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ABSTRACT

In recent years, visual Simultaneous Localization and Mapping (SLAM) have gained sig-
nificant attention and found wide-ranging applications in diverse scenarios. Recent ad-
vances in computer vision and deep learning also enrich visual SLAM capabilities in
scene understanding and large-scale operation. However, despite remarkable perfor-
mance in these fields, most visual SLAM frameworks are designed with the static world
assumption. Thus, they often confront challenges in dynamic environments, manifest-
ing reduced localization accuracy, tracking failures, and restricted generalization.

To investigate the impact of moving objects in dynamic indoor environments, we
first benchmark representative visual (dynamic) SLAM approaches, complemented by
robustness assessments for preliminary insights. During this process, we adopt chal-
lenging sequences from GRADE, an ideal platform for simulating dynamic indoor scenes.
Notably, the mainstream of dynamic SLAM methods employs detection or segmentation
techniques as solutions. To explore the correlation between detector accuracy and over-
all SLAM performance, we integrate a series of trained YOLOv5 and Mask R-CNN mod-
els, each with varying accuracy levels, into dynamic SLAM systems. Subsequently, we
evaluate these configurations on the TUM RGB-D sequences. Contrary to common in-
tuition, the experiments indicate that more accurate object detectors do not necessarily
lead to improved visual SLAM performance. This benchmarking process also illuminates
several inherent limitations of current dynamic SLAM techniques, underscoring the im-
perative for further advancements.

Building upon these insights, we introduce DynaPix SLAM, an innovative visual SLAM
system for dynamic indoor environments, where participation of visual cues (e.g., fea-
tures) is weighted based on per-pixel motion probability values. Our approach con-
sists of a semantic-free pixel-wise motion estimation module and an improved pose
optimization process. In the first stage, our motion probability estimator employs a
novel static background differencing method on both images and optical flows to iden-
tify moving regions. These probabilities are then incorporated into the map point se-
lection and weighted bundle adjustment for backend optimization. We evaluate our
DynaPix SLAM and its variant, DynaPix-D, in comparison with ORB-SLAM2 and Dy-
naSLAM. These assessments are performed on both TUM RGB-D and GRADE sequences,
with additional tests on the static versions of the GRADE ones. The results demonstrate
that DynaPix SLAM consistently outperforms the other methods, showcasing reduced
localization errors and longer tracking durations across various scenarios.
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d , Ĩ t+i
d ) and static scenes F (I t

s , Ĩ t+i
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1
INTRODUCTION

1.1 BACKGROUND
Simultaneous Localization and Mapping (SLAM) technology has undergone significant
development over the past three decades since the concept was initially proposed in
1986 [1]. The SLAM process involves simultaneous estimation of robot states and map
construction of operation environments using onboard sensors, where the constructed
maps can inform path planning for robot navigation and support higher-level represen-
tations to enable human-robot interaction [2]. Thus, SLAM algorithms currently find
wide-ranging applications in various scenarios, including indoor service robots [3], au-
tonomous vehicles [4], aerial robot navigation [5], and augmented reality devices [6].

To perceive surrounding environments, a wide range of sensors are utilized in SLAM
systems, including Laser Rangefinder (LRF), Light Detection and Ranging (LiDAR), Radio
Detection and Ranging (Radar), cameras, and more [7]. Among these, cameras provide
rich visual information about the environment at a relatively low cost compared to other
sensor modalities. As a result, visual SLAM [8] has received tremendous attention in re-
cent years, mainly in the form of monocular [9], RGB-D [10], or stereo-based [11] meth-
ods. Furthermore, recent advances in deep learning empower visual SLAM systems [12,
13, 14] to integrate cutting-edge computer vision techniques, such as recognition, detec-
tion, and segmentation. This enhances scene comprehension and incorporates seman-
tic information into the SLAM process, thereby enabling more advanced applications.

(a) Point cloud map (b) Densely reconstructed map (c) Semantically annotated map

Figure 1.1: Illustration of SLAM applications in the real world. (a) exhibits the outdoor point cloud map
generated by 3D LiDAR SLAM [15]. (b) shows the reconstructed office from the dense visual SLAM system
Elastic Fusion [16]. (c) displays the modern semantic map generated by Kimera [14]

With the growing demand for applications in large-scale scenes, numerous visual
SLAM frameworks adopt the graph-based formulation [17] to achieve higher accuracy
and efficiency, as opposed to the filter-based approaches [18, 19]. To facilitate this real-
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world deployment, techniques such as bundle adjustment (BA) [20], pose graph opti-
mization [21], and place recognition (for loop closure) [22] have been introduced to re-
duce increasing computational complexity and accumulated localization errors. Thus,
current visual SLAM frameworks typically comprise the following core modules: i) Front
End Visual Odometry, ii) Back End Optimization, iii) Loop Closure Detection, and iv)
Mapping, as shown in Figure 1.2. These modules are designed with the assumption of
an ideally static world [23, 24], where changes between adjacent frames are only due
to robot/camera movement. In other words, the observed landmarks (3D map points
registered from image features) should remain static and unchanged.

Figure 1.2: Architecture of Classic Visual SLAM Framework [8].

However, real-world scenarios inevitably involve many short-term dynamic entities
(e.g., pedestrians or vehicles) and variations over longer time scales (e.g., seasonal changes
or altered placements). The presence of these variations directly induces misleading vi-
sual information, including false associations between visual features and landmarks,
incorrect place recognition, and sensor occlusions. Such disruptions severely impact,
and in some cases, even terminate the operation of core modules like state estimation
and loop closure detection. Consequently, dynamically changing scenes can cause a
significant degradation in both estimation accuracy and system robustness of these
visual SLAM systems.

Moreover, although recent approaches have demonstrated remarkable accuracy in
well-established benchmark datasets like TUM RGB-D [25] and KITTI [26], most visual
SLAM algorithms demand extensive tuning to adapt to diverse environments [2]. Even
after such fine-tuning, these well-designed systems can underperform or fail in chal-
lenging scenarios, such as highly dynamic/deformable scenes, textureless regions, harsh
environments, or extreme weather/lighting conditions. The limited generalization ca-
pability can be attributed to the scarce availability of real-world data and the consider-
able simulation-to-reality gap. Specifically, this gap is primarily characterized by issues
concerning visual realism, controllable customization, and the absence of featured en-
tities in these scenarios (e.g., moving humans, non-rigid objects, fog, snow).

1.2 MOTIVATION
Despite several studies utilizing advanced detection [13, 27, 28] or learning [29, 30] tech-
niques to address the aforementioned challenges, such as dynamic entities, long-term
variations, and generalized performance, these issues have not been entirely resolved,
hindering their widespread real-world application. Beyond these, Cadena et al. in [2] un-
derscored further open problems in current SLAM research, ranging from fail-recovery
self-tuning SLAM systems to optimal map representation. Within this thesis, our focus



1.3. RESEARCH QUESTION

1

3

narrows to visual SLAM systems in dynamic indoor environments (dynamic SLAM),
with an emphasis on the effects of short-term moving entities, where the prominent re-
search problems can be categorized into three main aspects:

• Accuracy Degradation: Moving objects can directly induce noticeable drift and a
decline in localization accuracy. Although detection modules effectively reduce
the impact of moving objects in dynamic scenes, further investigations are re-
quired into the relationships between detection accuracy and visual SLAM per-
formance. Additionally, this also propels us to examine variations of localization
accuracy within identical dynamic/static environments.

• Tracking Failure: System robustness here primarily concerns the duration of valid
tracking within a single run. Environmental perturbations often lead to tracking
loss without estimation outputs. However, many studies allocate less attention
to this tracking failure issue, leading to inadequate evaluations of overall system
performance, especially in long-term operations.

• Generalized Performance: The adaptability of SLAM systems across diverse sce-
narios still demands extensive tuning efforts, particularly in challenging environ-
ments. Notably, while many dynamic SLAM approaches excel in dynamic scenes
due to specialized strategies for moving objects, they often underperform in static
scenarios. This limited generalization can be further constrained by a dependency
on underlying detection/segmentation modules.

To address these, we will first benchmark various state-of-the-art visual (dynamic)
SLAM approaches to draw preliminary insights into their overall performance. Further-
more, we aim to investigate how different detection and segmentation performances
influence both the accuracy and robustness capabilities of such methods. By employ-
ing challenging sequences from the GRADE dataset [31], this benchmarking process is
a fundamental step to understand the existing limitations and identify how we can im-
prove these systems. Following this, we will propose an innovative dynamic SLAM ap-
proach designed to resolve these issues, characterized by improved tracking duration
and generalized performance across diverse scenes. Ultimately, this work strives to pro-
vide significant contributions to the SLAM community through insightful suggestions
and innovative solutions, addressing current limitations and pushing the boundaries of
visual SLAM for dynamic indoor environments.

1.3 RESEARCH QUESTION
Along with exploring key challenges in dynamic SLAM, this thesis articulates a series of
specific research questions to direct each segment of the study, formulated as follows:

• Are current testing and evaluation techniques adequate for advancing dynamic
SLAM research, particularly regarding robustness assessment?

• What limitations persist in current dynamic SLAM systems, and how can we pro-
pose an approach to effectively overcome these issues?
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• How do different visual (dynamic) SLAM algorithms perform when confronted
with dynamic entities within the challenging GRADE sequences?

• What is the impact of detection and segmentation accuracy on dynamic SLAM
capabilities? Specifically, does higher detector accuracy lead to improved visual
SLAM performance in dynamic scenes?

• How does the localization accuracy vary between dynamic scenes and their corre-
sponding static ones? That is, do these dynamic SLAM strategies maintain com-
parable performance without compromise in static environments?

1.4 CONTRIBUTION
The main contributions of this thesis can be summarized as follows:

• Toolbox development for the GRADE framework, including data post-processing,
image set formulation, and visual SLAM implementations. Contribute to the con-
struction and annotation of a real-world image set for instance segmentation, com-
prising 3579 images, 5362 human instances, and 130 background samples. All rel-
evant code, data, and experimental results are open-source and available.

• Benchmarking various representative visual (dynamic) SLAM approaches on the
challenging GRADE sequences, complemented by robustness assessments and
analysis of failure cases. The customized experiments enable a detailed investi-
gation into the effect of moving entities on visual SLAM systems.

• Investigating the relationship between detector accuracy and its effect on SLAM
performance. This benchmarking process integrates a series of trained model
weights into dynamic SLAM systems for testing on the TUM RGB-D sequences.

• Introducing a novel visual SLAM system for dynamic indoor environments based
on per-pixel motion probabilities, achieving a better trade-off between localiza-
tion accuracy and operational robustness. The proposed pixel-wise motion esti-
mation module can identify moving regions without relying on semantic informa-
tion and overcome the inaccuracies inherent in optical flow calculations.

1.5 THESIS OUTLINE
The remainder of this thesis is structured as: Chapter 2 provides a comprehensive re-
view of the prevailing testing and evaluation techniques in visual SLAM research. Chap-
ter 3 delves into the recent advancements in dynamic SLAM across various fields. In
Chapter 4, we detail our SLAM benchmarking experiments and investigate the relation-
ship between detector accuracy and dynamic SLAM performance, complemented by
thorough analyses. Chapter 5 introduces our innovative dynamic SLAM system, Dy-
naPix SLAM, and evaluates its performance through extensive experiments on both the
GRADE and TUM RGB-D sequences. Lastly, Chapter 6 concludes this thesis, summariz-
ing our principal findings and outlining directions for future work.



