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Abstract

There is a general consensus that the most efficient method for large-scale well location
optimization is gradient-based with gradients computed with an adjoint formulation. Handels
et al. (2007) (later published in journal form as Zandvliet et al., 2008), were the first to use
the adjoint method for well placement optimization for which they introduced the concept of
‘pseudo wells’ surrounding the well to be optimized. Sarma et al. (2008) presented a method
to determine the sensitivity of the objective function with respect to the actual well locations
directly from the adjoint gradients. The direct dependency of the objective function on the
well location comes from weighing the well indices of the pseudo wells by a continuous well-
location-dependent function. However, this method is not consistent with the use of the
Peaceman well-inflow model.

In this work we utilize the Ding well-inflow model (1994), which adjusts the
transmissibilities of the adjacent grid blocks of off-centered wells. The basic underlying idea
is that the explicit dependency of the flow equations on the well location, as formulated in the
Ding model, would enable a direct calculation of the adjoint gradients of the objective
function with respect to the well location. Unfortunately, attempts to implement this idea
resulted in significant challenges. Using a simple homogenous 2-D reservoir example, we
demonstrate how the non-smoothness of the objective function with the change in the well
location, (resulting from assumptions in the Ding model) especially around the grid block
borders can lead to incorrect adjoint gradients. We then show that this problem persists for a
smoother objective function in which the Ding method is applied to a larger neighborhood
around the well block.

We conclude that irregularities in the objective function resulting from the original Ding
well-inflow model adversely affect gradient-based well location optimization and that
modifications to the well model will be required to develop a robust Ding model-based well
location optimization method.
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Introduction

Determination of optimal well locations that maximize, e.g., the total oil production or net
present value (NPV) over a given time period is of great importance throughout the life of a
reservoir. For small reservoirs intuitive engineering judgment along with some numerical
simulation may be sufficient to determine the proper well locations. However, if there are
production constraints (e.g., pressure, rate, or water-cut constraints), predicting the optimal
well locations intuitively may not be a trivial task, even for small reservoirs (Handels et al.
2007). For cases with a large number of wells computer-assisted optimization routines have
the promise to result in much better results. Computer-assisted well location optimization
routines can be divided into two major categories: gradient-based and gradient-free
(stochastic) methods. A comprehensive review of the literature on well-placement-
optimization methods is presented in Nasrabadi et al. (2012).

In principle, stochastic methods can be computationally imperative for large-scale problems
and do not guarantee improvement within successive iterations. However, these methods are
supposedly global in nature contrary to the gradient-based methods. The main invaluable gain
of implementing a gradient-based method (with an associated adjoint model) over gradient-
free methods is the reduction in the computational effort required. Nevertheless, a variety of
gradient-free methods have been employed in literature to deal with the well-location
optimization whereas the application of gradient-based methods to this optimization problem
is limited to a few papers (Handels et al. 2007, Wang et al. 2007, Zandvliet et al. 2008, Sarma
and Chen 2008, Castineira and Alpak, 2009, Zhang et al. 2010). The underlying reason is that
the locations of wells are commonly defined by the well grid block indices in commercial
simulators and, as a result, gradient-based methods cannot be used directly for such a discrete
problem.

Handels et al. (2007) were the first to exploit the adjoint method for well placement
optimization. In their method, eight pseudo-wells with very small rates are introduced in the
centers of the grid blocks around the to-be-optimized wells. The adjoint gradient of the
objective function with respect to the flow rate of each pseudo-well is then exploited as an
indirect sign of the sensitivity of the objective function to the location of the well. Therefore,
in each iteration step, the pseudo well with the largest gradient of the objective function
averaged over the lifetime of the reservoir, is replaced by the respective to-be-optimized well
until convergence is reached. The main limitation of this method, as implemented by Handels
et al., is that the location of wells can only be updated to one of the locations of the eight
pseudo-wells in each iteration, and thus, neither the search direction nor the step size are
arbitrary.

