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Distributed Adaptive Fixed-Time Fault-Tolerant

Control for Multiple 6-DOF UAVs With
Full-State Constraints Guarantee

Boyang Zhang

Abstract—In contrast with most existing results concerning un-
manned aerial vehicles (UAVs) wherein material points or only
attitude/longitudinal dynamics are considered, this article pro-
poses a distributed fixed-time fault-tolerant control methodology
for networked fixed-wing UAVs whose dynamics are six-degree-of-
freedom with twelf-state-variables subject to actuator faults and
full-state constraints. More precisely, state transformations with
the scaling function are devised to keep the involved velocity and
attitude within their corresponding constraints. The fixed-time
property is obtained in the sense of guaranteeing that the settling
time is lower bounded by a positive constant, which is indepen-
dent of initial states. The actuator faults as well as the network
induced errors are handled via the bound estimation approach
and well-defined smooth functions. By strict Lyapunov arguments,
all closed-loop signals are proved to be semiglobally uniformly
ultimately bounded, and the tracking errors of velocity and attitude
converge to the residual sets around origin within a fixed time.

Index Terms—Fault-tolerant control (FTC), fixed-time
convergence, full-state constraints, six-degree-of-freedom (DOF)
fixed-wing unmanned aerial vehicles (UAVs).

NOMENCLATURE
oi Roll angle.
O Reference command of ¢;.
Vi Yaw angle.
Uy Reference command of ;.
P Air density.
0; Pitch angle.
0, Reference command of 0;.
m; Vehicle mass.
i Angular velocity in X of body fixed frame.
Qi Angular velocity in Y of body fixed frame.
75 Angular velocity in Z of body fixed frame.
Uu; Linear velocity in X of body fixed frame.
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Vi Total speed in body fixed frame.
v; Linear velocity in Y of body fixed frame.
V.. Reference command of Vj.
w; Linear velocity in Z of body fixed frame.
Q; Attack angle.
C; Mean aerodynamic chord.
i Dynamic pressure.
Bi Sideslip angle.
9; Flight control surface.
S(e) Skew-symmetric matrix.
Oui Aileron angular deflection.
Oei Elevator angular deflection.
Ori Rudder angular deflection.
Amax(®) Maximum eigenvalue of a matrix.
Amin(®) Minimum eigenvalue of a matrix.
Rrm Real m-vector.
Rmxm - Real m x n matric.
SO(3)  Third-order special orthogonal group.
b; Wingspan.
S; Wing surface area.
w;j Noninertial expression of angular velocity.
©,; Attitude described by Euler angles.
@, Reference command of ;.
d,; External disturbances in angular velocity.
d,; External disturbances in velocity.
F; Aerodynamics force.
g Gravity acceleration.
J; Inertia tensor.
N; Aerodynamics moment.
D, Inertial position.
T; Thrust vector along x body axis.
v; Noninertial expression of the linear velocity.

I. INTRODUCTION

OORDINATED flight of multiple fixed-wing unmanned
C aerial vehicles (UAVs) has been extensively studied over
the past decades, due to its important role in achieving flexibility
and cost effectiveness of mission cooperation [1], [2]. In general,
coordinated control problem has been investigated in several
aspects, including formulating and maintaining a particular for-
mation shape for UAVs in a group [3], and synchronous tracking
of velocity and attitude for UAV formation [4]. Fixed-wing
UAVs are peculiar in terms of six-degree-of-freedom (DOF)
dynamics, and these peculiarities should be borne in mind when
formulating a control law.

1937-9234 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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A. Related Research

As technologies advance, the distributed control strategy has
been attached tremendous attentions and is desirable for UAV
groups due to the fact that the global information is no longer
required in control design, while providing the scalability and
tackling the vulnerability of centralized UAVs tasked to control
a group [5], [6]. Driven by the emerging distributed cooperative
control research on multiple UAVs, some results have appeared
in [7]-[12]. To list a few, Yu et al. [7] presented a distributed
cooperative control design for networked UAVs against actuator
faults and model uncertainties. In [8], for longitudinal synchro-
nization tracking of multiple UAVs, a distributed cooperative
fault-tolerant controller was proposed in the presence of input
saturation. Based on the swarm intelligence, Wang et al. [9] pro-
posed a distributed model predictive approach for coordination
control of multiple UAVs. In [10], with path-following vector
fields, the UAV group achieves a circular motion around the
target. Notably, most existing papers on the problem analyze
UAV dynamics models as material points [9]-[12], and focus
on the attitude or longitudinal dynamics [7], [8], which is an
excessive and unnecessary simplification in practice. Therefore,
the motivation of investigation on six-DOF UAV dynamics
naturally arises.

In ideal conditions, the aforementioned control methods can
achieve good control results with asymptotic convergence. How-
ever, in real flight conditions, there is strict requirement for
convergence time, which mainly influences the system perfor-
mances. The advanced algorithm to improve the efficiency of
tracking convergence is finite-time control design. This tech-
nique has been successfully applied to UAV flights in [13]-[15].
But the main disadvantages of finite-time controls are as follows:

1) the convergence time strongly relies on the initial states;

2) considering the settling time increases with the initial

states, the finite-time controls will be infeasible with large
initial states.

In [16], the fixed-time control is first developed to achieve
the finite-time convergence independent of initial condition.
This feature successfully promotes the fixed-time stability for
spacecrafts [17], surface vessels [18], surface vehicles [19],
and robot manipulators [20]. However, the crucial question of
designing the fixed-time control scheme for multiple UAVs still
remains open.

In practical cases, state constraints are commonly found in
the UAV system in the form of physical stoppage performance.
The constraint consideration has been significantly important
for UAVs because it ensures the avoidance of collision hazards
and stability simultaneously. Some significant achievements on
constrained control problem have been obtained in recent years,
including model predictive control [21], use of set invariance
[22], and barrier Lyapunov function [23]. Beyond these, the
nonbarrier Lyapunov function was proposed to handle con-
straints in [24] and [25], where the constraints are guaranteed
not transgressed by ensuring the boundedness of the proposed
state-dependent function. Additionally, for UAVs during flight,
negative factors including actuator faults, external disturbances,
together with model uncertainties will degrade the control per-
formance or even make the system unstable if being ignored.
Therefore, there is an urgent need to take into account all negative
factors when designing flight controllers to ensure the stability
and tracking accuracy for the UAV system. Some literatures
pay attention to fault-tolerant control (FTC) and disturbance

4793

TABLE I

CONTROL MODELS AND CONTROL METHODS FOR EXISTING WORKS
Control Model Existing Works Control Method Existing Works
2-DOF Model [3,9-12,21] Fault-tolerant Control [4,7,8,13,15,26-29]
3-DOF Model [14,30] Constrained Control [3,8-13,15,21,29,30]

Longitudinal Model [8,15] Adaptive Control [4,7,8,10,12-14,28-30]

Attitude Model [4,7,13,26,29] Finite-time Control [13-15,29]
6-DOF Model [27,28,31,32] Fixed-time Control [16-20]

rejection control for UAVs and gain some achievements in
[26]-[29].