2
TESTING & EVALUATION

Beyond the core modules of SLAM frameworks, the testing and evaluation processes play
a crucial role in verifying the effectiveness of a visual SLAM system. Generally, SLAM
algorithms are tested through targeted simulations or by using off-the-shelf datasets,
which can effectively replicate practical scenarios with less danger and financial bur-
dens. The use of appropriate metrics ensures a fair assessment of SLAM performance.
Within this chapter, our focus revolves around the argument "Are current testing and
evaluation methods adequate for advancing visual SLAM research?".

2.1 SIMULATION
The robotics community has historically employed simulation software for a variety of
tasks, including perception, navigation, and motion control. Indeed, they are all tasks
that are dangerous to be performed directly in the real world due to the inherent dan-
ger of damaging objects, hurting people, and destroying equipment due to unexpected
or unaccounted errors, noise, or malfunctions of the robotic platforms. Thus, they usu-
ally require verification in simulation prior to their deployment. Clearly, since SLAM
comprises both navigation, perception and motion control, especially in its active (au-
tonomous) modality [32], simulation is an essential building block to develop such a
system. This is especially true within the context of dynamic SLAM research. For that,
an ideal simulation, aimed at bridging the simulation-to-reality gap, should exhibit the
following critical characteristics [31]: i) physical realism, ii) photorealism, iii) full con-
trollability, and particularly, iv) the inclusion of dynamic entities. However, the majority
of existing simulation frameworks fail to comprise all these aspects.

Gazebo [33], presently the most popular framework for robot simulations, is tightly
integrated with the Robot Operating System (ROS) framework [34] for offline program-
ming and fast prototyping. Similarly, simulators like CARLA [35], WeBots [36], Cop-
peliaSim [37], and RobotStudio [38] have also been widely adopted due to their com-
prehensive infrastructure and reliable physics engines, which support a wide range of
sensors, actuators, and robot configurations. However, these platforms primarily em-
phasize the physical modeling and control of robots to achieve realistic motion and be-
havior, placing less attention on the fidelity of their working environments. As a result,
the visual realism in these simulators is not entirely satisfactory, and constructing ex-
pected dynamic scenarios (e.g., indoor environments with naturally moving humans)
often demands significant effort.

Thanks to recent advancements in graphics and embodied AI research, more simu-
lators with impressive visual realism have emerged [39]. For instance, Gibson [40] and
AI-Habitat [41] are constructed through full 3D scans, specializing in indoor visual nav-

5
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igation. Meanwhile, iGibson [40] and AI2Thor [42] are distinguished for their highly in-
teractive capabilities and extended physical representations of 3D assets. Nevertheless,
these platforms either contain unrealistic artifacts stemming from the scanning process
or display insufficient visual realism due to a simplified rendering process. On the other
hand, simulators including AirSim [43], Sim4CV [44], and BenchBot [45], employing ad-
vanced rendering engines like Unreal Engine 1 and NVIDIA Omniverse 2, provide highly
detailed and visually appealing simulation environments. However, all these simulators
encounter common restrictions, particularly in the absence of dynamic assets and con-
strained flexibility in simulation customization (e.g., indoor placement, robot/sensor
configuration, illumination/material settings).

Figure 2.1: An example of generated data from GRADE [31], assets from Cloth3D humans [46] and one of the
environments from 3D-Front [47]. Top row, left to right: Rendered RGB image, corresponding depth map,
optical flow, and surface normals. Bottom row, left to right: 2D bounding boxes, semantic instances, semantic
segmentation, and SMPL [48] shapes.

Recently, GRADE [31], developed on NVIDIA Issac Sim, steps further by incorporat-
ing dynamic assets (e.g., clothed 3D humans [49, 46, 48], flying objects [50, 51]) into the
simulation, along with highly controllable customization and ROS integration. Despite
imperfections in human-scene interactions and human appearance modeling, GRADE
currently stands as a more suitable platform for dynamic SLAM research compared to
other simulators. Apart from its unique realistic dynamic entities, GRADE also provides
specialized challenging scenarios (i.e., with occlusions) to reveal the weakness of current
visual SLAM approaches. In addition, GRADE contains identical scenes in dynamic en-
vironments and their replicated static environments, fulfilling our need to explore the
performance variations in both scenarios.

2.2 DATASETS
Alternatively, existing datasets offer a cost-effective solution for verification, which en-
sures visual realism and includes dynamic entities by directly using real-world data or
synthesized data from rendering engines. Several widely recognized datasets, such as
TUM RGB-D [25], KITTI [26], and EuRoC [52], serve as public benchmarks for perfor-
mance comparison, which has gradually become a fundamental basis of today’s visual
SLAM research.

1https://www.unrealengine.com/
2https://www.nvidia.com/en-us/omniverse/
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Figure 2.2: Statistics of Evaluated Datasets in Dynamic SLAM Research

However, the usage of existing SLAM datasets is quite biased, as shown in Figure 2.2.
We conducted a survey of adopted datasets from 45 latest dynamic SLAM literature,
which demonstrates that TUM RGB-D appears the most in the dynamic SLAM research.
This may result in over-fitting since each dataset can easily fall into a similar pattern,
thereby remarkable scores on a certain benchmark cannot ensure equal performance in
generalized scenarios. Specifically, TUM RGB-D consists of several short-term indoor
sequences but only covers limited views with slight movements. Therefore, good scores
on certain benchmarks cannot ensure equal performance in the real world.

The reliance on datasets testing pose also other issues. First, prerecorded datasets
have limitations in their adaptability and extension due to the differences in the robot
configuration (e.g., placement of the sensors) and the sensor settings (e.g., sensor type,
focal length). Second, they are an offline processing tool, in which it is not possible to
test active methods that need to interact with the environment or make informative de-
cisions, e.g. active SLAM. Third, they are difficult and expensive to collect because of,
for example, the limitations of ground-truth recording systems such as VICON halls and
the time taken to envision, carry out, and label the experiments. Finally, it is almost
impossible to expand the already collected dataset by adding another LiDAR or modi-
fying camera parameters. Synthesized datasets are also used for SLAM evaluation these
days. Recent progress in random scene generation and photorealistic rendering makes
it theoretically possible to synthesize scene changes for dynamic SLAM, but it would be
difficult to model realistic changes as in natural lives. Moreover, the testing is still limited
to offline methods.

2.3 EVALUATION
Given the testing platforms. evaluation metrics/criteria play important roles in quanti-
fying and comparing the SLAM performance. The mainstream of adopted metrics in-
cludes absolute trajectory error (ATE), relative trajectory error, time-consuming (run-
ning time), CPU usage, and more [7]. We also conducted statistics on evaluation metrics
adopted in the literature, as shown in Figure 2.3. ATE is the most frequent metric ap-
pearing almost in each dynamic SLAM paper, which demonstrates that the importance
of localization accuracy of SLAM system is widely addressed in current research. RPE
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Figure 2.3: Statistics of Evaluation Metrics in Dynamic SLAM Research

and running time quite similarly appear in the literature, illustrating an aided function
in verifying SLAM performance. Robustness evaluation only appears 10 times during
this survey, which is less addressed, requiring more attention on the aspect of robust
operation.

The absolute trajectory error (ATE) measures the localization accuracy by comparing
the absolute distances between the estimated and ground truth trajectories. As both tra-
jectories may lie in different coordinate frames, an external alignment is required by us-
ing rigid-body transformation S ∈ SE(3) to map estimated poses Pi ∈ SE(3) to the ground
truth poses Qi ∈ SE(3), then the ATE at time instant i could be computed as:

Ei := Q−1
i SPi (2.1)

Similarly, the relative pose error (RPE) measures the local accuracy of the trajectory over
a fixed time interval ∆, which can be formulated as:

F∆i = Q−1
i Qi+∆ ·P−1

i Pi+∆ (2.2)

The majority of SLAM algorithms adopt the root mean square error (RMSE) of these met-
rics over the entire sequence for general evaluation, which can be defined respectively:

RMSE(E1:n) = (
1

n

n∑
i=1

||trans(Ei )||2)1/2

RMSE(F1:n ,∆) = (
1

m

m∑
i=1

||trans(Fi )||2)1/2
(2.3)

In addition, more recent studies [53, 54] address tracking rate (TR) for evaluating the
system robustness. This metric, which is often overlooked, represents the ratio between
the actually tracked time over the entire sequence duration.
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DYNAMIC SLAM

In static environments, visual SLAM methods can achieve remarkable performance. How-
ever, moving objects severely affect core modules of such systems as state estimation
and loop closure detection, limiting their deployment in general real-world scenarios.
Since dynamic SLAM approaches are typically built on popular visual SLAM frameworks
(e.g., ORB-SLAM2 [55]), we first introduce some underlying classic algorithms, and then
follow with specific dynamic SLAM approaches.

3.1 VISUAL SLAM
Visual SLAM follows a similar formulation as the general SLAM process [56] as{

P (xk |xk−1,uk ) ⇔ xk = f (xk−1,uk ,wk ), k = 1, ...,K

P (zk, j |xk ,y j ) ⇔ zk, j = h(y j ,xk ,vk. j ), (k, j ) ∈O
(3.1)

where the first line conveys the motion model and the second line represents the ob-
servation model. At a time instant k, xk is the state vector describing the location and
orientation of robot/camera, uk indicates the control input vector applied at time k −1,
y j is the vector describing the location of the i th landmark, and zk, j represents the ob-
servation of the i th landmark from the location xk at time k. wk and vk, j indicate the
Gaussian motion disturbances and Gaussian observation errors, respectively.

Differently, in dynamic SLAM formulation, we have to assume that y j can vary during
each observation. To simplify the problem formulation without considering long-term
variations, we assume that y j is constant if it belongs to the facility structure in indoor
environments (e.g., wall, floor, furniture), as opposed to humans and other movable ob-
jects (e.g., chairs, books, cups).

Most visual SLAM frameworks adopt the bundle adjustment (BA) process for camera
pose optimization. Given matched feature points and initialized camera pose, the cam-
era pose can be further optimized using bundle adjustment (BA), which aims to mini-
mize the sum of reprojection errors for the matched feature points:

{R∗, t∗} = arg min
R,t

1

2

n∑
i=1

∥xi −π(R Xi + t )∥2
2 (3.2)

where R and t represent the camera orientation and position, respectively. Xi and xi

denote the 3D points in the world frame and their corresponding keypoints in the im-
age frame. The function π(·) represents the projection transformation from 3D camera
coordinates to 2D plane coordinates.

9
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Notably, well-known approaches like the ORB-SLAM series [55, 57], Semi-Direct Vi-
sual Odometry (SVO) [58], and VINS series [59, 60] have gained significant popularity
in recent years and can achieve impressive accuracy (<10 cm) when assuming the ob-
served environments are static during the SLAM process. ORB-SLAM2 [55] is a rela-
tively robust feature-based method, which extracts and tracks ORB features from im-
ages to build the sparse map. Moreover, ORB-SLAM3 [57] proposed an improved frame-
work with a visual-inertial and multi-map SLAM system. Compared with the traditional
feature-based methods, direct methods (e.g., SVO [58], DSO [61]) track and triangulate
pixels that are characterized by image gradients to estimate the camera motion, instead
of relying on repeatable feature extractor and correct feature matching. Besides, VINS-
Mono [59] is a typical visual-inertial SLAM framework, which proposed a tightly coupled
and optimization-based visual-inertial odometry to achieve higher accuracy and robust-
ness. Although the visual-inertial SLAM framework can overcome invalid visual tracking
due to occlusion or dynamic objects, this framework typically disables its loop closure
or mapping modules.

