

[1.7] Mechanism design. There is a vast literature on mechanism design (e.g.
Reuleaux, 1876; Hall, 1961; Hirschhorn, 1962; Hartenberg and Denavit, 1964; Hain,
1967; Suh and Radcliffe, 1978; Hunt, 1978; Erdman and Sandor, 1997). The design of
mechanisms is often divided in two phases: type synthesis and dimension synthesis.
The design starts with the specification of desired motion characteristics, in which
three categories are usually distinguished: path generation, body guidance and function
generation. In the first phase (type synthesis) a suitable mechanism type is selected,
such as a four-bar linkage, a slider-crank or a cam system. In the second phase
(dimension synthesis) the dimensions are determined, classically based on graphical
methods, such as geometry (e.g. Ruzinov, 1968), kinematics (e.g. Bottema and Roth,
1990) or Burmester theory (e.g. Beyer, 1963). Fast computers have stimulated the use
of sophisticated optimization methods in the design of mechanisms based on vector
algebra (e.g. Haug and Arora, 1979; Erdman and Sandor, 1997), finite elements (van
der Werff, 1977; Klein Breteler, 1987), and even randomized design methods (e.g.
Camuto and Kinzel, 1998).

[1.8] Force directed design. The ideas on force directed design are still maturing.
The essence, in a narrative style included in professor Cool’s valedictory address
(1995) and more technically in Cool (1997), is that when forces are applied in a correct
manner, the desired motion will follow as a matter of course (Verdult, 1998). Echos of
Cool’s work can be found in the references under [1.9]. Other literature related to force
directed design includes the following. First and foremost, the laws of statics can be
used, preferably in their graphical form with free-body diagrams, extendible to more
than three forces by using the Pole Force Method (Hain, 1967). Especially at contact
points, such as between rollers in Rolling Link Mechanisms (Kuntz, 1995), acting lines
of forces prescribe preferable configurations. The procedure used in this thesis is
similar to the construction of Force-Closure Grasps for manipulative grippers by
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Nguyen (1988) in the sense that desirable configurations of action lines determine the
force attachment points and thus the geometry of the design. Secondly, methodologies
have been developed which include the specification of force transmission
characteristics in dimension synthesis. A first group can be identified that concerns
instantaneous input-output relationships, for instance the Instant-Center Approach for
mechanical advantage determination (Erdman and Sandor, 1997), a second group that
handles continuous forms of force transmission functions, such as the Mechanical
Advantage Method (Bagci, 1987a and 1987b), and a third group that includes load
bearing capacity during motion, for instance Force Synthesis (Roth, 1989; Huang and
Roth, 1993, 1994), where movement and enforcement are considered simultaneously.
In addition to these ‘force methods’, several methods have been developed that include
force considerations through energy specifications. These include the Integration of
Power Equilibrium Method (Bagci, 1987a and 1987b), and the Synthesis for Specified
Energy Absorption (Jenuwine and Midha, 1992). Unlike the present thesis, these works
are mainly concerned with dimensional synthesis, rather than with conceptional design.

[1.9] Applications of force directed design. Projects in rehabilitation technology
where a force directed design approach has proved to be very useful include the
Wilmer elbow orthosis (Cool, 1976). This device statically balances the weight of the
forearm (which allows the control of a paralyzed elbow by the shoulder muscles, see
the description of figure 2.5 in chapter two), and is designed such that only normal
stress is exerted to the patient’s skin, in any position of the arm. Furthermore, all fitting
forces are in a single plane, which allows a single-sided pivot without torsional
moments. Another example is the Wilmer open socket, a socket with just enough
contact areas to be able to generate the required support forces, thus leaving 75% of the
skin free (Walta et al., 1989). Other examples are a knee-ankle-foot-orthosis for
persons with instability of the knee (van Leerdam, 1993), and the design of a scoliosis
orthosis for persons with severe thorax deformation (Nijenbanning, 1998). Kuntz
(1995) describes the design of a high efficiency hook prosthesis for children based on
rolling links. Another noteworthy development is the design of an adaptive hand
prosthesis by De Visser (1998) and Herder and De Visser(2000) in which the force
transmission function of the mechanism and the shapes of the elements are optimized
simultaneously. A different application is the force directed design of a directional
drilling device that creates a U-shaped tunnel inside a human vertebra (Verdult, 1998).
For use in minimal access therapy, low friction forceps were developed based on force
directed design (Herder and Horward, 1998; Herder, 1998b, see also [5.16]).

[1.10]1  The need for simple mechanisms. Already since the time of the mechanical
analogue computing machines, which were highly complex, efforts have been
undertaken to set up design methods to realize mechanisms with a specified transfer
function. Klein Breteler (1987, 1990) describes a procedure for the synthesis of
linkages based on the Fourier-coefficients of the desired transfer function. However,
this procedure and some of the procedures listed under [1.7] tend to result in fairly
complex mechanisms, usually comprising at least a four-bar linkage and a number of
gears or cams. From an efficiency perspective, every hinge is one too many and a four-
bar linkage must already be considered troublesome (see also [1.14]). For the same
reason, spring actuated cam-followers (e.g. Klein Breteler, 1990) are not present in this
thesis.

[1.11]  Dynamic balancing. Dynamic balancing or force balancing has been studied
extensively in literature, for instance in Berkof and Lowen (1969), Stevenson (1973),
Oldham and Walker (1978), Bagci (1992), Ricard and Gosselin (2000), and in the
extensive literature cited by Lowen ef al. (1983), and by Yao and Smith (1993).
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Mechanisms are said to be force-balanced when the total force applied by the
mechanism on the fixed base is constant for any motion of the mechanism,
Mechanisms are said to be statically balanced, when the weight of the links does not
produce any torque (or force) at the actuators under static conditions, for any
configuration of the mechanism. This condition is also referred to as gravity
compensation (Wang and Gosselin, 1998).

[1.12]  Specified dynamics. In the dynamic domain, the equivalent of static
balancing is the design of oscillating systems, where mechanisms are furnished with
appropriate combinations of masses and springs in order to perform desired motion in
their natural frequency (e.g. Van der Linde, 1999). In these cases, potential and kinetic
energy are exchanged during movement, again in such a way that the total energy of
the system is constant, thus eliminating the need for external energy. Note that this
kind of dynamic balancing is different from the shaking force kind of dynamic
balancing. Another dynamic approach could be to include kinetic energy specifications
to satisfy acceleration requirements over some range of motion (e.g. Idlani et al,
1993). These issues may comprise challenging extensions, but they are beyond the
scope of this thesis.

[1.13]  Compliant mechanisms. Compliant mechanisms gain some or all of their
mobility from the flexibility of their members rather than from rigid-body joints only
(Howell and Midha, 1995). They have many potential advantages, such as the
reduction of the number of parts, reduced weight, wear, backlash, noise, need for
lubrication, and reduction of manufacturing and assembly cost and time. Reported
disadvantages are the complexity of their design, the nonlinearities introduced due to
the large deformations, and the energy storage in the flexible members (e.g. Sevak and
McLaranan, 1974; Salamon, 1989; Burns and Crossley, 1968; Ananthasuresh and
Kota, 1995; Howell, 1993; Howell, Midha and Murphy, 1994; Howell and Midha,
1995; Howell, Midha and Norton, 1996). Examples of statically balanced compliant
mechanisms are very rare. Van Eijk (1985) has studied zero-stiffness straight-line
guidance by using buckled plate springs, while Van den Berg (1999) and Herder and
Van den Berg (2000) report on a compliant forceps design incorporating a separate
rolling-link compensation mechanism. When the segments of the flexible robot arm
Elastor are considered compliant members, this is another example (see figure 2.9;
Hirose, 1993).

[1.14]  Rolling-link mechanisms. Rolling-link mechanisms are mechanisms
consisting of links that are shaped such that they roll directly on one another, so that no
specific bearing elements are needed. Thus avoiding sliding friction, they possess a
high mechanical efficiency, comparable to ball bearings. However, as compared to ball
bearings, rolling-link mechanisms consist of fewer parts, take up less space, possess
higher load bearing capacity, are virtually insensitive to pollution, have no backlash,
and require no lubrication. Another advantage is that rollers allow straightforward
transfer of forces, as opposed to the situation with ball bearings, where the forces are
guided through fork constructions. Disadvantages are that the elements require special
shaping for each application (no off-the-shelf parts) and the care that must be taken to
assure contact between the elements. A spring hinged on a pin such that the inside of
the loop is rolling on the pin, in the plane of motion, constitutes a special rolling joint
(Hoek, 1986). Literature on these mechanisms includes Whitechead (1954); Sieker
(1956); Godden (1968); Newman (1973); NASA (1985); Rivin (1988); Kuntz (1995);
Herder et al. (1997). The Rolamite is described in Wilkes (1967); Brickman (1967);
Cadman (1969), Wise (1967); Betts (1979), and Lushbough (2000). Patent literature
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includes the following: Carwardine (1931a, 1931b), Hillberry and Hall (1976), Bora Jr.
(1981), Ruoff (1985), and Herder and Horward (1998).

