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This paper describes the work carried out to extend the NOEL-V platform to include data-level parallelism (DLP)

by implementing an integer subset of the RISC-V Vector Extension. The performance and resource utilization

efficiency of the resulting vector processor for different levels ofDLP (i.e., number of lanes) havebeen compared to the

baseline scalar processor on aXilinxKintex Ultrascale field-programmable gate array, employing typical kernels for

compute-intensive applications. The role of the memory subsystem has also been investigated, comparing the results

obtainedwith a low-latency and a high-latencymainmemory. The results show that the speed-up due to the use of the

vector pipeline increases with the number of lanes in the vector processor, achieving up to 23.0× the performance of

the scalar processor with only 4.3× the resources of the baseline scalar processor. Using an implementation with 32

lanes increases performance even for problem sizes larger than the number of lanes, achieving up tomore than 11.7×
the performance of the scalar processor with just 1.9× its resource utilization for 128 × 128 matrix multiplications.

This work proves that implementations of the selected subset are easily scalable and fit for small-processor

implementations in highly constrained space embedded systems.

I. Introduction

S TATE-OF-THE-ART processors for space embedded systems
are based on simple microarchitectures, for instance, capable of

executing a maximum of one instruction per clock cycle (CC), with
simple or no speculation (e.g., static branch prediction), and without
data-level parallelism (DLP) [1].
Recently, the HPP64 NOEL-V [2], a synthesizable Very High

Speed Integrated Circuit Hardware Description Language (VHDL)
model of a processor targeting space applications and based on the
RISC-V Instruction Set Architecture (ISA), has been released open
source to the public together with the GRLIB VHDL Intellectual
Property (IP) Core Library.¶ As opposed to its predecessors, it has a
dual-issue pipeline; i.e., it is capable of executing up to two instruc-
tions per CC [3]. Also, it has a two-level adaptive branch predictor
with history buffer, a two-way branch target buffer, and a return-
address-stack [3]. Furthermore, late arithmetic logic units (ALUs)
and a late branch unit are implemented to allow ALU and branch
operations normally done in the execution stage to be deferred to a
later stage. This reduces the latency required to execute some instruc-
tions once they are fetched, as well as allowing some dependent
instructions to be issued simultaneously [3].
These new features have pushed the CoreMark for a single core [4]

from around 2 CoreMark/MHz of previous generations [5] to more
than 4 CoreMark/MHz [2]. However, the limited amount of func-
tional units (4 ALUs and one multiplier/divider) sets an upper bound

on the achievable performance for workloads performing a large
amount of operations, e.g., matrix multiplications.
Although this limitation was considered acceptable in previous

generations of space processors, nowadays compute-intensive work-
loads are becoming of interest also in space applications. For
instance, the use of deep neural networks (DNNs) inference and
other machine learning algorithms is being proposed in space appli-
cations [6], to increase the capabilities [7] and dependability [8] of
satellites. As shown in [9] and [10], a large part of these algorithms
can be mapped into matrix multiplications, which are very compute-
intensive workloads and can be sped up effectively by DLP. In [11] it
was found that this is especially true for inference of convolutional
networks, while DLP is less effective for other machine learning
algorithms (e.g., recurrent neural networks for satellite telemetry
forecasting or unsupervised learning). On the other hand, training
of convolutional networks is composed of calculations similar to
those of the inference [12]. However in this case a computation of the
same complexity of the inference has to be performed many times
until the training is complete. For this reason, an additional increase
of performance to achieve training in reasonable time scales is
required compared to hardware platforms used for inference [13].
One of the main reasons behind the gap between microarchitec-

tures employed in space and terrestrial applications is that it is not
possible to reuse in a straightforward way the hardware platforms
employed in terrestrial applications, given the specific constraints of
satellite data systems especially in terms of robustness to ionizing
radiation [9].
Ionizing particles can change the value stored in sequential ele-

ments, causing single event upsets (SEUs) and single event func-
tional interrupts (SEFIs) [14]. Evenworse, they can cause permanent
damage with single event latch-ups (SELs) [15]. In [9], it was shown
that a graphics processing unit (GPU) is expected to fail almost three
orders of magnitude more often than a state-of-the-art space proces-
sor because of its larger area. Given that the failure rate of a processor
is proportional to its area, in this work the focus will be on area-
efficient data parallel processors. However, as the failure rate due to
ionizing radiation depends also on the radiation environment, the
applicability of this type of processors in different orbits (e.g., low
Earth orbit, geostationary orbit, or deep space) will require a tailored
radiation tolerance approach, including radiation testing, redun-
dancy, shielding, and operations (e.g., periodic power cycling and
memory scrubbing) [16].
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A. State-of-the-Art of Data Parallel Processors

