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Summary

The Moon, as a renewed frontier in space exploration, presents unique challenges, primarily the high
costs associated with lunar missions. In response, recent initiatives have shifted focus toward deploy-
ing low-SWaP devices that are capable of conducting effective exploration on the lunar surface. The
Lunar Zebro project exemplifies this trend, aiming to deploy a swarm of nano-rovers for lunar explo-
ration.

The rise of DL technologies offers intriguing prospects for enhancing the autonomous capabilities of
lunar rovers [1], improving the adaptability of the rovers to new situations. Specifically, DL-based al-
gorithms have shown superior performance in rock segmentation tasks [2], and in the classification
of hazards on the Moon [3]. The feature extraction capabilities of the Convolutional Neural Networks
(CNNs) used in DL-based computer vision algorithms [4] also allow for monocular depth estimation,
allowing a nanorover to detect obstacle locations from one single image [5]. The Lunar Zebro team is
therefore interested in researching the integration of resource-intensive DL-based algorithms onboard
these rovers. DL algorithms also allow for improved FDIR [6] allowing for the earlier discovery of faults.

Despite the computational intensity of these algorithms, advancements in COTS technologies such as
GPUs, VPUs, TPUs, and FPGAs [7, 8] provide options for running these algorithms in constrained envi-
ronments. The use of such technologies is being researched for applications in Earth orbit [9]. Ubotica
Technologies is a company that explores the use of AI accelerators in space [10]. The company has
developed the CogniSat XE2 board [11] around Intel’s Myriad X VPU [12] for complex visual tasks on
satellites in LEO. Their application in extraterrestrial missions remains an under-explored area of re-
search.

The development and integration of DL-based algorithms in low Size, Weight, and Power (SWaP)
rovers, along with the optimal design of On-Board Computing Architectures (OBCAs) to support these
algorithms, are still areas of ongoing research. The main research question is thus posed as:

How can the OBCA for the next-generation Lunar Zebro be designed cost-effectively?

This thesis presents the design of an OBCA tailored for a lunar nano rover, using the Lunar Zebro I as
a case study, taking into account the stakeholder requirement to have DL-based hazard detection on
board. Employing a systematic Vee-model approach to systems engineering, three design alternatives
are explored: a Single-Board Computer (SBC) with Central Processing Unit (CPU), a board with a CPU
and Field Programmable Gate Array (FPGA), and an SBC with a Vision Processing Unit (VPU). Fur-
thermore, the design of the data bus, software cycles and radiation tolerance strategies are discussed.
The Xiphos Q7S, intended for the first-generation rover, and the Cognisat XE2 with the Myriad X VPU
accelerator, are analyzed and tested for potential use.
For this testing procedure, a carefully selected semantic segmentation CNN, MultiResUNet [4], is
trained on a Martian rock dataset. The network is converted for hardware and resource tests are
performed for the different types of hardware.

The research conducts an in-depth sensitivity analysis to gauge the impact of various design choices
on the rover’s limited energy resources. Both centralized and decentralized swarm configurations were
considered, alongside monocular and stereo vision systems. The operational modes of these systems
were also rigorously tested. Under current operational assumptions, the OBCA design incorporating
the XE2 emerges as the only viable solution that satisfies all requirements. However, this option incurs
additional mass and cost implications. Thus, a centralized swarm approach is proposed, wherein a
single rover performs computationally intensive tasks for multiple units. This approach necessitates
significant upgrades to the communication subsystem and poses challenges in terms of reduced sys-
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tem reliability due to centralization.

Future work should focus on developing and validating lightweight DL-based algorithms for Lunar Zebro
and similar rovers, with testing in a simulated lunar environment. This includes creating a lunar testbed
for validation of the rover’s navigation and hazard detection systems, testing algorithmic performance
under radiation exposure, and exploring efficient algorithmic implementations suitable for low-SWaP
constraints.

Keywords: OBCA, DL, Hazard Detection, low-SWaP Space Missions, Lunar Zebro OBCA, Swarming,
AI-based FDIR, Autonomous Mission Planning
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1
Introduction

The Moon, historically a symbol of human aspiration and curiosity, has consistently held a central role
in our quest for space exploration. In recent years, there has been a notable resurgence in lunar explo-
ration initiatives, with ambitions from governmental organisations like National Aeronautics and Space
Administration (NASA) [13] and Indian Space Research Organisation (ISRO) [13]. This renewed inter-
est is not only driven by national space agencies but also by the burgeoning private sector [14] and
academic institutions [15, 16].

One such innovative project emerging from this renewed lunar exploration era is the Lunar Zebro mis-
sion, spearheaded by a dedicated team of students from TU Delft [16]. The Lunar Zebro project dis-
tinguishes itself with its bold vision of deploying a swarm of miniaturized, low Size, Weight, and Power
(SWaP) rovers on the lunar surface [17]. These rovers, emblematic of the technological advance-
ments in the field, aim to revolutionize lunar exploration by providing a versatile, efficient, and scalable
approach to lunar surface investigation.

In the broader scope of the Lunar Zebro project, the team envisions the potential integration of ad-
vanced Deep Learning (DL) techniques as a supplementary enhancement to the rover’s operational
framework, aiming to explore the frontier of Artificial Intelligence (AI) applications in lunar exploration.
The incorporation of DL, particularly in hazard detection, presents an opportunity to augment the rover’s
autonomy and adaptability in the challenging lunar environment.

The feasibility of this ambitious endeavor is significantly bolstered by the ongoing NewSpace revolu-
tion [18], which emphasizes the utilization of Cost of the Shelf (COTS) products. This paradigm shift in
space technology development has democratized access to advanced computational hardware, mak-
ing it viable to incorporate sophisticated AI algorithms into compact and cost-effective lunar rovers.
Ubotica Technologies, a company specializing in the utilization of COTS AI accelerators for Low Earth
Orbit (LEO) missions, is keenly focused on exploring their application in lunar expeditions, such as the
Lunar Zebro mission. The execution of this thesis is supported by Ubotica Technologies, reflecting a
collaborative effort to advance the understanding and implementation of these innovative technologies
in lunar exploration.

In pursuit of enhancing the Lunar Zebro mission, a comprehensive literature study was conducted to
explore the integration and impact of AI and deep learning across various facets of the rover’s function-
ality. This study aimed to establish a foundational understanding of AI in space exploration, particularly
for lunar missions. It encompassed research into DL-based Fault Detection, Isolation & Recovery
(FDIR) systems for subsystem health monitoring, the potential of AI in managing swarm behavior, and
autonomous path planning. Moreover, the use of COTS hardware in space is researched. Since the
implementation of DL algorithms for hazard detection on such a constrained platform as Lunar Zebro
has not been researched before, this research is the main focus of this MSc thesis.

1



1.1. Research Outline 2

Therefore, this project sets out to explore the implementation of deep learning algorithms in the context
of the Lunar Zebro mission. It aims to assess the potential enhancements in the rover’s capabilities
and evaluate the technical and practical aspects of running advanced AI models onboard a lunar rover.
Through this exploration, the thesis seeks to contribute to the broader narrative of lunar exploration,
showcasing the integration of cutting-edge AI technologies in space missions with a special focus on
the constrained resources of Lunar Zebro.

Having introduced the general domain and research topic of this thesis, a review of relevant literature
is presented in chapter 2, with a special focus on the research gap that serves as the starting point for
this research. Chapter 3 follows the systems engineering approach and describes the conception of
system requirements for the On-Board Computing Architecture (OBCA) of the lunar nano-rover. This
chapter also discusses various design options considered. The detailed design of the OBCA, including
the design of the data bus, preliminary software design, and a radiation risk assessment, is discussed
in chapter 4. In chapter 5, the training and implementation of a rock detection Convolutional Neural
Network (CNN) on different hardware platforms are discussed. Additionally, this chapter outlines the
test method for measuring the required resources of the On-Board Computer (OBC). Finally, chapter 6
discusses the results of these tests. These results are contextualized by running simulations of the
rover’s operations, assessing whether the rover can function within the set operational limits. Differ-
ent swarm configurations and operational modes of the AI accelerator are considered in this analysis.
Moreover, this final chapter includes system verification based on the established requirements.

1.1. Research Outline
With the advancements and challenges outlined, the research objective of this thesis is:

To contribute to the body of knowledge about the implementation of DL algorithms on low-SWaP sys-
tems (<2 kg) in deep space.

As will be elaborately outlined in chapter 2 (section 2.2 & section 2.4 specifically), the main knowledge
gaps that were identified in the context of a low-SWaP (<2 kg) rover in deep space:

1. The feasibility of DL-based hazard detection & FDIR on housekeeping data.
2. Using COTS AI-accelerators.

Based on the findings from the background research in chapter 2 described in this report, the research
question was formulated. The supporting sub-questions aim to provide further clarification and insight
into the most crucial aspects of the investigation, thereby directing the course of the study.

How can the OBCA for the next-generation Lunar Zebro be designed cost-effectively?

Where next-generation refers to the capability of the rover to function in a swarm and to apply DL-based
hazard detection and FDIR. Moreover, the cost-effectiveness of the project is of crucial importance to
make the low-budget Lunar Zebro project a reality. It should be emphasized that while this study primar-
ily concentrates on the OBCA design for the Lunar Zebro as a specific case, the broader application of
this subsystem’s design to extraterrestrial nano-rovers in general is also of interest, as this addresses
a more general, overarching question relevant to the field of extraterrestrial rover design.

This main objective can be complemented by the following sub-questions:

1. What are the required resources for DL-based hazard detection, and how can the OBCA design
under investigation provide these resources (respecting the SWaP constraints)?

As discussed in section 2.2, there are many ways to recognize hazards. This subquestion refers
to the requirements posed on the OBCA by a relevant hazard detection algorithm.
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2. How can the OBCA facilitate DL-based FDIR, swarming, path planning and autonomous mission
planning?

A crucial aspect of this thesis involves ensuring that the Lunar Zebro is equipped with a computa-
tional system that can facilitate its autonomous functions. The rover should be able to find its way
across the Moon’s landscape without commands from Earth, and therefore swarming, path plan-
ning, and autonomous mission planning operations should be carefully taken into account when
designing the OBCA. Moreover, the reliability of the rover could be much increased by advanced
FDIR on subsystem housekeeping data.

3. Should the OBCA be designed homogeneously across the whole swarm?
In section 2.5, it will be described that the swarm can function as a decentralized whole, or it
can have a central computational hub with different computational capabilities. The choice for
the swarm configuration will have consequences for the design of the OBCA. This is elaborately
discussed in section 2.5 and subsection 4.3.7.



2
Background

This chapter is divided into 6 sections. The Lunar Zebro mission concept is discussed in section 2.1,
as the existing mission will shape the requirements for the OBCA. The system architecture and design
features are outlined in subsection 2.1.2 and the mission phases in subsection 2.1.3. In section 2.2
hazard detection methods are outlined, and it is highlighted that the a study of the feasibility of running
DL-based algorithms on a low-SWaP mission as Lunar Zebro is a research gap. Section 2.3 discusses
the challenges of the lunar environment for the OBCA design, followed by an overview of radiation
effects and fault-tolerant design techniques in section 2.4. In this section, the types of hardware pos-
sibilities for are discussed, with a special focus on AI-accelerating and COTS hardware. Because the
next generation of Lunar Zebro will function as part of a swarm, the swarming concept and practical
examples are discussed in section 2.5.

2.1. Lunar Zebro
Lunar Zebro, initiated by TU Delft, is a lunar nano-rover (<1.5 kg [19]) that is meant to launch soon after
the start of 2025 [16]. While for the first mission, one rover will perform a technology demonstration,
in the years thereafter the Lunar Zebro team is planning on launching a second generation of Lunar
Zebro to the Moon, in the form of a swarm [17].

2.1.1. The Mission and Capabilities
The first mission of Lunar Zebro aims to deploy the rover on the moon for a full lunar day, which is about
14 Earth days. This mission [20] is a scientific venture as well as a technology demonstration, intended
to carry out radiation measurements and test a new locomotion system specifically designed for the
challenging lunar terrain [21]. The rover will also be showcasing the effectiveness of an exploratory
vehicle under SWaP constraints.

Looking beyond its initial mission, Lunar Zebro is set to evolve into an exploratory project involving
swarm-based lunar exploration. This approach envisages deploying multiple rovers to explore the
lunar surface, either independently or in careful conjunction with human missions [22], which would
increase the chance of mission success as the human workload is kept to a manageable level [23].
As part of the technology demonstration of this mission, the swarm of rovers will designed to function
autonomously, meaning that no human interaction or direct contact with Earth is necessary for mission
success. This demand is reflected in requirements LZ-OBCA-SH-013 and LZ-OBCA-SYS-002 in Ta-
ble 3.2 and subsection 3.1.3.

The ambition to keep the rover as small and light as possible stems from the enormous costs that come
with the crossing to the Moon. Astrobotic, a private company that provides services for delivering pay-
loads to the Moon, offers to bring a kilogram to the Moon for $1,200,000 [14]. Since the chassis of the
rover mainly consists of Aluminum (ρ = 2.7g /cm3), every cubic centimeter of chassis that needs to be
brought to the Moon would cost about $3600 extra, underlining the importance of keeping the rover
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Figure 2.1: The Strelka rover

small, especially for a student team with a limited budget.

Keeping the mass of the rover low is a priority for the Lunar Zebro team. Especially because small
increases in mass of one rover, would multiply by the number of rovers in the swarm. Even more, small
increases in the mass of space missions accumulate rapidly due to the structural and propellant mass
increases that are required to carry the vehicle into space and support the mass of the subsystems
during operation. Thompson et al. demonstrated that every additional kilogram on the lunar ascent
module of the Saturn V launch vehicle resulted in an over 800-fold increase in the total mass [24],
stressing the importance of designing for a low mass of the swarm. This compounding of mass on
space vehicles is also known as the ’Snowball Effect’.

2.1.2. System Architecture and Main Design Features
Lunar Zebro’s design is characterized by its small, lightweight, and modular structure, integrating both
COTS components and in-house developed modules. This approach aligns with the NewSpace phi-
losophy, focusing on cost-effectiveness and rapid development [25]. The design of the second gener-
ation will build upon the design of the first rover, which is not set in stone yet, which asks for careful
consideration of possible changes in the current design [26], as these will influence the design of other
subsystems.

The rover consists of seven main subsystems, which are depicted in Figure 2.2.

Figure 2.2: Subsystems of Lunar Zebro [26]

Locomotion System
A key feature is its specialized locomotion system, with six C-shaped legs that can rotate in both di-
rections. The locomotion system was optimized for reliability and robustness [21], meaning that it will
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not sink into the lunar regolith and safely overcome obstacles up to 3 cm in height [26], such as in
Figure 2.3 [21]. The system was also designed to be light-weight (89 g for the total system) while con-
sisting of only COTS parts [21]. The system consumes a total of 23 W during operation, at 12 V. The
Locomotion System (LMS) can reach up to 5 cm/s, but the average velocity of the rover is expected to
be 2 cm/s.

Figure 2.3: Engineering Model Belka-1 crossing an obstacle [21]

Electrical Power System (EPS)
The EPS of Lunar Zebro consists of the Battery Management System (BMS), the battery pack, the solar
array and the Power Processing Unit (PPU) [26].

Other than stated in the design documentation of Lunar Zebro [26], M. Hubers (personal communi-
cation, December 2023), who is responsible for the design of the EPS of Lunar Zebro, indicated the
newest design of the rover houses five instead of four NCR18650B Panasonic Lithium-Ion batteries
[27], arranged in series.

Peak power refers to the highest level of charge and discharge energy that the battery can sustain
momentarily without surpassing predetermined battery constraints. While the peak power of one cell
on board Lunar Zebro is equal to 36 W [27], a series connection of the cells allows for a peak power of
Ppeakci r cui t = Ppeakcel l

×Ncel l . The peak power of the whole battery pack is therefore 180 W. It should be
noted that a series connection of the batteries is not standard. Many other missions have the batteries
connected in parallel [28, 29]. This imposes higher requirements on the peak power draw of the OBCA
and shall be taken into consideration in the design of the OBCA.

The subsystem’s maximum power draw is governed by the battery system’s peak power and the con-
verters’ maximum output capacity. The power is distributed to the subsystems of the rover through
three converters according to M. Hubers (personal communication, December 2, 2023), each with an
own supply voltage; 3.3 V, 5 V, 12 V. These converters can deliver up to 14.4 W, 20 W and 48 W, respec-
tively.

The microcontroller that controls the rover’s power distribution is called the PPU. It manages the power
switches for every subsystem and keeps an eye on the voltage and current levels. To obtain power-
related housekeeping data, the OBC connects with the PPU via the PPU app. If necessary, the central
OBC can also ask the PPU to turn on or off a subsystem. When everything is operating normally, the
PPU is also in charge of coordinating with the BMS), through which battery information is transferred
from the PPU to the main OBC software [26].
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Command and Data Handling (CDH) System
The rover will be equipped with the All-Programmable System-on-Chip featuring the Xilinx Zynq-7020,
the Xiphos Q7S [30], which is depicted in Figure 2.4 [31]. The Field Programmable Gate Array (FPGA)
houses a dual-core ARM Cortex-A9 processor, also referred to as the Processing System (PS). The
System on Chip (SoC) has 1x512 MB (256 MB with Error Correcting Code (ECC)) and 1x256 MB low-
power double-data-rate memory Random Access Memory (RAM) chips, 2 MicroSD slots (max. 32 GB
each) on independent buses/power control, 2x128 MB QSPI Flash, and an external mass memory in-
terface [30].

Figure 2.4: The OBC for the first generation of Lunar Zebro: the Xilinx Xiphos Q7S [31]

The Lunar Zebro team chose for one OBC for the sake of simple architecture, rather than choosing for
a redundant OBC [26]. However, the PPU has been identified as a viable alternative to assume the
responsibilities of the OBC in scenarios where the OBC is not operational, albeit with certain limitations
in its capacity.

Nominal Control Software Architecture
During normal operations, the OBC operates as the primary controller within the CDH subsystem. The
core component is supported by individual applications tailored for each submodule. The core system
comprises two key elements: the Master Control Program (MCP) and a Router, and the comprehensive
architecture is illustrated in Figure 2.5 [26].

The MCP encompasses the Process Manager, Application Programming Interfaces (API) for the sub-
modules, and the State Machine. The Process Manager oversees all active processes running on the
OBC. The APIs serve as standardized data formats for facilitating communication with the submodules.
Meanwhile, the Router plays a pivotal role in transmitting and receiving messages between TRON
and the submodules. The OBC software also provides an Inter Process Communication (IPC) library
to the submodules, simplifying the implementation of communication protocols through the Router [26].

The individual applications establish communication with their respective hardware components through
two wire, half duplex, multi-master communication protocol (RS485) buses, as depicted in the lower
layers of the architecture. Regarding the State Machine, it defines the decision-making processes for
executing operational sequences. Multiple state machines have been developed to cater to various
tasks that the Zebro is expected to perform on the Moon [26]. Since all subsystems are developed with
RS485 protocol for communication lines, this protocol will be assumed for the next-generation rover as
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well. This poses requirements on the communication within the rover, the creation of the data bus, and
the interfacing of the central OBC. This demand is reflected in the interface requirements LZ-OBCA-
INT-001 to LZ-OBCA-INT-004 in subsection 3.1.3. RS485 is a serial communication protocol that in
a half-duplex mode, allows bidirectional but not simultaneous data transmission over a single pair of
wires [32].

Figure 2.5: The central OBC software architecture as implemented on the first mission [26]

One of the major design decisions for the first software implementation on-board Lunar Zebro, was to
create a modular design of applications around the MCP [26]. This decision was made due to the na-
ture of the project, in which students are responsible for separate parts of the rover. The OBC system
architecture, with all modular applications, is depicted in Figure 2.6.

Estimations by the Lunar Zebro team (personal communication, Y. KLaassen, December 2023) indi-
cated that 5% of the Zynq 7020 Central Processing Unit (CPU) core load is sufficient to continuously
control the motor drivers of the rover. Since the ARM Cortex A9 dual-core of the Xiphos Q7S houses
4150 Dhrystone million instructions per second (DMIPS) [33], this indicates that 207.5 DMIPS are re-
quired for control of the locomotion motor drivers. Besides the continuous control of the motor drivers,
several other apps require continuous processing power: the Master Control Program, the Error Detec-
tion and Correction (EDAC) for the on-board computing architecture and the PPU application. Knowing
that the locomotion app requires 5%, it is assumed that these apps require 10%, 5% and 5% continu-
ously. Since the full-time, continuous use of these applications is an overestimation, this is assumed
to be a safe margin for operation. Therefore, a requirement shall be set that states that 0.25× 4150
DMIPS = 1038 DMIPS are required for operation of applications other than communications, hazard
detection, the Small High-Resolution Independent Modular Photographer (SHRIMP) and payload apps
and path planning. This demand is reflected in requirement LZ-OBCA-OPER-003 in Table 6.12. The
communications, hazard detection, the SHRIMP, payload, and path planning applications will be part
of the standard static operational cycle of the rover, which will be discussed in subsection 3.1.5.

Payload
The first generation of Lunar Zebro will have a miniaturized radiation-measuring payload on board [26,
34]. This specially designed payload would acquire 0.8 MB of data per 24 hours and 11.2 MB in 14
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Figure 2.6: The OBC system architecture. The blocks within the light-shaded area represent applications that run on the OBC.
The SoC-block represents the rest of the relevant hardware that will definitely be found on the SoC. The red boxes represent

applications that could possibly (partly) be performed on an AI-accelerator. Inspired by [26].

days, with a sampling rate of 1 mi n−1 [34]. This is a conservative estimate, taking into account over-
head for any inter-subsystem communication protocols. Moreover, the data sampling rate is taken to
be much higher than necessary on the mission here, to estimate the total gathered data conservatively.

For the next generation of Lunar Zebro, a radiation payload will probably not suffice. This rover will
have exploratory purposes, likely supporting in pinpointing locations of certain resources on the moon.
To thus be able to support such a payload with the future OBCA, payloads with the potential for higher
data collection should be taken into account. An example of an interesting payload for this resource
analysis is a mass spectrometer. Research has been done into the miniaturization of such a payload for
planetary rover applications [35]. Rohner et al. [35] developed a laser ablation payload with a mass of
approximately 280 g and operating at an estimated power of only 3 W. At its maximum time resolution of
2.5 ns, the payload requires a storage space of 128 kB per measurement. Assuming 1 measurement per
minute during operational periods in between solar charging periods, the total required storage space
would be 702 MB. This is a very conservative estimate again, as the measurement frequency would
be much lower; at the low average velocity of the rover (2 cm/s), the rover would need to cover more
distance before taking another measurement. This payload would only be activated when the rover
reaches its scientific goal, which is most likely only reached after covering larger distances. Moreover,
this payload would require the rover to be stationary during measurements, decreasing the average
velocity of the rover even further if too many measurements are taken.

For the OBCA on board the next-generation mission of Lunar Zebro, it is important to consider future
implementations and especially the worst-case scenarios amongst these possible future implementa-
tions. Hence, the design of onboard data connectivity and storage accounts for the mass spectrometer
data rate requirements. It is assumed that there will be no more than one payload per rover, as this
would increase the mass and cost per rover quickly, as discussed in subsection 2.1.1.
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Communications Subsystem
The Communications System for the first rover consisted of a radiation communication system for direct
communication with small ground stations on Earth [26], which was developed for lunar microsatellites
Longjiang-1 and Longjiang-2 [36]. However, the second generation functions completely autonomously,
meaning that communication between the rovers is required, but communication to Earth is not nec-
essary. Therefore, a short-range radio system like the bi-directional ZigBee communication system
that was also implemented on the Ingenuity helicopter and Perseverance Rover [37] of NASA will be a
better fit for this mission. This communications system allows for data rates up to 250 kbps and allows
for omnidirectional reception and transmission. This omni-directionality is required for the functioning
of the swarm, in which individuals will share their locations through the communication system.

Navigation Subsystem
The Navigation subsystem consists of two small cameras SHRIMP, and corresponding object detection
software. This software is meant to recognize rocks that are larger than 3 cm in height and consists of a
classic object detection method that is described in more detail by James in [26]. Although this classic
method was worked out in detail, it was never tested A. Ayata stated (personal communication, Decem-
ber 2023) on image data representative for the SHRIMP cameras, therefore details on the performance
of this algorithm cannot be given. As part of the science demonstration for the next generation of Lunar
Zebro, a requirement is posed stating that the hazard detection algorithm should be DL-based. DL-
based hazard detection methods and a comparison with classic algorithms are described in the next
section, section 2.2.

The path planning algorithms were developed in the works of Geeling [38] and Manteaux [39]. In their
work, an Artificial Potential Field (APF) algorithm was chosen. This algorithm requires the rover to
register the exact size of obstacles, as only then the appropriate repulsion force can be pinpointed
at the obstacle location in the map. This poses an important requirement on the hazard detection
algorithm; the exact location and size of the obstacles should be determined. This demand is reflected
in requirement LZ-OBCA-FUN-010 in Table 6.12.

2.1.3. Mission Phases
Next, the phases of the mission should be outlined to understand exactly what mission profile the OBCA
should be designed for. These details are outlined in Table 2.1, which offers a concise overview of each
mission phase. Within the table, each phase is briefly described, highlighting its significance in relation
to the mission, specifically concerning the OBCA. Additionally, the table denotes the transition events
between phases and specifies the expected duration of each phase. A typical mission profile for a lunar
mission is depicted in Figure 2.7 [40]. For the initial 5 stages, the rover is protected by a launch vehicle
and/or lunar lander like the Peregrine lander designed by Astrobotic [14].

Table 2.1: The different phases of a lunar mission with specifications.

Phase Description Duration OBC State

Pre-Launch Phase Preparation for launch. N/A OFF
Launch Injection from Earth surface into Earth orbit. 1-3 hours OFF
Earth Orbit Stable orbit around Earth. Time for checks. 4 days [14]
Cis-Lunar Transit Transfer from Earth to the Moon. 5 days to 2

months. [40]
OFF

Lunar Orbit Stable orbit around the Moon. 6 days to 2
months.

OFF

Lunar Surface Operations on the Lunar Surface. [40] ON

The following six mission phases can be recognized:

• Pre-Launch Phase: During the pre-launch phase, the rover is integrated into the spacecraft and
undergoes various tests to ensure its functionality in the lunar environment.

• Launch Phase: For the launch phase, the mission requirements are dependent on the choice
of launch vehicle. The OBCA needs to withstand high levels of vibration and mechanical stress
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Figure 2.7: Exemplary mission profile for a lunar lander [40]

during the launch. Design considerations for the OBCA involve ensuring its resilience to these
vibrations. The OBCA will be inactive during this period, as well as during following periods, until
safe landing on the lunar surface.

• Earth Orbit: After launch, the lander with the rovers on board spends time in Earth’s orbit, con-
ducting checks on all payloads that it hosts. Possible first radiation measurements done by the
radiation payload will be done passively and these can be carried on until end-of-life. The phase
ends with a trans-lunar injection burn. The near-Earth radiation environment is dominated by
trapped radiation in the van Allen belts. The received radiation is expected to be about 20 radd−1.

• Cis-lunar Transit: Due to a trans-lunar injection maneuver, the spacecraft is sent on its way to
the Moon. This transit can take up to 30 days [14].

• Lunar Orbit: The lunar orbit phase can take up to 25 days [14] and encompasses all actions
related to placing a payload into lunar orbit, deploying orbital payloads, and descending to the
surface of the moon.

• Lunar Surface: Only just before or even after deployment of the rover on the surface, the OBCA
will be activated. The lunar surface phase entails surface operations like deploying rovers, ac-
quiring payload data, and capturing images of the lunar surface.

It is essential to identify the specific mission phases during which electronic devices are activated,
as their susceptibility to radiation-induced damage is significantly higher when operational. In the
powered-on state, the circuits are more vulnerable to transient effects like Single-event Upsets (SEUs),
where the passage of a charged particle can cause temporary malfunctions or even permanent damage.
Therefore, knowing the operational timeline of these devices enables engineers to devise strategies to
minimize their active time during high-radiation segments of the mission, thereby reducing the risk of
radiation-induced failures.
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2.2. Hazard Detection
For Lunar Zebro, hazards on the Moon’s surface entail rocks, craters, or holes and slopes. In this
project, the detection of rocks will be taken as a starting point. Following the demand that the swarm
of Lunar Zebros is capable of operation without human intervention nor direct control with any ground
station, the autonomous capacity to detect and categorize lunar rocks is fundamental for the Lunar
Zebro mission’s success. The taxonomy of computer vision can be categorized into three main tasks:
classification, object detection, and segmentation [41], as depicted in Figure 2.8 [42].