[1.15]  Sparse application. Baudisch (1985) and Papadopoulos (1997) point out that
non-perfect balancing or the additional parts and cost involved in balancing devices
prohibit their use in some cases. Rivin (1988) and Baudisch (1985) note that friction in
some cases accounts for a force balancing error of 20%.

[1.16]  System, shape, material. Distinguished by Cool (1990) as the three principal
influence factors in mechanical design.

[1.17]  Desired balancing quality. Citation from Hall (1961).

Notes to chapter two

[2.1] Kinetic Art. Several similar works of art designed by George Rickey (1993).
The one in the picture is in permanent outdoor action in the heart of Rotterdam, the
Netherlands. Three of these Breaking columns, two hanging, one standing in the
center, are mounted on the front of the theater.

[2.2] Dionysos. Reconstruction of the mechane by Dimarogonas (1992).
[2.3] Drawing board. See for instance Hilpert (1968).

[2.4] Arm support. This linkage was designed in the course of the development of f
a mobile arm support for people with reduced muscular ability by Skorecki (1971). See
also [5.25].

[2.5] Floating bodies. Mauldin, cited in Wells (1995).
[2.6] Internally-balanced magnet. Hirose et al. (1986).

[2.7] Wilmer. This orthosis was designed by Cool and other members of the
Wilmer group (Cool, 1976). The picture was taken from the Internet address of the
Wilmer research group at Delft University of Technology: http://mms.tudelft.nl or
http://www.wbmt.tudelft.nl/~wilmer, displaying a number of orthotic and prosthetic
products.

[2.8] Anglepoise. The Anglepoise desk lamp is still available in different versions.
Information on these products can be found at the Internet address of Anglepoise Ltd.:
http://www .anglepoise.com. Information on the inventor and designer George
Carwardine, his patents, and related work (including parts of this thesis) are available
from www.carwardine.org.

[2.9] Laval University Robotics Laboratory. The picture can be found on the
Internet address http://wwwrobot.gmc.ulaval.ca/recherche/theme05_ahtml of the
Laval University Robotics Laboratory, headed by Prof. dr C.M. Gosselin. The site also
shows two working models of statically balanced three-degree-of-freedom parallel
mechanisms.

[2.10]  Glove compensation. Kruit and Cool (1989).

[2.11]  Hirose and Yoneda Laboratory. The Elastor was designed by Hirose (1993).
The picture is available from the Internet address of the Hirose and Yoneda Lab:
http://mozu.mes.titech.ac.jp.

[2.12}  Loop in hose. This phenomenon was suggested by Van Dieten (1997-1998).
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[2.13]  Rolamite. Designed by Wilkes (1967).
[2.14]  Knife edge pivot. Wolf, cited in Van der Hoek (1986).

(2.15]  Balanced plate springs. Van Eijk (1985) presents straight-line guides based
on buckled plate springs so as to provide zero translational stiffness along the guide
path.

[2.16]  Contact pressure. A nice example is present in Van der Hoek (1986), p148.

[2.17] Vibration isolation. See for instance Chironis (1961), p252, Haringx (1948),
and Alabuzhev er al. (1989), who suggest stiffness correctors to arrive at vibration
isolation systems with quasi-zero stifthess.

[2.18]  Ballistic systems. See for instance Van der Linde, 1999.

[2.191  Zero gravity simulation. Several techniques are applied to attain zero
gravity, mainly in space rescarch: horizontal centrifugation, inclined plane technique,
suspension systems, parabolic flight, and neutral buoyancy (Luna et al., 1993). An
overview of the suspension systems for the purpose of metabolism research is given by
Davis and Cavanagh (1993). Some counterweight-based compensation mechanisms are
presented by Brown and Dolan (1994), while constant-tension springs are used by Sato
and Ejini, 1991.

[2.20]  Reduced loading characteristics. Matthew and Tesar (1976), Rivin (1988).

[2211  Improved performance. See for instance Ulrich and Kumar (1991) and
Rivin (1988).

Notes to chapter three

[3.1] Acknowledgment. This chapter has been developed in the course of
numerous discussions with a number of people in various circumstances. In the first
place regular meetings with my supervisor, Prof. ir J.C. Cool. A presentation at a
colloquium of the Section of Technical Mechanics at Delft University of Technology
elicited ten pages of handwritten comments from Prof. dr ir J.F. Besseling, stressing
the possibility of a more formal derivation. His encouragements led to the involvement
of Dr ir A.L. Schwab, who suggested much of the structure of chapter three, and close-
edited parts of it, thus lending great support.

3.2 Composition of forces. Many textbooks on mechanics describe the procedure
of the composition of forces, e.g. Beer and Johnston Jr. (1997), Meriam and Kraige
(1987a and 1987b). A treatise on dynamic equivalence was not found in literature.

[3.3] Equivalence. The term dynamically equivalent force should be well
distinguished from the term equivalent force, which is used for instance in Beer and
Johnston Jr. (1997), which denotes instantaneous equivalence only: "The principle of
transmissibility states that the conditions of equilibrium or motion of a rigid body will
remain unchanged if a force F acting at a given point of the rigid body is replaced by a
force F' of the same magnitude and same direction, but acting at a different point,
provided that the two forces have the same line of action. The two forces F and F’
have the same effect on the rigid body and are said to be equivalent" (Beer and
Johnston Jr., 1997, p73).
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[3.4] Mechanics. Many references are available on the equations of motion, the
principle of virtual work, and the energy potential. To a great extent, they have their
origins in the work by Lagrange (1997). Other references include Beer and Johnston
(1997), Meriam and Kraige (1987), Bottema (1987), Roest (1990), and Alonso and
Finn (1971).

[3.5] Circle construction. Prof. ir J.C. Cool was the first to discover this circle-
construction (see also [7.1]).

[3.6] Geometry. Much has been taken from Introduction to Geometry by H.S.M.
Coxeter (1989): the circle of Apollonius (p88) which is found as the locus of a point
whose distances from two fixed points are in a constant ratio; pencils of circles (p85);
and orthogonal circles (p79). Other notable works are by Coxeter and Greitzler (1967),
Bottema (1987), and Bottema and Roth (1990).

Notes to chapter four

[4.1] Mechanism synthesis. Of the classical tasks of mechanisms, i.e. path
following, rigid body guidance, and function generation, the design of an adjustment
mechanism is closest to the latter, since not the absolute movement but the relative
movement of the energy storage elements is of importance. Classically, to support
mechanism design, the process is often divided into two phases: type synthesis and
dimension synthesis (e.g. Hall, 1961), also called conceptual design and optimal design
(e.g. Haug and Arora, 1979). Once the desired function of a system has been defined,
an appropriate mechanism topology (type) is selected first, and then the geometry is
optimized. When the body of literature on mechanism synthesis is overlooked, it is
clear that great efforts have been directed towards the dimensional synthesis, especially
of four-bar linkages. Known methods range from kinematic synthesis (e.g. Hain, 1961;
Hartenberg and Denavit, 1964; Dijksman, 1976; Hunt, 1978), via loop closure (e.g.
Erdman and Sandor, 1997; Midha and Zhao, 1985), finite element methods (Van der
Werff, 1976; Klein Breteler, 1987), to random walk algorithms (Camuto and Kinzel,
1998). Type synthesis is performed by way of classification (Grashof, 1883), supplying
an atlas of examples (Hrones and Nelson, 1951) or by permutational or number
techniques (e.g. Hain, 1961; Johnson and Towfigh, 1971; Freudenstein and Maki,
1980; Erdman et al., 1980).

[4.2] Zero-free-length springs. Many authors who are concerned with static
balancing use zero-free-length springs, often without too much concern on how these
springs are to be realized. Carwardine was probably the first to introduce the concept
of zero free length, as he mentions their characteristic explicitly in one of his patents
(1932), proposes a mechanism to simulate zero free length behavior (1932), and
describes in great detail how to manufacture these springs by increasing the preload
(1934). Other useful publications on the theory and manufacturing of springs with
initial tension includes Andreeva (1966), who distinguishes three coiling schemes for
springs with initial tension (twisting, partial-overlap, and pins method) and alerts to
possible loss of stability in springs with initial tension. Carlson (1961) provides a
diagram on attainable initial tension.

The compression spring and brackets are described in Hoek (1986) and Koster
(1996), as well as by Kiispert et al. (1998). Another kind of ideal spring arrangements
stores the initial length behind a pivot and aligns the spring using some guiding device.
Many versions are described, including those by Carwardine (1932), Haupt and

198




Grewolls (1963), Streit and Gilmore (1989). Apart from aligning solutions, another
group is formed by arrangements of a string attached to a normal spring guided by
some element, such as an eye (e.g. Walsh et al., 1991) or a pulley (e.g. Hain, 1952;
Pracht et al., 1987; Soper et al., 1997). Usually the spring is stored on the fixed body
or frame, but sometimes on the moving link (Nathan, 1985; Rahman ef al,, 1995).