Wang et al. (2007) also proposed an adjoint-based method for optimizing the location of
injection wells but with a different optimization procedure than using pseudo wells. First, all
grid blocks excluding the ones that accommodate the production wells are initialized by an
injection well. Next, the conventional objective function is augmented by additional terms
accounting for the cost of drilling the wells. The adjoint gradients are then defined as the
gradients of the modified objective function with respect to the rates of these wells. If the rate
of any of the wells goes to zero in the optimization iteration, that well is eliminated from the
reservoir and its corresponding drilling cost are be removed from the modified objective
function. By this method not only the location of the wells but also the number of the wells
are optimized. However, in the optimization method presented by Wang et al. (2007), a
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maximum of one well is removed in each optimization iteration. Later Zhang et al. (2010)
employed the gradient projection method, which allowed for the elimination of more than one
well in each iteration, to speed up the well-placement optimization algorithm.

The method of Sarma and Wen (2008) is the only attempt to determine the sensitivity of the
objective function with respect to the actual well locations directly from the adjoint gradients.
The direct dependency of the objective function on the well location comes from weighing
the well indices of the pseudo wells by a continuous well-location-dependent function. The
arbitrary location of the wells within each grid block in this method is an advantage over the
methods, in which the well locations were restricted to the centers of grid blocks. However,
the Sarma and Wen method is not consistent with the use of the Peaceman well inflow model
because, in the Peaceman model it is assumed that wells are located in the grid block centers.

This work aims to address the well-placement optimization problem by deriving the adjoint
gradients of the objective function directly with respect to the well locations. We utilize the
Ding well inflow model (1994), which adjusts the transmissibilities of the adjacent grid
blocks of off-centered wells as a function of the exact location of the wells. The explicit
dependency of the well grid block transmissibilities on the well location in the governing
system equations enables the direct calculation of the gradients of the objective function with
respect to the well location by the adjoint method.

The rest of this report is organized as follows: First, the Ding well inflow model is briefly
explained. Then, we describe in outline the adjoint method and how one can derive the
adjoint gradients with respect to the well locations using the Ding model. The challenges we
faced in implementing our proposed method on a simple homogenous 2-D reservoir example
are discussed. We present the adjoint gradients for the case in which the Ding method is only
applied to the well grid block. Finally, we repeat our experiment with the Ding well inflow
model implemented to a larger neighborhood around the well grid block.

Ding well inflow model

Ding et al. (1994) proposed an approach based on the finite volume method, to better model
the flow in the vicinity of wells and therefore improve the well inflow model. The main
benefit of the Ding model over the conventional Peaceman well inflow model is its
applicability to non-uniform Cartesian grids, non-Cartesian grids, non-fully-penetrating wells
and off-centered wells (Ding et al., 1994). In the Ding approach, flow around the well is
described through the analytical solution for near-well pressure corresponding to radial flow,
which shows up in the model by the modified transmissibilities between the well block and
its neighboring blocks. Therefore, the Ding model can be easily implemented in existing
simulators by introducing a correction factor a as a multiplier for the conventional
transmissibilities 7; for each of the grid blocks neighboring the well grid block:

]—;mod (é):al (é)XTl' , (1)
where the subscript i denotes the grid block interface and where
S
&= ; )
S

is a vector of local coordinates in the well grid block.
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For an off-centered well located at (&, &), the a coefficient for each of the four well-block
transmissibilities, depicted by the red rectangle in Figure 1, is a function of the well location
through the angle 6 formed by each well-block interface and the distance » between the well
and each of the neighboring grid block centers:

o (g):%ﬁ , 3)

Teq

where Ax and Ay are the well block dimensions and 7., is the Peaceman equivalent well block
radius. The analytical solution for the flow around the well can be extended to another ring of
grid blocks, shown by the red blocks in Figure 2. In this extended well model, called here the
‘Two Ding ring model’, 24 transmissibilities of the neighboring cells are modified. The four
well block transmissibilities are modified with the aid of equation (3) while the rest of
transmissibilities are modified by

_ A 6,(8)
aij (é:x,gy ) - A_ s
v [  (8) ]
n
To-i (é)
where the second subscript, j, refers to the grid block interface in the second ring (i.e. 6 is

the angle between the radii from the well towards the endpoints of interface j of grid block i)
and r_; 1s the distance between the well grid block and the neighboring grid block i.