Processors for terrestrial applications typically address compute-
intensive applications with ISA extensions employing a type of DLP
called packed single instruction multiple data (SIMD), both for
personal computers (Intel’s MMX extensions for integers [17] and
the Streaming SIMD Extensions for floats [18]) and embedded
applications (NEON extension [19]). Also PULP, one of the most
popular sets of RISC-V cores, employs the RI5CY packed SIMD
extension, defined outside of the RISC-V standard [20]. Packed
SIMD extensions are typically chosen by hardware designers
because they can be implemented without extensive modifications
to the microarchitecture of the baseline processor [21]. However,
with the end of Moore’s law, computer architects are starting to
consider more efficient ISA extensions for DLP. For instance,
ARM recently released its ARMv8-A Scalable Vector Extension
(SVE, 2017) [22]. Although previous Fujitsu’s supercomputers were
based on SIMD extensions of the SPARC ISA, the Fujitsu A64FX is
the first processor based on the ARMv8-A SVE, targeting supercom-
puter applications [23]. Vector extensions can be seen as more
flexible versions of packed SIMD extensions thanks to their time-
multiplexed and vector-length-agnostic (VLA) approach. For VLA
ISAs, the software is not required to know the hardware vector length
of a specific implementation and the code can be written to run the
same executable with the largest parallelism available on every plat-
form without any modification [21,22,24]. In SIMD extensions the
data width of the operations are encoded directly in the instruction
opcodes instead. Therefore, the code must target a specific width.
Furthermore, when the architects of SIMD ISAs want to increase
performance by widening the vectors, they must add a new set of
instructions to process these vectors [21]. Therefore, application code
compiled for previous versions of the ISA cannot automatically
leverage the widened vectors of new implementations and the code
compiled for wider SIMD extensions fails to execute on older
machines (as the new instructions are not known to older implemen-
tations) [21].
The RISC-V Vector Extension (RVVE) [25] is similar to the

ARMv8-A SVE and was inspired by the Hwacha development
[26]. It defines a configurable vector unit with 32 vector registers,
where the number of elements and size of elements can be configured
with configuration instructions [25]. Its configurability and VLA
approach allow the same binary code to work efficiently across a
variety of hardware implementations, varying in physical vector
storage capacity and datapath parallelism [25].

B. Goal and Methodology

Although vector processors are often seen as processors fit for
power-hungry high-performance applications [26–28], this paper
aims to show that vector processors can be employed efficiently in
highly constrained embedded systems as well (space embedded
systems are an extreme example of this type of systems). To do this,
an integer subset of the RVVE was implemented in synthesizable
VHDL, comprising an immediate configuration instruction (vsetvli),
a unit-stride load instruction (vle32.v), a unit-stride store instruction
(vse32.v), a vector-vector addition instruction (vadd.vv), a whole
vector register move instruction (vmv1r.v), a multiplication-
accumulation on the addend (vmacc.vx), and a multiplication-
addition overwriting the multiplicand (vmadd.vx). The use of only
integer instructions is common for implementations targeting appli-
cations where the precision of the floating-point formats is not
needed, and fixed-point formats can be employed, resulting in pro-
cessors with small footprints for low-power applications [8,20].
The performance of the highly optimized dual-issue scalar pipeline

of the HPP64 (configured to support the RV64IM subset and referred
to as scalar processor) will be compared to the performance of an
implementation where the scalar processor is extended with a simple
and modular vector processing unit (VPU).** To do this, a scalar C
function was executed on the scalar processor and then an analogous

function, coded using intrinsic functions [29] to generate vector
instructions, was executed on the vector processor. The executables
were generated with a patched version of the RISC-V toolchain,
supporting intrinsic functions for generation of RVVE instructions,††

as (at the time of writing) the RVVE has not been frozen yet and
vector instructions are not supported yet by the standard toolchain.
The use of intrinsics allows considering only a subset of theRVVE, as
the generated instructions depend on the intrinsic functions employed
[30]. For instance, the intrinsic function

size t vsetvl e32m1 �size t avl�

generates a vsetvli instruction with a selected element width (SEW) of
32b (e32) and no register grouping (m1), having in the field rs1 the
register address of the register storing the variable avl indicating
the application vector length (AVL), i.e., the number of elements in
the vector defined at software level. The function returns a value in the
register indicated in the field rd,which canbe implicitly selected by the
user by assigning the result of the intrinsic function to a variable.
Examples of use of this intrinsic function are reported in Sec. III. Both
for the scalar and the intrinsic functions the code obtained from the
compilerwas employed,without handoptimizations at assembly level.