Most zero-free-length springs are not described separately but in connection with
the application of mass balancer, as is also the case for most ideal spring arrangements.
A few special mechanisms were found in which normal springs are arranged so that
they exhibit ideal spring behavior. These mechanisms will be described in section 5.4.
In addition to these, Hilpert (1968) describes a mechanism incorporating a slider and a
2:1 gear train, which perfectly adjusts a normal spring to a mass. Hervé (1983, 1986a,
1986b) was granted a patent on a similar mechanism using a chain instead of gears. As
these mechanisms are too complex for the goals in this thesis, they will not be
discussed further. Some additional remarks are provided in appendix 4.1.

[4.3] Paraboloids. These figures were drawn by Marc L. Brinkman, who at the
time of this writing is doing a MSc-project on statically balanced laparoscopic forceps,
see figure 5.37 and [5.16].

[4.4] Modification rules. Several authors have reported one or several of the
modification rules presented in this chapter. Hain (1952, 1961), Halter and Carson
(1975a and 1975b), Carson (1976a, 1976b), Matthew and Tesar (1976), Oostvogels
(cited in Hoek, 1986), Rivin (1988), and Kochev (1991) make remarks about the
variation of parameters and the rotation rule, while Haupt and Grewolls (1963)
describe the composition of ideal springs.

[4.5] Carwardine. This geometric insight may very well have put George
Carwardine on the track of the invention of a number of statically balanced spring
mechanisms: “Referring to Figure 1, a member b o ¢ has pivoted at its middle a lever
arm o a of length A which is the radius of the circle of which b ¢ is a diameter. It
follows from the 31st proposition in the third book of Euclid that since the path of
point a is a circle then angle b a ¢ is always a right angle and angle b a o is always the
trigonometric complement of the angle oac. An elastic member such as a helical
extension spring is stretched between the points a and d on line a ¢ produced and is
considered to be strained by an amount equal to the length a c. It can be shown that if
another spring of the same stiffness were stretched between points a and € on line a b
produced, then the moments exerted about o by the spring between a and d would be
exactly balanced for any position of the lever arm o a provided that this latter spring be
arranged so that its strain is represented by the length a b ” (Carwardine, 1932).

[4.6] Adjustable stiffness. This solution for an adjustable spring has been applied
in an office chair with a static balancer. The idea behind this chair was to carry the
person (constant force) through a limited range of motion, in order to stimulate
mobility of the spine and to reduce low back pain. A patent has been applied for
(Vrijland and Herder, 2001). Akeel (1987) describes another mechanism featuring a
variable counterbalance force.

[4.7] Geometry of faulty DEPs. A lot of geometic regularity is associated with the
construction of the DEPs of the spring butterfly. Note that the construction is only
valid for constant forces so that an error is introduced. The fact that this error is
constant accounts to a great extent for the geometric phenomena. Some of these will be
mentioned here. The faulty DEP of the spring forces associated with the moving
triangle (DEPy,) and the faulty DEP of the spring forces associated with the fixed
triangle (DEPy,) trace circles as the moving triangle rotates about the pivot. Both DEPs
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and the pivot are collinear in such a way that the pivot is the (internal) center of
similitude of the two circles (for more on the center of similitude of two circles see
Coxeter, 1969).

Notes to chapter five

[5.1] Wilmer elbow orthosis. The development of this orthosis illustrates that a
considerable amount of creativity and smart engineering are required for a diagram
(figure 5.1b) to evolve into a commercially available product (figure 2.6 and
corresponding explanation in text; Cool, 1976). Notable features are the single-sided
hinge and the low weight. The use of a single-sided hinge is possible due to the fact
that the main forces are in one plane. As a result, the hinge is not loaded by torsional
moments. The omission of a second hinge contributes to low weight, as does the
stainless steel tubing of oval cross-section, and the rubber spring (high energy-storage
to weight ratio).

[5.2] Spring mass. Inclusion of spring mass need not introduce a balancing error.
This can be demonstrated using potential energy calculus such as in Streit and Shin
(1993), or the approach used here, where the forces exerted by the spring are resolved
into components along the centerline of the spring (equal and opposite spring forces)
and vertical components. As the weight of the spring is independent of its excursion,
the vertical components at the spring ends are always vertical and half the magnitude
of the spring weight. Therefore, the weight of the spring can be modeled as two masses
at the spring ends, each equal to half the spring mass.

[5.3] Parallelogram linkage. The peculiar features of the parallelogram linkage in
its use in (mass-to-mass) balancers is attributed to Robertval by N. Treitz, who gives
examples at http://ubntint.uni-duisburg.de/hands-on/files/autoren/treitz/treitz.htm). The
linkage was also applied in balancers by Carwardine (1932), and by Streit and Shin
(1993), who call it "vertical-link system".

[54] Constant force generators. This term was introduced by Nathan (1985), who
describes a mechanism to adjust the spring-lever element to a varying load. To this
end, a pulley and string system connects the mass and the attachment point of the
spring on the link. Under special conditions, including a horizontal position of the link,
the attachment point is automatically positioned into the correct position by the load.
Other constant force mechanisms can be found in Boerner (1954); Pich and Wiemer
(1955); Giértner (1957); Groesberg (1960); Chironis (1961); Jenuwine and Midha
(1989).

[5.5] Patent. The Floating Suspension has been patented in its simple one-degree-
of-freedom form (figure 5.13), and in the form of the spatial floating anthropomobile
arm (shown in planar form in figure 5.27), together with the pivoted anthropomobile
arm (figure 5.50) (Herder and Tuijthof, 2000).

[5.6] Demonstration model. This demonstration model was skillfully
manufactured by Ing J. Verbeek in 1996. Since then it has traveled the world, and has
been played with by numerous students and a considerable number of professors. Yet
the strings have not been replaced to date. At the time of writing this, the model never
even had to be readjusted.
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[5.7] General form of floating suspension. The existence of a general form of the
floating suspension was suggested by Prof. Andy Ruina during a visit to our group at
Delft University of Technology. On this occasion, a broom was balanced according to
the floating suspension configuration, using latex covers for medical instruments as
ideal springs. Unfortunately, no photographs of this event are available (Ruina, 1997-
1998; see also http://www.tam.cornell.eduw/~ruina/ under random mechanics).

[5.8] Pantograph linkages. A treatise on pantograph linkages, including the skew
pantograph or plagiograph is found in Dijksman (1976), and in Tao (1964).

[5.9] Anglepoise. Citation from the Anglepoise website [2.2], see also the
photograph in figure 2.7 and a close-up in figure 5.26 (Anglepoise is a registered
trademark, see also [2.8]). French (2000) published a paper on the Anglepoise lamp.

[5.101  Balanced five-bar parallelogram linkage. Many muitilegged robots have
legs with two segments, extended to the configuration of a five-bar parallelogram
linkage in order to be able to mount the motors on the frame. Example of statically
balanced versions of these legs found in Shin and Streit (1991) and Shieh et al. (1996).
Some direct-drive robots have a similar structure including one of several kinds of
static balancer (e.g. Asada and Youcef-Toumi, 1984; Gopalswamy et al, 1992;
Huissoon and Wang, 1991; Ulrich and Kumar, 1991a and 1991b; Shieh et al., 1996).

[5.11]  Published previously. Parts of this section were published previously
(Herder, 1998a and 1998c).

[5.12]  Ligaments as balanced springs. Not so much a design example but all the
more a balanced-springs configuration might very well be the configuration of
ligaments in some biological joints. Generally, ligaments are ascribed a movement-
limiting function. Although it is beyond doubt that there are ligaments with this
function, this does not explain why the two bone parts of a joint are in firm contact
throughout the range of motion, even when all muscles are fully relaxed. However, it is
known that ligaments are elastic to a high degree. Ker (1981) showed that 93% of the
work done stretching ligaments is returned during recoil (cited in Alexander, 1990). It
might be nice to think of the ligaments as a biological balanced configuration. This
would very elegantly explain the combination of firm contact and easy movement. The
forces present keep the joint firmly together, yet the force generators, i.e. the springs,
balance each other so that they generate zero joint moment. Thus, it is imaginable that
a primary function of the ligaments is to ensure firm contact between bones throughout
their range of motion, without undesired side effects such as elastic counteraction of
movement. (Alexander, 1990)

[5.131  Elliptic trammel. The statically balanced ladder was previously described in
Carwardine (1932), Van der Hoek (1986), and Koster (1996). The elliptic trammel or
Cardan mechanism is a well known mechanism (e.g. Hunt, 1978). The rolling version
was discovered and actually made by Cool (1994).

