
The Search for Optimal Robust Classification Trees
Pushing the limits of exhaustive search

Kutlu Şan Demirören1

Supervisor(s): Emir Demirović1, Koos van der Linden1, Daniël Vos1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 27, 2025

Name of the student: Kutlu Şan Demirören
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Koos van der Linden, Daniël Vos, Jasmijn Baaijens

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Interpretability distinguishes decision trees from
most other machine learning models; what they still
have in common is that they are vulnerable to ad-
versarial examples. Various robust decision tree al-
gorithms exist; however, they either do not provide
optimal results or are not scalable with data that has
continuous features. In this work, we demonstrate
RobTree, a scalable optimal robust decision tree al-
gorithm for continuous features. We propose new
theorems that reduce the number of thresholds to
be considered to half of what was previously con-
sidered and give way to pruning techniques. The
results of this paper indicate that RobTree vastly
outperforms the state-of-the-art in terms of runtime
for trees of depth two up to two orders of magni-
tude.

1 Introduction
Building classification models is a fundamental task in ma-
chine learning, with their applications becoming increasingly
widespread. However, these models are not always inter-
pretable by humans. With the integration of machine learning
into fields such as finance [10] and law [21], model inter-
pretability becomes a critical concern, as the decisions made
can have significant consequences. Decision trees, therefore
play a vital role as interpretable machine learning models
[11].
(Optimal) Decision trees The problem of finding optimal
decision trees was shown to be NP-hard [15]. Hence, sub-
optimal greedy algorithms that optimize a local objective at
each step such as CART [3], ID3 [19] and C4.5 [20] were
developed.

Optimal decision trees were shown to perform better than
greedy decision trees for most use cases [22]. Hence, research
has been conducted on finding optimal decision trees effec-
tively. For binary features, Mixed-Integer Linear Program-
ming (MILP) and Dynamic Programming (DP) approaches,
such as the work by Günlük et al. [12] and MurTree [8] re-
spectively were proposed to explore the solution space effec-
tively.

Moreover, for continuous features Mazumder et al. [17]
proposed Quant-BnB, a scalable branch and bound (BnB) al-
gorithm for Optimal Decision Trees. A slightly different ap-
proach, ConTree which augments BnB with the use of DP
was proposed by Brita et al. [4] and was shown to achieve
state-of-the-art scores.
Robust decision trees Decision trees, like most machine
learning models, are vulnerable to adversarial examples [18].
Take the example in Figure 1 in which many car accidents
involve drivers with blood alcohol levels (BAL) just above
the legal limit of 0.05. If the tree in Figure 1a is used to de-
cide the insurance policy, an attacker can slightly reduce BAL
values to manipulate the tree into granting insurance cover-
age. In contrast, the tree in Figure 1b is more robust to such
changes. Scenarios such as this motivate the need for robust
decision trees that resist adversarial inputs.

BAL
≤ 0.05?

Insurance
Covers

Yes

No
Insurance

No

(a) An optimal decision tree that
puts the threshold at the legal
limit. It is vulnerable to adver-
sarial attacks

BAL
≤ 0.03?

Insurance
Covers

Yes

No
Insurance

No

(b) A more robust decision tree.
It is less vulnerable to pertur-
bations by an adversary as the
threshold is farther away.

Figure 1: Two decision trees that can be used to decide the insurance
policy on a car crash based the on blood alcohol level(BAL) of the
driver. If there are many incidents close to the 0.05 threshold, an
adversary can perturb the data slightly to change the outcome.

Greedy algorithms for robustness, such as TREANT [5],
GROOT [23], and FPRDT [13] that are suboptimal achieve
generally good scores. However, due to their lack of opti-
mality, they can produce arbitrarily bad trees [25], driving the
research toward optimal robust decision trees.

Optimal robust decision trees Vos et al. [25] proposed
ROCT, a MILP approach for constructing optimal robust de-
cision trees, achieving state-of-the-art results. To the best of
our knowledge, ROCT is the only optimal algorithm designed
to ensure robustness against a deterministic adversary. How-
ever, ROCT has limited scalability as its runtime increases
significantly with the dataset size, starting at trees of depth
two. Hence, there is no scalable algorithm for constructing
optimal robust decision trees that handle continuous features.

RobTree This work seeks to answer the question: To what
extent are search-based methods more scalable than MILP
methods for finding optimal robust decision trees? To address
this gap in the literature, we propose RobTree, a scalable BnB
algorithm for finding optimal robust classification trees with
continuous features. Moreover, we also provide theorems re-
garding optimal robust decision trees that give way to vari-
ous pruning methods during search. We show that for trees
of depth two, RobTree solves instances up to two orders of
magnitude faster than ROCT, achieving state-of-the-art per-
formance. While our work is limited to depth two, it can be
extended to trees of depth three and further.

In short, our contributions with this paper are several the-
orems that can be used in future work for speeding up the
search for optimal robust trees. Moreover, we also pro-
vide RobTree, an adaptation of the Quant-BnB algorithm that
achieves state-of-the-art results in a scalable manner. We also
provide a novel search algorithm that is used as a subroutine
in the RobTree algorithm.

2 Related Works

This section details the literature that supports the design of
the RobTree algorithm, along with insight into the algorithms
with which it is compared against.

2.1 (Optimal) Decision Trees
Greedy decision trees Early research on decision trees led
to the development of greedy algorithms such as CART [3]
and ID3 [19] which optimize local objectives with heuristics
such as information gain and Gini impurity. While the afore-
mentioned greedy algorithms still remain relevant, Van der
Linden et al. [22] have shown that optimal trees often outper-
form greedy trees as the quality of greedy trees diminish with
more data.

Optimal decision trees Search-based methods have
achieved state-of-the-art results in learning optimal decision
trees. For binary features the DL8.5 algorithm employs a
combination of BnB techniques and caching, demonstrating
their effectiveness in this context [1]. Building on the idea
of using BnB, MurTree leverages the separable nature of the
problem to apply DP along with novel pruning techniques
to enhance the search process [8]. Unfortunately, due to
the nature of our problem, the left and right subtrees of a
node are not always independent of each other. As a result,
memoization and DP approaches cannot be applied.

Continuous features Although continuous features can be
binarized to fit the aforementioned models, the increase in
the size of the problem due to binarization often results in a
substantial increase in runtime and memory usage, as demon-
strated by Mazumder et al. [17]. Hence, Mazumder et al.
[17] proposed Quant-BnB, a BnB algorithm that constructs
optimal decision trees for continuous features in a scalable
manner. Unlike previous search algorithms, Quant-BnB does
not rely on caching or DP. Instead, it leverages novel lower
and upper bounds based on quantiles to prune substantial por-
tions of the search space, which makes it appealing for our
use case. The work of Mazumder et al. [17] is limited by the
algorithm being only well-suited for shallow trees of maxi-
mum depth three.

ConTree further illustrated the effectiveness of branch and
bound techniques by combining it with Dynamic Program-
ming while still working with continuous features [4]. Out-
performing Quant-BnB, ConTree’s small runtime can be at-
tributed to its specialized depth two solver and novel lower
bounds it introduced. Demirović et al. [9] showed that search
combined with aggressive pruning is also effective in black-
box environments, utilizing a new trace-based pruning ap-
proach and elimination of symmetries.