• Classification is a process that involves assigning specific labels or categories to objects based
on their defining characteristics. The term classification is also used often for segmentation tasks
that ’classify’ images into different objects or types, such as by Cross et al. [3], however in this
work, this will be referred to as segmentation, as it is a pixel-by-pixel operation.

• Object Detection employs models to identify and locate objects within an image, typically by cre-
ating bounding boxes around them, each associated with a class label. However, these bound-
ing boxes are limited to rectangular or square shapes, and they do not convey specific details
about the object’s shape. This approach offers a high-level categorization of objects but lacks
fine-grained information about their geometrical attributes.

• Segmentation models produce pixel-wise masks for each object present in an image. This tech-
nique allows for a more detailed and granular understanding of object boundaries and shapes,
as it accurately delineates each object’s contours within the image. Image segmentation thus
provides a higher level of detail about the objects, making it particularly valuable when shape
and precise boundaries are of significant interest. The computational complexity of segmentation
networks is usually higher than those for object detection, thus leading to higher precision.

Figure 2.8: Three different forms of computer vision for detection of objects [42]

These approaches can be further categorized into classic and learning-based algorithms [43, 44]. Deep
learning methods, involving CNNs, have shown superior performance in image segmentation tasks [45,
46], including the segmentation of rocks [2]. They are particularly effective in addressing challenges
such as faint edge detection and multispectral image registration [44]. However, they can be resource-
intensive and may struggle to perform outside their training space. Classic methods, on the other hand,
are more transparent and can be more easily adapted for different purposes, as large quantities of an-
notated data are not necessary [44]. Despite these advantages, they often suffer from poor accuracy
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and robustness, especially in the presence of noise (i.e. sensor imperfections, environmental condi-
tions, or transmission errors) [45, 47].

Although quite some studies have been performed into unsupervised- [48] and even deep-learning al-
gorithms [49] for extraterrestrial landers and rovers, an actual study of the feasibility of running such
algorithms on board such a SWaP-constrained rover as Lunar Zebro has not been performed yet, there-
fore leaving a gap in the current body of knowledge.

This research specifically focuses on image segmentation over object detection for the Lunar Zebro.
The decision is driven by the need for precise and detailed understanding of rock shapes and sizes
in the lunar environment, which is crucial for effective navigation and obstacle avoidance (APF path
planning requires precise obstacle sizes), despite the higher computational demands of segmentation.
Moreover, segmentation networks have been used to also recognize craters/slopes as depicted in
Figure 2.9, which is in accordance with stakeholder requirement LZ-OBCA-SH-010 for this mission.
This choice also aligns with the project’s aim to explore advanced and computationally heavy computer
vision techniques within the constraints of a low-SWaP system, thereby contributing to the field by
addressing a significant research gap.

2.2.1. Survey of Rock Detection Methods
Most of recent innovations into extraterrestrial hazard detection methods have come from missions
aimed for Mars [50, 2]. As described in section 2.3, since the lunar terrain is comparable to that of
Mars, these innovations can be taken as an inspiration and performance indicators can be said to be
indicative.

Consistently, literature stresses the difficulty of extracting rock boundaries through edge extraction.
Factors that complexify this include the diversity in for example morphology, intensity, and texture of
the soil [51, 52, 53]. Other common problems include shadows, dust covering, and boundary-blurring
[54, 55].

On the Opportunity rover of NASA that was deployed on Mars in 2004, the Onboard Rock Segmenta-
tion Through Edge Regrouping (ROCKSTER) algorithm was used for the perception of rocks. Burl et
al [53] stated that ”ROCKSTER is arguably the most sophisticated perception algorithm for scientific
analysis that has ever been deployed to another planet”, and the algorithm is TRL 9 ”mission proven”.
However, the algorithm has its deficits; noise and blurred rock boundaries. Therefore, the complete
perimeter of the rock cannot always be detected. ROCKSTER uses the local gradient between pixels to
recognize rock boundaries. As the name states, this focuses on a local shift in pixel values. However,
These ”local gradient operators” do not use statistical features such as ”spatial layout and the inner
relationship of pixels or regions” [53]. Spatial layout refers to the arrangement or distribution of pixels
in an image. The inner relationship of pixels refers to how pixels are related to each other in terms of
their spatial position, color, and intensity.

In light of the foregoing discussion, Xiao et al. [56] proposed to solve the rock detection problem by using
several low-level features. Two novel rock detection methods were used: Kernel Principal Component
Analysis (KPCA)-based Rock Detection (KPRD) and Kernel Low-Rank Representation (KLRR)-based
Rock Detection (KLRD). KPRD is specialized in real-time detection but with less accurate results than
KLRD, where KLRD has longer processing times. These two algorithms were compared with a State
Of The Art (SOTA) kernel-based algorithm [57], and a SOTA deep-learning-based algorithm [58]. Both
achieved superior performance compared to the SOTA based on the MarsData dataset [56], for which
Mars rover images were collected. It should be noted that where the deep-learning-based method was
developed to perform well on rock detection on Mars rover data, the Robust Kernel Low-Rank Repre-
sentation (RKLRR) method was not necessary.

The introduction of CNN-based methods, especially U-Nets, marked a significant step forward in rock
detection. U-Nets, originally successful in medical image segmentation, were well-suited for rock seg-
mentation due to similarities in the unstructured semantic composition of the targets and the small-scale
data volume. CNNs allow for segmentation, without the need for ’handcrafted feature extraction’ [59].
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Such convolutional networks have improved accuracy in rock segmentation 10-20% [2] at the cost
of computational complexity. Notable variants like MultiResUNet [4] offered an improvement in fea-
ture integration. This model uses a series of convolution layers with residual connections to reduce
the semantic gap in feature fusion, making it particularly effective for rock detection. MultiResUNet’s
architecture is relatively lightweight compared to a normal U-Net, primarily due to its efficient use of
convolutional layers and reduced parameter count, which contributes to its suitability for deployment in
resource-constrained environments like space missions.

Furthermore, the multiscale feature learning capability of MultiResUNet makes it an excellent candidate
for detecting a variety of hazards beyond just rocks. Its design to capture features at multiple scales
through different resolution paths enables it to effectively identify diverse features like craters, fissures,
and other hazards in lunar or Martian terrains. This enhanced feature extraction capability, stemming
from its elaborate architecture, ensures more comprehensive scene understanding, essential for navi-
gation and hazard avoidance in extraterrestrial exploration. Thus, the adaptability of MultiResUNet to
capture multiscale information positions makes it a versatile tool.

Advanced algorithms like RockFormer [2], integrating CNNs and Transformers, are making promising
strides in extraterrestrial hazard detection. However, their sophisticated architecture, while effective
in capturing detailed features, often faces compatibility challenges with the AI-accelerating hardware
used in space missions. This poses a significant hurdle for their deployment in resource-constrained
environments like lunar or Martian rovers, where computational efficiency and power limitations are
critical. Research into lightweight networks for rock detection on the Moon is starting up, but networks
with much less parameters tend to not recognize small-size rocks [60], which makes them unfeasible
for Lunar Zebro, which cannot surpass obstacles larger than 3 cm.

A Canadian company named Mission Control studied the application of CNNs to classify terrain into
several terrain types, and even did applied research on real-time systems [61]. Although classifying ter-
rain types is not as relevant for Lunar Zebro because of its specially designed locomotion system, this
classification shows how CNNs can use semantic information to classify different rock or terrain types.
This semantic information can even be used to detect novel geologic features for scientific interest [3,
62]. Such geological categorisation networks have even been deployed onto a Xiphos Q8 computing
hardware [62], a device very similar to the Xiphos Q7s, the device that Lunar Zebro will house during
its first mission. This proves that such networks can be integrated on FPGA structures. However, this
implementation requires a lot of engineering time. In fact, Mission Control even developed their own
deployment toolkit for this purpose.

Very recently, Mission Control has started developing MoonNet, a deep-learning-based algorithm to
segment rocks, craters, and slopes [3]. Although not much information is shared on the actual char-
acteristics of the network, the training method is elaborated upon. First of all, Mission Control’s own
Moonyard was used to replicate the lunar environment (see Figure 2.9 [3]), after which the network
was finetuned with images from the Chang’E missions [63]. It should be noted that the labeling of this
data is a very time-expensive endeavor; in this case, a total of 1800 images were labeled by Mission
Control AI-experts. The network was designed for operation on Ispace’ HAKUTO-R lander [64] and
Rashid rover [65], which crash-landed into the Moon in 2023. The software on board the mission was
developed such that it could be updated after retraining on real data acquired during the mission [3],
this included data being downlinked to Earth, labeling by experts, and retraining on Earth. The network
was deployed onto a Xiphos Q7s, and ran entirely on the CPU. No information on inference time was
made public.

In summary, hazard detection methods for Martian and Lunar applications have developed to high ac-
curacy, especially since the emergence of CNNs. Several promising CNN architectures have been
described, that could be trained for hazard detection purposes on the Moon. The MultiResUnet archi-
tecture emerged as a promising option due to its compact network structure, high accuracy levels, and
ability to analyze features at multiple scales. This capability makes it suitable not only for hazard de-
tection but also for monocular depth estimation, as discussed in subsection 2.2.2. Finally, some actual
implementations of hazard detection algorithms on the Moon were discussed. Although training meth-
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Figure 2.9: An example of a labelled image for training of MoonNet, Mission Control’s CNN for segmentation of lunar terrain
into different hazard types [3]

ods and some implementation details were shared, the exact network architectures or performance
details of the network are not made public.

2.2.2. Monocular Depth Estimation
Monocular depth estimation is the process of determining the distance of objects from a single camera
image. It uses computational methods, often leveraging machine learning, to infer the depth informa-
tion that is typically obtained from stereo vision or multiple cameras. Recent advancements [66] have
shown that monocular depth estimation methods are an actual possibility for currently designed mis-
sions. Monocular depth estimation methods use architectures like CNNs or Encoder-Decoders [66].
On a low-swap rover like Lunar Zebro, it can be interesting to use semantic information that is already
extracted by the segmentation CNN. Very recent work of Wang and Piao [5] represents a notable break-
through in this area. Their approach, as detailed in their 2023 paper, integrates semantic segmentation
with depth estimation in a single CNN. The key addition to the CNN in their method is the multi-scale
feature fusion mechanism, which enhances both local and global feature extraction, crucial for accurate
depth perception.

Wang and Piao’s method [5], by only needing a single image, simplifies the hardware requirements
and reduces computational complexity. However, the trade-off is in the accuracy of absolute distance
measurements, which are more challenging to obtain from a single image.

To achieve absolute distance determination on lunar surfaces using Wang and Piao’s method, training
on ’moon yard’-images would be essential, as the model would need to learn from images with actual
distances indicated. Until then, the model would only be able to estimate relative distances. Construct-
ing such an environment would be a significant investment for organizations like Lunar Zebro. On the
other hand, training a rover only with relative distances can lead to problems like collision risk and ineffi-
cient path planning. Wang and Piao indicate that without a large quantity of training data, high-precision
depth estimation is not possible [5].

The model developed in Wang and Piao’s work also benefits from a multi-path architecture [5], similar
to MultiResUnet [4]. Importantly, their model employs a shared encoder for both semantic segmenta-
tion and depth estimation [5]. This means that certain layers and parameters in the CNN are optimized
to perform both tasks, increasing efficiency and reducing computational load.

In summary, while monocular depth estimation methods, particularly those developed by Wang and
Piao employing a multi-path network architecture like MultiResUNet, show considerable potential, their
implementation for Lunar Zebro may be prohibitively expensive. This is due to the necessity for a
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comprehensive dataset encompassing distances to various lunar features such as rocks and craters.
Consequently, both designs incorporating and excluding the monocular depth estimation method will
be evaluated in the analysis of the OBCA.
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2.3. The Lunar Environment
The Moon harbors many challenges for a small rover like Lunar Zebro. The lunar radiation environment
requires special attention for COTS electronic parts. Understanding of the terrain and dust are of
importance for the design of a suitable hazard detection algorithm. Finally, the potential application of
the swarm on the Moon is important to understand the potential requirements this has on the swarm
design and therefore OBCA architecture.

2.3.1. Radiation
In the (cis-)lunar environment one has to deal with radiation from different sources: Galactic Cosmic
Rays (GCRs), solar wind & Solar Particle Events (SPEs). The Van Allen belts [67] are prevalent in
near-Earth space. This is different from the radiation conditions in LEO, the type of orbit Ubotica Tech-
nologies usually works with. This close to Earth, the Earth’s magnetic field works as a radiation shield,
especially against low-energy particles. Earth’s magnetic field filters out most of the radiation due to
GCRs and SPEs [68].

GCRs originate from outside the Solar System, likely from explosive events such as supernovae [69].
Due to the high-speed travels through the galaxy, these nuclei lost their surrounding electrons. GCRs
path are affected by magnetic fields. Since the Moon lacks a magnetic field, the Moon depends on solar
winds to ”carry magnetic fields” along with them. The Sun’s solar wind cycle therefore determines the
intensity of GCR radiation [70]. The annual exposure on the surface of the Moon can go up to 380 mSv
during solar minimum [71].

The solar wind is a flow of charged particles which is relatively constant. The solar wind consists of
primarily protons and electrons which have a velocity between 200-800 [km/sec]. It has been demon-
strated that the solar wind can be readily shielded [67]. However, for SPEs this is less easy. SPEs are
eruptions of charged particles (Hydrogen and Helium) due to either Coronal Mass Ejections (CMEs)
or solar flares, with energies 3-4 orders of magnitude higher than for solar winds [67]. Doses of more
than 1 Sv can occur during cruise to the Moon [71]. SPEs can be predicted, however, they can hurtful
to equipment due to the high amount of particles (4-8 orders of magnitude higher per event than GCRs
on an annual basis). However, shielding possibilities exist [67].

The Van Allen belts are two layers of charged particles around the Earth held in position by Earth’s
magnetic field [72]. They extend from around 1000 to 60000 [km] above the Earth’s surface. The inner
belt consists of protons and electrons, while the outer belt is formed by energetic electrons [72]. The
rover will only spend a very short period of time in the belts on its’ way to the Moon, which leads to
radiation doses around 0.16 Sv [73].

2.3.2. Terrain and Dust
Small and large rocks cover the surface of the Moon as can be seen in Figure 2.10 [74], the rest of
the Moon is covered in regolith. This is a layer of powdery soil. Where the lunar mares are covered in
about 4-5 meters of regolith, the highland regions are covered in about 10-15 meters of regolith [75].
The dusty underground brings with it serious system safety hazards, such as reduced traction and en-
trapment of the rover’s legs in the dust. However, the locomotion system of Lunar Zebro is developed
in such a way, that it does not sink into the regolith layer of the Moon [21].
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(a) Images by Chang’e-3 where small rocks litter the lunar surface (b) The Moon also harbors much larger rock formations

Figure 2.10: Different images of the Lunar surface [74]

Besides rocks, craters form a potential hazard for Lunar Zebro. With a ground clearance of about
40 mm, any slope or rock larger than 30 mm can be seen as a potential threat. Using rock and crater
abundance models [76], as well as rock densities of earlier lunar and martian missions, Manteaux [39]
estimated that potential landing regions (which are not set for the mission yet) for the first-generation Lu-
nar Zebro would harbour up to 35 obstacles per 5x5 m2. His estimations assumed Lunar Zebro would
operate in a non-dense rock region (rock abundance less than 5 %), as it is not of interest for the first
generation to operate in a rocky region. The rock abundance is measured as the area covered in rocks
as a percentage of the total area. Although Lunar Zebro will still not be able transverse landscapes with
high rock and crater density, the second generation of Lunar Zebro might be more invested in studying
rock compositions as will be discussed in the following subsection, which might be a reason to operate
in regions with slightly more rocks.

A study by Bandfield et al. [77], utilizing Lunar Reconnaissance Orbiter Diviner Radiometer data, re-
veals a predominantly rock-free lunar surface, with the global average rock concentration within the
±60° latitude range being a mere 0.004. Even in regions with higher rock presence, such as maria
and highlands, the majority of surfaces exhibit less than 10% rock coverage. Notably, 99.995% of the
lunar surface shows rock concentrations below 0.20, and no areas exceed 0.70. This underscores the
overwhelmingly low rock abundance across the Moon’s surface, providing critical insights for under-
standing lunar geology and aiding future exploration planning. A maximum rock abundance of 10 %
shall be assumed for the next generation of Lunar Zebro, thus allowing for exploration in almost every
region on the Moon.

2.3.3. Potential Resources
The Moon presents a trove of valuable resources, including rare-earth minerals, platinum-group min-
erals, Helium-3, titanium, volatiles like water, and metals such as aluminum, iron, and platinum [78].
These materials, distributed across the lunar surface, hold immense significance for potential exploita-
tion due to their utility in various industrial and scientific applications. For instance, Helium-3, though
not as abundant as once thought, is sought after for nuclear fusion due to its high energy yield and min-
imal radioactive waste [78]. Water, crucial for sustaining life beyond Earth and serving as a source of
oxygen and rocket propellant, has been detected in regions like the Shackleton Crater near the South
Pole [78]. However, while we possess approximations of these material concentrations, precise loca-
tions remain elusive. This gap underscores the potential role of small rovers, akin to the Lunar Zebro,
in exploring and pinpointing exact high-concentration zones.

2.3.4. Lunar Zebro Next-generation Mission Objective
The next generation of Lunar Zebro rovers will primarily be intended for exploration, focusing on in-
vestigating unexplored and uncertain lunar regions, rather than mining. These rovers, designed for
scouting and analyzing geological features, will concentrate on areas like high latitudes that might pre-
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serve volatiles. A significant objective is to search for water and other resources, and measure radiation
levels to aid future manned missions. However, they are not equipped to endure extreme conditions
found in areas like Lunar Cold Traps (LCTs) [79], limiting their operational scope to less hostile lunar
environments. This mission objective aims to enhance our understanding of the Moon’s geological
composition and identify resource-rich zones.
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2.4. (Space) Embedded Systems
The design of an or a given mission depends on the radiation environment, the mission purpose and
operational requirements. There are many options to handle the radiation environment, and many
types of hardware to choose from when designing such an OBCA.

2.4.1. Radiation effects
Total Ionizing Dose
The Total Ionizing Dose (TID) is the collective name for the accumulation of ionizing radiation in elec-
tronics. How much ionizing radiation is absorbed by a component in a satellite or lunar rover depends
on different factors such as the duration of the mission, the location in space and the chosen orbit, the
location of the part within the satellite, and the relevant shielding around it [80]. The accumulation of
ionizing radiation on electronic components can result in TID, which causes degradation of the tran-
sistors. TID can significantly alter important characteristics of the transistors, including the threshold
voltage shift [80].

Single-event Effects
Single Event Effectss (SEEs) are caused by the interaction of high-energy particles with the sensitive
volumes of electronic devices. SEEs can be classified into two types: hard errors and soft errors [80].

Hard errors are characterized by irreversible damage to the device. One common type of hard error is
Single-event Latch-up (SEL), which occurs when a parasitic thyristor in a Complementary Metal-Oxide-
Semiconductor (CMOS) structure is turned on, leading to a significant increase in current consumption.
In some instances, functionality might be only partially lost, but most often the damage is permanent
and requires a power cycle to reset the device if recovery is possible at all. [81, 80].
Soft errors are characterized by transient effects that are reversible without causing permanent damage.
SEU occurs when a memory cell changes values due to radiation, and the error persists until the
memory cell is reprogrammed. Single-event Transient (SET) leads to incorrect values in a user flip-
flop, which can be difficult to detect as it may be interpreted as a measurement error. Single-event
Functional Interrupt (SEFI) occurs as a result of SEUs or SETs, causing the component to malfunction
until it is reset [80].

2.4.2. Fault-tolerant Design Techniques
Redundancy measures can be categorized into four types: hardware, information, time, and software.

Hardware redundancy involves duplicating components to create fail-safe systems. Different forms
of hardware redundancy are used in OBCs, such as centralized, cold standby, warm standby, and
N-modular redundant OBCs. Each form offers varying levels of internal redundancy and operational
readiness, with trade-offs in terms of power consumption and response time to failures. In centralized
OBCs, a single internally redundant unit is used, while cold standby involves a backup OBC that is
activated upon the main OBC’s failure. Warm standby systems keep both main and backup OBCs
active but in different operational states. N-modular redundancy utilizes multiple active OBCs running
in parallel, with a majority voting system to determine fault handling [82].

Besides hardware redundancy, there are also other options to create redundancy onboard the rover.
Information redundancy relies on FDIR-methods to ensure that data is transferred accurately across
platforms and continuously backed up to prevent data loss during a system breakdown. Time redun-
dancy is achieved through the repeated execution of a process on hardware, which aids in the identifi-
cation of errors and enhances reliability over time. Software redundancy, on the other hand, involves
running a backup software that performs the same task as the primary program, ensuring that in the
event of a fault with the primary software, the redundant software can take over quickly [83].

2.4.3. Hardware
In this section, different architectures will be outlined that could be part of the computing architecture of
Lunar Zebro. A focus is on devices that are specialized in processing visual information since the pro-
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cessing of the SHRIMP images is the most demanding task for Lunar Zebro’s computing architecture.
First more traditional architectures like CPUs and Graphics Processing Units (GPUs) will be discussed,
after which more specialized devices like Vision Processing Units (VPUs) and Tensor Processing Units
(TPUs) will be dealt with. A taxonomy based on the work of Cob-Parro et al. and Ali et al. is presented
[7, 8].

Central Processing Unit (CPU)
CPUs are the central part of every computing architecture. They are responsible for simple mathe-
matical operations, searching for instructions, and housing different types of memory, such as RAM,
Read-Only Memory (ROM), and cache [7]. While CPUs are very suitable for general-purpose opera-
tions but do not have many parallel cores, meaning that parallelization to a high degree is not possible
[7]. This makes CPUs less suited for efficient execution of machine learning algorithms. When inte-
grated on a larger system, the CPUwill always be integrated with components like memory, peripherals,
and interfaces to form a Single-Board Computer (SBC).

Graphical Processing Unit (GPU)
GPUs are devices specially made for operations that require a high level of parallelization [7]. As out-
lined in Figure 2.15 [84], GPUs features a multitude of cores optimized for parallel processing, allowing
simultaneous execution of tasks [7]. GPUs do have a relatively high power consumption [8], possibly
hindering their use on a low-SWaP spacecraft.

Figure 2.11: Comparison of CPU versus GPU architecture [84]

FPGAs
FPGAs are reconfigurable and general-purpose [85]. The programmable logic blocks can be repro-
grammed to efficiently perform the tasks of the user. However, reprogramming FPGAs can be complex
and thus a costly process.

A range of studies have explored the implementation of CNNs on FPGA. Bahl et al. developed and
implemented CNNs for semantic segmentation on a basic FPGA [86]. Voroshazi [87] and Perko [88]
both focused on the design and implementation of CNN units on FPGA, with Voroshazi extending the
architecture with a soft processor core [87] and Perko achieving high performance with a low-cost sim-
ulator [88]. Wei introduced a systolic array architecture for high throughput CNN inference [89], while
Phu et al. designed a configurable CNN core generator for FPGA, achieving high accuracy and low
error rates [90]. These studies collectively demonstrate the potential of FPGA-based CNN implemen-
tations for high performance, low power usage, and reconfigurability.

FPGAs are available in two architectures: SoC FPGAs and standard FPGAs [91]. SoC FPGAs com-
bine both FPGA and CPU on a single chip, often incorporating ARM processors in edge scenarios,
as depicted in Figure 2.12 [91]. This integrated design offers higher internal bandwidth between the
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CPU and FPGA while decreasing the size of the chip and the power demand [91]. In contrast, stan-
dard FPGAs have separate FPGA and CPU components, while decreasing the size of the chip and
the power demand [91]. While both types work with their own external memory and can access each
other’s memory through internal connections, the SoC FPGA’s integrated design typically results in
higher performance efficiency due to reduced latency and better communication between the CPU and
FPGA components, while fitting on a compacter chip [91].

The Xilinx Xiphos Q7S [30], the computer used for the first Lunar Zebro design is indeed a SoC FPGA.

Figure 2.12: A SoC FPGA [91]

Application Specific Integrated Circuits (ASICs) & TPUs
ASICs are pre-designed, application-specific devices, that are optimised for one very specific task [8].
Apart from more mass-produced ASICs like the Google TPUs they are often expensive alternatives, as
they are produced in low volume.

TPUs are ASICs, designed specifically for machine learning (TensorFlow operations), excel in tasks
involving extensive matrix multiplication, outperforming general-purpose processors in applications like
image and speech recognition, natural language processing, and recommendation systems. However,
their use is limited to specific types of neural networks [8]. The TPU architecture, as depicted in Fig-
ure 2.13 [92], is similar to the simple CPU architecture, but a matrix multiplication system is added
[7]. To serve this matrix multiplication unit, high-speed data pathways are put into place. The systolic
data array is a grid of arithmetic units fit for parallel operations [92]. Google’s TPUs have been intro-
duced to space applications for the first time through the SpaceCube Edge TPU SmallSat Card [6].
However, Goodwill et al. [93] state that ”this card is designed to be monitored by a complementary
high-performance processor which is responsible for powering on/off the individual Edge TPU mod-
ules”.

VPUs
VPUs specialize in processing visual data with the help of CNNs [94]. These devices are specialized
in the matrix convolutions that stand at the base of every deep-learning algorithm [7]. The VPU archi-
tecture is depicted in Figure 2.14 [95]. The architecture does not include the same attributes as the
CPU, showing that the VPU is intended to be added to a general computing device, taking convolu-
tional computations away from it [7]. The architecture in Figure 2.14 [95] shows the parallel Streaming
Hybrid Architecture Vector Engine cores (SHAVEs) of the Myriad X, allowing for parallelization of im-
age channels or even applications. The SHAVEs are interfaced with hardware accelerators designed
to execute machine vision algorithms both efficiently and rapidly [7].
Ubotica Technologies [10], intent on enabling complex visual operations directly on satellites, has opted
for Intel’s Myriad X VPU [12] to power these advancements. In pursuit of this goal, they have devel-
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Figure 2.13: General schematic of a TPU architecture [92]

oped the CogniSat XE2 board [11], a specialized platform that effectively leverages the VPU’s capa-
bilities, but is thus far only proven in LEO environments. The XE2 board is depicted in Figure 2.15
[11]. The CogniSat XE2’s compact form factor, with dimensions aligning with the PC/104 standard [96]
(99x98x18.5mm) and a mass of just 80 grams, ensures that it meets the stringent payload requirements
of space missions.

AI-accelerating methods
In the field of AI acceleration, there are many methods to increase the efficiency or time consumption
of machine learning algorithms. It is essential to comprehend the following key terms and concepts:

• Quantization is a method that reduces the precision of numerical data used in computations [97].
It involves transforming floating-point representations into lower-bandwidth formats, such as 16-
bit or 8-bit integers. This process is crucial in deep learning models with millions of parameters,
as it substantially decreases the computational demands and memory usage. The primary ad-
vantage of quantization is its ability to make models more lightweight and faster, facilitating their
deployment on devices with limited processing capabilities. However, it requires careful imple-
mentation to ensure that the reduction in data precision does not significantly impact the model’s
accuracy or performance.

• Parallelization takes advantage of the architecture of modern processors which are capable of
performing many calculations simultaneously [97]. This method is effective for tasks that can
be divided into smaller, independent units of work. In AI, parallelization is extensively applied in
the training and inference stages of neural network models. By distributing computations across
multiple cores or processors, parallelization greatly accelerates processing times, making it an
essential technique for handling large-scale neural networks and complex AI algorithms. This
approach not only speeds up computations but also allows for more efficient utilization of available
hardware resources [97].

Other methods are the reuse of data and pruning of neural networks [91].

2.4.4. Hardware in Deep-Space & COTS Solutions
The NewSpace industry [18] that is arising introduces the use of COTS hardware in space systems.
NASA defines COTS as: ”An assembly or part designed for commercial applications for which the item
manufacturer or vendor solely establishes and controls the specifications for performance, configura-
tion, and reliability (including design, materials, processes, and testing) without additional requirements
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Figure 2.14: General schematic of a VPU architecture [95]

imposed by users and external organizations” [98].

