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ḟd Stroke-averaged drag force

g Gravitational acceleration

Hdihedral Actuator dynamics of the dihedral angle

Hflap Actuator dynamics of the flapping frequency

H(z) Second order measurement filter

Iyy Moment of inertia

KD Rate feedback gain

KP Attitude feedback gain

ld The linear displacement of the thrust vector/aerodynamic center from its neutral
position

l̇d The linear velocity of the thrust vector/aerodynamic center along body axis X

lp The linear displacement of the thrust vector/aerodynamic center from its neutral
position

lp,c The commanded linear displacement of the thrust vector/aerodynamic center from
its neutral position

lx The fixed linear offset of the wing neutral position from the center of mass along
the body axis X

ly The fixed linear offset of the wing neutral position from the center of mass along
the body axis Y

lz The fixed linear offset of the thrust vector/aerodynamic center from the center of
mass along the body axis Z

M Pitch moment

Pq Quaternion feedback gain

Pω Rate feedback gain

q Pitch rate

K.M. Kajak A minimal longitudinal dynamic model of a tailless flapping wing robot



qm Quaternion measurement

qref Quaternion reference

T Thrust

u Air velocity projection onto body axis X

U Wing velocity due to flapping

uCOP Air velocity of the wing projected onto body axis X

u̇ Body frame acceleration along axis X

w Air velocity projection onto body axis Z

wCOP Air velocity of the wing projected onto body axis Z
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Chapter 1

Introduction

Flapping Wing Micro Air Vehicle (FWMAV) research is a prolific research field, with many
participants focusing on understanding how best to control these vehicles. These vehicles
have been shown to be efficient forward flyers at the small scale in comparison to rotorcraft,
while also offering the hovering capability [1]. Controlling these vehicles at the edge of their
capability is difficult due to the flapping oscillations, the unusual mechanisms of generating
the control moments, nonlinear aerodynamics, and changing control effectiveness depending
on the mode of flight. The Micro Air Vehicle Laboratory (MAVLab) in the Aerospace
Engineering department of Delft University of Technology has a significant involvement in
this field, driving many concurrent past, present, and future projects related to flapping-wing
robots [2, 3, 4].

One such project is the DelFly Transformer platform [5] (see Figure 2-1). It is a 29g tailless
flapping-wing robot and as such, controlled flight is achieved using only the wings. The
hovering flapping frequency is around 16.5 Hz. It is an X-wing configuration utilizing
the clap-and-fling effect to increase thrust. The available control inputs are flapping
frequency, dihedral/anhedral angle, and wing root deflection for yaw moment generation.
The research into this class of flying robots is in its very early stages and very few other
such platforms exist that achieve stable flight [6, 7, 8]. What is more, the DelFly Trans-
former has shown outstanding promise in terms of agility and fast forward flight capability [5].

However, the DelFly Transformer prototype has so far been unable to fly in such a way as
to fully use the thrust capability of the wings in forward flight due to developing dynamic
oscillations at those speeds. Furthermore, the controller has shown instability at certain flight
regimes like fast descents. This project aims to push the DelFly Transformer design further
in terms of the achievable stable flight conditions as well as contribute information about
flight-proven control systems to the body of engineering knowledge on tailless FWMAVs.

The first research goal of the project was to find out which control systems could stabilize the
DelFly Transformer in hover and fast forward flight. The second goal was to find out if this
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could be done with a single, invariable controller. Since many control systems depend on a
model, either during analysis or application, it was decided to validate a simple longitudinal
dynamics model for this platform. This process took a considerable portion of the project’s
time, but the effort was successful in the end in terms of the model being valid for the flight
regimes that were to be studied for control system improvement purposes. Furthermore, the
model formed the basis for changing the control system such that the platform was able to
fly in hover and fast forward flight with the same, invariable controller. However, the project
did not get to the stage of exploring different control system types or architectures entirely.

This report is divided into two parts. First, a scientific paper condensing the entirety of the
work is presented in Part I. Then, the preliminary studies documenting the research efforts
in more detail along with a thorough literature study is presented in Part II.
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A minimal longitudinal dynamic model of a tailless
flapping wing robot for control design
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Delft University of Technology, Kluyverweg 1, Netherlands

ABSTRACT

Tailless flapping wing micro air vehicles (FWMAVs) have
the potential of providing efficient flight at small scale,
with considerable agility. However, this agility also brings
significant control challenges, which are exacerbated by
the fact that the aerodynamics and dynamics of flapping
wing robots are still only partly understood.

In this article, we propose a novel, minimal dynamic
model that is not only validated with experimental data,
but also able to predict the consequences of various im-
portant design changes. Specifically, the model captures
the flapping cycle averaged longitudinal dynamics of a
tailless flapping wing robot, taking into account the main
aerodynamic effects. The model is validated for airspeeds
up to 3.5 m/s (when the forward velocity starts to approx-
imate the wing velocities). It successfully predicts the ef-
fects of changes to the center of mass and flight at differ-
ent pitch angles. Hence, the presented model forms an
important step in accelerating the control design of flap-
ping wing robots - which can now be done to a greater
extent in simulation. In order to illustrate this, we have
used the model to improve our control design, resulting in
a change of the maximal stable speed of the tailless DelFly
Transformer from 4 m/s to 7 m/s.

1 INTRODUCTION

Flapping wing flight is rare in the context of man-made air-
craft, but it is the only form of powered flight among biolog-
ical fliers. For man-made aircraft, this form of flight is rele-
vant at small scale for several reasons. Fixed wing flight is not
suitable for tight quarters flight due to lack of hovering ability,
whereas rotorcraft and flapping flyers can hover. Despite this,
man-made flapping flyers are rare. Many designs have used
aerodynamic dampers to achieve passive stability [1, 2, 3, 4],
but tailless designs are more desirable due to more advanced
agility. Examples of working tailless designs can be found in
[5, 6, 7]. The inherent agility of tailless designs comes at the
cost of inherent instability, requiring the wings and an active
control system to provide stabilizing control moments [8, 9,
10, 11, 12]. In order to unlock the full potential in terms of
agility, dynamic models would be of great use. However, due
to the difficulty of flapping wing aerodynamics, such models
∗Email address: karlmartin.kajak@gmail.com
†Email address: m.karasek@tudelft.nl
‡Email address: q.p.chu@tudelft.nl
§Email address: g.c.h.e.decroon@tudelft.nl

are currently still not accurate enough for any sensible control
design.

There are multiple efforts to capture the aerodynamic forces
acting on flapping wing vehicles, ranging from very complex
to quite minimal models. Some work utilizes CFD simula-
tions, e.g. [13, 14, 11], but it is costly in terms of time and
effort to set up an accurate simulation. A very popular ap-
proach to aerodynamic modeling is the use of quasi-steady
blade-element models, where forces on wings are approxi-
mated [15, 16, 17]. With these models, treating forces as
independent from their time history is the key simplifying
assumption. In this type of modelling it is still necessary
to take into account flapping kinematics. An additional ef-
fect that needs to be accounted for with X-wing configured
flappers such as the DelFly [18] is inter-wing interaction and
the related clap-and-fling or clap-and-peel effect [19]. This
mechanism is one of the more difficult effects to model due
to its dependence on the exact movement of the wings [17].
There is yet a simpler class of models, modeling the average
aerodynamic forces as linear damping with respect to body
velocities [20, 21, 3, 22, 23]. So far, only [23] shows valida-
tion with real flight data, though limited to oscillations around
the hover condition.

In this article, we propose a novel, minimal dynamic model
that is not only validated with experimental data, but also
able to predict the consequences of various important design
changes. The DelFly Transformer tailless FWMAV proto-
types [18] are used to gather flight data for validation. An
average aerodynamic force model is extended with the Trans-
former’s control moment generation mechanism and a lon-
gitudinal dynamic model is validated at flight conditions be-
tween hover and fast forward flight, for different center of
mass locations, and for different controller parameters. Fur-
thermore, the model is used to improve the control system
of the DelFly Transformer. An appropriately expanded aero-
dynamic model and the results of a validation campaign are
presented. The paper is organized in four parts. Section 2
presenets the experimental setup utilized in the course of the
validation campaign. Section 3 presents the structure of the
developed dynamic model and also the identification of the
actuator dynamics. Section 4 describes the open and closed
loop model validation procedure and results, as well as pre-
senting the controller architecture. Finally, Section 5 provides
an overview of how the model was used to improve the flight
controller of the DelFly Transformer prototype.
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2 EXPERIMENTAL SETUP

The FWMAV used in this paper for flight tests is the DelFly
Transformer of the MAVLab of TU Delft [18], seen in Figure
1. It has two separate flapping mechanisms for roll control,

Figure 1: Second prototype of DelFly Transformer

each driving its own wing pair on the left and right side of the
robot. A lift/power efficiency enhancement is achieved with
the utilization of the clap-and-fling effect [19]. Furthermore,
the opposite wing drag forces cancel, reducing body oscil-
lations and the stress on the dihedral servo. Changing the
dihedral angle changes the relative orientation of the wings
and provides pitch control (see Figure 2). The bottom servo
offers yaw control by deflecting the wing surfaces such as to
tilt the thrust vector of the wings.

Figure 2: Pitch moment generation mechanism of the DelFly
Transformer design.

An SD card is used for logging onboard flight data. Reflec-
tive marker balls are used with the OptiTrack motion capture
suite. For more details on the design of the first prototype
platform see [18]. The second prototype introduces some
changes. Firstly, the autopilot is now a lighter (1.5 g) Lisa

MXS with more computational power. Both motor frequen-
cies are logged onboard. The logging rate is also higher com-
pared to Lisa S.
The flights were recorded in two ways. Onboard euler angle
estimates and gyro readings along with the radio control set-
points, controller reference generator outputs, controller out-
puts, and motor speeds were recorded onto the SD card at a
rate of 100 Hz. Most flights were performed in the CyberZoo
facility of the TU Delft Aerospace Engineering faculty. This
is a 10x10x7 m volume equipped with 10 Prime 17W cameras
from OptiTrack to form a motion capture system. The system
tracks markers mounted on the robot and yields position and
orientation information. Differentiation also yields informa-
tion about velocities and accelerations. The OptiTrack data
was captured at a rate of 200 Hz.
The flight results shown in Section 5 were gathered with a
different OptiTrack system. There were 12 Flex13 cameras,
recording at a rate of 120 Hz. The achieved tracking volume
had a length of approximately 8 m in the flight direction.
Actuator dynamics were identified with the help of a ATI
Nano17 Titanium 6 degree of freedom force/torque sensor
and the first prototype DelFly Transformer, as presented in
[18]. Compared to the second prototype shown in Figure 1, it
has a slightly shorter fuselage and the autopilot board was a
Lisa S by 1BitSquared. The platform was mounted onto the
sensor and the forces, torques, onboard commands, and also
motor frequencies were recorded via a National Instruments
data acquisition FPGA.
In order to obtain data about the mismatch between the com-
manded and real dihedral angle, markers were also put on the
gearboxes.
The wind tunnel used to collect data about trimmed flight was
the Open Jet Facility (OJF) of Delft University of Technology
Aerospace Engineering.

3 MODEL DEVELOPMENT

This section will provide the description of the dynamic
model used in the work. Subsection 3.1 provides an analy-
sis of the validity conditions of the model. Subsection 3.2
presents the full nonlinear state derivative equations that are
used in the later sections for open and closed loop validation.
Subsection 3.3 accounts the identification of the actuator dy-
namics.

3.1 Theoretical model validity conditions
In the following, the analysis of the stroke-averaged drag
force is adapted from [3]. Assuming a wing that flaps with
a sawtooth profile with its center of pressure at half the
wing length, the constant wing velocity can be written as
U = 2Φf b4 , where Φ is the flapping amplitude in radians,
f is the flapping frequency, and b is the wingspan. If u is
the freestream velocity, β a force coefficient, and assuming
that the wing velocity due to flapping much higher than the
free stream airspeed (U >> u), the drag force during the

2



downstroke is fd = −β(U + u)2 and fd = β(U − u)2 dur-
ing the upstroke. Since the two strokes have an equal time
duration, the average force over a flapping cycle reduces to
f̄d = 1

2β[(U − u)2 − (U + u)2] = −2βUu. This simpli-
fication does not hold when the assumption U >> u does
not hold, because sign changes occur. Figure 3 compares the
quadratic velocity component of the drag force with and with-
out the simplifying assumption that flapping speed is much
higher than the freestream airspeed. When the ratio of wing
velocity due to flapping and the freestream velocity is higher
than 1, the nonlinearity of the drag force becomes apparent.
The results in the figure have been produced with Φ = 40◦,
f = 16Hz, and b = 0.028m.
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Figure 3: Comparison of simplified and non-simplified
stroke-averaged absolute wing velocities during flapping at
16 Hz frequency with different freestream velocities.