In this paper, we primarily use ideas from the work of
Mazumder et al. [17] and Brita et al. [9] as they provide
state-of-the-art results in optimal decision trees with continu-
ous features.

2.2 (Optimal) Robust Decision Trees
Greedy robust trees Over the years, many greedy algo-
rithms were proposed for constructing robust decision trees.
For instance, Chen et al. [6] introduced a greedy algorithm
that models the effect of adversarial perturbations by con-
sidering the maximum possible loss caused by an attacker.
Since their splitting criterion has a computational complex-
ity of O(n) in the size of the dataset, they propose a heuris-
tic to approximate the split efficiently. Building on this idea,

+
α

−
β

∆r
2

∆l
1

b

(a) An illustration of the exam-
ple with two data points. The
horizontal axis represents the
value of the first feature. The
vertical axis is the second fea-
ture.

x1 ≤ b

{α}
+

{α, β}
−

(b) A corresponding optimal
depth one decision tree. In each
leaf node, the set of data points
that can reach that leaf node is
given. Both leaf nodes have
the classification of the negative
class.

Figure 2: Visualization of the example in section 3.

TREANT was later introduced to enable more flexible mod-
eling of the adversary by allowing the range of perturbation
to be specified individually for each feature [5]. Given that
both TREANT and the method by Chen et al. [6] have a time
complexity ofO(n2), fast greedy algorithms such as GROOT
[23] and FPRDT [13] that run in O(n log n) time were pro-
posed to improve scalability. Despite their practical success,
these greedy algorithms can produce arbitrarily poor results
[25]. Vos et al. [24] have shown an algorithm for the labeling
of the leaf nodes in a given decision tree, which can improve
greedy tree performance.

Optimal robust decision trees MILP has been a common
approach for constructing optimal robust decision trees. As
Justin et al. [16] and Blanco et al. [2] have used MILP ap-
proaches to construct trees robust against noise and random
perturbations in the data. In a setting against an adversary,
ROCT was proposed as an algorithm that constructs robust
optimal decision trees that can be implemented as either a
MILP or a MaxSAT formulation [25]. However, both formu-
lations suffer from scalability issues, limiting ROCT’s appli-
cability to trees of depth two on datasets containing only a
few thousand samples and tens of features.

In this work, we compare directly with ROCT in terms of
runtime. We also compare with GROOT to serve as a baseline
on the adversarial accuracy. Both algorithms achieve state-of-
the-art results.

3 Preliminaries
This section aims to detail the terminology and theory re-
quired to understand the rest of the paper. To give an idea
of the problem, we start with an example.

Example. Consider two data points α = (0.45, 0.5) and β =
(0.75, 0.7) that are made up of two features. Let α and β be of
classification of positive (colored pink) and negative (colored
yellow), respectively. Now consider an adversary that can
perturb each feature positively and negatively by at most 0.1–
we denote this as ∆f

l = ∆f
r = 0.1 ∀f ∈ F . Hence, the

region of space to which the adversary can move a data point
is akin to a box, as illustrated in Figure 2a. For a tree of depth

one, if we choose a split at a threshold b at the root, then
data point β will always end up in the right leaf as shown in
Figure 2b. However, due to the adversary, α can end up in
both the left and right leaf; hence it “co-exists” on the two
leaves. We consider a data point correctly classified if it is
correctly classified in all of the leaves it “co-exists” in. So
even if α is correctly classified if it ends up in the left node,
we consider it not correctly classified by the tree in Figure 2b
as an adversary can perturb it in a way that it is misclassified.
β, on the other hand, is correctly classified.

3.1 Terminology
We take close inspiration from the notation used by Vos et al.
[25] and Mazumder et al. [17]. The distribution of the data
we classify using our decision tree is denoted by D.

• Let F be the set of features that the data points have.
Then f refers to a feature of each data point. For a data
point x, xf would refer to a specific feature of x. For a
collection of data points D, Df is a set that contains all
values for feature f in D.

• Since we are assuming a box-shaped attack model, we
define a range that the attacker can move the value of
each feature f in. ∆l

f and ∆r
f denote the maximum

amount by which an attacker can shift feature f nega-
tively and positively, respectively, for each data point.

• S(x) denotes the set of all possible perturbations that an
attacker can apply to a sample x.

• T is used to refer to a decision tree that maps an input
x to a leaf node t = T (x) which assigns it the label
ct. TL is the set of all leaf nodes of the decision tree.
Furthermore, T S(x)

L refers to all leaf nodes in which an
attacker can place a data point x.

• The split of a node is a boundary b on a feature f such
that it directs the points xf

i ≤ b to the left subtree and
the rest to the right.

• We define ϕ = (f0, [a, b], F1, F2). This represents a can-
didate tree of depth two that splits at a feature f0 at a
threshold between [a, b]. Moreover, the left and right
subtrees of the root can split from features in the sets F1

and F2, respectively. We say that a tree T “can be made
from ϕ” if it fits the description of ϕ.

• We say that a sequence of points (t0, . . . , ts) are almost
s-equi-spaced in [a, b] if t0 = a, ts = b and tj = ⌊a +
(j/s)(b− a)⌋ for 1 ≤ j ≤ s− 1.

• We define u(f) to be the number of unique values for a
feature f . Hence we let wf

1 < . . . < wf
u(f) denote the

distinct values in f , sorted. Moreover, we define Df
[a,b]

to be the data points that have values inside the range
[wf

a , w
f
b] for a feature f and wf

0 = −∞.

• We use ν1, . . . , νn′ to refer to the order in which our
exhaustive search algorithm assigns values to the non-
leaf nodes. ν1 is always the root node.

3.2 Problem Definition
More formally, the objective of this paper is to solve the same
problem as ROCT, which is the following min-max problem:

min
θ

E(x,y)∼D

(
max
δ∈S(x)

L(θ, x+ δ, y)

)
(1)

That is, find the optimal model θ that minimizes the maxi-
mum loss that can be incurred due to an attacker. For a given
decision tree T that is created by a model θ, we define the
following to be our loss function on a dataset D.

L(D, T , S) =
∑

(x,y)∼D

 ∨
t∈T S(x)

L

ct ̸= y

 (2)

Vos et al. [25] have shown that for 0-1 loss, the objective in
Equation 1 can be rewritten as the minimization problem:

min
θ
L(D, T , S) (3)

The goal of this paper is to create an exhaustive search al-
gorithm that minimizes the same objective function as ROCT
(the one given in Equation 3) but in a more scalable manner.

