
Estimation of ego-
motion velocities from
single static images

Y. Napolean

Te
ch
ni
sc
he

U
ni
ve
rs
ite

it
D
el
ft

Estimation of ego-motion velocities
from single static images

by

Y. Napolean

in partial fulfillment of the requirements for the degree of

Master of Science
in Aerospace Engineering

at the Delft University of Technology

Student number: 4521277
Project duration: June 2017 to May 2018
Thesis committee: Dr. G. C. H. E. de Croon, Supervisor & Chair

Dr. Ir. J. V. C. van Gemert, Supervisor
Dr. Ir. E. van Kampen, Committee member

An electronic copy of this report is available on http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

My time in TU Delft has been nothing short of an amazing journey, culminating with a topic I find
truly fascinating and I write this document in the hope that it captures my intrigue and transfers it
to the reader as well. This work would not have been possible without Dr. Ir. Jan van Gemert and
Dr. G.C.H.E. de Croon who were kind, considerate and supportive. They provided me with invaluable
guidance while still affording me the freedom to explore the topic on my own. I am truly grateful to
have them as my supervisors. I would also like to express my heartfelt gratitude to Dr. Ir. Erik-Jan
van Kampen for his time and consideration.

To adapt to a new environment is not an easy task. I was lucky to be accompanied by great friends on
my journey towards an MSc, great friends like Naina who is wise enough to counsel me in distress, yet
juvenile enough to plan pranks with. Being a Happy-go-lucky sort of person. I frequently tend to get
complacent with myself, which is when Shubham steps in with his skepticism to ensure I am always
on my toes. I also owe a lot to Siva Sankar and Satya who have stuck with me through thick and thin
for almost a decade now.

I was fortunate to meet wonderful people in Delft as well. Kindered Spirits like Greeshma and Deepak,
who have given me a fresh perspective of life. I thank Vishal for listening to my rants and for the
occasional life hacks he gave. I would also like to thank Datta, Balaji Sridharan, Manjunath, folks from
the C&S department (shout out to Simon Vrouwenvelder, Master Kwadwo and Peter Luteijn) and the
PRB Group,EWI for their support and encouragement.

Living with people you are not familiar with, seems a weird proposition to most. I have had the privi-
lege of staying with amazing people like Florian who has helped me shrug off many a worry, Livia who
I look up to but might never emulate and Andrea, with whom I have had many interesting machine
learning related discussions. All of them have been the epitome of benevolence, and have helped me
find my home away from home.

Last but in no way the least, I would like to thank my parents. They have always been the pinnacle of
understanding and have supported me throughout this endeavour and my whole life. I will always be
indebted to them.

Y. Napolean
Delft, May 2018

The cover image was generated by the author using the Python programming language and the Python
Imaging Library(PIL), with pictures captured while travelling on the Ring Road in Iceland. All the cap-
tured images were averaged to simulate the motion blur effect and edited in Adobe PhotoShop Light-
Room.

iii

Contents

0.1 Scientific Article . 1

1 Introduction 11
1.1 Motivation for Research . 12
1.2 Research objective and research questions . 13
1.3 Pre-requisites & Facilities . 13

2 Background on Neural Networks 15
2.1 Artificial Neural Networks. 16

2.1.1 Convolutional Neural Networks . 18
2.1.2 Recurrent Neural Networks . 20

3 Motion Blur & Motion Estimation 25
3.1 Characterization of Motion Blur . 25
3.2 Velocity and Motion Estimation from images . 27
3.3 Role of Context in Perception. 29

4 Preliminary results 31
4.1 Dataset Evaluation. 31
4.2 Experiments. 36

4.2.1 Role of Motion Blur as a feature . 37
4.2.2 Role of Spatial Context as a feature . 38

5 Conclusion 41

Bibliography 43

v

Scientific Article

Estimation of Ego-motion Velocities from Single Static Images

Yeshwanth Napolean
Student

Delft University of Technology

J.C. van Gemert
Supervisor

Delft University of Technology

G.C.H.E de Croon
Supervisor

Delft University of Technology

Abstract

Velocity estimation based on visual information is a well-
researched topic. Traditional approaches usually rely on
how a given feature or features change between successive
images in a sequence. However, a single static image might
contain motion information that could potentially be lever-
aged to estimate the optical flow. It can be hypothesized that
motion blur and context of the scene are two sources of mo-
tion information in static images. This research work has
two main goals, one is to investigate the prospect of using
a learning-based framework to model a mapping directly
to camera ego-motion velocity. The second goal is to ana-
lyze the contributing features in learning such a mapping.
Experiments show that the model is able to learn velocity
based on context of the scene but performs better when in-
put images contain motion blur.

1. Introduction

Given the steady progress in the field of robotics and au-
tomation and its widespread acceptance and use in day to
day life, it has become increasingly vital to estimate veloc-
ity for exploration, navigation and related tasks. With the
advent of self-driving cars, autonomous unmanned aerial
vehicles and other similar systems, it is now of paramount
importance to obtain accurate velocity estimates of the
agent to prevent accidents. There are many methods to mea-
sure the velocity of a given agent, such as GPS (Global Posi-
tioning System) or using inertial measurement units. How-
ever, errors accumulate in IMUs [1], and thus they need a
supplementary system such as GPS for correction. Also,
GPS as a standalone system has poor performance in some
indoor scenarios [19]. However, cameras are cost-effective,
compact and low power while still providing robust and re-
liable data [23]. Vision based sensors have been used in
a wide range of applications including velocity estimation,

Figure 1. Velocity estimation model. The deep learning model is
trained on the input images to predict velocity.

especially on board unmanned aerial vehicles. These ap-
plications include obstacle avoidance, velocity estimation
[26], integration with an inertial navigation system [35] and
navigation [42]. Another one of the main advantages of
cameras as sensors apart from being information rich is that
they can function independently of the platform/agent that
they are deployed on. For instance, state estimation (using
potentiometers) in humanoid agents is quite different from
that employed on-board unmanned aerial vehicles(using an
IMU). However, both bipedal and aerial robots can utilize
vision based state estimation.Thus, in recent times draw-
ing inspiration from examples in nature, several computer
vision based approached have been put forth for velocity
estimation [2] [13][16].
The handling of visual data in an effective manner was
made easier with the introduction of convolutional neural
networks (CNNs) [21] [22]. Following the seminal work
of Alex Kriezehvsky et. al in 2012 [20] on the ImageNet
object recognition challenge [6], CNNs gained popularity.
Using GPU acceleration made deep neural networks com-
putationally more tractable. Convolutional neural networks
have since been used to learn how to predict optical flow [7]
with significant accuracy. Convolutional neural networks
have also been used for heterogeneous blur removal [12]
and learning to classify blur kernels [37]. Research has also

1

been carried out to estimate velocity from blur present in
images [24].Research in computer vision has already previ-
ously investigated motion estimation from single static im-
ages [29] via structured regression with a random forest.
Thus, it is possible that motion blur contains velocity infor-
mation and blur kernel identification can be achieved with a
learning based framework. The architecture for the learning
based model for velocity estimation is depicted in Figure 1.
Research work on image based velocity estimation has in-
creased in recent years. The predominant method for veloc-
ity estimation from images is by using optical flow which
was first introduced by an American psychologist named
James Gibson . Optic flow is the apparent motion of texture
in the visual field relative to the camera and can be utilized
to obtain velocity and distance information [15]. Optic flow
and motion blur are both related to motion. The salient dif-
ference is that motion blur occurs in a single frame while
optical flow is the motion between frames.
The key contribution of this body of work is twofold - i)
The investigation of using single static images as input to a
CNN feature extractor and then a feed forward network for
the task of velocity estimation. ii) Analyzing the features
learned by the convolutional neural network and ultimately
quantifying the influence of motion blur and spatial context
as a feature in learning a mapping from pixel space to ve-
locity space.
The rest of the article is organized as follows, section 2
presents literature survey of relevant research for motion
blur estimation and vision based velocity estimation. How-
ever, there is very little work done regarding spatial context
as a feature for velocity estimation, thus to provide addi-
tional perspective, the role of context in relevant tasks are
presented. Section 3 deals with the methodology under-
taken, discussing the network architecture and approach to
analyzing the deep learning model. Section 4 presents the
results obtained and the final section presents the conclu-
sions and recommendations for future research.

2. Related Work

Motion blur is usually characterized by a point spread func-
tion. This point spread function is defined by the motion
angle and length. The recovery of the point spread function
is a particularly challenging task owing to the short duration
of the image degradation process and loss of information it
causes. However, study of motion blur PSF has revealed
that it exhibits a unique behavior in the frequency domain
[30]. Blur identification with spectral nulls making use of
power spectrum and the power cepstrum was investigated
[34], but this approach fails when there is a large amount
of noise or if the blur size is small. Auto-correlation based
methods for PSF estimation have also been investigated [27]
[44]. While the aforementioned methods achieve reason-
able performance, the key issue with them is that they all re-

quire incorporation of domain knowledge in the framework,
engineered features or pre-processing. Thus, we make use
of deep learning models which eliminates the need for fea-
ture engineering.
Recent research in deep learning has shown that, the mo-
tion blur parameters can be estimated from raw images itself
rather than resorting to frequency domain analysis. CNNs
have particularly been used for blur identification [37]. The
motion space is discretized and the convolutional neural
network is trained as a classification model to estimate prob-
abilities of motion kernels for each patch of the image, then
dense motion blur kernels for the whole image is estimated
using a Markov random field. Fully convolutional neural
networks have also been used to estimate motion flow from
motion blur in an image [12]. This approach does not re-
quire any post processing. Training and testing of the model
is directly performed on the whole image, exploiting addi-
tional spatial context to estimate a dense motion flow map
accurately. However, here for motion flow estimation, the
fully convolutional network is trained over discrete outputs.
Discretization of the motion space could pose an issue(loss
of information) as motion is an inherently continuous quan-
tity. While these research endeavours have achieved signif-
icant results in blur estimation, they focus on the removal
of blur. We aim to understand the role of motion blur in the
task of velocity estimation.
Traditional methods for optical flow estimation take a
variational approach [17][41] [31]. The disadvantage to
these methods are that they require engineered methods for
matching, aggregation and interpolation. Research has also
been carried out on the topic of estimation of optic flow us-
ing machine learning algorithms. Sun et. al [5] analyze
the underlying statistics of optical flow, thereby proposing
a steerable random field to model the statistical relationship
between image and flow boundaries.Taylor et. al [39] pro-
posed a convolutional restricted Boltzmann machine capa-
ble of extracting low-level motion features which is ulti-
mately used for action recognition. The common issue with
these approaches are that they work with controlled exper-
imental setup and do not have performance comparable to
classical flow estimation algorithms on real-world data [7].
The neural network architecture termed ’FlowNet’ put forth
by Fischer et. al [7] is capable of learning to predict optical
flow with good generalization capability. The architecture
proposes a CNN trained end to end to compress information
spatially and then refined to obtain optical flow prediction.
Ilg et. al [18] further built upon ’FlowNet’, proposing a
new framework ’FlowNet 2.0’ which includes a stacked ar-
chitecture with the ability to estimate optical flow for small
and large displacements. While FlowNet architectures uti-
lize image pairs, Walker et al. showed that it is possible to
estimate dense optical flow from a single image frame [40].
The article hypothesizes that the learned optical flow rep-

2

resentation is context dependent but does not quantify the
relationship. FlowNet 2.0 has good performance on optical
flow estimation, but it utilizes successive image frames. We
aim to build on the work by Walker et al. quantifying the
role of scene context.
As human beings, we unwittingly use contextual informa-
tion on a daily basis. We can situate ourselves in an envi-
ronment and process information based on things around us.
Studies in Cognitive Psychology [3] provide evidence that
contextual cues such as relative size and location play a sig-
nificant role for object detection in humans. This is relevant
when dealing with velocity estimation because we would
tend to predict higher velocities while travelling on high-
ways, as compared to a road winding through a mountain
pass. High-level contextual information has been shown to
augment low-level features for object detection tasks [11]
achieving better performance. Context has also been shown
to play a vital role in 3D scene understanding [46]. How-
ever, when it comes to velocity estimation, motion blur
and ultimately motion flow have been investigated as a
cue/feature for velocity estimation, but the role of context
is not very well explored.