3.2 Robot dynamic model
The first order average force models as seen in [20, 21, 3, 22,
23] were shown with the work of [23] to be valid for an anal-
ysis of a real robot in the near hover conditions. However, in
fast forward flight, there is also a necessity to add a damping
force along the thrust axis in order to trim the flight. The flap-
ping flyer is considered rigid and the wings are considered to
not have mass for the purposes of this work. This means that
the center of mass is also considered to be a fixed location
within the flapper body. The standard rigid body equations
of motions can be used in this case [24]. The body and earth
(flat, non-rotating) frame reference axes, the directional con-
ventions, and other quantities of interest for the derivation of
the aerodynamic model are given in Figure 4.
The longitudinal equations of motion of a rigid body are given
in Equation 1 and 2.

m

[
u̇+ qw
ẇ − qu

]
= mg0

[
−sin(θ)
cos(θ)

]
+

[
X
Z

]
(1)

COM

COP

Figure 4: 2D longitudinal free body diagram of a flapping-
wing MAV. COP - mean center of pressure, COM - mean
center of mass.

θ̈ =
M

Iyy
(2)

The lateral dynamics are not simulated within the scope of
this investigation, though the extension of the model to all six
degrees of freedom is possible. The models for longitudinal
body frame aerodynamic forces X and Z and pitch moment
M are given in Equations 3 to 7. Dihedral actuator states ld
and l̇d are marked in bold to highlight the terms specific to the
control moment generation mechanism of the Transformer.
Equations 3 and 4 express the air velocity of the wing along
body axes X and Z, respectively.

uCOP = u− lz θ̇ − l̇d (3)

wCOP = w + (ld + lx)θ̇ (4)

X = − 2bxuCOP (5)

Z = − 2T − 2bzwCOP (6)

M = −Xlz + Z(ld + lx) (7)

Each wing is considered to have an average center of pres-
sure, where its mean thrust vector and damping forces act.
Body force X is a linear damping force, opposing the wing
center of pressure velocity uCOP along body axis Xbody .
Body force Z is the sum of the thrust of the two wings and
a linear damping force, opposing the wing center of pressure
velocity wCOP along body axis Zbody . The pitch moment M
is a result of those forces acting at a distance from the center
of mass. Note that the factor two in Equations 5 and 6 signi-
fies the fact that two pairs of wings are present on either side
of the robot. The term l̇d, related to the velocity of the actu-
ator was included, because it had a non-negligible influence
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on the dynamics. The parameters of the aerodynamic model
are:

bx, bz - the aerodynamic force coefficients with respect to an
air velocity component along body axis X and Z, re-
spectively.

ld - the linear displacement of the thrust vector/aerodynamic
center from its neutral position.

lz - the fixed linear offset of the thrust vector/aerodynamic
center from the center of mass along the body axis Z.

lx - the fixed linear offset of the wing neutral position from
the center of mass along the body axis X .

T - thrust.

3.3 Actuator dynamics
The thrust to flapping frequency relationship was identified
using the ATI Nano17 Titanium 6-DOF force/torque sensor.
A single flapping mechanism from the second DelFly Trans-
former prototype was fixed into the sensor and the thrust force
was measured at a variety of flapping frequencies. The thrust
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Figure 5: Thrust versus flapping frequency of the second pro-
totype DelFly Transformer.

to flapping frequency relationship was found to be approxi-
mately linear near the neighborhood of operational flapping
frequencies (∼ 17 Hz in hover), and therefore a linear fit of
this relationship was incorporated into the dynamic model.
The actuator dynamics of the flapping frequency were deter-
mined from a different set of experiments on the force bal-
ance with the first prototype DelFly Transformer. A pre-
programmed pulse train with a minimum 36.7 % a maxi-
mum 53 % throttle was sent to the motor controller. The

flapping frequency was recorded using the National Instru-
ments FPGA, by counting the polarity changes of the elec-
tronic speed controller. A first order transfer function was es-
timated on the basis of the unfiltered flapping frequency mea-
surements and a scaled PWM signal. The resulting transfer
function is Hflap(s) = 12.56

s+12.56 . A simulation with the esti-
mated transfer function is compared with the measurements
in Figure 6. The first order function is a very good fit for the
response.
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Figure 6: Identified first order flapping dynamics versus mea-
surements.

The dihedral angle actuator dynamics were determined us-
ing the same setup as the flapping frequency dynamics, ex-
cept a pulse train was sent to the dihedral angle servo. The
minimum command was 28.2 % and the maximum 67.6 %.
A second order transfer function was estimated based on the
pitch moment measurement filtered with a fourth order But-
terworth filter with a cutoff frequency of 10 Hz and a scaled
PWM signal. A second order transfer function was chosen
rather than a first order one because the response type resem-
bles at least a second order system. The resulting transfer
function is Hdihedral(s) = 554.2

s2+30.25s+554.2 . A simulation
of the pitch moment is compared with the filtered measure-
ment in Figure 7. The lateral distance of the mean center of
pressure of each wing from the center of mass is obtained as
ly = M

Tsin(γ) , where T is the thrust average over the whole
two second measurement, M is the steady state of the filtered
pitch moment achieved at the end of each pulse, and γ is the
achieved dihedral angle during at the end of each pulse.
An additional effect was found to be influencing the dihedral
angle of the wings, specific to the mechanical design of the
DelFly Transformer. During maneuvers, the measured dihe-
dral angle of the wings is different from the command. This
is likely due to some mechanical play and/or elasticity, but it
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Figure 7: 10 Hz filtered measurement of the pitch moment
versus estimated 2nd order transfer function.

could also be that the servo struggles againt the aerodynamic
loads in forward flight. Due to mechanical play being in-
volved there is also evidence of hysteresis and random move-
ment of the dihedral control mechanism within the allowance
of this play. The actual angle of the dihedral differs from
the commanded angle by an amount that correlates quite well
with the body axis velocity u, as seen in Figure 8. Therefore,
the simulations in the present work add a corrective factor on
top of the dihedral.
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Figure 8: Comparison of measured and modeled hinge error.

The actuator dynamics as used in the present work are given

in Equations 8 to 14.

γ̈1 = − 2ζωnγ̇1 − ω2
nγ1 + ω2

nγc (8)

γ2 = γ1 + cucorr
π

180
u (9)

γ̇2 = γ̇1 + cucorr
π

180
u̇ (10)

ld = − lysin(γ2) (11)

l̇d = − lycos(γ2)γ̇2 (12)

ḟ =
1

τ
(fc − f) (13)

T = 2(c1f + c2) (14)

The definitions of the actuator dynamics parameters are as
follows:

γc - Dihedral angle command in radians (bounded between
-/+ 18 degrees).

fc - Flapping frequency command in Hz.

ωn - Natural frequency of second order dihedral angle servo
dynamics.

ζ - Damping ratio of the second order dihedral angle servo
dynamics.

γ1 - Dihedral angle before velocity correction.

γ2 - Dihedral angle after velocity correction.

cucorr - Dihedral angle velocity correction coefficient.

ly - The fixed offset of an individual wing’s thrust and aero-
dynamic force vectors from the center of mass along
the body axis Y .

ld - The variable linear offset of the thrust vector from the
wing neutral position.

τ - Time constant of the first order flapping frequency dy-
namics.

c1, c2 - Coefficients of the linear thrust to flapping frequency
shown in Figure 5.

3.4 Obtaining force coefficients
Due to the fact that a stable flying robot was available, the
force coefficients were obtained from flight data. Alterna-
tively, force coefficients bx and bz can be obtained via, for
example, damped pendulum tests as in [23] or even with wind
tunnel tests.
The first prototype of the DelFly Transformer was flown by a
human pilot at the mouth of an open jet wind tunnel in trim
condition at various velocities between 1 - 2.4 m/s. The ve-
locity reading of the wind tunnel was not reliable below this
range and above that it becomes difficult for the pilot to keep
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the robot in steady flight in front of the center of the con-
traction section output in the open jet test section. Assuming
zero accelerations in Equations 5 and 6, one can substitute
the measured values of velocity and pitch angle to obtain the
force coefficients necessary to trim the flight. The generated
thrust also has to be known, of course. For this, the rela-
tionship shown in Figure 5 was used with the flapping fre-
quency recorded by the autopilot to approximate thrust. For
each trim condition the measured velocity, pitch angle, and
flapping frequency data was averaged over a period of several
seconds, depending on the duration of relatively steady flight
that the pilot was able to achieve. These averaged quantities
were then used to fit a least squares linear solution to the trim
points. The solutions represent the linear force coefficients bx
and bz in Equations 5 and 6. A comparison of the obtained
linear model and the body velocities measured at trim condi-
tions in the wind tunnel is shown in Figure 9. The measured
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Figure 9: Measured and linearly modeled forces on the first
DelFly Transformer prototype during trimmed flight condi-
tions

data does not cover behavior of coefficient bx below 0.9 m/s
for body velocity u, but this force coefficient has been demon-
strated to be dominantly linear at these velocities in the work
of [3, 23]. Force coefficient bz is also nearly linear in the cov-
ered velocity range as predicted by analytical formulations in
[12] for the case of vertical climb/descent.

4 MODEL VALIDATION

This section presents the validation efforts of the open and
closed loop model. Subsection 4.1 deal with the procedure
and results of the open loop validation. The controller archi-
tecture is given in subsection 4.2. Subsection 4.4 accounts the
closed loop validation procedure and Subsection 4.5 presents
the results.

4.1 Open loop validation
The state derivatives and the dihedral angle output from the
developed model were compared to data recorded in flight,
as seen in Figure 10. It is important to note that in this
test case the states of the model are not simulated, but the
states recorded via the OptiTrack motion capture system are
plugged into Equations 1 to 7. The resulting state derivatives
are then compared to filtered state derivatives derived from
OptiTrack data recorded of a flight of the first DelFly Trans-
former prototype. The derived state derivatives were filtered
with a fourth order Butterworth filter with a cutoff frequency
of 5 Hz. This filter cutoff frequency is low enough to exclude
flapping oscillations, but high enough to show the body dy-
namics. Qualitatively speaking, all state derivatives and even
the dihedral angle follow their expected trends well and it was
decided to move on to validation of the closed loop simula-
tion. The parameters used here are the same as in Table 1,
except the parameter lz , which is 11 mm in this case. This is
because the first prototype had its center of mass closer to the
aerodynamic center. Further it is important to note that the
actuator dynamics transfer function bandwidth had to be in-
creased in order to match the peaks in the acceleration. While
the originally identified transfer function had a natural fre-
quency of approximately 24 rad/s, it had to be increased to 40
rad/s to achieve this goal (see Figure 11).
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Figure 10: State derivatives and hinge angle (flight with first
prototype DelFly Transformer)

4.2 Controller
The DelFly Transformer prototypes are in this work being sta-
bilized by a fixed-gain parallel feedback architecture, which
involves attitude and rate feedback. This is the standard con-
troller architecture in the open-source Paparazzi UAV version
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5.10 autopilot software, with the addition of the command
filter. The controller layout is shown in Figure 12. The final
command is filtered by a second order biquad implementation
filter before being sent to the actuators due to the noise in the
gyro rate measurements and AHRS attitude estimates. The
setpoint is smoothed via a second order reference generator,
which generates reference attitudes and rates.

4.3 Model parameter identification
Before the model is analyzed for fitness, the parameters need
to be identified. The aerodynamic parameters bx and bz were
kept the same as for the first prototype robot, for which it was
possible to extract approximate trim curve data from flights
in a wind tunnel. The parameter lx in Equations 5 to 7 is zero
for a configuration where the center of mass is aligned with
the line of action of the thrust vector, meaning the platform is
well trimmed. The mass can be measured. The two remain-
ing parameters that have to be identified is the moment of in-
ertia and the parameter lz . For this purpose, a particle swarm
global optimization routine was used to minimize the sum
of the squares of the residuals between the simulation output
pitch angle and OptiTrack-recorded pitch angle. The veloc-
ity states were excluded from the optimization as lz and the
moment of inertia should mainly influence attitude dynam-
ics. Thus a complicated cost function with weights was also

avoided. The maneuvers that were used for this are given in
Figure 13. These maneuvers were chosen for several reasons.
Firstly, the OptiTrack recordings had no tracking losses. Fur-
thermore, there were minimal differences between the IMU
and OptiTrack attitude estimates. The set of maneuvers also
has a certain variety - there are maneuvers of various dura-
tions and amplitudes. Lastly, the maneuvers achieve a sig-
nificant pitch attitude, which hopefully minimizes the effects
of the measurement errors and the mechanical imperfections
and maximizes the contribution of the aerodynamic model to
the dynamic behavior. A summary of all parameter values
used in the simulations for this section is given in Table 1.
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Figure 13: Model fitting maneuver setpoints

4.4 Closed loop validation procedure
The recorded flight data from a second prototype DelFly
Transformer was used to validate the closed loop simulation.
Datasets were gathered with three goals in mind. The
first dataset was collected to confirm that the effects of
physical changes to the flying prototype such as the relative
positioning of the center of mass to the center of pressure
reveal a similar effect in the physical model. The second
dataset was collected in order to confirm that the model
predicts flight at a variety of pitch angles. A third dataset
was collected to validate the performance of the model with
respect to changes in the control system parameters. For
each test condition, at least 5 maneuvers were executed
with the DelFly Transformer. Each maneuver was also
simulated using the onboard recordings of pitch command
as model input, while the model throttle input was fixed
at the hovering trim level. The mean and the standard
deviation was calculated for the measured and simulated
states of each maneuver. The flights of all datasets included
step-like pitch commands, limited to various maximum pitch
setpoints. All maneuvers were executed starting from a
near-hover condition. These commands were given manually
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Table 1: Overview of parameters of closed loop simulation used in validation maneuvers of Section 4.4
Parameter Value Unit Definition Source
bx 0.0722 [N s

m ] Aerodynamic damping coefficient for body axis X . Obtained from flight data
(Section 3.4).

bz 0.0157 [N s
m ] Aerodynamic damping coefficient for body axis Z. Obtained from flight data

(Section 3.4).
lx 0 [mm] Nominal position of thrust T and damping force Z

from center of mass along body axis X .
Assumed 0 for well balanced
platform.

ly 81 [mm] Nominal position of a single wing’s thrust T and
damping force Z from center of mass along body axis
Y .