II. Implementation of the Vector Processing Unit

Figure 1 shows the complete vector processor, with a modified
HPP64 interfaced with the VPU. The VPU comprises three elements:
a sequencer, the lanes, and a vector load and store unit (VLSU). The
sequencer interfaces with the modified pipeline of the NOEL-V,
receiving scalar parameters (e.g., base addresses of vectors) and vector
instructions, while sending to the scalar pipeline the scalar results
(when applicable). Each lane consists of a slice of the vector register
file (VRF), containing a single 32-bit element of the vector for each of
the 32 vector registers defined by the RVVE, and the relative combina-
tional paths to execute the implemented RVVE instructions. The
vmadd and vmacc instructions are executed in two CCs (pipelining)
to avoid penalties on the maximum frequency compared to the scalar
processor when using large amounts of DLP required for DNNs (as
shown analyzing DNNs in [9]). For maximum flexibility of the proto-
type andquick design exploration, theVLSUuses a generic busmaster
from theGRLIB to read andwrite data on a 128-bit-wideAMBAhigh-
performance bus (AHB). Both the sequencer and the VLSU are
designed to handle a configurable number of lanes NLanes that can be
set at compile timewith a generic in VHDL. To decidewhich range of
number of lanes to consider in this study, we carried out a study of
DNNs in [9]. For the convolutional layers of the DNN analyzed in [9],
only18.2%(24out of 132) of thedimensionsof themultipliedmatrices
are smaller than 128. For this reason, we will focus on improving
performance of kernels with 128-element parallelism, as this seems a
good tiling size to speed up a largemajority ofmatrixmultiplications in
DNNs. Therefore, wewill only consider configurations withNLanes ≤
128, as configurations with a level of DLP larger than allowed by the
algorithmdonot provide any advantage (unless software solutions like
batching are employed [10]).
Furthermore, the integration of the VPU required slight modifica-

tions to the scalar baseline HPP64 NOEL-V processor. The instruc-
tion decode stage (D) was modified to access the required scalar
registers for vector instruction reading or writing scalar values:
1) Instruction vsetvli returns a scalar value to be stored in a scalar

register.
2) Instructions vle32.v and vse32.v require a scalar value as a base

address.
3) Instructions vmadd.vx and vmacc.vx require a scalar value as a

coefficient.
In the register access stage (RA), where instructions are issued,

only a vector instruction can be issued per time and no other instruc-
tion can be issued simultaneously (to avoid conflicts). Therefore,
when vector instructions are issued, the dual-issue capability of the
scalar pipeline is disabled. The execution stage (EXE) was modified

**This extended processor, comprising the baseline scalar processor and
the vector extension, will be called vector processor. ††https://github.com/riscv/riscv-gnu-toolchain/tree/rvv-intrinsic.
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to include also a VPU front end (FE), as shown in Fig. 1. The other
stages, i.e., fetch stage (F), memory stage (MEM), exception stage
(EXC), and write back (WB) remained unchanged.

A. Resource Utilization

To have an estimation of the resources required (i.e., resource
utilization) by configurations with different numbers of lanes,
syntheses for the Xilinx Kintex Ultrascale (XCKU040) field-
programmable gate array (FPGA) were run for different configura-
tions. Resource utilization from implementation reports is shown in
Fig. 2 for configurable logic blocks look-up tables (LUTs), block
random-access memory (RAM) tiles, and digital signal processing
(DSP) blocks (of the, respectively, 242,400, 600, and 1920 available
in the selected FPGA). Furthermore, a total resource utilization (Tot.)
has been calculated assuming that all the resources have the same
importance (i.e., with an average of the three utilizations). The
increase in terms of resource utilization is linear with the number
of lanes, showing good scalability up to 128 lanes. Furthermore, all
configurations are able to reach a frequency target of 100 MHz (the
same as the scalar processor), which will be used as clock frequency
of the processors in the remainder of the paper.

B. Memory Subsystem

As can be seen in Fig. 1, when using the scalar pipeline, the data are
cached in a 16KiB level 1 data cache (L1D). This is not the case for the
data used by the vector pipeline. On the other hand, also operations on

vectors are sped up by the level 1 instruction cache (L1I) in theHPP64.

To investigate the role of the memory subsystem in the performance of

scalar and vector processor, we investigated two different memory

configurations:
1) SRAM configuration: Instructions and data are read from and

written to a 4MiB static random-accessmemory (SRAM) array on the
AHB bus. This ensures a low latency of access from the processor. It is
representative of memory hierarchies where tiling is taken care of
(similarly towhat done in [8]) or caching is implemented at level 2 (L2).
2) SDRAM configuration: Instructions and data are read from and

written to an external 2 GB double data rate 4 (DDR4) synchronous
dynamic random-access memory (SDRAM) module. This is repre-
sentative of how the vector processor would operate at the current
development stage in real-world applications, where the large
amount of data involved typically requires an external main memory
with relatively long latency of access.
To compare quantitatively the twomemory configurations,we inves-

tigated the bandwidth of the SRAM configuration and of the SDRAM

configuration when using the vector pipeline to read the first NLanes

elements of a vector, as shown in Fig. 3 (top). To investigate further the

behavior of the SDRAMmodule, we considered both an idealmodel of

the SDRAM (assuming that the SDRAM module is equivalent to the

SRAM except for a longer latency), and real measurements from the

SDRAMmodule on theKCU105 Evaluation Board byXilinx [31].We

counted theCCsbetween the read request by thevector processor on the

bus and the data available on the bus for the vector processor (CClat),

with simulations for the SRAMconfiguration andwith an on-chip logic

analyzer provided with the GRLIB (LOGAN) for the SDRAM on the

KCU105 board. This valuewas 2CCs for the SRAMconfiguration and

24 CCs for the SDRAM configuration.
Assuming that the latency occurs only once (SRAM and ideal

SDRAM), this can be seen by the core as a lower effective bandwidth

(BWeff), given by

BWeff �
Dread

CClat � CCread

(1)

Fig. 2 Resource utilization on the XCKU040 for the scalar processor
(dashed lanes) and vector processors with 4, 8, 16, 32, 64, and 128 lanes
(solid lines with data points).