3.2 DYNAMIC SLAM
To specify why SLAM degrades in dynamic environments, we first briefly introduce the
pose estimation mechanism. In terms of two-view geometry shown in Fig. 3.1, all ob-
served landmarks (or map points) are taken into the calculation of camera transforma-
tion T ∈ SE(3), where the presence of dynamic factors violates the epipolar constraint
and adversely affect the estimation process [62]. To further illustrate this issue within
the context of multi-view pose optimization, we introduce the pose graph framework
depicted in Fig. 3.2, where the edges connecting camera poses constrain the motion
model, and the edges linking camera poses and landmarks constrain the measurement
model [63]. Notably, dynamic landmarks with associated false edges (denoted as red
elements) can generate negative effects that even impact neighboring pose estimation.

Figure 3.1: Two-view geometry for camera pose estimation with static and dynamic landmarks.

Therefore, built upon classic SLAM frameworks, dynamic SLAM algorithms typically
integrate an external module to discard dynamic factors from the estimation process,
thereby reducing the influence of dynamic factors and improving overall performance.
These modules are typically based on advanced detection (e.g., YOLO [64]) or segmen-
tation (e.g., Mask R-CNN [65] modules. However, these integrations also pose several
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challenges including limited generalization and more frequent tracking failures.

Figure 3.2: Example of pose graph applied in ORB-SLAM2 [55], where circles represent the landmarks (map
points) and triangles denote the camera poses. The yellow highlights the elements that contribute to the
optimization. while the red indicates the dynamic factor.

3.2.1. SEMANTIC-BASED DYNAMIC SLAM
Thanks to recent advancements in computer vision techniques, most SLAM algorithms
are expanded with object detection or semantic segmentation modules to adapt to dy-
namic environments. The dynamic regions are then separately tracked [66, 67] or dis-
carded as outliers [13, 27, 28, 68, 69, 70] to reduce their negative effects in pose estima-
tion. Most of these methods assume that dynamic landmarks are highly correlated to
their semantic attributes. For example, persons and vehicles are regarded as dynamic
objects, while objects like chairs and tables are assumed as static. The features belong-
ing to the dynamic objects will be discarded, and only the supposedly static features can
be retrained for any given frame. DynaSLAM [13] combines Mask R-CNN [65] and multi-
view geometry to process moving objects, while DS-SLAM [27] applies a lightweight Seg-
Net [71] to obtain segmented masks. Similarly, Detect-SLAM [28] uses SSD [72] for object
detection in keyframes, whereas YOLO-SLAM [73] employs YOLOv3 [64] as its underlying
detection module to identify dynamic regions.

However, relying on an a-priori categorization heavily restricts the generalization of
SLAM systems [74, 29] due to their dependency on both the quality of underlying net-
works and the pre-selection of movable object classes. Thus, these methods pay less
attention to the actual motion states of the detected objects. While actually moving ob-
jects not belonging to those classes continue to degrade performance, the ones belong-
ing to them are blindly masked. This easily causes few features retained and degrada-
tion in static scenes with frequent wrong detections, thus further degrading the system
performance and causing possible failures [31]. For instance, the features belonging to
parked cars and temporally static humans will be directly discarded from the estimation
process.

3.2.2. GEOMETRY-BASED DYNAMIC SLAM
On the other hand, instead of extracting semantic information, DymSLAM [66] applies
multi-motion fitting to segment different moving objects to estimate the motion of both
camera and moving objects. Lu et al. [75] combine dense optical flow with depth infor-
mation to generate scene flow masks to capture dynamic regions, while Flowfusion [76]
uses optical flow residuals to highlight dynamic regions in RGB-D point clouds. Dy-
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tanVO [29] proposes an iterative framework to jointly refine both ego-motion estima-
tion and motion segmentation. While effectively overcoming the reliance on semantic
information, these methods are heavily restricted by noise sensitivity in the presence of
imperfect sensors or indoor and highly dynamic environments. This leads to possible
misclassifications, especially when adopting thresholds to identify dynamic objects.

3.2.3. PROBABILITY-BASED DYNAMIC SLAM
Methods that integrate motion probability normally fuse the semantic attributes with
the motion attributes. Detect-SLAM [28] introduces the propagation of motion probabil-
ity derived from object detection, while DP-SLAM [68] and Cheng et al. [69] put forward
dynamic region removal techniques within the Bayesian framework to enhance motion
probability updates. All of these methods, however, eliminate the dynamic features with
a threshold-based filter and do not retain motion probabilities.

More recently, a different strategy has been adopted to preserve more semi-static
feature points by utilizing feature weights in the bundle adjustment (BA) process. WF-
SLAM [77] employs tightly coupled semantic and geometric constraints to evaluate the
weight of each feature point, while OVD-SLAM [78] combines YOLOv5 and sparse optical
flow with a chi-square test to assign feature weights. Both methods incorporate these
feature weights into the BA process to jointly optimize camera poses and feature weights,
ensuring less contribution from dynamic features during each iteration.
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BENCHMARK

Within this chapter, we aim to address the third and fourth research questions via bench-
marking experiments. GRADE provides a comparably ideal platform to simulate dy-
namic indoor environments for visual SLAM operations. Thus, to delve deeper into the
overall performance and potential limitations of current SLAM methods, we benchmark
the representative approaches using challenging sequences from the GRADE, comple-
mented by extended robustness assessments in Section 4.1.

Moreover, to investigate the relationship between detection accuracy and SLAM per-
formance, we apply a series of trained YOLOv5 and Mask R-CNN models with varying
accuracy levels. These models can be seamlessly integrated into the Dynamic-VINS and
DynaSLAM systems. We then test all these configurations on the well-recognized TUM
RGB-D dataset, as detailed in Section 4.2.

4.1 BENCHMARKING DYNAMIC SLAM
We have already introduced the advancements of GRADE [31] in Section 2.1. In order to
make it more convenient for SLAM implementations and benchmarking, we apply pre-
configured sequences from the GRADE dataset in the following sections. Notably, com-
pared to other widely adopted benchmarking datasets, GRADE provides a wide range of
specialized indoor scenarios. These cover most challenges posed by dynamic environ-
ments that could affect visual SLAM systems, including realistic humans with a variety
of movements, deformable (non-rigid) clothing, flying items, and textureless areas.

Figure 4.1: Examples of applied GRADE sequences [31]. From left to right: D sequence with humans only, F
sequence with flying objects, WO sequence with occlusions, and S sequences with no dynamic entities.

The GRADE dataset comprises 342 sequences, each with 1800 frames, amounting to
342 minutes of video. Each sequence lasts 60 seconds and provides RGB (30 fps), depth
(30 fps) and IMU (240 Hz) data for visual (inertial) SLAM inputs. Among the available
sequences, we select 8 specialized sequences (referred to as GRADE sequences) for our
benchmarking process, as illustrated in Figure 4.1. In four of these sequences, the sim-
ulated quadrotor maintains a horizontal flight (H) without movements on the pitch and

13
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roll axes. The remaining four sequences allow free movements along all axes. Static se-
quences (S) exclude any dynamic entities. The dynamic ones can be further categorized
as: only with humans (D); with humans and random flying objects (F); and with tempo-
ral camera occlusions (WO). It is necessary to point out that dynamic entities might be
static during observations. In other words, these dynamic entities can vary their motion
states at different moments, which is consistent with real-world scenarios.

4.1.1. EXPERIMENTAL RESULTS

From the SLAM methods outlined in Chapter 3, we initially assess two popular visual
SLAM methods, ORB-SLAM2 [55] and RTAB-Map [79], to demonstrate the usability of
visual inputs based on their performance on static sequences. Tartan VO [30] is also se-
lected to represent learning-based visual odometry systems. For dynamic SLAM meth-
ods, we incorporate StaticFusion [80], DynaSLAM [13], and Dynamic-VINS [74] (in both
VO and VIO variations) into our benchmarking process. To ensure fairness, all methods
are implemented without parameter tuning, except that the number of features in Dy-
naSLAM and ORB-SLAM2 systems is increased to 3000. Our primary evaluation metrics
are the absolute trajectory error (ATE) and the tracking rate (TR). The results within a
3.5 m depth range are reported in Table 4.1, while the ones within a 5.0 m depth range
are presented in Table 4.2. Further detailed implementation and evaluation process can
be found in our public repository 1.

Table 4.1: ATE RMSE [m] and Tracking Rate (TR) of the GRADE sequences in both their ground-truth and
noisy versions. Each experiment is 60 seconds long and the depth is limited to 3.5 m.

Sequence
Dynamic-VINS (VIO) Dynamic-VINS (VO) Tartan VO StaticFusion DynaSLAM ORB-SLAM2 RTAB-Map
ATE [m] TR ATE [m] TR ATE [m] TR ATE [m] TR ATE [m] TR ATE [m] TR ATE [m] TR

Ground
Truth

FH 0.069 0.99 0.201 0.99 0.551 1.00 0.085 1.00 0.241 0.94 0.149 1.00 0.126 1.00
F 0.647 0.98 1.337 0.95 4.132 1.00 2.866 1.00 0.147 0.18 0.431 0.35 0.115 0.22

DH 8.103 0.99 1.178 0.86 1.259 1.00 1.664 1.00 0.008 0.05 0.005 0.19 0.094 0.64
D 0.188 0.99 1.304 0.99 1.264 1.00 1.212 1.00 0.057 0.89 0.459 1.00 0.492 0.88

WOH 0.239 0.98 1.272 0.98 2.361 1.00 1.98 1.00 0.015 0.54 0.012 0.54 0.042 0.57
WO 0.501 0.96 0.985 0.94 2.38 1.00 2.807 1.00 0.083 0.08 0.163 0.20 0.053 0.16
SH 0.109 0.99 0.023 0.99 2.395 1.00 0.594 1.00 0.016 1.00 0.012 1.00 0.039 1.00
S 0.205 0.99 0.039 0.99 1.205 1.00 7.919 1.00 0.01 1.00 0.011 1.00 0.043 1.00

Noisy

FH 0.155 0.98 0.367 0.99 0.582 1.00 0.854 1.00 0.309 0.98 0.386 1.00 0.097 0.97
F 0.886 0.98 1.857 0.98 4.223 1.00 3.992 1.00 0.179 0.18 0.167 0.26 0.125 0.22

DH 1.681 0.99 1.183 0.95 1.234 1.00 1.091 1.00 0.002 0.04 0.005 0.05 0.013 0.18
D 0.707 0.99 1.598 0.97 1.356 1.00 2.278 1.00 0.043 0.55 0.7 0.82 0.405 0.52

WOH 0.491 0.98 0.871 0.98 2.399 1.00 1.826 1.00 0.023 0.52 0.022 0.54 0.101 0.53
WO 1.086 0.96 1.163 0.95 2.473 1.00 2.213 1.00 0.119 0.08 0.171 0.20 0.075 0.16
SH 0.419 0.99 0.069 0.99 2.517 1.00 4.184 1.00 0.016 1.00 0.018 1.00 0.072 1.00
S 0.177 0.99 0.137 0.99 1.306 1.00 3.538 1.00 0.029 1.00 0.026 1.00 0.133 1.00

As can be inferred from the benchmarking results, most methods perform admirably
in static sequences, achieving remarkable localization accuracy (≤ 10 cm) as expected.
This also demonstrates that visual inputs from the GRADE sequences are effective for
SLAM testing. However, Tartan VO and StaticFusion are notable exceptions across all
testing sequences. Since TartanVO is a learning-based system, a possible reason lies
in that the synthesized GRADE data falls outside the distribution of its original training
set. StaticFusion, on the other hand, exhibits significant drifts when faced with texture-
less areas and shows limited performance over a long period of operation. Despite its

1https://github.com/robot-perception-group/GRADE_tools/blob/main/SLAM_evaluation

https://github.com/robot-perception-group/GRADE_tools/blob/main/SLAM_evaluation
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Table 4.2: ATE RMSE [m] and Tracking Rate (TR) of the GRADE sequences in both their ground-truth and
noisy versions. Each experiment is 60 seconds long and the depth is limited to 5.0 m.