3. Methodology

As human beings, the primary visual cues we generally use
to estimate velocity are motion blur and context. When en-
countering obstacles in forward motion, we predict that our
velocity would be lower to manoeuvre around the obsta-
cle. When objects appear more blurred, we tend to assume
that we are travelling faster. Given that convolutional neu-
ral networks are based on the mammalian visual cortex, it is
reasonable to hypothesize that context and motion blur play
a part in velocity estimation with artificial neural networks.
When a camera is subject to motion within an exposure pe-
riod, the illumination changes are integrated over time and
the sharpness is smeared over the image, thus forming mo-
tion blur. In other words a captured image can be thought
of as an averaged sample over a time period, as a result,
moving objects in that time period cause motion blur. Im-
age deblurring to recover the original image is an actively
researched topic [12][37] since traditional computer vision
tasks such as segmentation and tracking are difficult to per-
form without knowing the blur kernel. However, the motion
blur being removed actually has motion information [32].
Thus, it is possible that a model could learn a function that
maps motion blur parameters to velocity of the camera
An image with motion blur retains information that param-
eterizes the blur. This enables the recovery of motion from
a single static image. Motion blur in an image can be char-
acterized by its Point Spread Function (PSF). A motion
blurred image (b) can be thought of as a convolution (*)
of the unblurred image (i) and the point spread function (h)
with additional noise (µ).

b(x, y) = i(x, y) ⇤ h(x, y) + µ(x, y) (1)

The point spread function is defined as:

h(x, y) =

(
1
L

, if
p

x

2 + y

2  L

2 and x

y

= �tan(�).
0, otherwise.

(2)
Where ’ L ’ is the motion length and � is the motion direc-
tion. The length of the motion blur is proportional to the
relative velocity between the object and the camera.
A review of literature has shown single image frames do
contain temporal information which could possibly be uti-
lized to estimate the ego-motion velocity. One key assump-
tion made is that the features in the scene have on average,
the same distance. The first step would in this research work
would be to train a convolutional neural network to predict
the velocity given single static image frames.
This section presents and motivates the relevant technical
details of the methodology undertaken. The first subsection
discusses the choice of network architecture. The second
section presents the concept of transfer learning which will
be used to evaluate the feature learned by the deep learning
model.

3.1. Network Architecture

An appropriate convolutional neural network architecture
must be determined for the task of velocity estimation.
Given the dynamic nature of the computer vision and
deep learning research fields, several convolutional archi-
tectures have been developed. These models such as ZFNet
[45], GoogleNet [38], VGG [36] and ResNet [14] have all
achieved a significant level of performance in the ILSVRC
Image classification challenge. Among the above, the
VGG16 network architecture has been prevalent, deployed
for several tasks such as image style transfer [9], remote
sensing image classification [4] and has been showed to
learn a generalized set of features which could be attributed
to the depth of the network and the fact that it has pooling
layer once after every two convolutional layers. The data is
relatively less downsampled, allowing it to store more in-
formation. The VGG16 architecture is presented in Fig. 2
The VGG architecture is slightly modified for this scenario.
The convolutional layers and the first two fully connected
layers are kept intact, the final fully connected layer is mod-
ified to output one number - the velocity prediction, rather
than the 1000 class scores for ImageNet, the last loss layer
is changed from Softmax loss to a Euclidean Loss function
which is more suited for the regression task.

L =
1

2N

NX

i=1

||ŷ
n

� y

n

||22 (3)

3

Figure 2. VGG16 Convolutional neural network Architecture [28]

The network hyperparameters are tuned until an optimal
combination is reached. The KITTI data is fed as input into
the VGG16 CNN. The model is trained for 100,000 itera-
tions. The trained model weights are frozen and the model
is tested with the test data.

3.2. Transfer Learning

The training of deep models can be unwieldy especially
when there is a relatively less data. This has lead to the pop-
ularity of the transfer learning paradigm. The previously
learned features serve as a starting point, which could en-
able faster convergence to the solution. Initial layers in the
convolutional network architecture learn to detect corners
and edges and the subsequent layers hierarchically learn
finer features. Considering that the source domain for the
pre-trained VGG16 model is an object recognition problem,
the feature space of the domain and the predictor function
learned are completely different when compared to the task
of velocity estimation. However, since the initial layers pos-
sess the ability to detect lower level features, it would prove
useful.
Transfer learning in convolutional neural networks can be
implemented in two ways :

• Fine-tuning the model: The update of network
weights of the pre-trained model resumes through
backpropagation on the new task.It is possible to fine-
tune the whole network, or keep the initial layers
frozen, tuning subsequent layers to prevent overfitting.

• Freezing the weights: The model is used as a fixed
feature extractor, no weight updates occur in this sce-
nario.

Each of the above approaches is useful in a specific situ-
ation. Freezing the weights can be used to keep all fac-
tors equal and evaluate the model. Fine-tuning can help
in reduction of computational cost. In the context of this
research work, The model is fine-tuned on the KITTI and

vKITTI datasets from the pre-trained ImageNet VGG16
weights. The learned model is then used as a feature ex-
tractor on other tasks to obtain a better understanding as to
what features the network learned.

4. Experiments & Results

To efficiently train deep learning models, a large amount of
labelled data is required. More specifically, images cap-
tured by a moving camera, annotated with the instanta-
neous velocity at the time of image capture would con-
stitute the dataset for training this deep learning model.
Due to the increasing popularity of autonomous driving
there are many such datasets available such as the comma.ai
dataset [33], the KITTI dataset [10] and the Oxford Robot-
Car dataset[25]. Among these datasets, the KITTI dataset
presents itself as the ideal candidate in this scenario as it has
a synthetic, generated counterpart name vKITTI [8] which
proves useful to evaluate the role of motion blur. There is
no mention of a blur model applied for the creation of the
vKITTI dataset, the role of context can be evaluated using
the vKITII dataset.
The vKITTI dataset is a clone of five videos selected from
the original KITTI dataset. The creators of the dataset
also automatically generate modified versions of the orig-
inal sequence(different weather and imaging conditions).
The vKITTI dataset does not directly have information of
ground truth velocity for the generated scenes, but the ex-
trinsic parameters which capture the transformation from
3D world coordinates to camera coordinates are available.
The extrinsic matrix includes the rotation matrix(R) and the
world coordinate system origin represented in camera co-
ordinates. Thus, the camera pose can be obtained by the
equation,

P = �R

T

T (4)

Where P is the camera postion, RT is the transpose of the
camera rotation matrix and T is the translation vector, the
latter two are obtained from the camera extrinsics matrix.
The temporal difference of successive camera positions will
result in the ground truth velocities.
Since vKITTI is a synthetic dataset generated without a mo-
tion blur model. However, for validation, a frame is ex-
tracted from KITTI along with its corresponding vKITTI
frame. The gradient magnitude of the two images are cal-
culated and depicted in Fig. 3. It can be seen that the edges
are more clear in vKITTI than with KITTI. Also the me-
dian of the top 0.1% gradient value is higher for vKITTI
than KITTI as shown in Table 1.
To evaluate the role of context in the estimation of camera
motion, a dataset with images from a variety of places is
required. Scene recognition datasets would be best suited
for this task. Two of the biggest datasets for scene recogni-
tion are the SUN database [43] and the MIT places database

4

Video Frame Gradient
KITTI 791.64
vKITTI 892.02

Table 1. Comparison of amount of blur in image. The median
value of the max 0.1% of gradients is higher in vKITTI. The lower
value for KITTI implies it contains motion blur.

Figure 3. Gradient magnitude of KITTI (top) and corresponding
vKITTI frame(bottom). Black corresponds to lower gradient val-
ues, white implies higher gradient. The clear edges visible in the
gradient of vkitti, show that it has no motion blur.

[47]. These large datasets share a few common classes but
the MIT places dataset is larger, diverse and well docu-
mented so it is taken under consideration.
The aforementioned datasets aid in establishing the role of
motion blur and context in velocity estimation. However,
these datasets are recorded with cars and thus the motion
is planar - cars are incapable of rolling motion along its
own axis. Thus it would be interesting to investigate veloc-
ity estimation with images recorded on board an unmanned
aerial vehicle. Such a dataset(drone collected images an-
notated with velocity) is not available to the best of the au-
thors knowledge, so it must be created. The paparazzi open
source autopilot and the motion capture system at Delft Uni-
versity of Technology (Opti-track) are utilized along with
the Parrot Bebop drone for the creation of this dataset.

4.1. Exp 1: Evaluating performance of deep model

To investigate if a deep learning model can estimate veloc-
ity with good preformance and to analyze what the model
learns, it is necessary to first train the VGG network to pre-
dict velocities.
Before quantifying the role of motion blur and context,
training the network on a different task, and utilizing the
features extracted from this network for velocity estimation
would present itself as a good baseline, offering additional
perspective to the performance of the model trained on other
tasks. To this end, the VGG16 network is trained to detect
pedestrians and cyclists in images via bounding box regres-
sion, The networks weights are then frozen and the KITTI

Figure 4. Example Images from the KITTI dataset.

Figure 5. Predictions and corresponding ground truth on the KITTI
test set.

Figure 6. Prediction and ground truth - model trained on different
task. Performance worse than KITTI trained model.

image features from the penultimate fully connected layer
are extracted. The extracted features are then trained with

5

a feed forward neural network for the task of velocity esti-
mation. The results are presented in Figure 6. It is appar-
ent from the results that the predictions have poorer perfor-
mance in this case than the pervious scenario when features
were extracted from the model trained on the KITTI dataset.

4.2. Exp 2: Evaluating motion blur as a feature

To estimate the contribution of motion blur in establishing
a mapping from pixel space, to motion space, the trained
VGG16 network is used as a feature extractor for a motion
blur regression task. The task is to estimate the motion blur
angle and length from the images. The input to the model
are images from the vKITTI dataset convolved with mo-
tion blur kernels.The predictions on the test set are shown
in Figure 8.

Figure 7. An Example frame from the vKITTI dataset convolved
with the blur kernels. From the top, the first frame is the original,
the second is convolved with a kernel of parameters (len,theta) =
(30,10), the third frame is convolved with the kernel of parameters
(45,20) and the final one is convolved with the kernel of parame-
ters (55,30)

Figure 8. Per kernel mean and variance of prediction along with
ground truth.

It can be seen that the model is able to predict motion blur

with reasonable accuracy, thus it is evident that the model
learns features that capture motion blur information.

4.3. Exp 3: Evaluating scene context as a feature

For analyzing the role of context, a sample of 1.8 million
images from the MIT places dataset are supplied as input to
the trained convolutional neural network. If the network has
learned scene based information, it should predict higher
values for highway like scenes in MIT places. However,
this does not seem to be the case as can be seen in Figure 9
The predictions from the network have high per class stan-
dard deviation. The magenta lines represent predictions on
images from indoor classes such as hotel room while the
black lines represent outdoor classes like highway road.

Figure 10. Mean and variance of predictions on relevant scenes

Figure 11. Example Frames from relevant classes of the MIT
places dataset.

However, it might be worth noting that some classes have

6

Figure 9. Velocity predictions on the MIT places dataset

pictures taken indoors and outdoors and there are com-
pletely new sets of features that the network has previously
not been exposed to.
To offer some perspective, the predictions on a few pertinent
classes have been depicted in Figure 10.
It can be seen that village has a higher speed prediction as
compared to highway. While the indoor classes seem more
densely distributed towards the lower predictions, there is
no discernible pattern in the mean values of predictions
among different classes.

4.4. Exp 4: Validation of role of motion blur and

context

While initial evidence points to the conclusion that velocity
estimation is more dependent on motion blur than it is on
context, it is necessary to design additional experiments to
completely validate this hypothesis. Cross-testing of KITTI
and vKITTI trained models would offer additional informa-
tion to the nature of the mapping learned for velocity esti-
mation. To preserve scene context and carry out an objec-
tive evaluation, only the frames utilized for cloning from the
KITTI dataset are used.

Table 2. Testing across KITTI and vKITTI
Experiment Mean Absolute Error [m/s]

Trained and tested
on KITTI 3.15

Trained and tested
on vKITTI 4.83

Trained on KITTI,
tested on vKITTI 6.70

Trained on vKITTI,
tested on KITTI 6.81

It is evident that training and testing on the real world KITTI

dataset has the least mean absolute error. Training and test-
ing on vKITTI has a slightly higher error, possibly because
there is no motion blur information in the features learned
by the vKITTI network and the network learns the predic-
tor function based on context information only. However,
training on KITTI and testing on vKITTI and vice versa,
the performance drops further. This can be attributed to the
fact that while training with KITTI, the model learns mo-
tion blur related features which are then not available on
the test set. The model is unable to adapt to this, leading
to larger errors. When training with the vKITTI dataset,
the network learns spatial context related features but mo-
tion blur information is present in the test set. The network
is unable to utilize the additional information. The motion
blur could potentially be acting as noise, rendering the pre-
dictions worse.