B. Main Contribution

Lots of works dealing with the control of the fixed-wing
UAV in terms of the linearized model or separate attitude and
longitudinal dynamics [7]-[12]. On the one hand, this linearized
model cannot accurately reflect the motion of an UAV and the
antidisturbance and fault-tolerant ability is limited; on the other
hand, there can appear problems related to the transient tracking
errors, which can further lead to the failure of flight. Besides, due
to the presence of partially unknown nonlinearities in aircraft
dynamics and the nonlinear behavior of actuators depending
on different flight conditions, the adaptive controllers with an-
tidisturbance and fault-tolerant ability are better choices than
conventional controllers. Although extensive studies have been
conducted for multiple UAVs and achieved accurate tracking
performance in ideal flight, there are some difficulties that need
to be addressed, which are as follows:

1) many studies in the research area of fixed-wing UAVs
merely deal with the asymptotic convergence regardless
of the requirement of the convergence time;

2) the time-varying state constrained problem of the multi-
UAV system is rarely considered so far.

Motivated by the aforementioned existing works whose con-
trol models and control methods have been summarized in the
Table I, the main contributions of this article are stated as
follows:

1) Differently from asymptotic control for six-DOF dynam-
ics [27], [28], [31], [32] and finite-time control for the
three-DOF model [14], longitudinal dynamics [15], and
attitude dynamics [13], [29], our scheme extends the de-
sign to the adaptive fixed-time FTC scheme for six-DOF
UAVs.

2) Unlike most nonadaptive controls of UAV flight [3],
[9]-[11],[21],[31], [32], an adaptive backstepping control
is proposed with the help of bound estimation approach
and well-defined smooth functions to effectively com-
pensate for the actuator faults, external disturbances, and
model uncertainties in the same time with the guarantee
of global stability.

3) The scaling functions are designed to address the full-
state constraints with respect to the system transforma-
tion obtained for translational and rotational dynamics,
respectively. The fixed-time properties are obtained in
such transformed unconstrained subsystems.

The rest of this article is organized as follows. In Section I, the

problem statements and preliminaries are presented. Section III
gives the cooperative distributed fixed-time control design and
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stability analysis. Section IV shows the validation results, and
finally, Section V concludes this article.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Multi-UAV System Model

Considering a multi-UAV system consisting of N 6-DOF
fixed-wing UAVs, an undirected graph G = (W, &, A) is
concerned. The set of all UAVs is denoted by V = {v1, ..., vn}
with the edges & ={(i,4), 4,5 € V,andi# j}. Let
A =a;; € RV*N denote the weighted adjacency matrix of
G. The Laplacian matrix is defined by £ =D — A, where
D = diag{d;,...,dy} with d; = Zjvzl a;;. Given the
leader—following structure, let H = diag{h1,...,hy} denote
the leader adjacency matrix of the graph G. If the jth follower
receives the information from the leader UAV, then h; > 0, and
otherwise h; = 0. The neighbors of each UAV are denoted by
Ni={v; : (vj, v;) € E}.

Assumption 1: The topology of the considered multi-UAV
system is an undirected graph with at least one node having
access to the leading node.

B. Fixed-Wing UAV Dynamics Model

Using Newton—Euler convention, the full six-DOF dynamics
of each UAV, is given by [31], [32]

p; = Ri(p;)v; (1)
T, F,

b= —S(w)vi+ —+Ri (p))g+ — +dui (2
my; m;

@i = Ry () wi 3)

where p; = [7;,;,2]T denotes the inertial position,
v; = [u;, v;, w;]" is the linear velocity in body fixed frame,
@; = [¢i,0;,9;]T represents the attitude described by Euler
angles, and w; = [p;, ¢;, ;] T is the noninertial expression of the
angular velocity. Moreover, T; = [T}, 0, 0] denotes the thrust
vector along = body axis, d; = [04i, 6ci, 6,4 is the control
input, where d.;, d4;, and d,; represent the deflection of elevator,
ailerons, and rudder, respectively, g = [0,0, g.]T is the gravity
acceleration in inertia frame, d,; € ®° and d,,; € R> are the
unknown bounded external disturbances, and J; is the inertia
tensor with the symmetric z—z plane of which expression is

J, i 0 —J r2i
l 0 Jyu O ]
—J. Tzl 0 J 13
Besides, R (¢;) € SO(3) is the rotation matrix transforming
the body frame coordinates to inertial axis coordinates and the
matrix Ry (p,;) € R3*3 maps the time derivative of the Euler

angles to the noninertial expression of the angular velocity. Both
matrices are given as follows:

Ji= ®)

Cop; CO— Sap; Sp; T Cap; 560,56, 54, S; T Cup; 50, Cop;
R, ((pz) = | 59;C0;  Cy;Copy T 59,80, 5¢,— Cup; S¢p; + 54,50, Co;
- 807 Cai 8457, Cam C¢7‘,
1 0 —Swi
R, ((Pz) =10 Cop; Sep; Co; (6)
0 —56; Cy;Co;
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where s, and ¢, stand for sin(a) and cos(a) functions, re-
spectively. The aerodynamics force F'; = [Fx;, Fy;, Fz;]T and
moment N; = [Fp,, FMi,FNi}T are calculated by means of
aerodynamic coefficients

Fi;= §;S;R;" (v, 3;)[~Cpi, Cyi, —Cri] " (7N
N = G@Si[b:Cl;, &Chyi,0:Ch] " ®)
where «; = arctan(w;/u;) and f; = arcsin(u;/v;) denote

the attack angle and sideslip angle, respectively. The dy-
namic pressure ¢; = %pr is a function of total velocity

V; = \Ju? + vZ + w?. Air density p, wingspan b;, wing surface
area S;, and mean aerodynamic chord ¢; are constant parameters.
The transformation matrix R3(c;, 3;) is

CaiCB; SB; Sa,;Cp;
“Ca;SB; €8 —Sa; 8B | - €))
—Sq, O Ca,

i

R (o, i) =

And Cp;, Cyi, Cri, Cy;, Clyy;, and C); are the dimension-
less coefficients in force/moment expressions, of which corre-
sponding detailed descriptions are shown in [32]. The control

effectiveness matrix is defined as

¢iSibicis,, 0 qiSibicis,,
C (61)2 0 qiSiEiCm(;ei 0 . (10)
GiSibicns,, 0 qiSibicns,.,

C. Control-Oriented Model

According to [31] and [32], the whole system can be de-
composed into two interconnected subsystems, i.e., translational
kinematics (2) and rotational one (3), (4).