(4)

T - T,

Figure 1: Schematic of flow from the well block to four adjacent grid blocks for a ‘One Ding
ring model’. The well is indicated by the red dot.
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Figure 2: Schematic of flow from the well block to eight adjacent cells (‘Two Ding ring
model’).

In principle, equation (3) can be used to extend the Ding model to more than two rings of
cells around the well. For an n-well systems, with n >1, however, flow is not radial anymore.
Muskat (1937) shows that the pressure p around a configuration of #» wells can be written as

p(x,y) =c+ 2%/1 Z’:lnrj , %)
=yl () ©)

where x and y are spatial coordinates, s is viscosity, k is permeability, / is reservoir height
and ¢ is a constant. From this analytical pressure solution for an n-well system a new
expression for the Ding multipliers can be obtained by the same method as for isolated wells
(Ding and Renard, 1994). The following equations apply to the so-called first and second
Ding rings, respectively:

(L = S— (7)
Ay & 1 (”i,k (%)]
k=1 Teq
>0, (2)
Ax pa Yy,
a; (&.’):A_y B | rik(‘:) ’ ®)
; " To—i i (&.,)

where k is now the well counter.

Adjoint gradients

Adjoint models have been widely used, mostly for optimizing the operating conditions of
wells (i.e., rates or bottom hole pressure), but have also found some applicability for well-
location optimizations problem in reservoir engineering. A review of all previous work using
adjoint models in reservoir simulation can be found in Jansen (2011). The main benefit of
using the adjoint method is that regardless of the number of optimization variables, adjoint
gradients can be obtained at a computational cost of about two simulation runs.
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The well-location optimization problem in 2D requires the (x, y) location of all wells to be
obtained, such that the objective function is maximized. In the following z represents a long
vector of all well locations

Z:[xl N Xy Voo Xy J’N]T» )

where N is the total number of wells. Note that the final goal in practice is to optimize the
well locations and the well rates (or bottom hole pressures) at the same time with the adjoint
method (see, e.g., Forouzanfar 2010). However, in this work we focus only on optimizing the
well locations with the given well operating conditions.

The mathematical formulation of this problem is as follows:

ma’XJ(ulzK’Xl:K) > (10)

subject to
gk(uk,xk_l,xk,z):ﬂ, k=12,...K , (11)
X, =X, , (12)

where g is a system of nonlinear algebraic—differential system equations, u is a vector of
input variables (i.e., total rates or bottom hole pressure of the wells), x is a vector of state
variables (i.e., pressures and phase saturations in each grid block) and xy is a vector of initial
state variables, £ is the time step counter and K the total number of simulation time steps. A
colon is used to indicate a range of variables, e.g. u.x represents u,,k=1,2,...,K. To
simplify the notation we assume that control time steps coincide with simulation time steps,
but this is not a fundamental restriction.

The main feature of the adjoint method is that it breaks the interdependency of all the
variables (such as the dependency of x; and on x;; and, through recursion, on all earlier
instances of x) by considering equations (8) and (9) as a set of additional constraints to the
optimization problem, and applying the technique of Lagrange multipliers to solve the
constrained optimization problem. Thus we adjoin the constraints to objective function to
obtain an augmented objective function:

K
j(ul:K’XlzK’Z): I:Jk (ukﬂxk)+;“g(xo_i0)§k—l+;“£gk (uk’xk—l’xkﬁz)] 5 (13)
k=1
where A is a vector of Lagrange multipliers and where The Kronecker delta d;_; ensures that
the initial condition constraint is included in the summation. The gradient of the objective
function with respect to the controls (i.e. u;.x for well control problem or z for the well
location problem) can now be derived analytically; see Jansen (2011) or, for an alternative
derivation, Kraaijevanger et al. (2007).