Despite their low cost, COTS hardware is infrequently used in space exploration missions like Lunar Ze-
bro. This section delves into the application of COTS technology in missions beyond Earth’s orbit, with
a particular emphasis on low-SWaP systems and rovers. Various missions are examined to understand
the SOTA for OBCAs in deep space missions. Especially where and how COTS solutions have been
implemented, aiming to provide a clear overview of their usage in the context of deep-space exploration.

For missions in deep space, one can refer to Lunar and Martian rovers. Although the rovers of the
Chang’e 3 and 4 (Yutu 1 and Yutu 2) missions are very interesting for comparison, no details are
shared about the design of their respective OBCs by Chinese National Space Administration (CNSA).
The same is true for the Chandrayaan-2 rover, Pragyan. The Luna 28 mission is the only Luna mission
with a rover. However, information about this mission is not yet disclosed [99]. Similarly, this applies
to NASA’s CADRE mission, a lunar swarming mission with low-SWaP rovers [100] that shows great
resemblance with the next generation of Lunar Zebro.

NASA’s Martian rovers, despite their larger size compared to the Lunar Zebro, utilize onboard comput-
ers with limited capabilities due to Mars’ harsh radiation environment and the high cost of rad-hardened
devices. The Spirit and Opportunity rovers both used an OBC with similar specifications: a 20-MHz
RAD6000 CPU [101] with 128 Mbytes of RAM, 256 Mbytes of flash memory, and 0.25 Mbytes of EEP-
ROM [102]. The runtime for Rockster, the hazard detection algorithm on board was 600-900 seconds,
on a 1Kx1K-pixel image [53]. This RAD6000 and its accompanying board are rated somewhere be-
tween 200,000 and 300,000 dollars [103], which is out of budget for a mission like Lunar Zebro.
Curiosity and Perseverance have the same board specifications: a 200 MHz RAD750 core, 256 MB
RAM, 2048 MB Flash, and 0.25 MB EEPROM [102]. In comparison, the computing power of the
Curiosity and Perseverance rovers is significantly lower than that of the original Apple Watch. The
Apple Watch boasts 512MB of RAM, 8GB of storage, and a 520MHz processor, which far surpasses
the capabilities of the rovers’ computer systems [104].
This is in stark contrast with COTS devices like Lunar Zebro’s Q7s OBC with dual-core processor up
to 766 MHz, 768MB RAM [30].

Ingenuity is a helicopter, specially designed to fly in Martian conditions (1% of Earth’s atmosphere and
38% of Earth’s gravity) that accompanied the Mars 2020 Perseverance Rover as a low-SWaP terrain
scout [105].
The helicopter successfully performed 52 flights so far, where it had only 5 flights planned [106]. Unique
to Mars missions, NASAs Jet Propulsion Laboratory (JPL) chose to adopt a COTS SoC, namely Qual-
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Figure 2.15: The CogniSat XE2 board with its most important features highlighted [11]

comm’s Robotics Flight 801 platform [107, 108]. This chip is an adaptation of Qualcomm’s original
Snapdragon to allow for functionalities fit for flight. NASA chose this board specifically for its relatively
low power consumption while allowing for the exact capabilities necessary for a successful flight on
Mars. Moreover, this type of board are in a price range more realistic to the Lunar Zebro mission, stay-
ing within a thousand dollars [109]. Interestingly, due to the required real-time action of the drone, the
CPU on board needs to be more powerful (2.26 GHz) than that on board the Perseverance rover. Lunar
Zebro will need to make ’real-time’ decisions but will have more time than the drone, mostly because it
moves much slower.
Moreover, although the inference times and energy consumption of the Snapdragon GPU, Neural Pro-
cessing Unit (NPU) and DSP are comparable or even faster to the Myriad X for a deep learning-based
classifier [110], the OBC of the Ingenuity helicopter was probably not as constrained for energy, as
flights were only 90 s [106]. Snapdragon SoC devices like the 801 flown on Ingenuity [106] are opti-
mised for graphic performance and inference speed [111]. Compared to the CogniSat XE2 with the
Myriad X VPU, the Snapdragon with its CPU, GPU and DSP, is more general-purpose, which would
normally go at the cost of energy-efficiency of tasks that the Myriad X is specialized for. For exam-
ple, the Adreno GPU on the Snapdragon SoC that was flown on Ingenuity was designed for ’premium
graphics and console-quality gaming’ [111].

Cross et al. demonstrated that MoonNet (discussed in section 2.2) could run entirely on the PS of the
Q7S, although the limited computational power and memory were a challenge [3]. Also, engineers from
the same company, Mission Control, ran an earlier version of MoonNet, the Machine Learning-based
Autonomous Soil Assessment System (ASAS) was implemented on the Q7S and Q8S [112]. In these
demonstrations, the FPGA devices would not function as the main computing architecture, but rather
as a payload [3].

From the survey in this section it has become apparent that extraterrestrial applications of COTS OBCs
are rare. Especially for small, extraterrestrial missions like Lunar Zebro, not much research has been
done. Especially not when looking into more advanced capabilities like swarming, which will be elabo-
rated upon in the coming chapters. George and Wilson [113] even state that ’the viability of these au-
tonomous applications in terrestrial applications relies on large, distributed systems with GPUs, which
is infeasible on a space system without improved next-generation computing devices and optimized
platform applications’.
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Adding such hardware to an extraterrestrial nano-rover has not been researched before, therefore
leaving a research gap.

2.4.5. Computing Architectures
Different computing architectures can be utilized to perform the tasks on board the lunar rover. ’Comput-
ing architecture’ here refers to the organization of key components of the computer, including memory
systems and the paths for data and instructions to and from the processor.

The von Neumann architecture [114] integrates both data and program instructions in the samememory
space. This unified approach simplifies programming and system design. Central to this architecture
is a sequential processing mechanism, where instructions are executed one after another. However,
this sequentiality leads to a limitation known as the ’von Neumann bottleneck.’ This bottleneck arises
because the processor often has to wait for data and instructions to be delivered from the memory,
potentially slowing down the overall processing speed, especially as processor speeds have outpaced
memory speeds. The architecture’s simplicity has made it a dominant design in computing [114], but
this bottleneck highlights the need for innovations to enhance data throughput and processing efficiency
for more advanced space missions.

The parallel von Neumann computing architecture, utilizing multiple processors for concurrent process-
ing, is advantageous for complex tasks such as real-time data analysis and autonomous decision-
making [115]. Duncan [115] differentiated between synchronous architectures and Multiple Instruction,
Multiple Data (MIMD) architectures. Synchronous architectures are systems where all the processors
or components work together at the same speed, controlled by a single central clock. This means
that every part of the system follows the same timing for processing tasks, ensuring that everything
stays in sync. In contrast, MIMD architectures allow each processor to execute different instructions
on different data simultaneously, offering more flexibility and scalability for diverse computational tasks.

The Harvard architecture presents an alternative to the von Neumann architecture [116], with its sep-
arate paths for data and instructions, facilitating simultaneous access and thus enhancing processing
speeds. The separate pathways for data and instructions in the Harvard architecturemean that data can
be processed and instructions fetched simultaneously, significantly speeding up computations needed
in real-time signal processing applications.

Emerging architectures like neuromorphic computing [117], which mimics the human brain, and quan-
tum computing [118], based on quantum mechanics, represent possible approaches for the unforesee-
able future. At the current moment in time, these technologies are too immature.

For the Lunar Zebro’s OBC, while different architectures have their merits, the need for parallel pro-
cessing is clear, as the rover will have to run parallel processes. In this scenario, architectures capable
of facilitating parallel processing, including parallel von Neumann, MIMD, and others, can be effective.
The key requirement is not the separation of data and instructions in different memories, as seen in the
Harvard architecture, but the ability of the architecture to handle multiple processes concurrently. This
is reflected in requirement LZ-OBCA-DES-006.
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2.5. Swarming
For the next generation of Lunar Zebro (see Figure 4.10) [119], incorporating swarming capabilities is
an important goal. This approach involves autonomous robots working collaboratively towards com-
mon objectives to increase robustness, flexibility and scalability at lower cost [120, 121, 122].

Figure 2.16: A render of a swarm of Lunar Zebros on the Moon [119]

An earlier example of swarm robotics in space includes the Autonomous Nano-Technology Swarm
(ANTS) mission, which consisted of a fleet of miniaturized, autonomous spacecraft to explore the as-
teroid belt [123]. Recently, NASA started developing the Cooperative Autonomous Distributed Robotic
Exploration (CADRE) mission [124]. Similar to Lunar Zebro, CADRE involves a network of small rovers
to the Moon, designed to operate autonomously and communicate via a mesh network. These rovers
are equipped with two stereo cameras, navigation sensors, and a multistatic ground-penetrating radar
[124]. Not much information about this mission is made public; the exact swarming methods and com-
puting architecture design cannot be found publically.

For the software design and the requirements this poses on the computing architecture of Lunar Zebro,
the required rules and software for swarm robotics should be outlined. Hamann and Wörn describe
that individual rovers make decisions based on locally gathered information and simple rules, including
moving towards or away from neighbors, aligning with neighbors’ orientation, or aggregating around a
specific point of interest [125]. Although simple rules steer the individual, complex behavior emerges for
the swarm [126]. This decentralized approach ensures adaptability to environmental or swarm changes
and makes the swarm scalable. The computational demands for the individual are minimal due to the
simple rules. Therefore, the swarming software will not pose heavy requirements on the processing
power of the rover’s computing architecture. This will be further discussed in subsection 4.3.7.



3
Requirements Engineering &

Conceptual Design

This chapter describes the conceptual design of the OBCA architecture for the next generation of Lunar
Zebro. A V Model systems engineering approach was used during this research project. The chapter
is divided into two sections. Section section 3.1 involves the first system engineering steps, including
the identification of stakeholder and system requirements. Moreover, the functional flow of the OBCA
tasks is conceived, and technical budgets are determined, to be able to set SMART requirements [127].
The second section outlines the different considered design options, and discusses the final choice of
design options considered for further testing.

3.1. On-board Computing Architecture Systems Engineering
For the design of the OBCA a V (”Vee”) model approach was used, as initiated by Forsberg and Mooz
[128] and later developed in the International Council on Systems Engineering (INCOSE) Systems En-
gineering Handbook [129].

For this project, the model needs a slight adaptation. Because of the choice for COTS boards, the
subsystem level can be wavered. The system requirements describe the OBCA to a level of sufficient
detail. The adapted version of the Vee model is displayed in Figure 3.1. The modified Vee model, as
depicted in Figure 3.1, emphasizes an iterative design methodology. This approach facilitates continu-
ous refinement through successive stages of development, testing, and validation. The final validation
stages for the OBCA, with all algorithms implemented on the rover, do not fit within the scope of this
project. This will be reflected upon in chapter 8.

Figure 3.1: The ”Vee” model modified for this project. The subsystem level is left out. Inspired by [129].

28
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3.1.1. Need and Mission Statement
The initial step involves identifying the problem that requires a solution and specifying the need that the
system is intended to fulfill, a process facilitated through the creation of a ’Need Statement.’ The Need
Statement for the OBCA is formulated as follows:

There is a need to run DL-based Hazard Detection on-board Lunar Zebro, a SWaP-constrained
lunar rover, designed to explore a given area on the Moon in the form of a swarm of likewise indi-
viduals.

The mission statement explains how the ’need’ above will be satisfied:

Design a cost-effective OBCA for the Lunar Zebro rover to enable exploration of the Moon, support-
ing DL-based hazard detection, swarming, DL-based FDIR, and autonomous mission planning, by
taking advantage of COTS technology.

3.1.2. Stakeholders
To be able to understand which stakeholders are involved and what the system boundaries of the mis-
sion are, the mission context diagram in Figure 3.2. The Lunar Zebro system can be said to consist
of one individual rover itself, including its payloads. These payloads interact with the lunar environ-
ment, either to recognize where to walk or to leverage the scientific data as part of its mission. The
individual rover might be constrained by requirements from the launch provider and might be in con-
tact with a lunar base or lander during the mission, through which eventually the Mission Operations
Center shall be able to influence the mission if necessary. Finally, other rovers will also be part of this
Lunar Zebro mission, which is what makes this next generation of Lunar Zebro unique. Finally, the TU
Delft, the Lunar Zebro team and space agencies will use the data obtained by the Lunar Zebro mission.

Figure 3.2: Mission context diagram for the next-generation Lunar Zebro mission

The different stakeholders are summarized in Table 3.1.
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Table 3.1: Stakeholders of the next-generation Lunar Zebro mission

Stakeholder Group
Active/
Passive/
Customer

Rationale

Lunar Zebro Team A/C As the primary customer, they set specific re-
quirements and functional objectives for the
OBCA, guiding its development to align with
the overall rover design and mission goals.

Launch Provider A The launch provider dictates environmental
and mechanical constraints for the OBCA, im-
pacting its design specifications. They also in-
fluence key mission aspects such as integra-
tion procedures and launch timelines.

Lander/Lunar
Base

A Defines communication protocols. Deter-
mines data relay and operational coordination
methods.

Mission Control A Provides minimal overruling and observation
for the largely autonomous rovers, impacting
requirements for remote command capabili-
ties and data monitoring.

Ubotica Technolo-
gies

A Influences OBCA design by potentially inte-
grating an AI accelerator, impacting compu-
tational capabilities, the bus structure and
power management strategies.

TU Delft A As the organizing university and sponsor, they
guide overall project objectives and focus, par-
ticularly emphasizing the scientific outcomes
and educational aspects of the OBCA design.

Space Agencies P Provide funding and mission objectives, influ-
encing OBCA’s design priorities to align with
broader scientific and exploratory goals.

Testing Facilities P Offer environments for validating OBCA’s
performance and resilience under simulated
space conditions, impacting design validation
and verification processes.

Having identified all stakeholders, stakeholder requirements were pinpointed to inform and direct the
configuration and structure of the OBC. These stakeholder needs will shape decisions concerning the
OBC from its design and testing phases through to operational use. The stakeholder needs lead to
stakeholder requirements as stated in Table 3.2. These requirements are labeled following the following
convention: LZ-OBCA-SH-[REQUIREMENT NUMBER].

Table 3.2: Lunar Zebro OBCA Stakeholder requirements

Type Label Requirement Char/Cap Priority:
Essential/
Conditional/
Optional

Stakeholder SH-001 The OBCA shall be constructed using COTS
components.

Char E

SH-002 The OBCA shall be designed for easy manu-
facturing and implementation.

Char C
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Table 3.2: Lunar Zebro OBCA Stakeholder requirements

Type Label Requirement Char/Cap Priority:
Essential/
Conditional/
Optional

SH-003 The OBCA shall consume a maximum of 10%
of the total energy budget per operational cy-
cle.

Char E

SH-004 The OBCA shall not require a peak power ex-
ceeding the constraints of the EPS.

Char E

SH-005 TheOBCA shall be able to operate in the lunar
(radiation) environment.

Cap E

SH-006 The OBCA shall withstand specified launch
loads and vibrations.

Char E

SH-007 The OBCA shall be designed to integrate with
and operate on the next-generation Lunar Ze-
bro nano-rover.

Char E

SH-008 The OBCA shall be capable of running Deep
Learning-based hazard detection algorithms.

Cap C

SH-009 The OBCA shall incorporate error detection
and correction mechanisms.

Cap E

SH-010 The OBCA shall be capable of running DL-
based FDIR on subsystem data.

Cap C

SH-011 The OCBA shall be able to recover subsys-
tems when a fault is detected.

Char E

SH-012 The different subsystems shall be controlled
through modular applications.

Char C

SH-013 Lunar Zebro shall be able to perform its tasks
without direct contact with Earth or a human
operator.

Char E

SH-014 The OBCA shall support the swarming capa-
bility of the next-generation rover.

Char E

SH-015 The OBCA shall ensure the rover to be able
to move with an average velocity of [2] cm/s.

Cap C

SH-016 The OBCA shall use a RS485 serial commu-
nication bus to connect with all subsystems.

Char E

SH-017 The OBCA shall support scientific measure-
ments with a spectrometer.

Cap E

SH-018 The OBCA shall support a Linux Operating
System (OS).

Char E

SH-019 The data interface between a main OBC and
AI-accelerator shall be through Ethernet.

Char E

All stakeholder requirements except LZ-OBCA-SH-018 and LZ-OBCA-SH-019 follow from the back-
ground as discussed in chapter 2. The requirement LZ-OBCA-SH-018 was established to ensure that
the OBCA supports a Linux operating system, facilitating compatibility and seamless integration with
Lunar Zebro’s Linux-based operational infrastructure.
The requirement SH-019, stated by Ubotica Technologies, specifies the use of an Ethernet interface
for the data connection between the main OBC and AI-accelerator, aligning with the state-of-the-art
standards for AI-accelerator integrations in contemporary on-board computer systems.

3.1.3. System Requirements
From the stakeholder requirements follow the system requirements, which are decisive for the design of
the OBC. As a rule of thumb, all system requirements shall have a parent stakeholder requirement, for
traceability purposes. The requirements are set up following the Specific, Measurable, Attainable, Re-
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alistic and Traceable (SMART) criteria for requirements. The requirements are labeled in accordance
with the following convention: LZ-OBCA-[REQUIREMENTCATEGORY]-[REQUIREMENTNUMBER].
The requirements are split into six categories, namely:

1. Functional requirements describe what the system should do, outlining its specific functionali-
ties or operations.

2. Design requirements specify how the system will be structured or designed.
3. Performance requirements specify how well the system should perform (i.e. processing speed).
4. Interface requirements define interactions between the system and other subsystems or com-

ponents.
5. Reliability, Availability, Maintainability, and Safety (RAMS) requirements focus on ensuring

the system’s reliability, availability, ease of maintenance, and safety in the Moon’s environment.
6. Operational requirements have to do with the operational cycles of the rover and the OBCA.

The criticality of every requirement is also graded with high, medium or low. This allows for prioritization
when required. Moreover, the verificationmethod for every requirement is given following the guidelines
for requirement verification by European Cooperation for Space Standardization (ECSS) [130], which
is either review by design, analysis, inspection or test. Finally, a short rationale for the requirement is
added.
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Table 3.3: Lunar Zebro OBC system requirements

Type Label Parent Requirement Criticality

Verification
Method
(Analysis/
Inspection/
Test/ Test
by experi-
ment)

Rationale

Functional FUN-001 SH-016 The system shall acquire and store [128]
kByte of scientific data at a frequency of
[0.0016] Hz.

High A Assuming 6 measurements per
hour with low-mass spectrometer
[35].

FUN-002 SH-008 The system shall enable deep learning-based
rock segmentation of rocks larger than [3] cm.

High T The rover can overcome obstacles
up to 3 cm in height (see sec-
tion 2.1). Choice for segmentation
substantiated in section 2.2.

FUN-003 SH-013 The system shall autonomously replan its
path every operational cycle of [40] seconds.

High A

FUN-004 SH-010 The system shall detect faults in subsystems
using deep learning for at least one variable
per subsystem.

High I,A To ensure subsystem integrity.

FUN-005 SH-009 The OBCA shall be capable of powering itself
ON and OFF.

Medium I For energy management and
safety.

FUN-006 SH-011 The OBCA shall possess the capability to re-
boot all subsystems independently.

Priority Category Rationale.

Design DES-001 SH-004 The system shall have a peak power con-
sumption not exceeding [10] W.

High I Determined in Table 3.1.7.

DES-002 SH-003 The system shall have an average power con-
sumption not exceeding [6.9] watts <TBC>.

High I,T Determined in subsection 3.1.7.

DES-003 SH-006 The system shall be able to withstand loads of
[20] N.

High I For structural integrity under
launch load [131].

DES-004 SH-006 The system shall withstand vibrations in the
frequency range of 20 Hz to 10,000 Hz.

High I For durability against vibrations
[131].

DES-005 SH-001 The system shall consist of COTS parts. High I Defined in subsection 2.4.4.
DES-006 SH-015 The system shall support parallel process-

ing capabilities to handle multiple operational
tasks concurrently.

High I

Performance PERF-001 SH-007,
SH-008,
SH-009,
SH-010,
SH-014

The system shall have a minimum RAM ca-
pacity of [TBD] Bytes, including a 25% buffer.

High A Will be determined in chapter 6.
Depends on the swarm configura-
tion.

PERF-002 SH-007,
SH-008,
SH-009,
SH-010,
SH-014,
SH-017

The system shall provide a non-volatile stor-
age capacity of [500] MB.

High A Determined in chapter 6.
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Table 3.3: Lunar Zebro OBC system requirements

Type Label Parent Requirement Criticality

Verification
Method
(Analysis/
Inspection/
Test/ Test
by experi-
ment)

Rationale

Interface INT-001 SYS-014 The system shall provide an RS485 data inter-
face with the SHRIMP camera(s).

High I For camera control and data han-
dling.

INT-002 SH-016 The system shall provide a RS485 serial com-
munication interface with leg module motor
drivers.

High I Controlling the drivers.

INT-003 SH-016 The system shall provide a RS485 serial com-
munication interface with communications
hardware.

High I For communication management
and data transmission.

INT-004 SH-016 The system shall provide a RS485 serial com-
munication interface with the PPU.

High I For power distribution and man-
agement, also power cycling of
subsystems.

INT-005 SH-007 The system shall be able to operate on a sup-
ply voltage of 3.3, 5 or 12 V.

High I For compatibility with the specified
power supply and power convert-
ers.

INT-006 SH-019 In the case that the XE2 is connected to a cen-
tral OBC, data shall be transmitted through
Ethernet.

Medium Inspection Ubotica demand. More space-
proven than USB.

RAMS RAMS-001 SH-005 The system shall be able to withstand TID up
to [341] rad in operation.

High For radiation tolerance in lunar en-
vironment.

RAMS-002 SH-005 The system shall be able to operate in a vac-
uum.

High I

RAMS-003 SH-005 The system shall have an operational temper-
ature range of [-40] to [80] degrees Celsius.

High I

RAMS-004 SYS-009 The parts of the system shall be tested for
latch-ups due to SEEs at [105] MeV of ionizing
radiation.

High I,A Recommended flux in [112].

RAMS-005 SH-005 The system shall be able to store three redun-
dant copies of firmware and applications.

High I,A Enables implementation of fault-
tolerant verification methods.

RAMS-006 SH-005 The system shall be protected against direct
exposure from lunar dust.

High I To prevent damage from abrasive
lunar dust.

RAMS-007 SH-007 The system shall function for at least 14 Earth
days.

High I,A For mission duration alignment
with lunar day cycle.

Operational OPER-001 SH-007 The system shall be in solar-harvesting mode
during [4] hours and active for [1.25] hour al-
ternately.

Medium A To optimize power usage and sys-
tem longevity.

OPER-002 SH-015 The system shall ensure the rover to be able
to move with an average speed of [2] cm/s.

Medium A To achieve effective ground cover-
age within operational constraints.
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Table 3.3: Lunar Zebro OBC system requirements

Type Label Parent Requirement Criticality

Verification
Method
(Analysis/
Inspection/
Test/ Test
by experi-
ment)

Rationale

OPER-003 SH-007,
SH-009

The system shall leave [1038] DMIPS avail-
able for control of the LMS, the Master Control
Program, EDAC and PPU control.

Medium A To ensure resource allocation for
mobility, EDAC, MCP, and PPU,
see section 2.1.

OPER-004 SH-010,
SH-013,
SH-015

The system shall process new images every
[0.8] meters <TBC> of walking distance.

High T Ensure operation without colli-
sions.
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3.1.4. Operational Details and Assumptions
The current Lunar Zebro design and contemporary rover component technologies form the basis of
several assumptions. The average walking speed of the rover is assumed to be 2 cm/s, where the
maximum speed of the rover is assumed to be 5 cm/s. Manteaux [39] found that with a simple You
Only Look Once (YOLO) algorithm and downsized images (160x160 pixels), all obstacles were de-
tected up to a distance of 0.8 meters. Moreover, Manteaux [39] notes that when the covered distance
or cycle time is increased, the planned path becomes less efficient. Especially for a small rover like Lu-
nar Zebro, which is so close to the ground that it cannot oversee large distances. Therefore, 0.8 meters
is taken as the distance after which new images need to be analysed. This is a conservative estimate,
as improved hazard detection algorithms and the possibility to analyze higher-resolution images will
increase the precision. A sensitivity analysis will be performed on this distance in subsection 6.2.2.

Moreover, it is assumed that the rover works in duty cycles of 75-minutes, after which 4 hours are re-
quired to charge the batteries. It is assumed housekeeping of each subsystem is shared once per 5
minutes and that two forms of data are available, i.e. Voltage and temperature.

The Master Control Program, the EDAC for the on-board computing architecture and the PPU applica-
tion run simultaneously with the hazard detection cycle. Knowing that the locomotion app requires 5%,
it is assumed that these apps require 10%, 5% and 5% of the computing power of the ARM Cortex A9
dualcore, continuously.

Finally, the rovers are assumed to be able to determine their own positions, relative to the lunar lander
or base.

3.1.5. Functional Flow
After having broken down the functions of the OBCA, the order of processes of the rover and its OBCA
needs to be outlined, as the on-board process pipeline plays an important role in the design decisions
for the OBCA and the algorithms it runs. To start with, in subsection 2.1.3 the different mission phases
were already discussed (the pre-launch, launch, Earth orbit, cis-lunar transit, lunar orbit and lunar sur-
face phases, see Figure 3.3a). This lunar surface phase can be further broken up as in Figure 3.3b.

Lunar Zebro’s stay on the Moon will be broken up into charging periods and active periods. The charg-
ing period and sequence is discussed in earlier work done by the Lunar Zebro team [26]. The active
periods will consist of static ’operational cycles’. The length of this operational cycle depends on sev-
eral factors, such as the average velocity of the rover and the distance up to which accurate hazard
detection can be guaranteed. Only when defective behavior of subsystems is detected, will the static
cycle be overruled by fault isolation and recovery measures.

During one operational cycle, Lunar Zebro and its OBCA specifically, will need to perform a series of
tasks. These tasks are depicted in Figure 3.3b. The operational cycle always starts by determining if
there is enough energy for another cycle. If not, the charging sequence is activated. If the rover has
enough energy to continue operations for one more cycle, the rover will determine if it has arrived at
its goal, as this would require a scientific measurement. If not, the hazard detection pipeline is started.
The algorithms involved can determine where in the images taken by SHRIMP, hazards are present.
Having detected the hazards, the rover can plan the best available path towards the goal and the direc-
tions can be calculated for the locomotion system. Then, housekeeping data from different subsystems
is requested and handled by the OBCA.

Finally, in the final period of every operational cycle rovers share their locations, image data, and house-
keeping data with one another. This is performed in a predefined schedule so that neighboring rovers
receive each other’s data as efficiently as possible. The communication sequence could also be per-
formed simultaneously with the other processes, but as the rovers only replan their paths once per
cycle, continuous sharing of locations is redundant.
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(a) Functional flow diagram of the main phases that the rover goes through throughout the mission lifetime.

(b) Functional flow diagram of the operational cycle of the OBCA of an individual rover.

Figure 3.3: The two highest levels of the functional flow diagram of the rover and its OBCA tasks.
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3.1.6. Functional Breakdown
The determination of the requirements for the OBC, leads to the definition of the main functions of the
OBC. The OBC is responsible for all CDH processes, which can be divided into three main categories.
In the first place there is the management of onboard data. This includes the hazard detection mech-
anism for the images delivered by the cameras of the rover. Secondly, the OBC is responsible for
managing all onboard operations. Finally, the rover needs to manage all data coming in from other
rovers or commands coming from the lander or moon base. The functional breakdown structure for the
OBC can be found in Figure 3.4.

Figure 3.4: The functional breakdown structure for the OBC/CDH subsystem of the next-generation lunar zebro. Inspired by
the functional breakdown structure of the first Lunar Zebro mission [26].

In Figure 3.4, the blocks framed in red indicate the operations that will be worked out in further detail.
These blocks show operations that could be solved with deep learning processes. Specifically, the
deep learning pipeline for rock segmentation will be developed and studied. Moreover, opportunities
to leverage the deep learning capabilities of the OBC for mission planning and scheduling will be stud-
ied. Finally, opportunities to monitor system health with deep learning-based FDIR methods will be
discussed.
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3.1.7. Technical Budgets
As part of the requirement engineering process, after the conception of the requirements, the technical
budgets that are available for the low-SWaP rover are conceived. For these calculations, a very con-
servative approach is used, to leave sufficient margin for changes in the rover design in the future and
to account for uncertainties.