Fig. 1 The HPP64 NOEL-V interfaced with the VPU. In blue are the
additions to the NOEL-V due to the vector extension described in this
work.

Fig. 3 Top: Effective bandwidth. Bottom: SDRAM penalty in terms of
BWeff for vector loads with differentNLanes. Points represent measured
data (NLanes � 4, 8, 16, 32, 64, 128).
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whereDread is the amount of data to be read andCCread is the number
of CCs to read the data on the bus once it is available. For instance,
considering a load involving all the lanes of a configuration
with NLanes � 4 (Dread � 128b), where CCread � 1 for both SRAM
and SDRAM, BWeff;SRAM � 42.67b∕CC and BWeff;SDRAM �
5.12b∕CC (8.33× lower). Figure 3 (bottom) shows that the penalty
in terms of BWeff is reduced when the number of lanes is incre-
mented, as vector processors use a single, longer access to mitigate
the latency of memories. This effect smoothly saturates for the ideal
SDRAM for largerNLanes and the SDRAM penalty tends asymptoti-
cally to 1, although NLanes � 128 is already enough to achieve a
penalty of just 1.65. The increase of performancewith the increase of
NLanes saturates abruptly instead after the maximum burst size of the
SDRAM is reached in real measurements (in this case the maximum
burst is 128B, i.e., the bandwidth saturates forNLanes > 32) andmore
than one burst read access is required to read the firstNLanes elements
of the vector. In this case CClat is the sum of the latency of each read
burst access (two burst reads for 64 lanes and four for 128 lanes). The
slight increase of BWeff after NLanes � 32 is because the following
read burst accesses are in the same SDRAM page of the first one and
for this reason CClat is reduced to 21. In the following sections more
complex SDRAM penalty plots will be proposed to investigate the
effects of the twomemory configurations for several benchmarks and
hardware configurations.

III. Benchmarking

The roofline model [32] shows that increasing computational
capabilities with DLP speeds up very effectively kernels with high
operational intensity (OI), i.e., ratio between number of operations
(#OP) and bytes (B) read from and written to main memory. On the
other hand, performance of kernels with lowOI is limited bymemory
bandwidth. Therefore, improving computational capability in this
case provides little or no speed-up.
In high-performance computing (HPC) optimized Basic Linear

Algebra Subprograms (BLAS) routines [33,34] are typically avail-
able for each HPC platform, so that it is possible to map software to
highly optimized routines. One of themost popular BLAS routines is
general matrix multiply (gemm), which (in its nontransposed form)
implements the following algorithm:

C ← αA ⋅ B� βC (2)

where A, B, and C are matrices of, respectively, size n1 × n2,
n2 × n3, and n1 × n3, and α and β are scalars. This routine typically
achieves the peak performance of a given platform for large-enough
matrices. The reason is that its OI increases with the size of the

matrices involved. For instance, assuming matrices composed of
32-bit integers (igemm‡‡), α � 1, β � 1, and n1 � n2 � n3 � N,
the operational intensity is OI � �2N � 1�∕16OP∕B (we will refer
to N as “problem size”). The C functions used for the scalar and
vector processor are reported, respectively, in Figs. 4 and 5.§§

On the other hand, other BLAS kernels have low OI and even
increasing the problem size will not make the workload compute-
bound. A typical example is axpy (“ax plus y”), which implements
the algorithm below:

y ← ax� y (3)

where a is a scalar, and x and y are vectors of sizeN. In this case,OI
for 32-bit integers (iaxpy) is stuck at 1∕6OP∕B. TheC functions used
for the scalar andvector processor are reported, respectively, in Figs. 6
and 7.

A. Results

The benchmarking was conducted exploring the scaling of perfor-
mance both changing the number of lanes (while keeping the size of
the problem constant) and changing the size of the problem (while
keeping the number of lanes constant). The results are reported,
respectively, in Secs. III.A.1 and III.A.2.