Derived from force balance
tests (Section 3.3).

lz 27.1 [mm] Nominal position of damping force X from center of
mass along body axis Z.

Flight data fitting (Section
4.4).

Iyy 1.2595e-4 [kgm] Moment of inertia about body axis Y . Flight data fitting (Section
4.4).

ζ 0.634 [−] Dihedral actuator 2nd order transfer function damp-
ing ratio.

Force balance tests (Section
3.3).

ωn 40 [ rads ] Dihedral actuator 2nd order transfer function natural
frequency.

Manually tuned during open
loop validation (Section 4.1).

cucorr 10 [deg sm ] Dihedral angle correction for body velocity u. Determined from flight data
(Section 3.3).

c1 0.0114 [ NHz ] Slope of linear thrust to flapping frequency relation-
ship.

Determined from force bal-
ance data (Section 3.3).

c2 -0.0449 [N ] Zero frequency thrust of the linear thrust to flapping
frequency relationship.

Determined from force bal-
ance data (Section 3.3).

τ 0.0796 [s] Time constant of 1st order flapping frequency actuator
dynamics.

Determined from force bal-
ance data (Section 3.3).

KP 0.5105 [−] Attitude feedback gain. Flight prototype.
KD 0.0654 [s] Rate feedback gain. Flight prototype.
fcut 15 [Hz] Cutoff frequency of the second order Butterworth

low-pass digital biquad command filter.
Flight prototype.

to maintain control of the robot at all times and to avoid
flying into the sides of the motion tracking arena. Figure 14
shows a comparison of remote controlled setpoints and the
resulting onboard references for a set of 45 degree pitching
maneuvers. The maneuvers were aligned in time at the point
where their pitch references (not remote controlled setpoints)
reached 10 degrees. There is not a significant difference in
the generated references. This is also confirmed by the fact
that an averaged maneuver (over several attempts at the same
maneuver) actually resembles individual maneuvers well.

4.5 Closed loop validation results

This section presents a comparison of the simulation out-
put and flight data. The standard deviation and mean of the
measured state as well as the simulation is plotted for each
dataset. Each dataset contains five or more maneuvers.
The first dataset was collected to study the change of
dynamic behavior with respect to changes to the physical
parameters of the platform. Three flights were recorded

while executing 30 degree maximum pitch setpoint step
maneuvers. One flight was executed in a well balanced
configuration (thrust aligned with center of mass to trim
the robot for hovering), another one in a ”front heavy”
configuration (c.g. approximately 4.8 mm toward the nose,
causing a nose heavy situation), and lastly a ”bottom heavy”
configuration (c.g. approximately 6 mm lower than in the
balanced configuration).

A comparison of the actual flown and simulated maneuvers
with a balanced center of mass, a nose heavy center of mass,
and a center of mass that is further away along the fuselage
compared to the nominal (bottom heavy) are shown in Figures
15. The simulated and real robot both behave as expected.
The nose heavy configuration dips in furthest into the pitch
maneuver and has a steady state error, tending to pitch more
than commanded. The bottom heavy configuration has the
most trouble achieving its setpoints, which is expected, since
the control moment is competing against a stronger stabiliz-
ing aerodynamic moment due to forward flight. Furthermore,
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Figure 14: Comparison of 45 degree pitching maneuver set-
points and references

Figure 15: Averaged 30 degree forward pitching maneuvers
in balanced/nose heavy/bottom heavy configurations. Solid
lines correspond to mean measured states, dashed lines to
mean simulated states. Color belts around lines correspond
to standard deviation.

it has no significant steady state error. The balanced configu-
ration also has no significant steady state error. There is some
higher order oscillation that is not captured by the model, but
it is not of a high amplitude.
The second dataset was collected to show the representative-
ness of the model at different regimes of flight, whether it is
near hover or fast forward flight. Figure 16 shows the compar-
ison of the pitch attitude of the simulation and the real robot
in response to commanding pitch step maneuvers of various
amplitudes. The pitch angle seems to be represented rather

Figure 16: Comparison of forward pitching maneuvers in bal-
anced configuration. Solid lines correspond to mean mea-
sured states, dashed lines to mean simulated states. Color
belts around lines correspond to standard deviation.

well for all maneuvers, less so for the 15 degree pitching ma-
neuver. The body velocities match rather well also, with the
oscillating errors coming from the higher order oscillations
in pitch angle that are not captured by the model. The real
damping force seems to be stronger at 60 degree pitch atti-
tude, as body velocity u is overestimated by the model.
The final dataset consists of tests performed with varying
pitch attitude and rate feedback gains, as well as the com-
mand filter cutoff frequency. A comparison of flights with
different attitude feedback gains is given in Figure 17. The

Figure 17: Comparison of flights with different attitude feed-
back gains. Solid lines correspond to mean states. Color belts
around lines correspond to standard deviation.
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model correctly predicts more lax pitch angle following with
a weaker gain and additional oscillations from a gain that is
too high. Figure 18 shows a comparison of flights performed
with different rate feedback gains. The model correctly pre-

Figure 18: Comparison of flights with different rate feedback
gains. Solid lines correspond to mean states. Color belts
around lines correspond to standard deviation.

dicts the trend of higher damping seen in flight from a higher
gain and the introduction of transient oscillations at lower
gain levels. The same study was conducted with the com-
mand filter cutoff frequency. Figure 19 shows a comparison
of flights and simulations with respect to changes in the com-
mand filter cutoff frequency. The model again seems to cor-

Figure 19: Comparison of flights with different command fil-
ter cutoff frequencies. Solid lines correspond to mean states.
Color belts around lines correspond to standard deviation.

rectly predict the trend, thought the actual robot seems closer
to instability overall. One thing that is not captured here is
the behavior change due to noise at higher cutoff frequencies.
According to the model the best solution is not to have the
filter (fastest control loop), but that is not likely to be a viable
solution with the vibrations introduced to the sensor due to
the flapping. With the present mechanical design, the dihe-
dral actuator was already wobbling back and forth at a cutoff
of 256 Hz (considerably higher than the nominal 15 Hz) and
it starts to wobble at a much lower frequency even. Therefore,
a 15 Hz filter has been used to avoid unnecessary inputs to the
servo, while keeping the delay low enough for stabilization.

4.6 Analysis of model performance
In general, despite its simplicity, the model was able to cap-
ture the dominant dynamic effects very well and the simulated
states were in a good agreement with the measurements. The
small differences observed can be attributed to unmodeled
dynamics, imperfect measurement techniques, and imperfect
testing conditions. These are:

• There is a time-dependent error between the IMU at-
titude estimate and the OptiTrack-based attitude mea-
surement, which can at times reach a magnitude of up
to 5 degrees. It is thought to be the effect of noise on
the attitude estimation algorithm, but this has not been
studied systematically. This error causes the control
signal to sometimes be stronger or weaker, depending
on the sign of the pitch angle error.

• There is time-independent error of a few degrees be-
tween the IMU attitude estimate and the OptiTrack
measurement in a steady, non-flapping, non-flying state
across the datasets. This is thought to come from the
misalignment of the body frame as defined in Opti-
Track, the possible plastic deformation of the marker
appendages due to handling and crashes, and the bias
estimations of the onboard attitude estimation algo-
rithm.

• The listing of unmodeled dynamics in an exhaustive
way is not possible, but some of them have revealed
themselves. Firstly, there is a mechanical looseness in
the load path between the dihedral angle servo and the
wings. An elastic deformation and the use of a propor-
tional feedback of the servo actuator controller is mod-
eled well by a linear dependence on u, but a looseness
should be modeled by a hysteresis term. The hysteresis
model is not included in this work. Secondly, the thrust
generated is somehow influenced by the flight states,
because of the changing conditions of how much air is
being ingested. This would of course have an effect
on the attitude dynamics, as predicted by the current
model.
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• The maneuvers have not been executed from a perfectly
still position. The air in the testing area is not always
still, which may cause some chaotic drifting at times,
especially at very low speeds. Furthermore, the ability
to hover in a perfectly still manner is degraded by the
occasional drifting of the IMU attitude estimate (proba-
bly due to noise), the mechanical looseness of the dihe-
dral actuator, as well as the subtle wear of the dihedral
actuator over time.

• The last point is related to the imperfections of the plat-
form itself. Firstly, the rotational axes of the wings are
not perfectly aligned with the wing root attachments
below. This has some effect on tilting the wing plane.
Some of the thrust might not be aligned with the fuse-
lage. Furthermore, the model assumes that the wing
plane normal is perpendicular to the fuselage. This
would show up as a trim condition not aligned with
the fuselage and as an effectively different angle of at-
tack from what the model would predict. Lastly, the
assembly and repairs of the components of the craft is
a delicate process that causes manufacturing variations
and evolution of the aerodynamic characteristics over
time as wing tears are fixed, mechanism components
replaced, and so on. For example, the dihedral angle
controlling servo gearing tends to degrade over time as
it is subjected to harsh pitch maneuvers. This leads
to odd pitching dynamics before the gearing breaks.
Though care was taken to minimize all of these effects
within the collection of datasets, the Transformer pro-
totype is still delicate in this respect.

5 CONTROLLER IMPROVEMENT FOR FAST FORWARD
FLIGHT

The model was further used to determine a better controller
for the DelFly Transformer. The initial pitch stability perfor-
mance of the DelFly Transformer was such that a divergent
pitch oscillation would develop as the pilot gave a maximum
thrust command along with a 70 degree forward pitch com-
mand. This command is such that the platform in reality flies
level with the ground. This phenomenon was captured with
the OptiTrack motion capture system. Figure 20 shows the
pitch attitude and speed during this maneuver. The motion
tracking data has limited coverage, since the platform flies
quickly through a limited tracking area. During the maneu-
ver, the aircraft develops a pitch oscillation with an amplitude
of approximately 30 degrees and a frequency of aproximately
1 Hz.
It was discovered that an increased rate feedback gain would
improve the stability of the closed loop simulation in fast for-
ward flight. In order explain this, the closed loop model was
linearized at a trim condition in fast forward flight between
the reference generator output and pitch rate output in order
to examine the influence of the rate feedback on the stabil-
ity of pitch rate. The trim point corresponds to the eventual
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Figure 20: Pitch oscillation developing at full thrust with rate
feedback gain of 0.0654.

steady state condition of the model in response to a 70 degree
forward pitch command and a full thrust command at 22 Hz
flapping frequency. This condition lies outside of the range
of flight conditions validated in Section 4, where the max-
imum speed at 60 degree forward flight was approximately
3 m/s. The flight prototype, with this command, flies level to
the horizontal at around 6 m/s. The simulation, with this com-
mand, achieves 7.6 m/s with a climb rate of 3.4 m/s. Clearly,
the trim state is no longer accurately represented at this flight
condition, as the analysis in Section 3 also showed. How-
ever, as the following analysis of the linearized closed loop
model shows, the evolution of the system dynamics with ris-
ing speeds is still helpful for determining the appropriate set
of gains for stable flight.
The values of the states and inputs corresponding to the lin-
earization point are given in Table 2.