In this work we introduce this dependency by implementing the Ding well model in the
system equations. In contrast, if we used the conventional Peaceman well model, the system
equations and the objective function would not depend on the well coordinates, and thus, it
would be impossible to derive the adjoint gradients with respect to the well locations directly.
As noted in the previous section, grid block transmissibilities in the vicinity of the well
blocks are corrected as a function of the exact well locations in the Ding well model.
Therefore, applying the Ding model results in the system equations, and thus the objective
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function, to be dependent on z. In the case where there is access to the system equations in
the simulator, one can find the direct adjoint gradients of J with respect to the exact well
locations z in the well grid blocks as:

K

o > % , (14)

oz = oz
As mentioned, the system equations explicitly depend on the well locations through the grid-
block transmissibilities 7, once the Ding model is applied. For example, in the context of the
SimSim simulator, the implicit Euler discretization of the system of equations (12) depends
on the modified grid-block transmissibility matrix T"* according to (see Appendix A for
more details)

~ A

g, (x,_.x,.2)= (EL (x,)—AA, (xk,z))xk -E.(x,)x,, —At]ABL, (x,)u, , (15)
where
A, (x02) = (T (x,.2) +F(x,)d) , (16)

with the meaning of the various matrices explained in Appendix A. Substituting equation (16)
into (15), we obtain the gradient of g, with respect to z according to

g, (X,.X,.2) ) T (x,,2)

0z =M 0z e {17
Note that each element 7" of the modified transmissibility matrix can be expressed as
T (x,,2)=a, (2)T, (x,) , (18)
such that
o %% 4 (19)

Oz 0z,

m

Note that the subscripts i/ and j in «; have a different meaning than in equations (4) and (8).
Once the dependency of the system equation on the well locations is derived, it can be
substituted into equation (14) to find the direct gradient of the objective function with respect
to the well locations.

Results

The purpose of this section is to present the objective function values and the adjoint
gradients of objective function values with respect to the well locations for a simple reservoir
once the Ding model is implemented in the SimSim simulator. The reservoir under
consideration is a very simple 2D, oil/water reservoir that is 210x210%10 m in size, modeled
by 21x21 grid blocks. The porosity is 0.3, the permeability is 0.5 Darcy and both are
homogenous. The locations of four producers are fixed at the four corners whereas the
location of the injector is to be optimized. The initial reservoir pressure is 40 MPa and the
initial water saturation is 0.2. All the wells are set at constant bottom hole pressure (BHP)
values of 40.3 MPa and 39.7 MPa for the injector and producer wells, respectively. The
objective is to determine the optimal location of the injector such that net present value
(NPV) is maximized over a period of 2 years according to the usual expression:
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N oo N,

pro inj

|:ro X(qo,j )k Tl X(qu,j )ki|_zrwi X(qwi,i )k

= = At |, (20)

I

(1+b)"

J=

K
k=1

where ¢, 1s the oil production rate of well j, g.,,; the water production rate of well j, g, 1s
the water injection rate of well 7, r, is the (constant) oil price, r, and r,; are the (constant)
water production and injection costs, A# is the time interval of time step k£ in days, b is the
discount rate for a reference time interval 7, (which is usually taken as a year), and N, and
N, are the number of injection wells and production wells respectively. For this study we
used the following parameter values: », = 80 $/bbl, r,=5 $/bbl, r,~=5 $/bbl, b = 0.15 and 7,
=365d.