[5.14]  Laparoscopy. Laparoscopic surgery is an operating technique based on
several small incisions in the abdominal wall instead of a single large one. In spite of
limited accessibility, it is still possible to perform operations of considerable
importance (e.g. Cuschieri, 1995; Dallemagne et al., 1991; Jansen, 1994; Wilson et al.,
1995). Hospitalization time is significantly reduced, and the advantages for the patients
have led to widespread acceptance of this technique for several treatments. In
comparison with conventional operating techniques, however, the fact that in
laparoscopic surgery the surgeon is deprived of a direct view and touch, presents a
serious impairment. Instead of direct vision, a 2D-image must be obtained from a
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monitor, and contrary to conventional surgery in which the surgeon can manually
manipulate and palpate tissue, all manipulations must be carried out using laparoscopic
instruments. Thus, only severely limited tactile information is available for the
surgeon, since mechanical feedback is obtained solely through these instruments.

It is therefore important that laparoscopic instruments possess good mechanical
qualities. According to the concept of extended physiological proprioception
(Simpson, 1974), originally derived for hand prostheses, good feedback of motion and
force variables enhances the perception of an instrument to be an extension of the
human body. With regard to both force and movement feedback, laparoscopic graspers
preferably have a constant force transmission characteristic throughout its range of
motion. This implies the absence of friction or other energy dissipating phenomena,
and backlash (Sjoerdsma et al., 1997).

Laparoscopic grasping instruments currently available allow only minor perception
due to several mechanical deficiencies. Most current forceps contain slide bearings.
The better forceps are furnished with pin-in-hole journal bearings, whereas others
possess pen-in-slot joints (Melzer et al., 1992). Since normal lubrication is not feasible
for mechanisms entering the human body, overall friction is considerable, especially
under loaded conditions. The mechanical efficiency of the best of these graspers is only
about 33%. In addition, the force transmission ratio varies up to a factor of 6 over the
working range (Sjoerdsma et al., 1997).

In principle, it is possible to circumvent the problems of a non-linear force
transmission characteristic and the presence of friction by measuring the grasping force
with a sensor, and reproducing this force on the operating handle by using a servo
system (e.g. Hill et al., 1994; Howe et al., 1995; Green et al., 1995; Lazeroms et al.,
1997; Majima and Matsushima, 1991). This tele-operation approach should allow easy
adjustment of the transfer function, which may be advantageous for example in
situations where operating forces are below the human sensory threshold, such as in
microsurgery, and tremor can be filtered out before the master’s movement is
transmitted to the slave unit. However, master-slave systems are complex, sensitive to
disturbances, may suffer from contact instability (Sheridan, 1996; Lazeroms et al.,
1997), and may be unreliable in comparison with non-active systems. Besides, an
electric feed wire would present a serious practical inconvenience.

[5.15]  Rolling-link medical forceps. To overcome the problems mentioned in [5.14],
a simple mechanical solution, which inherently possesses both a constant force
transmission characteristic (maximum deviation about 3%), low friction (mechanical
efficiency about 96%) and no backlash was developed (Horward, 1995; Herder ef al.,
1997; Herder and Horward, 1998). A brief discussion on this mechanism is given in
appendix 5.1.

[5.16)  Balanced medical forceps. The development of the spring-balanced forceps
is pursued by graduate students M.L. Brinkman and J. Drenth. Due to the fact that the
use of normal springs requires optimization, several constructive simplifications were
considered. The large-radius support planes were approximated by flat surfaces, and
the closing spring was moved to the handgrip, where much more space is available.
The other spring was made adjustable to provide slight voluntary opening or voluntary
closing behavior (see also [6.10]). Due to the similar construction as compared to the
version with two connecting rods (see {5.15]), it is expected that the spring-balanced
version will perform comparably.

[5.171  Complex solutions. Hervé (1986) and Hilpert (1968) independently present a
highly similar perfect gravity balancer, incorporating gears and a linear guidance. Due
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to its complexity and the slider, the design is not practical for the purposes in view of
this thesis.

[5.18] Wrapping cams. Several authors propose the use of flexible bands, cables, or
chains, wrapping on irregularly shaped cams (Hain, 1953; Baudisch, 1985; Okada,
1986; Ulrich and Kumar, 1991a and 1991b; Fidweel et al., 1992).

[5.19]  Positive and negative free length cancel. Streit and Gilmore (1989)
demonstrate that a normal (positive free length) and a negative free-length spring
arrangement together can be designed to act as an ideal spring, even though the
conditions for achieving this are rather strict. Consequently, a pre-existing normal
spring can be perfectly balanced by adding a negative free-length spring arrangement
and compensate using an ideal spring. However, in other cases this approach is not
attractive since realizing a negative free length involves the same additional
constructions as does a zero-free-length spring. It will therefore remain unattended to
in the remainder of this thesis.

[5.20]  Figure-of-eight mechanism. A similar mechanism appears in a patent by
Carwardine (1932). Evidently, geometric insight triggered the invention.
Independently, and ignorant of Carwardine's patent, the same working principle (with
flexible bands instead of a connecting rod) was found by employing the approach
presented here.

[5.21]  Prototype. The prototype of the spring-to-spring version of the figure-of-
eight mechanism was manufactured by Ing J. Verbeek. Bloem et al. (2000) optimized
its performance. The balancing error is well below 1%.

[5.22)  Equilibrator version of figure-of-eight. The perfect gravity equilibrator was
developed by Te Riele (Te Riele, 2000; Te Riele and Herder, 2001). Previously, Te
Riele (1997) presented an approximate version of the mechanism presented here.

[5.23] Wrapping compensation. At the occasion of a visit to his lab, Prof. dr S.
Hirose suggested that the error of a string wrapping on one pulley could possibly be
compensated by wrapping the other end of the string on another pulley. In several
projects, the perfect solution presented here as well as others were found by Soethoudt,
1998; Brinkman, 1998; and Cardoso and Tomazio (2001). The last mentioned found a
solution including multiple degrees of freedom.

[5.24]  Spatial balancers. Walsh et al. (1991) investigated spatial gravity
equilibrators comprising n springs acting on a single link pivoted by a Hooke's joint.
Gosselin and his group designed a number of statically balanced parallel manipulators,
ranging from three to six degrees-of-freedom; with revolute as well as with prismatic
actuators (Leblond and Gosselin, 1998; Ebert-Uphoff, Gosselin et al., 1998; Wang and
Gosselin, 1999; Wang and Gosselin, 2000; Gosselin, 1999; Gosselin and Wang, 2000).
Several legs work together in a complementary way to perfectly balance the moving
platform. One example is given in figure 2.8. This system stimulated the development
of the General Suspension Unit in figure 5.53.

[5.25]  Mobile arm supports. Other research in this field includes the works by
Pritchard and Windsor (1965), Skorecki (1967 and 1971), Fielding et al. (1971),
Cowan et al. (1975), and Rahman et al. (1995), Chyatte and Vignos (1965), Harwin
(1997), Homma and Arai (1995), Landsberger et al. (1998), Rahman et al. (2000),
Stern and Lauko (1975). Patents include Gammer and Broekl (1996), and Brown and
DiGuilio (1980).
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In spite of substantial research, not many arm support systems are commercially
available. Among the major design challenges yet to be solved are the shoulder joint,
the fitting of an arm support to the human body, and (due to the fact that most arm
supports take the place of the conventional arm rest) the issue that one is not capable of
finding support against trunk unbalance on a statically balanced arm rest. The shoulder
joint should ideally be located at the location of the human shoulder joint. Apart from
the fact that it is not fixed but highly mobile, it is not accessible. One solution is the
one applied in the MULOS project: a three-dimensional cardanic joint (three
intersection axes of rotation; Johnson and Buckley, 1997).

A project on the design of a statically balanced arm support in which the problems
mentioned above are solved is currently in progress at Delft University of Technology
(Cardoso and Tomazio, 2001).

[5.26]  Anthropomobile arm. The device has been patented (Herder and Tuijthof,
2000), together with the Floating Suspension and the floating version of the
anthropomobile arm. A formal proof of the correctness of the equilibrator design in the
pivoted arm, based on potential energy, is included in Tuijthof and Herder (2000).