Sequence
Dynamic-VINS (VIO) Dynamic-VINS (VO) Tartan VO StaticFusion DynaSLAM ORB-SLAM2 RTAB-Map
ATE [m] TR ATE [m] TR ATE [m] TR ATE [m] TR ATE [m] TR ATE [m] TR ATE [m] TR

Ground
Truth

FH 0.073 0.99 0.259 0.99 0.551 1.00 0.059 1.00 0.221 1.00 0.199 1.00 0.229 0.87
F 1.814 0.98 1.362 0.97 4.132 1.00 2.781 1.00 0.228 0.25 0.512 0.38 0.129 0.19

DH 7.492 0.99 1.811 0.88 1.259 1.00 >10.0 1.00 0.008 0.09 0.009 0.17 0.108 0.19
D 0.201 0.99 0.738 0.99 1.264 1.00 >10.0 1.00 0.038 0.93 0.275 0.99 0.154 0.61

WOH 0.228 0.98 1.256 0.96 2.361 1.00 4.926 1.00 0.012 0.54 0.015 0.54 0.053 0.49
WO 0.679 0.96 1.031 0.95 2.473 1.00 1.418 1.00 0.107 0.08 0.138 0.20 0.025 0.14
SH 0.121 0.99 0.023 0.99 2.395 1.00 2.721 1.00 0.012 1.00 0.011 1.00 0.019 0.82
S 0.226 0.99 0.035 0.99 1.205 1.00 >10.0 1.00 0.011 1.00 0.014 1.00 0.018 0.79

Noisy

FH 0.179 0.99 0.349 0.99 0.568 1.00 2.379 1.00 0.200 0.93 0.291 1.00 0.086 0.75
F 0.904 0.97 2.315 0.96 4.192 1.00 2.661 1.00 0.189 0.24 0.129 0.28 0.125 0.16

DH 1.749 0.99 2.047 0.94 1.214 1.00 >10.0 1.00 0.002 0.04 0.005 0.05 0.030 0.17
D 0.611 0.99 1.616 0.98 1.350 1.00 >10.0 1.00 0.110 0.90 0.652 0.91 0.171 0.30

WOH 0.561 0.98 1.550 0.99 2.389 1.00 2.691 1.00 0.024 0.54 0.022 0.54 0.047 0.45
WO 0.962 0.96 1.429 0.96 2.399 1.00 1.724 1.00 0.112 0.08 0.142 0.20 0.041 0.12
SH 0.404 0.99 0.063 0.99 2.537 1.00 5.602 1.00 0.017 1.00 0.017 1.00 0.061 0.71
S 0.199 0.99 0.066 0.99 1.259 1.00 >10.0 1.00 0.029 1.00 0.027 1.00 0.220 0.81

semantic-free nature, this approach fails to correctly classify dynamic objects, resulting
in noisy pose estimations, consistent with the findings in [81, 82].

For dynamic sequences, although DynaSLAM, ORB-SLAM2, and RTAB-Map show
promising ATE results, the reduced tracking rates within these methods require more at-
tention for improvements. Many of these methods frequently face tracking failures and
cannot stably track the entire sequence, lacking efficient failure-recovery mechanisms.
Conversely, Tartan VO and StaticFusion consistently track without failures (TR=100%),
but at the expense of much larger localization errors. Dynamic-VINS addresses a better
trade-off between localization accuracy and operation robustness. Notably, its VIO vari-
ation outperforms when considering both ATE and TR results, indicating the beneficial
role of IMU sensors in the estimation process.

Moreover, performance tends to be more degraded in scenarios with flying objects
(F/FH) and camera occlusions (WO/WOH). Firstly, these sequences contain unknown
dynamic objects that YOLOv5 (in Dynamic-VIN) and Mask R-CNN (in DynaSLAM) can-
not accurately detect without a priori information. This heavy reliance on the quality
of underlying networks constrains the dynamic SLAM performance. Secondly, most
current visual-based methods struggle to overcome camera occlusions, thereby easily
falling into tracking failures.

In general, we can observe that the experiments on noisy sequences are marginally
inferior to the ground truth ones, which aligns with our expectations. With increased
depth range, the majority of the experiments maintain similar performance, grounding
the reliability of these benchmarks. Additionally, while these methods deliver promising
outcomes on standard datasets, they reveal several limitations from this benchmarking
process, indicating that the challenges of dynamic SLAM remain unresolved.

4.2 BENCHMARKING DETECTION MODEL
As discussed in Section 3.2, the mainstream of dynamic SLAM approaches adopts se-
mantic attributes to discard potential dynamic landmarks during estimation, typically
through object detection (e.g., SSD [72], YOLOv5 [64]) or semantic segmentation (e.g.,
SegNet [71], Mask R-CNN [65]). Although we have already highlighted the generaliza-
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tion restrictions of these modules, it is worth investigating their impact on visual SLAM
performance. In other words, we intend to answer the question, ’Do more accurate detec-
tion/segmentation networks improve dynamic SLAM performance?’, with further bench-
marking experiments.

4.2.1. EXPERIMENT SETUP

Within this section, we select two representative dynamic SLAM approaches, Dynamic-
VINS (VO variation) and DynaSLAM, to explore their relations with corresponding YOLOv5
and Mask R-CNN, respectively. Given that GRADE sequences contain a variety of moving
entities while TUM RGB-D primarily features dynamic humans, we believe that bench-
marking TUM RGB-D walking sequences using single-class detectors of varying accu-
racy levels is more straightforward. Otherwise, investigating how specific class accura-
cies influence SLAM performance becomes more intricate.

Indeed, given a series of model weights, detector accuracy rankings may vary across
different test sets. For instance, the average precision (AP) tested on the COCO [83]
dataset cannot indicate similar performance on the TUM sequences, potentially leading
to inaccurate inference. Therefore, to solidify the reliability of this benchmark, we have
constructed a specific image dataset using all RGB images from TUM RGB-D walking se-
quences (referred to as the TUM image set). We then evaluated this image set to obtain
corresponding AP metrics. As for the ground truth, we manually annotated all human
masks for instance segmentation, comprising 3579 images, 5362 human instances, and
130 background samples, as illustrated in Fig. 4.2.

Figure 4.2: Examples of our TUM image set and corresponding human instance masks. Top row: Image data
from TUM RGB-D walking sequences [25]. Bottom row: Ground truth instance masks annotated by ourselves.

Thus, for the remainder of this benchmarking, we prioritize training multiple single-
class detectors that focus on human detection/segmentation. These series of model
weights, with varying accuracy levels, are then integrated separately into dynamic SLAM
systems for testing on the TUM RGB-D walking sequences. In this way, the evaluated AP
results on the TUM image set directly correlate with their SLAM performance, enabling
us to investigate the underlying relations.



4.2. BENCHMARKING DETECTION MODEL

4

17

4.2.2. DATA/MODEL FORMULATION

To acquire these model weights, the intuitive way is to train from scratch using various
combinations of the GRADE (synthetic) and COCO (real-world) datasets. The inclusion
of GRADE here can also demonstrate the visual realism of our synthetic data. To clarify
first, the training process utilizes the COCO training sets and all generated data from
GRADE (termed as GRADE image set), while the evaluation process involves the TUM
image set and COCO validation sets.

To train YOLO and Mask R-CNN models, we use both a subset of the GRADE image
set, which we will refer to as S-GRADE, and a larger one, A-GRADE. Images with a high
probability of being occluded based on the depth and RGB information are automati-
cally discarded. S-GRADE has 18K frames, of which 16.2K have humans in them and 1.8K
are only background. S-GRADE comprises images only from indoor sequences without
flying objects, with added motion blur on RGB images using a random rolling shutter
noise (µ = 0.015, σ = 0.006) and a fixed exposure time of 0.01 seconds. A-GRADE con-
sists of all available data, with images containing flying objects and additional scenarios
(e.g., outdoor city scenes). As for A-GRADE, we apply a random exposure time between
0 and 0.1 seconds for each sequence, with additional updates on the segmentation mask
and bounding boxes to account for this motion blur.

As for COCO, we only utilize the subset of image data containing humans in the
frame. Among these, we randomly sample 1256 training and 120 validation images, to-
taling ∼ 2% and ∼ 4% of the corresponding training/validation set (termed as S-COCO).
Our BASELINEs are the models of networks pre-trained with the COCO dataset. We eval-
uate the performance with the COCO standard metric (mAP@[.5, .95], AP in this work)
and the PASCAL VOC’s metric (mAP@.5, AP50 in this work). More in-depth explanations
of this training process can be found in [31, 84].

4.2.3. EXPERIMENTAL RESULTS

Table 4.3: YOLOv5 bounding box evaluation results. We put in bold the best result and in italics the second
best.

Training Set Pre-Training Set
COCO TUM

AP50 AP AP50 AP
BASELINE — 0.753 0.492 0.916 0.722

S-COCO — 0.492 0.242 0.661 0.365
S-GRADE — 0.206 0.109 0.616 0.425

S-GRADE-E50 — 0.234 0.116 0.683 0.431
A-GRADE — 0.176 0.093 0.637 0.459

A-GRADE-E50 — 0.282 0.154 0.798 0.613
S-COCO S-GRADE 0.561 0.302 0.744 0.488
S-COCO A-GRADE 0.540 0.299 0.762 0.514

COCO S-GRADE 0.801 0.544 0.931 0.778
COCO A-GRADE 0.797 0.542 0.932 0.786

S-GRADE + S-COCO — 0.590 0.334 0.855 0.648
A-GRADE + S-COCO — 0.527 0.289 0.801 0.597

S-GRADE + COCO — 0.801 0.547 0.938 0.786
A-GRADE + COCO — 0.764 0.503 0.936 0.778
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Table 4.4: ATE RMSE [m] (upper line) and tracking rate (lower line) of Dynamic-VINS tested on the TUM
RGB-D fr3/walking sequences using our trained YOLOv5 models. We put in bold the best result and in italics
the second best for each sequence.

S-COCO S-GRADE A-GRADE
T: S-GRADE T: S-GRADE T: A-GRADE T: A-GRADE Mix S-GRADE Mix S-GRADE Mix A-GRADE Mix A-GRADE

BASELINE
F: S-COCO F: COCO F: S-COCO F: COCO S-COCO COCO S-COCO COCO

w_half
0.064 0.048 0.061 0.059 0.066 0.081 0.060 0.064 0.053 0.059 0.062 0.069
0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

w_xyz
0.052 0.050 0.049 0.049 0.045 0.046 0.047 0.046 0.043 0.055 0.046 0.037
0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

w_rpy
0.133 0.224 0.137 0.116 0.116 0.120 0.119 0.149 0.126 0.132 0.115 0.114
0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

w_static
0.302 0.199 0.248 0.216 0.203 0.182 0.310 0.352 0.293 0.227 0.183 0.218
0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98

Average
0.138 0.130 0.124 0.110 0.108 0.107 0.134 0.153 0.129 0.118 0.102 0.110
0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97

Table 4.5: Mask R-CNN instance segmentation evaluation results. We put in bold the best result and in italics
the second best.