1. Scalability in Terms of Number of Lanes

Figure 8 shows the performance of the scalar processor and
vector processor with several NLanes ≤ N (in the case of N � 128)
for both memory configurations. Thanks to the VLA nature of the
RVVE, the same executable of the vector function with N � 128
was used for all the hardware configurations ranging from 4 to 128
lanes, exploiting the maximum level of DLP available on each
configuration.
Figure 9 shows that increasing the number of lanes in the vector

processor increases the speed-up compared to the scalar processor
with the samememory configuration untilNLanes � N is reached, for
both igemm and iaxpy. The maximum speed-up achieved when
employing the SRAM configuration is, respectively, around 15.6×
and 4.8× the performance of the scalar processor. For the SDRAM
configuration the maximum speed-up is higher for igemm and lower
for iaxpy, respectively, around 23.0× and 4.1×. It should be noted that

Table 1 Comparison of this work with other integer RVVE cores and other RISC-V cores targeting similar applications

Core This work Vicuna [39] RI5CY [20,42] Klessydra T13 [42]

DLP
VLA VLA

SIMD (packed)
VLA

Lane-based Specialized units Lane-based + MT
ISA RVVE RVVE Int. NSE Int. NSE (scratchpad)

Int. subset Int. subset
Area overhead 24.1% (16 l vs 4 l) N/A 115.3% (vs bsp) 148.2% (8 l vs bsp)

98.6% (64 l vs bsp)

Frequency penalty ∼0% 20% 22% (vs bsp) 5% (8 l vs bsp)

Up to 256 l, 8192b dp 32b vs 1024b dp

igemm (N � 32) 70.9 kCC (32b) N/A 41.9 kCC (16b) N/A
83.8 kCC (32b)*

igemm (N � 64) 314.3 kCC (32b) N/A 1.4 MCC (32b) 414.4 kCC (32b)

igemm (N � 256) 81 ms 8.3 ms (8b) N/A N/A
33.3 ms (32b)*

iaxpy (N � 65; 536) 678.8 μs (32b) 524.9 μs (8b) N/A N/A

2.1 ms (32b)*

Data with asterisks (*) are extrapolated for different vector element widths as described in Sec. IV.

In this table, “b” stands for bit, “dp” for datapath, “bsp” for baseline scalar processor, “l” for lanes, “Int.” for integer, “MT” formultithreaded, and “NSE” for

nonstandard extension.

‡‡Although BLAS routines are typically employed for floating operations
and a letter is added to the name of the routine according to the precision (e.g.,
sgemm for single precision and dgemm for double precision), herewe consider
32-bit integers and use the term igemm, as done in [35].

§§Based on the sgemm function in https://github.com/riscv-non-isa/rvv-
intrinsic-doc/blob/master/examples/rvv_sgemm.c.
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there are some configurations forwhich thevector processor is slower

than the scalar one. For the SRAMconfiguration this is the casewhen

NLanes � 4 and NLanes � 8 in case of iaxpy (respectively, 0.36× and

0.68×), while this is the case only forNLanes � 4 for igemm (0.75×).
For the SDRAM configuration this happens only for iaxpy with

NLanes � 4 (0.51×) and NLanes � 8 (0.95×). It should also be noted

that while the speed-up when running igemm on the vector processor

with the SDRAM configuration is larger than the speed-up of the
vector processor for the SRAM configuration, this advantage is

reduced for NLanes > 32. In the case of iaxpy, there is a similar trend

and the relation is even inverted for NLanes > 64. Figure 10 inves-

tigates further this aspect, showing that the penalty of using

an SDRAM configuration, measured as the ratio between the execu-

tion time with SDRAM and SRAM configuration, is lower for the

uncached vector processor than for the cached scalar processor

for igemm (even though it is clear that the need of several burst read

accesses to the SDRAM module to read NLanes elements of a vector

increases the SDRAM penalty of the vector processor for NLanes >
32), while for iaxpy it becomes higher after NLanes � 64.
Given that the increase of performance with the number of lanes is

typically less than linear (Fig. 8) and that the resource utilization

increases linearly instead (Fig. 2), there is an optimal number of lanes

that maximizes the resource utilization efficiency in terms of

performance/resources, where the required resources are expressed

as a fraction of those available on the FPGA.Figure 11 (top) shows that

for the SRAM configuration this happens for NLanes � 32 in case of

igemm for the DSP blocks, while the total resource utilization effi-

ciency increases up to 3.63× the one of the scalar processor for

Fig. 4 C function employed for igemm on the scalar processor.

Fig. 5 C function employed for igemm on the vector processor.

Fig. 6 C function employed for iaxpy on the scalar processor.

Fig. 7 C function employed for iaxpy on the vector processor.
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NLanes � N � 128. Finally, the igemm resource utilization efficiency
for the vector processor is higher than the one for the scalar processor
only if at least 8 lanes can be implemented, which means that adding
the VPU increases resource efficiency only if a resource utilization of
1.28× the scalar processor can be tolerated (see Fig. 2). When consid-
ering the SDRAM configuration (Fig. 11, bottom), the efficiencies are
smaller in terms of absolute value compared to the SRAM configura-
tion and the total efficiency peaks forNLanes � 64. However, the peak
reached has a higher relative value compared to the total utilization
efficiency of the respective baseline (6.46×). Furthermore, for the