Figure 12. Predictions and Targets - training on blurred vKITTI

7

It would be of significance to study the effect of introducing
motion blur in the vKITTI dataset, to see how it affects the
performance of the model. Blur is introduced in the vKITTI
dataset by averaging two successive frames and repeating
the same temporal averaging on the velocity to obtain the
new ground truth. The predictions obtained for training and
testing the model on the blurred vKITTI dataset are shown
in Figure 12.
Training on the blurred vKITTI dataset is observed to have
slightly worse performance (MSE = 5.3 m/s) to that of train-
ing without the blur. This could be due to the fact that the
motion blur in real images is heterogeneous in nature and
the motion information is not completely captured by aver-
aging consecutive images.

Figure 13. Predictions and Targets - training on KITTI, testing on
Robotcar

Figure 14. Predictions and Targets - training and testing on Robot-
car. Improvement in performance as compared to KITTI trained
model.

It is also necessary to understand the capability of the model
to determine its limitations. To that end, the model is trained
on the KITTI dataset and tested on the oxford RobotCar
dataset [25]. The oxford dataset is not only recorded in dif-
ferent scenes but also has higher gradation in illumination
change. While a ’vanilla’ convolutional neural network is
usually not capable of domain adaptation, it would still be
relevant to investigate if the model is able to learn a gener-
alized representation of motion. The model is trained and
tested on the oxford dataset as well.
The results are presented in Figure 13 and Figure 14. The
model does not show any domain adaptation capability but
the model has good performance on the oxford dataset. It
is only slightly worse than the performance on the KITTI
dataset - with an MAE of 4.06 which could be because of
the larger range of illumination change.

4.5. Exp 4: Model performance on drone data

The datasets tested so far involve planar motion, the cars
and thus the cameras all move on a road, there is no up-
ward or downward motion. To test how the model handles
another axis of motion, images are captured and the veloc-
ity is logged on board a Parrot bebop drone. Not only is
there an additional axis of motion, which could result in
higher order of blur heterogeneity, there is probably a sub-
tler contextual dependency since the dataset is recorded in a
controlled environment. For datasets recorded in the world,
there is scene information directly relating to velocities such
as traffic lights, road structure and so on. This dataset is fed
to the model and the results are presented in Figure 16.

Figure 15. Example Images from the drone dataset

The mean absolute error for the drone dataset is found to
be 0.51, while the error is lower here, an objective evalu-
ation would also consider the maximum speed attained by
the drone which is around 2m/s. Comparing the predic-
tion error and the maximum speeds in all the datasets(max
speed for KITTI is 13m/s), it can be seen that while the er-

8

Figure 16. Predictions and Targets - training on UAV data

ror is reasonably low for the drone dataset, visual inspection
shows that the predictions do not follow the general trend of
the targets.

5. Conclusion

A deep learning model for the estimation of velocity from
single static images is presented in this work. Since mo-
tion blur is proportional to the relative speed between cam-
era and objects and there could be a subtle relationship be-
tween scene context and velocity. Analysis of the model
using transfer learning show that the model learns features
related to motion blur. However, it can be seen that the
task of velocity estimation is also context dependent, given
that the model was able to learn albeit with lower accuracy,
even without motion blur when trained on vKITTI. Fur-
ther experimentation shows that while the model does not
adapt across domains, it is able to learn even when subject
to changes in scene conditions. The limitations of the model
are that it reduces in performance when subject to large il-
lumination changes, does not have any domain adaptation
capability.
Further experimentation could aid in forming a better un-
derstanding of the features learned by the model. One such
experiment would be to constrain the scene context and vary
the motion blur, by moving the camera to and fro in a linear
fashion.

References

[1] K. Alexiev and I. Nikolova. An algorithm for error reduc-
ing in imu. In Innovations in Intelligent Systems and Appli-
cations (INISTA), 2013 IEEE International Symposium on,
pages 1–6. IEEE, 2013.

[2] J. Andersh, A. Cherian, B. Mettler, and N. Papanikolopoulos.
A vision based ensemble approach to velocity estimation for

miniature rotorcraft. Autonomous Robots, 39(2):123–138,
2015.

[3] I. Biederman, R. J. Mezzanotte, and J. C. Rabinowitz. Scene
perception: Detecting and judging objects undergoing re-
lational violations. Cognitive psychology, 14(2):143–177,
1982.

[4] G. Cheng, Z. Li, X. Yao, L. Guo, and Z. Wei. Remote sens-
ing image scene classification using bag of convolutional
features. IEEE Geoscience and Remote Sensing Letters,
14(10):1735–1739, 2017.

[5] J. L. D. Sun, S. Roth and M. J. Black. Learning optical flow.
In European Conference on Computer Vision, October 2008.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. IEEE, 2009.

[7] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazirbas,
V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.
Flownet: Learning optical flow with convolutional networks.
CoRR, abs/1504.06852, 2015.

[8] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual worlds
as proxy for multi-object tracking analysis. In CVPR, 2016.

[9] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer
using convolutional neural networks. In Computer Vision
and Pattern Recognition (CVPR), 2016 IEEE Conference on,
pages 2414–2423. IEEE, 2016.

[10] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets
robotics: The kitti dataset. The International Journal of
Robotics Research, 32(11):1231–1237, 2013.

[11] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-
ture hierarchies for accurate object detection and semantic
segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 580–587,
2014.

[12] D. Gong, J. Yang, L. Liu, Y. Zhang, I. Reid, C. Shen, A. v. d.
Hengel, and Q. Shi. From motion blur to motion flow: a
deep learning solution for removing heterogeneous motion
blur. arXiv preprint arXiv:1612.02583, 2016.

[13] V. Grabe, H. H. Bülthoff, and P. R. Giordano. On-board ve-
locity estimation and closed-loop control of a quadrotor uav
based on optical flow. In Robotics and Automation (ICRA),
2012 IEEE International Conference on, pages 491–497.
IEEE, 2012.

[14] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning
for image recognition. CoRR, abs/1512.03385, 2015.

[15] H. W. Ho, G. C. de Croon, and Q. Chu. Distance and veloc-
ity estimation using optical flow from a monocular camera.
International Journal of Micro Air Vehicles, 9(3):198–208,
2017.

[16] D. Honegger, P. Greisen, L. Meier, P. Tanskanen, and
M. Pollefeys. Real-time velocity estimation based on optical
flow and disparity matching. In Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Conference on,
pages 5177–5182. IEEE, 2012.

[17] B. K. Horn and B. G. Schunck. Determining optical flow.
Artificial intelligence, 17(1-3):185–203, 1981.

9

[18] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox. Flownet 2.0: Evolution of optical flow estimation
with deep networks. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), volume 2, 2017.

[19] M. B. Kjærgaard, H. Blunck, T. Godsk, T. Toftkjær, D. L.
Christensen, and K. Grønbæk. Indoor positioning using gps
revisited. In International conference on pervasive comput-
ing, pages 38–56. Springer, 2010.

[20] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1097–1105. Curran Associates, Inc., 2012.

[21] Y. LeCun, Y. Bengio, et al. Convolutional networks for im-
ages, speech, and time series. The handbook of brain theory
and neural networks, 3361(10):1995, 1995.

[22] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

[23] T. Lemaire, C. Berger, I.-K. Jung, and S. Lacroix. Vision-
based slam: Stereo and monocular approaches. International
Journal of Computer Vision, 74(3):343–364, 2007.

[24] H.-Y. Lin and K.-J. Li. Motion blur removal and its applica-
tion to vehicle speed detection. In Image Processing, 2004.
ICIP’04. 2004 International Conference on, volume 5, pages
3407–3410. IEEE, 2004.

[25] W. Maddern, G. Pascoe, C. Linegar, and P. Newman. 1 year,
1000 km: The oxford robotcar dataset. The International
Journal of Robotics Research, 36(1):3–15, 2017.

[26] K. McGuire, G. de Croon, C. De Wagter, K. Tuyls, and
H. Kappen. Efficient optical flow and stereo vision for ve-
locity estimation and obstacle avoidance on an autonomous
pocket drone. IEEE Robotics and Automation Letters, pages
1070–1076, 2017.

[27] T.-L. Pao and M.-D. Kuo. Estimation of the point spread
function of a motion-blurred object from autocorrelation.
pages 1226–1233, 04 1995.

[28] Pawit Kocakarn. Machine learning with python : Image clas-
sifier using vgg16 model - part 1: Theory.

[29] S. L. Pintea, J. C. van Gemert, and A. W. Smeulders. Déja vu.
In European Conference on Computer Vision, pages 172–
187. Springer, 2014.

[30] H. N. Ramakrishnan. Detection and Estimation of Image
Blur. Master’s thesis, Missouri University of Science and
Technology, 2010.

[31] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid.
Epicflow: Edge-preserving interpolation of correspondences
for optical flow. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1164–
1172, 2015.

[32] S. Rezvankhah, A. A. Bagherzadeh, H. Moradi, and B. N.
Araabi. A real-time velocity estimation using motion blur
in air hockey. In 2012 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pages 1767–1772, Dec
2012.

[33] E. Santana and G. Hotz. Learning a driving simulator. CoRR,
abs/1608.01230, 2016.

[34] A. Savakis and R. L. Easton. Blur identification based on
higher order spectral nulls. 2302, 09 1994.

[35] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar. Vision-
based state estimation for autonomous rotorcraft mavs in
complex environments. In Robotics and Automation (ICRA),
IEEE International Conference on, pages 1758–1764. IEEE,
2013.

[36] K. Simonyan and A. Zisserman. Very deep convolutional
networks for large-scale image recognition. arXiv preprint
arXiv:1409.1556, 2014.

[37] J. Sun, W. Cao, Z. Xu, and J. Ponce. Learning a convolu-
tional neural network for non-uniform motion blur removal.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015.

[38] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich, et al.
Going deeper with convolutions. Cvpr, 2015.

[39] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler. Convolu-
tional learning of spatio-temporal features. In European con-
ference on computer vision, pages 140–153. Springer, 2010.

[40] J. Walker, A. Gupta, and M. Hebert. Dense optical flow pre-
diction from a static image. In Computer Vision (ICCV),
2015 IEEE International Conference on, pages 2443–2451.
IEEE, 2015.

[41] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.
Deepflow: Large displacement optical flow with deep match-
ing. In Computer Vision (ICCV), 2013 IEEE International
Conference on, pages 1385–1392. IEEE, 2013.

[42] S. Weiss, D. Scaramuzza, and R. Siegwart. Monocular-
slambased navigation for autonomous micro helicopters
in gps-denied environments. Journal of Field Robotics,
28(6):854–874, 2011.

[43] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba.
Sun database: Large-scale scene recognition from abbey to
zoo. In Computer vision and pattern recognition (CVPR),
2010 IEEE conference on, pages 3485–3492. IEEE, 2010.

[44] Y. Yitzhaky and N. Kopeika. Identification of blur param-
eters from motion blurred images. Graphical Models and
Image Processing, 59(5):310 – 320, 1997.

[45] M. D. Zeiler and R. Fergus. Visualizing and understanding
convolutional networks. CoRR, abs/1311.2901, 2013.

[46] Y. Zhang, M. Bai, P. Kohli, S. Izadi, and J. Xiao. Deepcon-
text: Context-encoding neural pathways for 3d holistic scene
understanding. arXiv preprint arXiv:1603.04922, 2016.

[47] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba.
Places: A 10 million image database for scene recognition.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2017.

10

Preliminary Report

1
Introduction

Given the steady progress in the field of robotics and automation and its widespread acceptance and
use in day to day life, it has become increasingly vital to estimate velocity for exploration, navigation
and related tasks. With the advent of self-driving cars, autonomous unmanned aerial vehicles and other
similar systems, it is now of paramount importance to obtain accurate velocity estimates of the agent
in order to prevent accidents. There are many methods to measure the velocity of a given agent,
such as using inertial measurement units, GPS (Global Positioning System), or laser-based sensors.
However, errors accumulate in IMUs [1], and thus they need a supplementary system such as GPS
for correction. Also, GPS as a standalone system has poor performance in some indoor scenarios [2].
However, cameras are cost-effective, compact and low power while still providing robust and reliable
data [3]. Thus, in recent times drawing inspiration from examples in nature, several computer vision
based approached have been put forth for velocity estimation [4] [5][6].
The handling of visual data in an effective manner was made easier with the introduction of convolu-
tional neural networks [7] [8]. Following the seminal work of Alex Kriezehvsky et. al in 2012 [9] on the
IMAGENET object recognition challenge [10], convolutional neural networks gained popularity. Using
GPU acceleration made deep neural networks computationally more tractable. Convolutional neural
networks have since been used to learn how to predict optical flow [11] with significant accuracy.
Convolutional neural networks have also been used for heterogeneous blur removal [12] and learning
to classify blur kernels [13]. Research has also been carried out to estimate velocity from blur present
in images [14]. Thus it is possible that motion blur contains velocity information and blur kernel iden-
tification can be achieved with a learning based framework.