Training Set Pre-Training Set
Threshold 0.7 Threshold 0.05

COCO TUM COCO TUM
AP50 AP AP50 AP AP50 AP AP50 AP

BASELINE — 0.705 0.432 0.887 0.674 0.817 0.479 0.922 0.692
COCO — 0.681 0.410 0.838 0.584 0.801 0.461 0.890 0.611

S-COCO — 0.351 0.155 0.543 0.231 0.392 0.168 0.568 0.241
S-GRADE — 0.100 0.043 0.509 0.264 0.117 0.048 0.561 0.283
A-GRADE — 0.178 0.088 0.709 0.408 0.214 0.100 0.749 0.425
S-COCO S-GRADE 0.401 0.195 0.665 0.374 0.465 0.216 0.694 0.387
S-COCO A-GRADE 0.460 0.231 0.758 0.449 0.515 0.247 0.780 0.458

COCO S-GRADE 0.682 0.415 0.858 0.611 0.805 0.467 0.905 0.633
COCO A-GRADE 0.710 0.430 0.869 0.638 0.813 0.476 0.908 0.660

S-GRADE + S-COCO — 0.268 0.126 0.608 0.321 0.344 0.149 0.661 0.346
A-GRADE + S-COCO — 0.283 0.138 0.746 0.467 0.355 0.155 0.779 0.483

S-GRADE + COCO — 0.671 0.401 0.849 0.603 0.790 0.452 0.896 0.626
A-GRADE + COCO — 0.540 0.306 0.846 0.587 0.669 0.355 0.888 0.608

Table 4.6: ATE RMSE [m] (upper line) and tracking rate (lower line) of DynaSLAM tested on the TUM RGB-D
fr3/walking sequences using our trained Mask R-CNN models. We put in bold the best result and in italics the
second best for each sequence.

S-COCO S-GRADE A-GRADE
T: S-GRADE T: S-GRADE T: A-GRADE T: A-GRADE Mix S-GRADE Mix S-GRADE Mix A-GRADE Mix A-GRADE

BASELINE
F: S-COCO F: COCO F: S-COCO F: COCO S-COCO COCO S-COCO COCO

w_half
0.031 0.034 0.032 0.030 0.028 0.030 0.029 0.031 0.029 0.031 0.030 0.030
0.87 1.00 1.00 0.87 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

w_xyz
0.017 0.017 0.016 0.016 0.016 0.016 0.015 0.016 0.017 0.015 0.015 0.016
0.99 0.94 0.91 1.00 0.91 0.91 0.91 0.94 0.91 0.91 0.91 0.92

w_rpy
0.034 0.104 0.031 0.060 0.037 0.033 0.034 0.039 0.038 0.043 0.035 0.040
0.81 0.90 0.96 0.75 0.87 0.85 0.84 0.92 0.87 0.92 0.83 0.85

w_static
0.010 0.007 0.006 0.007 0.008 0.007 0.008 0.007 0.007 0.006 0.007 0.007
1.00 1.00 1.00 1.00 0.84 0.97 0.84 1.00 0.84 1.00 0.97 0.98

Average
0.023 0.041 0.021 0.028 0.022 0.022 0.022 0.023 0.023 0.024 0.022 0.023
0.92 0.96 0.97 0.91 0.90 0.93 0.90 0.96 0.90 0.96 0.93 0.94

As can be inferred from Table 4.3 and Table 4.5, the models trained with synthetic
data have good generalization capabilities on real-world images. This process also indi-
cates that using synthetic data alongside real-world images during training can signifi-
cantly improve both detection and masking results.

Table 4.4 and Table 4.6 report the dynamic SLAM performance with different de-
tectors. Each experiment is executed through three runs. Given these model weights
with varying accuracy, we computed the baseline results again for both methods to be
able to report their tracking rates. While for Dynamic-VINS there is no influence on the
tracking rate, DynaSLAM is highly affected by the model used. For example, the model
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pre-trained on S-GRADE and fine-tuned on S-COCO shows an increase in the tracking
time of 8% on the w_xyz sequence. This holds true for most of the experiments in Ta-
ble 4.6. Moreover, despite the lower segmentation performance, these configurations
can present comparable ATE and TR as the baseline, or even outperform. The notable
one is the model trained only with A-GRADE, exhibiting very compelling SLAM perfor-
mance, but with an AP of 0.408 on the TUM image set. Conversely, the best detector with
the highest AP does not necessarily correspond to a better visual SLAM performance.
The remaining results indicate that there is a benefit to using a detection or segmenta-
tion network that adopts synthetic data during training. On average, the best tracking
performance is obtained using the model trained on A-GRADE, while the model trained
on the mixed A-GRADE+COCO dataset serves as the second-best model with general
ATE results on both methods.





5
DYNAPIX SLAM

The goal of this chapter is to present our robust visual SLAM system for dynamic indoor
environments, which consists of two novel core modules: a pixel-wise motion probabil-
ity estimator (Section 5.1) and an enhanced pose optimization process (Section 5.2).To
evaluate our method, we apply our DynaPix SLAM against ORB-SLAM2 and DynaSLAM
on both TUM RGB-D and GRADE sequences, along with extended experiments on both
static and dynamic versions of the GRADE ones (Section 5.3).

Figure 5.1: The DynaPix architecture consist of two main blocks, the motion probability estimation (blue
box), and the modified ORB-SLAM2 (green box). We use RGB-D and corresponding background images to
extract movable (Sec. 5.1.1) and moving regions (Sec. 5.1.2) on the current frame. The estimated moving
probabilities are then integrated into all colored blocks of our SLAM backend (Sec. 5.2).

Given the preliminary discussions from Chapter 3 and Chapter 4, we can summarize
the primary limitations on dynamic SLAM as follows:

• Over-reliance on semantic information and the quality of underlying detection
networks. The moving objects not belonging to the predefined dynamic classes
can continuously impact performance. This limitation also leads to incapabilities
in detecting moving shadows, reflections, and the object’s partial movements.

• Oversights in robustness assessment, especially regarding tracking failure issues.
This can be attributed to the discarding of much useful visual information based
on semantic attributes instead of focusing on the actual motion states.

• Dynamic SLAM typically excels under specific scenarios but may underperform
when applied in different scenes, even in static environments. This limited gener-
alization can be further restricted by dependencies on detection networks.

21
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To solve these, our proposed visual SLAM approach, DynaPix SLAM, intends to employ
motion attributes for a semantic-free pose estimation process. Our goal is to achieve
reduced localization errors and higher tracking durations across various scenarios, in-
cluding real-world TUM RGB-D dynamic sequences and both static and dynamic syn-
thesized GRADE sequences.

The DynaPix SLAM, designed for dynamic indoor environments, mainly consists of
two novel core modules: a pixel-wise motion probability estimator and an improved
pose optimization process. Fig. 5.1 briefly demonstrates our DynaPix SLAM system. We
first take RGB-D sequences and static background images as system inputs. The static
background images represent images taken at the same time instant and camera states
(e.g., position, velocity, intrinsic parameters), containing no dynamic entities and asso-
ciated variations, such as shadows and illumination changes. These background images
can be either synthetically generated [31] or inpainted through various state-of-the-art
techniques [13, 85, 86]. Then, we decouple the pixel motion probability estimation pro-
cess into two stages, using a combination of corresponding background images and ad-
jacent frames to identify dynamic (moving) regions. These modules consider the motion
of shadows or reflections in the environment and are capable of detecting specific mov-
ing parts of deformable objects, as shown in Fig. 5.1. With the usage of probabilistic
motion information, useful image features are then retained throughout the estimation
pipeline, rather than getting blindly discarded by the usage of binary masks. To incorpo-
rate these motion probabilities into the pose optimization process of the SLAM backend,
a series of modifications are introduced in ORB-SLAM2. These include a map point se-
lection process and a weighted-BA acting in both the front end tracking and back end
optimization modules.

5.1 PIXEL-WISE MOTION PROBABILITY
Before proceeding, we make a distinction between movable regions, i.e., potential dy-
namic regions or regions in the frame where motion can occur, and moving regions,
i.e., regions which are actually moving or about to move at the current time instant. The
goal of this module is to estimate moving regions in the current image frame using as-
signed probability values in place of binary masks.

As discussed in Sec. 3.2.2, learning-based flow estimation networks [87, 88] are com-
monly used to identify moving regions. However, the deployment in indoor dynamic
environments poses specific challenges, including increased false correspondences in
textureless areas (e.g. empty walls, floors), noisy estimation due to incomplete elimina-
tion of camera motion, and misclassification of foreground objects. To address these
issues, our proposed probabilistic motion estimation is composed of two submodules:
movable region (Sec. 5.1.1) and moving region estimation (Sec. 5.1.2). Movable regions
are computed through background differencing and generate distributions covering po-
tential moving objects with the corresponding shadows/reflections. Moving regions are
then estimated through a rectified flow differencing mechanism which uses a novel com-
bination of splatting view synthesis and static background with dynamic flow subtrac-
tion. The two are then fused (Sec. 5.1.3) to obtain the final pixel-wise motion probability.
With this estimator, we manage to overcome general shortcomings of classic semantic-
based detectors, such as imprecise detection/segmentation or limitation to predefined
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categories, while successfully reducing the estimated errors due to the direct usage of
optical flow methods.

5.1.1. MOVABLE REGION ESTIMATION

Figure 5.2: The process of probability estimation of movable regions. From the left: inputs, applied
transformations, and results.

The movable distribution estimation serves as prior confidence to estimate motion
attributes on the current frame. The static background images used in the differencing
process can be either synthetically generated for simulated scenes by removing all po-
tentially dynamic objects from the scene, or inpainted using E2FGVI [85] for real-world
sequences. Making use of static background images, we observe that the difference be-
tween dynamic scenes and static scenes can provide reliable information about where
the motion may occur, especially by capturing shadows and reflections that affect the
environment. Indeed, the presence of such dynamic objects not only occludes the static
background in the frame with the object itself, but brings variations to the surroundings
by influencing the lighting conditions. Therefore, we subtract to the observed RGB frame
(in dynamic scenes) I the corresponding static frame Ibg :

Idi f f (x, y) = |I (x, y)− Ibg (x, y)| ∈ [0,255]3 (5.1)

Idi f f (x, y) is the absolute difference of RGB image I and static background image Ibg

at location (x, y) over RGB color channels. We then apply I 1
d ∈ [0,255]H×W and I 2

d ∈
[0,255]H×W to represent Idi f f as, respectively, the maximum and the average value of
the pixel at that location:

I 1
d (x, y) = max(Idi f f (x, y))

I 2
d (x, y) = mean(Idi f f (x, y))

(5.2)

The movable probability for any pixel, pm , is then computed with these two terms:

pm =λ · f1(I 1
d )+ (1−λ) · f2(I 2

d ) (5.3)
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where f1 and f2 are scaling methods to project I 1
d and I 2

d to [0,1]. f1 applies clipping
normalization over the specific interval, in our case [15,35]. This is used to define an
interval to reduce the effect of noise, change of illumination, and similar factors that can
influence the RGB values of corresponding frames. f2 adopts a min-max normalization
within the current frame. λ is used to weight the two terms, and can be expressed as:

λ= 1

2
+ 1

exp(0.04 ·max(I 2
d ))+1

∈ [0,1] (5.4)

λ is necessary because any given RGB frame, I , may be relative to a scene without any
movable objects. The image would then be highly similar to the corresponding static
background image, Ibg . Applying then f2 to the difference between the two would cause
exploding factors due to the min-max normalization. The formulation can effectively
reduce this effect by adjusting the participation of two terms.