SDRAM configuration all types of resource efficiency of the vector
processors (except for DSP blocks and NLanes � 4) are higher com-
pared to the scalar processor (providing higher total efficiency already
for 1.18× the resources of the scalar processor). The scalability of the
total resource efficiency of the vector processor with the increase of
DLP is, as expected by the rooflinemodel,worse for iaxpy. In this case,
considering the SRAM configuration, the vector processor has a total
resource utilization efficiency better than the scalar processor for
NLanes > 16, peaking at 1.26× the one of the scalar processor for
NLanes � 64 (Fig. 12). Furthermore, as in iaxpy the functional units
aremuch less exploited by the software, even for the configurationwith
the peak DSP utilization efficiency (NLanes � 32), its value is 0.34×

Fig. 8 Performance (iterations/s) of the vector processor varying the
number of lanes and of the scalar processor for igemm (top) and iaxpy

(bottom) with N � 128 when using the AHB RAM (solid lines) and the
external SDRAM (dashed lines). Points represent measured data
(NLanes � 4, 8, 16, 32, 64, 128).

Fig. 9 Speed-up of the vector processor over the scalar processor vary-
ing thenumber of lanes for iaxpyand igemmwithN � 128whenusing the
AHB RAM (solid lines) and the external SDRAM (dashed lines). Points
represent measured data (NLanes � 4, 8, 16, 32, 64, 128).

Fig. 10 SDRAM penalty in terms of performance for the vector proc-
essor (solid lines) and for the scalar processor (dashed lines), varying the

number of lanes for iaxpy and igemm with N � 128. Points represent
measured data (NLanes � 4, 8, 16, 32, 64, 128).

80

Fig. 11 Utilization efficiency varying NLanes for igemm with N � 128
whenusing SRAM(top) andSDRAM(bottom). Solid lines represent data
for the vector processor, and dashed lines for the scalar processor. Points
represent measured data (NLanes � 4, 8, 16, 32, 64, 128).
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the one of the scalar processor. Similarly to igemm, the resource

efficiency of iaxpy for the SDRAM configuration is lower as an

absolute value compared to the SRAM configuration, but it is higher

compared to the respective baseline. In this case, the vector processor

has a total resource utilization efficiency better than the scalar proces-

sor already forNLanes > 8, its peak is atNLanes � 32, and it is 1.46× the

one of the scalar processor. The following decrease makes the effi-

ciencyof thevector processor lower than the oneof the scalar processor

for NLanes � 128. Furthermore, the peak of the DSP efficiency is at

NLanes � 16 and reaches 0.46× the one of the scalar processor.

2. Scalability in Terms of the Problem Size

To show how increasing the size of the problem N increases the

advantage of the vector processor over the scalar processor, we

investigated how the two processors behave when N is increased

above 32 for a vector processor with NLanes � 32. The results are

shown in Fig. 13.
For both the SRAM and SDRAM configurations, the speed-up

increases with the OI (proportional to N) for igemm until N � 128
(11.70×), after which it saturates. Figure 14 gives more insights on

why this happens, considering the effective number of operations per

CC (#OP∕CC) calculated as the number of operations (2N3 � N2 for

igemm and 2N for iaxpy) for the SRAM configuration. For igemm,

increasing the size of the problem slightly increases #OP∕CC for the

vector processor, as the overhead of calling the function is spread over

more calculations. On the other hand, #OP∕CC for the scalar proc-

essor decreases when N is increased because the matrices get larger,

leading to an increase of cache misses. The same can be deduced by

the SDRAMpenalty shown in Fig. 15,which shows that in the case of

igemm the SDRAM penalty increases for the scalar processor when
going fromN � 32 toN � 128, meaning that theL1D is less capable
ofmasking the latency of themainmemory asmatrices get larger. The
SDRAMpenalty is instead roughly constant for the vector processor.
It should also be noted that large problem sizes favor the vector
processor even for iaxpy, increasing the gap in terms of SDRAM
penalty as the problem size increases (even if the SDRAMpenalty of
the scalar processor does not increase).

Fig. 14 Number of operations per CC varying the size of the problemN
for both iaxpy and igemm with NLanes � 32 when using the SRAM
configuration. Solid lines represent data for the vector processor, and
dashed lines for the scalar processor. Points represent measured data

(N � 32, 64, 128, 256).

Fig. 15 SDRAMpenalty in terms of performance, varying the size of the
problem N for both iaxpy and igemm with NLanes � 32. Solid lines
represent data for the vector processor, and dashed lines for the scalar
processor. Points represent measured data (N � 32, 64, 128, 256).

Fig. 12 Utilization efficiency varying NLanes for iaxpy with N � 128
whenusing SRAM(top) andSDRAM(bottom). Solid lines represent data
for the vector processor, and dashed lines for the scalar processor. Points
represent measured data (NLanes � 4, 8, 16, 32, 64, 128). The DSP
utilization efficiency for the scalar version is not reported, because it is
outside the represented range (11,953 iterations/ms/resources for SRAM,

5299 iterations/ms/resources for SDRAM).