Trivially, for the symmetric homogenous reservoir in our example, the objective function is
maximum if the injection well is located at the center. Figure 3 shows the NPV contours for
a quarter of the homogenous reservoir. From now on, for the sake of brevity, all the figures
show the results corresponding to the top-left quarter of the reservoir under study. The NPVs
for each grid block are calculated by marching the injector well through 64 locations inside
the cell as shown in the magnified square. For each well location (&, &), one can work out
the Ding correction coefficients for the four transmissibilities of the grid block and employ
the modified transmissibilities in the forward simulation run. As expected, the NPV gradually
increases marching towards the center both in the x and y directions and appears to be quite
smooth.

However, a wavy ripple behavior of the NPVs is more vivid in the non-contour plot as shown
in Figure 4. This is the equivalent plot to the contour plot in Figure 3. Each curve represents
NPVs if the injection well marches horizontally from the left border of the reservoir towards
the center. For example, the first curve at the top shows the NPVs if the injection well
marches from the top left corner of the reservoir to the top center. Likewise, the location of
the injection well approaches vertically towards the center of the reservoir moving from the
top curve towards the last bottom curve. The magnified figure depicts the NPVs for the two
adjacent cells. Clearly, the non-smooth behavior becomes worse once the injection well
approaches the cell borders as specified by yellow dots. This could be because the influence
of the off-centered well on the flow distribution in the closer neighboring cells cannot simply
be ignored.
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Figure 1: NPV contours for a quarter of a 2D, homogenous, oil/water reservoir for different
injection-well locations and four producers fixed at the corners.

Figure 4. NPV curves corresponding to the contours in Figure 3. The location of the injection
well approaches vertically towards the center of the reservoir moving from the top curve
towards the last bottom curve.

As expected, the adjoint gradients of the objective function with respect to the well location
do not exhibit a correct trend either. Figure 5 (top) shows the adjoint gradients of the
objective function (corresponding to Figure 4) with respect to well location ¢ (in red) and &,
(in blue) and Figure 5 (bottom) depicts the ratio of 0J/0&, over &J/0&, (or 0&,/0E,),
respectively. Note that in this figure the gradients are shown for the injection well marching
merely through the center of the grid blocks. For example, the first row of dots indicated by
the purple arrow in the top plot correspond to the case where the injection well marches
through the center of the grid blocks from the top left corner of the reservoir to the top center
(shown by the horizontal arrow). For the simple reservoir studied, we expect that the
objective function adjoint gradients in the x and y directions points towards the center of the
reservoir. However, the gradients in Figure 5 become negative at some point close to the
center of the reservoir in the y direction. We believe that as the injection well moves towards
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the optimal location, and thereby the objective function becomes flatter, the bogus wavy
behavior of the objective function dominates the slight change of the objective function
resulting in the wrong negative gradients. Presumably, implementing the Ding model in a
larger neighborhood of the well cell will improve the non-smoothness of the NPV contours
and thus lead to more accurate gradients.

00 Adjoint dJX
o Adjoint dJy

50 100 150 200

-20 -10 0 10

2 4 5 g 10
Figure 5: Top: adjoint gradients of the objective function (corresponding to Figure 4) with
respect to well location & (in red) and &, (in blue). Bottom: ratio 0J /0&, over 0J/0&, (or

0&,/10&, ). Note that in this figure the gradients are shown for the injection well marching
merely through the center of the grid blocks.

Figure 6 exhibits the NPVs for the same case study as in Figure 4 with the only difference
that the two-ring Ding model is implemented. However, we believe that extending the Ding
model to a yet-bigger neighborhood may only minimally improve the results because the
Ding transmissibility correction factors are already close to one for the second ring, as in the
example shown in Figure 7. In this figure the off-centered well, shown by a red circle, is
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located at (4.5 m, 4.5 m) from the central cell center, just 0.5 m away from the central-cell
boundaries both in +x and +y directions.