Energy Budget for the OBC
The available energy for the processing system depends on many factors, among which the design
choices made by the Lunar Zebro team. However, estimations of the energy available can be made on
the design of the EPS for the first-generation rover [26] as follows:

EOBC ,c ycl e = ηOBC ×Nbat t ×DoD ×ϵ×mbat t (3.1)

with EOBC ,c ycl e the total energy available for the complete OBC per cycle, ηOBC the percentage of the
total energy budget available for the OBC in Wh, Nbat t the number of batteries, DoD the depth of dis-
charge of the battery in percentage, ϵ the gravimetric energy density of the battery in Wh/kg and mbat t

the mass of one battery in kg.

The solar power generated by the solar panels is stored in four lithium-ion NCR18650B cells [27]. These
cells have a gravimetric energy density of 243 Wh/kg, and a mass of 47.5 grams each. Therefore, the
total energy capacity of the batteries lies around (0.0475×243 =) 11.543 Wh per battery. Lunar Zebro
has five batteries on board (see section 2.1). Moreover, the depth of discharge of the batteries should
be considered. For satellites in Earth orbit, the depth of discharge of Lithium Ion cells is limited to
about 40% [132], due to the large number of cycles that the satellites have to go through (>10,000
cycles [133]). However, for Lunar Zebro’s 14-day mission, the batteries are not expected to go through
more than 100 cycles, considering the 5-hour charging and discharging cycles. Therefore, Depth-of-
Discharge rates of 80% are acceptable for the Li-ion batteries [134].

Assigning 10% of the energy budget to the onboard computer was determined to be a reasonable ini-
tial estimation based on considerations of typical power requirements for similar space missions. This
allocation accounts for the substantial energy demands of the rover’s locomotion, instrumentation, com-
munication systems, and environmental control while allowing a reasonable share for the computational
needs of the onboard computer without excessively straining the overall power resources. This number
will serve as an initial budgetary requirement. However, in the sensitivity analysis in subsection 6.2.3,
a thorough review and potential adjustment of these allocations will occur.

Using the presented equation and parameter values, a final energy budget of 16621 Joule per 75-
minute operational cycle can be found.

Table 3.4: Energy budget per 75-minute operational cycle for the OBCA of the next-generation Lunar Zebro.

Resource Budget

Energy 16621 [Joule]

Peak Power
The maximum peak power draw for the OBC can be limited in two ways:

1. The power draw of all subsystems shall not excede the maximum power draw that the batteries
allow for. The peak power draw of N batteries in series is equal to Nbat t ×Ppeak . With 5 batteries
with a peak power of 36 W in series, the total peak power of the rover equals 180 W [27]. With the
locomotion being the most power-hungry subsystem, drawing 23 W, this total peak power draw is
not considered a limiting factor.

2. The power drawn by all subsystems that require a 5 V supply shall not excede the maximum power
that the 5 V-converter allows to be drawn. The 5 V-converter allows for a peak power of 20 W. It is
assumed that the OBC can draw 50% of this for a maximum of 50% of the length of the operational
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cycle. This is mainly posed in this way, so that the communication subsystem has the other half
of the operational cycle to draw at least 50% of the peak power. Communications for similar
purposes require up to 3 W [135], as well as exemplary miniaturised spectrometer payloads [35],
indicating that the set requirements are conservative, even if the most power-heavy subsystems
also require 5 V supply.

In conclusion, the OBC’s maximum peak power is limited by the maximum power that the 5 V-converter
can deliver. The limit is set at 10 W, which shall not be required for more than 50% of the operational
cycle, allowing for enough design space for other subsystems.

Table 3.5: Maximum Peak Power for the OBCA of the next-generation Lunar Zebro.

Resource Budget

Peak Power 10 [Watt]

Communication Bandwidth
The swarm can only function on the base of continuous messaging between the individual rovers about
detected obstacles, positions, locations of high scientific potential and possible paths. To be able to
guarantee that these data streams can take place, one should look into the data that a rover can re-
ceive. The communication bandwidth of the rover can be limited by two things: the data bus design of
the rover and the receiving hardware.

Since the first generation Lunar Zebro rover will be designed to relay data back to Earth directly [26],
the design of this communication subsystem can not be taken as an example for this mission. More
probably the rover will be equipped with a communication subsystem similar to Perseverance and Inge-
nuity [136, 137]. The communication system facilitates omnidirectional communication. Its maximum
transmission rate is 250 kilobits per second at distances up to one kilometer.

Another consideration is the data transmission design within the rover. The first-generation Lunar Ze-
bro uses RS485 half-duplex connections for the data bus, which can transfer data at speeds up to 1
megabytes per second [26]. The current design includes one direct connection between the communi-
cation subsystem and the OBC [138].

Due to constraints imposed by the receiving hardware’s data transfer budget, a maximum data rate of
250 kilobits per second will be considered for the reception process.

Table 3.6: Bandwidth for reception of data of the next-generation Lunar Zebro.

Resource Budget

Bandwidth 250 [kbit/second]
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3.2. Design Options
In section 2.4 it was described that there are several categories of devices available for the computing
architecture of Lunar Zebro:

• CPU
• GPU
• FPGA
• ASIC & TPU
• VPU

It was also discussed that CPUs are the central part of every computing architecture, as they are re-
quired for the general control and operation of the complete computing architecture and the system
it is housed in. While GPUs are a collection of CPUs for parallelization purposes, and SoC FPGAs
and TPUs include a CPU on a single chip, a VPU like the Myriad X needs to be added to a general
computing device. Because the interest of the Lunar Zebro team lies in adding AI capabilities to the
rover, the TPU is the only considered ASIC.

Therefore the 5 design options for Lunar Zebro’s computing architecture involve:

1. A SBC, incorporating a CPU
2. Single-Board OBC with Embedded GPU
3. Single-Board OBC with SoC FPGA (see subsection 2.4.3)
4. A SBC, with an Additional TPU Board
5. A SBC, with an Additional VPU Board

All devices, except the additional TPU and VPU will incorporate essential components including mem-
ory, peripherals, and interfaces. These constructions are all explained in section 2.4, including figures
displaying the connection between the accelerators and the CPU. First these devices will be compared,
after which the actual components will be discussed in subsection 3.2.2.

3.2.1. Design Option Evaluation and Selection
Following the identification of potential computing architectures for the Lunar Zebro project in sec-
tion 3.2, this section aims to methodically evaluate and select the most suitable design.

A SBC
The SBC option will be taken into consideration in this research, considering that finding out whether the
rover’s algorithms and functionalities can run on the simplest architecture and within the design space
represented by the requirements, is of great interest. Moreover, its ease of use and general-purpose
application make it a critical baseline for comparison.

Single-Board OBC with Embedded GPU
The ease of implementation and high throughput at a relatively low cost [91] are arguments for the use of
a GPU SoC. However, the use of these GPUs in space is still in the early stages, necessitating further
research and development to adapt them for reliable space operations [139]. Moreover, the power
inefficiency [140] compared to other devices such as TPUs [139, 140] and VPU (4 × less FPS/W) [141]
render this design option unlikely to be the best option for low-SWaP space applications.

Single-Board OBC with Embedded FPGA
The possibility to port CNNs for FPGAs was discussed in subsection 2.4.3. Moreover, the flexibility of
the FPGA is an advantage [91], especially to a complex system like Lunar Zebro, for which this flexibil-
ity allows for the implementation of other algorithms, apart from a CNN for hazard detection. However,
the development time and difficulty are very high compared to SBCs or GPUs [91]. This comparison
is portrayed in Figure 3.5 [91], in which 4 of the platforms are compared intuitively in terms of develop-
ment time (t), development difficulty (d), cost (c), flexibility (f), and throughput (p). An Microcontroller
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Unit (MCU) is an integrated circuit designed to govern a specific operation. It contains a processor
core, memory, and programmable input/output peripherals. When algorithms are strongly optimized
for implementation, FPGAs can even outperform VPUs for CNN tasks in terms of efficiency (bits/s/W)
[141]. Following requirement LZ-OBC-SYS-005, for a team like Lunar Zebro, the knowledge and time
investment required for implementing CNNs onto FPGA structures might not be available.

Moreover, the increased efficiency (measured in bits/s/W) of FPGAs comes at the expense of higher
power consumption when compared to the Myriad X VPU, as reported by Leon et al. [141]. As dis-
cussed in the description of the EPS in section 2.1, it is observed that power constraints are more
stringent in other extraterrestrial rover designs, largely due to the prevalent use of batteries in parallel
configurations [28, 29]. This poses tighter constraints on the peak power draw, meaning that stricter
power requirements should be considered.

Furthermore, in the work by Leon et al. [142], tests were performed on the ZYNQ 7020 FPGA, the
same board as the first generation of Lunar Zebro will house. Leon et al. [142] compare this FPGA
with the Myriad 2 for CNN ship detection, running a 6-layer network with 132,000 parameters to detect
ships on 1024 x 1024 RGB and FP16 images. Comparing this network to the SOTA (rock) segmen-
tation networks in section 2.2, MultiResUNet has 7,262,750 parameters and a much more complex
architecture. More lightweight UNet variations for rock segmentation still have 1,939,170 parameters
[143].

For the ship segmentation task ’almost all the chip resources’ of the ZYNQ 7020 are required for infer-
ence [141]. Knowing that the size of the tested CNN is much smaller than the SOTA rock segmentation
algorithms, this means that more resources would be required than the ZYNQ 7020 can offer, espe-
cially considering requirement LZ-OBCA-OPER-003, in which it is stated that resources should be kept
available for other operations. Optimizing the Convolutional Neural Network (CNN) implementation to
meet specific constraints is deemed beyond the scope of this project.

Figure 3.5: Comparison of 4 of the platforms on 5 aspects: development time (t), development difficulty (d), cost (c), flexibility (
f ), throughput (p) [91]

In conclusion, the higher power usage, resource demands, and notably extensive optimization time
present significant drawbacks when considering the FPGA design option. Compared to the XE2 board,
these factors render FPGA less favorable or, at the very least, beyond the current scope.

A SBC, with an Additional TPU Board
In the work by Ostrowski et al. [144], the Coral USB, equipped with the EdgeTPU, demonstrates com-
petitive inference times when compared to the Myriad VPU, particularly with the CNN MobileNet. The
Coral USB also shows advantages in power efficiency, requiring less energy in both idle and peak
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power states [144]. Despite these benefits, a significant concern arises with the Coral TPU regarding
its accuracy. The observed loss of accuracy [144] is a critical drawback, primarily attributed to the
mandatory 8-bit representation on the Edge TPU [145]. This quantization step by definition leads to a
loss of precision and accuracy. While the TensorFlow Lite compatibility facilitates the porting of CNNs
to these devices [145], the compromise in accuracy is a substantial issue.

Besides comparing the EdgeTPU on the Coral USB with the Myriad X, at least as important are the de-
signs of the complete boards housing both processors. The Ubotica CogniSat-XE2 [146] is designed to
prioritize low-power usage, a critical feature for deployment in energy-constrained environments such
as small rovers. In contrast, NASA’s SpaceCube Edge TPU SmallSat Card [93], housing three coral
Edge TPUs, while offering high inference speed and redundancy through its multiple Edge TPUs, does
not explicitly emphasize low-power and low-energy usage to the same extent, making it less ideal for
applications where energy availability is a limiting factor.

Due to the accuracy compromise of the Edge TPU and most importantly due to the lower power en-
velope of the XE2 board, the focus is shifted to the XE2 housing the Myriad X VPU, which provides a
balance of power efficiency, inference speed, and maintains the high accuracy standards required for
the project’s success.

A SBC, with an Additional VPU Board
In the discussions of the SoC FPGA and TPU options, it was shown that the performance of the Myriad
X VPU is competitive with those design options. However, besides its specialization in CNNs, which is
of special interest to Lunar Zebro anyway, the ease of implementation of CNNs onto the Myriad X is a
huge advantage to a teamwith constrained engineering time. Moreover, Ubotica’s interest in supporting
the Lunar Zebro mission through help with implementation and possibly financially is another argument
to make for the consideration of this hardware for enabling AI processes on board Lunar Zebro.

3.2.2. Considered Hardware
The two considered design options are thus determined to be:

1. A SBC
2. A SBC, with an Additional VPU Board

The hardware evaluation in this thesis initially revolves around two boards: the Xiphos Q7S, which will
function as the OBC in the first generation of Lunar Zebro, and the CogniSat XE2 board. These boards
are used as a baseline for testing, and to set up initial budgets for the requirements in subsection 3.1.3.
Together, these systems allow for a comparative assessment between traditional computing and AI-
accelerated processing.

The Xiphos Q7S houses a FPGA, but this will not be considered for the implementation of the DL
algorithms, as explained in the foregoing subsection. However, the FPGA on the Q7S does give the
Lunar Zebro to implement other algorithms efficiently in the coming years of development. Only the PS
of the Zynq FPGA is considered for running the DL algorithms. Both devices are able to run Linux O/S.

3.2.3. Available Memory
Having conceived the design options, the available memory for operations onboard one rover shall
be determined. For this, the memory resources of the Q7S are taken as a starting point for the first
iteration of the design.

Non-volatile Memory
The Xilinx Xiphos Q7s module has two MicroSD slots, each capable of storing up to 32 GB. To ensure
data reliability, data can be saved in two- or threefold (see Figure 4.12). This redundancy strategy
guards against potential corruption or loss, bolstering the rover’s resilience in the challenging lunar en-
vironment and minimizing risks associated with storage failure during its mission.

Following standard protocols for the CogniSat XE2 platform, the non-volatile memory of the XE2 board
is left unutilized, except for storing essential firmware required for the operation of the board itself.
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Random Access Memory
The Xilinx Xiphos Q7S has two independent Low-Power Double Data Rate (LPDDR) RAM chips, to-
gether summing up to 512 MB, taking into account the RAM space required for ECC. Without ECC, 768
MB RAM is available. For the design option including the CogniSat XE2 board, the object detection,
FDIR and part of the mission planning task are executed on the XE2 board. Therefore RAM of the
Xilinx Xiphos Q7s will not be loaded as heavily.

Flash Memory
There are two QSPI Flash chips on the Xilinx Xiphos Q7s, each housing 128 MB. This type of memory is
often used for storing firmware or other data that needs to be persistently stored and accessed quickly.



4
Detailed Design

The detailed design of the OBCA is discussed in this chapter. This entails determining the required extra
mass for the design option with AI-accelerator and the cost to bring it to the Moon, which is described in
section 4.1. Furthermore, the data bus for the rover is designed in section 4.2, taking into account the
flow of data and the requirements stated. Furthermore, the different algorithms on board are worked
out in detail in section 4.3, and the relevant specifications of these algorithms for the OBCA design
are determined. Finally, the effects of the radiation environment are studied in section 4.4, highlighting
the consequences for the OBCA and the possible measures that can be taken for the different design
options.

4.1. Mass and Cost Increase of AI-accelerator
For a design option with an extra board such as the design option with AI-accelerator, the size, mass
and cost increase of the complete rover should be estimated. For these estimations, the CogniSat XE2
board is considered as the extra board.

Mass
The first generation of Lunar Zebro is designed as compactly as possible, meaning that additional hard-
ware would require a structural extension to the rover’s chassis, designed to accommodate the board
with a clearance margin of 5 mm on all sides. This extension is constructed from 2 mm thick aluminum.
The precise dimensions of the extension, approximately 109 x 108 x 23.5 mm, are determined based
on the board’s dimensions and the additional clearance. The calculation of the mass of this aluminum
extension is calculated by considering the extra required surface area to cover the new hardware (as
indicated in red in Figure 4.1) and by utilizing the known density of aluminum, which is approximately
2.7 g/cm³. The result of this calculation indicates an estimated mass for the chassis extension of around
183.5 grams.

Figure 4.1: A depiction of the required additional volume for the XE2 accelerator.

To secure the XE2 board, four M4 aluminum fasteners are taken into account, which could be attached
to the fastening mechanism of the main OBC. These fasteners would add up to a mass of 8 (4× 2)
grams [147].

45
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Finally, extra cabling would be required; an Ethernet cable and a power cable. Both cables are as-
sumed to be 10 cm in length. These cables add an estimated 30 grams in mass.

In conclusion, including the 80 grams of the board itself [11], the additional AI-accelerator would require
a total extra mass of approximately 300 g.

Cost
The maximum extra cost for bringing the AI-accelerator is estimated at $400,000. A small portion of
this is attributed to the actual board cost, while the majority is the consequence of the added mass of
the board and surrounding chassis material.

Table 4.1: Additional mass and cost required per rover for the design option with the CogniSat XE2

Extra Mass (g) Extra Cost ($)

300 400,000

4.2. Data Bus
Following requirement LZ-OBC-INT-011, all subsystems have to be connected to themainOBC through
RS485 communication lines. Therefore, the data bus of the rover is designed with RS485 communica-
tion lines between the SBC and every subsystem, except the VPU.

Figure 4.2 illustrates one of the data buses (data bus 1). The SBC serves as the primary communication
node, initiating data exchange with three distinct slave units; the PPU, BMS and motor drivers. Each
slave device is connected to the SBC via a dedicated ’Select’ line, enabling the SBC to individually
address each device without signal collision. The data exchange between the SBC and the peripheral
devices is asynchronous. This means that each data packet is self-contained with distinct start and stop
indicators, allowing the receiver to process data without the need for synchronization to a common clock
signal.

Figure 4.2: A schematic of one of the data busses, following the RS485 data bus convention.

The different data buses are depicted in Table 4.2. Bus 1 to 4 are RS485 data buses, while the red-
highlighted fifth data bus is not. This bus will be described hereafter. Firstly, for the design of the data
bus, the aim was to have the minimum amount of data buses. This leads to lower mass, required power,
system complexity and thus increased reliability. The first data bus is really aimed for smooth motor
driver control and powering. This is a continuous process, which should function simultaneously with
other processes as well, therefore this needs a separate data bus. The second data bus is for retrieval
of data and images from the SHRIMP cameras and payload.
Due to the redundant data bus connection between the SBC and the BMS, the PPU app on the SBC
will continue to be in charge of this communication in the event that the PPU fails.

The fourth data bus could be merged with the second but is kept separate to allow for overruling com-
mands from a ground station or human operators on the Moon. Since the static software cycle includes
set moments for communication between rovers, this communication bus is only for emergency over-
rules. A separate connection is put into place between the PPU and Communication subsystem so
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that the PPU could command the communications system to send out important data to other swarm
members in case of failure of the OBC.

Table 4.2: An oversight of all data buses on board Lunar Zebro. Inspired by [26]

Data bus Connected Subsystems

1 MCU, PPU, BMS, Motor Drivers of LMS
2 MCU, SHRIMP, payload
3 MCU, PPU
4 MCU, Comms
5 PPU, Comms
6 MCU, VPU

SBC-VPU Board Connection
The main connection between the SBC and CogniSat XE2 can only be either a USB connection or an
Ethernet connection. Ethernet is most commonly used in the space industry, according to professionals
at Ubotica. Ubotica therefore demanded an Ethernet connection as represented in requirement LZ-
OBCA-SH-019.
Several secondary connections can be implemented. However, the Q7S board does not have GPIO
pins to directly connect these connections to. Therefore, for all the following connections, an external
interface connector would be required, introducing more complexity to the system. It is up to Lunar
Zebro to decide if the benefits that will be described here outweigh the time investment they will cost.

The following connections should be considered:

1. Controller Area Network (CAN): A CAN interface would allow for communication of the following
relevant information and commands:

• The average temperature calculated from the 4 integrated sensors in the XE2.
• Self test results indicating the status of the critical subcomponents.
• Board Power.
• Trigger soft reset.

2. Heartbeat connection through GPIO pins.
3. Direct Latchup interrupt though GPIO pins.
4. Enable lines through GPIO pins. These allow for direct command of a soft reset of the board.

Although it is strongly advised to have a CAN connection to be able to read board power, request tem-
perature and receive self-test results, the OBCA could function without it. The XE2 is self-sufficient, as
it will reboot itself when a latch-up or critical SEU is detected. At the very low occurrence rate of SEUs,
this can be considered not to be a problem. Moreover, the OBC can infer that a SEU has occurred
when a reset takes place. However, for scientific purposes, more detailed data about the cause of the
reset might be interesting.

Similar considerations can be made for the other GPIO connections. As the XE2 board is self-sufficient,
the OBCA can function without these connections.

As a final note, when none of these connections is available, then soft resets of the XE2 will not be
possible. Therefore, PPU will need to cycle the power delivered to the XE2, which is slower than a soft
reset. However, as will be discussed in subsection 6.2.2, when the XE2 is taken on board the mission,
time will not be a constraint.

In Figure 4.3 all data and power connections to the OBCA structure with XE2 attached are displayed.
It is shown that the SBC and XE2 are connected through both Ethernet and CAN. Moreover, the SBC
and PPU are connected to four and three RS485 buses, respectively.



4.2. Data Bus 48

In the figure, RS485 transceiver Integrated Circuits (ICs) are indicated by the black diamonds. A
transceiver IC for RS485 is a component that integrates both a transmitter and a receiver for serial
data into a single module. It is responsible for converting the digital data from the SBC into RS485-
compliant electrical signals, and vice versa. Because both devices have built-in RS485 transceivers,
they have to be placed externally, but as close as possible to both the SBC and the PPU. The dotted
lines in the figure indicate the possibility of including the CAN and GPIO connections discussed above.

Figure 4.3: Schematic of all data connections and buses & power connections of the SBC and XE2. The black diamonds
indicate RS485 transceivers. The dotted line indicates possible connections.

Again, taking the Xiphos Q7s as an exampular SBC, the Xiphos Q7s with all its important features
and interfaces are indicated in Figure 4.4 [30]. The power distribution system of Lunar Zebro will
be connected to the power input of the Q7s. Moreover, the RS485 transceivers and buses can be
connected to the mezzanine connectors.

Figure 4.4: The Xiphos Q7s with important features and interfaces indicated [30]

The actual connection interfaces on the XE2 are depicted in Figure 4.5 [148]. The Ethernet connection
is marked in green, whilst the CAN interface can be made with pins 1 and 3 of the H2 header. To
select an Ethernet connection, Jumper (JMP)4 should not be mounted. Moreover, the JMP1 shall not
be mounted for the board to be powered via H1/H2.
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Figure 4.5: XE2 with interfaces and functional blocks highlighted. The two primary data transfer interfaces are marked in
green: USB and Ethernet. [148]

The exact connector pins for both CAN and the power connection are indicated by the blue and red
boxes in Figure 4.6 [148], respectively. The XE2 has a built-in CAN controller with integrated transceiver
[148].

Figure 4.6: The relevant connector pins on the XE2 identified. The power pins are indicated in red and the CAN connector pins
in blue. Edited from [148].

4.3. Software Design
In subsection 3.1.5, the operational cycle of the OBC of the rover was discussed. The length of time
interval t is an important consideration, as this determines how often the operational cycle needs to take
place. Therefore, it is sizing for the required data and energy budgets of the OBC setup. The length of
this cycle and the relevant assumptions are discussed in subsection 3.1.4. The different tasks of the
operational cycle are outlined in this section.

4.3.1. Nominal Operations
In Figure 2.6 it was shown that different applications will run on the OBC. However, besides these
specific applications, the OBC will also need to perform basic tasks, such as task management and
distribution of data. These tasks are regarded as ’main processor software’ and the power required for
these tasks falls under ’typical’ or ’nominal’ on relevant data sheets [30]. Therefore, the central OBC is
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assumed to require 2 W at all times, for all basic operations.

The required firmware for these operations is assumed to require 10 MB of Flash storage. This is a
multiple of the required firmware storage on other missions Ubotica Technologies is involved in, to leave
space for unoptimized firmware.

4.3.2. Hazard Detection
Following the research objectives, the specifications of the hazard detection algorithmwill be researched
and discussed in chapter 5. The exact specifications will be summarized in subsection 6.1.1.

4.3.3. Path Planning
As described in section 2.1, based on earlier research [39, 38] the APF method is assumed for path
planning.

• Duration: According to the path planning algorithm research for Lunar Zebro by Manteaux [39],
a feasible assumption would be to execute the path planning algorithm within 1 s on the Xilinx
Xiphos Q7s. Tests were performed with a Raspberry Pi 4 [149], with a clock speed of 1.5GHz.
This is twice as high as the 677 MHz clock speed of the ARMCortex A9 processors of the Xiphose
Q7s, meaning that a delay of at least two times the inference time should be assumed [30]. The
time required to recompute a path from one image was measured to be about 0.025 s. Therefore,
the duration for this algorithm will be set at a maximum of 1 second. This requirement is thus
easily reached by a OBC like the Q7s.

• Power: For this period the Xiphos OBC is assumed to have the same power as the rock detection
algorithm when executed on the main OBC. This is a conservative estimate, as the path planning
algorithm is less computationally complex.

• Flash: Similarly, the required Flash memory will be much smaller than that of the convolutional
segmentation network. The path planning algorithm is assumed to fit within one-tenth of the
required data storage for the segmentation network: 3 MB.

Table 4.3: Required resources for the path planning algorithm.

Criterion Quantity

Duration 1 s
Power 3.06 W
Flash 3 MByte

4.3.4. FDIR for other subsystems
FDIR can be aimed towards faults in the OBC itself, or in other subsystems. In this section, the focus
is on FDIR for other subsystems. On board such a constrained rover, it is not realistic to measure
more than the temperature and voltage of a subsystem. Fault detection on the housekeeping data on
a nano-rover can be implemented in different ways, in order of increasing complexity:

• Classic thresholding methods: predefined upper and lower limits trigger fault handling proce-
dures.

• Statistical methods: Utilize statistical analysis to identify deviations from typical operational pat-
terns. This includes techniques like standard deviation analysis for identifying outliers, regression
analysis to understand relationships between different operational parameters, and time-series
analysis for trend identification.

Statistical methods can help to detect faults sooner, and therefore researching the possibility of adding
this feature to Lunar Zebro is of interest. Figure 4.7 [150] depict two different types of anomalies,
amplitude and shape anomalies. Shape anomalies are hard to detect with classic methods, but statisti-
cal methods can help detect such faults earlier. Murphy et al. [6] discuss the possibilities for AI-based
FDIR-related tasks for space applications. Long Short-TermMemory (LSTM) autoencoders were found
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to be a useful method for detecting anomalies in spacecraft telemetry. LSTM networks are a type of
Recurrent Neural Networks (RNNs). They have feedforward and -back connections, distinguishing this
network from regular RNNs. This method definitely needs further improvement from the SOTA, as it
also still detects false positives [151]. However, to research the addition of this capability to Lunar
Zebro, assuming the use of comparable LSTMs is of interest.

Figure 4.7: Different types of anomalies detecting through time-series analysis: a) anomaly in amplitude, and b) anomaly in
shape [150]

A more recent development is the use of Temporal Convolutional Networks (TCNs). This type of net-
work allows for time-series-based analysis with convolutional layers, even for anomaly detection capa-
bilities [152]. This type of network is of special interest when researching the possible use of a VPU
like the Myriad X, as this type of network has been run on the Myriad X before. During those tests
the Myriad X processed a data rate of 94.96 kbit/s as shared by B. Guesmi of Ubotica Technologies
(personal communication, December 2023).

Table 4.4: Size of a housekeeping package for one subsystem

Data Size [Bytes]

Subsystem ID 4
Status 4
Temperature/Voltage 4
Total 12

• Non-volatile memory: To be able to perform deep learning-based FDIR on the housekeeping
data, a series of data points shall be saved for the relevant subsystems. In section 2.1 it was
discussed that there are 7 main subsystems from which we can expect housekeeping data. In
theory, the OBC could receive both temperature and Voltage data from all those subsystems.
The first mission shares one form of housekeeping data for some of its subsystems, so this is a
conservative estimate.
Although sharing one data point per subsystem per minute is a conservative estimate as the first
mission will only save housekeeping data per subsystem once per 5 minutes, this will be assumed.
One data point would consist of subsystem ID (4 bytes), status (4 bytes), temperature (4 bytes)
and voltage (4 bytes), all assuming Floating-Point 32 (FP32) accuracy. It is assumed that after
three days, the data can be removed from memory. Therefore the required non-volatile storage
can be assumed to be:

SHK = Nby tes × f ×Tstor ag e ×Nsubs y stems = 16× 1

60
× (3∗60∗60∗24)×7 = 483kB (4.1)
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• Flash memory: The network required for deep learning-based FDIR can be assumed to be half
the size or smaller than the deep convolutional network required for image segmentation. The
required flash storage is therefore assumed to be 14.5 MB.