Fig. 13 Speed-up varying the size of the problem N with an SRAM
(solid lines) and SDRAM (dashed lines) configuration for both iaxpy and
igemm with NLanes � 32. Points represent measured data (N � 32, 64,
128, 256).
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IV. Related Work

Although the RVVE is still in the process of being standardized, it
plays such a crucial role in state-of-the-art terrestrial applications that
already several developments implementing the RVVE are described
in literature. One of the most mature implementations described in
literature is Xuantie-910 from Alibaba, a 16-core RISC-V processor
supporting the RVVE [27]. Its FPGA prototypes are employed in data
servers and a 12 nm Application-Specific Integrated Circuit (ASIC)
clocked up to 2.5 GHz has been taped out. However, this processor
clearly targets servers andHPC applications, which have totally differ-
ent constraints compared to space embedded systems.Also aEuropean
consortium [36] is working on a RISC-V Vector accelerator for HPC
applications and an ASIC has been recently taped out. Other compa-
nies like SiFive have announced commercial cores supporting the
RVVE [37].

A. Comparison with Other Implementations

The microarchitecture described in our work can be seen as a
simplified version of Ara [24], a RISC-V vector processor based
on the scalar Ariane [35] and implementing the RVVE with vector
lanes. However, Ara aims at implementing (almost) all of the RVVE
(excluding fixed-point and vector atomics [38]), while in our work
we decided to implement only a reduced integer subset. For this
reason (especially because of floating point units), the scaling of the
resources required by Ara with the number of lanes is much worse:
for instance, in our work the 16-lane version uses just 24.1% resource
more than the 4-lane version, while for Ara the area increases by
212.6%. This allows us to reach massive DLP on a single core with
limited resources. On the other hand, Ara proves that the complete
RVVE, although very interesting for HPC applications, is overdi-
mensioned for resource-constrained embedded applications.
The approach followed in our work is not the only possible way of

implementing theRVVE.For example, in [39]Vicuna is described and
benchmarked. Vicuna uses dedicated execution units for different
instruction types that process several elements at once instead of vector
lanes [39]. Also in this case, only integer and fixed-point instructions
are implemented. Although a direct comparison with our implementa-
tion is not possible (because Vicuna operates on 8-bit vector elements
instead of 32-bit vector elements), few considerations can be drawn.
Thewidermemory interface employed in our case (128bits) compared
to Vicuna (32 bits) allows for faster execution of memory-bound
algorithms. In case of iaxpy with N � 65536 on 8-bit integer data,
Vicuna requires 524.9 μs for its execution. Multiplying by 4 to keep
into account the higher memory traffic required, it can be estimated a
required time of 2.1 ms for 32-bit elements. Our 256-lane implemen-
tation executesN � 65536 iaxpy in678.8 μs. Furthermore, ourmodu-
lar approach and the subset of chosen instructions does not cause
penalties on the maximum frequency (100 MHz) up to 256 lanes of
32 bits each (8192-bit datapath), while the largest version of Vicuna
(1024-bit multiplier) has a 20% penalty over the smallest (32-bit
multiplier). A similar penalty would be even larger for execution units
operating on 32-bit data with the same DLP (4096-bit multiplier).
However, an 8-bit 256 × 256 igemm executes in 8.3 ms on Vicuna.
Assuming that it would be possible to implement a 32-bit version of
Vicuna without any penalties on the frequency, an equivalent time of
33.3 ms can be estimated for 32-bit elements (x4). This is better than
our 256 lanes implementation (81ms),meaning that a 32-bit version of
Vicuna would be faster than our implementation if it achieves a clock
frequency higher than 33MHz. Avector processor similar toVicuna is
described in [40]. In this case a 120 × 120 matrix multiplication
executes on this processor capable of executing 8 OP/CC on 8-bit data
in 3.0MCC, equivalent to 12.0MCC for 32-bit elements. Our imple-
mentationwith the samepotential number ofOP/CC (8 lanes) executes
a 120 × 120 igemm on 32-bit elements in 13.1MCC. Although using a
different FPGA, the implementation in [40] achieves only 50 MHz,
confirming that this approach has worse scalability in terms of maxi-
mum clock frequencywith the level of DLP implemented compared to
ours. It is shown in Refs. [39,40] that operating on 8-bit elements is an
interesting solution to speed up calculations and reducememory traffic
when the precision of 32 bits is not needed. Data from [41] show that