According to Figure 8, implementing the two-ring Ding model results in a seemingly correct
gradual decrease of 6J/0& both in the x and y directions as the injection well approaches the
center of the reservoir. Obviously, the gradients have improved as compared to the case in
which the conventional one-ring Ding model was implemented (see Figure 5). Knowing the
optimal location of the injection well at the center of the homogenous reservoir, the ratio of
aJ 10¢, over 0J/0&, is expected to be greater than one if the well is located in the top
triangle (shown in Figure 9) and less than one if otherwise. However, the results in Figure 9
do not demonstrate any logical trend.

Figure 6: NPV curves with the same description as in Figure 4 except that the two-ring Ding
model is implemented for this case.
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Figure 7: Ding correction factors for the 24 transmissibilities around an off-centered well,
shown by a red circle, implementing the two-ring Ding model. The well is located at (4.5 m,
4.5 m) from the central cell center, just 0.5 m away from the central-cell boundaries both in
the +x and +y directions.

dJ
X

Figure 8. The adjoint gradients of the objective function (corresponding to Figure 6) with
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respect to well location & (right) and ¢, (left) as the injection well marches through the
center of the grids located on the top-left quarter of the reservoir under study.

To investigate the reason behind the erroneous adjoint gradients further, we study the
approximate gradients of the objective function depicted in Figure 6 with respect to the well
location. Figure 10 exhibits AJ/A&, in red and AJ/AE, in blue for the injection well
marching along 8 rows (64 equally-spaced locations in each) within the purple rectangle.
Clearly, the gradients are still unfavorably influenced by the cell borders although the two-
ring Ding model is implemented and the objective function is quite smooth (see Figure 6).
This implies that there is potentially a huge sensitivity of the gradient-based methods to even
small irregularities of the objective function.

In addition, despite the expected relative change of the gradients in the two directions as the
injection well moves location from left to right of the reservoir diagonal line, AJ/AS, or
AJ /A&, may each dominate in magnitude depending on the exact location (row) of the
injection well within the many grid-blocks. It should be noted, however, that in this work we
have not corrected the Ding model to take into account the effect of reservoir boundaries,
which undoubtfully may have caused the wrong behavior of the gradients. This needs to be
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accounted for in any future work. Unfortunately, the bogus influence of the cell borders
cannot be unresolved using this correction.

dd /dJ
y X

2 B 6 8

Figure 9. The ratio of 0J /0&, over OJ / 0&, obtained from Figure 8.

—— Approximate dJX

—— Approximate dJy

dJ /dJd
y ox

Figure 10. Approximate gradients AJ /A&, in red and AJ /A, in blue, corresponding to
Figure 6 for the injection well marching along 8 rows (64 equally-spaced locations in each)
within the purple rectangle

Lastly, we also observed that the adjoint gradients are highly influenced by the forward
simulator time step size. For example, the adjoint gradients behave inconsistently if the
maximum allowed time step size is varied, unless a non-practically feasible step size is
selected (e.g., in the order of 1-5 days for the presented case study). The reason for this is that
the Newton-Raphson routine converges to a different objective-function walue depending on
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how close the initial guess is to the solution of our system equations. We suggest
implementing the method proposed by Kourounis et al. (2014) in any future work to resolve
the time-stepping issue.
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Appendix A - State space formulation of two-phase porous media flow

Porous media flow

This Appendix presents a derivation of the equations for flow through porous media in state
space form following closely Jansen (2013). As an example we consider two-phase (oil-
water) isothermal, slightly compressible flow. Following the usual approach (see e.g. Aziz,
and Settari, 1979) we can combine mass conservation equations and Darcy’s law for each
phase to obtain

L 9(pS9)

V| 25K (Vp, - pgvd) |+

i

-p4;=0, (A.1)

where K is the permeability tensor, u is fluid viscosity, k. is relative permeability, p is
pressure, g is acceleration of gravity, d is depth, p is fluid density, ¢ is porosity, S is fluid
saturation, ¢ is time, ¢" is a source term expressed as flow rate per unit volume, and subscript
i e {o, w} indicates the oil and water phases respectively. Equations (A.l1) (one for each
phase) contain four unknowns, p.,, p,, S\ and S,, two of which can be eliminated with aid of
the relationships