This work aims to investigate the possibility of using machine learning techniques to directly estimate
velocity from an image. Towards that end, this literature review is carried out to present a critical
analysis of the state of the art in the topic of estimating velocity from images and also to provide a
deeper understanding of possible features contributing to the mapping of images and their associated
ego-velocity.

In this introductory chapter, section 1.1 presents the motivations behind that drive this body of re-
search, the section following that outlines the research questions and the sub-questions to be ad-
dressed while working towards the research objective. The final section of this chapter discusses the
experimental setup and facilities to be used while working on this project.

The rest of the report is organized as follows, the second chapter presents the necessary theoretical
background on relevant machine learning algorithms. Since motion blur has been proven to contain
velocity information [14], the third chapter discusses motion blur and how various approaches have
leveraged it for velocity estimation. The fourth chapter presents the preliminary results obtained.The
third and fourth chapter provide insight as to how velocity can be estimated from single images. The
final chapter presents the conclusions drawn from the literature study.

11

12 1. Introduction

1.1. Motivation for Research
State estimation poses a challenge when working towards robot autonomy, since the robot needs to
be aware of its own parameters to interact with the environment in a defined manner. The position
of the agent can be estimated with sensor fusion of Inertial Measurement Unit(IMU) data with GPS
or magnetometer measurements. Since sensor bias increases in case of IMUs, accurate non-linear
dynamic models or fusing input from other sensors are required. Velocity estimation has also been
achieved by fusion of IMU data with visual data [15]. In GPS denied environments, laser range or
sonar sensors are alternative solutions. Another popular sensor option for state estimation are RGB
cameras, because of the richness of features and information in an image stream.

Cameras as sensors have been used in a wide range of applications especially on board unmanned
aerial vehicles. These applications include obstacle avoidance, state estimation [16], integration with
an inertial navigation system [17] and navigation [18]. Another one of the main advantages of cameras
as sensors apart from being information rich is that they can function independent of the platform/agent
that they are deployed on. For instance, state estimation (using potentiometers) in humanoid agents
is quite different from that on board unmanned aerial vehicles(IMU), however both agents can utilize
vision based state estimation.

Research in computer vision has already previously investigated motion estimation from single static
images [19] via structured regression with a random forest. This thesis builds on the previous work to
analyze what kind of role motion blur and context play, in the prediction of motion from single images.
Towards this end, machine learning models are trained to estimate velocity from single static images
and then analyzed to determine what the model learns.

One of the current methods of vision based velocity estimation is optical flow computation between
two successive image frames. The storage of the previous frame requires memory which can poten-
tially be saved by using single images.This is particularly advantageous when working with embedded
systems. There are methods of optical flow based estimation that do not require dense computations
[5], however these methods still require storing optical flow data(albeit down-sampled) from the pre-
vious frame. Velocity estimation techniques based only on single images, would thus require lesser
memory, making it an interesting topic to investigate. Also it can be seen in literature that velocity
can be estimated with information from a single motion blurred image [20]. Since blur parameters can
be learned and motion blur has been shown to contain velocity information, using a learning based
framework for velocity estimation would be of interest to investigate.

Figure 1.1: Velocity estimation pipeline

Some machine learning models such as deep learning are notorious for requiring massive amounts
of computational power and data to train. The emergence of general purpose GPU computing and
the parallelization prowess of GPUs have reduced training and deployment times for deep learning
techniques. With recent advances in embedded deep learning, model inference is now easily achieved
on mobile GPUs [21]. Thus it is significant to investigate utilizing deep learning for velocity estimation
from single images particularly for drone based applications.

1.2. Research objective and research questions 13

1.2. Research objective and research questions
The overarching objective of this research project is to explore the possibility of determining the velocity
from single image frames. From the research objective, the following research question/sub-questions
are derived,

• How can a model be developed that can learn to estimate motion from a single static image?

– Which kind of learning based model would be suited for the task?

– What are the features that could enable the model to correlate image data and ground truth
velocity?

⋄ What is the contribution of each feature/cue toward learning the mapping from pixel
space to velocity?

1.3. Pre-requisites & Facilities
The training of many learning based models such as deep neural networks are computationally expen-
sive. Therefore owing to the parallel computation power of GPUs, GPU acceleration has become quite
popular. For this body of work the DAS4 cluster at TU Delft is used [22] which has an NVIDIA GTX
1080 GPU at the node being utilized. The prospect of deploying the velocity estimation model on data
collected from a drone is also to be investigated, for which a Parrot bebop drone will be used.

The training and deployment of learning based models could potentially require developing a lot of
programs to facilitate individual parts of the model such as optimization, model architecture generation
etc. In order to avoid reinventing the wheel, pre-existing libraries are made use of. Recently, quite
a few libraries for learning based models such as Tensorflow, keras, Theano, PyTorch and caffe have
been developed. Caffe [23] is a framework specialized for development and deployment of models
implemented with C++ and Google protocol buffers for designing network architectures and controlling
their training/testing. It also provides APIs for Python and Matlab. The Caffe library provides a clean
architecture, great performance and detailed documentation. The network architecture is defined
separate from the solver thus also offering modularity and flexibility. Furthermore, Caffe also has a
’Caffe Model Zoo’ where models can be obtained and shared along with their definitions and trained
weights, thus allowing researchers to build on top of each other’s work. Thus, Caffe was the ideal
choice for the implementation of this work.

2
Background on Neural Networks

This chapter presents the theoretical background necessary to gain a deeper understanding of this
work. Over the past couple of decades, with the increasing amount of data and computational power
available, machine learning has become prevalent in today’s world. Machine learning can be broadly
categorized into three paradigms, which are supervised, unsupervised and reinforcement learning al-
gorithms.

Supervised learning involves data samples with targets or labels which provide ’supervision’ for the
model to learn a mapping function between the input data and its corresponding target/label. The
approximated mapping function can then be used to predict the labels or targets of unseen input data.
Supervised learning problems can again be categorized as either classification or regression. In clas-
sification, the output corresponds to probability distribution across predefined classes. In regression
problems, the output is a real value based on input.

Unsupervised learning works with input data that has no corresponding predefined targets or labels.
These algorithms focus on learning the underlying structure or distribution of the data, such as clus-
tering where inherent groupings of the data are discovered.

Reinforcement learning draws inspiration from behavioural psychology. An agent(physical or simu-
lated) receives a ’reward’ based on the state and the action it takes upon the environment. Rather
than training on predefined correct input output pairs, reinforcement learning focuses on online perfor-
mance, balancing the trade-off between exploring the state/action space and exploiting the knowledge
it gained.

Given that the task at hand is to estimate velocities from images, the continuous real valued output
implies that supervised learning and in particular regression would be an appropriate choice of model.
However, Even within the supervised learning paradigm, there are many approaches and algorithms
such as random forests, support vector machines, neural networks and so on. Support vector machines
have one caveat, which is that an optimal model requires prerequisite knowledge of the data at hand in
order to choose an appropriate kernel. Whereas methods like random forests and neural networks are
able to automatically determine the structure in the data. However if the data is sparsely distributed,
or if the data is not axis aligned, random forests might not perform well. Neural Networks, on the other
hand are versatile and capable of approximating complicated functions.

The subsequent section and subsections of the chapter presents the principle behind neural networks
and also discusses more sophisticated variants such as recurrent neural networks and convolutional
neural networks.

15

16 2. Background on Neural Networks

2.1. Artificial Neural Networks
Artificial neural networks(ANNs) draw inspiration from biological neural networks of the brain. McCul-
loch and Pitts created the basis for modern day neural networks by defining a computational model
called 'threshold logic '[24].The artificial neural networks are a collection of connected computational
nodes that iteratively improve their performance in tasks using examples rather than explicit task spe-
cific programming. The standard feed forward neural network consists of an input layer, an output layer
and a hidden layer. The input layer propagates the data to the hidden layer which in turn is connected
to the output layer. Each computational node is connected to all the nodes from the previous layer.
Each connection of the network has a weight associated with it. The weights are progressively tuned
until they represent a mapping between the inputs and the outputs.Figure 2.1 represents the working
of a single neuron, it first performs a sum operation on the weighted inputs adding any bias and then
applies a non-linear activation function.

Figure 2.1: A single neuron, inputs ፱ are multiplied by weights ፰ and bias values are added, this resulting value is then subject
to an activation function.

The activation function can be defined to be the mathematical abstraction which represents the firing
rate in biological neural networks present in animal brains. It decides whether a neuron ’fires’ or not.
The value of the weighted input and bias can be any real number, the activation function subjects it
to specific bounds. The most common activation functions are the sigmoid, hyperbolic tangent and
the rectified linear unit (ReLU) as shown in figure 2.2 below. The ReLU activation function has been
shown to be six times faster than an equivalent network with hyperbolic tangent as its neuron activation
function[9].

Figure 2.2: Common activation functions

The artificial neural network model operates in two different phases, a training phase and a testing or
deployment phase. In the training phase, the network iteratively tunes its weights such that it produces
the correct output when presented a sample. During this training phase the neural network is supplied

2.1. Artificial Neural Networks 17

with a set of input vectors 𝑥፧ = 1, 2, ..., 𝑛 and the corresponding set of correctly labelled outputs 𝑦፧.
The goal is to minimize the error between the output predicted (𝑦፩) by the network and the label as
measured by the cost function by adjusting the weights. A common cost function used is the sum of
squared errors as given below.

𝐽 = 1
2

ፍ
∑
፧዆ኻ

||𝑦፩ − 𝑦፧||ኼ (2.1)

To minimize the cost function, it can be treated as an optimization problem, thus its slope with respect
to each weight of the network(The gradient) is to be calculated. During each iteration the weights are
adjusted in the direction that produces the steepest descent along the error space. This direction is
determined by computing the negated gradient of the cost function with respect to each of the weights.

∇𝐽(𝜔፧) = [
𝜕𝐽
𝜕𝜔ኺ

, 𝜕𝐽𝜕𝜔ኻ
, 𝜕𝐽𝜕𝜔ኼ

, ... 𝜕𝐽𝜕𝜔፧
] (2.2)

The weights are then updated with the following rule,

𝜔፤ = 𝜔፤ − 𝛼∇𝐽(𝜔፤) 𝑘 = 0, 1, 2, ...𝑛 (2.3)

Where 𝛼 is the learning rate parameter which determines the rate at which the parameters are updated.
The gradients for a feed forward neural network are computed with the backpropagation algorithm as
summarized below,

Algorithm 1 Backpropagation algorithm
Initialize the weights of the network
While: max. Iterations > Iterations completed (or other stopping criterion)
for every input/output data pair or batch of data do
Forward Pass
Propagate the input forward through the network.
for Every hidden or output layer do
for Every neuron j in the layer do
Compute sum of input with respect to each neuron of previous layer 𝐼፣ = ∑። 𝑤።፣𝑂፣ + 𝜃፣
Compute activation of each unit 𝑂፣ = 𝑓(𝐼፣)

end for
end for

Backward Pass
for each unit j in the output layer do
Compute the error 𝐸𝑟𝑟𝑜𝑟ፉ = 𝑂፣(1 − 𝑂፣)(𝑇፣ − 𝑂፣)

end for
for each unit j in the hidden layers do
Compute error with respect to previous layer k 𝐸𝑟𝑟𝑜𝑟ፉ = 𝑂፣(1 − 𝑂፣)∑፤ 𝐸𝑟𝑟𝑜𝑟፤𝑤፣፤

end for
for Each weight in the network do
Δ𝑤።፣ = −𝑂።𝐸𝑟𝑟𝑜𝑟፣𝛼
𝑤።፣ = 𝑤።፣ + Δ𝑤።፣

end for
for Each bias in the network do
Δ𝑏።፣ = −𝐸𝑟𝑟𝑜𝑟፣𝛼
𝑏።፣ = 𝑏።፣ + Δ𝑏።፣

end for
end for

18 2. Background on Neural Networks

Backpropagation is essentially a generalization of the chain rule applied to all layers of the network
where the rule is used to compute gradients at each layer. Backpropagation has two stages, the for-
ward pass, where the input vector is processed by all layers of the network and produces the output
evaluated by the cost function and a backward pass which is when the chain rule is applied and the
parameters are updated. Backpropagation can be used in an online or offline setting. Offline or batch
learning is faster for relatively smaller datasets but is prone to getting stuck in a local minimum. Online
learning performs better and has the ability to adapt to the unseen data better [25].