4 Theoretical Contributions
Before diving into the algorithm, we demonstrate the theo-
rems that are used in the algorithm for pruning and reduction
of the search space.
Threshold Consideration We show that the number of
thresholds considered can be halved compared to those con-
sidered by the current state-of-the-art, ROCT. To find the opti-
mal split for a feature f , ROCT selects thresholds from the set
{xf

0 −∆l
f , x

f
0 +∆r

f , . . . , x
f
n +∆r

f}, i.e., both outer bounds
of each data point’s perturbation range. However, Vos et al.
[25] did not prove that this yields optimal splits. In contrast,
we show that not only is it optimal, but selecting only the
right bound per data point is also optimal, a fact which was
seemingly not known in the design of ROCT. We use an ex-
change argument to show that we can convert any optimal
robust decision tree into a tree that only considers the right
outer bounds without loss of optimality.
Theorem 1. Let x0, . . . , xn be a collection of data points.
Then for a feature f the split threshold can be chosen ex-
clusively from the set Ff = {−∞, xf

0 + ∆r
f , . . . , x

f
n + ∆r

f}
without loss of optimality.

Proof. Let T ∗ be a robust optimal decision tree. We demon-
strate that any decision threshold for a feature f in T ∗ can be
changed to a threshold in Ff without loss of optimality. Take
an arbitrary decision node a from T ∗ that splits on a fea-
ture f with a decision threshold b. Let D′ = {x0, . . . , xn′}
be the data points that can reach a through some pertur-
bation in S(xi). We can then divide the data points into
two sets that denote the points to the left and right of b,
A = {xi ∈ D′ | xf

i ≤ b} and B = {xi ∈ D′ | xf
i > b}

respectively.
Case 1: If |B| = 0 then the threshold b can be changed to

b′ = max({−∞} ∪Af) + ∆r
f without loss of optimality.

b

(a) A visualisation of the data
points D′ for an arbitrary deci-
sion node splitting a feature at
threshold b.

b′

(b) Moving any threshold b to a
threshold b′ ∈ Ff . Optimality is
not lost as C′ ⊆ C and all other
points are unaffected.

Figure 3: Visualization of case 3 of Theorem 1.

Case 2: If |A| = 0 similarly, the threshold b can be
changed to b′ = −∞. This does not lose optimality as the
data points that could have reached both the left and right
subtrees now can only reach the right subtree.

Case 3: If |A|, |B| > 0 consider the set C = { xf
i ∈

D′ | xf
i − ∆l

f ≤ b, xf
i + ∆r

f > b} (i.e the data points that
can be directed to both sub trees of a by an attacker). Now,
b can be changed to be the outer boundary of the rightmost
data point that is in A but not C. More formally, to b′ =
max({−∞}∪ (A \ C)f)+∆r

f . This does not lose optimality
as by the choice of b′ the set C′ = {xi ∈ D′ | xf

i − ∆l
f ≤

b′, xf
i + ∆r

f > b′} is a subset of the set C. This is because
moving the threshold to the left in this manner cannot add a
new element to C from A or B as visualized in Figure 3.
Moreover, the data points in C \ C′ are now directed to the
right subtree rather than both. The data points that can “co-
exist” in both subtrees are now reduced, which cannot lead to
more misclassifications. Since all other data points outside of
C are unaffected, the tree is still optimal.

Since a was arbitrarily chosen, we can do a finite amount
of these changes in any optimal tree T ∗ without losing opti-
mality and end up using only the thresholds of the set Ff for
each feature f .

Similarity Lowerbound The following bound is similar to
the similarity lower-bound [14], which has been proven for
non-robust optimal trees. The idea behind the theorem is that
for a split at threshold index i, the split at index i+ 1 can de-
crease the loss by at most one. We utilize it to prune thresh-
olds similar to neighborhood pruning in ConTree [4]. We
only show it to work one direction as the other direction is
not used in our algorithm.

Theorem 2. Let Ff = xf
0 , . . . , x

f
n be sorted ascending and

UB be the current upper-bound. For a node ν, let Θ be the
minimum loss that can be acquired when ν splits on xf

i +∆r
f .

Then splitting on the points in {xf
i+j+∆r

f | 0 ≤ j ≤ Θ−UB}
cannot result in a better tree than the upper bound.

Proof. For an arbitrary node a, let b = xf
i +∆r

f be the cho-
sen threshold and Θ be the error of the optimal tree with

sorted ascending on f0

+ + + +− − −

wf0
a wf0

b

(a) A visualization of the oper-
ation in Theorem 3 inspired by
Mazumder et al. [17]. The
points in the range [wf0

a , wf0
b]

are “dropped”.

wf0
a wf0

b

(b) A visual example of the op-
eration in an adversarial setting.
The adversary does not affect
which points are “dropped”. In
this case, the points without fill
are dropped.

Figure 4: The intuition behind Theorem 3.

the chosen threshold. Let C = {xt | xt ∈ D′, xt − ∆l
f ≤

b, xt + ∆r
f > b}. By choosing b′ = xf

i+1 + ∆r
f , C′ =

{xt | xt ∈ D′, xt −∆l
f ≤ b′, xt +∆r

f > b′} ⊆ C \ {xi+1}.
Now that xi+1 ̸∈ C′, i.e, it can only be on one side of the
threshold, hence it can only be correctly classified. Thus, the
minimum loss that can be incurred can decrease by at most
one. Consequently, the next smallest Θ−UB possible thresh-
olds in Ff that are bigger than b cannot result in a better tree
than the upper bound.

Quantile-based lower bound We also provide a lower
bound on the error of any candidate tree ϕ inspired closely
from the work of Mazumder et al. [17]. We define
L1(D,F, S) to be the minimum classification error for a tree
of depth one which splits on features in F in its root and with
an attacker with perturbations in S. Similarly, let L2(D,ϕ, S)
be the minimum error attainable from trees that can be made
from ϕ. Now, we define the following auxiliary function

WS
0 (D,ϕ) = L1(D

f0
[0,a], F1, S) + L1(D

f0
[b,u(f0)]

, F2, S)

for ϕ = (f0, [a, b], F1, F2). The intuition behind the lower
bound is that the samples in the middle are “dropped” and the
left and right subtrees are made to be independent as Figure 4
demonstrates.
Theorem 3. W0 is a lower bound on the true optimal error
L2.

Proof. For a candidate tree ϕ let b′ ∈ [a, b] be the any split
in the root. Let A and B be the set of points that can reach
the left and right subtrees, respectively. It is easy to see that
Df0

[0,a] ⊆ A and Df0
[b,u(f0)]

⊆ B and Df0
[0,a] ∩ Df0

[b,u(f0)]
=

∅. Hence L1(D
f0
[0,a], F1, S) + L1(D

f0
[b,u(f0)]

, F2, S) ≤
L2(D

f0
[0,a] ∪ Df0

[b,u(f0)]
, ϕ, S) ≤ L2(D,ϕ, S). Since the LHS

is equal to WS
0 , we have shown that it is a lower bound.

Taking inspiration from Mazumder et al. [17],a similar ar-
gument can be made to prove that the following function Ws′

is a lower bound on L2. Let t0, . . . , ts′ be almost s′ equi-
spaced in [a, b]. We define

WS
s′ (D,ϕ) = WS

0 (D,ϕ) + min
1≤j≤s′

WS
0 (Df0

[a,b], ϕj) (4)

for ϕj = (f0, [tj−1, tj], F1, F2). This again follows the same
idea as Theorem 3, however, the loss on the middle part that
was dropped is also accounted. A full proof can be found in
Appendix D.