S,+S,=1, p,—p,=p.(S,), (A2, A3)
where p.(S,) is the oil-water capillary pressure. Substituting equations (A.2) and (A.3) in

equations (A.l), expanding the right-hand sides, applying chain-rule differentiation, and
substituting isothermal oil, water and rock compressibilities

.- Lon
P, op,

_Lop,

~ %Py
T ! pw apw

c =19 (A4 A5 A6
T pw apo

. ¢0p,

where T is temperature, allows us to express equations (A.1) in terms of p, and S,, as follows:

Yo, k ap 6p oS m
_v W er V _ CVS — ) Vd + S Cc +cC. o :0, A7
{_ " |:[ D, as wj y284 :|} pw¢[ w ( w r ) ot ot Pl ( )

w

k., dp, OS, m
V. {MK(VA _pong)} +po¢[(l—Sw)(co +cr)%—a—:} —p,q"=0. (A.8)

0

Equations (A.7) and (A.8) contain two state variables: the oil pressure p, and the water
saturation S,. The equations are nonlinear because of the saturation dependency of the
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capillary pressure p. and the relative permeabilities 4, and £,,,. In the more general case there
may also be a pressure dependency of the densities p, the porosity ¢ and the
compressibilities ¢. In this paper we considered, without loss of generality, a simplified case
where gravity and capillary forces can be neglected. After semi-discretization of the
equations in space, e.g. with a finite difference or finite element procedure, we obtain the
following system of nonlinear first-order differential equations,

Mm " Mm = Figﬁqmw (A.9)
v i :

where p and s are vectors of pressures p, and water saturations S,, in the grid block centers, V
is an accumulation matrix (with entries that are functions of the porosity ¢, and the oil, water
and rock compressibilities c,, ¢,, and ¢,), T is a transmissibility matrix (with entries that are
functions of the rock permeabilities £, the oil and water relative permeabilities &, and £, and
the oil and water viscosities 4, and z,), F is a fractional flow matrix (with entries that have
functional dependencies similar to those of T), and q,.;;, is a vector of total well flow rates
with non-zero values in those elements that correspond to grid blocks penetrated by a well.
The matrices V, T and F are all functions of s, either directly or through the parameters. In
the more general case of high compressibility they are also a function of p. The fractional
flow matrices F,, and F, are diagonal with fractional flows f,, and f, as the elements that
correspond to well grid blocks and zeros otherwise. In practice the source terms are often not
the flow rates in the wells but rather the pressures. This can be accounted for by rewriting
equation (A.9) in partitioned form as]

Vou 0 0 |v,, 0 0 |[p,]
0 Vi 0 0 Vin P,
0 0 Vs 0 0 V33 & N
A\ 0 0 Vo 0 0 S
0 Vo 0 0 Vym 0 S,
0 0 A 0 0 Vs || 8,
- e 4 o - (A.10)
T, T, T,5]0 0 0)p, 0 0 0
T, T, T,|0 0 0jp, 0 F, 0 0
T, T, T;|0 00 Ps|_ 0 0 F, q
T, T, T,;(0 0 0]s, 0 o0 0 ~ well A
T, T, T5[|0 0 0fs, 0 F, 0 I; (pwe” P )
_To u Ly T30 0 0_ BN _0 0 F,

Here, the elements of vector p; are the pressures in those grid blocks that are not penetrated
by a well. The elements of p, are the pressures in the blocks where the source terms are
prescribed total well flow rates quen,, and those of p; are the pressures in the blocks where
the source terms are obtained through prescription of the bottom hole pressures p..; with the
aid of a diagonal matrix of well indices J;. To compute the oil and water flow rates in the
wells with prescribed pressures we use the relationship
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qwe W FW —
[ ) HF’”}Jg(pwu—m). (A11)

qwell,o 0,33

To compute the bottom hole pressures p..; in the wells with prescribed total flow rates we
need an additional diagonal matrix J, of well indices such that