Table 2: Linearization point
State/Input Value Unit

u 1.5471 m/s

w -7.4546 m/s

θref -70 deg

θ̇ref 0 deg/s

θ̇ 0 deg/s

θ -51.4974 deg

f 22 Hz

γ̇ 0 deg/s

γ 24.9174 deg
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The z-plane poles and zeros shift with a change of the rate
feedback gain, as shown in Figure 21. With the original rate
feedback gain of 0.0654, the system poles that correspond to
the 1 Hz oscillation seen in flight are unstable. Increasing
the gain to 0.1635 stabilizes these poles, while the actuator
dynamics poles become less damped. This specific number
originated from flight tests where the rate feedback gain was
progressively increased rather than from an analysis of the
linearized system. A slightly higher gain could be more suit-
able as the damping ratio would be equal for the oscillatory
actuator and aerodynamic poles of the linear system.
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Figure 21: Shifting of z-plane system poles with increasing
rate feedback gain.

The results of the nonlinear closed loop simulation with this
rate feedback gain are shown in Figure 22. The platform is
initially commanded to track zero pitch and 16.5 flapping fre-
quency, which corresponds to the hovering frequency. Then,
the thrust command is maximized and the pitch attitude set-
point is changed to -70 degrees simultaneously. The develop-
ing oscillation with the weaker rate feedback gain also has a
1 Hz frequency as seen in flights with the prototype. The os-
cillation is worsened by saturation of the actuator command
bounds. The higher rate feedback gain smooths out the pitch
rate response and avoids saturation of the actuator command.
The rate feedback gain was increased to 0.1635 on the proto-
type DelFly Transformer as well. A maximum throttle level
flight was conducted through the motion capture area again.
The resulting flight is shown in Figure 23. The pitch attitude
is stable and damped and as a result the robot also reaches
stable speeds as high as 6.7 m/s during the recorded maneu-
vers. What is more, the higher gain stabilizes the robot well
in hover also, though worse than before.
The model was helpful in determining the necessary changes
to the controller to obtain a fixed gain controller for the
DelFly Transformer that stabilizes flight in conditions rang-
ing from hover to 6.7 m/s. However, there are notable dif-
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Figure 22: Comparison of effect of different rate feedback
gains during a maximum thrust, 70 degree forward pitch set-
point maneuver.
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Figure 23: Stable full thrust level flight with rate feedback
gain of 0.1635.

ferences between the flight conditions of the model and the
prototype Transformer at these fast speed conditions. Firstly,
the trim pitch angle of the model in response to a 70 degree
forward pitch setpoint and maximum flapping frequency of
22 Hz is -51.5 degrees whereas the real robot even overshoots
the command to a -78 degrees at times - a nearly 30 degree
difference. Furthermore, while the model achieves a simi-
lar horizontal speed of 6.8 m/s, it also climbs vertically at a
near 3.4 m/s, giving a total velocity of approximately 7.6 m/s.
A common assumption that is made in work utilizing aver-
age flapping force models is that the speed of the wing due
to flapping is much faster than the flight velocity [20, 21, 3,
22, 23]. At its maximum speed, the DelFly Transformer flaps
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at about 22 Hz and its wing span is 35 centimeters, yielding
a wing tip velocity of approximately 4 m/s assuming a saw-
tooth flapping profile. Clearly, this assumption is violated in
the tests conducted in this work. In order to more accurately
study the flight of tailless flapping wing platforms at these
forward speeds, the aerodynamic model has to be expanded
beyond linear forces.

6 CONCLUSIONS AND RECOMMENDATIONS

A longitudinal dynamic average force model for a tail-less
flapping wing micro air vehicle was developed and validated
for flight conditions between hover and forward flight, dif-
ferent center of mass locations, and controller parameters.
Furthermore, it was used to improve the flight controller of
the prototype DelFly Transformer, yielding a fixed gain con-
troller that stabilizes flight in hover and at forward flight
speeds up to 6.7 m/s.
Firstly, the proposed model predicts state derivatives recorded
during real flights with the DelFly Transformer well. More
importantly, it was also shown to predict well the trends in the
longitudinal dynamic states of a closed loop simulation with
various center of mass positions, various controller param-
eters, and also in terms of flight at various forward attitude
levels. However, at speeds near and beyond the maximum
wing tip velocity, the trim pitch angle and speed of the model
developed a significant difference with respect to the flight
of the DelFly Transformer prototype. Nevertheless, the dy-
namic trend shown by the model was informative enough to
help improve the flight controller.
Further research should look into the best choice of maneu-
vers to identify the model parameters from flight data in case
one has access to a stable flight platform. Moreover, it should
be studied to what extent the model is useful in case the user
does not have a stable platform yet and needs to gather all
parameters from non-flight tests. Furthermore, the actuator
dynamics for the dihedral actuator should be studied with
data recorded in flight to compare the difference with static
measurements on the force balance. This is necessary to de-
termine the optimal way of obtaining the dihedral angle dy-
namics as the static tests employed in Section 3.3 resulted in
dynamics with a bandwidth that was too low. Also, modifica-
tions to the force model should be sought that could improve
the representative accuracy at flight speeds past the maximum
wing tip velocity.
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Part II

Preliminary studies

A minimal longitudinal dynamic model of a tailless flapping wing robot K.M. Kajak





Chapter 2

Introduction to the preliminary
research

This part of the report presents more detail about the results shown in Part I, as well as
a literature study. Section 3 gives an account of some successful tail-less FWMAV designs.
Section 4 presents a review of literature dealing with modeling of FWMAVs. Several state-of-
the art techniques are identified and described in this section. Section 5 deals specifically with
control systems. A literature survey of the state-of-the-art of control system developments
in theory and practice is presented, followed by a development of candidate control system
concepts that will be deployed on the DelFly Transformer platform in the scope of this project.
Lastly, Section 6 documents preliminary aerodynamic model development and validation.
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Figure 2-1: DelFly Transformer first prototype
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Chapter 3

Existing tail-less FWMAVs

This section presents some information about the characteristics of some tail-less FWMAVs
that have achieved flight successfully. The KUBeetle in Figure 3-1 was developed at the
BIMiLab of Konkuk University in South Korea [8]. It weighs 21 grams and flaps at around
30-35 Hz frequency. Its control system is based on combined rate and attitude feedback.
It has demonstrated hovering flight. The Nano Hummingbird in Figure 3-2 was produced
by AeroVironment [7]. It weighs less than 10 grams and flaps at 30 Hz frequency. The
control system is based on rate feedback only. It has demonstrated hovering, fast forward,
and sideways flight. The RoboBee in Figure 3-3 is a product of the Wyss Institute at Harvard
University [6]. It is unique in this list of robots due to its piezoelectric wing actuators. It is
also relatively small, weighing 80 mg. The nominal flapping frequency is around 110-120 hz.
It feature a unique adaptive control system for attitude and position in order to accound for
uncertainties influencing its flight dynamics. However, its power as well as control system are
off-board the robot. The RoboBee has demonstrated hovering flight only.
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Figure 3-1: KUBeetle [8]

Figure 3-2: Nano Hummingbird [7]
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Figure 3-3: RoboBee [6]
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Chapter 4

Modeling

The research aim is control-focused, but modeling of a tail-less FWMAV is closely related
to control system design. The availability of a reliable model helps to achieve stable flight
of a flying platform in the first place, but also to decide how the control system parameters
should change to accommodate flight in other flight conditions such as fast forward flight.
Depending on the fidelity of the model it could also be used to study the performance of
different controller types. Some control system types necessarily require a model and thus
a model opens up new possibilities when considering control systems. Therefore, a part of
the project is dedicated to reviewing previous work in modeling in an effort to establish
the simplest possible dynamic model of a tailless FWMAV. Section 4-1 presents a review of
FWMAV modeling methods.

4-1 Previous work in FWMAV modeling

The modeling of the flight dynamics of a FWMAV requires several elements, depending on
the complexity of the model. A model can be derived from fundamentals (fluid dynamics and
multi-body flexible dynamics) or from high-level approximations (first order polynomials).
This section presents the work performed to date in the research field of FWMAV modeling.

Flapping-wing aerodynamic modeling is an area of active research due to its complex nature.
Some work utilizes CFD simulations, e.g. [9, 10, 11]. From the perspective of this project,
this class of models can be disregarded, because they are too costly to utilize for control
system synthesis. A trial-and-error based tuning approach combined with flight tests on a
real platform would arguably produce results faster and provide at least as much insight into
the behavior of the flapping flyer.

A very popular approach to aerodynamic modeling is the use of quasi-steady blade-element
models [12, 13, 14]. The descriptions of aerodynamic forces and moments in these models
are composed of several elements, depending on the complexity of the model. The basis
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of the model is usually a steady-state component, which can be likened to a fixed wing
traveling through air in steady conditions. The other components are supplements to the
steady component in order to model various unsteady effects that flapping flight relies on
to produce extra lift. These effects include delayed stall, rotational circulation, added mass,
wake capture, etc [15]. A specific unsteady mechanism that the DelFly Transformer tailless
FWMAV utilizes is the clap-and-fling effect, first discovered by Weis-Fogh [16]. As the
DelFly Transformer flies, its wings clap together and fling apart once every flapping cycle.
This enables the flapping wings to create additionally a suction effect during fling and also a
jet of air during the clap. The net effect is that higher thrust is produced than without this
phenomenon.

The quasi-steady/blade-element models sacrifice accuracy for simplicity and required compu-
tational resources as compared to computational fluid dynamics model. Despite requiring a
less involved mathematical description of the aerodynamics, the model requires a description
of the wing kinematics. Identifying the parameters of the models describing these effects
requires rather involved system identification activities [14], especially to properly model the
clap-and-fling effect.

The forces and moments can be averaged over each flapping-cycle, which results in simpler
models that depend on fewer wing movement parameters. Out of all forms of quasi-steady
models, the flap-averaged model is most suitable for control work. Average force based
models can be expressed also without any description on wing kinematics. The works of [17,
18, 19, 20, 21] utilize (and demonstrate the validity of) velocity-linear force models. The
highest level of validation for this model class can be found in the work of [21], where the
flight data of a real flight prototype is found to agree well with the linear-force model in a
near-hover oscillating condition.
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Chapter 5

Control

This chapter develops the control system concepts that will be studied on the DelFly
Transformer platform. First, a review of the various control approaches that have been
studied so far is presented in Section 5-1. Then, the major control system types are analysed
for relevance in Section 5-2. The finishing Section 5-3 presents the control system concepts
that will be deployed as well as the reasoning behind them.

A multitude of methods are available to produce the necessary aerodynamic forces and mo-
ments for flapping wing maneuvers that involve changing the various wing kinematic param-
eters during flapping [22]. Rather than these control force/moment generation mechanisms,
this review focuses rather on fundamental control theories in the context of flapping wing
MAVs. Studies of biological flapping flyers suggest that some natural flyers employ linear
control techniques to stabilize flight [23, 24, 25, 26, 27]. Linear control techniques have also
been studied relatively extensively in control engineering research for flapping flyers [28, 29,
30, 24, 9, 31, 32]. Nonlinear control methods have also seen employment. [33] and [34] develop
control laws based on sliding mode control. [35] employ robust nonlinear control. [36] utilize
bounded, nonlinear state feedback with quaternions . [37] present a neural network control
in . Central pattern generators have been employed as well as analog neuromorphic devices
[38, 39]. Most real tail-less flight prototypes fly linear controllers [8, 5]. The Robobee flies
using an adaptive sliding mode controller[6]. This means that a lot of validation work on real
flight platforms for theoretical controllers is yet to be done.

5-1 Detailed review of control studies

Table 5-1 shows the comparison of the reviewed FWMAV control system research. Subsections
5-1-1 to 5-1-17 discuss in detail the interesting characteristics of the reviewed control system
studies.
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5-1-1 Deng, Schenato et al.

The stabilization system of Deng, Schenato, et al [40, 30] relies on halteres, ocelli, optical flow
estimates, and a magnetic compass. It outputs required torques and forces that would reject
disturbances and maintain the selected flight mode. These forces and torques are passed to
the wing trajectory controller, which takes as input these torques and forces, and generates a
wing trajectory to achieve that. Unfortunately, none of the wing trajectory parameters that
the authors wish to control are available on the DelFly transformer. Specifically, the wing
trajectory controller relies on changing stroke angle amplitude and offset, timing of rotation,
mean angle of attack, and upstroke-to-downstroke wing speed ratio. The parameterisation of
wing trajectories is developed on the basis of quasi-steady aerodynamics, modeling delayed
stall and rotational lift contributions. Then, there is a another mapping that converts the
trajectories into actuator voltages. This sort of control structure does not make sense for
the DelFly, since the wing trajectory controller is not applicable. It can be modified to
be applicable by using a controllability matrix that could be obtained from flight experiments.

The stabilization is based on output-feedback LQR control law. The authors first theo-
retically construct a stabilizing state-feedback pole-placement controller, and then perform
closed-loop system identification based on the prediction error method (PEM). Then,
discrete-time linear quadratic gaussian optimal controller design software was used to devise
a controller. An LQG controller can then be applied similarly. However, in comparison
to classical PD-control there is no specific expectation of an expension of the region of
attraction, since the authors only demonstrate stability in hover and in simulation.

5-1-2 Doman et al.