5 RobTree: a Scalable Search Framework
We only explain the framework for trees of depth two, as the
idea can be extended to depth three and onward following
Mazumder et al. [17]. In a nutshell, the algorithm is made
up of two components: an exhaustive search algorithm that
is used as a subroutine, and the RobTree framework itself.
We first explain the exhaustive search algorithm before the
RobTree framework.
Exhaustive search algorithm The algorithm for perform-
ing an exhaustive search given a candidate ϕ can be found in
Algorithm 1. It can also be used independently from the Rob-
Tree framework to find optimal robust trees, which we refer
to as the “Pure Search” approach. As demonstrated by Vos et
al. [24], jointly assigning leaf values and decision thresholds
is challenging. Our algorithm tackles this by exhaustively
iterating over all possible leaf labelings and, for each permu-
tation, exploring all combinations of threshold values at the
decision nodes. By sorting the data points per feature and
reusing errors from previously evaluated thresholds, we can
keep track of the subtrees each point can reach and the leaves
it is misclassified in. This allows us to compute the error in
O(1) time per permutation. We also outline other pruning
methods and symmetry breaks that were used to speed up the
algorithm.
Pruning For a decision node a we only consider splits as
outlined in Theorem 1. With this, the number of decisions
considered in our search algorithm per feature is cut in half.
In fact, for all features f and a data point t, all thresholds
xf
t + ∆r

f are pruned away at a node ν if t cannot possibly
reach the node ν, as these thresholds are redundant. More-
over, applying Theorem 2 to a call with a newly assigned
threshold b = xf

i +∆r
f yielding result Θ, allows us to prune

thresholds in {xf
i+j + ∆r

f | 0 ≤ j ≤ Θ − UB} from con-
sideration at the current node. Taking inspiration from the
trace-based pruning from Demirović et al. [9], at the begin-
ning of each call, the search is early-stopped for trees that
already misclassify more data points than the upper bound
without assigning values to every node. This reduces the ef-
fectiveness of the previous pruning method, but empirically
has been found to result in a shorter runtime. For a number
of nodes n′, there are 1

n′+1 ·
2n′!
(n′!)2 number of different binary

trees [7]. Hence, by assuming a perfect tree structure, we
avoid this large overhead. Last, we assign an arbitrary thresh-
old value for decision nodes that have both of their children
with the same classification, as the value of the threshold will
not change the outcome.
Summary The pseudocode for our algorithm can be found
in Algorithm 1. We augment the enumeration of all possible
trees with the aforementioned pruning techniques. By sort-
ing the data points per feature and keeping track of the points
on both sides of a chosen threshold in a queue, we can im-
plement the steps in lines 25 and 28 in O(1). The optimal

Algorithm 1 The Exhaustive Search Algorithm

1: Input: data points D, upper-bound UB a candidate tree
ϕ = (f0, [a, b], F1, F2), current decision node νi, labels
of each leaf CL, current error e.

2: Procedure Search(D,UB, ϕ, νi, CL, e)

3: if e ≥ UB then return e
4: U ←∞
5: C ← ∅ ▷ Queue of points that can reach both sides
6: i← 0 ▷ Pointer to the ith biggest value for a feature

7: if νi is the root of the tree then
8: for non-pruned thresholds τ ∈ (a, . . . , b) do
9: Set νi to split on wτ

f0
+∆r

f0
at f0 in the root.

10: continue exhaustive search with the next node.
11: prune thresholds if possible
12: else if νi is the left or right decision node then
13: for f in either F1 or F2 depending on ν do
14: set νi to split at threshold −∞
15: update e accordingly
16: if the children have same the classification then
17: assign arbitrary threshold to νi
18: Update e accordingly
19: return Search(D,UB, ϕ, νi+1, CL, e)

20: for non-pruned thresholds τ ∈ (0, . . . , u(f)) do
21: ▷ sorted ascending
22: set ν to split on wτ

f +∆r
f at feature f .

23: while C.front() ≤ wτ
f do ▷ On feature f

24: x← C.pop()
25: update T S(x)

L and e.
26: while xf

i −∆l
f ≤ wτ

f +∆r
f do ▷ Sorted

27: C.push(xi)
28: Update T S(x)

L and e
29: i← i+ 1
30: U ′ ← Search(D,UB, ϕ, νi+1, CL, e).
31: U ← min(U,U ′)
32: prune thresholds if possible
33: return U

solution for a candidate can be found by calling Search with
each permutation of leaf labels CL ∈ {0, 1}4.

The RobTree framework The exhaustive search algorithm
can be used for finding deeper trees and is used as a subrou-
tine in the RobTree framework in Algorithm 2. The frame-
work, adapted from the work of Mazumder et al. [17] main-
tains a set of “alive” candidate trees ALk at each iteration k.
All possible trees can be made with the candidates in AL0. At
each iteration, for each candidate ϕ = (f0, [a, b], F1, F2) ∈
ALk, the framework reduces the interval of the root split by di-
viding it into s+1 new smaller intervals. Moreover, the algo-
rithm uses the aforementioned lower bound in Theorem 3 to
prune features from F1 and F2 in each of the new candidates
ϕj . Exhaustive search is used as a subroutine either when the
interval [a, b] cannot be made smaller or on the quantile ends
to obtain potentially tighter upper bounds. The algorithm ter-
minates when there is no potential candidate that can give a

Algorithm 2 The RobTree Algorithm

1: Input: Data D, integer s ≥ 2.
2: Initiliaze AL0 ←

⋃
f0∈F{(f0, [0, u(f0)],F ,F)}

3: k ← 1
4: UB ← ∞
5: while |ALk−1| > 0 do
6: ALk ← ∅
7: for (f, [a, b], F1, F2) ∈ ALk−1 do
8: if b− a ≤ s then
9: U ′ ← min

cl∈{0,1}4
Search

(
D,UB, ϕ, ν0, cl, 0

)
10: UB ← min (UB, U ′)
11: else
12: (t0, . . . , ts) almost s-equi-spaced in [a, b]
13: for tj ∈ {t0, . . . , ts} do
14: ϕj ← (f0, [tj , tj], F1, F2)
15: U ′ ← min

cl∈{0,1}4
Search

(
D,UB, ϕj ,

16: ν0, cl, 0
)

17: UB ← min(UB, U ′)

18: ALk
⋃s

j=1{(f0, [tj−1, tj], F1,j , F2,j)}
19: return UB

better solution. While the aforementioned steps are inspired
by Mazumder et al. [17], one novel addition we make to the
Quant-BnB algorithm is that we prune the possible thresholds
from the root using Theorem 2 after the calls on lines 9 and
15.
Feature Pruning As in Quant-BnB [17], the next set of
alive candidates is determined in line 17 of Algorithm 2. For a
new candidate ϕj , we prune features from f1 ∈ F1 by check-
ing whether there is possibly an optimal tree that splits on f1
on the left child of the root. We do this through the use of
an easy to compute lower bound WS

s′ . We do the same for
features in F2. More formally, while creating s+ 1 new can-
didates from a candidate ϕ, we use the following sets to the
determine the sets F1 and F2 for candidate 0 ≤ j ≤ s. Let
(t0, . . . , ts) be almost s equi-spaced in [a, b].