The regular neural networks do not scale well to multi-dimensional input such as images due to the
full connectivity, they suffer from curse of dimensionality. Assuming an image of size 32 x 32 x 3 then
the neuron of the first hidden layer would have 3072 weights. With several such neurons parameters
would increase which might lead to overfitting. Thus, convolutional neural networks are more suitable
to this task as they constrain their architecture in a more sensible way to handle multi-dimensional data.

2.1.1. Convolutional Neural Networks
Convolutional neural networks are a class of deep, feed forward neural networks inspired by connectiv-
ity patterns of the animal visual cortex arising as a result of work done at Bell labs [7] [8]. Conventional
neural networks such as the multi-layer perceptron accept a vector input which they transform based
on transfer functions of their hidden layer, weights and biases. CNNs in contrast, take the full raw
images as input and employ 3D volumes of neurons for learning feature maps. The 3D volumes are
followed by the fully connected layers which discard the structural information inside the image. CNNs
were introduced to reduce the amount of parameters to tune by instituting a new connectivity pattern
between the neurons inspired by the organization of the cat’s visual cortex. The individual cells of
the visual cortex are arranged in such a way that they are only sensitive to certain sub-regions of the
visual field, called a receptive field. These sub-regions are then tiled to cover the entire visual field
and the cells act as local filters over the input space. Despite being very different from the multi-layer
perceptron, convolutional neural networks are also trained using backpropagation.

Convolutional neural networks typically consist of three types of layers: convolutional layers, pooling
layers and fully connected layers.There are however, variations of convolutional neural networks such
as fully convolutional networks which do not have fully connected layers. Understanding the principle
behind the working each of the aforementioned layers will provide insight as to how information is
encoded in the network. The input layer is a three dimensional volume corresponding to the the
dimensions of the input provided to the network. The successive layers perform various operations on
this input.

Convolutional layer
The convolutional layer is a crucial building block of a convolutional neural network. To better under-
stand the convolutional layer, the convolution operation is first discussed. It is assumed that pixels
that are spatially closer together would combine to form a feature of interest rather than pixels that
are farther apart. Given a two-dimensional image, I, and a small matrix, K of size h × w, (known
as a convolution kernel), the convolved image is computed by sliding the kernel over the image in all
possible ways, and determining the sum of element-wise products between the image and the kernel:

(𝐼 ∗ 𝑘)፱፲ =
፡
∑
።዆ኻ

፰
∑
፣዆ኻ
𝐾።፣.𝐼፱ዄ።ዅኻ,፲ዄ፣ዅኻ (2.4)

In addition to parameters of the layer, Convolutional layers also have ’hyperparameters’. The output of
a convolutional layer is defined by these hyperparameters. The receptive field which is essentially the
size of the filter is one hyperparameter. The depth of the output volume is another hyperparameter,
and it corresponds to the number of filters. Stride and zero padding are the other two hyperparam-
eters.The stride specifies how many pixels are skipped as the filter slides over the image. A value of
one means the filter is moved one pixel at a time. Zero padding is the number of zeros added to the
input volume along the border. A parameter/weight sharing scheme is also employed in convolutional
neural networks. It is assumed that a feature that is useful to compute at one spatial location is also

2.1. Artificial Neural Networks 19

Figure 2.3: Example of convolution operation. [26]

useful at other spatial locations. Thus, a single two-dimensional depth slice (assuming volume of 10 x
10 x 15, there are 15 10 x 10 depth slices) is constrained to have the same weights and bias.

For the forward pass, the filters in each convolutional layer ’slides’ across the inputs width and height
performing a dot product between each element in the filter and the image(convolution). This pro-
duces an activation/feature map which is essentially a 2D matrix. The network ’learns’ these filters by
backpropagation of errors, such that the filter generates an activation response when it detects some
specific type of feature at a position in the input image. When these feature maps are stacked along
the depth, the output volume of the convolutional layer is obtained.

Pooling layer
After each convolutional layer, there is usually a pooling layer. The function of a pooling layer is to
progressively reduce the spatial size of the representation of the input, thus reducing the amount of
parameters of the network and ultimately preventing overfitting. Pooling layers typically perform a
MAX operation or an averaging operation independently per depth slice of the input. In case of MAX
pooling, a window of fixed size is slid over the input volume and the maximum value of each window
is taken as the corresponding part of the output volume. Average pooling involves averaging the value
in each window and the average value is taken as the output.

Figure 2.4: Example of Pooling operation. [27]

Fully Connected layer
The final part of a standard convolutional neural network are fully connected layers. The fully connected
layers are operate in a manner similar to regular feed forward networks.
To summarize, convolutional neural networks exploit spatial location information by means of a localized
connectivity pattern between nodes in adjacent layers. This way, the filters that are learned produce a
higher activation response to the localized input pattern. When these layers are stacked, they become
hierarchically more non-linear and thus responsive to a larger region of the input image. The network
first creates representations of small parts of the input, then from them, it assembles representations
of larger areas of the input. Every single filter is repeated across the whole visual field. These filter
units share the same parameters (weight vector and bias) and thus form a activation/feature map of
that layer. So it can be said that all the neurons in a given convolutional layer will ’respond’ to the
same feature (within their specific response field). Repetition of units in such a manner allows for
the features to be detected irrespective of their spatial position in the visual field, thus enabling the

20 2. Background on Neural Networks

Figure 2.5: Example of convolutional neural network architecture. [28]

property of translation invariance. The pooling layers perform down-sampling, and the fully connected
layers establish high-level reasoning.

2.1.2. Recurrent Neural Networks
Recurrent neural networks are different from regular feed forward networks in the sense that they have
at least one feedback loop, that is the input is not just the current sample but also what the network had
perceived in previous time steps. Since the activations can flow in a loop, the network can do temporal
processing and learn sequences. The sequential information is preserved in the recurrent network’s
hidden state, which could span multiple time steps as it cascades forward affecting the processing of
every new example. Thus, it finds correlations between events separated in time. Mathematically the
hidden state can be defined as,

ℎ፭ = 𝜙(𝑊𝑥፭ + 𝑈ℎ፭ዅኻ) (2.5)

Thus, the hidden state is a function of the input at a given current time step 𝑥፭, multiplied by a weight
matrix W and added to the hidden state of the previous time step ℎ፭ − 1 which is multiplied by a
transition matrix, similar to a Markov chain. The weight matrices determine how much importance the
present input and the past have.

Figure 2.6: A recurrent neural network

The recurrent neural network can also be thought of as a dynamic system represented by the state
space equations,

ℎ(𝑡) = 𝑓፡(𝑊ፈፇ𝑥(𝑡) +𝑊ፇፇℎ(𝑡 − 1))
𝑦(𝑡) = 𝑓፨(𝑊ፎፇℎ(𝑡))

(2.6)

2.1. Artificial Neural Networks 21

Where the matrices 𝑊ፈፇ,𝑊ፇፇ,𝑊ፎፇ are the weights of the layers and 𝑓፡, 𝑓፨ represent the activation
functions of the hidden and output layers respectively. A more intuitive explanation for recurrent
neural networks is that they are feed forward neural networks when they are unfolded or rolled out
over time as shown in Fig.2.7. Therefore, the concepts used for feed forward neural networks are
generally applicable here.

Figure 2.7: Recurrent network unfolded over time. [29]

An extension of the backpropagation algorithm known as the backpropagation through time (perform-
ing gradient descent on a network unrolled through time) is used to train recurrent neural networks.
In backpropagation through time, since a whole sequence is used as a training sample, the error needs
to be summed up across all time steps.

𝐸(𝑦፩, 𝑦፭) =∑
፭
𝐸፭(𝑦፩, 𝑦፭) (2.7)

Similarly the gradients are also summed up across all time steps.

𝜕𝐸
𝜕𝑊 =∑

፭

𝜕𝐸፭
𝜕𝑊 (2.8)

The gradients are calculated using the chain rule. If the third time step is considered, the gradient of
weights representing the outer and hidden layer connections are given by,

𝜕𝐸ኽ
𝜕𝑊ፎፇ

= 𝜕𝐸ኽ
𝜕𝑦ኽ፩

𝜕𝑦ኽ፩
𝜕𝑊ፎፇ

= (𝑦ኽ፩ − 𝑦ኽ፭) ⊗ ℎኽ
Thus, 𝑊ፎፇ depends on values from the current time step. But when considering 𝑊ፇፇ and 𝑊ፈፇ,

𝜕𝐸ኽ
𝜕𝑊ፇፇ

= 𝜕𝐸ኽ
𝜕𝑦ኽ፩

𝜕𝑦ኽ፩
𝜕ℎኽ

𝜕ℎኽ
𝜕𝑊ፇፇ

(2.9)

Here, ℎኽ is not a constant, rather ℎኽ = 𝑓፡(𝑊ፈፇ𝑥ኽ+𝑊ፇፇℎኼ) thus it depends on ℎኼ which in turn depends
on ℎኻ. Thus, the gradient can be calculated by,

𝜕𝐸ኽ
𝜕𝑊ፇፇ

=
ኽ
∑
፤዆ኺ

𝜕𝐸ኽ
𝜕𝑦ኽ፩

𝜕𝑦ኽ፩
𝜕ℎኽ

𝜕ℎኽ
𝜕ℎ፤

𝜕ℎ፤
𝜕𝑊ፇፇ

The update rules for backpropagation through time are similar to that of standard backpropagation.

22 2. Background on Neural Networks

Since the layers and time steps of deep neural networks are related to each other in a multiplicative
manner, derivatives are susceptible to vanishing or exploding.The gradient contains information as
to how the weights needed to be updated for minimum error. Updates to the parameters cannot
be achieved without knowledge of the gradients, which is where recurrent neural networks struggle,
learning long-range dependencies between inputs that are several time steps apart. This can be seen
in equation 3.9, where ℎኽ represents a chain rule in itself since it is dependent on ℎኼ and ℎኻ. Thus, the
differentiation of ℎ፤ with respect to a previous layer is the derivative of a vector function with respect
to a vector, the resulting matrix is a jacobian, where the elements are all the point-wise derivatives.
This is akin to the effects of applying a sigmoid function over and over again(Fig.2.8). The data is
flattened until it has no detectable slope when considering large stretches. This is similar to a gradient
vanishing as it passes through multiple layers.

Figure 2.8: Vanishing gradient due to multiple applications of sigmoid function

In some cases, the activation function can be chosen such that the gradients increase exponentially.
In case the gradient becomes too large, a truncated form of the backpropagation through time can
be utilized. The disadvantage is that the gradient has a limited ability to flow back due to truncation,
therefore the network can’t learn dependencies that are stretched far apart in time.

Long Short term Memory
The LSTM is a recurrent neural network architecture proposed by Sepp Hochreiter and Jürgen schmid-
huber in 1997 as a solution to the vanishing gradient problem. LSTMs aid in the preservation of error
that can be backpropagated through both time and layers of the network. By maintaining a more con-
stant error, LSTM allows recurrent neural networks to learn over many time steps, thereby instituting a
channel to link causes and effects. LSTMs introduce a cell state, (denoted by 𝐶፭ in Fig.2.9) which flows
along the unit like a conveyor belt with a few interactions with data. Information is added or removed
from gates by means of structures known as gates. The gates (represented by 𝜎 in Fig.2.9) ’regulate’
the information passing through them. The gates are sigmoid neural network layers which output a
lower value if the information should not affect cell state or higher to affect the cell state.

The forget gate is represented by 𝑓፭ and 𝑓፭ዅኻ in Fig.2.9. The forget gate regulates the contribution
of previous cell state to the current cell state. It takes the previous time step activation and current
information as input, and outputs a number between 0 and 1 for each number in the cell state Ct−1.

𝑓፭ = 𝜎(𝑊 .[ℎ፭ዅኻ, 𝑥፭] + 𝑏፟)

2.1. Artificial Neural Networks 23

The next step in an LSTM model is to which new information is to be stored in the cell state. A sigmoid
layer called the input gate layer decides which values are to be updated. Then, a hyperbolic tangent
layer creates a vector of new candidate values, 𝐶̃፭, that could be added to the state. The two values
are combined to create an update to the state.