1) Translational Kinematics: From (2), the thrust is ex-
tracted and using the property v} S(w;)v; = 0, it holds that

T, T
vV, U; _ uiTm + v;

F.
T - .
v, miVi Vi (Rl (‘Pz‘)g+ ™ +dvz> (11)

which satisfies V; min () < Vi(t) < Vi max(t) ¥t > 0.
During operation, the thrust possibly suffers from actuator
faults, modeled by [33]

Tri = p1,Trio + Taiy (12)

where T3 is the designed control input, p7, is the unknown
actuator efficiency factor satisfying 0 < pr, <1, and Ty;y is
the bounded unknown stuck fault or bias fault. Note that (12)
implies the following four cases.

1) pr, = 1and T;y = 0. This means the fault-free case.

2) 0 < pr, < 1and T,;y = 0. This indicates the partial loss

of effectiveness.

3) pr, = 1and T,y # 0. This indicates the bias fault.

4) pr, = 0and T,;¢ # 0. This means that T,; is stuck at the

bounded time-varying function 7.

Moreover, note that the accurate information of F'; cannot
be known a prior due to the coefficient uncertainties. In this
sense, F'; is decomposed into a known component F';y and
an uncertain one AF'; [9]. Thus, with the actuator faults and
modeling uncertainties, the velocity kinematics is reformulated
as

‘./;:

V- Ui pr, Lpio | Wilyiy
om; m;V;
+ = (R]F () g+—2+ +dm-) : (13)
Vi m; o my
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2) Rotational Kinematics: From (3) and (4), the dynamical
attitude motion is rewritten as

IS (Jiwi) + I N+ J71C (8) 8; + dui (15)
which satisfies —; i, (1) <, (t) <@ max (t) and —w; min(t)
< wj (t) < wz’,max(t) vt > 0.

During flight, the flight control surfaces inevitably suffers
from actuator faults, which are considered as [13]

P, =

w; =

6mi = Pmi 5mi0 + (szf (16)

where d,,;0 is the mth applied control input withm = {a, e, r},
ps,,; 1s the unknown actuator efficiency factor satisfying
0 < ps,,; <1, and 6,,;¢ is the bounded unknown stuck fault
or bias fault. Consider that (16) satisfies the similar cases as
(12) in the following.
1) ps,,; = 1and 0,,;7 = 0. This refers to the fault-free case.
2) 0 < ps,,, <1 and 6,,;5 = 0. This means the partial loss
of effectiveness.
3) ps,,. = 1and d,,;5 # 0. This indicates the bias fault.
4) ps,,, = 0and d,,;¢ # 0. This means that ¢,,,; is stuck at
bounded time-varying function d,,;.
For the simplicity of presentation, the actuator fault model is
formulated by

0; = ps,0i0 + iy (17)

where ;0 = [04i0, 0ci0, Orio] T» P, = diag{ps.,,, Ps..+ Ps,: }»
and 8,5 = [0uif, Oeif, Orif) T

And meanwhile, considering the coefficient uncertain-
ties, J; 'S(J;w;) is decomposed into a known component
J ;S (Jiow;) and an uncertain one AJ; *S(J;w;). Similarly,
J; ' N, is composed by a known part J ;01 N ;o and an uncertain
one AJ; ' N;. Also, J; ' C(8;) consists of a known component
J ;3 Co(8;) and an uncertain one AJ; *C(§;). Accordingly, in
the presence of actuator faults and modeling uncertainties, the
dynamic model of the angular velocity can be formulated by

w; = J30' S (Jiow:)+ T30 Nio+J 0 Co (8:) ps, 8o
+ Auitdyi (18)

where A, =AJ;'S(J;w;) + AJ; PN + AT 1C(8;)6; +
J ;01 C(9,)d; is the lumped uncertainties induced by actuator
faults and modeling uncertainties.

Assumption 2: For all ¢>0, it is supposed that
IATIC(8:)ps, (T35 Co(8:)) oo <1 and OALi/08:0 +
Ji0 Co(8:)ps, #0.

Assumption 3: There exists a constant g; min such that
Amin(J79°Co(8;)ps, (Ji_olco((si))T) > Gi,min > 0.

Remark 1: Assumption 2 imposes the controllability con-
dition to the model (18), which guarantees the existence of
the controller ;9. While the Assumption 2 is essential so
that the control signal &;9 dominates the uncertain vector
(J:0 Cio(8:)ps, + AJ ;1 C(8;))8;0. Similar assumptions can
be found in [7], [13], and [34]. Moreover, from Assumption 3,
9i,min 18 just used for analysis and not required a priori.

Remark 2: Considering that A ,; involves the control signal
8,0, if neural networks are used to approximate A, the al-
gebraic loops inevitably exist. To break the algebraic loops, the
low-pass filter technique is employed to filter §,9 [33]. We obtain
Ay = AL, +1,, wherel,,; € N3 is the filtering error.
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D. Neural Network Approximation

As the universal approximation property, the radial ba-
sis function neural networks (RBFNNs) are employed
in this article to compensate the modeling uncertain-
ties [35], [36]. Denote ©,; = [v],pF Wl 6,]" € R and
O, = [v],pF ,wl 64T € R2. For unknown continuous
terms  Ay;i(Oy;) = [Apit, Aviz, Ayis]t and A/ (O,;) =
(A1, ALy, ALS]7T, there exist RBFNNS such that

wily “wi2r —wi3

A'uil (gvz) = Wzagvil (@vi) + Twil (evz)

:uil (Gwz) - W:?lgwil (Gwi) + Twil (@wi) (19)

where [=1,2,3, 7,4(0,)€R and 7,4(O,) €R
are the bounded approximation errors. W7, € RM*1
and W7, € RM*1 are ideal weight matrixes with M

nodes. 6, (0yi) = [62;(Oui), ..., sM(0,:)]T € RM  and
Swit(Owi) = [641(Owi), - ., 2 (©u:)]T € RM are known
vectors consisted Gaussian basis functions ¢;;(®,;) and
I(®yi), n=1,..., M, commonly selected as the following
exponential form:
n (®vz - Tvi)T (G)m - ‘rvz)
Svij (91}1) = €xp [_ 2
(Gwi - Twi)T (ewz - Twi)
cﬁij (®i) =exp |- 12 (20)

where Y ,,; € R'2and Y,; € R'? are the centers of the receptive
filed, and x,; and k,; are the width of the Gaussian basis
functions.

E. Control Objective

Given the velocity reference V,. and attitude reference ¢,., the
goal is to design the cooperative distributed fixed-time tracking
controller such that

1) All the closed-loop signals remain bounded and the

velocity and attitude tracking errors for each UAV are
semiglobally uniformly ultimately bounded (SGUUB)
within fixed time in spite of actuator faults, modeling
uncertainties, and external disturbances.

2) The performances of velocity and attitude preserve certain

constraints at all time.