The control system developed in [41, 28] relies on independent wing actuation and manip-
ulation of vehicle center of gravity. The controlled parameters are flapping frequency and
split-cycle parameter on both wings. The split-cycle parameter quantifies the extent to which
wing upstroke is impeded and downstroke is advanced. Splitting the flapping cycle allows to
generate a force bias during the flapping cycle, allowing the generation of forces and moments
with the modulation of this parameter. The change in body forces and moments is, linearly
expressed, a product of a control effectiveness matrix (evaluated at a trim point) and the
control parameters (i.e. split-cycle parameter, flapping frequency, and also the displacement
of the bob-weight in the present case). In order to calculate the necessary parameters
while knowing what the moment perturbations must be, the authors use a pseudoinverse
of the control effectiveness matrix. The control effectiveness quantities are derived from
a quasi-steady model lacking the effects of a leading-edge vortex, wake-capture, and also
clap-and-fling. The calculated control parameters are fed to oscillators of piezoelectric
actuators.

Further work in [42] treats split-cycle constant-period frequency modulation, which is not of
interest for application on the DelFly. Later work in [60] utilizes the method developed in
[42] to control a FWMAV. A further development in [44] explores the quarter-cycle wingbeat

K.M. Kajak A minimal longitudinal dynamic model of a tailless flapping wing robot



5-1 Detailed review of control studies 33

modulation concept, where control actions are changed twice as frequently as in the [42]
approach.

In conclusion, Doman and Oppenheimer mainly focus on control moment generation strategies
than controllers. There is not much to apply on the DelFly Transformer, since the treated
strategies are not applicable.

5-1-3 Serrani et al.

The work in [45, 46] presents the development of a globally stabilizing bounded state
feedback altitude control law for a cycle-averaged FWMAV vehicle model, specifically the
RoboBee as presented in [56]. The authors argue that since the system behaves as a chain of
integrators, it appears natural to resort to the nested saturation approach pioneered by Teel
in [61, 62]. In [46] the authors develop globally stabilizing longitudinal position control of a
3-DOF FWMAV. [35] expands work in [46] to a different 3-DOF FWMAV configuration in
terms of the controllers and present position and pitch angle control law.

The pitch dynamics is controlled via a nonlinear PD-feedback of the pitch angle in order to
achieve robust stability. The gains of this feedback law are parameterised using informa-
tion about the assumed magnitude of uncertainties and disturbances on the system. The
aerodynamic model that the authors use does not take into account outside influence on
the angle of attack of the wings, which becomes influential in fast flight. The robustness of
such a controller, then, comes under question when considering application on the DelFly
Transformer.

5-1-4 Sun, Wang, Xiong, et al.

[9] prove via simulation that a hovering insect can be stabilized in hover via state feedback.
Unfortunately their approach is also using the body velocity states, which are not available on
the DelFly. [31] expands on previous work with further study of wing kinematics on achieved
control moments and forces, but does not provide a new controller structure. This type of
control system is not applicable on the DelFly Transformer, since body velocities are not
known. A state observer might be able to provide estimates of the body velocities in order
to deploy this method, but the computational burden will increase.

5-1-5 Rifaï et al.

The work of [36] focuses on the development of bounded state feedback law, taking into
account linear and angular movement, with the Robobee [56] vehicle model as the validation
platform. The control law applies quaternions for attitude description. It is a cascaded
control law, with attitude control being the inner loop and position control being the outer
loop. The attitude control is a nonlinear bounded output feedback law. In contrast to
single-gain PD-control of attitude, the gains in this law are replaced by saturation functions
in order to bound the calculated control torques. This type of law could actually be applied
to the DelFly Transformer, but there is currently no need for specifically taking into account
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saturation. Without the saturation functions, the controller would be a PD-based quaternion
attitude controller. [47] develops an attitude control law that requires the technological
equivalents of a 3-axis rate gyro, a 3-axis accelerometer, and 3-axis magnetometer. It is
similar to the work in [36], but the orientation description is now vector based. The sensor
measurements are also cycle-averaged. In [63] the approach is tested on a quadrotor. The
control law is seen to be very oscillatory. In the case of the quadrotor these signals were
filtered out by the DC-motors as they behave like low-pass filters. In the case of the pitch
actuator of the DelFly this might turn out to be a problem, depending on the frequency
content of the oscillation.

Both types of attitude control could be applied to the DelFly Transformer. The main benefits
would be the elimination of the singularity due to the Euler angle implementation. It would
not, however, solve the problem of control effectiveness and stability characteristics changing
strongly between different flight regimes of the DelFly Transformer. It is also uncertain
whether the noisy control signal would deteriorate the control performance.

5-1-6 Cheng and Deng

[24] conclude with their studies that PD feedback control of attitude is sufficient to control
a fruit fly in various flight regimes. There is nothing novel to conclude from this work as
compared to what is implemented on the DelFly Transformer already.

5-1-7 Geder et al.

[32] Also implement a PID-based controller on a simulation model.

5-1-8 Bayandor et al.

[64] present an adaptive control law. It is designed to learn aerodynamic contribution to the
equations of motion as developed in their paper. However, the considered system is merely
a set of multi-link wings fixed onto a base. The controller is meant to track the trajectories
of similar biological fliers. This type of control is unsuitable for the DelFly in the presented
form, since the DelFly does not have the degrees of freedom in the wings that would benefit
from this approach. Furthermore a flying platform with this control design has not been
shown to be able to fly, either in simulation or in real life.

5-1-9 Gallagher et al., Chung and Dorothy

[49, 39] present the designs of evolvable oscillators that could generate the right control
inputs for hovering the Harvard RoboFly. This does not apply to the DelFly, since its
wings cannot generate complex trajectories in the same way as the RoboFly, but rather
has wings directly geared to a DC-motor. Furthermore, the kinematics and aerodynamics
of the RoboFly change rather quickly during flight, since they lifetime of its wings is
quite short. For this reason, it is very necessary to adapt the wing motion controller
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during flight. This is not relevant for the DelFly, since it has rather durable wings. How-
ever, it might be interesting in the future if the survivability of the platform is to be enhanced.

[38] also present a nonlinear oscillator designs for controlling wing kinematics.

5-1-10 Li and Duan

[51] presents the design of an attitude controller based on an Active Disturbance Control
scheme. It is a PD-based system, where the gains are learned. This scheme requires the
measurements of wing force, which is not available on the DelFly and is therefore inapplicable.
[50] present the design of a nonlinear adaptive H∞ controller. However, it is meant to control
the wing kinematics and therefore does not apply to the DelFly.

5-1-11 Jun-Seong Lee et al.

[65] present an LQR-based pitch attitude controller using the stroke plane angle. Full state
feedback is used, therefore an observer would be necessary to obtain body velocities for this
approach.

5-1-12 Maria-Belmonte et al.

[53] present a longitudinal trajectory tracking controller based on active disturbance rejection
control and generalized proportional integral observers. The idea is that the desired system
behavior is mathematically described and the rest of the system dynamics is treated as a
disturbance, which the negative feedback will be designed to suppress. However, the approach
needs a lot of further development since the inputs to the system were generic aerodynamic
forces. Furthermore, it is attitude control that is sought in this project, not trajectory control.
It is not clear how well this approach would work with attitude control.

5-1-13 Guo et al.

[37] present a fuzzy neural network based controller designed to regulate wing angle of attack
and wing rotation timing. Though this type of controller can work with changes made to
the control inputs, the nonlinear mapping for the feedback gains is perhaps unnecessarily
complex. Secondly, the training of this mapping will be an issue for application for different
flight regimes.

5-1-14 Du et al.

[54] present an LQR-based full state feedback controller utilizing iterative learning tuning
to change the gain matrix entries in order to achieve a stabilizing controller. With output
feedback, this approach could be used if a sufficiently good simulator of the DelFly becomes
available. Since the work shows a convergence of the gain in 30 iterations, doing the training
on a real platform would be time-consuming and potentially dangerous.
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5-1-15 Bluman et al.

[34] present a sliding-mode control system designed to stabilize the pitch axis of a bumblebee.
The presented controller is not directly applicable to the DelFly due to the fact that it uses
body velocity components in its sliding variable, which would require some sort of observer.
Furthermore, the validation simulation does not include actuator dynamics. It is worth noting
that the controller is able to reject a relatively large disturbance in hover, but it is unclear
how it would behave with actuator dynamics and in fast forward flight.

5-1-16 Keennon et al.

The AeroVironment Nano Hummingbird is another tailless platform that flies successfully [7].
The authors note that ’closed-loop control’ is applied on body rates to stabilize the platform,
but they do not provide details. It is likely that it is proportional feedback of rates.

5-1-17 Wood et al.

[56] presents the design of a tethered robotic fly, which handles control off-board. The platform
uses piezoelectric actuators to move the wings. The applied flight controller consists of three
modules: attitude, lateral position, and altitude controllers. A Lyapunov function is used to
derive an attitude control law that is asymptotically stable under simplifying assumptions.
The control law is analogous to a PD-controller, where the proportional term is related to
error of reference orientation, and the derivative term counters angular velocity - acting as a
rotational dampener. The gains are experimentally tuned. In the body attitude controller,
an integral term is added to achieve a zero-torque state due to manufacturing imbalances
between the wings.

[6] offers an alternative approach to [56], where instead of separately identifying uncertainties
of the controlled system, an adaptive controller is proposed. It is again composed of an
attitude, a lateral, and an altitude controller. Control actions are still calculated off-board.
The design of the attitude-controller is again Lyapunov based, but it is distinct from [56]. A
sliding control approach is used to derive a control and adaptation law. The yaw orientation
is not controlled. Torques are calculated to oppose angular velocity as well as the attitude
error, meaning the controller is similar to proportional and derivative feedback. The law also
accounts uncertainties in the estimates of moments of inertia as well as torque offsets due to
manufacturing variability. What is also remarkable is that no particular representation of
rotation is used, which avoids singularities. The approach is proven with flight tests in hover
and landing.

[66] offers a strategy to experimentally tune PID-controllers for feedback stabilization of
altitude, pitch, and roll.

[57] builds on [6]. The controllers are the same as in [6], but the contribution of the document
is a deeper analysis of additional flight tests.
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[33] Develops a new single-loop adaptive controller that abandons the principle of time
separation previously present in [6, 57], where a cascaded controller was designed. The
altitude and attitude controllers are integrated as one loop.

[58] presents a control strategy that was developed with the goal of achieving aggressive
maneuvers. Since in previous efforts actuators and aerodynamics were not modeled, the
trajectory-following commands are generated with the help of an iterative learning controller
to achieve the desired perching maneuvers. While the iterative learner is a key component of
the presented controller in performing desired maneuvers without an accurate aerodynamic
model, it is not an interesting component for the project at hand, because the focus is not
on specific maneuvers, but rather on the whole flight envelope.The also discuss a solution to
add yaw control to the sliding surface, which in previous designs was not deemed important
for trajectory following.

[59] states that the controller in [58] is already equipped to handle gust force disturbances
as well, due to considering acceleration error. However, for torque countering, adaptive and
least-square estimation are considered. The combination of the two proposed schemes showed
the capability to reject disturbances successfully, with varying applied wind profiles applied
to the platform. Though this capability is interesting for future developments, the aim of this
thesis is to develop a stabilization system allowing aggressive maneuvers first and foremost.

5-2 General aircraft stabilizing control approaches

This section briefly discusses stabilizing control approaches in the aerospace context in
general, in order to contextualize the work that was presented in Section 5-1.

Gain scheduling control
Gain scheduling in combination with linear or nonlinear control methods are a staple of
modern aircraft control [67]. Due to its simplicity it is likely that it will also be suitable for
use on the DelFly Transformer. The deciding factor will be whether the measured/estimated
variables available to the DelFly are suitable as gain-scheduling variables.

Adaptive (non)linear control
Adaptive control has been used for flight control purposes for over half a century now [68].
There are many forms of adaptive control, with different levels of complexity. Broadly
speaking, they can be divided into direct and indirect adaptive control approaches, where
direct approaches adapt controller parameters and indirect approaches adapt a model online.
However, the adaptability of an adaptive control approach does not guarantee stability.
For this reason, robust adaptive laws have emerged as a field of research. Emerging robust
solutions are able to bound the adapted parameters and also the output, theoretically. The
benefit of indirect adaptation is that it can reveal uncertainties of a system. For instance,
an experiment with a controller that adapts the control effectiveness of the actuators can
reveal the control effectiveness behavior in different regimes of flight. A direct adaptation
mechanism could reveal the necessary controller gains so that the adaptation can be removed
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or if simple gain scheduling cannot be used, it can still yield a stabilizing controller with a
large area of attraction.

5-3 Proposed control system candidates for implementation on the
DelFly

This section develops the conceptual candidate control systems that are likely to solve the
limited flight envelope issues with the DelFly.