• Duration: For housekeeping data, the size of one data package is summarized in Table 4.4.
Assuming this package size, while considering 100 data points per inference, and taking into ac-
count the data rate at which the Myriad can process features with a TCN, the inference time on
the Myriad can be found to be 12×100∗8

94690 = 0.101 s.

This inference time is about 1/20th of the inference time required for hazard detection on the
Myriad X. This ratio is also taken to approximate the inference time for the TCN on the CPU.
Approximately the same number is found for the ratio between CNN-based hazard detection on
the Myriad X and CNN-based hazard detection on the CPU. The inference time on the CPU for
AI-based FDIR will thus be assumed to be 2.8 s per variable, per subsystem. Although this is a
rough estimation, this shows that the order of magnitude will be correct.

• Power: Although the duration for inference with the FDIR network is much shorter than for haz-
ard detection, the power consumption during this period will not differ that much. Because of the
simultaneous convolutional process of the segmentation network, a slightly higher core utilisation
can be expected, but for the purpose of conservative estimation, the power consumption is as-
sumed to be equal to that during inference for hazard detection. (3.06 W without XE2 and 4.84 W
with XE2).

• Inference frequency: it is unrealistic to assume that the FDIR analysis will need to be run for
every subsystem during every operational cycle. Therefore, it is assumed that the analysis is run
on two subsystems every operational cycle.

Table 4.5: Required resources for deep learning-based FDIR.

Criterion Quantity

Non-volatile memory 483 kB

Duration 2.8 s on Raspberry Pi 2 (RP2) and 0.10 s on the XE2
Flash 14.5 MB

Power 3.06 W without XE2 or 4.84 W with XE2
Inference Frequency 2 subsystems per cycle

4.3.5. Communication
Given its low-power and space-proven design [135], the ZigBee protocol and communication system
are assumed for the intra-swarm communication. In this section, the ZigBee protocol specifications
and its implications for the OBCA design are discussed.

The ZigBee protocol is designed upon the IEEE802.15.4-2003 and IEEE802.15.4-2006 MAC protocol
[153].

Package Overhead
The data package overhead is of importance because it will shape the quantities of data that need to be
transmitted between the swarm. Moreover, this will put requirements on the data bus within the rover
as well as the capacity of the OBCA to handle this data.

Several layers contribute to the overhead in each transmitted message [154, 155, 156], as depicted in
Figure 4.8 [154]:

• Preamble Sequence (4 Bytes): Bits sequence for receiver clock synchronization with the sender,
indicating the beginning of the frame.

• Start of Frame Delimiter (SFD) (1 Byte): Unique pattern signaling the start of the frame.
• PHY Header (PHR) (1 Byte): Contains frame processing information, such as frame length.
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Figure 4.8: Schematic view of the IEEE 802.15.4 packet format [154]

• Frame Control Field (FCF) (2 Bytes): Information on MAC frame type, security, acknowledg-
ment, and PAN transmission.

• Sequence Number (1 Byte): Tracks frame order and aids in acknowledgment of lost frames.
• Address Information (0 to 20 Bytes): Source and destination addresses, variable in length.
• Frame Payload (n Bytes): Actual transmitted data, variable in size.
• Frame Check Sequence (FCS) (2 Bytes): Checksum for error detection to verify frame integrity.

In total, a worst-case estimate of approximately 31 bytes is required to transmit one message. The
IEEE 802.15.4 protocol supports transmission of data packets up to a size of 127 Bytes [157]. Thus,
an overhead of approximately 31/127 ≈ 25% should be accounted for.

In section 6.5, the assumed communication workflow within the allotted budgets will be validated.

4.3.6. Operational Modes
Before explaining the power tests performed during the different operations of the RP2 and CogniSat
XE2 accelerator, it is important to have a clear definition of the different operational modes of both
boards.
The main OBC operates primarily in two modes: Idle and Operational. During Idle mode, the board
remains dormant, consuming minimal power as it awaits tasks or instructions. In contrast, Operational
mode engages the board in active task execution, with power consumption varying according to the
complexity of the assigned tasks.

Unique to the accelerator is the Warm-Boot mode, which offers a distinct advantage in system re-
sponsiveness. In this mode, the accelerator operates at a very low-power state while retaining crucial
firmware and inference model information within its memory. By circumventing the need for repetitive
loading of firmware and model data during startup, the Warm-Boot mode significantly reduces booting
time, ensuring swift, yet low-power operation. The main disadvantage of the Warm-Boot mode is that
the board will require power constantly, although less than in Idle mode. The exact possibilities and
power consumption in power mode are further discussed in Figure 6.1.

Figure 4.9: The inference pipeline for the setup with only the main OBC/RP2 (blue) and for the setup with the XE2 (green).
The red-framed boxes indicate that this part of the pipeline could be bypassed by using warm-boot mode.

4.3.7. Swarming Operations
When designing the OBCA of an individual in a swarm, one has to consider the requirements that
stem from a global objective top-down. In other words, one needs to decide what the whole swarm
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needs to be capable of and consider the consequences for the design of the individual as is depicted
in Figure 4.10. Vice versa, the individual might constrain the possibilities of the global system, thus
constraints can be said to flow bottom-up. These requirements and constraints make it so important to
go through an iterative design process of the swarm and the individual. The most important considera-
tions regarding those constraints and requirements are the robustness of the individual, the provision
of the required tools and sensors, scalability of the swarm, minimal mass and size of the individual
robots, centralization considerations, and overarching swarm-level control.

Figure 4.10: Considerations about the swarm lay requirements on the individual and its OBC, where the possibilities for the
individual constrain the opportunities for the swarm. Inspired by [158].

Hamann and Wörn [125] provide a detailed mathematical framework for modeling the behavior of
robotic swarms. The model is based on concepts from statistical physics and uses the Langevin and
Fokker-Planck equations to describe swarm motion.

1. Langevin Equation: This equation models the motion of a single robot, taking into account both
deterministic and random components of movement. The deterministic part is influenced by en-
vironmental factors, while the random component represents unpredictable fluctuations.

R′(t ) =−A(R(t ), t )+B(R(t ), t )F(t ) (4.2)

Here, R(t ) represents the robot’s position at time t , A is a function representing deterministic
motion, B represents random motion, and F(t ) is a random force.

2. Fokker-Planck Equation: This equation extends the model to a macroscopic level, describing the
probabilistic behavior of the entire swarm.

∂ρ(r, t )

∂t
=−∇(A(r, t )ρ(r, t ))+ 1

2
Q∇2 (

B 2(r, t )ρ(r, t )
)

(4.3)

In this equation, ρ(r, t ) is the probability density of finding a robot at a specific position r and time
t , and Q is a parameter representing displacement due to collisions.

These equations capture the core dynamics of swarm movement, displaying deterministic and random
factors. The model can be adapted for various swarm robotics scenarios by modifying the functions
A and B based on specific algorithmic strategies and environmental interactions. This framework is
useful for predicting and analyzing the collective behavior of robotic swarms, and the complexity of the
computations involved is dependent on the specific functions and parameters chosen for A and B .

Function A can be modeled using attraction-repulsion functions [159], that can be obtained from the
work of Kim et al. [160]. In this work, the APF path planning concept is extrapolated to function in a
robotic swarm. In the swarm, each maneuver minimizes the overall system’s artificial potential energy
[160]. Simply put; attraction dominates at larger distances to ensure the swarm’s cohesion, while re-
pulsion prevents collision at shorter distances. When the swarm is designed and tested, an equilibrium
distance shall be carefully chosen.
Furthermore, the total potential U o

i
g can be calculated as in Equation 4.4, where the potential for ob-

stacle avoidance U o
i and the potential for group migration U g

i can simply be added [160].
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U og
i =U o

i +U g
i (4.4)

Thus, simple attraction and repulsion functions can be used to let the swarm explore coherently, leading
to what is called emergent coordination [126]; complex swarm behaviors caused by simple local rules.
This makes swarming a relatively small addition to the APF path planning algorithms as designed by
Gelling and Manteaux [38, 39]. Both Gelling and Manteaux already discussed the extrapolation of the
APF algorithm to a more dynamic environment with moving individuals for Lunar Zebro.

Centralized versus Decentralized Swarm Design
The implementation of the swarm is not set for the next generation of Lunar Zebro. One of the main
considerations involves choosing between a centralized [161, 160] or decentralized swarm structure
directly impacts the OBC design. A decentralized system, more fitting for lunar exploration due to
its adaptability and resilience [162], requires OBCAs capable of independent decision-making and ef-
fective local communication [162]. In a decentralized swarm, rovers are designed homogeneously,
whereas a centralized system involves different rover, and possibly different OBCA designs, following
the requirement flow-down as depicted in Figure 4.10.

There are also many ways for the swarm to keep track of the locations of other individuals in the swarm,
which is essential to guard the cohesion and alignment [163] of the swarm. This can be done visually,
or with other complex sensors. For Lunar Zebro this will happen through direct intra-swarm communi-
cation, meaning that individuals will share their locations with their closest neighbors. This will require
the rovers to send out signals periodically, such that other rovers can pick up these locations. Individ-
uals will be able to determine their own locations with a set of Inertial Measurement Units (IMUs) [39].

(a) A centralized swarm (b) A decentralized swarm

Figure 4.11: Communication diagrams of a centralized versus decentralized swarm design

4.4. Radiation Risk Assessment
In this section a preliminary radiation analysis is performed for he two design options identified in this
work. The devices that need consideration are the ARM Cortex A9 PS of the Zynq 7020 and the Myriad
X accelerator. The results of this analysis are expected to provide the necessary background to de-
velop a strategy to ensure the reliability of the computational systems in the lunar radiation environment.
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4.4.1. Single Event Upsets
The radiation environment which will be experienced by the Lunar Zebro nano-rover in its 14-day mis-
sion on the Moon surface has been modelled by SPace ENVironment Information System (SPENVIS)
[164]. All SPENVIS settings are depicted in Appendix B.

In SPENVIS, a lunar surface operation can be best approximated by a ’near-Earth interplanetary’ or-
bit. During solar maxima, the SEU rates increase, as the flux of high-energy particles in the space
environment increases. As this radiation analysis should analyze the worst-case scenario, the mission
start date is set at a solar maximum; the first of July, 2025 [165]. The distance to the Sun is set at 1
Astronomical Unit (AU). The duration of the mission is set equal to the active period of the OBCA on
the Moon; 14 days.

The CREME-96 model [166] is used to simulate solar particles, using its worst week settings. For the
solar particle mission fluences, the ESP-PSYCHIC model [167] is used at a 95% confidence level, with
no magnetic shielding. GCRs are simulated by the ISO-15390 standard model [168].

Lunar Zebro’s chassis is approximated as a 5-sided box of 1.5 mm thick Aluminum. Therefore, the
shielded flux is simulated with a total thickness setting of 0.5 g/cm2. Only solar protons are taken into
consideration, not trapped protons and trapped electrons, as these exist in the Near-Earth environment.

Finally, the Long-term SEU estimations can be determined in SPENVIS. For this, the shielding thick-
ness is thus set to 0.15 cm. The device material is set to SI (SRIM2008). Finally, SPENVIS requires
the shape-sensitive volume of the devices under analysis.

The shape-sensitive volume consists of the X, Y & Z dimensions. The X and Y dimensions can be
determined by the SEU cross-section. The sensitive volume in semiconductor devices is influenced by
the properties of the silicon wafer primarily because it determines the thickness and material compo-
sition of the active region where charge collection and interaction with ionizing particles occur. These
properties affect how ionizing particles interact with the material and how charge carriers (electrons and
holes) are generated and transported within it. The exact silicon wafer technology is often not shared
by manufacturers, as is the case for the Myriad X and ARM Cortex A9 technology.
Therefore, a very conservative estimation is used, following research performed at CERN in 1997 [169].
Since then, semiconductor technology advancements have led to the scaling down of feature sizes in
ICs. As technology progresses towards smaller geometries, the physical dimensions of the sensitive
volume in transistors and other semiconductor components decrease. Therefore, the assumed shape-
sensitive volume of 1 µm3 is a very conservative assumption, with SOTA chips being produced at
sub-micron scale (below 100nm) [170].
This leads to an estimated total of 2.9123E-02 upsets pr ocessor−1 for the whole mission duration for the
Myriad X and the ARMCortex A9. For now it is thus ignored that the estimated SEU cross-section of the
Myriad is much lower than that of the ARMCortex A9 used on the Q7s board; σMyriad is 3.95×10−10 cm2/
processor [171].

The ARM Cortex A9 is characterized by a SEU cross-section σARM_A9 of 6.61×10−9 cm2/ processor
[172]. This cross-section is determined by testing the performance of a complete Linux O/S on the
CPU and checking for upsets. Hiemstra and Kirsischian [172] also determined the cross-section for a
video processing algorithm, but the Linux O/S is determined to be more representative, as this will also
be run on Lunar Zebro (requirement LZ-OBCA-PERF-003).

To understand what influence the estimated amount of upsets would have on the operation of the OBCA
during the mission, one should look into the number of bits per device that are vital for proper operation.
In Table 4.6 [173] the division of bits on the Myriad 2 is depicted. The bits in the green rows are con-
sidered crucial for success. A bit flip in the registers could immediately misdirect operations or corrupt
ongoing processes. Since registers are involved in nearly all CPU operations, their integrity is critical.
SEUs in cache memory can corrupt data that the CPU is actively using, leading to incorrect computa-
tions or operations. The total amount of critical bits on the Myriad adds up to 5.444 MB (assuming 15
32-bit registers), whilst the total amount of available Bytes counts up to 139.060 MB.



4.4. Radiation Risk Assessment 57

For the ARM Cortex A9, all bits are considered critical for operation, as the cross-section was already
determined by looking at upsets during operation of a Linux O/S [172], therefore already ruling out less
critical bits.

Table 4.6: The division of memory and cache on the Myriad 2 [173]

Name Type Mem/data size

Device level
DRAM Memory 134MB

CMX Memory 2MB

LEON OS L1C Cache 74 KB

LEON OS L2C Cache 256 KB

LEON RT L1C Cache 8 KB

LEON RT L2C Cache 32 KB

SHAVE L1C Cache 46 KB

SHAVE L2C Cache 128 KB

USB bulk transfer USB PUY 400 KB

Image resize SHAVE-CMX 614 KB

Data permute SHAVE-CMX 1.5MB

Inference Full system -
Board level

Flash Write-read 82 B

PMU Register read 15regs

SD card Write-read 1 KB

Reset Power cycle -

To account for the division of critical and non-critical bits on the Myriad, the fraction of critical bits can
be used to determine the expected SEUs on critical bits, as in Equation 4.5.

SEUcr i t i cal = SEUtot al ×
Nbi t s,cr i t i cal

Nbi t s,tot al
(4.5)

With SEUcr i t i cal the amount of critical upsets, SEUtot al the total amount of upsets as determined through
SPENVIS, and Nbi t s,cr i t i cal

Nbi t s,tot al
the fraction of critical bits of the total amount of bits on the Myriad device. This

leads to an upset rate of 0.00114 pr ocessor−1 for the Myriad.

Finally, not all SEUs that occur are as important. As described by Du et al. [174], errors can be classified
into three error types:

1. Data error: The observed or computed value was different from the established standard.
2. Program Interrupt: The application software’s process was interrupted but subsequently resumed

through a software-initiated reset.
3. Time-out (Delay): The testing program failed to generate the anticipated outcome within the allo-

cated time frame.

Du et al. [174] performed soft error experiments on the Xilinx Zynq-7000 SoC, to understand how fre-
quently the different types of errors occur. Table 4.7 [174] shows it was found that 13/19 errors were
program interrupts or time-outs, rather than data errors. Data errors are less crucial as flipped bits in
the imaging data or collected data are not a direct threat to the operation of the rover. Therefore, 13/19
errors shall be considered critical for mission operation.

During the complete 14-day mission, the Myriad will thus experience 0.001025 upsets, while the ARM
cortex will experience 0.02912 upsets per processor. Since there are two ARM Cortex A9 processors
on board, 0.05824 upsets can be expected on the total PS of the Zynq 7020.



4.4. Radiation Risk Assessment 58

Table 4.7: Occurences of different error types during radiation tests on Xilinx Zynq-7000 SoC [174]

Blocks
Data
errors

Program
interrupt

Time-out

Direct Memory Access 6 7 6
Register 0 1 0
Quad-SPI 2 0 0

SEU handling strategy
To accurately determine the fault handling strategy, the upset rates determined in the last section are
multiplied by a factor of ten, to make sure that worst-case scenarios are accounted for. In this case,
the Myriad will have to cope with about 0.01 upset for the mission duration, and the ARM Cortex PS
about 0.5. This is a very rough overestimation, as a safety factor of 10 is applied, and the shielding of
the Moon is also not accounted for.

First of all, from the upset rates it can be seen that the resets will not be required many times during
the operational period on the Moon. This assures that the rovers’ operational cycle will not be broken
up very frequently. Consequently, the rovers will not lose each other out of sight due to reboots.

When using a multicore setup such as the dual-core ARM Cortex A9 that the Zynq 7020 houses, roll-
back recovery is a useful software hardening technique for tasks for which faults are unacceptable
[175]. In this test, each core monitors the other’s execution. If an error is detected, the system reverts
to a previously saved, error-free state. This technique ensures that even if one core experiences a fault,
such as a SEU, the system can recover by using the backup state from the other core [175]. However,
if it goes through all the checkpoints and still cannot find a correct, error-free state, the software then
needs to take a different recovery action. This might involve resetting the system entirely and restarting
the running program, as a last resort to address the fault [175]. For a mission like Lunar Zebro, with its
set operational cycles, this complete reset would mean the loss of one operational cycle. At the deter-
mined SEU rate for the different devices in the OBCA, this will not lead to large distances between the
rovers.

Cui et al. [175] proposed to use Hsiao code [176] to enhance the resistance of on-chip memory against
SEUs. This code can correct single-bit errors and detect two-bit errors in the data. Hsiao code does
not require data to be saved multiple times. It is a type of error-correcting code designed to enhance
memory reliability by detecting and correcting errors in a single set of data. Hsiao code works by adding
extra bits (parity bits) to the original data. These added bits help in identifying and correcting single-bit
errors and in detecting two-bit errors, without the need to duplicate the entire data set. This makes it a
memory-efficient way to increase data integrity, especially in environments prone to radiation-induced
errors.

For the computationally heavy CNN- and TCN-operations, rollback recovery is not as suitable, as the
algorithms cannot be run simultaneously on a different device than the Myriad. However, it is important
to note that these algorithms are reloaded onto the XE2 every cycle, as the firmware and data are
saved on non-volatile parts of the Q7S which are less susceptible to SEUs than the volatile parts are
[177]. The firmware and data will thus only be present on the Myriad for a short moment, making
rollback methods during inference less important. However, methods can be implemented to verify
that bitflips have not taken place in storage. For this, algorithms can be stored in 3-fold as depicted
in Figure 4.12. Before every upload of the algorithms to the Myriad or CPU, the different copies are
compared and integrity checked with methods like MD5 Checksum [178]. Lamorie and Ricci describe
how the microSD data is protected even more strongly [179], this confirms the importance of having
data stored on this relatively safe non-volatile memory rather than in RAM for longer periods of time.
For these functions, the non-volatile storage on the main OBC shall allow for the storage of multiple
copies of the dedicated algorithms.

The short inference time of computationally heavy algorithms on the Myriad X makes the design option
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with Myriad more radiation-protected, as the chance that a SEU takes place during inference decreases
with shorter inference time.

Figure 4.12: Data handling scheme of OBCA including Myriad X

4.4.2. Total Ionising Dose
In the context of the Lunar Zebro mission, understanding the TID and its potential effects on electronic
components is vital.

Throughout the SPENVIS simulation, which assumes a start date in July 2025, the radiation environ-
ment during a solar maximum is considered. This conservative approach anticipates that the Lunar
Zebro mission will not coincide with the peak of a solar maximum, taking into account the Prediction
Panel’s prediction of Cycle 25 reaching a maximum of 115 occurring in July 2025, with a range of 105-
125 and the peak occurring between November 2024 and March 2026. A shielding thickness of 1.5
mm thick Aluminum was taken, again simulating the chassis, which can be approximated by a 5-sided
Aluminum box.
For simulating solar particles, the ESP-Prediction of Solar particle Yields for CHaracterizing Integrated
Circuits (PSYCHIC) model with a confidence level setting of 95% was employed. For GCRs, the Inter-
national Organization for Standardization (ISO)-15390 model, an international standard for estimating
radiation effects from GCRs, was utilized. This model accounts for fluctuations in GCR particle intensi-
ties due to changes in solar activity and the heliospheric magnetic field over 22-year cycles.

The TID received during the operational phase of 14 days is depicted as a function of shielding thickness
in Table 4.8. This table provides an overview of the TID expected for different shielding thicknesses
during the 14-day lunar mission.
To assess the suitability of electronic components for the mission, it’s essential to compare the cal-
culated TID values with the tolerance of the devices. Based on previous testing and data [171], the
Movidius Myriad X demonstrated tolerance to a total dose of 14.9 krad (Si) before experiencing failure.
This data suggests that the Myriad X’s tolerance is suitable for short-duration LEO missions.

Based on the NSREC 2018 study [180], the Zynq7000 chips, which are architecturally similar to the
Zynq 7020, exhibited high TID tolerance with minimal parameter degradation (about 5%) and no func-
tional errors at high TID levels. Considering the expected TID of 341 rad with 2 mm aluminum shielding,
the Zynq 7020 is likely to withstand the lunar mission’s TID, making it a suitable choice for the mission’s
requirements.

4.4.3. Latch-ups
In the work by Buckley et al., the Myriad 2 was tested with protons in the 30-200 MeV range [173].
No SEL was recorded during any of the tests. Raimalwala et al. report that during proton testing of
the Xiphos Q8S up to 105 MeV, ’no destructive latch-up events were detected’ [112]. The Q8S is the
follow-up board of the Q7S, and Mission Control proposes to use the Q7S for other missions [181, 112],
suggesting that the company has also tested the board’s latch-up protection for lunar conditions. The
protection of the microSD data storage against latch-ups has been elaborately described in the work of
Lamorie and Ricci [179]. Therefore requirement LZ-OBCA-RAMS-004 is met for both design options.



4.4. Radiation Risk Assessment 60

Table 4.8: Dose-depth table for 14 days of operation on the Moon around a solar maximum.

Depth [Al mm] Dose [rad]

0.05 7766
0.1 4547
0.2 2557
0.3 1775
0.4 1339
0.5 1074
0.6 902
0.8 670
1.0 527
1.5 341
2.0 245
2.5 189
3.0 152
4.0 106
5.0 79
6.0 63
7.0 51
8.0 43
9.0 37
10.0 31



5
Development, Deployment & Resource

Evaluation of CNN for Rock
Segmentation

In this chapter, the tests for determination of the required resources for DL-based hazard detection are
described. In section 5.1, the training of the DL-based segmentation algorithm is discussed, together
with the relevant metrics and datasets. Moreover, the conversion of the images and model for inference
on the hardware are discussed in this section. In section 5.2, the exact method for the tests is outlined.
First of all, the OBC for testing is discussed, after which the test setup and results are discussed.

5.1. Performance Evaluation of Neural Network Inference Across
Hardware Architectures

5.1.1. Metrics
Before delving into the specific metrics used to evaluate the performance of the segmentation network,
the concepts of True Positives (TP), False Negatives (FN), and False Positives (FP) should be under-
stood. These are depicted in Figure 5.1 [182] and outlined as follows:

• True Positives (TP): True Positives refer to instances where the model correctly identifies pixels
as rocks when they indeed are rocks.

• True Negatives (TN): True Negatives are cases where the model accurately identifies non-rock
pixels as such.

• False Negatives (FN): False Negatives occur when the model incorrectly classifies actual rock
pixels as non-rock.

• False Positives (FP): False Positives represent instances where the model incorrectly classifies
non-rock pixels as rocks.

With these definitions in mind, the performance metrics for training and validation of networks can be
discussed:

• Accuracy: Accuracy quantifies the ratio of correctly predicted pixels, encompassing both rock
and non-rock, to the total number of pixels in the dataset. A high accuracy value indicates a higher
degree of correctness in pixel classification, providing an essential baseline understanding of the
model’s performance.

Accuracy = T P +T N

T P +T N +F P +F N
(5.1)
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Figure 5.1: A depiction of True Positives, False Negatives, and False Positives in image segmentation [182]

• Precision: Precision specifically measures the model’s accuracy in predicting rock pixels among
all pixels predicted as rock. It delineates the proportion of correctly identified rock pixels from the
total pixels labeled as rock. A higher precision value signifies fewer false positives, indicating the
network’s ability to minimize misclassifications of non-rock pixels as rocks.

Precision = T P

T P +F P
(5.2)

• Recall: Recall gauges the segmentation network’s ability to capture all actual rock pixels from the
entire set of ground truth rock pixels. It calculates the ratio of correctly predicted rock pixels to the
total number of rock pixels in the dataset. A higher recall value indicates the model’s proficiency
in minimizing missed rock pixels, reducing false negatives in the segmentation output.

Recall = T P

T P +F N
(5.3)

• Intersection over Union (IoU) or Jaccard Index: The Jaccard Index or Intersection over Union
(IoU) metric quantifies the degree of overlap between the predicted segmentation and the ground
truth labels, offering insight into the model’s accuracy in delineating rock regions. It calculates
the ratio of the intersection (correctly predicted rock pixels) to the union (all pixels predicted or
labeled as rock), providing a measure of how well the model’s predictions align with the actual
rock areas.

IoU = Intersection
Union

= TP

TP+FN+FP
(5.4)

• F1 Score: The F1 Score is the harmonic mean of precision and recall, providing a balance be-
tween these two aspects. It is a more general metric used in various classification tasks, not just
limited to object detection or segmentation.

F1 Score = 2× Precision × Recall
Precision + Recall

(5.5)

• Loss: The loss function is a critical component in training the segmentation network and plays
a pivotal role in optimizing the model’s parameters. For this study, the binary cross-entropy loss
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function was employed to quantify the dissimilarity between the predicted and ground truth seg-
mentation masks. This specific loss function is widely utilized in binary classification tasks, in-
cluding pixel-wise segmentation, measuring the divergence between the predicted probability
distribution and the actual binary ground truth labels. The formula for binary cross-entropy loss
is expressed as:

Cross Entropy=− 1

N

N∑
i=1

(
yi · log

(
ŷi

)+ (
1− yi

) · log
(
1− ŷi

))
(5.6)

In this formula, N represents the total number of pixels, yi is the actual ground truth label (binary)
for pixel i indicating rock or non-rock, and ŷi is the predicted probability assigned by the segmen-
tation network for pixel i belonging to the rock class. The binary cross-entropy loss guides the
iterative adjustments of the segmentation model’s parameters during training, aiming to minimize
the error between the predicted probabilities and the true labels.

These evaluation metrics collectively offer a comprehensive framework for assessing the segmentation
network’s performance in identifying and delineating rocks on lunar surfaces.

5.1.2. The Datasets
In this section, two datasets will be highlighted, as they were either used in foregoing research on
DL-based rock segmentation, or used for the inference tests explained later in this chapter. Firstly,
MarsData-V2 [183], because it was used to train different UNet configurations to segment Martian
rocks by Liu et al. [2]. A comparison of these algorithms is discussed in subsection 5.1.3.
Secondly, the Artifical Lunar Landscape Dataset [184], because of its extensiveness and closer com-
parison to actual images taken on the Moon. A closer look at both datasets:

• MarsData-V2: Developed by a consortium of planetary scientists, MarsData-V2 stands as a com-
prehensive collection of high-resolution imagery sourced from the Curiosity mission’s Mastcam
camera between August 2012 and November 2018. This dataset encompasses a rich array
of 8390 annotated images portraying Martian terrains, particularly emphasizing rock formations.
One sample is shown in Figure 5.2 [183]. The MarsData-V2 has been extensively used to train
UNet models successfully for rock identification on Mars [2]. This dataset offers diverse land-
scapes and annotated rock features, enabling models to generalize well to Martian environments.
Only images taken at relatively close shooting distance were used, which can be said to be useful
for a rover like Lunar Zebro, which is close to the ground and will therefore not be able to look
very far in the distance often. Moreover, given that the Lunar Zebro rover replans its route in
each cycle, covering a limited distance, and considering that this planning is impacted by exter-
nal elements, including interactions with other swarm members, the rover should prioritize the
identification of closeby hazards. This can be done by training on a dataset with rocks in the
foreground.