Assumption 4: The designed parameters Vi min, Vimax,
@i min> Pimaxs Wimin,» ald w; max and their time-derivatives
up to second order are continuous and bounded.

For the convenience of derivation, the following lemmas are
needed.

Lemma 1 [37]: Consider the system

@(t) = f(z(t)), #(0) = . 21

Suppose that there exists constants v > 0, 5 > 0,p > 1,0 <
q < 1,and 0 < 1 < oo such that

Vi) < —aV?(z) - V() + 1. (22)
Then, the system (21) is practically fixed-time stable. The
. . . L 1 1
settling time 7" is presented as T’ < Tyax 1= 23 =T + Fa(i=q)
with 0 < ¢ < 1. The convergence neighborhood is given by x €
V(@) < min{(=2%52) 7, (12555) 7 })-
Lemma 2 [38]: For any scalars € > 0, z € R, the following
. 22
equation holds: 0 < |z| — 7= < VE.
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Lemma 3 [39]: For any scalars ¢ >0, ¢ € R, 0 < |J| —
¥ tanh(2) < 0.2785¢ holds.

Lemma 4 [40]: For positive constants by, bo and b3, it follows
that

b1+b2

b
T bala " 4 by ™ |y

by
ey < 50

where x and y are real variables.

by —|—b2

III. COOPERATIVE DISTRIBUTED FIXED-TIME
CONTROLLER DESIGN

A. State Transformation

The system transformation is developed to transform the
original constrained system (13), (14), and (18) into the un-
constrained ones, whose stability can guarantee the full-state
constraints. ~

1) Translational Kinematics: LetV; = V; — V.. represent the
tracking error of velocity for each UAV with V, piecewise
continuously differentiable.

Definition 1: Velocity tracking is said to guarantee — F),;1 (t) <
Vi(t) < Fyiz(t) if for any given bounded initial condition satis-
fying —F,;1(0) < V;(0) < Fyi2(0). If there exists

Vi

(Fuir +V2) (Fuiz = Vi)

the constraint of f/l can be ensured as &,; is bounded V¢ > 0.
From (23), taking the derivative of &,; gives

é’ui - ’r}UL‘Z(t) + Mg

Evi = (23)

(24)
where
szl szQ + ‘71'2

Noi = ~ 2
( UL1+V) ( vi2 T Vz)

Fyi1Fyig + Fuit Fyia + (Fuiz — Fuil)Vi} Vi
Moi = ~ 92 ~ 2 .
(Fui1 + Vi) (Foiz — V5)
2) Rotational Kinematics: Let e,; denote the error vector
that specifies synchronization attitude for each UAV with ¢,.
piecewise continuously differentiable

€pi = Li1@; + Aiz Z aij (@;
JEN;
where @, = ¢, — p,, ¢; = p; — p,, and A1 and A;2 are pos-
itive design parameters.

Definition 2: Synchronization attitude tracking is identi-
fied with —F;1(t) < epir(t) < Fyuo(t) for [ =1,2,3 if for
any given bounded initial condition satisfying —F;;1(0) <
it (0) < Fii2(0). If there exists

€ypil

Soit (Foinn + egit) (Fpit2 — €qpit)
the constraint on e,; can be guaranteed if £, is bounded
vt > 0.

Take the time derivative of {,;; along (26) as

- ;) (25)

(26)

écpil = n@ilégpil + Hpil (27)
where
FoinFpiuz + epi®

(Fpit + eit)” (Fiz —

Npil = 2
egoil)
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{quFwilz + FoinFpua + (Fun — qu)@mz} il
(Fpinn + €¢il)2(Fm12 - .

We have €<pz [£¢117€WL2 gcpz?;} Mtpz

and nm - dlag{n4,0117 Npi2, 779013}
Definition 3: The time-varying constraint on w; is never trans-

gressed, that is, —F ;1 () < wy(t) < Foua(t) for 1 =1,2,3

Hepit = p)
epil)

[,Ugazlv Hpi2;y ,LLLPLS}T’

if for any given bounded initial state satisfying —F,;;1(0) <
w;1(0) < Fi2(0). If there exists
Wi
Euit = : (28)

(Foin + wit) (Foaz — wir)
the constrained problem of w;; equals to ensure the boundedness
of £,i YVt > 0.

From (28), taking the time derivative of &,;; gives

Euil = Nwitdit + Ml (29)
where
it = Foin Fuiz + wj)
wil —
(Foinn + win)*(Fuirz — wa)?
[quszz + Foin Floia + (Flonz — Fwill)wil} Wil
Hwil =
- (Foinn + wit)*(Fuiz — wir)’
We define &, = [5wi17£wi27§wi3]T7 My = [Mml,uwm,
fois] T, and n; = diag{nwi1, Nwiz, Nwis }-

Remark 3: Fm‘l(t), Fm‘g (t), Ftpill(t)’ F¢i12 (t), Fwill(t), and
Fi2(t) are utilized to described the time-varying constraints
for V;, ey, and w;;, respectively. Note that F;;1(t), Fuia(t),
Foin(t), Fpaa(t), Fuii(t), and F,;2(t) are strictly positive
smooth functions. More details on the properties of the con-
strained problem described by (23), (26), and (28) can refer to
the illustration example in [25]. Based on Definitions 1-3, new
unconstrained subsystems (23), (26), and (28) for translational
and rotational dynamics are obtained, which are guaranteed to
be bounded.

B. Controller Design

Following the double-layer control structure, the translational
and rotational controller design are proposed, respectively. Here-
after, the design of T,.;o and §;o are given.

1) Translational Kinematics: To achieve the control objec-
tive, we employ the dynamic controller 7,9 (see Algorithm 1)

Trio = — avgﬂm tanh <§”mviavi5vi>

i Evi
— Gvi tanh <£”m“§”<“> (30)
Evi
where ;= wl 51g(§m)2prl+cvlz 81g(§m)2qv*1+;};;’71;1;
(R1g+ “)) + %—Vr—i—% with p, > 1, 0 <

Qv < 1, E’U’L —gvznvz [Uzlgmlgvih ’Ui2§;fig§vi27 UiSCg‘igg'uiS]T~
The adaptive parameters ®,;, §,;, and [3,; are updated by

2 inlgvinvi’UTEvi 2

Dy = —————— — V4i100i1Pui 31
v thll‘/; v v v

Gui = Yoiz [Evihvil Coi — Ywia0vizdui (32)

Bvi = %i:afvﬂlmam - %i30m33m‘ (33)
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Algorithm 1: Design the Distributed Control Protocol T7;¢.

Algorithm 2: Design the Distributed Control Protocol d;.

Input: The parameters F,;; and F),;» in state transformation
(23); the parameters Y1, Yoi2» Yvi3s Tvils Tvi2s Ovi3, and
hys1 in adaptive laws (31)—(33); the parameters cy;1, Cyi2,
hyi2, and €,; in the control protocol (30).