Firstly, a solution is needed for the issue of a singularity with the Euler angle implementation.
While the singularity can be shifted to different orientations depending on the order of
rotations of the angles, there is no convenient location where this can be shifted without
becoming a problem later. Rather, a solution can be sought from other descriptions of
orientation. Quaternions are a handy solution to this issue and was already used in other
work by Rifaï et al. in [36]. Direction Cosine Matrix (DCM) based descriptions are also
suitable, since there is a lack of a singularity. However, in this case, there are a total of 9
differential equations to solve in order to update all entries of the DCM compared to the 4
of the quaternion-based orientation description. Therefore any control systems for a very
maneuverable FWMAV should use one of these or potentially even more complex (Modified
Rodriquez Parameters, etc.) attitude descriptions to retain the ability of stable flight in any
orientation.

Due to the changing of the aerodynamic control effectiveness and stability characteristics of
the DelFly in different flight regimes, constant-gain control laws may not provide stability
in flight regimes far removed from hover. For instance, in fast descents, roll instability has
been observed on the DelFly. Furthermore, once the Euler singularity is solved, higher
forward flight speeds will become available. The gain values that have been used thus
far will not be optimal. Furthermore, the current gain settings might even cause insta-
bility in the fast forward flight regime. The same issue might be present in fast sideways flight.

From the practical control system viewpoint, the optimal solution will be minimal in terms
of needed computational power and memory use. It should also be easy, safe and quick
to tune. From this perspective, one of the candidates that should be pushed to its limits
is definitely still a single-gain linear controller. The slightly more complex solution of a
linear controller with gain scheduling is also a highly interesting solution. If this still is
not possible or is working poorly, then an adaptive approach could be able to provide a
larger operational envelope. Furthermore, the adaptation can reveal characteristics of the
platform in flight that are difficult to measure such as its moment of inertia or any control
asymmetries due to manufacturing variability. Some adapted parameters do not change
appreciably after convergence and can then be fixed (it is likely that the moment of inertia
is one such parameter).
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Figure 5-1: Quaternion attitude/rate controller layout as presented in [69]

5-3-1 Single-gain quaternion-based attitude feedback

The PD-control of attitude will have to be changed to a quaternion-based representation,
such as the one presented in [69], also shown in Figure 5-1. In the case shown in Figure 5-1
the rate reference is zero, but in the case of the DelFly Transformer the reference generator
gives a rate reference too. Then, once a wider flight envelope becomes available without
attitude singularities, the DelFly platform will have to be pushed in flight tests to those areas
of the flight envelope that were previously unavailable in order to be able to characterize the
performance of the control system. The preliminary model can be used to try to improve the
set gains in order to attempt to improve the controller.

5-3-2 Gain-scheduled quaternion-based attitude feedback

The most primitive controller as presented in Section 5-3-1 and shown in Figure 5-1 will be
changed to have a variable gain. It is not obvious which variables or what type of scheduling
would be most effective, but a good start would be to use the flapping frequency and the
pitch angle. Since the actual horizontal flight speed depends on how long the aircraft has
been inclining off the vertical, some sort of gain-changing low pass filter or delay might be
necessary. Flight tests will reveal how this configuration compares to the single-gain controller.

5-3-3 Adaptive feedback control

There are many forms of adaptive control. The attitude control system as presented in [57] is
interesting from the perspective that it has a large area of attraction, but it does not model
actuators or aerodynamics. Aerodynamics and actuator dynamics will play a significant role
in the trimmed flight of the DelFly at fast velocities, which is why this approach is not likely to
work directly without modifications. The first major difficulty is that though one could model
the aerodynamics and use this knowledge in control law design, the relevant velocity states
are not measured. The second major difficulty is that the aerodynamic force due to oncoming
air significantly influences the effectiveness of the wing dihedral actuator. At high forward
flight speeds, the current controller is having to command more extreme servo positions to
force the wings to take the required position. In order to avoid having to model the whole
system, the incremental nonlinear dynamic inversion (INDI) approach of [70] is chosen as the
adaptive controller to be deployed. See the corresponding controller layout as in Figure 5-2.

A minimal longitudinal dynamic model of a tailless flapping wing robot K.M. Kajak



40 Control

Figure 5-2: INDI controller layout as presented in [70]. A(z) denotes actuator dynamics, H(z)
is a second order measurement filter.

The major challenges of INDI are its dependence on a noisy angular acceleration reading and
delays due to having to filter signals. Smeur et al. managed to demonstrate solutions on a
quadrotor, but the approach has not been characterized on a FWMAV platform. A further
boon of deploying this particular technique is that the Aerospace Engineering faculty of Delft
University of Technology has experts in this technique that can be of help with solving issues
that may arise.
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Chapter 6

Model development for DelFly
Transformer tailless FWMAV

This section presents the development of the aero- and flight dynamics models of the DelFly
Transformer. The preliminary work focuses on the development and validation of longitudinal
dynamics. If the longitudinal model can be validated and its performance characterized, then
an expansion into a full 6-degree-of-freedom model is not a conceptual leap.
Section 6-1 describes the measurement of thrust force as well as the identification of flapping
frequency actuator dynamics. Section 6-2 presents the identification of the pitch control
actuator dynamics. Section 6-3 documents the process of extracting aerodynamic model
parameters from flight data. Section 6-4 gives the full nonlinear system equation of motion.
Section 6-5 presents the process and results of validating the aerodynamic model on the basis
of flight data.

6-1 Thrust force and thrust actuator dynamics

In order to measure the thrust force produced by a single flapping mechanism (the wings
on one side of the body only), the mechanism was mounted on the force/torque sensor.
Recordings of the electronic speed controller motor polarity change intervals were also
available for calculating motor speed. The range of minimum to maximum PWM commands
was divided into multiple setpoints and the generated thrust force was measured for 2
seconds at a measurement rate of 10 kHz. The force measurements were filtered with a
Butterworth low-pass filter with a cut-off frequency equal to the flapping frequency estimated
using the mean motor speed and the gear ratio of the mechanism. Fluctuations of the motor
speed were used to identify individual flap cycles and their period/frequency. The force
measurements were then cycle-averaged.

Figure 6-1 shows the relationship between the thrust and the flapping frequency. The markers
of the plot are centered on the mean force and flapping frequency of each measurement. Error
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Figure 6-1: Thrust versus flapping frequency.

bars represent their standard deviation. Additionally, a linear function is fitted to data above
13 Hz, a region representative of the nominal operating point of the DelFly Transformer.
This linear fit will be used in further work to relate flapping frequency to a thrust force.
The expression for this function is T = c1f + c2, where T is thrust in newtons, f is flapping
frequency in Hz. The values of the constants are c1 = 0.0100358 and c2 = −0.0237866. Note
that this expression calculates the thrust for one wing pair only.

Figure 6-2 presents the relationship between mean cycle-averaged flapping frequency and
the mean PWM signal sent to the electronic speed controller driving the motor. The
separate measurement series are distinguished as the red and blue lines. There are less data
points for the series represented by the red line, because the wing root became dislodged
from the flapping mechanism due to missing glue for fixation. After gluing the root to the
mechanism, a new series of measurements was recorded, represented by the blue line. This
seems to have influenced the generated flapping frequency to an extent. Especially around
the nominal hovering frequency of 16.5 Hz the trend does not behave linearly. Furthermore,
the generated frequency will be slightly different in flight. For truly representative data, it
should be collected from flight tests.

In the following, the identification of the flapping frequency actuator dynamics is described.
The MATLAB System Identification toolkit was used to estimate a suitable transfer function
for the flapping frequency. The output data was the unfiltered flapping frequency and the
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Figure 6-2: Flapping frequency versus average PWM signal

input data was an approximately scaled PWM signal. This means that the 4 Hz Butterworth
filtered measurement of flapping frequency was used to roughly estimate the steady state of
the flapping frequency command, as shown in Figure 6-3.

The resulting best estimate transfer function is T (s) = 12.41
s+12.39 , simulated in Figure 6-4. Higher

order transfer functions did not improve the result. In order to remove the meaningless steady
state error, the transfer function that is used in further work is T (s) = 12.39

s+12.39 . This transfer
function represents the non-dimensional dynamics of the flapping frequency.

6-2 Pitch moment actuator dynamics

This section presents the identification procedure for the pitch control actuator dynamics.
Pitch moment measurements were the basis for calculating a leverage arm based on the prin-
ciple that a torque is equal to a force multiplied by its leverage arm. Therefore a leverage
arm can be calculated from dividing a torque with a force. The output data used for identifi-
cation is the unfiltered moment divided by the mean measured force, with an approximately
scaled moment command as input. On the real platform, the actuator does not change this
arm proportionally, but rather via a sinusoidal relationship. The assumption was made here
that this would not have a significant impact on the validity of the model. Figure 6-5 shows
a comparison of two different estimated transfer functions with a 5 Hz Butterworth-filtered
version of the calculated leverage arm for easier comparison. The green line represents a 1st
order transfer function and the gray line represents a 2nd order transfer function. The 2nd
order transfer function fits the trend of the calculated and filtered pitch leverage arm.

The resulting transfer function is T (s) = 525.7
s2+30.55s+558.8

. The steady-state error is removed
by changing the transfer function to T (s) = 558.8

s2+30.55s+558.8
.
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Figure 6-6: Free body diagram for Equations 6-1. C.O.M. - center of mass, C.O.P. - center of
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6-3 Experimental study of aerodynamic forces

This section presents the development of the structure of the aerodynamic model. Data was
available from flight tests conducted previous to this project. The DelFly Transformer was
flown against the wind in the Open Jet Facility of TU Delft Aerospace Engineering. The goal
of these tests was to achieve trimmed flight at known airspeeds. Onboard state estimation
data was recorded as well as the windspeed. Six different trim points are identifiable in the
data at windspeeds of 1, 1.25, 1.75, 2, 2.4, and 2.7[m/s]. A limitation of the data is that
there are no data points below 1[m/s] due to the inaccuracy of the windtunnel airspeed
control. Furthermore, trimmed flight of any duration was very difficult to achieve for the
pilot. However, these data points can be obtained from tests in the CyberZoo.

The mean flapping frequency and pitch angle of each trim data window was calculated.
Following that, and assuming a force and moment balance per each trim condition, Equations
6-1 can be used to solve for aerodynamic forces L,D in the aerodynamic reference frame and
X,Z in the body reference frame. The free body diagram accompanying the equations is
shown in Figure 6-6. The thrust is known via the relationship to the flapping frequency
identified in Section 6-1. The pitch attitude has been recorded using the onboard IMU of the
DelFly Transformer. The mass of the platform is also known.
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+←
∑

Fx,inertial = Tsin(θ)−D = 0

+ ↓
∑

Fz,inertial = −Tcos(θ) +mg − L = 0

+↙
∑

Fx,body = mgsin(−θ) +X = 0

+↘
∑

Fz,body = mgcos(−θ)− T + Z = 0

(6-1)

Assuming that both body forces X and Z are proportional to the product of the respective
body velocities u and w some constants bx and bz, one can use the least squares technique
to find these constants. This assumption at least holds for the body axis x according to the
work of [19]. Dividing by two to account for the fact that these constants should apply for
one wing pair, bx = −0.07219 and bz = −0.01567. The resulting fit with the data points
is shown in Figures 6-7 and 6-8. Since there is a difference between the thrust produced
by the wings in this flight data and the thrust relationship established on the force balance,
an extra constant offset is required for force equilibrium: Z = bzw + bz,0. In this case it is
bz,0 = 0.02994, which means that the wings in the flight test are producing on average 0.03N
more thrust than the identified relationship on the force balance. This term is not included in
the full nonlinear flight dynamic model since it is liable to change and likely does not influence
angular dynamics significantly.

6-4 Full nonlinear longitudinal model

Rigid body dynamic equations are used to model the flight dynamics, as for conventional
fixed-wing aircraft [71]. As determined in Section 6-3, the aerodynamic forces along X and
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Figure 6-8: Aerodynamic body frame forces versus body velocities (measurements - blue, model
- green).

Z body axes can be modeled with a linear relationship of the corresponding velocities.

In order to assemble the equations of motion, the force and moment balance needs to be
established. The free body diagram of a 3-degree-of-freedom FWMAV is presented in Figure
6-9. Here, thrust is denoted as T = c1f + c2, where c1 and c2 are the constants of a linear
function as determined in Section 6-1. XA and ZA stand for aerodynamic forces along the X-
and Z-axes of the body, respectively. lx is the constant distance from the average center of
mass to the average center of pressure of the wings along the X-axis of the body. lp represents
displacement in the same direction as lx, and this is the distance that pitch control actuator
varies. lz is the constant distance from the average center of mass to the average center of
pressure of the wings along the Z-axis of the body.