F1,j = {f1 ∈ F1 |WS
s′ (D, (f0, [tj−1, tj], {f1}, F2) < UB}

F2,j = {f2 ∈ F2 |WS
s′ (D, (f0, [tj−1, tj], F1, {f2}) < UB}

If the lower bound is higher than the upper bound, that feature
can be pruned away without risk as shown by Theorem 3. We
can compute L1 in O(|D| · |F|) time by adapting Algorithm
1 for trees of depth one.
Warm starting Vos et al .[25] found that warm starting the
MIP model yielded the best results in their experiments. We
employed a similar idea in RobTree as we warm-start our al-
gorithm with a run of GROOT, providing an upper bound to
initialize our algorithm with.

6 Experimental Setup and Results
The design of our experiments is made to answer the follow-
ing questions: 1) how do RobTree and Pure Search’s run-
times compare to the state-of-the-art robust optimal tree al-
gorithms; 2) to what extent does warm starting RobTree and

Dataset(OpenML) n p Maj. Avg. n′

breast-cancer 683 9 .650 9.9
cylinder-bands 277 37 .643 22.1

haberman 306 3 .735 30.0
blood-transfusion 748 4 .762 43.0

diabetes 768 8 .651 142.5
ionosphere 351 34 .641 190.4

wine 6497 11 .633 231.2
banknote-authentication 1372 4 .555 1016.5

Table 1: Summary of the datasets from OpenML. p is the number of
features, Maj. is the ratio of the majority class, and n′ is the number
of distinct values per feature. Rows sorted by average n′.

Pure Search improve their performance; 3) how does Rob-
Tree’s anytime performance compare to the other state-of-
the-art algorithms. RobTree’s test accuracy is discussed in
Appendix A as Vos et al. [25] have already shown the benefit
of optimal robust decision trees on test data.

Parameters To answer these questions, we follow a sim-
ilar experimental setup to that of Vos et al. [25], assuming
an attacker can perturb each (normalized) feature value by a
fixed value ϵ. Formally, we assume ∆l

f = ∆r
f = ϵ ∀f ∈ F .

As in Vos et al. [25], for each selected dataset, we choose
ϵ values corresponding to 25%, 50%, and 75% of the adver-
sarial accuracy range, which is the range from the minimum
to the maximum adversarial accuracy. This approach avoids
selecting ϵ values that are too small, rendering the adversary
ineffective, or too large, reducing the learning problem to a
trivial majority-class prediction game. We set the hyperpa-
rameter s = 3, and dynamically compute s′ as s′ = ⌊ 0.6nsb−a ⌋
for a candidate ϕ = (f0, [a, b], F1, F2), following Mazumder
et al. [17].

Algorithms We benchmark RobTree against Pure Search
to assess the suitability of the framework inspired from
Mazumder et al. [17] over a pure search-based method in
adversarial settings. Pure Search is benchmarked by run-
ning RobTree with s = ∞. Additionally, in Appendix A
we benchmark our algorithm against GROOT, a non-optimal
algorithm in terms of accuracy. As shown by Vos et al. [23],
GROOT can produce strong results on most datasets, making
it a suitable choice as a baseline on adversarial test accuracy.

ROCT includes several variants based on MILP and SAT-
solving algorithms. In our runtime and accuracy benchmark-
ing, we compare RobTree with the versions highlighted in the
original paper by Vos et al. [25], specifically LSU-MaxSAT
and MILP-warm. Both approaches represent each data point
as a variable over a given domain and optimize an objective
function under constraints using a general-purpose solver. In
contrast, RobTree explicitly searches over the space of all
possible trees, employing pruning techniques to reduce the
search space. Hence, benchmarking RobTree against ROCT
is important in assessing the scalability of search methods in
comparison to MILP methods that employ a general solver.

Datasets To evaluate whether our algorithm improves upon
ROCT, we use the same datasets as those used by Vos et al.

ROCT Ours

Dataset ϵ LSU-MaxSAT MILP
warm Pure Search Pure Search

warm RobTree RobTree
warm

banknote-authentication .07 456 - 6 4 2 3
.09 1354 - 13 14 6 6
.11 - - 23 24 13 15

blood-transfusion .01 50 - < 1 < 1 < 1 < 1
.02 46 - < 1 < 1 < 1 < 1
.03 29 - < 1 < 1 < 1 < 1

breast-cancer .28 5 464 < 1 < 1 < 1 < 1
.39 4 376 < 1 < 1 < 1 < 1
.45 4 528 < 1 < 1 < 1 < 1

cylinder-bands .23 226 - 14 9 28 10
.28 166 - 8 6 20 12
.45 89 - 3 2 13 9

diabetes .05 - - 12 13 10 11
.07 - - 13 14 15 15
.09 987 - 12 13 13 13

haberman .02 5 - < 1 < 1 < 1 < 1
.03 5 - < 1 < 1 < 1 < 1
.05 4 - < 1 < 1 < 1 < 1

ionosphere .20 424 - 39 31 41 29
.28 98 - 30 23 42 25
.36 60 - 18 20 41 40

wine .02 - - 272 256 218 175
.03 - - 495 545 682 686
.04 - - 464 468 691 707

Table 2: Runtime performance (in seconds) of the algorithms across different datasets and ϵ values for a fixed depth of two. Best values
marked with bold and timeouts with ‘-’. Averaged over five runs and rounded. RobTree and Pure Search have a significantly lower runtime
in most instances.

Algorithm Wins Timeouts

LSU-MaxSAT 0 6
MILP-warm 0 21
Pure Search 14 0
Pure Search-warm 13 0
RobTree 13 0
RobTree-warm 12 0

Table 3: Results aggregated. Pure Search has the most amount of
wins and no timeouts.

[25] in both our speed and anytime performance benchmarks.
This ensures that both algorithms are evaluated on datasets
where ROCT has demonstrated state-of-the-art performance,
allowing for a fair and meaningful comparison. A summary
of the datasets from OpenML1 is provided in Table 1.

Although testing accuracy is not the primary focus of our
experiments, we adopt the same 80%-20% train-test split
used by Vos et al. [25] to report RobTree’s accuracy on test
data.

Experiment Conditions All experiments were conducted
on a machine with an Intel(R) Core™ i5-9300H CPU (4

1www.openml.org

cores) with 8GB RAM, running four experiments in paral-
lel. Each algorithm was ran on each dataset for the varying
values of ϵ for a maximum of 30 minutes. In case of a time-
out, the best tree found so far by the algorithm was used to
calculate the adversarial accuracy. The experiment setup and
the algorithm can be found on GitHub.2

Runtime The runtime of each algorithm for each dataset
and ϵ pair is shown in Table 2, with aggregate results sum-
marized in Table 3. A striking observation is that the MILP-
based method frequently times out and fails to prove optimal-
ity in most cases. Even when MILP-warm does not timeout,
it exhibits runtimes that are orders of magnitude higher than
those of the other algorithms.