[5.27]  Prototype of anthropomobile arm. Original prototype developed by Tuijthof
during her MSc-project (1998). Subsequent improvements by Ros and Scholten (1999)
and Van Weverwijk and Fokkert (2000). Contributions were made by Surentu and Van
der Linde (personal communication). Most of the mechanical details are described in
Tuijthof (1998), Tuijthof and Herder (2000), and Herder and Tuijthof (2000). Some
aspects are repeated here. For the ideal spring embodiment a choice was made between
the helical extension spring with increased initial tension, and the approximate solution
of the pulley and string arrangement (see section 4.2). Due to the spatial movement, a
simple pulley would not suffice: it should be rotatable about the vertical axis through
the shoulder joint. This can be realized but the singularity associated with this
construction would present a serious problem for spring £, . To eliminate this problem,
the string can be guided through a smoothened hole. However, to avoid friction and
wear in the string, the springs with increased preload were selected. A spring
manufacturer (Roveron BV; Van Rhee, 1996-2000) was found willing to devise these
special springs. It proved to be difficult to accurately predict the amount of initial
tension. Springs with an unusually high spring index (ratio of coil diameter to wire
diameter) performed best. Screw-in spring ends were made and adjusted to obtain the
desired zero-free-length behavior. Note that the stiffness of the spring is much less
critical than the free length: the balancing characteristics depend on the product rka,
and can therefore be tuned by adjusting 7 or a. For reasons of convenience, the fixed
points of the springs were made adjustable. The attachment of the moving spring ends
required special attention due to the spatial mobility. Low friction and low wear at the
spring ends are favored by rolling suspension. In a planar mechanism, this is achieved
when the spring loops are in the plane of movement and the insides of the preferable
large spring loops roll on thin suspension axes perpendicular to the plane of movement.
Unfortunately, this solution is not sufficient when spatial movement occurs. For
spring k, this problem was circumvented by placing the bearings for the out-of-the-
vertical-plane movement of the forearm at the distal end of the upper arm, just before
the elbow joint, while furnishing the shoulder with a Hooke’s joint. The free end of the
spring combination k, was connected to the auxiliary link via a bearing that allows
rotation about the axis of the longer supplementary link.
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Notes to chapter six

[6.1] Literature approximate balancing. Literature related to approximate spring
balancer design includes the following, Hain (1952) employs a graphical method for
both a given spring and a spring that is still to be selected, to assess the fixed point in
case the point of attachment at the lever is given, or the determination of the shape of a
wrapping cam in case the fixed point of the spring and the pivot of the cam are given.
Harmening (1974) uses a torsion spring in combination with a four-bar linkage to
achieve approximate balance of a rotatable mass in a range of 120° with 0.2% error), or
180° with 2% error, respectively, by way of a simplified analytic complex number
linkage synthesis technique (Sieker, 1955). Matthew and Tesar (1976a and 1976b)
present an analytical formulation for a finitely separated position synthesis of an ideal
spring on planar linkages to balance specified energy requirements. Mahalingam and
Sharan (1986) use the Hooke and Jeeves direct-search technique to find a suitable
location for the fixed point of a tension spring. Bagci (1987a and 1987b) balances a
rotatable mass with his Integration of Power Equilibrium Method by way of a four-bar
linkage and a spring. Klein Breteler (1990) reduces the question of the design of a
compensation cam mechanism to a kinematic problem. Baudisch (1985), and Ulrich
and Kumar (1991) design wrapping cams to match a spring characteristic with the
mass of a robotic arm. Jenuwine and Midha (1992) extend the vector loop approach
(Erdman and Sandor, 1997; Midha and Zhao, 1985) to include arbitrary energy
demands. Huang and Roth (1993 and 1994) apply the principle of virtual work to
attach a spring to a pre-existing mechanism at an appropriate position. Idlani et al.
(1993) follow a similar approach, resulting in approximate solutions, provided a
sufficiently accurate initial estimate is available. Pons et al. (1998) use two normal
springs with opposite lever angles to proved quasi-exactly balance. Least squares
optimization reduced the remaining torque to less than 1% of the initial gravity torque.
Segla et al. (1998) use Monte Carlo methods and genetic algorithms to optimize a
balancer for a six-degree-of-freedom industrial robot. Literature on numerical solution
methods includes Beveridge and Schechter (1970), and Haug and Arora (1979). Patents
on approximate balancing systems include Gammer and Broek! (1996), Green {1995),
Nakashima et al. (1988), Christiansen and Weiss (1992), Mosher and Kugath (1971),
and Flach and Montcuquet (1981).

[6.2] Loop closure. Planar linkages can be seen as combinations of vectors.
Demanding the vectors to constitute a closed loop provides the continuity equations
(e.g. Erdman and Sandor, 1997, Idlani ef al., 1993).

[6.3] Chebychev spacing. In this procedure the distances between the points of a
trajectory are found as follows. The trajectory is straightened and used as the diameter
of a circle. A polygon of the desired number of edges in inscribed in the circle, and the
orthogonal projections of the edges are indicated on the diameter. Finally, the distances
between the projected points are transferred to the trajectory (Hartenberg and
Denavit, 1964).

[6.4] Cycloid-cognates. "Thus, a hypocycloid is the curve generated by a point
lying on the rolling circle that performs the hypocycloid motion. If, in addition, the
tracing point lies inside the rolling circle, we say that the curve generated by that point,
is a contracted hypocycloid. For an outside point, it is a protracted hypocycloid. (...)
Now, we want to draw attention to the fact that a protracted hypocycloid is identical to
a contracted hypocycloid. This statement means that such curves may be generated by
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different hypocycloid motions Therefore we are dealing with curve-cognates for these
motions" (Dijksman, 1976, p194/7).

[6.5] Demonstration model. The demonstration models in figures 6.5 and 6.9ab
were manufactured by Ing J. Verbeek (1995-1997).

[6.6] Demonstration model. This demonstration model was developed by Van
Passel (1995) during his BSc-project.

[6.7] Overlay method. In his classic work “Kinematics and Linkage Design”, Hall
(1961) presents a graphical method, called the overlay method, for the design of a four-
bar linkage, to synthesize a function generator. A number of positions of the input
crank are specified, a connecting rod length is selected and an overlay of the output
crank is fitted to this picture. “This is a good, practical procedure that will yield
satisfactory results for many problems, especially those for which tolerance on position
of the output crank is of the order of 0.5 deg. or more™ (op. cit., p46).

[6.8] Dynamics in overlay method. Note that kinetic energy could very well be
included, but this is omitted as it would go beyond the scope of this thesis.

[6.9] Extended loop closure. Jenuwine and Midha (1992) proposed to extend the
loop-closure method (see [6.2]) with an additional energy equation. Using this
procedure, a constant force mechanism was designed which has a working principle
similar to the balanced elliptic trammel (figure 5.33). See also: Erdman and Sandor
(1997), Midha and Zhao (1985), Idlani et al. (1993).

[6.10]1  Voluntary closing. Hand prostheses can be body powered (operating force
and excursion generated by the user, see [1.3] and for instance Carlson, 1990, 1992), or
externally powered (external energy sources) (Schlesinger, 1919; Fletcher and Leonard,
1955; Binder, 1957; Childress, 1977; Becker, 1979; Boldingh, 1982, Weaver and
Lange, 1985; Shaperman et al., 1995). Body powered devices are preferred from a
control point of view [1.2]. Within the class of body powered hand prostheses, a
distinction can be made between voluntary opening and voluntary closing (Béhm,
1926; Piischel, 1955; Klopsteg and Wilson, 1964; Baumgartner, 1977; Kristen and
Weteschnik 1981; Loffler, 1984; Radocy and Ronald, 1981; Radocy, 1986; Carlson and
Heim, 1989; Kaniewski, 1989; Frey and Carlson, 1994). In voluntary opening devices, a
spring provides the pinch force while increasing operating force reduces the pinch
force, and eventually opens the hand against the action of the closing spring and the
cosmetic covering [1.4]. This is counterintuitive, as we are used to exert greater pinch
force when we tense our muscles. Voluntary closing devices function according to the
same operating principle: a pliant spring provides a weak opening action, whereas the
force generated by the user is transferred into pinch force. Several comparative studies
have been performed, the results of which are dependent on the specific types of
prostheses involved, and which are all dependent on the mechanical imperfectness of
the current designs (Groth and Lyman, 1957; Angliss, 1992; Shapiro and Locast (1989).
Another distinction is between hooks (two fingers) and hands (five fingers), the latter
having the advantage of better cosmetics, but the disadvantage of reduced view of the
object held, and counteraction of mechanism motion (Blaschke and Santschi, 1949;
Sears, 1983; Burrough and Brook, 1985; Gilad, 1985; Murphy, 1986; Billock, 1986;
Meeks and LeBlanc, 1988; Crandall and Hansen, 1989). Previous works by the Wilmer
group on the development of voluntary closing prostheses include Cool and Van
Hooreweder (1971), Thomassen (1991).
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[6.11]1  Collaboration with rehabilitation teams. Two Dutch rehabilitation teams
were actively involved: De Hoogstraat at Utrecht, and Maartenskliniek at Nijmegen.
The input provided by this cooperation is invaluable and therefore highly appreciated.

[6.12]  Direct and indirect grasp. The functionality of hand prostheses is limited.
They do not replace all the functions of a sound hand. Consequently, the use of
prostheses differs from the use of the sound hand. Unilaterals perform most activities
single-handed, while the prosthesis is used to support certain tasks. Grasping
something with the prosthesis only, without using the sound hand, is very rare (Van
Lunteren ef al., 1983). Indirect grasping (i.e. putting something in the prosthesis with
the sound hand, or pushing the prosthesis around the object, or using the environment)
is much more frequent.