With the combination of f1 and f2, the movable regions can be captured within a
probabilistic distribution. In Fig. 5.2, we can observe that the first term f1 is better at
capturing unnoticeable variations including shadows and reflections, while f2 can ef-
fectively reduce noise/error.

5.1.2. MOVING REGION ESTIMATION

To determine the pixel-wise motion attributes, the problem can be formulated as the
pixel displacement across the frames in 3D Euclidean space. This displacement can
be further projected to the current 2D image frame for observations. The neighbor-
ing frames are reprojected to the current view to eliminate camera motion. Then, we
adopt FlowFormer [89] as our underlying optical flow estimation module to provide cor-
respondences for pixel-wise moving estimation. Ideally, when comparing the current
frame with the reprojected frame, the static pixels should remain at the same coordi-
nates, while the moving pixels show obvious displacements. This can be expressed as
follows:

I t (x, y) =
{

static if dist =
√
||x −x′||2 +||y − y ′||2 ≈ 0

moving else
(5.5)

where t denotes the frame timestamp, and (x ′, y ′), represents the coordinates of the
matched pixel in the reprojected frame. However, this expression requires further cor-
rections when considering the incomplete elimination of camera motion and false pixel
correspondences across the frames. Hence, we propose splatting-based view synthesis
for accurate projection, and static/dynamic flow differencing for reliable moving region
estimation.
Splatting-based View Synthesis. The goal is to synthesize image observations from other
viewpoints to the corresponding location. The common approach adopts homography
transforms to perform image reprojection [90, 91]. However, these transformations as-
sume that the observed points belong to the same plane regardless of their depth infor-
mation. This clearly causes displacements between the current frame I t and the repro-
jected frame Ĩ t+i . To overcome this we follow the idea of softmax splatting [92] for more
accurate view synthesis.



5.1. PIXEL-WISE MOTION PROBABILITY

5

25

Given camera intrinsic matrix K , depth map at adjacent frame Z t+i , we project the
pixels of frame I t+i into 3D space to recover their 3D information, then reproject these
3D points Xt+i to the current viewpoint with an initially estimated transformation {R,t}:

Xt+i = K −1xt+i Z t+i

x̃t+i = K (RXt+i + t)
(5.6)

where x denotes the 2D pixel coordinates, and x̃t+i represents the reprojected coordinate
for each pixel at frame Ĩ t+i when observing from the current viewpoint.

With these prior correspondences between the frame I t+i and the desired trans-
formed frame Ĩ t+i , each pixel in the frame Ĩ t+i is synthesized by participation from ad-
jacent pixels, which can be expressed as:

Ĩ t+i (x, y) = Σ⃗(exp(z ′) · I t+i (x ′, y ′))

Σ⃗(exp(z ′))
(5.7)

where Σ⃗(·) denotes the summation of all contributed pixels from the original frame I t+i ,
exp(z ′) serves as the weight in this summation which relates to the depth of each pixel
in frame I t+i , and (x ′, y ′) represents the corresponding coordinates of contributed pixels
in I t+i . More details can be found in [92]. In Fig. 5.3, we show the advantage of using
splatted views over homography transforms.

(a) Frame I t (b) Densely reconstructed map (c) Semantically annotated map

Figure 5.3: Frame difference between a reprojected frame Ĩ t+i and Frame I t . While there is evident noise
when subtracting homography-transformed images, using the splatted view synthesis achieves noise-free
results.

Differencing Flow for Moving Estimation. Having obtained the reprojected view Ĩ t+i

from the splatting synthesis module, the static regions can be aligned correctly to the
current view I t . At this stage, the moving region estimation can be simply formulated
as the flow estimation between these two frames by F (I t , Ĩ t+i ), where the distance be-
tween each correspondence in Eq. 5.5 can be represented by flow magnitudes. This,
despite displaying considerable effects in reducing errors, can not completely remove
either the camera motion effects or false pixel correspondences that frequently occur in
texture-less and ambiguous texture-rich areas during the flow estimation process. In-
terestingly, we observe a similar distribution of errors when performing flow estimation
only on static background images. Therefore, we apply the flow estimation on static
backgrounds as well, using the same procedure explained above, to further compensate
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for the errors in the same regions through:

M (I t , Ĩ t+i ) = min(F (I t , Ĩ t+i ),F (I t , Ĩ t+i )−F (I t
bg , Ĩ t+i

bg )) (5.8)

where M (I t , Ĩ t+i ) is the distribution of flow magnitudes over the frame. The low-pass
filter is applied to avoid higher flow magnitudes due to subtraction on noisy estimations.

5.1.3. FINAL MOTION PROBABILITY
Assuming that motion is consistent over a short period of time, the motion attribute of
each pixel should be similar or little varying in the neighboring frames. Therefore, we
finalize the moving region estimation at the current frame M t across multiple frames:

M t = 1

2n

∑
j∈J

(
M (I t , Ĩ t+ j )+M (I t , Ĩ t− j )

)
(5.9)

Where J is a set of time offsets and n is its cardinality. We adopt J = [2] in our imple-
mentation to represent the moving region estimation at the frame t with respect to the
next-previous and next-future frames.

Finally, the actual motion probability can be formulated as a blend of Eq. 5.9 and the
movable probability p t

m obtained in Eq. 5.3. For every frame t , we can compute

P t = p t
m ·M t (5.10)

Through this multi-step processing involving splatted frame synthesis, flow differ-
encing, crossed-frame calculation, and movable region constraints, the estimation er-
rors arising from false correspondences and incomplete elimination of camera motion
are progressively reduced. This results in the effective motion estimation covering mov-
ing parts of the objects, as well as their shadows, and reflections, as illustrated in Fig. 5.1.

5.2 CAMERA POSE OPTIMIZATION
To incorporate the estimated motion probability into visual SLAM system, we introduce
a series of modifications to the ORB-SLAM2 [55] framework. Before proceeding, we first
briefly introduce ORB-SLAM2. The tracking module consists of the first-stage coarse
estimation (i.e. track motion model, track reference frame) followed by a more precise
second-stage estimation as track local map, while the backend module contains local
BA and global BA for the optimization of camera poses and map point locations. Based
on this, we improve the map point selection process (Section 5.2.1) and weighted bundle
adjustment (Section 5.2.2). The latter directly affects both the tracking and backend opti-
mization modules. Different from the previous work [93, 94, 13, 27], in which temporar-
ily stationary movable objects are removed, our insights lie in that stationary objects (or
stationary parts) can also be fully utilized to improve overall performance, whereas still
preventing their negative influence once they resume the state of motion.

5.2.1. MAP POINT SELECTION
In ORB-SLAM2, map points correspond to features belonging to any identified keyframe
and determine the accuracy of second-stage estimation and backend optimization. Here,
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we only allow reliable features as map points. This is because features belonging to dy-
namic objects will change their positions in 3D space during the experiment, introduc-
ing wrongful estimation information in the stored map. To identify those, we modify the
selection strategy of map points of the framework.

Given an image, all its features can be indicated as K = {k1, . . . ,kn}, where each ki

represents the coordinates of the feature in the frame. If this image was to be identi-
fied as keyframe, and its features updated as map points we can obtain their motion
state, i.e. the estimated motion probability, with Eq. 5.10. Only the features satisfying
P (ki ) ≤ padd can be then further selected as map points. In our case padd = 0.05 to en-
sure that static map points participate in track local map module and local/global BA. On
the other hand, the stored map points from earlier keyframes may transition to moving
states at the current frame, impacting the estimation process. Relying on the existing
descriptor-based matching mechanism in ORB-SLAM2, the correspondences are estab-
lished between partially observed map points from earlier keyframes and all image fea-
tures in the current frame. We then conduct the map point deletion if P (ki ) ≥ pdel using
again Eq. 5.10 as feature motion probability and pdel = 0.1. While our motion probabil-
ity estimation is threshold-free, the inclusion of these limits here is necessary to improve
overall estimation accuracy. However, note that the map point motion probability is
anyway retained in the following steps, including the bundle adjustment procedures.

5.2.2. WEIGHTED BUNDLE ADJUSTMENT
It is crucial to retain numerous features to prevent tracking failures, even if those belong
to potentially but not moving or slightly moving objects. We first aim to conduct a coarse
estimation by using all the features to improve robustness. However, this severely affects
the estimation accuracy due to the presence of dynamic features and may lead to false
estimated poses, impacting the subsequent optimization procedures. For this reason,
inspired by previous works [95, 77, 78], we assign weight to each error term during the
BA process. This is formulated as:

{R∗, t∗} = argmin
R,t

1

2

n∑
i=1

wi ||xi −π(RXi + t )||22 (5.11)

where R and t represent the camera orientation and translation. Xi ∈ R3 denote a point
location in the world frame. These are temporary 3D points projected either from fea-
tures or map points [55]. xi ∈ R2 represent its matched coordinates in the current im-
age frame. The function π(·) is the projection from 3D camera coordinates to 2D plane
coordinates. Since the BA works on either the map points or the features of the pre-
vious/current frames, we can obtain the weight for each one of these points ki with
Eq. 5.10 by defining wi = 1−P (ki ). Clearly, if P (ki ) is low, the static point has a high
probability of being static and receives a higher weight, contributing more to the op-
timization process. At the same time, points falling in dynamic areas are still retained
but have less effect on the pose optimization. This procedure impacts both track mo-
tion model and track reference frame procedures of ORB-SLAM2 using all the features
extracted from the image, as well as track local map and local/global BA using filtered
map points. Moreover, different from the previous work, we implement this weighting
procedure into both the tracking module and the backend optimization module. We
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also observe that in those BA methods, the weight of each feature decreases during sub-
sequent optimization iterations based on Gauss-Newton or Levenburg-Marquardt algo-
rithms, effectively diminishing the difference between static and dynamic features. As
opposed to that, we keep the last obtained weighting factor wi in our BA procedure to
fully retain this information.

Figure 5.4: Example of inpainting on the TUM-RGBD dataset.

5.3 EXPERIMENTAL RESULTS

Table 5.1: ATE RMSE [m] and Tracking Rate (TR) of the GRADE sequences in both dynamic and static
scenarios. Each experiment is executed through 10 runs.