Output: The distributed control protocol (30).

1:  Step 1: Solve the velocity constraints to obtain the
state transformation (23).

2:  Step 2: Use the RBFNN (19) to approximate the
modeling uncertainties, and acquire the adaptive law
(31).

3:  Step 3: Introduce (,; = 1/pr, and
Gvi = Pui SUP;>q Tiiy to compensate for the actuator
faults, and obtain the adaptive laws (32) and (33).

4: Step 4: Select the parameters cy;1, Cyi2, hyio, and ,;,
and integrate the adaptive laws (31)—(33) into the
control protocol (30).

where hyit, Nuizs Yoils Yoi2s Yoids Tvils Ovi2s Ovi3, and €,; are
positive design parameters.

Theorem 1: Consider the translational kinematics (13) com-
posed by the adaptive controller (30) and parameter adaptation
laws (31)—(33). Let Assumptions 4 hold. There exist positive
parameters Cyi1, Cui2s Evis Rvils Nuizs Yoils Yoi2s Yoids Ovils Tvi2s
and 0,;3 (1 = 1,2, ..., N), such that the following are satisfied:

1) all signals of the translational subsystem are SGUUB in

the presence of actuator faults, modeling uncertainties, and
external disturbances;

2) velocity tracking error V; satisfies limy 7, .,

with f,,; > 0 a constant;

3) the required velocity constraint for the translational sub-

system is guaranteed V¢ > 0.

Proof: See Appendix A.

2) Rotational Kinematics: To obtain the control objective,
we propose the dynamic controller §;¢ (see Algorithm 2)

|‘~/7‘ < Hvi

2 .
610 - (JzO CO Nwi ewzng sz (34)
\/ﬂwzewzeWZszsz + Ewi
where Cui =Kaiew; ”ewz 2P 2+ K 5€0]| €wi]|*%e 2+

A Krlrz(Rg ) ngszApz—i_nwszO S( Owi)+nwiJi)1Ni0 +

‘bw”]m—'w TIM"IMEW
ottt i — €oui withp, > 1,0 < g, <1,

-—m:[ewzmwﬂCEﬂle, €m277m2€m2§m27 6m‘37lmg§wi3€m3}T,
Ai=Ai1+ A2 ZjeM a;;. The adaptive parameters ®,; and 3,
are updated by

) eIn =

A "7 . A

D, = ’le%lm — OwilVwil Puwi (35)
2hw11

Bui = Ywize:Coi — OwizVwizBui (36)

where hyit1, Rwizs Ywils Ywi2s Owils Owiz, and €,,; are positive
design parameters.

Theorem 2: Consider the rotational kinematics (14) and (18)
composed by the controller (34) and adaptation laws (35) and
(36). Let Assumptions 1-4 hold. There exist positive parameters
Ko, K3i, Ky, K50, €00y hwits Nwizs Ywils Ywiz> and 0441, 0wz
(i =1,2,...,N) such that the following are satisfied:

Input: The parameters F1, Fii2, Fli1 and Fi 2 in state
transformations (26) and (28); the parameters 7,1, Ywi2s
Ouwils Owio and hy,;q in adaptive laws (35) and (36); the
parameters K 1;, Ko;, and K3; in virtual control (54); the
parameters K 4;, K'5;, hy2, and €,; in the control
protocol (34).

Output: The distributed control protocol (34).

1:  Step 1: Solve the attitude and angular velocity

constraints to obtain the state transformations (26) and
(28).

2:  Step 2: Choose the parameters K;, Ko; and K 3;,
and propose the virtual control (54).

3:  Step 3: Use RBFNN (19) to approximate the modeling
uncertainties, and acquire the adaptive law (35).

4:  Step 4: Introduce B,,; = 1/gwi and g,; =infi>0 Amin
(J30'Co(8:)ps. (T30 Co(8;))T) to compensate for the
actuator faults and obtain the adaptive law (36).

5:  Step 5: Choose the parameters K 4;, K5;, h.i2, and
€wi, and integrate the adaptive laws (35) and (36) into
the control protocol (34).

1) all signals of the rotational subsystem are SGUUB in spite
of actuator faults, modeling uncertainties, and external
disturbances;

2) attitude synchronization tracking error e,; achieves that
limg 7, ll€gill < pipi With p1,; > 0 a constant;

3) the involved attitude constraints for rotational subsystem

are guaranteed Vt > 0;

Proof: See Appendix B.

Remark 4: By running the distributed control algorithm in
parallel for each UAV, the proposed distributed control structure
optimizes the time complexity, compared with the centralized
control with an integral control algorithm for all UAVs [2].
Besides, note that only three scalar parameter adaptation laws
(31)—(33) for translational dynamics and two scalar parameter
adaptation laws (35), (36) for rotational dynamics are involved
in our control design to deal with the actuator faults, modeling
uncertainties, and disturbances, which makes it simpler than
vector-based adaptation laws in backstepping control for UAVs
[7]. In addition, our proposed fixed-time control owns the superi-
ority in terms of convergence time, where the time convergence
is independent of the initial condition. That is, the proposed
fixed-time control can effectively shorten the execution time,
which is comparable to time complexity of asymptotic controls
and finite-time controls proposed for UAVs [13]-[15],[27]-[29],
[31], [32].

Remark 5: The network-induced errors and actuator faults
are effectively handled with the help of bound estimations
for parameters (,; = 1/p7;, Gvi = Bui SUPysq Tig in transla-
tional control protocol, and S = 1/gwi, Ywi = inft>0 Amin

(T30 Co(8:)psi (T C’o(éi))T) in the rotational control design.
Further, we employ the smooth function tanh( ) in design of
T.io0 in (30), and function \/7 when designing §;9 in (34).

IV. EXPERIMENTAL AND SIMULATION VALIDATION

To demonstrate the feasibility of the proposed controller, the
experimental validation is carried out based on the Links-RT
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Fig. 1. Experiment prototype of the Links-RT UAV platform.
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Fig. 3. Communication topology.

UAV Platform (supported by Beijing Links Company, Ltd.). The
experiment setup and relationship between functional units are
depicted in Figs. 1 and 2. The proposed controller is first imple-
mented in MATLAB. Then, the code generation by Links-Auto
Coder is used to convert the MATLAB language into C code,
which is downloaded by Pixhawk. The Pixhawk is responsible
for executing the proposed control algorithm with a sampling
time of 2 ms and generating pulsewidth modulation (PWM)
signals, which are sent to the real-time simulator, such that the
velocity and attitude motion are calculated and transmitted to
Pixhawk and monitoring computer, while presenting the flight
scene in X-PLANEI1 and plotting the velocity and attitude
tracking curves on MATLAB.