[6.13]  Results of interviews. Results of the interviews are included in Herder ef al.
(1994), and Herder and De Visser (1998).

[6.14]  Psychophysics. The subjective perception of physical stimuli is studied in the
science of psychophysics (Gescheider, 1976); Stevens, 1975; Kandell and Schwartz,
1991; Norwich, 1993; Woodword and Schlossberg, 1966; Dixon and Massey, 1969).
Essentially, psychophysical experiments are based on the comparison of two stimuli
(either simultaneously using different receptors, or successively, using the same
receptor). The report by Munneke (1994) contains an overview of measurement
methods available. Several studies have followed (see [6.15]) and continue to be
pursued.

[6.15]  Sensitivity. As it was intended to design an elbow controlled prosthesis,
where an operating lever on the upper arm supplies the operating force, perception
measurements were carried out to asses the sensitivity of the human upper arm
(Munneke, 1994; Herder and Munneke, 1995; Magermans and Van der Tol, 1999;
Pieterse, 2000; Bakker, 2001). Even though different measurement methods and
different test set-ups were used, the results were consistent. It was found that forces
below 9N were perceived less accurately than higher forces. Furthermore, it was found
that the size of the contact area had little influence on the sensitivity.

[6.16]  Motion directed design. By far most existing hand prostheses are designed
with desired motion characteristics in mind, see for instance Kato and Sadamoto
(1985); Guo et al, (1992), Figliolini and Ceccarelli (1998); Kyberd and Chappell
(1994). Nguyen (1988) considers force closure grasps, which can be seen as form of
force directed design (see also [1.8, 1.9]), while Laliberté and Gosselin (1998) discuss
the principle of underactuation to control multiple degrees of freedom with one control
signal.

[6.17]  Second prototype hand prosthesis. This prototype was manufactured by Van
de Burgt (2000).

[6.18]  First prototype of hand prosthesis. This prototype was the result of the MSc-
Thesis project by De Visser (1998). This design was awarded the ASME
GM/Freudenstein Young Investigator Award at the 26th Mechanisms and Robotics
Conference ASME DETC 2000, Baltimore, MA (Herder and De Visser, 2000).

The specifications of the performance are summarized as follows. For the finger, a
uniform distribution of the operating force to the pinch forces was aimed at. For the
most common finger movements (@=/£), both pinch forces vary only slightly. Within
the range of 40 to 80 degrees, the deviation from the constant ratio is less than 5%. In
the extreme cases where either a or B is zero, greater deviations occur, especially for
larger angles. The compensation device reduces the maximum operating force required

207



to bend the finger from well over 10N to approximately 1.5N. This would translate into
an additional operating force at the upper arm site of about 1N, as compared to the
situation of ideal glove compensation.

[6.19]  Compliant mechanisms. A compliant mechanism is a mechanism that gains
some or all of its motion from the relative flexibility of its members rather than from
rigid-body joints only (e.g. Howell, Midha and Norton, 1996). Among the advantages
of compliant mechanisms are the single-piece production, absence of coulomb friction,
no need for lubrication, and compactness, however at the cost of increased complexity
of their design, non-linearities introduced due to the large deformations, and energy
storage in the flexible members distorting the input-output relationship (references
included in[1.13]). Due to the energy storage in the elastic members of the
mechanism, energy is not conserved between input and output ports, which is a serious
drawback in some cases (Salamon and Midha, 1992). For instance, in manually
operated instruments, such as surgical forceps, operating effort is required even when
no external work is done, and, more importantly, the force feedback quality is reduced.
The elastic forces introduced by the bending of the compliant members disturb the
force transmission from the gripper to the hand grip, thus reducing the feel one has for
the object or tissue in the gripper (Sjoerdsma et al., 1997).

[6.20]  Compliant gripper. For the gripper, a compliant configuration was chosen
comparable to the ones used by Ananthasuresh and Kota (1995), Balazs (1998) and
Canfield et al. (1999). For reasons of convenience, the design is simplified to a
configuration of parallel plate springs. A detailed description is contained in Van den
Berg (1999), and Herder and van den Berg (2000).

[6.21]  Prototype surgical forceps. The prototype in figure 6.26 was the result of the
MSc-Thesis project by Van den Berg (1999). The mechanical performance can be
summarized as follows. The calculated unbalance results in a maximum remnant force
on the pull-pushrod amounts to 0,022N. The hysteresis of one operating cycle of the
unloaded gripper was found to be 0.20mJ. The measured value of the unbalance in this
case was 0.05N. When loaded by 0.8N at the tip, the hysteresis increased to 2.33mJ. In
terms of energy, this results in an efficiency of approximately 80%. A second
prototype (shown in figure 6.24) is under construction by Van der Pijl (2000-2001).

Notes to chapter seven

[7.1] Origin of theory. Initially, these results were found as follows (see
also [3.1]). When composing two forces into a resultant force, the common procedure
is to shift the forces to the intersection of the lines of action and then find the resultant
using the parallelogram construction. However, in systems where constant potential
energy is essential, shifting forces along their line of action may have the adverse
effect of changing the system potential. Therefore it seemed wise to shift the resultant
force back in such a way that the original potential level was restored. Thus it was
found by Prof. ir J.C. Cool that the resultant force applies at the intersection of its line
of action and the circle put up by the points of application of the original forces and the
intersection of their lines of action. Application of the procedure to the spring butterfly
(figure 4.28), the elliptic trammel (figure 5.33c), and the Floating Suspension
(figure 5.22) revealed that the product of the magnitude of the resultant force and the
distance from its supposed point of application was constant, even though in the spring
butterfly ($#0) the magnitude of the resultant force and the distance between the points
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of application both were variable (see figure 4.28). The remarkable fact that the
product mentioned, having the unit of energy or work, was equal to twice the elastic
potential in the springs, gave rise to a number of theories, similar to the ideas of
pertinacity by French (1992). What initially was regarded to be in some way associated
with the potential energy, turned out to be equal to the correction term for the location
of the dynamically equivalent resultant force which is required when not constant but
central linear forces are considered (see the discussion at the end of section 3.4).
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A1.1

Appendix

Al.l Definitions

A3.1  Proof of circle-constructions

A3.2  Proof of y and x circles

A4.1  Ideal spring embodiments
A4.2  Peculiarities paraboloids

A5.1 Rolling-link medical forceps

Definitions  (sce also IFToOMM, 1996)

Compensate

Distal
Dynamic equivalence

Energy-free

Equilibrate
Force origin

Free length

Free length circle

Ideal spring

Indifferent

Initial tension

Add a force in order to eliminate the
influence on the operating characteristic
of another force, in such a way that a
statically balanced system results.

Far from fixed point.

Equivalent with respect to variations
about the nominal state of motion.

Can be moved without operating effort.
Compensate for gravity forces.
Intersection of (the extension of) the
force-length characteristic with length-
axis.

The (virtual) distance between the
attachment points of a spring when the
external force is zero, or graphically, the
distance from the origin to the force
origin in the force-length diagram.

Locus of the force origin of a spring.
Tension spring with zero free length,
constant spring rate, limitless strain, and
forces acting along their centerline.

State of equilibrium between stable
equilibrium and unstable equilibrium.
Force which presses the coils of a helical
extension spring together when no
external load is present. The initial
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Instantaneous equivalence
Neutral equilibrium
Proximal

Rolling-link mechanism
Static balance

Stability equation

tension is equal to the force needed to
separate the coils at all.

Equivalent with respect to the nominal
state of motion.

State of equilibrium between stable
equilibrium and unstable equilibrium.
Close to fixed point.

Mechanism in which the links roll directly
on one another without special bearing
elements.

State of equilibrium throughout the range
of motion.

The equation which determines the
location of the resultant of two forces on
its line of action using the criterion of

dynamic equivalence.

A3.1 Proof of circle-constructions

In this section, additional proof will be supplied for the theorem that locates the
potential-equivalent point of attachment of the resultant of two forces on the
circle through the original points of attachment and the intersection point of
their lines of action. If this is to be true, then figure A3.1 must be valid. By

inspection, the following relations are identified:
LOM P =2¢-y
ZOM P, =2¢+y
ZOM P, =2¢+26

Validity is now inspected of the relation:

FrrrzFi’i+F2r2

From the triangles in figure A3.1 the following equations are derived:

ATM,D,  dy=2Rsin}(r—y+2¢)= 2Rcos(%y - a)
ATM,D, d,= 2Rsin%(7z'—7—2£)=2Rcos(%y+£)
ATM,D,  d, =2Rsini(r-25-2¢)=2Rcos(5 +¢)

From the force triangle in figure A3.2, one reads:
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Figure 43.1 Proaf of circle-construction.

F, = Fcos(Ly +6)+ xF, cos(Ly - &) (A3.8)

sinfly +68
K= sin(é}}:+é')j (A39)
Substituting equations A3.5 through A3.9 into equation A3 .4 yields:

siny cos(e + 8)= cos(%y - e)sin(%y ~5)+ cos(%y + e)sin(%y +8) (A3.16)
after some elementary trigonometry resulting in:

sin y cos(& + &) =sin y cos(e + &) (A3.17)

which concludes the proof.