Both RobTree and Pure Search solve the instances well
within the time limit. In fact, in all but a few instances, both
variants complete in a fraction of the time required by the
other algorithms. As noted by Mazumder et al. [17], the
Quant-BnB algorithm exhibits poor scalability with respect
to the number of features. Our results suggest that a similar
limitation may apply to RobTree in the robustness setting, as
both ionosphere and cylinder-bands contain more than
30 features, leading to RobTree performing close/worse than
Pure Search in those instances.

2https://github.com/sandemiroren1/robtree

www.openml.org
https://github.com/sandemiroren1/robtree

However, RobTree scales well with the number of unique
values per feature compared to the other state-of-the-art
algorithms. As Table 2 demonstrates, in the datasets
with a high number of unique feature values, such as
banknote-authentication, diabetes and wine, Rob-
Tree and Pure Search are the only algorithms that do not time-
out. This indicates that LSU and MILP-warm scale poorly
with the number of variables, which increases with the size
of the dataset while RobTree runs in a fraction of the time
limit.

Interestingly, Pure Search appears to outperform RobTree
on the largest dataset, wine, particularly for larger values of
ϵ. This behavior may be attributed to the fact that, as ϵ in-
creases, the selected thresholds tend to produce increasingly
similar results. Consequently, RobTree could be struggling
to effectively prune the search space, wasting significant time
computing lower bounds.

Warm Starting As evident in Table 2, for RobTree
warm starting does seem to provide a speedup, espe-
cially for datasets with a high number of features such as
cylinder-bands. This can be attributed to the framework
being able to prune features from candidate trees early on due
to the initially tight upper bound. However, for Pure Search
warm starting does not seem as effective as the achieved run-
times are similar. This result seems to indicate that the prun-
ing strategies used in our Pure Search algorithm do not rely
on a tight upper bound as much as RobTree.

Anytime Performance Similar to the models from ROCT,
RobTree is an anytime algorithm, meaning it can be stopped
early and return the best solution found up to that point.
As shown in Figure 5, RobTree exhibits a steep reduc-
tion in training error alongside LSU-MaxSAT. However, it
converges to near-optimal results earlier than LSU-MaxSAT.
Pure Search, on the other hand, takes time to catch up to LSU-
MaxSAT but still converges to a near-optimal result faster. It
is also worth noting that Pure Search tends to converge to a
near-optimal solution last. This is likely because it exhaus-
tively searches all trees with a fixed root feature before con-
sidering others, limiting early exploration of diverse regions
of the search space.

Additionally, when warm-started with a run of GROOT,
RobTree and Pure Search begin with a solution that is al-
ready close to optimal, making them the first to reach near-
optimal performance. This suggests that warm-starting sig-
nificantly improves their anytime performance as they spend
most of their runtime confirming optimality. In fact, RobTree
and Pure Search are the only algorithms to achieve optimal
adversarial training accuracy as seen in Table 4. Interest-
ingly, warm-starting does not seem to have a similar effect on
MILP-warm’s upper bound over time. Upon contact with the
authors, this was attributed to MILP-warm’s implementation.
Last, despite LSU-MaxSAT not always achieving optimality,
its mean training accuracy differs only slightly from the opti-
mal value.

10
−1

10
0

10
1

10
2

Time (s)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ea

n
%

 tr
ai

ni
ng

 e
rro

r

MILP-warm
LSU-MaxSAT
RobTree
RobTree-warm
Pure Search
Pure Search-warm

Figure 5: Anytime performance of the algorithms. LSU-MaxSAT
and RobTree see a steep increase in their accuracy early on, and the
algorithms later catch up. The graph was obtained by running each
algorithm on each dataset once for an ϵ corresponding to %50 of the
adversarial range and then averaging the results.

Algorithm Mean adversarial
accuracy

Optimal
Results

GROOT 0.709 2
LSU-MaxSAT 0.733 21
MILP-warm 0.730 18
RobTree/Pure Search 0.733 24

Table 4: Aggregate results on adversarial accuracy (in range [0, 1]).
LSU-MaxSAT and MILP-warm occasionally fail to achieve optimal
training accuracy.

7 Responsible Research
Reproducibility We provide our code on Github.3 Our
repository not only includes our algorithm, but it also in-
cludes our testing environment with detailed documentation
on how to conduct the experiments at home. The datasets are
free to use and are linked in the paper as well, following the
FAIR paradigm. Moreover, in this paper we thoroughly de-
scribe the conditions and parameters used in conducting the
experiment. We believe that similar results can be achieved
by following the same methodology on different hardware.
One limitation of our setup is that while it runs out of the box
on Linux, extra steps are needed to recreate it exactly on Win-
dows and macOS. Providing out of the box alternatives for
those operating systems could improve reproducibility. An-
other limitation would be that GUROBI is licensed software,
so our results would not be possible without the acquisition
of a license.

Integrity of Results We test our algorithm on datasets and
parameters used in previous literature. Hence, we believe our
experiment setup was not biased towards arriving at a spe-
cific result. However, we did not do a deep discussion of the

3https://github.com/sandemiroren1/robtree

https://github.com/sandemiroren1/robtree

choice of datasets and whether the epsilon values in previous
results are fitting for our use. Hence, any bias in previous
work would be reflected in our work as well. Moreover, our
research could have some bias towards the implementation
specifics of the algorithms, as differences in implementation
can result in varying results for the same algorithm. Thus,
our results may be biased towards RobTree due to the em-
phasis placed on its implementation being optimized. Last,
LLMs were not used to generate ideas, code, or original text
in the report. We believe this makes our work not impacted
by biases that an LLM can introduce.

8 Conclusions and Future Work
We present RobTree, a scalable branch and bound algorithm
for robust optimal decision trees. Taking close inspiration
from the work of Mazumder et al. [17] we adapt the Quant-
BnB algorithm to a setting with an adversary with a box-
shaped attack model.

RobTree outperforms state-of-the-art methods by up to two
orders of magnitude in runtime. Moreover, the exhaustive
search subroutine we use, Pure Search has shown itself to
be scalable for depth two on its own. We believe that the
theorems provided in this paper and the various adaptations
of pre-existing pruning techniques should pave the way for
more search-based methods for robustness. Furthermore, the
state-of-the-art can be sped up drastically with the theorem
we propose.

Future work could be investigating other lower bounds to
be used in the algorithm. Extension to depth three and adapt-
ing the algorithm to be more scalable in terms of the num-
ber of features could also be a next step. Deeper analysis of
various combination of pruning methods could also provide
useful insights.

References
[1] Gaël Aglin, Siegfried Nijssen, and Pierre Schaus.

Learning optimal decision trees using caching branch-
and-bound search. In Proceedings of AAAI-20, pages
3146–3153, 2020.

[2] Vı́ctor Blanco, Alberto Japón, and Justo Puerto. Robust
optimal classification trees under noisy labels, 2020.

[3] Leo Breiman et al. Classification and Regression Trees.
Wadsworth and Brooks, Monterey, CA, 1984.

[4] Cătălin E Brit,a, Jacobus GM van der Linden, and Emir
Demirović. Optimal classification trees for continuous
feature data using dynamic programming with branch-
and-bound. In Proceedings of the AAAI-25, volume 39,
pages 11131–11139, 2025.