8 bit is usually the smallest factor that allows an acceptable loss of
accuracy for DNNs.
Another possible approach is the one ofKlessydra T13 [42],which is

based on a nonstandard custom RISC-V vector extension. This exten-
sion is comparable to the subset implemented in ourwork (as also in this
case the focus is on resource-constrained embedded applications, and,
for instance, floating point operations are not implemented), but it is
centered around a scratchpad memory instead of a VRF. Furthermore,
the Klessydra platform is based on a interleaved multithreated micro-
architecture, alternating instructions belonging to different execution
threads in the stages of a single-issue in-order pipeline [42]. The data in
[42] show that the single-core implementation using themaximumDLP
available (8 elements) executes a 64 × 64 matrix multiplication on 32-
bit values in 484.4 kCC for homogeneousworkloads and 414.4 kCC for
heterogeneous workloads,¶¶ while our 64-lane implementations run the
64 × 64 igemm in 314.2 kCC. The Klessydra T13 core requires
�148.22% the LUTs of the baseline scalar processor, while our 64-
lane processor�98.64% over its baseline scalar processor.
Our implementation can be compared also with RISC-V imple-

mentations using nonstandard packed SIMD extensions, like RI5CY
[20]. This 32-bit core implements custom-packed SIMD instructions
to operate on four 8-bit elements or two 16-bit elements with a single
instruction [20]. Furthermore, the core implements other instructions
to speed up matrix multiplications and other kernels composed by
loops of computations (e.g., hardware loops and postincrement
addressing modes) [20]. When comparing the area required for
RI5CY (40.7 kGE) with the one required for Zero-Riscy (18.9
kGE), there is an area overhead of 115.3% [42]. The frequency
instead is reduced to 91.4 from 117.2 MHz [42].
Data for RI5CY in [42] show that for a 64 × 64 matrix multiplica-

tions our 64-lane implementation is around 4.3× faster than RI5CY
operating on 32-bit values (314.3 kCC against 1.4MCC). This means
that our 64-lane implementation in this case is roughly as computa-
tionally capable as four RI5CY cores and therefore the eight cores in
PULP can be potentially outperformed with a dual-core implementa-
tion of our vector processor. However, for smaller matrix multiplica-
tions, this advantage is reduced. For a 16-bit 32 × 32 matrix
multiplication in [43] a single-core RI5CY takes 41.9 kCC, while for
our 32-lane implementation it takes 70.9 kCC. Even adjusting for the
different data element size (x2), our processor would be just 1.18×
faster. An approach to improve the performance of our implementation
for smallmatrices is to implement the vmadd and vmacc instructions in
a single clock cycle. This would have little or no impact for a small
number of lanes in terms of maximum clock frequency, roughly
halving the execution time. The results of the comparison of this work
with similar implementations are summarized in Table 1.

B. Benchmarking Methodology

Considering the methodology employed in the benchmarking, the
mentioned related works do not investigate the effects of a fast and a
slow memory on the vector processor (Platzer and Puschner [39]
provide performance only for an SRAM), some of them [24,42] not
even providing details on the memory used. On the other hand, in our
work we prove how cacheless vector processors have an increased
advantage over cached scalar processorswhen dealingwith relatively
slow, high-latency memories (Fig. 9).
Although the benchmarking in this work was carried out in depth

and with a detailed analysis of the results, it lacks a direct connection
to the workloads required in space applications. For this reason,
another benchmark was carried out in [11]. In [11], the processor
was employed to speed-up the inference of CloudNet, a fully con-
volutional network (FCN) [44] for cloud detection; i.e., its output is a
mask of the same size as the input image indicating the pixels covered
with clouds. When employing 128 lanes, the processor described in
this work is 19.6× faster than the scalar baseline [11].

¶¶Given the interleaved multithreated microarchitecture of the Klessydra
cores, data from [42] are reported both in the case the threads are based on the
same algorithm operating on different data (homogeneous workload) and in
the case where different algorithms are executed as different threads (hetero-
geneous workload).
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V. Conclusions

State-of-the-art processors for space embedded systems are based
on simplemicroarchitectures, because of the small footprint required,
low power available, and presence of ionizing radiation. In this paper
the implementation of DLP to enable compute-intensive workloads
in next-generation space embedded systems with limited resources
was described.
The resources required for the hardware implementation of the

selected RVVE subset increase roughly linearly with the number of
lanes (i.e., its computational capabilities), with nonoticeable penalty in
the maximum clock frequency achievable compared to the baseline
scalar processor up to 128 lanes. Given a certain size of the problem,
the hardware implementation of the selected integer RVVE subset
shows good scalability with the number of lanes, especially for
compute-intensive workloads (igemm), having resource utilization
efficiency above the one of the scalar processor for all configurations
with more than four lanes, achieving up to 23.0× the performance of
the scalar processor with only 4.3× the resources of the scalar proto-
type, and increasing resource utilization efficiency up to 6.5× the one
of the scalar processor. Furthermore, for a fixed configuration, the
performance of the vector processor scales better than the performance
of the scalar processor with the increase of the problem size.
Although this work shows that applying DLP in next-generation

processors is feasible and effective for certain workloads, further
work is needed to investigate whether an L1 vector data cache can
speed the execution for relatively small number of lanes or small
problem size, whether other subsets of the RVVE are fit for imple-
mentations with small footprint, and which RVVE instructions not
implemented yet are detrimental to the scaling in terms of number of
laneswhen considering resource efficiency andmaximumachievable
frequency. Finally, also the implementation of operations on smaller
vector elements is an interesting subject to investigate to increase
performance when lower precision is acceptable.
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