A 3.2 Proof of x and y circles

In this appendix, analytical proof will be given of the fact that the dynamically
equivalent point of application can be found at the intersection of two circles.
One of these circles is the locus of this point as a function of the inclined
angle y, the other is the locus of this point as a function of x = F{ / F,.

First, figure A3.3a is used to find the locus of point P,.(x, y), under the
condition that ¥ = ZRP.P, is constant. By inspection, one finds:

tany =(y —a)/x (A3.18)
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Figure A3.2 Triangle of forces.
tan(y +7)=(y+a)/x (A3.19)

Substituting equations A3.18 and A3.19 into the trigonometric relation

tan(y +y)= lany +tany (A3.20)
1-tany tany
yields:
y_a.;.xtan}/:y.,.a_(yLXyii)tan}, (A3.21)
x

Multiplying by x, and rearranging results in:

2
(x— a ] + y2=a2(l+ 12 ) (A3.22)
tany tan” y

This is the equation of a circle with center M, =(a/ tany,0) and

radius R, =a/siny .

Figure A3.3b will now be used to find the locus of point P.(x,y) such that
the ratio x =siny,/siny, is constant, where y, = ZOPRP,, and y, = ZOP,P,.
From the figure, it is seen that:

. x
siny| = ————— (A3.23)
l Ve +(a+yY
. x
siny, = —————ou (A3.24)
’ x*+ (a - y)2

so that

w=Snn X +lay) (A3.25)

siny, \/Jc2 +(a+y)f

Squaring this expression results in:

230




Figure A3.3  Proof of circle constructions: (a) the circle of constant y, (b) the circle of
constant K.

K22+ Kka + 2aylcz + szz =xt+a -2av+ yz (A3.26)

which can be rearranged into:

(A3.27)

, aw?+)) 4%’
* +[y+ (Kz—l)} (k-1

This is indeed the representation of a circle. Its center is given by:
K, =(0,a(<? +1)/(x* ~1)) and it radius by R, = 2ax /(x? ~1).
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(a) ®) ©

Figure A4.1 Ideal spring embodiments in the basic equilibrator: (a) compression spring
with guiding elements (Haupt and Grewolls, 1963), (b) tension spring with guiding elements
(Carwardine, 1932; Streit and Gilmore, 1989), (c) pulley and string arrangement (Carwardine,
1934; Hain, 1952).

A4.1 Ideal spring embodiments

Several ways to achieve zero-free-length behavior have been mentioned in the
text. Details were provided in endnote 4.2. This section will provide some
additional diagrams. Most of the ideal spring embodiments are published in
conjunction with the basic gravity equilibrator (figure A4.1). As guiding
elements are present, some friction is introduced.

Another noteworthy construction is described by Van der Hoek (1986) to
achieve increased initial tension (figure A4.2). A compression spring of
sufficient pitch is mounted on two linked brackets. Together these brackets
correspond exactly with initial length L,of the spring. As the distance between
the loops is equal to the compression of the spring, ideal behavior is obtained
from the point where the loops leave the spring until the spring is fully pressed
together.

Solutions of a different kind can be obtained by using other than helical
springs. A few examples are given. If not deflected excessively, the bending of
prismatic bars is linear enough to provide zero free length spring behavior
(figure A4.3a; Haupt and Grewolls, 1963). In general, however, their use will
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Figure A4.2 Spring arrangement with zero effective free length (Van der Hoek 1986): (a)
unloaded helical compression spring of large pitch, (b) two U-brackets inserted, (c) the eye of
the moving bracket is about to leave the coils, (d) spring in usable working range, (e)
characteristic.

require much more spring mass (and space) than helical springs due to the lower
energy storage capacity per weight ratio (Cool, 1987). In this respect, prismatic
elements outperform helical springs, so when weight and volume are critical,
rubber springs could be considered. In the Wilmer elbow orthosis (figure 2.6),
an O-ring accomplishes the desired approximate gravity balance. Some rubber
springs having a characteristic as suggested in figure A4.3b may even provide
quite an accurate balancing quality (Ruina, 1998; Papadopoulos, 1997).

fa) )

Figure A4.3 Ideal spring behavior by other than helical springs: (a) bending of a
prismatic bar (after Haupt and Grewolls, 1963), (b) profitable use of a part of a non-linear
characteristic.
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Figure A4.4 Intersection of the potential-paraboloid of an ideal spring and the cylinder
above a rotatable link.

A4.2 Intersection of paraboloid and cylinder

The intersection of a paraboloid and a cylinder with parallel lines of symmetry
is found as follows. First the equations of the potential-paraboloid of an ideal
spring & and the cylinder above a rotatable link r hinged at (a,O) are given
(figure A4.4):

z=1k(x? +?) (A4.1)
(x-af +y*=r (A42)
Isolating (x2 + yz) from equation A4.1 and substituting the result into
equation A4.2 yields:
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z=ka-x+%k(r2—a2) (A4.3)

So, as point Q(x, y) traces a circle in the ground plane, point P describes an
ellipse on the potential-paraboloid of the spring. The angle of inclination & of
the plane containing the ellipse is therefore given by:

tana = ka (Ad4.4)
which, remarkably enough, is independent of . Using this equation, the
amplitude K, of the potential energy function is readily found from the hatched
triangle:

tana = % =ka (A4.5)
,

s0:
K =rka (A4.6)

The plane intersects the ground plane at a distance of (a2 —r? )/ a from the
origin, which, remarkably enough, is independent of & .

A5.1 Rolling-link medical forceps

This section will provide some background on the medical forceps project. The
project was initiated when it was found that the mechanical efficiency of current
instruments was insufficient for accurate force feedback (Sjoerdsma et al., 1997).
The 10mm-shaft rolling version was the first result (see [5.15]). A Smm version
(Van der Pijl and Herder, 2001), and a version based on balanced springs
(see [5.16]) are under development.

The rolling-link design was based upon a single-sided movable jaw, attached
to a single roller. This roller is to be supported in such a manner that minimal
reaction forces are generated. Figure A5.1a shows the force directed design of the
movable jaw. Two of the forces are roughly known: the grasping force Fyrngp, and
the driving force from the shaft Fy. Static equilibrium demands that the working
lines of the three forces intersect at one point, labeled S. Possible working lines
for the supporting force Fgyppon must contain point S, and must be located outside
the hatched areas in order to result in equilibrium. It is advantageous to place the
support plane perpendicular to the working line of Fyypon, in order to keep shear
forces small, leading to a favorable support location as indicated. The remainder
of the shear forces was supported by flexible bands, (Godden, 1968; NASA,
1985). Flexible bands of stainless steel with a thickness of 35 pm were selected,
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(a) (b)

Figure A5.1 Force directed design of laparoscopic forceps: (a) movable jaw, (b) flexible
bands.

yielding the best compromise between internal bending stress and normal stress.
With these bands, the desired grasping force of 30N is attainable.

The demand for a constant force transmission function was satisfied by the
application of a symmetrical construction. Figure AS5.2 presents a schematic view
of the mechanism, with somewhat exaggerated dimensions to illustrate the
working principle. Two small rollers with the same radius are placed opposite
each other against two support areas, one at each end of the frame. Two rods
connect these rollers. The support areas of the rollers are parts of an imaginary
central cylinder, dashed the figure, and they are fixed rigidly to the frame of the
instrument. The pivots at the ends of the connecting rods are also designed to roll:
its contact areas are furnished such that the little pins fixed to the rollers roll on
the inside of an imaginary ring (drawn with dashed lines in figure AS.2a) keeping
these pins at constant distance. The cross in the middle of the imaginary cylinder
is the center of symmetry during motion. When the grasper is being closed, both
rollers roll clockwise over their support areas, from the drawn positions towards
the dashed situation. Meanwhile, the rods’ ends roll over the small pins fixed to
the rollers. In principle, all dimensions can be selected freely, as long as the rollers
are equal and the connecting rods have equal length. Note that the center of the
central cylinder need not be collinear with the centers of the rollers. Placing it
eccentric does not affect the kinematics of the mechanism, but does influence the
force distribution between the connecting rods.

The rods are prestressed so as to pull the rollers against the central cylinder.
Thus, unforeseen forces and moments below the preload are prevented from
lifting the rollers from the central cylinder in any direction. Prestressing also
eliminates backlash in the mechanism. In order to prestress the rods, the central
cylinder was divided into two parts so that the length of the frame could be
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(a) ()

Figure A5.2 Working principle of laparoscopic forceps: (a) schematic representation, (b)
without dashed lines (Patented, Herder and Horward, 1998).

adjusted. As an additional protection for the bands, the rollers are flanked by
guidance planes, which conduct the excess of unforeseen forces and moments
exceeding the preload in the rods. Figure AS.3 shows photographs of the first and
second prototypes. The ergonomic handgrip was designed by Maase (1996).