[5] Stefano Calzavara, Claudio Lucchese, Gabriele
Tolomei, Seyum Assefa Abebe, and Salvatore Orlando.
Treant: Training evasion-aware decision trees, 2019.

[6] Hongge Chen, Huan Zhang, Duane Boning, and Cho-
Jui Hsieh. Robust decision trees against adversarial ex-
amples. In International Conference on Machine Learn-
ing, pages 1122–1131. PMLR, 2019.

[7] David Guichard. An Introduction to Combinatorics and
Graph Theory. https://www.whitman.edu/mathematics/
cgt online/book/section03.05.html. Accessed: 2025-
06-02.

[8] Emir Demirović, Anna Lukina, Emmanuel Hebrard,
Jeffrey Chan, James Bailey, Christopher Leckie, Kota-
giri Ramamohanarao, and Peter J. Stuckey. Murtree:
Optimal decision trees via dynamic programming and
search. Journal of Machine Learning Research,
23(26):1–47, 2022.

[9] Emir Demirović, Christian Schilling, and Anna Luk-
ina. In search of trees: Decision-tree policy synthesis
for black-box systems via search. In Proceedings of the
AAAI-25, number 26, pages 27250–27257, 2025.

[10] Matthew F Dixon, Igor Halperin, and Paul Bilokon. Ma-
chine learning in finance. Springer, 2020.

[11] Jack Good, Torin Kovach, Kyle Miller, and Artur
Dubrawski. Feature learning for interpretable, perfor-
mant decision trees. Advances in Neural Information
Processing Systems, 36:66571–66582, 2023.

[12] Oktay Günlük, Jayant Kalagnanam, Minhan Li, Matt
Menickelly, and Katya Scheinberg. Optimal deci-
sion trees for categorical data via integer programming.
Journal of global optimization, 81:233–260, 2021.

[13] Jun-Qi Guo, Ming-Zhuo Teng, Wei Gao, and Zhi-Hua
Zhou. Fast provably robust decision trees and boost-
ing. In International Conference on Machine Learning,
pages 8127–8144. PMLR, 2022.

[14] Xiyang Hu, Cynthia Rudin, and Margo Seltzer. Optimal
sparse decision trees. Advances in neural information
processing systems, 32, 2019.

[15] Laurent Hyafil and Ronald L. Rivest. Constructing op-
timal binary decision trees is NP-complete. Information
Processing Letters, 5(1):15–17, May 1976.

[16] Nathan Justin, Sina Aghaei, Andres Gomez, and Phebe
Vayanos. Optimal robust classification trees. In The
aaai-22 workshop on adversarial machine learning and
beyond, 2021.

[17] Rahul Mazumder, Xiang Meng, and Haoyue Wang.
Quant-bnb: A scalable branch-and-bound method for
optimal decision trees with continuous features. In Pro-
ceedings of ICML-22, pages 15255–15277, 2022.

[18] Nicolas Papernot, Patrick McDaniel, and Ian Goodfel-
low. Transferability in machine learning: from phe-
nomena to black-box attacks using adversarial samples.
arXiv preprint arXiv:1605.07277, 2016.

[19] J. R. Quinlan. Induction of decision trees. Machine
Learning, 1(1):81–106, 1986.

[20] J. Ross Quinlan. C4. 5: programs for machine learning.
Elsevier, 2014.

[21] Harry Surden. Machine learning and law: An overview.
Research handbook on big data law, pages 171–184,
2021.

https://www.whitman.edu/mathematics/cgt_online/book/section03.05.html
https://www.whitman.edu/mathematics/cgt_online/book/section03.05.html

[22] Jacobus G. M. van der Linden, Daniël Vos, Mathijs M.
de Weerdt, Sicco Verwer, and Emir Demirović. Opti-
mal or greedy decision trees? revisiting their objectives,
tuning, and performance, 2025.

[23] Daniël Vos and Sicco Verwer. Efficient training of ro-
bust decision trees against adversarial examples. In Pro-
ceedings of ICML-21, pages 10586–10595, 2021.

[24] Daniël Vos and Sicco Verwer. Adversarially robust
decision tree relabeling. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery
in Databases, pages 203–218. Springer, 2022.

[25] Daniël Vos and Sicco Verwer. Robust optimal classifica-
tion trees against adversarial examples. In Proceedings
of AAAI-22, pages 8520–8528, 2022.

A Test Accuracy of RobTree
Overall, as it can be seen in Table 6 and Table 5, RobTree
achieves state-of-the-art results on test data, having the most
amount of wins. Further research can be done in the future
on determining the thresholds to be a certain distance away
from the sides of the box depicting the attacker’s perturbation
range.

B Training Accuracy of RobTree
RobTree and Pure Search achieve optimal results in all in-
stances as depicted in Table 7. LSU-MaxSAT, despite not al-
ways delivering optimal results, delivers values that are only
slightly lower than optimal, while MILP-warm on average is
3% off.

C Dropping and Combining Data Points
We show the rest of theorems that were used in the paper
but not proven in the main text. We use similar proof ideas
to Mazumder et al. [17]. We show the following theorem,
which is used in various proofs.

Theorem 4. For any D and x1, x2 ∈ [a, b] such that
x1 < x2 it holds that L2(D

f0
[0,x1]

∪ Df0
[x2,b]

, ϕ, S) ≥
L1(D

f0
[a,x1]

, F1, S) + L1(D
f0
[x2,b]

, F2, S)

Proof. Let t∗ be the split threshold of an optimal tree that
can be created from ϕ for a dataset D. Let C denote the data
points that can be directed to both subtrees from the root by
an adversary. It holds that each element in C is in one of the
following sets: Df0

[a,x1]
, Df0

[x2,b]
. By separating the data points

in D to the aforementioned two sets, both subtrees have data
points that are disjoint. Hence all the data points in C are
directed to one side rather than both. All other data points are
unaffected.

D Proof of the Tighter Lower Bound
We have shown that WS

0 is a lower bound on the true optimal
error L2. We also show that WS

s′ is a lower bound for L2.

Theorem 5. WS
s′ is a lower bound for L2.

Proof. Take an arbitrary candidate tree ϕ =
(f0, [a, b], F1, F2) and a set of data points D. It is trivial to
see that L2(D

f0
[0,a] ∪ Df0

[b,u(f0)]
, ϕ, S) + L2(D

f0
[a,b], ϕ, S) ≤

L2(D,ϕ, S). Let t0, . . . , ts′ be almost s′-equi-spaced
in [a, b] We show that min

1≤j≤t
WS

0 (Df0
[a,b], ϕj) ≤

L2(D
f0
[a,b], ϕ, S) for ϕj = (f0, [tj−1, tj], F1, F2). Let

j∗ ∈ [a, b] be the indice such that L2(W
S
[a,b], ϕ, S) =

L2(W
S
[a,b], (f0, [tj∗ , tj∗], F1, F2), S) i.e the optimal split

threshold for the inner part. Then by definition there exists a
value j′ ∈ [1, s′] such that tj′−1 ≤ tj∗ ≤ tj′ . Moreover we

can see that

WS
0 (Df0

[a,b], (f0, [tj′−1, tj′], F1, F2))

= L1(D
f0
[a,tj′−1]

, F1, S) + L1(D
f0
[tj′ ,b]

, F2, S)

≤ L1(D
f0
[a,tj∗]

, F1, S) + L1(D
f0
[tj∗ ,b]

, F2, S)

≤ L2(D
f0
[a,tj∗]

∪Df0
[tj∗ ,b]

, ϕ, S)

≤ L2(D
f0
[a,b], ϕ, S)

Moreover we know that min
1≤j≤t

WS
0 (Df0

[a,b], ϕj) ≤

WS
0 (Df0

[a,b], (f0, [tj′−1, tj′], F1, F2)) Hence we know

that min
1≤j≤t

WS
0 (Df0

[a,b], ϕj) ≤ L2(D
f0
[a,b], ϕ, S). Hence WS

s′ is

a lower bound for L2.