STATIC SEQUENCE DYNAMIC SEQUENCE
DynaPix ORB-SLAM2 DynaPix-D DynaSLAM DynaPix ORB-SLAM2 DynaPix-D DynaSLAM

ATE[m] TR ATE[m] TR ATE[m] TR ATE[m] TR ATE[m] TR ATE[m] TR ATE[m] TR ATE[m] TR

FH
mean 0.006 1.00 0.010 1.00 0.007 1.00 0.012 1.00 0.035 1.00 0.248 1.00 0.023 1.00 0.232 0.98

std 0.000 0.00 0.002 0.00 0.000 0.00 0.005 0.00 0.016 0.00 0.103 0.00 0.006 0.00 0.041 0.02

F
mean 0.230 0.86 0.330 0.90 0.325 0.88 0.529 0.82 0.291 0.20 0.359 0.35 0.571 0.37 0.864 0.42

std 0.426 0.00 0.507 0.01 0.498 0.01 0.526 0.04 0.108 0.01 0.156 0.03 0.265 0.20 0.217 0.07

DH
mean 0.005 0.18 0.005 0.18 0.004 0.18 0.013 0.07 0.006 0.17 0.005 0.18 0.010 0.14 0.011 0.10

std 0.001 0.00 0.001 0.01 0.001 0.00 0.009 0.03 0.006 0.00 0.001 0.01 0.011 0.04 0.003 0.02

D
mean 0.023 0.98 0.018 0.97 0.019 0.98 0.024 0.98 0.032 0.99 0.317 0.99 0.041 0.96 0.050 0.89

std 0.006 0.01 0.002 0.03 0.004 0.02 0.008 0.02 0.010 0.02 0.043 0.01 0.026 0.03 0.009 0.05

WOH
mean 0.012 0.54 0.013 0.54 0.011 0.54 0.015 0.54 0.009 0.54 0.016 0.54 0.010 0.54 0.012 0.54

std 0.008 0.00 0.010 0.00 0.013 0.00 0.017 0.00 0.001 0.00 0.008 0.00 0.004 0.00 0.002 0.00

WO
mean 0.040 0.44 0.038 0.83 0.206 0.87 0.043 0.78 0.023 0.20 0.168 0.20 0.641 0.20 0.083 0.08

std 0.023 0.35 0.021 0.32 0.399 0.21 0.022 0.28 0.002 0.00 0.022 0.00 0.386 0.00 0.010 0.00

SH
mean 0.010 1.00 0.012 1.00 0.012 1.00 0.010 1.00 - - - - - - - -

std 0.001 0.00 0.002 0.00 0.003 0.00 0.001 0.00 - - - - - - - -

S
mean 0.010 1.00 0.011 1.00 0.009 1.00 0.010 1.00 - - - - - - - -

std 0.001 0.00 0.001 0.00 0.001 0.00 0.002 0.00 - - - - - - - -
Average 0.042 0.75 0.055 0.80 0.074 0.81 0.082 0.78 0.066 0.52 0.185 0.54 0.216 0.54 0.209 0.50

We use sequences from both the TUM-RGBD [25] and the GRADE [31] in our evalu-
ations. Additional processing is necessary on the TUM-RGBD data to obtain the static
background images. For that we use E2FGVI [85] video inpainting. We adjust the input
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Table 5.2: ATE RMSE [m] and Tracking Rate (TR) of TUM RGB-D fr3/walking sequences. Each experiment is
executed through 10 runs.

DynaPix ORB-SLAM2 DynaPix-D DynaSLAM
ATE [m] TR ATE [m] TR ATE [m] TR ATE [m] TR

/w_half
mean 0.030 1.00 0.607 0.79 0.023 1.00 0.029 1.00

std 0.002 0.00 0.180 0.11 0.001 0.00 0.001 0.00

/w_static
mean 0.012 1.00 0.355 1.00 0.007 1.00 0.007 0.98

std 0.002 0.00 0.121 0.00 0.001 0.00 0.000 0.00

/w_rpy
mean 0.043 1.00 0.744 0.99 0.123 0.98 0.040 0.86

std 0.007 0.00 0.115 0.01 0.107 0.03 0.008 0.032

/w_xyz
mean 0.018 1.00 0.732 0.84 0.014 1.00 0.016 0.92

std 0.002 0.00 0.102 0.11 0.000 0.00 0.001 0.00
Average 0.026 1.00 0.610 0.91 0.041 0.99 0.023 0.94

frames strategy of E2FGVI with a 50-frames sliding window approach with 100 frames
bootstrap to overcome the high GPU usage of the method. We then extract the refer-
ence frames based on the closest covisible ones using ground-truth poses, rather than
the original selection based on time intervals. An example of the inpainted frames is
provided in Fig. 5.4. The GRADE’s framework instead provides a way to re-render images
captured in dynamic scenes without the dynamic objects through their experiment rep-
etition tool. By doing so, we obtained a frame-by-frame correspondence of background
images. In our experiments, for both the inpainting and the splatting view synthesis, we
use the ground truth pose of the camera for the necessary transformations. While this
is a limiting factor of the current proposed approach, note that a neighboring frame-by-
frame pose variation can be estimated or optimized through different VO, VIO, DNN or
other modules with good approximations.

For our tests, we apply DynaPix SLAM to compare the results against ORB-SLAM2, its
underlying SLAM framework. Moreover, we also introduce DynaPix-D, which combines
DynaPix with DynaSLAM [13], a popular state-of-the-art dynamic SLAM approach. While
DynaSLAM combines Mask-RCNN to mask pre-defined dynamic classes and ORB-SLAM2
as its backend, DynaPix-D modifies the map point selection based on those same mask
filtering. However, we maintain the same strategies on weighted BA in both tracking
and backend modules as DynaPix SLAM. We utilize the widely accepted RMSE of abso-
lute trajectory error (ATE) to evaluate pose estimation accuracy, and tracking rate (TR)
to evaluate the system robustness.

Our results on the GRADE dataset are reported in Tab. 5.1, while the ones for the
TUM-RGBD sequences are in Tab. 5.2. For each combination of sequence and method
we perform ten experiment runs and report the mean and standard deviation on both
metrics, as well as the overall averages. We use the static sequences of GRADE to show
that our DynaPix does not degrade the performance of the used SLAM framework in
those situations and to further compare the improvements between static and dynamic
scenes.

Starting from the synthetic data, we can see that, in general, the experiments per-
formed better on the static version of each sequence with respect to the correspond-
ing dynamic ones. This was expected and holds for all methods. We can already see
how using the TR alongside the ATE is essential to analyze these results. Taking the F
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experiment in Tab. 5.1 as an example we can see that, while the ATE is similar to the
ORB-SLAM2, the TR is 90% for the static sequence but only 35% on the dynamic one.
We can also notice that DynaPix does not adversely affect the performance of the orig-
inal ORB-SLAM2 when performing SLAM on static experiments, with the exception of
the WO experiments in which the TR of DynaPix is almost half of the one with ORB-
SLAM2. However, the standard variations on these experiments indicate how unsure
these two particular results are in both ATE and TR metrics. Considering DynaPix-D and
DynaSLAM results on the static sequences, we observe that our approach has better re-
sults on both TR and ATE in various experiments like F, DH, D, WO, as well as 10% on the
average ATE and ∼ 4% on average TR.

Considering now the experiments run on data with dynamic entities, DynaPix and
DynaPix-D consistently overcome the corresponding methods with considerable mar-
gins. The TR of WO with DynaPix-D, for example, is 2.5 times better than DynaSLAM,
although with a far worse ATE linked to the longer tracking time. The ATE of the same se-
quence obtained by DynaPix is only ∼ 13% than the original one obtained through ORB-
SLAM2, but with the same TR. An exception to that is the F sequence on both DynaPix
and DynaPix-D, which have respectively 15% and 5% shorter tracking times. This exper-
iment has the camera facing a featureless wall, which can make the SLAM backend stop
working on some runs since no recovery procedure is devised for such situations. De-
spite this, DynaPix performs 3 times better than ORB-SLAM2 in ATE with similar tracking
rates despite the 15% drop on the F experiment. On the other hand, DynaPix-D shows
a 10% relative TR improvement with respect to DynaSLAM with a marginally worse ATE
of 2 cm, despite the significantly worse ATE on the WO sequence of about 60 cm. It
is interesting to notice how the dynamics of the WOH sequence seem not to affect the
results, given that the metrics are close on both the static and dynamic tests. This is
probably due to the camera facing a featureless area during the experiment, while ORB-
SLAM2 does not provide robust recovery procedures for such situations. Overall, we can
see that, on average, DynaPix performs better than DynaPix-D and ORB-SLAM on both
static and dynamic sequences, making it the best overall method. This, holds especially
if considering that longer tracking times can be linked to higher ATE.

Having verified that our method performs better with respect to both ORB-SLAM2
and DynaSLAM on the GRADE data, we proceed to analyze the results of our experi-
ments with real data, which are reported in Tab. 5.1. With a 23 times improvement on
the ATE of DynaPix and 100% TR of DynaPix, we perform better than any compared ap-
proach. DynaPix[-D] methods bring a consistent TR improvement alongside better ATE.
The only variation to that is in the w_rpy experiment, in which the ATE performs on av-
erage worse but with a wide standard deviation, indicating that the method is not stable
to fast rotations of the camera as desired. This, however, is linked to a 12% higher TR,
which can clearly adversely affect the ATE metric. Thus, we can conclude that, while on
synthetic dynamic sequences, we are still limited by occlusions and textureless areas that
cause drift and tracking loss, on real-world ones our method has the best performance.
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CONCLUSION

6.1 SUMMARY
Although SLAM has undergone significant development and has been considered a ma-
ture research field, several open problems in current visual SLAM algorithms still hinder
their widespread applications. Among these, dynamic environments pose great chal-
lenges through short-term moving entities (as dynamic SLAM) and variations in longer
time scales (as lifelong SLAM). Within this thesis, we mainly focused on investigating
the effect of moving objects on the overall performance of visual SLAM systems, with an
emphasis on their accuracy, robustness, and generalizability.

Notably, the necessity of testing processes for visual SLAM is often overlooked. In our
view, visual SLAM systems universally lack the ability to generalize to out-of-distribution
scenarios. This problem is compounded by the insufficiencies of current simulators
and datasets, which fail to replicate more diverse and realistic dynamic environments
as expected. Despite GRADE serving as one of the most suitable platforms to construct
desired simulations, more endeavors are expected to enrich this field and facilitate the
development of dynamic SLAM. On the other hand, robustness capabilities are less as-
sessed in many studies, resulting in many systems with appealing accuracy results but
inconsistent tracking operations.

To ground our insights, we benchmarked various SLAM methods and found that in
static sequences, most demonstrate high localization accuracy, aligning with expecta-
tions and validating the effectiveness of GRADE for SLAM testing. In dynamic sequences,
while some methods show promising localization accuracy, tracking failures are com-
mon. Challenges persist with dynamic objects and occlusions, as these methods depend
heavily on the quality of object detection networks, struggle with camera occlusions, and
are incapable of detecting unknown objects and partial movements.

Furthermore, the investigation on detector accuracy relations also indicates that the
more accurate detectors do not necessarily lead to improved dynamic SLAM perfor-
mance. Current methods tend to remove all potential dynamic objects during the es-
timation process, addressing less on assessing their actual motion states. Nevertheless,
over-deletion directly leads to frequent tracking failures, especially in crowded dynamic
environments. We believe that more static landmarks should be expected during the op-
eration, and an external motion estimation can ensure a more stable tracking process.

Finally, we proposed DynaPix SLAM, a novel dynamic SLAM method based on pixel-
wise motion probability and an improved pose optimization process. We first intro-
duced a two-staged method to compute per-pixel motion probabilities by blending mov-
able and moving estimations. These estimations are obtained through a static/dynamic
differencing on both image frames and optical flows, respectively. The motion prob-
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abilities are then applied in the ORB-SLAM2 framework with a refined mechanism to
select map points while retaining these probabilities during the tracking and backend
optimization procedures. Our extensive experiments on both real-world and synthetic
scenes show that DynaPix SLAM consistently outperforms the ORB-SLAM2 and DynaSLAM
methods. Moreover, given the results on the static version of GRADE sequences, we can
also infer that DynaPix SLAM can exhibit more generalized capabilities across both static
and dynamic scenes, without exhibiting degradation in static environments.