𝑖፭ = 𝜎(𝑊።.[ℎ፭ዅኻ, 𝑥፭] + 𝑏።)
𝐶̃፭ = 𝑡𝑎𝑛ℎ(𝑊ፂ.[ℎ፭ዅኻ, 𝑥፭] + 𝑏ፂ)

𝐶፭ = 𝑓፭ ∗ 𝐶፭ዅኻ + 𝑖፭ ∗ 𝐶̃፭
The last stage determines the output of the single unit in the LSTM.

𝑜፭ = 𝜎(𝑊፨.[ℎ፭ዅኻ, 𝑥፭] + 𝑏፨)
ℎ፭ = 𝑜፭ ∗ 𝑡𝑎𝑛ℎ(𝐶፭)

Figure 2.9: Standard RNN (top) vs LSTM (bottom)

24 2. Background on Neural Networks

From the theory presented in this chapter, it is evident that convolutional neural networks are best suited
for handling image data since the weight sharing mechanism ensures there are lesser parameters
and they have shown promising results in a wide array of image based tasks like classification and
localization [9], depth estimation [30] and many more. Convolutional neural networks are thus the
learning based model that will be further investigated for the task of image based velocity estimation.

3
Motion Blur & Motion Estimation

When a camera is subject to motion within an exposure period, the illumination changes are integrated
over time and the sharpness is smeared over the image, thus forming motion blur. In other words
a captured image can be thought of as an averaged sample over a time period, as a result, moving
objects in that time period cause motion blur. Image deblurring to recover the original image is an
actively researched topic since traditional computer vision tasks such as segmentation and tracking are
difficult to perform without knowing the blur kernel. However, the motion blur being removed actually
has motion information. Thus, it is possible that a model could learn a function that maps motion blur
parameters to velocity of the camera.

Given the characteristics of a particular image, geometric theory can be used to solve the object ve-
locity measurement problem. The advantages of this method are that it is simple in theory. However,
the disadvantages are that it requires an additional reference object, including length information, and
it exhibits a significant estimation error. Another popular method for velocity estimation given a se-
quence of images is using optical flow. Motion estimation here is the estimation of the displacement and
velocity of features in an image frame with respect to the previous frame in a time sequence of images.

This chapter is organized into three sections. The first section presents mathematical formalism for
motion blur and its characteristics to provide insight as to how velocity can be estimated from it. The
second section discusses the related body of work involving motion estimation from images. The
final section is regarding how the context in images influences perception based tasks and the related
research work that has exploited this correlation. The final section is presented to provide a basis to
analyze the role of context in velocity estimation.

3.1. Characterization of Motion Blur
An image with motion blur retains information that parameterizes the blur. This enables the recovery
of motion from a single static image. Motion blur in an image can be characterized by its Point Spread
Function(PSF). A motion blurred image (b) can be thought of as a convolution of the unblurred image(i)
and the point spread function(h) with additional noise(𝜇).

𝑏(𝑥, 𝑦) = 𝑖(𝑥, 𝑦) ∗ ℎ(𝑥, 𝑦) + 𝜇(𝑥, 𝑦) (3.1)

The point spread function is defined as:

ℎ(𝑥, 𝑦) = {
ኻ
ፋ , if √𝑥ኼ + 𝑦ኼ ≤ ፋ

ኼ and ፱
፲ = −𝑡𝑎𝑛(𝜙).

0, otherwise. (3.2)

Where ’ L ’ is the motion length and 𝜙 is the motion direction. In order to recover and infer information
from the motion blur, accurate estimates of the motion blur PSF parameters, length and motion angle
need to be computed. From the motion blur parameters, relative velocity can be recovered if the
exposure time is known.

25

26 3. Motion Blur & Motion Estimation

The recovery of the point spread function is a particularly challenging task owing to the short duration
of the image degradation process and loss of information it causes. However, study of motion blur PSF
has revealed that it exhibits a unique behavior in the frequency domain [31]. Blur identification with
spectral nulls making use of power spectrum and the power cepstrum was investigated [32], but this
approach fails when there is a large amount of noise or if the blur size is small.

A considerable amount of research has been done with regards to autocorrelation based methods for
motion blur PSF estimation. One approach evaluates the phase gradient of the image to extract the
blurred edge [33]. With this extracted part, an autocorrelation matrix is determined and its contour
is drawn. The blur direction is obtained from the trace of the peak of the autocorrelation matrix, also
a first order backward difference equation is evaluated on the trace of the peak to obtain blur extent.
This approach is impervious to noise and retains motion characteristics.

Another method based on autocorrelation for PSF estimation is first determining the motion direction
and then the pixel blur [34]. An approximation of the image derivative in a specific direction is first
obtained and then the total image intensity in the same direction is computed by the summation of
the absolute values of all pixels. The blur direction is then defined as the direction in which the total
intensity of the absolute values of the image derivative is lowest. A digital autocorrelation function
(ACF) to the image derivative lines in the motion direction identified above is then calculated and the
average of the ACF is obtained. The relative distance between the center point and the minimum
of the averaged ACF gives the extent of the blur in terms of number of pixels. However, the article
mentions that this method works well only if the relative homogeneity(ratio of minimum difference
between the values of the pixels at endpoints of the smear track of the point and the adjacent pixels
outside the track to the maximum difference between two adjacent pixels inside the track) of the PSF is
larger than unity. Also, any error in estimating the motion direction affects the calculation of blur extent.

A motion blur parameter estimation was based on frequency response was proposed in [35] which uses
a 2D Gabor filter to estimate the angle and a neural network is trained to obtain the blur length. The
Gabor filter is convolved with the log spectrum of the blurred image at different orientations to obtain
the response corresponding to different frequencies and orientations. The L2 norm of the convolved
image is calculated for each orientation. The angle corresponding to the highest L2 norm gives the
blur direction. A Radial basis function based neural network was trained to obtain the blur length. The
key issue with most of the aforementioned methods is that they all require incorporation of domain
knowledge in the framework, engineered features or pre-processing.

Recent research in deep learning has shown that, the motion blur parameters can be estimated from
raw images itself rather than resorting to frequency domain analysis. Convolutional neural networks
have particularly been used for blur identification [13]. Although the article describes a method for
motion blur removal, the first part of the approach focuses on identification of blur parameters. The
motion space is discretized and the convolutional neural network is trained as a classification model to
estimate probabilities of motion kernels for each patch of the image, then dense motion blur kernels
for the whole image is estimated using a Markov random field.

Fully convolutional neural networks have also been used to estimate motion flow from motion blur in
an image [12]. To estimate the blur kernel, a generic and information rich prior would be necessary.
Rather than learning a prior over the latent image, which would require modelling all the image content,
motion flow is learned by the fully convolutional network thereby allowing the model to focus on the
cause of blur irrespective of the contents of the image. This approach transcends patch level learning
and does not require any post processing unlike the previously mentioned method. Training and testing
of the model is directly performed on the whole image, thus exploiting additional spatial information
and allowing it to estimate a dense motion flow map accurately, as seen in the Fig 3.1. However, here
for motion flow estimation, the fully convolutional network is trained over discrete outputs. Discretiza-
tion of the motion space could pose an issue(loss of information) as motion is an inherently continuous
quantity.

From the literature that has been studied, the inference that can be drawn is using the motion blur

3.2. Velocity and Motion Estimation from images 27

Figure 3.1: Motion Flow Estimation for Deblurring [12]

angle and motion blur length for the characterization of the point spread function and ultimately the
motion blur has proved to be a successful approach. Machine learning techniques have been used to
approximate mappings between pixel/feature space to the motion space, the body of research involving
subsequent estimation of velocity from motion blur in images is presented in the following section.

3.2. Velocity and Motion Estimation from images
Research on image based motion estimation has increased in recent years[14][20], since computa-
tional power has become available to process the large amount of data generated by images at low
latency and in real time. The aforementioned methods rely on estimating the motion blur parameters
and then using the pinhole camera model to establish a relationship between motion blur and velocity.
The predominant method for velocity estimation from images is by using optical flow which was first
introduced by an American psychologist named James Gibson . Optic flow is the apparent motion of
texture in the visual field relative to the camera. This information tells us not only how fast the camera
moves and how close it is relative to the objects it sees. However, the computed optical flow field does
not directly offer information on distance to surfaces or the egomotion velocity of the camera but it
can be computed with additional input, such as control input to the agent [36].

When a stereo camera system is used [5], the optical flow measurements can be scaled with the dis-
tance between camera and the observed scene to obtain metric velocity of the agent. The optical flow
field is the projection of the 3-D velocity field on the image plane. This flow field is then expressed as a
sum of its translational and rotational components. The metric velocity is then obtained by transform-
ing the translational velocity using the inter-axial distance between the two cameras and the disparity
value estimates.

Monocular vision systems have also been utilized for optical flow estimation. H.W.Ho et al. [36] esti-
mates the distance to the ground and the vertical velocity of an unmanned aerial vehicle. An extended
Kalman filter was then used to obtain the height and velocity based on control input and flow diver-
gence information. Grabe et al. [6] devised and implemented closed-loop control and onboard velocity
estimation on a UAV. This was achieved using an algorithm for self motion estimation via optical flow
extraction. The work builds upon the usage of the continuous homography constraint for egomotion
estimation. Variations of the classical 4 point algorithm were used to compute the continuous homog-
raphy matrix which encodes both the camera linear and angular velocity, and the scene structure.

Since the initial methods proposed by Horn & Schunck [38], Lucas & Kanade [39] most of the traditional
approaches to estimate optic flow have focused on variational methods and in recent times, extensions
to these methods involving large displacements and combinatorial matching have been proposed. One
such example is the work termed ´Deepflow´ [40] which proposes a novel descriptor matching algo-
rithm tailored for the optical flow estimation problem alongside a variational approach, quasi-dense
correspondences are extracted and fed as input to an energy minimization framework. Another similar
approach called ´EpicFlow´ [41] again proposes a two step method. The first step of the algorithm
involves the sparse to dense interpolation of matches while preserving the edges. To this end, an edge
aware geodesic distance measure which can handle motion boundaries and occlusion is designed. The
dense matches obtained from the interpolation are then subject to the variational energy minimization
framework to obtain the optical flow estimation. The disadvantage to these methods are that they

28 3. Motion Blur & Motion Estimation

Figure 3.2: Optical flow prediction from static image [37]

require engineered methods for matching, aggregation and interpolation.

A significant amount of research has been carried out for the estimation of optic flow using machine
learning algorithms. An early approach to learning optical flow was put forth by Black et. al [42]
propose using Principal Component Analysis(PCA) to learn a set of basis flows. Flow fields are then
estimated as a linear combination of these basis flows, Image derivatives are used in a gradient based
framework to compute the coefficients of the linear combination. One key drawback of this method is
that it assumes that motion occurring in images will be a linear combination of learned flows, which
need not necessarily be the case. It is possible that the basis flows do not capture all the information
in the motion space or a non-linear combination of basis flows could be present in the image.

Sun et. al [43] analyze the underlying statistics of optical flow, thereby proposing a steerable random
field to model the statistical relationship between image and flow boundaries. Unsupervised learning
has also recently been employed for the optical flow estimation problem. Taylor et. al [44] proposed
a convolutional restricted Boltzmann machine capable of extracting low-level motion features which is
ultimately used for action recognition. Konda et. al [45] propose a model to learn depth and motion
using an energy based model, the synchrony autoencoder. The common issue with these approaches
are that they work with controlled experimental setup and do not have performance comparable to
classical flow estimation algorithms on real-world data.

The neural network architecture termed ’FlowNet’ put forth by Fischer et. al [11] is capable of learning
to predict optical flow with good generalization capability. The architecture proposes a convolutional
neural network trained end to end to compress information spatially and then refined to obtain optical
flow prediction. Ilg et. al [46] further built upon ’FlowNet’, proposing a new framework ’FlowNet 2.0’
which includes a stacked architecture warping the subsequent frame in the image with the intermedi-
ate optical flow prediction. It is also augmented with a sub-network used to specifically handle small
displacements.

On a related note, Deep learning research has also recently shown that it is possible to extract a
sequence of sharp images from a single blurred one. Purohit et. al [47]propose the training of a
recurrent autoencoder with convolutional LSTM modules. Thus motion representations are learned in
an unsupervised manner and ultimately video reconstruction serves as the surrogate task for training
facilitating blur to video generation. Another approach introduced by Jin et. al [48] makes use of
convolutional neural networks with larger receptive fields to combat the ill posed problem of deblurring
an image. This work also introduces a novel loss function invariant to the temporal ordering of image
frames.