Algorithm Mean adversarial
accuracy

Standard error
adversarial accuracy Mean rank Standard error rank Number of wins

GROOT 0.715 0.013 4.375 0.561 7
LSU-MaxSAT 0.734 0.014 2.667 0.384 10
MILP-warm 0.727 0.014 3.042 0.440 10
Pure Search 0.729 0.014 1.792 0.199 13
Pure Search-warm 0.729 0.014 1.792 0.199 13
RobTree 0.730 0.014 1.792 0.248 14
RobTree-warm 0.730 0.014 1.792 0.248 14

Table 5: Aggregate test scores, RobTree has the most wins.

ROCT Ours

Dataset ϵ GROOT LSU
MaxSAT

MILP
warm Pure Search Pure Search

warm RobTree RobTree
warm

banknote-authentication .07 0.731 0.796 0.796 0.800 0.800 0.804 0.804
.09 0.669 0.720 0.705 0.724 0.724 0.724 0.724
.11 0.618 0.640 0.640 0.644 0.644 0.644 0.644

blood-transfusion .01 0.700 0.733 0.733 0.740 0.740 0.693 0.693
.02 0.760 0.767 0.767 0.787 0.787 0.780 0.780
.03 0.760 0.760 0.760 0.760 0.760 0.767 0.767

breast-cancer .28 0.832 0.854 0.854 0.854 0.854 0.854 0.854
.39 0.781 0.818 0.818 0.818 0.818 0.818 0.818
.45 0.737 0.774 0.774 0.774 0.774 0.774 0.774

cylinder-bands .23 0.714 0.714 0.714 0.714 0.714 0.714 0.714
.28 0.750 0.679 0.679 0.679 0.679 0.679 0.679
.45 0.696 0.679 0.679 0.679 0.679 0.679 0.679

diabetes .05 0.714 0.721 0.747 0.714 0.714 0.714 0.714
.07 0.682 0.656 0.623 0.656 0.656 0.656 0.656
.09 0.610 0.649 0.604 0.604 0.604 0.604 0.604

haberman .02 0.726 0.806 0.726 0.742 0.742 0.742 0.742
.03 0.710 0.790 0.742 0.742 0.742 0.790 0.790
.05 0.726 0.677 0.742 0.677 0.677 0.677 0.677

ionosphere .20 0.817 0.817 0.817 0.817 0.817 0.817 0.817
.28 0.817 0.817 0.817 0.817 0.817 0.817 0.817
.36 0.732 0.775 0.775 0.775 0.775 0.775 0.775

wine .02 0.675 0.672 0.675 0.673 0.673 0.673 0.673
.03 0.599 0.659 0.633 0.662 0.662 0.662 0.662
.04 0.600 0.652 0.633 0.657 0.657 0.657 0.657

Table 6: The adversarial accuracy of the trees generated by each algorithm on the test data. RobTree still gives state-of-the-art results.

ROCT Ours

Dataset ϵ GROOT LSU
MaxSAT

MILP
warm Pure Search Pure Search

warm RobTree RobTree
warm

banknote-authentication .07 0.718 0.789 0.789 0.789 0.789 0.789 0.789
.09 0.664 0.720 0.700 0.720 0.720 0.720 0.720
.11 0.613 0.655 0.655 0.655 0.655 0.655 0.655

blood-transfusion .01 0.766 0.786 0.786 0.786 0.786 0.786 0.786
.02 0.773 0.774 0.774 0.774 0.774 0.774 0.774
.03 0.771 0.773 0.773 0.773 0.773 0.773 0.773

breast-cancer .28 0.844 0.868 0.868 0.868 0.868 0.868 0.868
.39 0.766 0.810 0.810 0.810 0.810 0.810 0.810
.45 0.725 0.751 0.751 0.751 0.751 0.751 0.751

cylinder-bands .23 0.706 0.715 0.715 0.715 0.715 0.715 0.715
.28 0.688 0.701 0.701 0.701 0.701 0.701 0.701
.45 0.688 0.701 0.701 0.701 0.701 0.701 0.701

diabetes .05 0.663 0.686 0.686 0.686 0.686 0.686 0.686
.07 0.625 0.668 0.664 0.668 0.668 0.668 0.668
.09 0.660 0.661 0.661 0.661 0.661 0.661 0.661

haberman .02 0.762 0.766 0.762 0.766 0.766 0.766 0.766
.03 0.750 0.758 0.758 0.758 0.758 0.758 0.758
.05 0.701 0.738 0.738 0.738 0.738 0.738 0.738

ionosphere .20 0.779 0.779 0.779 0.779 0.779 0.779 0.779
.28 0.764 0.764 0.764 0.764 0.764 0.764 0.764
.36 0.732 0.743 0.743 0.743 0.743 0.743 0.743

wine .02 0.669 0.673 0.669 0.679 0.679 0.679 0.679
.03 0.586 0.656 0.633 0.658 0.658 0.658 0.658
.04 0.599 0.647 0.633 0.649 0.649 0.649 0.649

Table 7: Training accuracies of each algorithm on each dataset epsilon pair. RobTree and Pure Search are the only algorithms to always give
an optimal result

Algorithm Mean adversarial
accuracy

Standard error
adversarial accuracy Mean rank Standard error rank Number of wins

GROOT 0.709 0.013 6.417 0.345 2
LSU-MaxSAT 0.733 0.012 1.500 0.276 21
MILP-warm 0.730 0.012 2.250 0.451 18
Pure Search 0.733 0.012 1.000 0.000 24
Pure Search-warm 0.733 0.012 1.000 0.000 24
RobTree 0.733 0.012 1.000 0.000 24
RobTree-warm 0.733 0.012 1.000 0.000 24

Table 8: Aggregated training accuracies. RobTree and Pure Search posses best results.

	Introduction
	Related Works
	(Optimal) Decision Trees
	(Optimal) Robust Decision Trees

	Preliminaries
	Terminology
	Problem Definition

	Theoretical Contributions
	RobTree: a Scalable Search Framework
	Experimental Setup and Results
	Responsible Research
	Conclusions and Future Work
	Test Accuracy of RobTree
	Training Accuracy of RobTree
	Dropping and Combining Data Points
	Proof of the Tighter Lower Bound