+↙
∑

Fx,body = mu̇

+↘
∑

Fz,body = mẇ

+ ⟳
∑

My,body = Iyy θ̈

(6-2)

Summing forces and moments and using Equations 6-2, the nonlinear state derivatives can
be extracted. These are given in Equations 6-3.
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XA = 2bx[lz θ̇ + l̇p − u]

ZA = 2bz[−w − (lp + lx)θ̇]

T = c1f + c2

Figure 6-9: Free body diagram of the FWMAV, longitudinal forces only. C.O.M. - center of
mass, C.O.P. - center of pressure.

u̇ = −sin(θ)g − 2bxu

m
+

2lzbxθ̇

m
+

2bx l̇p
m

ẇ = cos(θ)g − 2c1f

m
− 2c2

m
− 2bzw

m
− 2bz(lp + lx)θ̇

m

θ̈ = [2bxlzu− 2bxl
2
z θ̇ − 2bxlz l̇p − 2c1f(lp + lx)

− 2c2(lp + lx)− 2bzw(lp + lx)− 2bz(lp + lx)
2θ̇]/Iyy

(6-3)

The transfer function for flapping frequency was identified to be T (s) = 12.35
s+12.35 in Section

6-1. In the time domain, this represents ḟ + 12.35f = 12.35fc, where fc is the commanded
flapping frequency. This flapping frequency command can be related to the PWM commands
via the relationships in Figure 6-2, though these do not incorporate the effect of oncoing
airspeed on the achieved flapping frequency. The transfer function for lp or the portion
of the pitch moment leverage arm that can be varied by the actuator was identified to be
T (s) = 558.8

s2+30.55s+558.8
. In the time domain this represents l̈p + 30.55l̇p + 558.8lp = 558.8lp,c,

where lp,c is the commanded value. The pitch moment leverage arm can be calculated via
lp,c = lysin(Γ), where ly is the nominal distance of the center of pressure of a wing pair from
the center of mass along the body y-axis and Γ is the dihedral angle.

6-5 Model validation

This section presents the conducted model validation efforts. A previously collected dataset
from flight tests conducted in the CyberZoo of the TU Delft Aerospace Engineering depart-
ment was used to compare model output to actual flight. The OptiTrack system was used to
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Figure 6-10: Model fit with previously identified values. X-axis is data point index

measure the position and attitude of the DelFly Transformer in time. OptiTrack is a motion
capture system based on a grid arrangement of camerasDifferentiation leads to estimates of
translational and rotational velocities and accelerations. All states were low pass filtered at 50
Hz with a Butterworth filter. In order to compare model output and the OptiTrack-derived
accelerations, Linear and angular accelerations from the model were calculated with Equa-
tions 6-3 using the OptiTrack-derived states. The comparison between the OptiTrack-derived
and model output accelerations is given in Figure 6-10.
It was found that the actuator command was not appropriate to use for calculating the
real position of the pitch actuator, because the actual dihedral angle differs strongly from
the command. This could be due to some compliance or play in the mechanical design.
Another reason could be that the aerodynamic force generated from oncoming air as the
DelFly pitches forward is strong enough to be quite a difficulty for the pitch servo, which has
to give stronger commands to achieve stability. A new attempt at validation was made after
using measurements of the actual position of the wing hinges. Furthermore, the second pitch
maneuver in 6-10 was disqualified from the comparison since the hinge location fix was lost
by OptiTrack for this maneuver. The first pitch maneuver is the same. Figure 6-11 shows
that the model is now in better agreement in terms of the angular accelerations. The noisy
output of the calculation is the result of using an optitrack-derived hinge angle, which was
noisier than the states, but was still filtered with 50 Hz Butterworth low pass filter. The
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Figure 6-11: Model fit with previously identified values and actual hinge position. X-axis is data
point index

linear acceleration state derivative u̇ shows the correct trend, but ẇ shows a discrepancy. It
is not clear where this comes from.
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Appendix A

Individual flight maneuvers - dataset I

A-1 Maneuvers with 15 degree pitch setpoints
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Figure A-1: First validation step maneuver with 15 degree pitch forwardsetpoint.
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Figure A-2: Second validation step maneuver with 15 degree pitch forward setpoint.
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Figure A-3: Third validation step maneuver with 15 degree pitch forward setpoint.
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Figure A-4: Fourth validation step maneuver with 15 degree pitch forward setpoint.
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Figure A-5: Fifth validation step maneuver with 15 degree pitch forward setpoint.
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Figure A-6: First validation step maneuver with 15 degree pitch backward setpoint.
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Figure A-7: Second validation step maneuver with 15 degree pitch backward setpoint.
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Figure A-8: Third validation step maneuver with 15 degree pitch backward setpoint.
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Figure A-9: Fourth validation step maneuver with 15 degree pitch backward setpoint.
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Figure A-10: First validation step maneuver with 30 degree pitch forward setpoint.
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Figure A-11: Second validation step maneuver with 30 degree pitch forward setpoint.
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Figure A-12: Third validation step maneuver with 30 degree pitch forward setpoint.
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Figure A-13: Fourth validation step maneuver with 30 degree pitch forward setpoint.
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Figure A-14: Fifth validation step maneuver with 30 degree pitch forward setpoint.
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Figure A-15: Sixth validation step maneuver with 30 degree pitch forward setpoint.
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Figure A-16: First validation step maneuver with 30 degree pitch backward setpoint.
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Figure A-17: Second validation step maneuver with 30 degree pitch backward setpoint.
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Figure A-18: Third validation step maneuver with 30 degree pitch backward setpoint.
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Figure A-19: Fourth validation step maneuver with 30 degree pitch backward setpoint.
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Figure A-20: Fifth validation step maneuver with 30 degree pitch backward setpoint.
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Figure A-21: First validation step maneuver with 45 degree pitch forward setpoint.
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Figure A-22: Second validation step maneuver with 45 degree pitch forward setpoint.
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Figure A-23: Third validation step maneuver with 45 degree pitch forward setpoint.
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Figure A-24: Fourth validation step maneuver with 45 degree pitch forward setpoint.
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Figure A-25: Fifth validation step maneuver with 45 degree pitch forward setpoint.
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Figure A-26: Sixth validation step maneuver with 45 degree pitch forward setpoint.
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Figure A-27: Seventh validation step maneuver with 45 degree pitch forward setpoint.
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Figure A-28: Eighth validation step maneuver with 45 degree pitch forward setpoint.
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Figure A-29: Ninth validation step maneuver with 45 degree pitch forward setpoint.
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Figure A-30: Tenth validation step maneuver with 45 degree pitch forward setpoint.

0 1 2 3 4 5

Time [s]

-50

-40

-30

-20

-10

0

10

P
it
c
h
 [
d
e
g
]

Validation maneuver #11: forward pulse

Balanced c.g., 45 degree setpoint

Mean Absolute Error = 3.0992 deg.

IMU

Opti

Sim

Setpoint

Figure A-31: Eleventh validation step maneuver with 45 degree pitch forward setpoint.
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Figure A-32: First validation step maneuver with 45 degree pitch backward setpoint.
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Figure A-33: Second validation step maneuver with 45 degree pitch backward setpoint.
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Figure A-34: Third validation step maneuver with 45 degree pitch backward setpoint.
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Figure A-35: Fourth validation step maneuver with 45 degree pitch backward setpoint.
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Figure A-36: Fifth validation step maneuver with 45 degree pitch backward setpoint.
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Figure A-37: Sixth validation step maneuver with 45 degree pitch backward setpoint.
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Figure A-38: Seventh validation step maneuver with 45 degree pitch backward setpoint.
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Figure A-39: Eighth validation step maneuver with 45 degree pitch backward setpoint.
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Figure A-40: Ninth validation step maneuver with 45 degree pitch backward setpoint.
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Figure A-41: Tenth validation step maneuver with 45 degree pitch backward setpoint.
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Figure A-42: Eleventh validation step maneuver with 45 degree pitch backward setpoint.
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A-4 Maneuvers with 60 degree pitch setpoints
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Figure A-43: First validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-44: Second validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-45: Third validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-46: Fourth validation step maneuver with 60 degree pitch forward setpoint.

0 0.5 1 1.5 2 2.5 3

Time [s]

-70

-60

-50

-40

-30

-20

-10

0

10

20

P
it
c
h
 [
d
e
g
]

Validation maneuver #5: forward pulse

Balanced c.g., 60 degree setpoint

Mean Absolute Error = 5.9054 deg.

IMU

Opti

Sim

Setpoint

Figure A-47: Fifth validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-48: Sixth validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-49: Seventh validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-50: Eighth validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-51: Ninth validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-52: Tenth validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-53: Eleventh validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-54: Twelfth validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-55: Thirteenth validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-56: Fourteenth validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-57: Fifteenth validation step maneuver with 60 degree pitch forward setpoint.
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Figure A-58: First validation step maneuver with 60 degree pitch backward setpoint.
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Figure A-59: Second validation step maneuver with 60 degree pitch backward setpoint.
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Figure A-60: Third validation step maneuver with 60 degree pitch backward setpoint.
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A-5 Maneuvers with 70 degree pitch setpoints
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Figure A-61: First validation step maneuver with 70 degree pitch forward setpoint.
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Figure A-62: Second validation step maneuver with 70 degree pitch forward setpoint.
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Figure A-63: Third validation step maneuver with 70 degree pitch forward setpoint.
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Figure A-64: Fourth validation step maneuver with 70 degree pitch forward setpoint.
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A-6 Maneuvers with 80 degree pitch setpoints
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Figure A-65: First validation step maneuver with 80 degree pitch forward setpoint.
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Figure A-66: Second validation step maneuver with 80 degree pitch forward setpoint.
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Figure A-67: Third validation step maneuver with 80 degree pitch forward setpoint.
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Figure A-68: Fourth validation step maneuver with 80 degree pitch forward setpoint.

0 1 2 3 4 5 6 7 8 9

Time [s]

-80

-70

-60

-50

-40

-30

-20

-10

0

10

P
it
c
h

 [
d

e
g

]

Validation maneuver #5: forward pulse

Balanced c.g., 80 degree setpoint

Mean Absolute Error = 27.136 deg.

IMU

Opti

Sim

Setpoint

Figure A-69: Fifth validation step maneuver with 80 degree pitch forward setpoint.
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Figure A-70: Sixth validation step maneuver with 80 degree pitch forward setpoint.
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Figure A-71: Seventh validation step maneuver with 80 degree pitch forward setpoint.
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Figure A-72: Eighth validation step maneuver with 80 degree pitch forward setpoint.
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Appendix B

Individual flight maneuvers - dataset II

B-1 Maneuvers with front heavy center of mass and 30 degree
pitch setpoints
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Figure B-1: First validation step maneuver with a front heavy ( 4.8mm) center of mass and 30
degree pitch forward setpoint.
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Figure B-2: Second validation step maneuver with a front heavy ( 4.8mm) center of mass and
30 degree pitch forward setpoint.
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Figure B-3: Third validation step maneuver with a front heavy ( 4.8mm) center of mass and 30
degree pitch forward setpoint.
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Figure B-4: Fourth validation step maneuver with a front heavy ( 4.8mm) center of mass and
30 degree pitch forward setpoint.
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Figure B-5: Fifth validation step maneuver with a front heavy ( 4.8mm) center of mass and 30
degree pitch forward setpoint.
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Figure B-6: Sixth validation step maneuver with a front heavy ( 4.8mm) center of mass and 30
degree pitch forward setpoint.
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Figure B-7: First validation step maneuver with a front heavy ( 4.8mm) center of mass and 30
degree pitch backward setpoint.
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Figure B-8: Second validation step maneuver with a front heavy ( 4.8mm) center of mass and
30 degree pitch backward setpoint.
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Figure B-9: Third validation step maneuver with a front heavy ( 4.8mm) center of mass and 30
degree pitch backward setpoint.
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Figure B-10: Fourth validation step maneuver with a front heavy ( 4.8mm) center of mass and
30 degree pitch backward setpoint.
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Figure B-11: Fifth validation step maneuver with a front heavy ( 4.8mm) center of mass and
30 degree pitch backward setpoint.
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Figure B-12: Sixth validation step maneuver with a front heavy ( 4.8mm) center of mass and
30 degree pitch backward setpoint.
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Figure B-13: Seventh validation step maneuver with a front heavy ( 4.8mm) center of mass and
30 degree pitch backward setpoint.
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B-2 Maneuvers with bottom heavy center of mass and 30 degree
pitch setpoints
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Figure B-14: First validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch forward setpoint.
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Figure B-15: Second validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch forward setpoint.
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Figure B-16: Third validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch forward setpoint.
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Figure B-17: Fourth validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch forward setpoint.
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Figure B-18: Fifth validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch forward setpoint.
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Figure B-19: Sixth validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch forward setpoint.
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Figure B-20: Seventh validation step maneuver with a bottom heavy ( 6mm) center of mass
and 30 degree pitch forward setpoint.
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Figure B-21: First validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch backward setpoint.
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Figure B-22: Second validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch backward setpoint.
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Figure B-23: Third validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch backward setpoint.
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Figure B-24: Fourth validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch backward setpoint.
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Figure B-25: Fifth validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch backward setpoint.
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Figure B-26: Sixth validation step maneuver with a bottom heavy ( 6mm) center of mass and
30 degree pitch backward setpoint.
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Figure B-27: Seventh validation step maneuver with a bottom heavy ( 6mm) center of mass
and 30 degree pitch backward setpoint.
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Appendix C