3.3. Role of Context in Perception 29

Thus, it can be inferred from the literature that optical flow can be used to estimate velocities. With
just a single static image, research has found that convolutional neural networks can be used for dense
optical flow prediction [37] as seen in image 3.2. The convolutional neural network can predict motion
in terms of optic flow as shown in the image above. From the literature, it is evident that single static
images can be used for optical flow prediction and it is also seen that optical flow can be used for
velocity estimation. This forms the core idea for this research work.

3.3. Role of Context in Perception
As human beings, we unwittingly use contextual information on a daily basis. We can ’situate’ ourselves
in an environment and process information based on things around us. Studies in Cognitive Psychology
[49] provide evidence that contextual cues such as relative size and location play a significant role for
object detection in humans.

This is relevant when dealing with velocity estimation because we would tend to predict higher velocities
while travelling on highways, as compared to a village road. High-level contextual information has been
shown to augment low-level features for object detection tasks [50] achieving better performance.
Context has also been shown to play a vital role in 3D scene understanding [51].However, when it
comes to velocity estimation, motion blur and ultimately motion flow have been investigated as a
cue/feature for velocity estimation, but the role of context is not very well explored. The work by
J.Walker et al. [37] predicted motion in static images and deduced that motion prediction is context
dependent. Further experiments need to be carried out to cement our understanding of the role of
context in velocity estimation.

4
Preliminary results

A review of literature has shown single image frames do contain temporal information which could pos-
sibly be utilized to estimate the ego-motion velocity. The first step would in this research work would
be to train a convolutional neural network to predict the velocity given single static image frames. If the
model is able to learn a mapping from pixel space to velocity, the pertinent question is - what features
of the image could contribute towards this task ? To answer that, the transfer learning paradigm can
be of use. Transfer learning can be accomplished either by using the CNN as a feature extractor or
fine-tuning the previously learned weights on a new possibly related task.

The first section of this chapter discusses and evaluates the data to be used. It is important to under-
stand the input to effectively analyze the predictions of the network. The subsequent sections each
analyze the role of motion blur and spatial context in learning a mapping from pixels to velocities.

4.1. Dataset Evaluation
Convolutional neural networks are supervised learning models with a large number of parameters. This
means that to efficiently train these models, a large amount of labelled data is required. More specifi-
cally, images captured by a moving camera, annotated with the instantaneous velocity at the time of
image capture would constitute the dataset for training this deep learning model. Due to the increasing
popularity of autonomous driving there are many such datasets available such as the comma.ai dataset,
the udacity driving dataset, the KITTI dataset [52] and the Oxford RobotCar dataset[53]. Among these
datasets, the KITTI dataset presents itself as the ideal candidate in this scenario as it has a synthetic,
generated counterpart name vKITTI [54] which would prove useful. The Oxford dataset is a massive
dataset recorded in various scenarios and weather conditions, thus it would prove useful in identifying
the edge cases, where the model does not perform as expected.

The KITTI dataset captured images with high resolution colour and grayscale cameras mounted on a
Volkswagen station wagon. The cameras recorded 6 hours worth of vehicle motion through varying
scenes. A few example frames are depicted in Figure 4.1. High precision GPS/IMU data was recorded
alongside the high resolution images. The raw data recorded is divided into five categories depending
on the scene, namely Road, Residential, City, Campus and Person. The ’Person’ category of the dataset
does not involve any ego-motion of the camera, hence it is not considered for evaluation of the deep
learning model. The dataset is recorded on 5 different days and always during daytime. The images
recorded by the cameras were stored with lossless compression as 8-bit PNG files, with the sky and
engine hood cropped out. The information obtained from the GPS/IMU unit such as velocity, acceler-
ation,angular rates were unavailable at times due to outages and in these cases, linear interpolation
was used to obtain missing values.

31

32 4. Preliminary results

Figure 4.1: Few example frames from KITTI [52]

To obtain a better overview as what kind of motion range is covered by KITTI, the histogram of the
ground truth velocity of the dataset is plotted. Also, the mean velocity for each video recorded in
each of the four classes(Road, Residential, City, Campus) are visualized to obtain a deeper perspective
about motion in each scenario.

Figure 4.2: Histogram of KITTI velocity ground truth

From the histogram (Figure 4.2), it is evident that the KITTI has a significantly larger amount of images
captured at almost zero velocity. However the entire dataset consists of around 43350 images, less
than 3000 of which has almost no motion, so this should not pose a problem.

It is evident from Figure 4.3 that the Road and city categories have the highest velocities which is
intuitive as these straight, open, highway-like areas, where the vehicle would have been able to travel
faster. The campus category has the minimal amount of motion due to the fact that it involves navi-
gating in tight spaces.

The vKITTI dataset is a clone of five videos selected from the original KITTI dataset. The creators of
the dataset also automatically generate modified versions of the original sequence(different weather
and imaging conditions). A few example frames from vKITTI and their corresponding real world(KITTI)
counterpart are depicted in Fig. 4.4 and in this figure it is quite evident that vKITTI is not an exact
reproduction. It misses a few objects such as the milestone marker on the road side (second last
image) but it captures general aspects of the scene.

4.1. Dataset Evaluation 33

Figure 4.3: Mean velocity distribution for each video recorded per class

Figure 4.4: Few vKITTI image frames alonside KITTI counterparts[54]

34 4. Preliminary results

The vKITTI dataset does not directly have information of ground truth velocity for the generated scenes,
but the extrinsic parameters which capture the transformation from 3D world coordinates to camera
coordinates are available. The extrinsic matrix includes the rotation matrix(R) and the world coordinate
system origin represented in camera coordinates. Thus, the camera pose can be obtained by the
equation : 𝑃𝑜𝑠𝑒 = −𝑅ፓ𝑇. The temporal difference of successive camera poses will in turn result in the
ground truth velocities. The computed vKITTI ground truth is compared with the KITTI ground truth
for the same frames in Fig. 4.9. There are minor differences between the two ground truths, but the
general trend is followed.

Figure 4.5: Computed vKITTI ground truth and KITTI ground truth

Since vKITTI is a synthetic dataset it is highly probable that it does not include any motion blur. However,
as a confirmation step a frame is extracted from KITTI and its corresponding vKITTI frame. The
laplacian of the two images are calculated and depicted in Fig. 4.6 and Fig. 4.7. It can be seen that
the edges are more clear in vKITTI than with KITTI. Also the median of the top 0.1% pixel value is
higher for vKITTI(892.02) than KITTI(791.64). This shows that vKITTI does not have motion blur.

.

Figure 4.6: Laplacian of a sample KITTI image

4.1. Dataset Evaluation 35

Figure 4.7: Laplacian of a sample vKITTI image

To evaluate the role of context in the estimation of camera motion, a dataset with images from a variety
of places is required. Scene recognition is a well researched field in computer vision, which means that
there is no dearth of datasets. Two of the biggest datasets for scene recognition are the SUN database
[55] and the MIT places database [56]. These large datasets share a few common classes but the
MIT places dataset is larger,diverse and well documented so it is taken under consideration. There
are three macro classes in the MIT places dataset - Indoor, nature and urban which contain several
sub-classes of scenes.

.

Figure 4.8: Distribution of data - few classes of Places dataset [56]

36 4. Preliminary results

Figure 4.9: Comparison of common 88 classes [56]

The aforementioned datasets aid in establishing the role of motion blur and context in motion estima-
tion. However, these datasets are recorded with cars and thus the motion is planar - cars are incapable
of rolling motion along its own axis. Thus it would be interesting to investigate motion estimation with
images recorded on board an unmanned aerial vehicle. Such a dataset(drone collected images an-
notated with velocity) is not available to the best of the authors knowledge, so it must be created.
The paparazzi open source autopilot and the motion capture system at Delft University of Technology
(Opti-track) are utilized along with the Parrot Bebop drone for the creation of this dataset.

4.2. Experiments
To evaluate the contribution of motion blur and context, the convolutional neural network must first
be trained for velocity estimation. An appropriate convolutional neural network architecture must be
determined for this task. Given the dynamic nature of the computer vision and deep learning research
fields, several convolutional architectures have been developed. These models such as ZFNet [57],
GoogleNet [58], VGG [59] and ResNet [60] have all achieved a significant level of performance in
the ILSVRC Image classification challenge. Among the above, the VGG16 network architecture has
been prevalent, deployed for several tasks such as image style transfer [61], remote sensing image
classification [62] and has been showed to learn a generalized set of features which could be attributed
to the depth of the network and the fact that it has pooling layer once after every two convolutional
layers. The data is relatively less downsampled, allowing it to store more information. The VGG16
architecture is presented in Fig. 4.10

Figure 4.10: VGG16 Convolutional neural network Architecture [63]

4.2. Experiments 37

The VGG architecture is slightly modified for this scenario. The convolutional layers and the first two
fully connected layers are kept intact, the final fully connected layer is modified to output one number
- the velocity prediction, rather than the 1000 class scores for imagenet, the last loss layer is changed
from Softmax loss to a Euclidean Loss function which is more suited for the regression task.

𝐿 = 1
2𝑁

ፍ
∑
።዆ኻ
||𝑦̂፧ − 𝑦፧||ኼኼ (4.1)

The KITTI data is resampled with the nearest neighbour method and then fed into the VGG16 pipeline.
The model is trained for 100,000 iterations. The trained model weights are frozen and the model is
tested with the test data. The mean absolute error for the test set is 3.1585. A sample of test
predictions and targets are shown in the graph below (Fig. 4.11).

Figure 4.11: Predictions and corresponding ground truth on the test set.

4.2.1. Role of Motion Blur as a feature
To estimate the contribution of motion blur in establishing a mapping from pixel space, to motion
space, the trained VGG16 network is used as a feature extractor for a motion blur prediction task. The
synthetic dataset, vkitti is used for this task, since it does not have any inherent motion blur. Two
datasets are created, one applying various uniform Gaussian blur kernels and another with varying
motion blur kernels. A set of 200 random images are sampled from the vKITTI dataset and gaussian
convolution of variances ranging from 0.1 to 5 are applied. Along with the original 200, this makes a
dataset of 10200 images with increasing uniform blur, annotated with the variance of the kernel used
to generate it. The results are shown in Fig. 4.12. While the model struggles to distinguish among
the initial kernels,it gets better at prediction with higher variance. This could be due to the fact that at
lower variance, the blurred image is similar to the unblurred one.

As with the case of testing with uniform blur, a dataset is created from vkitti for motion blur with blur
angle and blur length as the parameters to be estimated. From the results shown in Fig. 4.13, it is
evident that the predicted motion blur parameters are very close to the targets.

38 4. Preliminary results

Figure 4.12: Per kernel mean and variance of prediction along with ground truth.

Figure 4.13: Per kernel mean and variance of prediction along with ground truth.

4.2.2. Role of Spatial Context as a feature
To analyze the role of context, a relatively smaller sample of 1.8 million images from the MIT places
dataset are supplied as input to the trained convolutional neural network. If the network has learned
scene based information, it should predict higher values for highway like scenes in MIT places. However,
this does not seem to be the case as can be seen in Fig. 4.14. The predictions from the network have
high per class standard deviation. The magenta lines represent predictions on images from indoor
classes such as hotel room while the black lines represent outdoor classes like highway road. However,
it might be worth noting that some classes have pictures taken indoors and outdoors and there are
completely new sets of features that the network has previously not been exposed to. To offer some
perspective, the predictions on a few pertinent classes have been depicted in Fig. 4.15. However it can
be seen that village has a higher speed prediction as compared to highway.There is also no discernible
pattern in the predictions among different classes.

4.2. Experiments 39

Figure 4.14: Per class mean and standard deviation of Predictions

Figure 4.15: Predictions on few relevant classes

5
Conclusion

To summarize the literature survey, the estimation of motion blur is a widely studied problem and
in recent times, several deep learning methods were successful in that regard. Single static images
have been utilized for motion prediction which implies that single images could potentially be used
for velocity estimation. In learning such a mapping between pixels and velocity, the contributing
factors are hypothesized to be motion blur and context since these are the cues humans use for speed
estimation/motion prediction. The preliminary results show that while motion blur might play a role
in this mapping, context might not play any role at all. This can be seen from the fact that the VGG
network is able to extract features useful for blur estimation but fails to predict a discernible pattern
for the scenes it is exposed to. Further experiments are required to cement our understanding of how
the model works.

41

Bibliography

[1] K. Alexiev and I. Nikolova, An algorithm for error reducing in imu, in Innovations in Intelligent
Systems and Applications (INISTA), 2013 IEEE International Symposium on (IEEE, 2013) pp. 1–6.