Figure 5.2: An image from the MarsData-V2 dataset, including the ground truth mask [183]
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• Artificial Lunar Landscape: The Lunar Artificial dataset, on the other hand, is a synthetically aug-
mented dataset made explicitly to simulate lunar surface conditions. The dataset consists of 9766
images. Created by a team of astrophysicists in collaboration with space agencies, this dataset
replicates lunar terrain, encompassing varying lighting conditions and surface compositions. It is
tailored with synthetic rock formations specifically designed to mimic lunar rock characteristics, al-
lowing for controlled experiments in a simulated lunar environment. As can be seen in Figure 5.3
[184], the masks in the lunar artificial dataset are 4-fold. The sky (red), surface (black), smaller
rocks (green), and larger rocks (blue) are separately annotated in the masks.

Figure 5.3: An image from the Lunar Artificial Landscape dataset, including the ground truth mask [184]

Both datasets have their advantages and disadvantages. Particularly advantageous to the MarsData-
V2 dataset is the dataset’s emphasis on close-distance images, mirroring the perspective of a nano-
rover, likely to have a limited viewing range. This aspect lends greater realism to the dataset, aligning
with the constraints a nano-rover might face in capturing detailed imagery. Moreover, the fact that this
dataset consists of real images relieves one’s worries about differences between segmented images
and real-life images. Furthermore, segmentation success for this dataset has been proven on Martian
images, even with MultiResUNet. However, despite its strengths, MarsData-V2 also exhibits limita-
tions, primarily stemming from potential domain shift issues when adapting models trained on Martian
landscapes to lunar environments.

In contrast, the Lunar Artificial dataset provides a controlled and synthetic representation of lunar ter-
rains, facilitating systematic experimentation with simulated lunar conditions. This dataset allows re-
searchers to manipulate lighting conditions, surface compositions, and rock formations, providing a
controlled environment for testing. Nonetheless, while Lunar Artificial offers control and flexibility, its
synthetic nature may limit its ability to perfectly emulate the complexities and nuances of actual lunar
landscapes, potentially affecting the model’s generalization to real lunar environments.

Due to these advantages and disadvantages experiments were set up with both datasets. The training
process is discussed in subsection 5.1.5.

Finally, in computer vision, datasets are usually divided into distinct subsets, namely training, testing,
and validation sets. The training set is used to train the model’s parameters through iterative learning.
The test set, separate from the training data, serves as an unseen dataset to evaluate the model’s
performance after training. It gauges the model’s ability to generalize to new, previously unseen data.
The validation set acts as an intermediary subset, aiding in model selection and hyperparameter tuning.
By leveraging these distinct subsets, researchers ensure that the model learns from the training data,
assesses its performance on unseen test data, and fine-tunes its parameters using validation data,
thereby enhancing the model’s robustness and generalization capabilities.

5.1.3. Choice of Segmentation Algorithm
In section 2.2, different methods for hazard detection were outlined. Following requirement LZ-OBCA-
FUN-002, a DL-based segmentation algorithm needs to be chosen. In this section, a comparison of
different options will take place, accompanied by a detailed study of the chosen algorithm.

The U-Net architecture, particularly its advanced variant MultiResUNet, has shown remarkable perfor-
mance in segmentation tasks, crucial for meeting the high accuracy stipulated in LZ-OBCA-FUN-002.
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MultiResUNet, evolving from the standard U-Net, has been specifically designed to address diverse
scales and complexities in images encountered during segmentation tasks. This capability allows it to
capture detailed features like fine textures of rocks as well as larger-scale structures such as craters
and slopes, essential for effective hazard detection on Martian terrain.

Liu et al. conducted a comprehensive study of algorithms for rock segmentation on the MarsData-V2
dataset [185]. As presented in Table 5.1, MultiResUNet outperformed other U-Net variants in precision,
recall, and F1-score, while achieving near-top performance in terms of accuracy on Martian images
[186]. Furthermore, it demonstrated high frame rates (FPS). Moreover, it demonstrated fewer false
negatives when tested on the SynMars dataset, a dataset featuring many small rocks [186], [185]. This
aligns well with requirement LZ-OBCA-FUN-002 to detect rocks larger than 3 cm, underscoring Mul-
tiResUNet’s suitability for this application.

Therefore, based on its demonstrated ability to handle the segmentation of complex and varied terrain
features effectively, MultiResUNet is selected for further inference analysis. Its proficiency in diverse
image scales and contexts, combined with its alignment with LZ-OBCA-FUN-002’s high accuracy re-
quirement, makes it an optimal choice for hazard detection tasks in Martian exploration.

Table 5.1: The Quantitative performance and computational complexity on the MarsData-V2 dataset of 6 U-Net-based
segmentation networks and the best performance of classic method for the same application [2]

Category Methods FPS on MarsData-V2
Quantitative Performance

Acc. (%) Pre. (%) Rec. (%) F1 (%)

Best-performing Classic RKLRR/KLRD N/A 79.48 66.38 71.68 68.93
U-Net [187] 84.7 87.89 84.43 82.26 83.33

Furlán et al. [188] 19.9 85.24 83.57 81.83 82.69
UNet-based NI-U-Net++ [189] 46.9 88.13 87.98 84.59 86.25

UNet++ [190] 52.3 90.06 89.03 88.11 88.57
UNet3+ [191] 42.2 91.85 89.77 88.43 89.10

MultiResUNet [4] 92.8 91.74 90.85 92.16 91.50

The success of MultiResUNet in Martian terrain segmentation suggests its potential for lunar explo-
ration, although there are currently no results for its application on the Moon. Its ability to process
images at multiple resolutions aligns well with the Moon’s varied geological features, like craters and
slopes. Despite the lack of specific lunar application data for MultiResUNet, preliminary tests with
simpler U-Net architectures have shown promising results for lunar terrain [192]. These tests were per-
formed on the Lunar Artificial dataset, with validation IoU scores reaching up to 94%, demonstrating
the adaptability of U-Net architectures to the lunar environment.

Architecturally, the MultiResUNet introduces a novel framework by integrating diverse resolution levels,
crucial for detecting objects of different shapes and sizes [4]. Distinguishing itself fromU-Net (Figure 5.4
[4]), theMultiResUNet architecture shown in Figure 5.5 [4] employsMultiRes blocks comprisingmultiple
parallel convolutional paths operating at different resolutions. These blocks enable the network to
capture information across diverse scales simultaneously. Additionally, residual paths or Res paths
between the MultiRes blocks facilitate information flow across resolutions, allowing the network to learn
and combine multi-scale features effectively.
By harnessing multi-resolution pathways, the MultiResUNet adeptly deciphers intricate details while
maintaining a holistic view of the image. This versatility is invaluable for tasks requiring precise delin-
eation of structures varying significantly in size or context within an image.

5.1.4. Image Preprocessing
Before training the network, images and masks need to be preprocessed. First of all, the images can
be loaded in RGB format, where the masks shall be loaded in grayscale. Then, the images are conse-
quently resized to <h,w>=<480x640> (customizable) pixels, to represent the image size of the SHRIMP
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Figure 5.4: The well-known U-Net architecture, characterized by the encoder and decoder pathways, with skip connections
between corresponding layers. The different operations between the layers are depicted by colored arrows, explained in the

right-bottom corner [4].

Figure 5.5: The MultiResUnet architecture, defined by MultiRes blocks in the encoder and decoder pathways, linked by
so-called Res paths instead of plain skip connections like in UNet [4].

cameras. Bicubic interpolation is used for this. This technique considers the intensities and locations of
16 surrounding pixels (in a 4x4 neighborhood) to calculate the value of a new pixel, resulting in higher
image quality compared to simpler methods like bilinear interpolation [193].

Moreover, because the network shall be trained to eventually run inference on the Myriad, it shall be
trained with Floating-Point 16 (FP16) images and masks, as this is the data type the Myriad accepts.
Finally, the pixel values shall be divided by 255 and the mask values shall be rounded to 0 or 1, leading
to black and white masks.

Figure 5.6: Image and mask conversion pipeline for training
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5.1.5. Training
To run inference on the different hardware setups, theMultiResUNetmodel was trained on theMarsData-
V2 test set.

As mentioned, training with MarsData-V2 was mostly used in the initial phases of the project, as initially
roadblocks were encountered. Because of the implementation requirements of the Myriad X, the deep
learning networks that will be run on this chip will need to be able to segment rocks from FP16 images,
whilst the network weights are also stored in FP16. Therefore, as an initial step, the effectiveness of
MultiResUNet on the MarsData-V2 dataset was tested with the images as well as the network pipeline
in FP16 representation. During training runs on a small portion of the MarsData-V2 dataset (100 im-
ages), the network quickly learned to identify rocks in the validation set. An initial resulting mask on
an image from the validation set is depicted in Figure 5.7. This result shows that MultiResUNet can
perform well on these Martian images even though the floating point representation of the images and
network is limited to FP16.

For this project, MultiResUNet was trained to match the SOTA results in the work by Liu et al. [194] as
in Table 5.1 [186], after this, the results on the Myriad were checked through visual inspection, as past
research at Ubotica has shown that final improvements in the inference results of the FP16-trained net-
work can be improved by mixed-precision training. Mixed precision training in deep learning employs
both low (16-bit) and high (32-bit) precision numerical formats across various neural network compu-
tations. This technique optimizes efficiency by executing more computationally intensive operations
with lower precision. Simultaneously, it maintains the necessary precision in areas where accuracy is
critical. This approach effectively accelerates training without compromising the quality of the model
[195]. The potential application of this method could be explored in further research.

Figure 5.7: Segmentation of an image with Martian rocks with the ground truth mask (middle) and the predicted mask by
MultiResUNet (right)

5.1.6. Converting the Model for the Myriad X
When running a model on an ARM Cortex CPU, the CNN can be simply run in tflite format. The trained
network cannot be run on the Myriad X hardware directly. The Myriad requires the network to be
converted to Ubotica Neural Network (UNN)-format, where the Tensorflow training pipeline saves the
model in Hierarchical Data Format version 5 (HDF5)-format.

For this OpenVINO software [196] is used. OpenVINO, an acronym for Open Visual Inference and
Neural Network Optimization, is an open-source toolkit developed by Intel. It is primarily used for
optimizing and deploying deep learning inference solutions across Intel-based hardware platforms, in-
cluding CPUs, GPUs, FPGAs, and VPUs like Myriad X. One of its main features is the model optimizer;
this tool transforms models from popular frameworks (e.g., TensorFlow, PyTorch, Caffe) into a UNN,
optimized for Intel hardware [197, 198].

The step-wise process is depicted in Figure 5.8. This HDF5-formatted network can be transferred to
Open Neural Network Exchange (ONNX) format using the t f 2onnx function [199]. Next, the model can
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be converted from ONNX to UNN with the conver t_model function in python or the mo function on the
Command Line Interface (CLI), following steps discussed in the OpenVINO 2022 documentation [198]:

mo --input_model <PATH_TO_ONNX_MODEL> --data_type FP16=True

’mo’ stands for model optimizer, after which the path to the ONNX model shall be passed on to the
converter. One should be aware of the FP16 −−d at a_t y pe specification. When running a network on
the Myriad X, the network needs to be quantized (see Figure 2.4.3), which means that the precision
used to represent numerical values within the neural network model during conversion or optimization
needs to be changed. This is one of the major reasons that Myriad X can perform its inference so
efficiently, but it may also lead to a loss of performance in terms of accuracy.

To execute the above command, the OpenVINO environment shall be used. OpenVINO 2022 is not
compatible with every operating system. Therefore, Docker containers can be used to simulate an
operating system with the OpenVINO 2022 installation in it [200]. Docker containers are lightweight,
standalone, executable packages that include everything needed to run a piece of software, including
the code, a runtime environment, libraries, and system tools, isolated from the underlying operating
system.

Figure 5.8: Image and network conversion pipeline for inference on Myriad X hardware. The yellow images represent the
image pipeline, whereas the green boxes represent the network pipeline.

Besides conversion of the network, the images shall be converted to Binary (BIN) format for Myriad
to be able to run inference on them. The written program reads each image and resizes it to the
target size of the network. Because MultiResUNet learns features at a specific scale, it might not
generalize well to images of different scales. Moreover, the image is converted to a floating-point 16-
bit NumPy array, which is then separated into its Red, Green and Blue (RGB) color channels. These
channels are interleaved to create a planar data format. The data is transposed to be in a suitable
order for further processing, as the network requires the inputs as (Height, Width, Channels) instead
of (Channels, Height, Width). Finally, it normalizes the pixel values by dividing by 255 and saves the
resulting interleaved FP16 pixel data into a binary file with a .bin extension, effectively converting the
image data into a binary format suitable for storage or further analysis.
After running inference on the Myriad X, the resulting masks in BIN-format need to be postprocessed
to either Joint Photographic Experts Group (JPEG) or Portable Network Graphics (PNG) format, to al-
low for visual inspection of the inference results. The inference result obtained is depicted in Figure 5.9.



5.2. Method 69

(a) Another input image for inference on the Neural Compute
Stick (NCS) [185] (b) Final inference result of MultiResUNet inference on the NCS

Figure 5.9: Input image and resulting mask after inference of the converted MultiResUNet on the NCS containing the Myriad X

The importance of maintaining equivalent processing pipelines for both the network model and the im-
ages cannot be overstated. This consistency ensures that the network can accurately interpret and
analyze the input data, directly impacting the reliability and effectiveness of the inference results. Dis-
crepancies in these pipelines lead to significant performance issues.

5.2. Method
Important considerations for the Power and Energy tests are the devices under consideration, the
detailed test setup, and the different test modes.

5.2.1. OBC for Resource Testing
In the process of testing the Xiphos Q7S board, several challenges surfaced within the Petalinux envi-
ronment, particularly in the cross-compilation of the CogniSatApp application and its embedded pack-
ages for this specific development board. Petalinux, akin to Yocto and Linux, serves as a development
environment facilitating embedded Linux system creation for various hardware platforms. However,
compared to Yocto, Petalinux offers a more streamlined and user-friendly approach, integrating tools
for configuring, building, and deploying embedded Linux systems tailored to specific hardware targets.
Despite facing hurdles during the cross-compilation for the Q7S board’s ARM Cortex A9 cores, it is
anticipated that overcoming these challenges in compiling the CogniSatApp within the Petalinux envi-
ronment for such hardware configurations is plausible with additional time and dedicated resources.

A decision was made to select a more user-friendly board. The primary criterion for choosing this board
was the resemblance of it processor to the PS of the Q7S. Emphasis was placed on an ARM-based
architecture due to its widespread utilization in modern OBCs and its presence on the Q7S.

The RP2, shown in Figure 5.10 [201] houses an ARM Cortex A7 quad-core setup, which is closely
related to the ARM Cortex A9 dual-core structure of the Xiphos Q7S. First of all, they have the same
ARMV-7A architecture [202]. The A7 cores are designed with a focus on efficiency [202, 203], while the
A9 cores are slightly more complex and therefore will also have a slightly higher power consumption
[203].

Overall, the differences between both processor structures will be small in terms of energy consumption
and inference time, therefore the RP2 can be used for the verification tests in this chapter, that focus on
the use of the PS on both boards. Besides the power consumption of the PS, the power consumption
of the rest of the SoCs shall be taken into consideration. Where the RP2 consumes about 1.10 W in idle
state [204] (confirmed in section 6.1), the Xiphos Q7S is expected to have a typical power consumption
of 2 W [30]. Note that ’typical’ represents the expected or standard power consumption under normal
operating conditions, whereas ’idle’ refers to minimal operating conditions.
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Figure 5.10: RP2 Model B Desktop (with quad-core ARM Cortex A7 CPU at 900MHz) [201]

5.2.2. Test Setup
To measure the power consumption of the OBC configuration for running rock segmentation inference,
a test setup was configured. This test setup is schematically depicted in Figure 5.12.

In this setup, a variable power supply (the SPD1305X [205]) was used to deliver a set voltage of 5 V
to both boards. The power supply is connected to a laptop through USB which, through a number of
Python scripts, saves and logs Power, Current, and Voltage supplied to the setup over time.

The schematic also depicts the USB connections between the Rasberry Pi 2 and the mouse and key-
board, as well as the HDMI connection with a display. These connections are required to control the
Rasberry Pi and view its output. Note that these connections all require power. Therefore, modes were
also tested in which these devices were not connected. An oversight of all modes for testing is shown
in Table 5.2.

Table 5.2: Modes for power testing

Test Modes
Board(s) State

Only RP2
No USB devices or display attached

Nominal
Inference

RP2 & XE2
Nominal
Inference

Low-Power/Warm-Boot

In chapter 4 it was discussed that the XE2 board shall be connected to the main MCU through Ethernet.
Therefore, this connection is also used in these tests. For the tests not including the CogniSat XE2
board, this board can simply be disconnected. Pictures of the test setup are shown in Figure 5.11.
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(a) Front view of the test setup (b) Top view of the parallel circuit in the test setup, excluding power supply.

Figure 5.11: The test setup for power measurements of the OBC setups.
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Figure 5.12: Schematic of the test setup for power measurements. The circuit is powered by an adjustable power supply, for which the voltage is kept constant (5 V) at all times. The Raspberry Pi is connected to a keyboard (USB),
mouse (USB) and screen (HDMI). The CogniSat XE2 is powered through the header pins. Communication between the Raspberry Pi 2 and XE2 occurs through Ethernet.



6
Results

In this chapter, the results of the tests are discussed. In section 6.1 the power test results for the different
modes are discussed and the specifications of the hazard detection algorithm are then summarized. In
section 6.2 the test results are used to simulate the actual duty cycles of the different OBCA designs for
the mission lifetime. This shows how the different design options perform within the constricted design
space.

6.1. Power Test Results
The outcomes from the conducted tests encompass the mean power consumption of the OBC con-
figurations throughout the preprocessing and inference stages, alongside the duration necessary for
executing inference on a specified quantity of images. Furthermore, the RAM demand is of interest,
particularly when the inference process is executed on the RP2 itself, as this can be expected to have
a heavier workload. The results of the tests are summarised in Table 6.1.

First of all, the nominal power consumption of both design options is measured. That is, the power
consumption when no processes are actively run on either device. Note that if the display and keyboard
are detached from the RP2, the required power decreases by 0.45 W. The nominal power without
devices attached will be closer to reality on Lunar Zebro, thus this will be taken as the baseline power
during validation. This means that approximately 0.5 W can be subtracted from the values in Table 6.1.
Furthermore, the results for inference on ten images for both designs are depicted in Figure 6.2 and
Figure 6.5. For the run depicted in Figure 6.2, first preprocessing was performed on ten images, after
which inference was performed on those ten images subsequently. All numbers for average power
consumption and duration per image are depicted in Table 6.1.

Besides the nominal power consumption and preprocessing and inference figures on both devices, the
preparation time of both devices is of utmost importance. In Figure 3.3b the pipeline for inference is
depicted for both the setup with XE2 (green) and without XE2 (blue). In either setup, the main OBC will
be required to load packages for the preprocessing of images, after which it can preprocess the image
batch. In the situation without the AI-accelerator, the device is ready for inference.

In the case that the XE2 board is present, it will have to be started up. Afterward, the main OBC will
need to send the required firmware, images, and the trained model to the XE2. Only then inference is
possible. However, when using the Warm-Boot mode, as discussed in subsection 4.3.6, these steps
can be bypassed. These steps are indicated by the red-framed boxes in Figure 6.1.

73
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Figure 6.1: The inference pipeline for the setup with only the main OBC/RP2 (blue) and for the setup with the XE2 (green).
The red-framed boxes indicate that this part of the pipeline could be bypassed by using warm-boot mode

From Table 6.1 it can be seen that the time required to start up the XE2 and especially to boot firmware
and the network onto the XE2 is substantial. Especially when inference is run on a relatively small
amount of frames, such as is the case on Lunar Zebro (which travels at low speed and has a low-
resolution camera), the startup- and boot time can take the overhand regarding energy consumption.
For this reason, the implementation of the warm-boot/low-power mode should be investigated, as this
would minimize the required energy for startup and booting.

Figure 6.2: Voltage, Current and Power during preprocessing and inference on 10 images on the PS of the RP2. The blue,
orange and green lines indicate Voltage, Current and Power, respectively.
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Figure 6.3: Voltage, Current and Power during upload of firmware and model and inference on 10 images on the XE2. The
measurements include power consumed by the RP2 and XE2 together. The blue, orange and green lines indicate Voltage,

Current and Power, respectively.

Low-power Mode
Power measurements were also done on the low-power mode (see subsection 4.3.6). Initially, it was
found that the low-power mode reduces the power consumption from 2.4 W in nominal condition to 1.8 W
in low-power mode.

In theory, this power usage could be decreased even further. Although Ubotica Technologies has not
done research into this yet, there would be the possibility to turn off the Ethernet Controller [206] on
the CogniSat XE2 board when no Ethernet action is required. Ubotica’s current portfolio consists of
satellites in Earth orbit. In these missions, latency is a critical factor. This is usually the reason that
the CogniSat XE2 is considered for the mission. If the Ethernet Controller is then turned off for longer
periods, the latency increases.

For Lunar Zebro however, the OBC will be able to work in operational cycles of a given length. This
would allow for switching on the Ethernet controller at the exact right moment in time. Thus, the Ethernet
controller can be turned off during the rest of the cycle. Since the Ethernet controller consumes 0.8 W,
the consumption of the XE2 in low-power mode can theoretically be reduced to 1.0 W.
The implementation of the low-power mode is visualized in Figure 6.4. The active modes are alternated
by low-power modes, during which only short ’refresh symbols’ are transmitted to maintain link integrity
[206].

Figure 6.4: The implementation of a Low-Power Mode for the Ethernet controller. Between active moments, only scarce
refresh signals are required to maintain link integrity.
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Figure 6.5: Power measurement displaying the difference between nominal and low-power mode of the XE2

Table 6.1: The power consumption by the total OBC setup in nominal state and during all steps in the inference pipeline
(Figure 6.1). Note that all values except the first describe the power required when a display and keyboard are attached to the

RP2

Scenario Total Average Power of OBC setup [W] Time Required [s]

Nominal, only RP2, no display or
keyboard attached

1.09 N/A

Nominal, only RP2 1.54 N/A
Nominal, RP2 & XE2 4.04 N/A
Warm-Boot, RP2 & XE2 2.54 a N/A
Startup XE2 (per cycle) 4.04 6.0
Load model to RP2 RAM (per cy-
cle)

3.75 1.95

Load packages, only RP2 (per cy-
cle)

1.95 3.35

Boot firmware and network to XE2
(per cycle) b

4.03 12.92

Preprocessing on RP2 (per im-
age)

2.15 0.15

Inference, only RP2 (per image) 3.06 56.22
Inference, RP2 & XE2 (per image) 4.84 2.13

aTheoretical value, as deduced in subsection 4.3.6
bTested for several network sizes

The required time to boot firmware and the network to the XE2 is not dependent on the network size.
The booting time was measured for several networks with different numbers of parameters and was
determined to stay the same. In case Lunar Zebro chooses to use neural networks for several purposes,
this is an important consideration.

6.1.1. Hazard Detection Specifications
As a result of the tests, clear-cut specifications can be drawn up on the hazard detection algorithm.
This complements the design of the software and its specifications as discussed in section 4.3.
Apart from the values deducted from verification testing, there are two more constraints to consider:
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• Flash memory: The size of the tensorflow lite version of the rock segmentation model would
take up about 29 MB of Flash storage 14.6 MB in FP16.

• Non-volatile memory: The rover will need to save the images for segmentation. It is assumed
that the rover will need to be able to save 10 pairs of images. This is a vast overestimation,
as images could be deleted after segmentation. However, this storage space could be useful
for storing images of scientifically promising locations. With images from the SHRIMP camera
system on board Lunar Zebro containing 640 x 480 pixels [26] and three bands (RGB requires
8×3 = 24 bits per pixel), the required storage for one image is determined as in subsection 6.1.1.
The total required memory for image storage is thus determined at 20 MB.

S1_i mag e = (640×480))×24

8
= 921,600bytes≈ 1MB

Finally, the specifications of inference with the hazard detection algorithm are summarized in Table 4.3.

Table 6.2: Required resources for the Hazard Detection algorithm.

Criterion Quantity

Duration see Table 6.1
Power see Table 6.1
Flash 29 MB

6.2. Endurance Test
In Embedded systems design, Endurance tests are often used to evaluate the functioning of a designed
system under continuous operation. For this reason, it is important to simulate the constraining factors
in the most extreme situations.

In this case, the endurance test aims to verify the requirements on Power and Energy. In the built
validation simulation, the different design options are simulated with all software running as designed
in section 4.3. All software details follow the assumptions described in this same section. Moreover,
the functional flow of the rover follows the design of subsection 3.1.5.

6.2.1. Power cycle
Careful study and simulation of the power cycle has two purposes; first of all, Lunar Zebro requires the
peak power drawn to stay under 10 W as described in requirement LZ-OBC-DES-003. Secondly, the
power cycle can be used to determine the energy consumption of the OBC over time, allowing for a
careful analysis of the required energy budget for different OBC designs.
The power consumed by the OBC during one operational cycle is depicted in Figure 6.8. This graph
depicts the results as in Table 6.1.
In Figure 6.8, different steps of the operational cycle can be recognised:

I. Loading packages and model to RP2
II. Startup XE2
III. Preprocessing images
IV. Load firmware and model to XE2
V. Run inference on images
VI. Run FDIR on housekeeping data from two subsystems
VII. Path planning
VIII. Only nominal operations

It stands out that the period to startup the XE2 (II) and load firmware and model to the XE2 (IV) is
relatively long for the duration of one operational cycle (120 s), and leads to a high peak power at (III).
Therefore, the use of the warm-boot mode should be researched. When making use of this mode, the
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Figure 6.6: Power consumption of OBC including the CogniSat XE2 board during the first 40 s of the operational cycle of Lunar
Zebro, when running hazard detection and inference for 1 rover, assuming stereo vision.

named steps can be skipped, at the expense of a higher nominal power use. Figure 6.7 shows that
the period to perform all steps of the operational cycle becomes much shorter when utilizing the warm
boot mode. However, setup will require approximately 3 W in stead of 2 W, typically.

Similarly, the power cycles for the operational cycle for the OBC can be portrayed when the warm-boot
mode is utilized. Because of the utilization of the warm-boot mode, starting up the XE2 (step II) and
loading the firmware and model to the XE2 (step IV) are not required. Therefore, the duration of the
operations all fit within the time span of 15 s. However, this goes at the expense of a higher continu-
ous nominal power, required to keep the XE2 in the low-power warm-boot mode. Where the nominal
power without the warm-boot mode is 2.09 W, the nominal power will now be 3 W. Phases of inference
for hazard detection (V) and FDIR (VI) have the same peak power requirement as during the experi-
ment without the warm-boot mode.

Figure 6.8 portrays the power consumption of the OBC setup with only the central OBC running infer-
ence. It can be seen that steps II and IV are not required for inference on the central OBC. Note the
difference in operational time required for all operations; where the operations in Figure 6.8 all take
place within 30 s, the operations for the setup without the AI-accelerator takes up almost 4 times as
much time. Although the operational time is much longer, this setup deals with much lower (peak)
power values than the setup with XE2; where this setup requires a maximum peak power of 3.52 W, the
setup with XE2 requires a peak power of 5.3 W.

6.2.2. Energy Consumption
Since power represents the rate of change of energy, the power cycles illustrated in subsection 6.2.1
result in the energy consumption patterns showcased in Figure 6.10. Greater inclines in the energy
graph correspond to increased power usage, a noticeable correlation evident upon comparing the two
images. The energy depicted on the y-axis is determined from the energy budget in subsection 3.1.7.