Individual flight maneuvers - dataset
III

C-1 Maneuvers with 40 degree pitch setpoints, baseline controller
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Figure C-1: First validation step maneuver with baseline controller and 40 degree pitch backward
setpoint.
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Figure C-2: Second validation step maneuver with baseline controller and 40 degree pitch back-
ward setpoint.
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Figure C-3: Third validation step maneuver with baseline controller and 40 degree pitch backward
setpoint.
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Figure C-4: Fourth validation step maneuver with baseline controller and 40 degree pitch back-
ward setpoint.
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Figure C-5: First validation step maneuver with baseline controller and 40 degree pitch forward
setpoint.
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Figure C-6: Second validation step maneuver with baseline controller and 40 degree pitch forward
setpoint.
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C-2 Maneuvers with 40 degree pitch setpoints, command filter
cutoff 10 Hz
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Figure C-7: First validation step maneuver with 10 Hz command filter cutoff frequency and 40
degree pitch forward setpoint.
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Figure C-8: Second validation step maneuver with 10 Hz command filter cutoff frequency and
40 degree pitch forward setpoint.
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Figure C-9: Third validation step maneuver with 10 Hz command filter cutoff frequency and 40
degree pitch forward setpoint.
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Figure C-10: Fourth validation step maneuver with 10 Hz command filter cutoff frequency and
40 degree pitch forward setpoint.
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Figure C-11: Fifth validation step maneuver with 10 Hz command filter cutoff frequency and 40
degree pitch forward setpoint.
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Figure C-12: Sixth validation step maneuver with 10 Hz command filter cutoff frequency and
40 degree pitch forward setpoint.
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Figure C-13: Seventh validation step maneuver with 10 Hz command filter cutoff frequency and
40 degree pitch forward setpoint.
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Figure C-14: Eighth validation step maneuver with 10 Hz command filter cutoff frequency and
40 degree pitch forward setpoint.
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Figure C-15: First validation step maneuver with 10 Hz command filter cutoff frequency and 40
degree pitch backward setpoint.
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Figure C-16: Second validation step maneuver with 10 Hz command filter cutoff frequency and
40 degree pitch backward setpoint.
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Figure C-17: Third validation step maneuver with 10 Hz command filter cutoff frequency and
40 degree pitch backward setpoint.
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Figure C-18: Fourth validation step maneuver with 10 Hz command filter cutoff frequency and
40 degree pitch backward setpoint.
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Figure C-19: Fifth validation step maneuver with 10 Hz command filter cutoff frequency and 40
degree pitch backward setpoint.
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Figure C-20: Sixth validation step maneuver with 10 Hz command filter cutoff frequency and
40 degree pitch backward setpoint.
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Figure C-21: Seventh validation step maneuver with 10 Hz command filter cutoff frequency and
40 degree pitch backward setpoint.
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C-3 Maneuvers with 40 degree pitch setpoints, command filter
cutoff 256 Hz
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Figure C-22: First validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch forward setpoint.
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Figure C-23: Second validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch forward setpoint.
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Figure C-24: Third validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch forward setpoint.
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Figure C-25: Fourth validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch forward setpoint.
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Figure C-26: Fifth validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch forward setpoint.
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Figure C-27: Sixth validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch forward setpoint.
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Figure C-28: Seventh validation step maneuver with 256 Hz command filter cutoff frequency
and 40 degree pitch forward setpoint.
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Figure C-29: First validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch backward setpoint.
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Figure C-30: Second validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch backward setpoint.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Time [s]

-10

0

10

20

30

40

P
it
c
h
 [
d
e
g
]

Validation maneuver #10: backward pulse

Balanced c.g., 40 degree setpoint, Fc = 256

Mean Absolute Error = 2.4172 deg.

IMU

Opti

Sim

Setpoint

Figure C-31: Third validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch backward setpoint.
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Figure C-32: Fourth validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch backward setpoint.
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Figure C-33: Fifth validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch backward setpoint.
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Figure C-34: Sixth validation step maneuver with 256 Hz command filter cutoff frequency and
40 degree pitch backward setpoint.
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Figure C-35: Seventh validation step maneuver with 256 Hz command filter cutoff frequency
and 40 degree pitch backward setpoint.
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C-4 Maneuvers with 40 degree pitch setpoints, rate feedback gain
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Figure C-36: First validation step maneuver with rate feedback 600 (PPRZ units) and 40 degree
pitch forward setpoint.
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Figure C-37: Second validation step maneuver with rate feedback 600 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-38: Third validation step maneuver with rate feedback 600 (PPRZ units) and 40 degree
pitch forward setpoint.
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Figure C-39: Fourth validation step maneuver with rate feedback 600 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-40: Fifth validation step maneuver with rate feedback 600 (PPRZ units) and 40 degree
pitch forward setpoint.
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Figure C-41: Sixth validation step maneuver with rate feedback 600 (PPRZ units) and 40 degree
pitch forward setpoint.
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Figure C-42: Seventh validation step maneuver with rate feedback 600 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-43: First validation step maneuver with rate feedback 600 (PPRZ units) and 40 degree
pitch backward setpoint.
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Figure C-44: Second validation step maneuver with rate feedback 600 (PPRZ units) and 40
degree pitch backward setpoint.
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Figure C-45: Third validation step maneuver with rate feedback 600 (PPRZ units) and 40 degree
pitch backward setpoint.
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Figure C-46: Fourth validation step maneuver with rate feedback 600 (PPRZ units) and 40
degree pitch backward setpoint.
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Figure C-47: Fifth validation step maneuver with rate feedback 600 (PPRZ units) and 40 degree
pitch backward setpoint.
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Figure C-48: Sixth validation step maneuver with rate feedback 600 (PPRZ units) and 40 degree
pitch backward setpoint.
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Figure C-49: Seventh validation step maneuver with rate feedback 600 (PPRZ units) and 40
degree pitch backward setpoint.
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C-5 Maneuvers with 40 degree pitch setpoints, rate feedback gain
800
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Figure C-50: First validation step maneuver with rate feedback 800 (PPRZ units) and 40 degree
pitch forward setpoint.
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Figure C-51: Second validation step maneuver with rate feedback 800 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-52: Third validation step maneuver with rate feedback 800 (PPRZ units) and 40 degree
pitch forward setpoint.
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Figure C-53: Fourth validation step maneuver with rate feedback 800 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-54: Fifth validation step maneuver with rate feedback 800 (PPRZ units) and 40 degree
pitch forward setpoint.
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Figure C-55: Sixth validation step maneuver with rate feedback 800 (PPRZ units) and 40 degree
pitch forward setpoint.
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Figure C-56: Seventh validation step maneuver with rate feedback 800 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-57: First validation step maneuver with rate feedback 800 (PPRZ units) and 40 degree
pitch backward setpoint.
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Figure C-58: Second validation step maneuver with rate feedback 800 (PPRZ units) and 40
degree pitch backward setpoint.
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Figure C-59: Third validation step maneuver with rate feedback 800 (PPRZ units) and 40 degree
pitch backward setpoint.
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Figure C-60: Fourth validation step maneuver with rate feedback 800 (PPRZ units) and 40
degree pitch backward setpoint.
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Figure C-61: Fifth validation step maneuver with rate feedback 800 (PPRZ units) and 40 degree
pitch backward setpoint.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time [s]

-40

-30

-20

-10

0

10

20

30

40

50

P
it
c
h
 [
d
e
g
]

Validation maneuver #13: backward pulse

Balanced c.g., 40 degree setpoint, Kd = 800

Mean Absolute Error = 6.77 deg.

IMU

Opti

Sim

Setpoint

Figure C-62: Sixth validation step maneuver with rate feedback 800 (PPRZ units) and 40 degree
pitch backward setpoint.

K.M. Kajak A minimal longitudinal dynamic model of a tailless flapping wing robot



C-6 Maneuvers with 40 degree pitch setpoints, attitude feedback gain 3900 115

C-6 Maneuvers with 40 degree pitch setpoints, attitude feedback
gain 3900
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Figure C-63: First validation step maneuver with attitude feedback 3900 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-64: Second validation step maneuver with attitude feedback 3900 (PPRZ units) and
40 degree pitch forward setpoint.
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Figure C-65: Third validation step maneuver with attitude feedback 3900 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-66: Fourth validation step maneuver with attitude feedback 3900 (PPRZ units) and
40 degree pitch forward setpoint.
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Figure C-67: Fifth validation step maneuver with attitude feedback 3900 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-68: Sixth validation step maneuver with attitude feedback 3900 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-69: Seventh validation step maneuver with attitude feedback 3900 (PPRZ units) and
40 degree pitch forward setpoint.
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Figure C-70: Eighth validation step maneuver with attitude feedback 3900 (PPRZ units) and
40 degree pitch forward setpoint.
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Figure C-71: Ninth validation step maneuver with attitude feedback 3900 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-72: First validation step maneuver with attitude feedback 3900 (PPRZ units) and 40
degree pitch backward setpoint.
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Figure C-73: Second validation step maneuver with attitude feedback 3900 (PPRZ units) and
40 degree pitch backward setpoint.

K.M. Kajak A minimal longitudinal dynamic model of a tailless flapping wing robot



C-6 Maneuvers with 40 degree pitch setpoints, attitude feedback gain 3900 119

0 1 2 3 4 5

Time [s]

-10

0

10

20

30

40

P
it
c
h
 [
d
e
g
]

Validation maneuver #12: backward pulse

Balanced c.g., 40 degree setpoint, Kp = 3900

Mean Absolute Error = 3.1411 deg.

IMU

Opti

Sim

Setpoint

Figure C-74: Third validation step maneuver with attitude feedback 3900 (PPRZ units) and 40
degree pitch backward setpoint.
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Figure C-75: Fourth validation step maneuver with attitude feedback 3900 (PPRZ units) and
40 degree pitch backward setpoint.
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Figure C-76: Fifth validation step maneuver with attitude feedback 3900 (PPRZ units) and 40
degree pitch backward setpoint.
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Figure C-77: Sixth validation step maneuver with attitude feedback 3900 (PPRZ units) and 40
degree pitch backward setpoint.
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Figure C-78: Seventh validation step maneuver with attitude feedback 3900 (PPRZ units) and
40 degree pitch backward setpoint.
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Figure C-79: Eighth validation step maneuver with attitude feedback 3900 (PPRZ units) and
40 degree pitch backward setpoint.
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C-7 Maneuvers with 40 degree pitch setpoints, attitude feedback
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Figure C-80: First validation step maneuver with attitude feedback 11700 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-81: Second validation step maneuver with attitude feedback 3900 (PPRZ units) and
40 degree pitch forward setpoint.
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Figure C-82: Third validation step maneuver with attitude feedback 11700 (PPRZ units) and
40 degree pitch forward setpoint.
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Figure C-83: Fourth validation step maneuver with attitude feedback 11700 (PPRZ units) and
40 degree pitch forward setpoint.
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Figure C-84: Fifth validation step maneuver with attitude feedback 11700 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-85: Sixth validation step maneuver with attitude feedback 11700 (PPRZ units) and 40
degree pitch forward setpoint.
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Figure C-86: Seventh validation step maneuver with attitude feedback 11700 (PPRZ units) and
40 degree pitch forward setpoint.
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Figure C-87: Eighth validation step maneuver with attitude feedback 11700 (PPRZ units) and
40 degree pitch forward setpoint.
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Figure C-88: Ninth validation step maneuver with attitude feedback 11700 (PPRZ units) and
40 degree pitch backward setpoint.
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Figure C-89: First validation step maneuver with attitude feedback 11700 (PPRZ units) and 40
degree pitch backward setpoint.
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Figure C-90: Second validation step maneuver with attitude feedback 11700 (PPRZ units) and
40 degree pitch backward setpoint.
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Figure C-91: Third validation step maneuver with attitude feedback 11700 (PPRZ units) and
40 degree pitch backward setpoint.
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Figure C-92: Fourth validation step maneuver with attitude feedback 11700 (PPRZ units) and
40 degree pitch backward setpoint.
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Figure C-93: Fifth validation step maneuver with attitude feedback 11700 (PPRZ units) and 40
degree pitch backward setpoint.
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Figure C-94: Sixth validation step maneuver with attitude feedback 11700 (PPRZ units) and 40
degree pitch backward setpoint.
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