6.2 FUTURE WORK
To address the current limitations of this approach, future works can be summarised as
include:

• Camera Pose Utilization: Future iterations will explore the integration of estimated
camera poses into the motion probability estimation process. Due to the difficulty
in accessing the ground truth information, the involvement of estimated results
can verify the usability of our approach from a practical view.

• Recovery Mechanisms for Textureless Areas: Recognizing the challenges posed by
textureless surfaces to tracking reliability, research will focus on developing robust
recovery procedures to avoid long-term lost states. This may involve the inclusion
of structure recognition instead of only relying on point descriptions.

• Semantic Information Integration: The next phase will also experiment with other
elegant integrations of semantic information into DynaPix SLAM, aiming to fur-
ther enhance the system’s understanding and categorization of dynamic objects.

• Module Validation through Ablation Studies: To quantify the impact of each com-
ponent within the SLAM framework, comprehensive ablation studies will be es-
sential. To evaluate the necessity and efficiency of each module, these experiments
will be performed on the motion estimator and weighted BA separately.

• Learning-Based Motion Estimation: Advancing the pixel-wise motion estimator
from an empirical design to a learning-based model is anticipated. This approach
will potentially improve the adaptability of the system to various dynamic condi-
tions without heavy reliance on pre-defined heuristics.

These elements will guide the ongoing efforts to refine visual SLAM technologies,
ensuring that they remain at the forefront of innovation in robotic perception and au-
tonomous navigation.
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APPENDIX

A OVERVIEW
In this supplementary material, we present additional information about both our ap-
proach and our experimental analysis. In Sec. B we detail our modifications to the E2FGVI
framework with examples of inpainted frames on TUM-RGBD dataset. In Sec. C we show
the complete workflow with explanatory images of both the movable and moving prob-
ability synthesis as well as additional visualization examples of our method. Finally, in
Sec. D, we report all our extended results and some additional box plots based on the
tracking rate.

B INPAINTING OF TUM-RGBD DATASET
As mentioned in Sec. ??, the static background images are essential for our implemen-
tation. Those are not directly available for the TUM-RGBD sequences. We use the end-
to-end flow-guided video inpainting (E2FGVI) technique to eliminate dynamic objects.
With an NVIDIA Quadro P5000 with 16 GB of memory, E2FGVI can only load a lim-
ited number of frames. To overcome this limitation for longer sequences, we adopt a
50-frame sliding window approach with 100 frames bootstrap. In this way, the inpaint-
ing module can process 50 new frames with 50 initially inpainted frames from the last
step. The initially inpainted frames can also be adjusted during the new processing cy-
cle, which can be formulated as:

I i
i npai nt (x, y) =λ · I i

i ni t (x, y)+ (1−λ) · I i
new (x, y) (6.1)

where λ = 0.5 in our deployment. Despite the original framework has remarkable per-
formance on static/slightly moving camera views, it is difficult to adapt to varying envi-
ronments with long-term moving cameras. The original framework takes use of neigh-
boring frames and reference frames (extracted based on specific time intervals) to inpaint
the current frame. In order to further provide sufficient background information in long-
term sequences, we modify the selection strategy of the reference frames to remove irrel-
evant frames that are observing irrelevant areas. Given the ground-truth camera poses,
we select the frames with the closest viewpoint as reference frames which should not be
overlapped with the neighboring frames. In this way, these new reference frames can
largely cover the possible background regions to improve the inpainting process.

As shown in Fig. iii, we show the inpainted frames from various viewpoints in the
TUM-RGBD dataset, where our modified E2FGVI can also generalize to blurry images
and provide reliable inpainting performance in different camera angles. We also exhibit
some failure cases in Fig. i, the main reason lies in that neighboring/reference frames at
other timestamps providing false information, such as the objects (e.g. chairs, books) ac-
tually staying at other positions in the current frame. Another reason lies in the fact that
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reference frames sometimes can not provide sufficient information about the occluded
background, leading to a large blur in some cases.

Figure i: Visualization of failure cases of inpainting process.

C MOTION PROBABILITY DEMONSTRATIONS

Figure ii: Flow diagram of moving estimation (Sec. 5.1.2) and final motion probability (Sec. 5.1.3).

In this section, we demonstrate the progressive improvements of our two-staged
probability estimation module as shown in Fig.ii. In terms of the movable estimation
part, the combination of f1 and f2 in Eq. 5.3 addresses a trade-off on reducing the noisy
difference value and capturing the shadow/reflection areas. More illustrations for this
process are exhibited in Fig. iv. The movable distribution acts as a confidence score to
further constrain the following moving estimation to effectively eliminates the inherent
errors on the static regions (see Fig. vi).

As we discussed in Sec. 5.1.2, the view synthesis based on soft-splatting [92] can
effectively reduce the aligning error between the reprojected frame Ĩ t+i and current



C. MOTION PROBABILITY DEMONSTRATIONS

6

43

Figure iii: Visualization of inpainted background images from TUM-RGBD dataset, covering blurry images
and various viewpoints.

Figure iv: Visualization of movable region estimation, covering shadows, reflections, and movable objects.

frame I t , significantly decreasing the errors in flow estimation generated from incom-
plete elimination of camera motion. In Fig. v we can see the computation of the optical
flow on splatted frames gives us a more effective elimination of camera motion than the
homography-based method. This is indicated by the coloring of the frame which goes
towards white in static regions. Moreover, we can see that there exist similarities between
flows estimated on static and dynamic scenes, as shown in details in Fig. vi. Given this
insight, we developed a flow differencing approach to further eliminate residual camera
motion. This can decrease the flow estimation error on the common static regions, while
the low-pass filter stores the original estimation result in dynamic regions to avoid false
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Figure v: Visualization of the performance of projecting frames through Soft Splatting or Homography
Transformation techniques using frames for static scenes. The second line and fourth line differences the
frame Ĩ t+i and I t to illustrate the alignment performance across the frames, while the third line and fifth line
demonstrate their effects in flow estimation F (I t , Ĩ t+i ), where flow magnitude should ideally approach to 0
in static regions as discussed in Eq. 5.5.

subtraction.

We also exhibit some failure cases in Fig. vii, which mainly result from the false cor-
respondences in textureless regions (e.g. wall, floor). The specific reason lies in that
underlying flow estimation networks fail to capture the correct pixel correspondences in
these regions, leading to false moving estimation M (I t , Ĩ t+i ) on the static regions. De-
spite many of these can be constrained by multiplying them with movable probability,
this module sometimes fails to provide accurate motion estimation when there is occlu-
sion. The occlusion directly influences the background differencing process and falsely
classifies many regions as movable, being incapable of further reducing the errors gen-
erated from flow estimation.

D DETAILED SLAM EVALUATION EXPERIMENTS

In Sec. ??, we exhibit the necessary experimental results to demonstrate our effective-
ness in both synthetic sequences and real-world sequences, followed by the analysis by
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Figure vi: Visualization of the moving estimation and final motion probability. The second line and third line
represent the flow estimated on dynamic scenes F (I t

d , Ĩ t+i
d ) and static scenes F (I t

s , Ĩ t+i
s ) respectively,

exhibiting similar estimation errors in common static regions. The fourth line demonstrates the moving
estimation M (I t , Ĩ t+i ) through flow differencing. The fifth line denotes the blended motion probability P t by
multiplying movable probability p t

m

Figure vii: Visualization of failure cases on motion probability.

comparing performance in static/dynamic scenes. Here, we first report the detailed ex-
perimental result of each one of the ten runs for each sequence. Then, we analyze the
distribution of such results using box plots based on tracking rate amounts to provide
more insights into these results.

The detailed results help us put in perspective what we expressed in the paper. For
example, we can see how in both sequences F and WO there are wide variations in the
outputs of both the tracking rate and ATE, both for the static and dynamic case. This
indicates that in those sequences there are critical points which make the method fail
in some situations based on the stochastic nature of the underlying SLAM frameworks.
These failures are mostly linked to featureless areas, that make the method lose track of
the camera movement, and the absence of a subsequent strong recovery procedure. We
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can also see how in the tracking rates there is little variability in most situations for both
our and the benchmark methods.

Although the average value of both absolute trajectory error (ATE) and tracking rate
(TR), with the corresponding standard deviations, can provide an overall evaluation of
various methods, comparing the ATE with various TR is also necessary to gather insights
on the relations between these two. For this reason we provide a series of plots, one for
each experiment, in which, given a tracking rate interval, we report the corresponding
ATE statistics for the four methods. We defined four non-overlapping TR intervals, which
are high (≥ 0.95), middle (≥ 0.85), low (≥ 0.70), and rare (≤ 0.70) tracking rate. Ideally, the
estimation distribution should lie in the left-bottom corner, i.e. low trajectory error and
high tracking rate, without any presence in other sectors. Anyway, given a sector, the
lower the ATE the better. From these plots we can see how DynaPix and DynaPix-D are
often located in that region. Notably, with the exception of the WO - Static Scene exper-
iment, both are always located in the left-most populated box with better performance
than the corresponding method both in terms of ATE and variance of the results, making
them not only better but stabler. This holds true for both the synthetic and real-world
datasets and especially, but not only, in FH, WOH, S, D, DH, halfsphere, static and rpy
sequences. Moreover, these plots also evidence the fact that DynaSLAM is often located
alone in the right-most section, indicating poor tracking rates in almost all synthetic ex-
periments and in both the halfsphere and rpy TUM-RGBD sequences. This is clearly re-
flected by DynaPix-D and evidence of the influence of semantic masks and how blindly
discarding features because belonging to a potentially dynamic object can worsen the
performance of the method.

Figure viii: Box-Plot of results of the four methods tested on the F static and dynamic sequences using the
tracking rate buckets and the ATE results.
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Figure ix: Box-Plot of results of the four methods tested on the FH static and dynamic sequences using the
tracking rate buckets and the ATE results.

Figure x: Box-Plot of results of the four methods tested on the D static and dynamic sequences using the
tracking rate buckets and the ATE results.

Figure xi: Box-Plot of results of the four methods tested on the DH static and dynamic sequences using the
tracking rate buckets and the ATE results.
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Figure xii: Box-Plot of results of the four methods tested on the WO static and dynamic sequences using the
tracking rate buckets and the ATE results.

Figure xiii: Box-Plot of results of the four methods tested on the WOH static and dynamic sequences using
the tracking rate buckets and the ATE results.

Figure xiv: Box-Plot of results of the four methods tested on the S sequence using the tracking rate buckets
and the ATE results.
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Figure xv: Box-Plot of results of the four methods tested on the SH sequence using the tracking rate buckets
and the ATE results.

Figure xvi: Box-Plot of results of the four methods tested on the TUM-RGBD fr3_walking/halfsphere sequence
using the tracking rate buckets and the ATE results.

Figure xvii: Box-Plot of results of the four methods tested on the TUM-RGBD fr3_walking/static sequence
using the tracking rate buckets and the ATE results.
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Figure xviii: Box-Plot of results of the four methods tested on the TUM-RGBD fr3_walking/rpy sequence
using the tracking rate buckets and the ATE results.

Figure xix: Box-Plot of results of the four methods tested on the TUM-RGBD fr3_walking/xyz sequence using
the tracking rate buckets and the ATE results.
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