From the energy decent per cycle, the energy consumption for the complete operational period can
be determined. Figure 6.10 depicts the energy available for the OBC as a function of time for the
two different design options. In this depiction, the 75-minute period was taken as operational period
between charging periods. As the image portrays an extensive timeframe and is consequently heavily
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Figure 6.7: Power consumption of OBC including the CogniSat XE2 utilising the warm-boot capability board during the first 20 s
of the operational cycle of Lunar Zebro, when running hazard detection and inference for 1 rover, assuming stereo vision.

zoomed out, the fluctuating pattern shown in Figure 6.10 is almost imperceptible, yet on lower scale,
this pattern is still present as in Figure 6.9.

(a) The energy available when using a single camera and a OBC
setup including the XE2.

(b) The energy available when using two cameras and a OBC setup
including the XE2.

Figure 6.10: The energy available for the OBC for a 75-minute period, for an OBC setup with the XE2. The red-dotted line
indicates the energy budget limit for the given operational period.

Table 6.3 depicts the energy left after a 75-minute operational period for different design options and
operational modes. Besides the different design options for the OBCA, stereo and monocular vision
are considered. When no XE2 is used in the OBCA design, the rover cannot perform the required tasks
within the 40-second operational cycle (see Table 6.1), making this design option infeasible when using
the assumed design space (indicated by ’N/A’ in Table 6.3 and Table 6.5).
When the XE2 is used and analysis in two images per operational cycle is required, the rover cannot
perform its tasks within the available energy budget. The other three design options are feasible within
the given design space. The warmboot mode, as explained in Figure 6.1 leads to a lower total energy
consumption.
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Figure 6.8: Power consumption of OBC setup excluding the CogniSat XE2 board during the complete operational cycle of
Lunar Zebro. Inference is run on data from one rover, assuming stereo vision.

Table 6.3: Energy left of energy budget per cycle (16621 J) after 75-minute operational period for different design options and
operational modes. The red-marked fields indicate infeasible scenarios.

Energy Left at End of Operational Phase [Joule]
Design Option, Depth Perception Implementation

Operational Mode no XE2, Monocular vision XE2, Monocular vision XE2, Stereo vision
nominal N/A 476 (2.9%) -471 (-2.8%)

warm-boot N/A 1293 (7.8%) 337 (2.0%)

6.2.3. Sensitivity Analysis
The results as presented in Table 6.3 are based on the assumptions and requirements presented in
subsection 3.1.4 and subsection 3.1.3. However, some of these assumptions are subject to change.
Therefore, in this section, different parameters will be varied to understand what the consequences
would be for the different design options.

Varying Energy Budget
In subsection 3.1.7 the allocated energy budget for the OBCAwas determined for one operational cycle.
However, the assumptions made for this calculation can possibly change. For example, the addition
of 1 battery to the current 5-pack would lead to a 20% increase in the available budget. Therefore, the
consequences for the different design options are outlined in Table 6.4.

The four different options depicted in the table all include an XE2, as the inference time of the CPU on
one image is longer than the cycle time available.

From Table 6.4 it can be seen that a 10% decrease in energy budget would lead to infeasible energy
consumption for all combinations of design options and operational modes. A 10% increase would
already allow for the use of the Nominal operation mode, with stereo vision, this can be of importance
if the implementation of the low-power mode turns out problematic.
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Figure 6.9: Power and energy consumption of the OBC including the CogniSat XE2 board during the first 30 s of the
operational cycle of Lunar Zebro.

Table 6.4: Energy left of energy budget per cycle (16621 J) after 75-minute operational period for different design options and
varying energy budget. All design options consider inclusion of the XE2.

Energy Left at End of Operational Phase [Joule, % of 16621]
Depth Perception Implementation, Operational Mode

Energy Budget Allocation Monocular, Nominal Stereo, Nominal Monocular, Warm-boot Stereo, Warm-boot
0.8 -2848 (-17.1%) -3795 (-22.8%) -2031 (-12.2%) -2987 (-18.0%)
0.9 -1186 (-7.1%) -2133 (-12.8%) -369 (-2.2%) -1325 (-8.0%)
1.0 477 (2.9%) -471 (-2.8%) 1293 (7.8%) 337 (2.0%)
1.1 2139 (12.9%) 1192 (7.2%) 2955 (17.8%) 1999 (12.0%)
1.2 3801 (22.9%) 2854 (17.2%) 4617 (27.8%) 3661 (22.0%)

Varying Cycle Time
Currently, the cycle time is based upon the accuracy limit obtained by Manteaux [39]. However, this
0.8 m can be seen as a lower limit, because Manteaux makes use of an object detection algorithm,
rather than more precise segmentation algorithms. Moreover, Manteaux downsamples the images to
160x160 pixels. A higher accuracy limit allows for the rover to cover a larger distance before a new
hazard detection cycle needs to be run, resulting in longer cycle times. Therefore in this subsection,
the consequences of longer cycle times will be analysed.

As the cycle time increases above 90 s, the CPU would be able to run the inference cycle of Lunar Zebro
for monocular vision, and above 150 s the CPU can fit the operational sequence for stereo vision within
the timeframe.

Interestingly, the warm-boot mode can be seen to be advantageous for monocular vision up until cycle
times of 40 s. For cycle times of 50 s and above, the nominal mode requires less energy. This can be
explained by the fact that when the cycle time is prolonged, the higher nominal power consumption
when the XE2 is not being used becomes predominant.
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Table 6.5: Energy left of energy budget per cycle (16621 J) after 75-minute operational period for different design options and
varying cycle time. The first two design options are excluding XE2, the final for are including XE2.

Energy Left at End of Operational Phase [Joule, % of 16621]
Depth Perception Implementation, Mode, Design Option

Cycle Time [s] Monocular,
N/A, SBC

Stereo, N/A,
SBC

Monocular,
Nominal, XE2

Stereo, Nomi-
nal, XE2

Monocular,
Warm-boot,
XE2

Stereo, Warm-
boot, XE2

30.0 N/A N/A -1888 (-11.4%) -3164 (-19.0%) 687 (4.1%) -589 (-3.5%)
40.0 N/A N/A 471 (2.8%) -481 (-2.9%) 1287 (7.7%) 326 (2.0%)
50.0 N/A N/A 1916 (11.5%) 1150 (6.9%) 1661 (10.0%) 895 (5.4%)
60.0 N/A N/A 2867 (17.2%) 2229 (13.4%) 1904 (11.4%) 1266 (7.6%)
90.0 2192 N/A 4451 (26.8%) 4026 (24.2%) 2310 (13.9%) 1884 (11.3%)
150.0 4364 1285 (7.7%) 5719 (34.4%) 5464 (32.9%) 2634 (15.8%) 2379 (14.3%)

Centralized Swarm
At higher cycle times, the rover has more available time and energy to process more information per
cycle. Therefore, the opportunity arises to run inference for several other rovers. Figure 6.11 depicts
the energy decent during one (90-minute) operational cycle of the computational hub of the swarm,
when the cycle time is increased to 150 seconds.

As discussed in subsection 4.3.7, the computational hub would run all DL-based tasks; FDIR for other
subsystems and hazard detection. It can be seen that even at an operational period time of 90 min-
utes, the rover can process data for a total of four individuals. At a shorter operational period, the
computational hub has even more energy available for inference on data of other individuals.

Figure 6.11: The energy consumption during the complete operational period of 90 minutes and a cycle time of 150 seconds
for the design option with the XE2, when running inference for 1 to 5 rovers in total. Stereo vision is assumed for this simulation.

The amount of rovers that the computational hub can run inference for is strongly influenced by the
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implementation of monocular depth perception. Not only because the rover would require much less
energy and time to process the data for one individual, but also because the RAM storage of the rover
is limited, which will be further discussed in subsection 6.3.2.
Table 6.6 depicts the energy left of the total OBCA budget of the computational hub, when assuming
stereo vision. This energy usage is simulated for different cycle times and amount of rovers the hub
runs inference for. At cycle times of 60 seconds and above, the centralized swarm concept becomes
feasible. At 120 seconds, the computational hub can run inference for 4 other individuals. The ’N/A’
values represent infeasible swarm designs, because the computational hub cannot fit all operations
within the cycle time.

Table 6.6: Energy left for the OBCA of the computational hub with XE2 in a centralized swarm, for different cycle times and
amount of rovers for which the computational hub runs inference. Stereo vision is assumed.

Energy Left at End of Operational Phase [Joule, % of 16621]
Cycle Time [s]

NRovers 50.0 60.0 90.0 120.0 150.0
1 1150.10 (6.92%) 2228.62 (13.41%) 4026.15 (24.22%) 4888.96 (29.41%) 5464.17 (32.88%)
2 -885.97 (-5.33%) 531.89 (3.20%) 2895.00 (17.42%) 4029.28 (24.24%) 4785.48 (28.79%)
3 -3426.94 (-20.62%) -1585.58 (-9.54%) 1483.35 (8.92%) 2956.43 (17.79%) 3938.49 (23.70%)
4 N/A -4123.81 (-24.81%) -208.80 (-1.26%) 1670.40 (10.05%) 2923.20 (17.59%)
5 N/A N/A -2181.45 (-13.12%) 189.27 (1.14%) 1739.61 (10.47%)

When monocular depth vision is assumed, a centralized swarm becomes possible at a cycle time of 50
seconds. At 50 seconds, the cycle time is sufficient to perform all processes sequentially.

Table 6.7: Energy left for the OBCA of the computational hub with XE2 in a centralized swarm, for different cycle times and
amount of rovers for which the computational hub runs inference. Monocular depth vision is assumed.

Energy Left at End of Operational Phase [Joule, % of 16621]
Cycle Time [s]

NRovers 50.0 60.0 90.0 120.0 150.0
1 1915.69 (11.53%) 2866.61 (17.25%) 4451.47 (26.78%) 5212.21 (31.36%) 5719.36 (34.41%)
2 897.65 (5.40%) 2018.24 (12.14%) 3885.90 (23.38%) 4782.37 (28.77%) 5380.02 (32.37%)
3 -372.83 (-2.24%) 959.51 (5.77%) 3180.07 (19.13%) 4245.94 (25.55%) 4956.52 (29.82%)
4 -1895.77 (-11.41%) -309.61 (-1.86%) 2334.00 (14.04%) 3602.92 (21.68%) 4448.88 (26.77%)
5 -3671.15 (-22.09%) -1789.09 (-10.76%) 1347.67 (8.11%) 2853.32 (17.17%) 3857.08 (23.21%)

Varying Inference Time
The inference times for the different setups were determined in chapter 5. The results are based on
inference runs with MultiResUNet and only for rock detection. The inference time is therefore bound to
increase due to several possible factors:

• Higher resolution or larger images.
• Detection of other hazards, such as craters.
• A similar segmentation or classification DL network may be put to the task of determining rocks
or regions of more scientific value.

The input of the network can be determining for the inference time, depending on the preprocessing
tasks that are performed before inference. As discussed in section 2.1, Lunar Zebro’s current SHRIMP
cameras take 640x480-pixel images. This input image size might increase drastically if the cameras
are also used for other tasks, such as detecting locations of scientific interest. Within Ubotica Tech-
nologies experiments have been carried out to find the relationship between the image size and the
inference time. It was found that there is an approximate linear relationship between the image size
and inference time. If the amount of pixels doubles, the inference time of the Myriad X doubles.
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As discussed, MultiResUnet’s semantic qualities make it a very adaptable network. It could be used
to detect other hazards, such as inclinations, unsurpassable edges and craters. Possibly this would
require higher resolution images, which would increase the inference time. Moreover, one should ac-
count for additional model complexity when other hazards are segmented by the same network.

Figure 6.12: The inference pipeline for the setup with only the main OBC/RP2 (blue) and for the setup with the XE2 (green).
The boxes with the dashed frames indicate the processes that would need to be (partly) iterated in the case of a second

network that uses the SHRIMP images for the determination of regions of scientific interest.

If a DL-based solution would be used on-board Lunar Zebro to recognize rocks or regions of scientific
interest, it is possible that images need different preprocessing operations than needed for the hazard
detection algorithm. Also, because this would be a whole new network, the network should also be
loaded to the central OBC and later to the XE2. Therefore, for this purpose, the relevant operations,
highlighted in Figure 6.12 by the dashed frames, are repeated for the new network.

Table 6.8 depicts the energy left for the different scenarios, assuming stereo vision. It can be seen
that at longer cycle times, scientific inference, or inference on larger images becomes possible. Above
a cycle time of 90 seconds, scientific inference and a 2x multiplication of the image size becomes
possible.

Table 6.8: Energy left for different operational scenarios: larger images, extra scientific inference, and a combination of both.
All scenarios are for stereo vision.

Energy Left at End of Operational Phase [Joule, % of 16621]
Cycle Time [s] Inference x2 Scientific Inference Combined

50.0 -364.60 (-2.19%) -3276.44 (-19.71%) -4676.23 (-28.13%)
60.0 966.37 (5.81%) -1460.17 (-8.79%) -2722.42 (-16.38%)
70.0 1892.95 (11.39%) -177.13 (-1.07%) -1254.25 (-7.55%)
80.0 2602.80 (15.66%) 791.55 (4.76%) -150.93 (-0.91%)
90.0 3184.65 (19.16%) 1566.96 (9.43%) 725.46 (4.36%)

Although it seems likely that the full resolution of the SHRIMP cameras would be used for optimal per-
formance, the input images can also be decreased in size before inference. An example of such a
decreased image size is the input data size for a UNet with a pre-trained VGG-16 backbone, which has
proven to perform well on the Artificial Lunar Dataset, as discussed in subsection 5.1.5. This proven
input image size is 480x480 pixels; a 1.33 decrease in input image size.

The variations in Table 6.8 can of course also be applied to a design with monocular depth estimation
implemented. In this case, the cycle time would need to be increased to 50 seconds to be able to run
an extra CNN for scientific inference.

6.2.4. Conclusions
In conclusion, the peak power draw is not a concern for Lunar Zebro with the considered design op-
tions. A maximum power draw of 5.3 W (« 10 W) is observed. For low-SWaP systems with batteries
in parallel, the power envelope might be much more constrained. This might require the use of one
single low-power board. Furthermore, the energy use of Lunar Zebro’s OBCA is studied for different
design options, operational modes and depth perception implementations. It was found that only with
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the XE2, the energy budget is sufficient (both monocular and stereo vision), and that the warm-boot
mode is advised.

As a base for this research, the operational assumptions described in subsection 3.1.4 were used.
When changing these assumptions, some notable conclusions can be drawn:

• Varying the energy budget: When the energy budget is decreased, no design options are pos-
sible when we assume a cycle time of 40 seconds.

• Varying the cycle time: Only at cycle times above about 90 seconds (1.8 m), the CPU is an
available design option for monocular depth perception, and only towards 150 s (3m » 0.8 m)
for stereo vision. For the design options with the XE2, the warmboot mode shall be used up
to and including 40 seconds for both monocular and stereo. At higher cycle times, the nominal
operational mode shall be implemented. At cycle times above 50 seconds, the OBCA requires
much less energy than the budget allows for. This allows for increasing the 75-minute operational
time.

• Centralized swarm: A computational hub can only function within the energy budget at higher
cycle times. Above 90 seconds, one rover can run inference for 3 individuals, and above 120
seconds even for 5, assuming stereo vision. At 90 seconds the rover can run inference for 5
individuals already when assuming monocular vision.

• Varying inference time: Larger images make inference a larger expense, but at cycle times
above 60 seconds (1.2 meters), the images can be doubled for stereo vision. Running a second
CNN for scientific inference is a more costly endeavor, but at more than 70 seconds, this becomes
feasible.

6.3. Core Load and Working Memory
Apart from the power and energy requirements, the requirements on core load (LZ-OBC-OPER-003)
and working memory (RAM) (LZ-OBC-PERF-001) need to be considered.

6.3.1. Core load
Requirement LZ-OBC-OPER-003 indicates that 1038 DMIPS (25%) of the core load of the Q7S needs
to be available for control of locomotion operations at all times. This means that the core shall not
be completely taken by hazard detection operations during operation on the Moon. However, as Fig-
ure 6.13 indicates, the four ARM cortex A7 cores of the RP2 are completely occupied by the inference
with MultiResUNet, when no accelerator is attached to take away these heavy operations. Although
the two ARM cortex A9 cores of the Xiphos Q7S chip are slightly more advanced and efficient, much
more than the full available core load will be engaged by the hazard detection algorithm.

The control of the LMS, MCP, EDAC and PPU is of high priority. To be able to still simultaneously
perform these functions, part of the core load could be left available. However, this would go at the
cost of an even longer hazard detection inference time. Even at a cycle time of 150 s the operational
cycle is completely filled by the base tasks as described in subsection 3.1.5. Thus, the cycle time would
need to be prolonged to unacceptable cycle times for the CPU.
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Figure 6.13: The required core load during hazard detection inference on the CPU of the RP2. The red-dotted lines indicate
the start and beginning of inference. Graph obtained with RPi-Monitor [207].

In Figure 6.13, the ’Load 1 min’ metric represents the average number of processes in the run queue
over the last sixty seconds, offering a real-time snapshot of system demand. This figure, crucial in
evaluating computational efficiency, is not confined to the number of available CPU cores in the Rasp-
berry Pi system. It is conceivable for this load average to exceed the total core count, indicating a state
where the number of active or waiting processes surpasses the immediate processing capacity of the
system. Such a scenario occurs when multiple processes are concurrently vying for CPU resources,
leading to a queue.

Figure 6.14: The required core load of the RP2 during preparation for inference and inference on the XE2. The red-dotted
lines indicate the start and beginning of inference. Graph obtained with RPi-Monitor [207].

6.3.2. RAM
Following the specifications of the Xilinx Xiphos Q7S, the maximum available RAM is 768 MB. The most
constraining operation is inference on images, as the images will take up a large part of the available
working memory. For the analysis in Figure 6.15, 10 images were preprocessed, assuming an image
size of 640x480 pixels once again. For this analysis, as a worst-case scenario, it is assumed that the
batch of images is preprocessed on themain OBC, so that it can be sent to the XE2 as a complete batch.

It can be seen that the maximum of the OBC’s RAM capacity is almost reached at 10 images of this size.
However, in this situation the 25% buffer (as demanded by requirement LZ-OBCA-PER-001) and a 25%
communication overhead are not yet taken into account. It should be noted however, that the packages
required on the RP2 OS take a large part of the available memory, and this could be optimised for
implementation on Lunar Zebro. However, what can be concluded is that the working memory cannot
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easily serve simultaneous (pre)processing of images, therefore complexifying the implementation of a
centralized swarm.

Figure 6.15: The utilized working memory for inference with 10 images of size 640x480 pixels. The images utilize 0.735 GB of
the working memory.

It should be noted that with smart reworking of the image inference cycle, the required RAM can be
decreased to about 370 MB. In this situation, images would be preprocessed and then inference would
be ran one-by-one.

In conclusion, considering the image inference pipeline (Figure 6.1) and the possibility to run prepro-
cess images one-by-one and run inference concurrently, the RAM requirements should be met in all
scenarios. However, in the case of a centralized swarm, this would require a complexly streamlined
pipeline, in which images are loaded one-by-one.

6.4. Non-volatile Memory
The non-volatile memory on the Q7S can be divided into Flash memory and the external SD drivers.
The Flash memory is ideally able to save all firmware and other algorithms redundantly, as algorithms
can be obtained much faster from Flash than from the SD.

6.4.1. Flash Memory
There is 256 MB of Flash available. It was discussed the relevant algorithms require approximately the
following storage:

• Firmware: 10 MB
• Path Planning: 3 MB
• FDIR: 14.5 MB
• Hazard Detection: 29 MB

These are very conservative estimates. For the hazard detection algorithm, for example, the FP32
version of the tflite model is taken into account. However, the total required storage for all algorithms
is 56 MB. It can thus be concluded that the Flash memory allows for saving all relevant software in
threefold (LZ-OBCA-RAMS-005).

6.4.2. SD Memory
The utilization of data on the non-volatile SD memory is essential for storing four primary categories
of acquired data throughout the mission. For all categories, conservative estimates of the maximum
required storage were conducted:
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1. A Map of the Area: in subsection 4.3.3 it was described that an APF algorithm will be used
for path planning. In Table 6.9, it is indicated that each obstacle occupies 6 bytes of storage.
The total storage size required for the list of obstacles is contingent upon the number of obstacles
(No) present. According to the model discussed in subsection 2.3.2, an area of 5x5 square meters
can accommodate up to 35 obstacles (1.4 obstacle per m2) in an area with a rock density of 5 %.
Knowing that the second generation of Lunar Zebro potentially has more interest in rocky regions
due to the paradigm shift from radiation measurements to regolith or rock composition, the hazard
abundance is multiplied by a factor of two.

Table 6.9: Storage of obstacles

Data Type Size

Xo FP16 16 bits
Yo FP16 16 bits
Ro FP16 16 bits

In the most optimistic case, the rover can move at 5 cms−1. Taking into account the operational
cycle and the required 3-hour recharge phase of the rover, the rover can cover 15120 m in 14
days. The maximum required storage for one individual for 14 days of operation on the Moon can
be calculated to be:

Smap = d ×wobs ∗No ∗So = 15120×5×2.8×6 = 6.4MB (6.1)

where Smap is the maximum storage size of the map for one rover, d is the max distance covered,
wobs is the total assumed width that the rover can observe (5 m), No is the calculated number of
obstacles per m2 and So is the required storage per obstacle.

2. The Planned Path: following earlier research [39] the path, that will be determined with the APF
algorithm, can be stored in FP16 values. The path is represented and stored as a series of coor-
dinate pairs (Xr ,Yr ). Each pair of coordinates is composed of 4 bytes, contributing to the storage
size of the path data. The Bacteria-Aritificial Obstacle (B-AO) algorithm designed by Manteaux
[39], would then need about 0.5 kB of storage for a goal location distanced at 3 m from the rover.

3. Images: images can be stored on board the rover for two reasons. Either for retrieval of an
image so for redetermining the location of obstacles, or to pass on footage of locations of scien-
tific interest to a lunar base or lander. For these purposes, the rover will not need more than 50
stored images. The images taken by the SHRIMP cameras are RGB images with 640 x 480 =
307,200 pixels. Each pixel in the image, being in RGB format, necessitates 3 bytes of storage,
representing the red, green, and blue color channels. Therefore, the total storage required for
this image can be calculated as 307,200 pixels multiplied by 3 bytes per pixel, totaling 921,600
bytes or roughly 1 MB. A total storage of 50 MB would thus be required.

4. Scientific Payload Data: In section 2.1 it was discussed that besides the radiation payload de-
signed for the first-generation rover, a laser mass spectrometer could be an interesting payload
for the next generation of Lunar Zebro. Since this payload requires much more storage, this
payload will be taken into account regarding considerations for non-volatile memory. The con-
sidered laser mass spectrometer [35], demands a maximum of 128 kB at a 2.5 ns time resolution.
In the context of operational use, six measurements per hour in operation are assumed. Given
these parameters, the total storage requirement for 14 days of rover operation is calculated at
approximately 64.5 MB, considering the cumulative data from the acquired measurements during
the specified period and taking into account the solar charging periods.

5. Housekeeping Data: The non-volatile memory required for housekeeping data of all subsystems
when saved for three days was calculated in Equation 4.1.
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Table 6.10: The required non-volatile storage for the map, planned path, images and payload data

Data Required Non-volatile Storage [MB]

Map 6.4
Path 0.50 ×10−3

Images 50
Payload data 64
Houskeeping 0.48

Subtotal 120.9

Redundancy (3x) 362.7
Overhead (25%) 90.68

Grand Total 453.38

Table 6.10 depicts the required storage to save all data once. Following the explanation in section 4.4
and requirement LZ-OBCA-RAMS-005 all data needs to be saved three times on the non-volatile stor-
age. When also accounting for a 25% storage overhead, approximately 500 MB of non-volatile storage
is required. This is represented in requirement LZ-OBCA-PERF-002.

The figures represent the baseline storage needs, while the final design might allow for extra non-
volatile storage space. This extra storage can be used for storing more high-resolution images, detailed
environmental data, or additional scientific measurements, enhancing the mission’s scientific output or
operational efficiency. The allocation of this additional memory storage will be determined by the final
design team, based on mission requirements and the rover’s operational parameters. This flexibility en-
sures a design that is adaptable and capable of maximizing the scientific and operational effectiveness
of the lunar rover mission.

6.5. Communication Bandwidth
In subsection 3.1.7 the available communications bandwidth for the nano rover was discussed, whilst
the communication protocol and the accessory package overhead were discussed in subsection 4.3.5.
In this section, the possibility of a centralized swarm will be discussed, by means of analysis of the data
that needs to be transmitted, and the available bandwidth.

In Figure 4.11 centralized and decentralized swarms are depicted. A major difference is the communi-
cation requirement. Following the assumptions in subsection 3.1.4, a decentralized swarm would pose
much tighter requirements on the communication subsystem than the centralized swarm would. First
of all, every rover would have to send all its data for inference to the computational hub. In a decentral-
ized swarm, individuals only share their location and if applicable, locations of interest. In a centralized
swarm, all images and housekeeping data would need to be sent over to the computational hub.

Table 6.11 summarizes the required data that are required to be sent to other rovers every operational
cycle. The locations of the rover itself and of an object of scientific interest each require about 8 bytes,
assuming 32-bit floating point precision and a latitude and longitude coordinate. Furthermore, if the
computational hub would need to perform AI-based FDIR on the housekeeping data of the other rovers
in the swarm, all housekeeping data would need to be transferred to the computational hub. The
housekeeping data for a period of one hour is estimated to be 2880 Bytes, as explained in section 6.4.
Finally, depending on whether monocular vision is implemented, one or two images would need to be
sent to the computational hub for inference. The data size of the images dominates the size of the data
packages that need to be sent to the computational hub.
The computational hub would need to receive and process a multiple of the total sent data of an indi-
vidual, depending on the number of rovers dependent on one computational hub.
Where the communication bandwidth (250 kbit/s) as determined in subsection 4.3.5 easily allows for the
communication in a decentralized swarm, one image of 1 MB would require approximately 40 seconds
to be transferred to the computational hub, assuming the use of Zigbee communication system and
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Table 6.11: Outbound transferred data in two different swarm designs.

Data Type Decentralized [Bytes] Centralized [Bytes]

Location 8 8
Scientific
Interest

8 8

Housekeeping N/A 2,880
Image N/A 1 or 2 × 106

Total 16 ≈ 1 or 2 × 106

protocol, and assuming the images are transferred at original size (640x480 pixels, RGB).
The max data rate of rs485 is 10 Mbit/s, and this allows for sending 1 image per second, thus in a time
span of 10 seconds, the image data of 5 rovers could be transmitted throughout the data bus. Therefore,
the RS485 data bus can actually support the centralized swarm concept, although the communication
system would need a thorough redesign, and would require much more power and energy.

6.6. System Verification
The system requirements for the OBCA were stated in subsection 3.1.3. Following the research per-
formed, this section aims to verify these requirements. Actual validation of the system was considered
out of scope for this research, as this would entail implementation of the OBCA on a lunar testbed.
However, this will be recommended for further research in chapter 8.

Table 6.12: Lunar Zebro OBC system requirements

System Req, Verified Justification
FUN-001 Yes Scientific data is accounted for in terms of non-volatile

memory, the operational schedule, and even DL-based
inference on this data for autonomous mission planning
is discussed.

FUN-002 Yes DL-based hazard detection is researched and imple-
mented, and a network with relatively high accuracy and
a low number of false negatives is selected (please refer
to subsection 5.1.3).

FUN-003 Yes APF path planning accounted for, without required inter-
vention by operators. All analyses are performed for this
operational cycle time, and the influence of changing cy-
cle time has also been analysed.

FUN-004 Yes DL-based FDIR on housekeeping is accounted for, using
TCNs.

FUN-005 Yes The connection with the PPU allows for power cycling
when one core detects a fault in the other. The PPU can
also take over minimal functionalities of the central OBC.

FUN-006 Yes The connection with the PPU allows for power cycling of
all subsystems.

DES-001 Yes The peak power amounts to 5.3 Watt.
DES-002 Yes Energy required within energy budget of operational cy-

cle. Sensitivity analysis performed for understanding of
budgetary changes.

DES-003 Yes Both boards have gone through TVAC tests [30, 146].
DES-004 Yes Both boards have gone through TVAC tests [30, 146].
DES-005 Yes By inspection.
DES-006 Yes The multicore PS of the Zynq 7020 allows for this.
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Table 6.12: Lunar Zebro OBC system requirements

System Req, Verified Justification
PERF-001 Yes For decentralized swarm easily. For a centralized sys-

tem, the OBCA for the computational hub can support in-
ference for up to 2 other individuals.