[2] M. B. Kjærgaard, H. Blunck, T. Godsk, T. Toftkjær, D. L. Christensen, and K. Grønbæk, Indoor
positioning using gps revisited, in International conference on pervasive computing (Springer,
2010) pp. 38–56.

[3] T. Lemaire, C. Berger, I.-K. Jung, and S. Lacroix, Vision-based slam: Stereo and monocular
approaches, International Journal of Computer Vision 74, 343 (2007).

[4] J. Andersh, A. Cherian, B. Mettler, and N. Papanikolopoulos, A vision based ensemble approach
to velocity estimation for miniature rotorcraft, Autonomous Robots 39, 123 (2015).

[5] D. Honegger, P. Greisen, L. Meier, P. Tanskanen, and M. Pollefeys, Real-time velocity estimation
based on optical flow and disparity matching, in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on (IEEE, 2012) pp. 5177–5182.

[6] V. Grabe, H. H. Bülthoff, and P. R. Giordano, On-board velocity estimation and closed-loop con-
trol of a quadrotor uav based on optical flow, in Robotics and Automation (ICRA), 2012 IEEE
International Conference on (IEEE, 2012) pp. 491–497.

[7] Y. LeCun, Y. Bengio, et al., Convolutional networks for images, speech, and time series, The
handbook of brain theory and neural networks 3361, 1995 (1995).

[8] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, Gradient-based learning applied to document
recognition, Proceedings of the IEEE 86, 2278 (1998).

[9] A. Krizhevsky, I. Sutskever, and G. E. Hinton, Imagenet classification with deep convolutional
neural networks, in Advances in Neural Information Processing Systems 25, edited by F. Pereira,
C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran Associates, Inc., 2012) pp. 1097–1105.

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, Imagenet: A large-scale hierarchical
image database, in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on (IEEE, 2009) pp. 248–255.

[11] P. Fischer, A. Dosovitskiy, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov, P. van der Smagt, D. Cremers,
and T. Brox, Flownet: Learning optical flow with convolutional networks, CoRR abs/1504.06852
(2015).

[12] D. Gong, J. Yang, L. Liu, Y. Zhang, I. Reid, C. Shen, A. v. d. Hengel, and Q. Shi, From motion blur
to motion flow: a deep learning solution for removing heterogeneous motion blur, arXiv preprint
arXiv:1612.02583 (2016).

[13] J. Sun, W. Cao, Z. Xu, and J. Ponce, Learning a convolutional neural network for non-uniform
motion blur removal, in The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2015).

[14] H.-Y. Lin and K.-J. Li, Motion blur removal and its application to vehicle speed detection, in Image
Processing, 2004. ICIP’04. 2004 International Conference on, Vol. 5 (IEEE, 2004) pp. 3407–3410.

[15] R. Mebarki, J. Cacace, and V. Lippiello, Velocity estimation of an uav using visual and imu data in
a gps-denied environment, 2013 IEEE International Symposium on Safety, Security, and Rescue
Robotics, (2013).

43

http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://arxiv.org/abs/1504.06852
http://arxiv.org/abs/1504.06852

44 Bibliography

[16] K. McGuire, G. de Croon, C. De Wagter, K. Tuyls, and H. Kappen, Efficient optical flow and
stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone,
IEEE Robotics and Automation Letters , 1070 (2017).

[17] S. Shen, Y. Mulgaonkar, N. Michael, and V. Kumar, Vision-based state estimation for autonomous
rotorcraft mavs in complex environments, in Robotics and Automation (ICRA), IEEE International
Conference on (IEEE, 2013) pp. 1758–1764.

[18] S. Weiss, D. Scaramuzza, and R. Siegwart, Monocular-slam–based navigation for autonomous
micro helicopters in gps-denied environments, Journal of Field Robotics 28, 854 (2011).

[19] S. L. Pintea, J. C. van Gemert, and A. W. Smeulders, D©ja vu, in European Conference on Computer
Vision (Springer, 2014) pp. 172–187.

[20] H.-Y. Lin, K.-J. Li, and C.-H. Chang, Vehicle speed detection from a single motion blurred image,
Image and Vision Computing 26, 1327 (2008).

[21] S. S. L. Oskouei, H. Golestani, M. Kachuee, M. Hashemi, H. Mohammadzade, and S. Ghi-
asi, Gpu-based acceleration of deep convolutional neural networks on mobile platforms, CoRR
abs/1511.07376 (2015).

[22] H. Bal, D. Epema, C. de Laat, R. van Nieuwpoort, J. Romein, F. Seinstra, C. Snoek, and H. Wijshoff,
A medium-scale distributed system for computer science research: Infrastructure for the long
term, Computer 49, 54 (2016).

[23] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama, and T. Darrell,
Caffe: Convolutional architecture for fast feature embedding, CoRR abs/1408.5093 (2014),
arXiv:1408.5093 .

[24] W. S. McCulloch and W. Pitts, A logical calculus of the ideas immanent in nervous activity, The
bulletin of mathematical biophysics 5, 115 (1943).

[25] M. Mohri, A. Rostamizadeh, and A. Talwalkar, Foundations of machine learning (MIT press, 2012).

[26] Veličković, Petar, Deep learning for complete beginners: convolutional neural networks with keras,
(2017).

[27] Karpathy, Andre, Cs231n convolutional neural networks for visual recognition, .

[28] Gulli, Antonio, Convolutional neural networks with reinforcement learning, .

[29] Bullinaria, John, Recurrent neural networks, neural computation : Lecture 12, .

[30] D. Eigen, C. Puhrsch, and R. Fergus, Depth map prediction from a single image using a multi-scale
deep network, CoRR abs/1406.2283 (2014), arXiv:1406.2283 .

[31] H. N. Ramakrishnan, Detection and Estimation of Image Blur, Master’s thesis, Missouri University
of Science and Technology (2010).

[32] A. Savakis and R. L. Easton, Blur identification based on higher order spectral nulls, Proceedings
of SPIE - The International Society for Optical Engineering, 2302 (1994).

[33] T.-L. Pao and M.-D. Kuo, Estimation of the point spread function of a motion-blurred object from
autocorrelation, , 1226 (1995).

[34] Y. Yitzhaky and N. Kopeika, Identification of blur parameters from motion blurred images, Graph-
ical Models and Image Processing 59, 310 (1997).

[35] R. Dash, P. Kumar Sa, and B. Majhi, Rbfn based motion blur parameter estimation, 2012 Inter-
national Conference on Advances in Computing and Communications, (2009).

[36] H. W. Ho, G. C. de Croon, and Q. Chu, Distance and velocity estimation using optical flow from
a monocular camera, International Journal of Micro Air Vehicles 9, 198 (2017).

http://dx.doi.org/10.1002/rob.20412
http://arxiv.org/abs/1511.07376
http://arxiv.org/abs/1511.07376
http://arxiv.org/abs/1408.5093
http://arxiv.org/abs/1408.5093
https://cambridgespark.com/content/tutorials/convolutional-neural-networks-with-keras/figures/convolve.png
http://cs231n.github.io/assets/cnn/maxpool.jpeg
https://www.packtpub.com/sites/default/files/Article-Images/B06258_Article_01.PNG
http://www.cs.bham.ac.uk/~jxb/INC/l12.pdf
http://arxiv.org/abs/1406.2283
http://arxiv.org/abs/1406.2283

Bibliography 45

[37] J. Walker, A. Gupta, and M. Hebert, Dense optical flow prediction from a static image, in Computer
Vision (ICCV), 2015 IEEE International Conference on (IEEE, 2015) pp. 2443–2451.

[38] B. K. Horn and B. G. Schunck, Determining optical flow, Artificial intelligence 17, 185 (1981).

[39] B. D. Lucas and T. Kanade, An iterative image registration technique with an application to stereo
vision, in Proceedings of the 7th International Joint Conference on Artificial Intelligence - Volume
2, IJCAI’81 (Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1981) pp. 674–679.

[40] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid, Deepflow: Large displacement optical
flow with deep matching, in Computer Vision (ICCV), 2013 IEEE International Conference on
(IEEE, 2013) pp. 1385–1392.

[41] J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid, Epicflow: Edge-preserving interpolation
of correspondences for optical flow, in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (2015) pp. 1164–1172.

[42] M. J. Black, Y. Yacoob, A. D. Jepson, and D. J. Fleet, Learning parameterized models of image
motion, in Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE Computer
Society Conference on (IEEE, 1997) pp. 561–567.

[43] J. L. D. Sun, S. Roth and M. J. Black., Learning optical flow, in European Conference on Computer
Vision (2008).

[44] G. W. Taylor, R. Fergus, Y. LeCun, and C. Bregler, Convolutional learning of spatio-temporal
features, in European conference on computer vision (Springer, 2010) pp. 140–153.

[45] K. Konda and R. Memisevic, Unsupervised learning of depth and motion, arXiv preprint
arXiv:1312.3429 (2013).

[46] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, Flownet 2.0: Evolution of
optical flow estimation with deep networks, in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), Vol. 2 (2017).

[47] K. Purohit, A. Shah, and A. N. Rajagopalan, Bringing Alive Blurred Moments� ArXiv e-prints
(2018), arXiv:1804.02913 [cs.CV] .

[48] M. Jin, G. Meishvili, and P. Favaro, Learning to Extract a Video Sequence from a Single Motion-
Blurred Image, ArXiv e-prints (2018), arXiv:1804.04065 [cs.CV] .

[49] I. Biederman, R. J. Mezzanotte, and J. C. Rabinowitz, Scene perception: Detecting and judging
objects undergoing relational violations, Cognitive psychology 14, 143 (1982).

[50] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies for accurate object
detection and semantic segmentation, in Proceedings of the IEEE conference on computer vision
and pattern recognition (2014) pp. 580–587.

[51] Y. Zhang, M. Bai, P. Kohli, S. Izadi, and J. Xiao, Deepcontext: Context-encoding neural pathways
for 3d holistic scene understanding, arXiv preprint arXiv:1603.04922 (2016).

[52] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, Vision meets robotics: The kitti dataset, The
International Journal of Robotics Research 32, 1231 (2013).

[53] W. Maddern, G. Pascoe, C. Linegar, and P. Newman, 1 year, 1000 km: The oxford robotcar
dataset, The International Journal of Robotics Research 36, 3 (2017).

[54] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig, Virtual worlds as proxy for multi-object tracking
analysis, in CVPR (2016).

[55] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, Sun database: Large-scale scene
recognition from abbey to zoo, in Computer vision and pattern recognition (CVPR), 2010 IEEE
conference on (IEEE, 2010) pp. 3485–3492.

http://dl.acm.org/citation.cfm?id=1623264.1623280
http://dl.acm.org/citation.cfm?id=1623264.1623280
http://arxiv.org/abs/1804.02913
http://arxiv.org/abs/1804.04065

46 Bibliography

[56] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, Places: A 10 million image database
for scene recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence (2017).

[57] M. D. Zeiler and R. Fergus, Visualizing and understanding convolutional networks, CoRR
abs/1311.2901 (2013), arXiv:1311.2901 .

[58] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabi-
novich, et al., Going deeper with convolutions, (Cvpr, 2015).

[59] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recogni-
tion, arXiv preprint arXiv:1409.1556 (2014).

[60] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, CoRR
abs/1512.03385 (2015), arXiv:1512.03385 .

[61] L. A. Gatys, A. S. Ecker, and M. Bethge, Image style transfer using convolutional neural networks,
in Computer Vision and Pattern Recognition (CVPR), 2016 IEEE Conference on (IEEE, 2016) pp.
2414–2423.

[62] G. Cheng, Z. Li, X. Yao, L. Guo, and Z. Wei, Remote sensing image scene classification using bag
of convolutional features, IEEE Geoscience and Remote Sensing Letters 14, 1735 (2017).

[63] Pawit Kocakarn, Machine learning with python : Image classifier using vgg16 model - part 1:
Theory, .

http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1311.2901
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://www.techkingdom.org/single-post/2017/11/07/Machine-Learning-with-Python-Image-Classifier-using-VGG16-Model---Coming-Soong
https://www.techkingdom.org/single-post/2017/11/07/Machine-Learning-with-Python-Image-Classifier-using-VGG16-Model---Coming-Soong

	Scientific Article
	Introduction
	Motivation for Research
	Research objective and research questions
	Pre-requisites & Facilities

	Background on Neural Networks
	Artificial Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks

	Motion Blur & Motion Estimation
	Characterization of Motion Blur
	Velocity and Motion Estimation from images
	Role of Context in Perception

	Preliminary results
	Dataset Evaluation
	Experiments
	Role of Motion Blur as a feature
	Role of Spatial Context as a feature

	Conclusion
	Bibliography