In this part, three networked six-DOF fixed-wing UAVs are
considered. The communication topology is illustrated in Fig. 3.
The initial states are selected as p; = [20,0,150] " m, p, =

PWM / \

IEEE SYSTEMS JOURNAL, VOL. 16, NO. 3, SEPTEMBER 2022

[0,20,150]"m, p; = [0,—20,150]Tm, Vi =V, =40m/s,
V3 = 39511’1/8, P11 = [17 07 O]T deg’ P2 = P3 = [Oa 07 O]T deg’
and w; = wy = w3 = [0,0,0]T deg /s. The control objective
for experimental test is twofold.
1) Task of low altitude penetration: Velocity tracks the tra-
jectory V,. = 60m/s, and the desired attitude trajectory is

denoted as
0,0,0]" deg,  0s <t <b5s
[, 0,90, " = { [0,-10,0]" deg, 5s <t < 12s
0,0,0]" deg,  12s <t < 18s.

The external disturbances in the velocity channel are
supposed as d,,3 = [0.5sin(3t), 0.3 cos(2t), 0.6 sin(2¢)]T
during ¢ € (6, 15]s.

2) The following full-state constraints are achieved: Om/s <
V; <100m/s, —60° < ¢; < 60°, —60° < 6; < 60°,
—180° < 1; < 180°, —10deg /s < p; < 10deg /s,
—10deg /s < q¢; < 10deg /s, and —5deg/s <r; <
5deg /s.

The control law and adaptation law are provided with

design parameters as p, = 1.4, p, =12, q, = q, = 0.8,
Cyil = Cypi2 = 300, Evi = Ewi = 001, hvgg = 0001, Ryil =

Kwiz = Keiz = 0.01,  7po2 = 0422 = 20, Koy = K3; =
d1ag{3 X 1074,4 X 1074, 5 X 1074}, Ky = K =
diag{50,50,50} (¢ € (0,5], (7,12, (14,18]), and K =

K5 = dlag{Qa 2, 2}(t € (57 7}7 (127 14])

Experimental results are exhibited in Fig. 4(a)—-(d). Appar-
ently, the proposed method can produce a rapid and accurate
velocity and attitude tracking behavior because of the contribu-
tion of disturbance rejection and fixed-time property. In view
of Fig. 4(e)—(h), the tracking errors of velocity and attitude
remain in a small neighborhood of zero within fixed time. Dur-
ing the operation, the states strictly keep within corresponding
constraints.

To highlight the superiority of the suggested control scheme,
the related traditional controller in [31], FTC in [26], and
finite-time FTC in [13] are taken as comparative objects under
the same conditions. Taking the follower 1, for example, the
actuator faults are introduced as ps, = diag{1, 0.9, 1} during
t € (15,18]. Task of coordinated turn and climb is considered:
the velocity is supposed to be kept as 40 m/s, and the attitude
tracks the trajectory

0,0,0]" deg,  0s<t<5s
[br, 0, 00,] T = { [10,10,10]" deg, 5s <t < 155
0,0,10]" deg, 15s <t < 24s.

Comparative simulation results are shown in Fig. 5(a)—(c).
One can evidently find that although both FTC and finite-time
FTC can accurately track the desired attitude commands regard-
less of actuator faults and disturbances, a slight rapid dynamic
response and decreased tracking deviation can be discerned by
the proposed scheme. What is more, it is distinct to see that
no matter in transient and static phase, in contrast to severe
fluctuations appearing in the traditional controller [31] and larger
overshoots resulting in FTC [26], controlling oscillations are
effectively accommodated with the help of FTC and fixed-time
property, naturally yielding the faster convergence performance
and better robustness to the actuator faults and disturbances.
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V. CONCLUSION

An adaptive fixed-time FTC methodology has been designed
for multiple six-DOF UAVs with actuator faults and constraint
guarantees. Specifically, system transformation with scaling
function is introduced to guarantee the states within involved
constraints. The fixed-time convergence is ensured based on
the transformed unconstrained system. The actuator faults as
well as the network induced errors are dealt with by the bound
estimation approach and some well-defined smooth functions.
All closed-loop signals are SGUUB, and meanwhile, the ve-
locity and attitude tracking are achieved by fixed time. This
work lays down the groundwork for other coordinated control
problems of UAVs including motion re-coordination and trajec-
tory planning. This extension of coordinated control to guidance
system for UAVs deserves further investigation. In practical
flight, the communication among UAVs may be switching and
directed. Future works can focus on the distributed fixed-time
fault-tolerant control for multi-UAVs within a switching and
directed communication. Despite that the proposed strategy
is capable of tolerating actuator faults, the issues of actuator
saturation and sensor fault diagnosis are not yet considered.
Investigation of the aforementioned factors is our future work.

APPENDIX A
PROOF OF THEOREM 1

Combined with (13), (24) further becomes

’UT Fo
i RT
Vi ( mz‘)]

Evi = Noi | CoipT; Trio + Cuilwiy +

(b): Time[sec]

15 20 0 5 10 15 20
(c): Time[sec]

Attitude tracking performances for comparison under the proposed method and methods in [13], [26], and [31]. (a) ¢2 response. (b) 02 response. (¢) P2

vT Avi + dvi y
+nvi |: ‘ ( ) _‘/T:| +,U/vi (37)
Vi
where (,; = V and A,; = A—F

Using Young s inequality, we obtam from (19) that

gm'nm' T vznvzvzlémgvzlgvll
Tivi (Am + dvz S Z thl
=1
+§5ﬂ731 12l+ haia +h12;i27_—3il>
212, V2 2 2
(38)
where (I)Ul - maX{Wml ml? sz2 sz’ sz3 213} and

Toil + dyi satisfies |7y + dypit] < Toir-
From (37) and (38), taking the time derivative of 3£2; derives

: v Fio\ ®,vlE, ¢ »77 T,
V1S < villvi -+ RT kd v v villvi 3
Evivi < Euil) {V( 19+ )+2h IR

vil

+ &oilhi (Cvmn Tyio + CoiTaif — Vii + ‘;)

hml 1211277- 3
vyt Bt

2
zl)

(39)

) Let B, = 1/PT2 and g,; = Buisupysg Trif. And define
cPvi :A(bvi - (I)vi’ ﬁvi = /Bvi - ﬁvi’ and gvi = gvi — Gui» where
D,i, Bvi, and §,; are the estimations of ®,;, B, and gy,
respectively. Then, it follows that

gvinviniTmif S pTigm' |£m77m| Cvi - ij,gvi |§mnm‘ Cvi'

(40)
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According to Lemma 3, pr, §yi|&vinwi| Cui satisfies

ps ~ gvinvigvigvi
pTigm' ‘gmnm| Cm’ S pT,;gvinvigvigvi tanh <€
V1
+ 0.2785,01“1,6“‘. (41)
Take the following Lyapunov function candidate:
Lo 5,2 PT; -2 PT; 32
=58 T (I)'ui + - vi T - vit (42)
2€ 2Vvi1 2Yoi 27vi3