Qe =9, (ﬁwell _pz) ) (A.12)

from which we obtain

pwell = ngqwell,t _pZ . (A 13)

To bring these equations in state space form we define the state vector X, input vector u and
output vector'y as

p |
P, _
q p p pwell
ué{j’e’”] xé[ }: =1 yE Q. |- (A.14, A.15, A.16)
pwell S sl —
qwell,o

s2
s, |

Equations (A.10), (A.11) and (A.13) can then be rewritten in nonlinear state space form

x=f(x,u)=A (x)x+B,(x)u, (A.17)
y=h(x,u)=Cx)x+D(x)u, (A.18)
where the state-dependent matrices A.(Xx), B.(x), C(x) and D(x) are defined as
_Tw,ll Tw,12 Tw,13 0 0 0_ i 0 0 |
Tw,21 Tw,22 Tw,23 0 0 0 FW,22 0
A é _V—l Tw,31 Tw,32 Tw,33 +Fw,33J3 0 0 0 , B é V—l 0 FW,33J3 ,
To,]l To,12 T0,13 0 0 0 0 0
To,Zl To,22 Tu,23 0 0 0 F0,22 0
T0,31 T0,32 To,33 + F0,33J3 0 0 0 0 Fo,33J3
L ] L i
“A B
0 I 0 0 0 0 J; 0
C2/0 0 -F,,J,|0 0 0/, D=/ 0 F,J,|.
0 0 -F,J,/0 00 0 F,.J,

(A.19, A.20, A.21, A.22)

The equations are nonlinear because almost all elements of the matrices V, T, F and J are
functions of the states x. The equations are control affine because they are linear in the
controls u. In the systems and control literature A. is usually called the system matrix, B, the
input matrix, C the output matrix and D the direct throughput matrix. These matrices are
normally applied in a linear setting, i.e. they are not supposed to be functions of x. The
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inverse of the accumulation matrix V as required in equations (A.19) and (A.20) can be
computed at low computational costs because it consists of four diagonal sub matrices.
However, we emphasize that there is no need to perform the inverse operation if the
equations serve as a basis for computation, and that the explicit state space form (A.17) is
only required for analysis of the system-theoretical properties of the equations. For
computational purposes it is usually required to express the system equations in fully-implicit
(residual) state-space form

g(u,x,X):EX—Ax—ﬁuzﬂ , (A.23)
where E=V and where A and B are have been defined in equations (A.19) and (A.20).

Implicit Euler discretization

Consider the continuous-time state-space representation for two-phase flow with or without
well model as given in equations (A.17) and (A.18):

x=A_ (x)x+B_(x)u . (A.24)

Here we have added subscripts ¢ to indicate that the secant matrices A. and B, represent a
continuous- time formulation. Applying implicit Euler discretization results in

X, =X, +AA (x,)x, +AB (X, )u, , (A.25)
or, formally,
X, =A,(x,)x_ +B,(x,)u, , (A.26)
where
A, (x)=[1-aA, (x,)]", B,(x)=a1-aA (x,)] B.(x,). (A27)

If we want to solve equation (A.26) using Newton-Raphson iteration, we could, formally,
specify the implicit version of equation (A.26) in the form of a function g; as

8 (ukaxk—laxk) =X, _Ad (Xk)xk—l _Bd (Xk)uk > (A.28)

and work out the Jacobian 0g; /0x; . In practice, it will be more convenient to start from the
version with continuous-time matrices, as given in equation (A.25), such that g; is expressed
as:

g, (u,x,_.x,)=(T-AA (x,))x, —x,_, —~AB_(x,)u, . (A.29)

Moreover, it is usually computationally more efficient to use the generalized state-space
formulation, which leads to

~ A

g, (u,.x,_,x,)= (]?JC (x,)—AA, (xk))xk -E.(x,)x,, —At]ABC (x,)u, . (A.30)
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