The specifications of first prototype are as follows. The rollers’ diameter was
maximized at 7mm to fit in the 10mm shaft, whereas the diameter of the central
cylinder is 392mm. The effective length of the shaft is 291mm. The prototype
weighs 256g, but it is estimated that this can be reduced by a factor of at least two
in the final design phase. The mechanical efficiency, defined as the ratio of output
energy and input energy during one cycle of opening and closing, amounts
t0 96%. The force transmission characteristic shows a maximum deviation of 3%
of the calculated curve. A second prototype featuring a shaft diameter of Smm is
under development (figure AS.3, Van der Pijl and Herder, 2001).
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Figure A5.3  Photographs of rolling forceps: (a) overview of first prototype, (b) close-up of
first prototype, (c) close-up of second prototype.

In addition to the mechanical measurements, the subjective sensitivity was
assessed. An experimental set-up has been developed which meant to simulate a
pulsating artery. By using an oscillator, pulses of varying amplitude could be
guided through a thin-walled silicon tube. As a measure for the sensitivity, the
absolute sensory threshold was used, defined as the minimal amplitude of the
pulse necessary to perceive it (Gescheider, 1976). The absolute sensory threshold
has been determined for bare fingers, for the low friction prototype, and for three
laparoscopic forceps commercially available. If the sensitivity threshold for bare
fingers is normalized as unity, the threshold of the prototype amounts to 2,
approximately, whereas the other instruments have threshold values of about 10 to
more than 20 (Den Boer et al., 1998). In practice, it means that the pulse in an
artery can be perceive with the rolling mechanism, whereas this sensation is
absent in commercially available forceps.
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Summary

Work in the field of rehabilitation engineering has initiated the desire to design
mechanical systems with high energy-efficiency and good force transmission
quality. Statically balanced systems provide continuous equilibrium, constant
potential energy, and neutral stability. Therefore, they are particularly suited to
meet the demands of low operating effort in the presence of (undesired) forces,
especially when springs are used to avoid the weight and inertia associated with
counterweights. These systems are called energy-free systems.

Investigation of the stability of a rigid body under the influence of forces led
to a procedure for the composition of two forces in such a way that a point of
application can be assigned to the resultant force. Consideration of the
contribution of two forces to the stability of a rigid body yields an equation in
addition to the resultant force and the resultant moment equations. This
equation, called the stability equation, determines the location of the point of
application on the line of action of the resultant force for dynamic equivalence
(rather than instantaneous equivalence). For constant forces, the point of
application of the resultant force of two given forces, is located on the circle
circumscribing the points of application of the original forces and the
intersection of their lines of action. In the case of central linear forces, different
stability equations are found, and an additional translation along the resultant
line of action was found to be required. Reducing the force system to a system
of two forces while making use of the points of application of the dynamically
equivalent resultant forces, provides a strategy to judge the stability of a given
rigid body under the influence of forces. Using this theory, an elementary
statically balanced system incorporating two zero-free-length springs is derived.

Several modification rules are presented which allow the elementary
configuration to be altered and extended while maintaining its state of static
balance. Together with guidelines for the proper application of these rules, the
elementary configuration and the modification rules constitute a general
framework for the conceptional design of statically balanced spring
mechanisms. Many examples are given, including floating balanced systems
with no physical pivots at all, to illustrate the versatility of the procedure, and to
demonstrate the insight the procedure provides in the subsequent steps taken
during the conceptional design phase, which may benefit the future design of
mechanisms. It was further shown that when the use of normal springs is
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required, the zero-free-length spring designs can function as initial estimates in
optimization procedures. Several examples are provided.

Although the framework is primarily based on the perspective of constant
potential energy, the inspection of the equilibrium of forces turns out to be very
valuable. Force directed design, which takes desired force configurations as
point of departure rather than desired motion objectives, has lead to profitable
design solutions. The examples given include medical forceps for minimally
invasive surgery, and a hand prosthesis. Undesired forces, due to the elasticity
of compliant mechanism or cosmetic covering are statically balanced while
friction is reduced by the design of rolling links, resulting in excellent force
transmission quality, while the hand prosthesis features uniform force
distribution on any object.

Keywords: static balance, neutral equilibrium, stability, dynamically equivalent
force, spring mechanism, gravity equilibrator, conceptual design, rolling-link
mechanisms, force directed design, force feedback, hand prosthesis,

laparoscopic forceps.

Just Herder, 2001
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Samenvatting

Werk in het veld van de revalidatic heeft geleid tot de wens mechanische
systemen te ontwerpen met een hoog energetisch rendement en een goede
krachtoverdracht. Statisch gebalanceerde systemen zijn in elke stand in
evenwicht, bezitten een constante potenti€le energie, en zijn randstabiel.
Dankzij deze eigenschappen zijn ze uitermate geschikt om systemen onder de
invloed van (ongewenste) krachten een lage bedieningsinspanning te geven,
vooral wanneer veren worden gebruikt om de massa en traagheid van
contragewichten te vermijden. Deze systemen worden energie-vrije systemen
genoemd.

Onderzoek naar de stabiliteit van een star lichaam onder de invloed van
krachten heeft geleid tot een procedure voor het samenstellen van twee krachten
zodanig dat een aangrijpingspunt kan worden aangewezen voor de resultante.
Het beschouwen van de bijdrage aan de stabiliteit van een star lichaam levert de
extra voorwaarde die naast de kracht- en momentvergelijkingen nodig is. Deze
voorwaarde, de stabiliteitsvergelijking, bepaalt de locatie van het
aangrijpingspunt van de resultante op zijn werklijn voor dynamische (in plaats
van statische) equivalentie. Voor constante krachten is het dynamisch
equivalente aangrijpingspunt van twee gegeven krachten gelegen op de cirkel
door de aangrijpingspunten van de gegeven krachten en het snijpunt van hun
werklijnen. In het geval van centraal lineaire krachten worden andere
stabiliteitsvergelijkingen gevonden en is ten opzichte van het gevonden punt bij
konstante krachten een additionele verschuiving van het dynamisch equivalente
aangrijpingspunt langs de resultante werklijn noodzakelijk. Het reduceren van
het krachtenspel tot een configuratie met twee krachten levert een aanpak om de
stabiliteit van een star lichaam onder de invloed van krachten te beoordelen.
Toepassing van deze theorie op cen lichaam met twee centraal lineare krachten
heeft een elementair statisch gebalanceerd systeem opgeleverd met twee veren
die een ongespannen lengte gelijk aan nul bezitten.

Een aantal modificatieregels wordt gepresenteerd die het mogelijk maken
het elementaire statisch gebalanceerde systeem te veranderen en uit te breiden
met behoud van de statische balans. Samen met richtlijnen voor de juiste
toepassing, vormen het elementaire systeem en de modificatieregels een
raamwerk voor het conceptueel ontwerp van statisch gebalanceerde
veermechanismen. Een reeks voorbeelden wordt gegeven, inclusief zonder enig
scharnier zwevende gebalanceerde systemen, om de veelzijdigheid en
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praktische toepasbaarheid te illustreren, en om het inzicht aan te tonen dat
wordt verkregen tijdens het stapsgewijs uitvoeren van het conceptueel ontwerp,
dat vervolgens ten goede kan komen aan nieuwe ontwerpen. Verder wordt
aangetoond dat ook indien gewone veren dienen te worden toegepast, de
concepten met de speciale veren als uitgangspunt en beginschatting kunnen
dienen voor optimalisatieprocedures. Verschillende voorbeelden worden
gegeven.

Ofschoon het raamwerk voornamelijk gebruik maakt van het perspectief van
de constante potentiaal, blijkt dat de analyse van het krachtevenwicht zeer nuttig
is. Krachtgestuurd ontwerpen, waarbij gewenste krachtconfiguraties als
uitgangspunt dienen voor het ontwerp, in tegenstelling tot de gebruikelijke
bewegingsdoelstellingen, heeft tot gunstige praktische uitvoeringen geleid.
Onder de gegeven voorbeelden bevinden zich een paktang voor minimaal
invasieve chirurgie en een handprothese. Ongewenste krachten, ten gevolge van
de stijfheid van elastische mechanismen of de cosmetische handschoen worden
statisch gebalanceerd, terwijl wrijving wordt verminderd door het toepassen van
rollende schamieren, wat samen tot een uitstekende krachttransmissie leidt, en
bij de handprothese bovendien tot een uniforme krachtverdeling op
vastgehouden voorwerpen met een verscheidenheid aan vormen.

Trefwoorden: statische balans, indifferent evenwicht, stabiliteit, dynamisch
equivalente kracht, veermechanisme, zwaartekrachtscompensatie, conceptueel
ontwerp, rollende schamieren, krachtgestuurd ontwerpen, krachtterugkoppeling,
handprothese, laparoscopische paktang,

Just Herder, 2001
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