Taking the time derivative of (42) along (39)—(41) gives

Cyil . - s
Ly = &vinui {_ 77”1 Slg(gvi)%v t- (5112)2(1” - am}

v v

Cvi2

fvinvigvi Cvi

Vi

+EviNvi |:,0Ti§vi<vi tanh < > +Cm’PT,;Tm'O:|

T 5 A4
+ iﬁviﬂvi

vi3

1 =~ X
+ q)vi (CI)U'L -
Ywil

+ P4 Jvi (QW — Yvi2 |&vilvil Cm) +0.278507, €03

V12

szlgvznvszEvi
2h2..V;

vil

+ Z ( o 22l> (43)
Invoklng Lemma 3, it follows along (30) that
fmi vl Avi(mﬁ
EviviCuiPTy Teio < — &uinlwiiCoi PT; Jui tanh (778‘(]
- pTigvinviavtii + 02785PT15W
(44)
NOting that _PTifvmmOémBm = _qu‘,gvinviaviBui -

EviNviuy; and substituting (31)—(33) and (44) into (43) gives

L1 < = coirl€uil™ = coinl€uil ™ — 00 @i Doy

— PT,0vi2GviGvi — PT,OvizBviPvi + 0.557ey;pT,
Z i1 2 2 il
+ ( V1 Ul V1 ) . (45)
29441 2045 204
Choose ’le 30 i1 — 1 s Yvi2 = 2191)1231 ) and Yvi3 = 2191”.321
with 9,;; > 1 3> Voiz > ,and ¥,;3 > % It holds that
= Ovil 79 Fi1 Ovil 2
70’02‘1(1)1)2'@1)11 < - q)m' + 7@7)2
Yoil 2
_ PT,0vi2 o Vui2PT,0vi2 o
—PT0vi2Gvigvi < — vi vi
Yvi2 2
5 5 PT;Ovi3 32 ﬂq;iSPTi Ovi3
—p1,00i3BviBui < — i vi- (40)
Yvi3 2

By adding and subtracting the terms of ( vl )P, ( %)%,
(PT 32 )pv (PT 92 )qu (PT 82, )P (PT 82

Yvi2 2%vi 2vvi3 2vvi3
(46) into (45), it follows that

)%, and substituting

(i2 Pov
Ly < —coin|€uil™ — cuinl€uil ™ —0win <2 o )
Yvil

N o ~ ;
3 P1.00; pr.9e; \"

— Ouil — Oy —Oui2| =
27vit 27Yvi2 27Vvi2

IEEE SYSTEMS JOURNAL, VOL. 16, NO. 3, SEPTEMBER 2022

~ Do ~ Qv ~ Po
P ﬂgi PT; 531‘ @31»
—Ovi3| 5 —Opi3| = —— + Ouvi1
27vi3 270i3 29vi1

=9 \ Pv
PT; Gvi PT; ﬁm Ovil z2
tovia| =) 0w - D
mz< 29pi2 ) < 270i3 ) 271 "
_ PTOviz 2 PTiOvis go 19m‘10vi1q)2_
2vpi2 7 2vu3 2 v
Dpi2 PT: Ovi Y
+ 1)7,2%7;“10'1;1,2 glzn + 1)13/7;‘ Ovi3 + 0. 55761)sz
72
+ Z ( vil mQ Tvil + oyl (1 Qo )qi qv) (47)
Where the following inequalities are used from Lemma 4:
Qv
@12” ¢12)1 L
+ 1 —(quv)q 1-qv
<27m’1 2’71)11 ( U) v
~9 \ v ~
(pTigm> PT;9vi + (1 _ Qv) GoT .
2042 2Ypi2
59\ o
bl <0l gy @)
2943 27vi3

Suppose that there exist unknown constants A1, Ayg, and
A3 such that [@;] < Ayit, \/p7,|g P,
A,i3. The following two cases are discussed.

Case 1: If A1 < \/2’)/1,1‘1 or Ayis < \/2’)/1,7;2 or Am'g <
V/2%i3, then

V12>

P 52 r pT, 0.

T Pvi T; Ovi3 32

Oviz| —— - ——05, <0. (49)
UZS( 2 Jvi3 > 2 Jvi3 v

Case 2: If Ayit > /2701 oF Ayia > /279452 or Ayiz >
V/27.:3, then

- Po
P2, ) A2\ Py )
Oupil v7., - Tvil (I)zQ}'L =~ Uvil( m‘l) - le_l A?}Ll
2’71)7,1 2'71)11 27v21 2’7117,1
J— (Pnggi)pv_ PLOvi2 o ( A2 )pv_ Tvi2 p2
I\ 2700 29i2 T T\ 2902 2Ypia 2
N
o pr.Byi | priouis 2 <o _B(A%m)pv_ Tvi3 A2
"\ 279048 29pis T\ 2903 2Ypiz P
(50)

Summarizing the Case I and Case 2, it can be concluded that

0, if Avit < V271
Uyil = A2 \Pe
Tuil 279vi1 a

s AL I Ayt > /200
0, if Aviz < V2752

Vypi2 = A2 Pov
v Tyi2 (2%22> — ZHZ AT, i Aviz > V22
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if Ayiz < /2743

0,
Vi3 = Aiiz Pv
Tvi3\ 27,3 o

‘7’“3 Azl?), if Ayis > 2703
(51
From (47) and (51), we see that
Ly < —xwirL1? = xviaL1™ + Xuis (52)
where  Xxpi1 = min{cyi12PY, 0ui1, Oviz, Oviz},  Xviz =

min{cmﬂzqv 5 Ovily Owi2,s Usz} and Xwvi3 = Upil +Uvi2 +U1}i3+

. . ’191” vi 91}1 vi
191,11201,11 (I)z%' 2p;~o 292 +1 3p;rz7 3 2 —|—0 557PT Evit

3 (hZ
Sy (5 S 4 (1 — 0,0,

In accordance with Lemma 1, all signals of the trans-
lational subsystem are semiglobally practically fixed-time
bounded and converge to the following compact set L; <

1

Xuwis o Xuvis r : : 3

s U)) (Xm(lia))q }, and the setting time is 7" <
L It should be noticed that

min{(

s Xvi10(py—1) szU%l—IIv) ’
|V;| can be made arbitrarily small by increasing c,;1, Cyi2,
Yvils Yovizs and Yy;3, and meanwhile decreasing hy;1, Ryiz, Ovils
Ovi2,s Ovis, and €,;. Proper choice of p, and g, helps to reduce
convergence time and improve convergence accuracy. This will
be shown in the following numerical example. This completes
the proof of Theorem 1. |

Tmax,v =

APPENDIX B
PROOF OF THEOREM 2

The following proof comprises of the following two steps.
Step 1: Using (14), (25) and (27) yields

ri (Ry'K €, Ai2 Z ai;@; | + ty

JEN;

étpi - T’:,ai - LIDT)
(53)

where K 1; = diag{(Fii11 + wi1)(Fuitz — wit), (Fui21 + wiz)

(Fuiza — wiz), (Fuiz1 + wiz) (Flis2 — wis) }-
Based on (53), we design the virtual controller & ., as
€wci
KR, 77;}2‘ 2p -2 2q,-2
:_T (KzimeﬁmH +K3i5w”5mu )
K741R2 _
- 1;72 nwzlﬂw — X, — A2 Z alj(‘P] (54)

JEN;

To avoid the direct differentiation of the complex & ,.;, we
introduce a new variable £, using dynamic surface control
[36]. The following nonlinear filter is exploited to guarantee the
overall fixed-time convergence.

Euii =~ (Yol + il ).

Let e, = &,,; — &.q4:- Substituting (54) and (55) into (53),
the time derivative of %Ezié ;i denotes

5’;‘15@% = - S;Ez (Kzisgai ||€¢Z ||2P¢*2+K3i€(ﬂi“€¢iH2¢Z¢*2>

(56)

(55)

+ MﬁgmnglKu (ewi + Yui) -

4801

Step 2: Differentiating %egiem along (18) and (29) gives
esilui = euiuidio Cops,8io + 3o S (Jiowi) + J o' Nig
F el [Mui (AL + lui + dui) + py; — éwdi:| .

(57)
Using Young’s inequality, it holds along (19) that
T )
efmm- (AL +lui +dui) < egﬂ”lm < + Uwzew>

—_
(sz'—'wi

2h?

wil

hwﬂ w12Twzl
+ Z ( 5 ) (58)
where (I)u” - maX{szlwwzlv szZWw127 szS 2113}
and there exists |7wii + lwit + dwit] < Twi-

According to the Assumption 2, we define g,;=
infi=0 Amin(J 39 Co(8:)ps, (T35 Co(8:))") and Bui = 1/gus.
Let (i)cui = (i)wi —&,,; and Bwi = Bwi _Bcui with (i)wi and Bwi being
the estimations of ®,,; and 3, respectively.

Consider the Lyapunov function candidate as

1
75@15901_'_ ) wzew’t+ 2

2h?

wi2

Guwi 32

2. .
wit 2Y0i2 "

ywzywz 2,7w11
(59)

From (56)—(58), taking the time derivative of (59) gives
: 2p 2 2¢,—2
Ly<—¢, (K2z'5mH§mH PN K€€ ) +ebiCui

— el (Kuiewllewl 2 + Kiewillewi| %)

By iBui
T -1 T wr M wi=—w
+ ewinwi']io COpéi 6i0 — €y 2h2

wil

+yl, [ym + MK (Ry ) £W}

(I)wz(bwz + gwl BUJ’Lﬁwz

w2

+
Ywil

+Z( wil wz22 fzzl>.

In (60), define cvy; = AiKlTi(Rgl)TnEigw. Noting that the
inequality holds: z < 2™ + 2", where x > 0, 0 < m < 1, and
n > 1, it follows that

(60)

2
e .
i (g7 72 ) +

(61)
where Ky,; = Amin(Kw;) — 1/2 and there exists a positive con-
stant ,,; such that ||y — &0l < @ei-

Using (34) and invoking Lemma 2,
eln,iJ o Cops,dio renders

Yoi (Yui + i) < — Ky

the term of

el Cops,bi0 = —elin.iT 5 Cops, (T3 Co) " nt-
emBE,Z—CEiCm
\/Biieaewiczz(m + Cwi
< gwi\/?m -
< GwivEwi

gbﬂﬂwz wzeW7Cw1sz
\/ﬁil Mewszszz + Ewi

Guil Buil || €will [|€ui

- gwiBwieEijr (62)
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Based ongwi(Bm — sz) = guiBwi = 1, substitute (35), (36),
(61), and (62) into (60). With the similar operations of (46)—(48),

it holds that
Ly < — Amin (K2;) ||€¢,'||2p“° — Amin (K 3i) ||€¢1H2%

)"min (K4z) ”ewi”ng} - )‘min (KEn) Hewinzqv

. 1 r'y 1
_KUJiHywi”upl—i_ _’%wi”ywiH,wz—‘r +QUJiVEwi
~ |25 ~ e Py
— Owil LQUZ — i E)z — o gwlﬁwz
w w1 w1
2Ywi1 2ui1 27wi2
a2 \ % 52 a2 \P¥
— Owi2 Guilli +Oowil Lo | 0w il
2’7&)1'2 2’Ywi1 2’70.)1'2
Owil 79 9wiTwi2 32 Vi1 Owil 2
— o — 4+ —0
Q’le]_ w1 2,7‘022 w1 2 wi
Y o e
+ wng;Jz wi2 + Zawzl )q; qp
(M, et | i
w1 w1l w1 w1l
+ Z ( : ) + = (63)

=1

Suppose that there exists unknown constants A1, Ayi2 such
that | P < Ayits /GwilBuwil < Auiz. Following the Case 1
and Case 2 in (49) and (50), one has

0, if Auit < V29wit

U, ys fr— AZ %}
wil Owil (2{:;11) - U,;:Lll szlv if Awil Z V Q'Ywil
0, if Auiz < V2%i2
VU, 50 = A2 Dy
w2 Owi2 (2{:22) — g AL, if Awiz > V2wi2.
(64)
Choosing T“’IH = q, and T“”2’2+1 = p, and substituting (64)

into (63), it can be checked that
Lo < —Xwit LoP® — XwinLa® + Xuwis (65)

Where Xwil = min{)"min(KQi)ZD@a )"min(K4i)2p¢a /ﬁwi2p¢7
Owils Owi2}s Xwiz = min{imin(Ks;)29%, Aﬁmin(Ksi)Qq%
i i 2
Kwi29%, 0uil, Owi s aNd Xuiz = Uil + Um2 -I- %‘““fbm- +
Vwi29wiTwi Toi wl;
29022+ngm+2l7( wz 1)_|_ 2,_|_
1 qy;

2
El:l Uwzl( QS(?)q@P
Along similar lines as Lemma 1, all signals of the ro-

tational subsystem are semiglobally practically fixed-time
bounded and converge to the following compact set Lo <

w11

mln{( ’2‘63 U)) (Xwgﬁia))w }, and the setting time is
_ i 1 )
T < Tmax,ga T Xeno(po—1) Xomo(l-q,)" Note that the con

vergence region of e,; can be made smaller by increasing K »;,
K3, Ky, K5, Vwil, and 7,2, and meanwhile, decreasing
hewits Pwiz, Owils Owio, and g,;. Thus, the attitude synchroniza-
tion tracking error can be made as small as desired by appropriate
choice of the design parameters. Moreover, the choice of p,, and
g, requires to balance the control amplitude and convergence
time simultaneously. This completes the proof of Theorem 2. l
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