PERF-002 Yes By analysis in section 6.4.
INT-001 Yes Inspection, meets requirement by design.
INT-002 Yes Inspection, meets requirement by design.
INT-003 Yes Inspection, meets requirement by design.
INT-004 Yes Inspection, meets requirement by design.
INT-005 Yes By Inspection.
INT-006 Yes Inspection, meets requirement by design.
RAMS-001 Yes TID well below max thresholds for devices.
RAMS-002 Yes By inspection.
RAMS-003 T.B.C. XE2 has been tested up to 65◦, would need further con-

sideration.
RAMS-004 T.B.C. The Myriad chip has been tested against the correct radi-

ation conditions. The use of the Q7S in other lunar mis-
sions and work described in subsection 4.4.3 suggests
that the Q7S is protected against latch-ups as well, but
further research is required for final verification.

RAMS-005 Yes In section 6.4 it was described that the non-volatile data
storage of the Q7S would be sufficient, even for triple re-
dundancy.

RAMS-006 Yes section 4.1 accounts for the complete coverage of the ex-
tra avionics.

RAMS-007 Yes By design, also taken into account in radiation analysis in
section 4.4.

OPER-001 Yes Operational assumption.
OPER-002 Yes Operational assumption.
OPER-003 Yes This computational power becomes available due to the

XE2.
OPER-004 Yes The system is designed to iterate its operational cycle ev-

ery 0.8 meters. Elaborate sensitivity analysis performed
in subsection 6.2.3.



7
Conclusion

Themain research question for this project is: How could the OBCA for the next-generation Lunar Zebro
be designed cost-effectively? The ’next-generation’ Lunar Zebro was envisioned to have advanced ca-
pabilities, including DL-based hazard detection and FDIR on housekeeping data, autonomous mission
planning, and functioning in an exploratory swarm. To answer this main question, a systems engineer-
ing approach was followed, adhering to the V-model methodology.

Stakeholders were identified and their requirements were stated. Stakeholder requirements LZ-OBCA-
SH-008 and LZ-OBCA-SH-010 dictated the implementation of DL-based hazard detection and FDIR
on subsystem housekeeping data. This process ultimately resulted in the definition of technical system
requirements, which were presented in Table 6.12. Throughout the work, these requirements dictated
the design choices made. The Design requirements related to power and energy LZ-OBCA-DES-001
and LZ-OBCA-DES-002 received extra attention in chapters 5 and 6, due to the inherently stringent
SWaP constraints associated with nano-rovers such as Lunar Zebro. Other than the Design require-
ments related to energy and power, the Operational and Performance requirements were verified by
analysis in subsection 6.2.2 and section 6.3. The rams requirements related to radiation also required
analysis for verification. The Interface requirements were taken into account in the detailed design
phase, during the conception of the connections with the EPS and the design of the data bus.

Following the requirements, the operational details and assumptions were discussed. These formed
the foundation of this research, as the operations of the rover on the Moon determined how constrain-
ing the energy and data budgets were for the OBCA. Therefore, a sensitivity analysis was performed
in subsection 6.2.2.

As a final step in the conceptual design, 5 design options were conceived. An initial comparison of
these design options was performed, and two final design options were determined feasible for the
execution of the tasks described in subsection 3.1.5, while adhering to the system requirements:

1. A SBC
2. A SBC, with an Additional VPU Board

Because Lunar Zebro indicated a preference for the use of the Xiphos Q7S as the main OBC, the
Xiphos Q7S was considered as the main OBC in the architecture. Ubotica’s CogniSat XE2 board,
housing a Myriad X VPU, was considered as the AI-accelerating board.

Having conceived the design options, these were worked out in more detail. The extra mass and cost
of bringing the accelerator to the Moon were calculated; per rover, an extra 300 g and $390,000 were re-
quired. The detailed design of the OBCA also involved the design of the data bus. The RS485 data bus
consisted of 5 parallel buses. Moreover, the central OBC and the VPU board were connected through
Ethernet (data and firmware transmission), where a CAN connection (XE2 telemetry, command & con-
trol) is highly advised. Furthermore, the design of the OBCA involved a precise understanding of the

92
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required software. Therefore, the most demanding algorithms were designed, and specifications when
run on the PS of the Zynq 7020 for these algorithms were determined. These specifications, together
with the different operational modes, were used later during the endurance test simulations in chapter 5.
As the swarming method also determined the requirements on the OBCA, this was also worked out to
a level of detail sufficient to understand the requirements that it would pose on the OBCA. Finally, the
detailed design incorporated an assessment of the radiation risk. The SEU rate and TID were taken into
account for both considered devices. Despite employing a highly conservative approach, the projected
upset rates for both devices were less than one incident, which would not compromise the mission
objectives. A SEU handling strategy was presented; the design options with the XE2 attached can
expect even less critical upsets.

To understand the implications of running DL-based hazard detection on Lunar Zebro, a relatively
lightweight UNet-variant was trained and implemented for testing. Both design options and different
operational modes were considered. Every step in the inference pipeline was carefully timed, and
power measurements were performed. The results of these tests are summarized in Table 6.1. These
measurements were used in an endurance test simulation. This simulation emulated the operational
cycle of the OBCA, and considered its power and energy requirements. It was found that the design
option without the AI-accelerator could not operate within the initially assumed design space. Because
of the operational assumptions discussed, the energy budget, cycle time, and inference times were
varied to understand the consequences of changes in the design space. Finally, the different design
options for the swarm were considered. The detailed findings and considerations resulting from these
simulations are discussed in section 7.1.

System verification was performed for the design option with the CogniSat XE2 board. It was found
that this design option meets almost all requirements, with both monocular and stereo vision, albeit
at the cost of bringing an extra board to the Moon. Only requirements LZ-OBCA-RAMS-003 and LZ-
OBCA-RAMS-004 require further investigation.

7.1. Research Questions
To conclude, the main research question was supported by three subquestions as introduced in chap-
ter 1, for which the concluding analyses were as follows:

What are the required resources for DL-based hazard detection, and how could the OBCA
design under investigation provide these resources (respecting the SWaP constraints)?

The specifications of DL-based image segmentation with MultiResUNet on the SHRIMP data were
summarized in Table 6.2. A more detailed view of the image and inference pipeline, combined with
the required resources for both design options, is found in Table 6.1. Implications on the core load and
different types of memory are discussed in section 6.3.

It was found that, given the constrained resources of the nano-rover and the constraining cycle time,
an AI-accelerator was required to speed up the demanding computations for hazard detection. The
ARM Cortex A7 quad-core PS of the RP2, deemed comparable to the PS of the Xiphos Q7S, was not
able to run hazard detection within the available time. Only at much higher cycle times, would a design
option without an accelerator have been able to operate, as portrayed in Table 6.5.

How can the OBCA facilitate DL-based FDIR, swarming, path planning, and autonomousmis-
sion planning?

The endurance test described in section 6.2 was executed to understand the performance of the dif-
ferent design options when performing all named tasks. This simulation answered whether the design
options adhered to the requirements related to i) peak power draw (LZ-OBCA-DES-001), ii) energy
budget (LZ-OBCA-DES-002), iii) time constraints (LZ-OBCA-OPER-004).
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When adhering to the main assumptions, Table 6.3 displays the relevant results. The design option
without the XE2 did not suffice, because of time and energy constraints. At 10% smaller energy bud-
gets, no design option would suffice, so the energy budget could not be decreased, as summarized
in Table 6.4. At cycle times above 90 seconds, the single-board design option would become an op-
tion. However, higher cycle times imply larger covered distances before detecting hazards on new
images and replanning paths. Increasing the cycle times extensively could lead to a loss of efficiency
of the planned paths, and increase the chance of collision. At 90 seconds, the cycle time was more
than double the original cycle time (40 seconds). Moreover, requirement LZ-OBCA-OPER-003 was
still violated. This requirement could eventually have been met by spreading out the inference time
even further while saving some computational power. Therefore, the single-board design option was
considered infeasible.

Moreover, at cycle times up to 40 seconds, the use of the warm-boot mode was advised. Above this
cycle time, the higher ’base’ power overruled the positive consequences of the warm-boot mode, deem-
ing this mode unsuccessful.

When choosing the design option with the AI-accelerator, there are multiple ways to leverage its power.
The use of DL-based hazard detection and DL-based FDIR on housekeeping data of subsystems were
implied during the analysis above. However, for fully autonomous mission planning, the rover could
have used a different CNN to classify rocks of interest for further scientific analysis. This would have re-
quired the cycle time to increase to 80 seconds for stereo vision, and only to 50 seconds with monocular
depth perception implemented. This showed that if monocular depth estimation could be implemented,
there are many opportunities to leverage the newly available energy.

Finally, the OBCA can easily meet the memory requirements of the rover and its advanced function-
alities. This is primarily due to the relative affordability of memory in COTS products. In this project,
it was shown that a COTS-based system can comfortably accommodate the memory needs of an ad-
vanced rover. However, memory considerations become more complex in a centralized swarm design,
necessitating careful planning and execution.

Should the OBCA be designed homogeneously across the whole swarm?

Figure 6.11 depicts the energy consumption of the OBCA with XE2 for the computational hub in a cen-
tralized swarm. Moreover, Table 6.6 and Table 6.7 summarize the energy consumption of the OBCA
for the computational hub in a centralized swarm when running inference for a different amount of
rovers. These depictions show that at higher cycle times (at least 60 seconds), the design option with
the XE2 did allow for this when considering energy consumption. However, the RAM use needed to be
carefully considered. Figure 6.15 shows the utilized RAM when 10 images were loaded to memory. At
735 MB, this would fill up the complete RAM storage of the Q7S. Considering the 25% communication
overhead, the buffer, and housekeeping & location data that need to be sent to and processed by the
computational hub, a maximum of 3 rovers could rely on one computational hub, and only with very
careful implementation of the communication protocol between the different rovers, as the cycle time
would be a constraining factor.

In summary, two primary concerns arose with a centralized swarm design.

1. The communication subsystem would need a thorough redesign, as explained in section 6.5.
The computational hub would require a much higher data rate than the Zigbee communication
subsystem that was currently implemented on the Ingenuity helicopter, which was taken as an
example of close-range, low-power communication. This redesigned communication subsystem
would have gone at the cost of extra energy use, which in turn would have triggered a ’snowball
effect’ of mass accumulation.

2. A centralized swarm configuration would compromise the swarm’s robustness. Multiple units
would depend on a single computational hub, creating a vulnerability. This centralized approach
would reduce adaptability to unforeseen circumstances and overall robustness. While in a swarm
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’the strength is in the numbers’, this no longer holds when a centralized swarm design is chosen.
Even in the likely situation that communication signals are blocked, multiple individuals would
lose their ability to detect hazards and thus plan a path autonomously.

Designing the rover for a centralized swarm, and thus with heterogeneous OBCA architecture, is
thus a deliberate choice against the actual reasons that a swarm was adopted in the first place. A
decentralized swarm design was thus considered the most feasible design option, albeit at a higher
mission cost.



8
Recommendations for Further Work

Based on the findings discussed in the preceding chapter, this chapter presents a set of recommen-
dations for future research and development for the OBCA and algorithms of Lunar Zebro and lunar
nano-rovers in general. The following recommendations are given:

• Should Lunar Zebro eliminate the necessity for the implementation of algorithms on the FPGA,
the focus could shift towards a central SBC with a sole CPU. This modification potentially reduces
energy consumption, allowing for an extended operational phase and enhanced productivity of
the rover. A pertinent example is the ISIS Space iOBC [208], which demonstrates a nominal
power consumption of 400 mW, a significant reduction from the 2 W required by the current Q7S
configuration. This energy efficiency would directly contribute to increased rover endurance and
exploration capabilities.

• Optimize and rigorously test the implementation of the hazard detection algorithm on the On-
Board Computer (OBC). Focus on refining both the image preprocessing pipeline and the under-
lying model, with particular emphasis on leveraging the XE2 accelerator for enhanced efficiency.
Additionally, explore the integration of mixed precision methods, as proposed by Micikevicius et
al. [195], to potentially boost the algorithm’s accuracy. This optimization effort holds the potential
to significantly improve both performance and precision.

• Exploring a broader range of segmentation algorithms, particularly those optimized for on-edge
applications, is crucial. These algorithms, currently employed in edge devices on Earth like mo-
bile phones, offer potential benefits for space applications. This study employed a segmentation
network tested for rock detection in extraterrestrial settings. However, the effectiveness of several
alternative architectures, such as MobileNet [209], MobileNetv2 [210], and SeResNet18 [211], in
rock segmentation remains to be validated. These architectures are designed for low-SWaP ap-
plications, making them appealing for space missions.

Investigating these algorithms’ capabilities in rock segmentation is a critical next step. Such re-
search should assess how these algorithms perform across various OBCAs, as was done in this
project. For applications utilizing these more lightweight algorithms, the primary concern will be
maintaining high accuracy, especially for a rover that cannot surpass obstacles larger than 3 cm.
However, if very high accuracy can be reached with the lightweight networks, then a SBC like the
ISIS Space iOBC might be sufficient to run DL-based inference. Finally, it would also get easier
to implement the algorithm on a constrained FPGA device.

• Consider implementing the DL-based algorithms on a FPGA like the Zynq 7020, taking into ac-
count the tradeoff between implementation effort, cost and performance. Especially in combina-
tion with the exploration of more lightweight algorithms. This will cost substantial engineering
time, and even then the resources this would require of boards like the Q7s is a concern, but it is
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possible [3]. The implementation would require deep expertise, as it is a very complex endeav-
our. If this would work out, the Xiphos Q7S board would suffice for operation, and at very high
efficiency [FPS/W] and frame rate [FPS] [142].

• Creating an extensive lunar testbed to validate the operation of the rover in a simulated envi-
ronment. During validation runs on an actual test bed, the hazard detection capabilities, path
planning efficiency and the energy use of different subsystems can be tracked simultaneously.

Moreover, this testbed can be used to train a CNN, like MultiUResNet, enhancing its capabilities
to accurately detect craters and slopes. This task requires a significant commitment of man-hours
for the labeling of the dataset. The process involves the development and verification of the test
bed, the acquisition of images for labeling, and the actual labeling process itself. While this repre-
sents a considerable investment both financially and in terms of labor, the resulting detailed and
diverse dataset could markedly improve the CNN’s accuracy in lunar terrain interpretation and
navigation.

• Implement monocular depth estimation for hazard detection using the same lunar test bed. This
approach involves training the network to estimate distances to various hazards, enabling the
recognition of rocks and determination of their distances in a single integrated process. This
method, as proposed by Khan et al. [66], leverages DL techniques to enhance the rover’s naviga-
tional capabilities by accurately assessing the spatial relationship between the rover and potential
hazards.

• Implement the remaining algorithms during the advanced stages of the design process, after the
completion of all software design. More details about the actual algorithms allow for a more de-
tailed endurance test with different OBC options. However, development of these algorithms will
take years, therefore this study gives a very good initial overview of what OBCAwould be required
to answer the demands of the stakeholders.

• Testing the implemented algorithms for radiation, to understand how the different algorithms and
the operating system would exactly respond to radiation and SEUs when in operation. The exact
MCP implementation is of utmost important here, as the places where algorithms are stored, and
the SEU cross-section of those devices determine how often SEUs occur in different algorithms
and how critical these SEUs are. Together with these tests, EDAC methods can be improved and
customised.

An interesting hypothesis could be that the DL-based networks can be trained to perform well,
even when bits in the imaging data are flipped, or when pixels of the camera are broken. Fur-
thermore, the algorithm should be tested and prepared for handling situations like the recognition
of other rovers appearing from behind obstacles or even scenarios where it captures its own
shadow in the images. These additional tests ensure that the algorithm exhibits adaptability and
robustness, making it well-equipped to handle a wide range of challenging conditions that may
arise during lunar missions.

• Explore and implement the utilization of Convolutional Neural Networks (CNN) for the identifi-
cation of scientifically significant objectives. This involves training CNNs on lunar images en-
compassing various rock types and augmented datasets to enable classification of diverse rocks.
Additionally, it could be considered to leverage features such as rock shapes, colors, sizes, and
the context of surroundings (maria/highlands) to enhance the accuracy of the analysis.

• Re-run the power tests, previously conducted on the Raspberry Pi 2, on the Xilinx Xiphos Q7S
PS. This effort promises to yield significantly more accurate power and energy measurements.
Given the ongoing Linux implementation work on this board, these tests can be performed this
year already.
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• Verify the feasibility of the current assumption that intra-swarm communication takes place during
the final phase of the operational cycle. To accomplish this, a decision regarding the communi-
cation system’s design is imperative. Subsequently, establish a validation setup that simulates
multiple communicating agents. Determine whether all messages can be transmitted within the
allocated time frame and assess whether the computational hub has sufficient time for inference
tasks.

• Conduct thorough validation and testing of the data bus operation. This step involves compre-
hensive assessment and verification of the data bus’s functionality to ensure reliable and efficient
data transfer within the system.

• The low-power mode discussed in this thesis needs to be carefully implemented and tested. For
this, it is important to test how well the rover can maintain the operational cycle as discussed in
subsection 3.1.5. The better this is possible, the higher the chance that the Ethernet connector
on the XE2 can be left in a passive OFF state during most of the cycle.
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A
Nominal Power Test Results

The following graphs display the results of the nominal power tests. These were not directly included
in the report.

Figure A.1: Voltage, Current, and Power consumed by the RP2 in nominal conditions, when no mouse (USB), keyboard (USB)
and display (HDMI) connected.
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Figure A.2: Voltage, Current, and Power consumed by the RP2 in nominal conditions, when connected to a mouse (USB),
keyboard (USB), and display (HDMI).

Figure A.3: Voltage, Current, and Power consumed by the RP2 and XE2 together in nominal conditions, when connected to a
mouse (USB), keyboard (USB), and display (HDMI).



B
SPENVIS Settings

The following trajectory and radiation settings were used for the analysis in section 4.4.

Figure B.1: Trajectory Settings

Figure B.2: Trajectory Settings
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Figure B.3: Solar Particle Flux Model Settings

Figure B.4: Solar Particle Model Settings

Figure B.5: GCR Model Settings

Figure B.6: Shielded Flux Settings



118

Figure B.7: Long-Term SEU Settings

Figure B.8: Total Ionizing Dose Settings



C
Source Code

In this Appendix, all source code used in this project is found. Every piece of source code has a
dedicated description attached.

C.1. Converting Lunar Artificial Dataset Masks from 3 to 2 classes
1 '''
2 Description: This script is dedicated to the conversion of the Lunar Artificial Dataset

masks from 3 classes to 2 classes, as we are only interested in rock/non-rock.
3 Author: Thijs Bolscher (thijsbolscher18@live.nl)
4 Creation Date: August/September 2023
5 '''
6

7

8 from PIL import Image
9 import os
10 import numpy as np
11

12 def convert_masks(folder_path):
13 output_folder = os.path.join(folder_path, 'converted_masks')
14 os.makedirs(output_folder, exist_ok=True) # Ensure output directory exists
15

16 # Iterate through the images in the specified folder
17 for filename in os.listdir(folder_path):
18 if filename.endswith(".png"): # Adjust file extension if needed
19 img_path = os.path.join(folder_path, filename)
20

21 # Extract the name without extension
22 image_name, ext = os.path.splitext(filename)
23

24 # Remove 'g_' prefix from filenames that match the pattern 'g_XY.png'
25 if image_name.startswith('g_') and image_name[2:].isdigit():
26 image_name = image_name[2:]
27

28 # Open the image and convert it to a NumPy array
29 img = Image.open(img_path)
30 img_array = np.array(img)
31

32 # Check if the image is grayscale and convert to 3 channels if necessary
33 if len(img_array.shape) == 2:
34 img_array = np.stack((img_array,) * 3, axis=-1)
35

36 # Exclude the alpha channel from RGBA images
37 if len(img_array.shape) == 3 and img_array.shape[2] == 4:
38 img_array = img_array[:, :, :3]
39

40 # Conversion logic for images
41 if len(img_array.shape) == 3 and img_array.shape[2] == 3:
42 # Define thresholds for identifying rock pixels
43 blue_threshold, green_threshold, red_threshold = 130, 130, 150
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44

45 # Identify rock and not-rock pixels
46 rock_mask = (img_array[:, :, 2] > blue_threshold) | (img_array[:, :, 1] >

green_threshold)
47 not_rock_mask = img_array[:, :, 0] > red_threshold
48

49 # Apply mask to create a new binary image (rocks in white, rest in black)
50 converted_mask = np.zeros_like(img_array)
51 converted_mask[rock_mask] = [255, 255, 255]
52 converted_mask[not_rock_mask] = [0, 0, 0]
53

54 # Save the converted image
55 converted_img = Image.fromarray(converted_mask.astype(np.uint8))
56 converted_img.save(os.path.join(output_folder, f"{image_name}.png"))
57 print(f"Converted {filename} and saved as {image_name}.png")
58 else:
59 print(f"Ignoring {filename}: not a valid RGB image")
60

61 print('Masks converted and ready for training.')
62

63 # Replace 'folder_path' with the path to your folder containing masks
64 folder_path = '/path/to/your/mask/folder'
65 convert_masks(folder_path)

Source Code C.1: Converting Lunar Artificial Dataset Masks from 3 to 2 classes.

C.2. MultiResUNet Training
1 '''
2 Description: This script is dedicated to image segmentation using the MultiResUNet

architecture, specifically tailored for Mars or Moon surface images. It encompasses
data preprocessing, model construction, training, evaluation, and functions for model
saving and loading. Emphasis is placed on handling imagery with efficient memory usage
and performance optimization, crucial for space exploration imaging analysis.

3 Author: Thijs Bolscher (thijsbolscher18@live.nl)
4 Creation Date: August/September 2023
5 Based on MultiResUNet: https://github.com/nibtehaz/MultiResUNet
6 '''
7

8 import os
9 import cv2
10 import numpy as np
11 import gc
12 import re
13 import datetime
14 import tensorflow as tf
15 import keras
16 import matplotlib.pyplot as plt
17 from sklearn.model_selection import train_test_split
18 from sklearn.metrics import classification_report
19 from keras.models import Model, load_model
20 from keras.layers import Input, Conv2D, MaxPooling2D, Conv2DTranspose, concatenate,

BatchNormalization, Activation, add
21 from keras.optimizers import Adam
22 from keras.callbacks import TensorBoard, ModelCheckpoint
23 from keras import backend as K
24

25 # Data preparation
26 img_files = sorted(next(os.walk('validation_images'))[2])
27 msk_files = sorted(next(os.walk('validation_masks'))[2])
28

29 X, Y, original_images = [], [], []
30 planar_data_all = []
31

32 for img_fl in tqdm(img_files):
33 if img_fl.endswith('png'):
34 img = cv2.imread(f'validation_images/{img_fl}', cv2.IMREAD_COLOR)
35 resized_img = cv2.resize(img, (256, 192), interpolation=cv2.INTER_CUBIC).astype(np.

float16)
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36 resized_original = cv2.resize(img, (256, 192), interpolation=cv2.INTER_CUBIC)
37

38 planar_data_all.append(np.array(img))
39 original_images.append(resized_original)
40

41 X.append(resized_img)
42

43 msk = cv2.imread(f'validation_masks/{img_fl}', cv2.IMREAD_GRAYSCALE)
44 resized_msk = cv2.resize(msk, (256, 192), interpolation=cv2.INTER_CUBIC).astype(np.

float16)
45 Y.append(resized_msk)
46

47 X, Y = np.array(X), np.array(Y)
48 original_images = np.array(original_images)
49

50 original_images_train , original_images_test , Y_train, Y_test = train_test_split(
original_images, Y, test_size=0.2, random_state=3)

51 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=3)
52 Y_train, Y_test = Y_train.reshape((Y_train.shape[0], Y_train.shape[1], Y_train.shape[2], 1)

), Y_test.reshape((Y_test.shape[0], Y_test.shape[1], Y_test.shape[2], 1))
53

54 original_images_train , original_images_test = original_images_train / 255,
original_images_test / 255

55 X_train, X_test, Y_train, Y_test = X_train / 255, X_test / 255, Y_train / 255, Y_test / 255
56 Y_train, Y_test = np.round(Y_train, 0), np.round(Y_test, 0)
57

58 # 2D Convolutional layers
59 def conv2d_bn(x, filters, num_row, num_col, padding='same', strides=(1, 1), activation='

relu', name=None):
60 '''
61 Apply a 2D Convolutional layer with batch normalization.
62 Arguments:
63 x: Input keras layer.
64 filters: Number of filters.
65 num_row: Number of rows in the filter.
66 num_col: Number of columns in the filter.
67 padding: Padding mode ('same' or 'valid').
68 strides: Strides of the convolution.
69 activation: Activation function to use.
70 name: Name of the layer.
71 Returns:
72 Output keras layer after applying convolution and batch normalization.
73 '''
74 x = Conv2D(filters, (num_row, num_col), strides=strides, padding=padding, use_bias=

False)(x)
75 x = BatchNormalization(axis=3, scale=False)(x)
76 if activation is not None:
77 x = Activation(activation, name=name)(x)
78 return x
79

80 # 2D Transposed Convolutional layers
81 def trans_conv2d_bn(x, filters, num_row, num_col, padding='same', strides=(2, 2), name=None

):
82 '''
83 Apply a 2D Transposed Convolutional layer with batch normalization.
84 Arguments:
85 x: Input keras layer.
86 filters: Number of filters.
87 num_row: Number of rows in the filter.
88 num_col: Number of columns in the filter.
89 padding: Padding mode ('same' or 'valid').
90 strides: Strides of the transposed convolution.
91 name: Name of the layer.
92 Returns:
93 Output keras layer after applying transposed convolution and batch normalization.
94 '''
95 x = Conv2DTranspose(filters, (num_row, num_col), strides=strides, padding=padding)(x)
96 x = BatchNormalization(axis=3, scale=False)(x)
97 return x
98

99 # MultiRes Block
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100 def MultiResBlock(U, inp, alpha=1.67):
101 '''
102 MultiRes Block as defined in the MultiResUNet architecture.
103 Arguments:
104 U: Number of filters in a corresponding UNet stage.
105 inp: Input keras layer.
106 alpha: Scaling factor for number of filters.
107 Returns:
108 Output keras layer after applying MultiRes Block.
109 '''
110 W = alpha * U
111 shortcut = inp
112 shortcut = conv2d_bn(shortcut, int(W*0.167) + int(W*0.333) + int(W*0.5), 1, 1,

activation=None, padding='same')
113

114 conv3x3 = conv2d_bn(inp, int(W*0.167), 3, 3, activation='relu', padding='same')
115 conv5x5 = conv2d_bn(conv3x3, int(W*0.333), 3, 3, activation='relu', padding='same')
116 conv7x7 = conv2d_bn(conv5x5, int(W*0.5), 3, 3, activation='relu', padding='same')
117

118 out = concatenate([conv3x3, conv5x5, conv7x7], axis=3)
119 out = BatchNormalization(axis=3)(out)
120

121 out = add([shortcut, out])
122 out = Activation('relu')(out)
123 out = BatchNormalization(axis=3)(out)
124

125 return out
126

127 # ResPath
128 def ResPath(filters, length, inp):
129 '''
130 ResPath as defined in the MultiResUNet architecture, used for residual connections.
131 Arguments:
132 filters: Number of filters.
133 length: Length of the ResPath.
134 inp: Input keras layer.
135 Returns:
136 Output keras layer after applying ResPath.
137 '''
138 shortcut = inp
139 shortcut = conv2d_bn(shortcut, filters, 1, 1, activation=None, padding='same')
140

141 out = conv2d_bn(inp, filters, 3, 3, activation='relu', padding='same')
142 out = add([shortcut, out])
143 out = Activation('relu')(out)
144 out = BatchNormalization(axis=3)(out)
145

146 for i in range(length - 1):
147 shortcut = out
148 shortcut = conv2d_bn(shortcut, filters, 1, 1, activation=None, padding='same')
149 out = conv2d_bn(out, filters, 3, 3, activation='relu', padding='same')
150 out = add([shortcut, out])
151 out = Activation('relu')(out)
152 out = BatchNormalization(axis=3)(out)
153

154 return out
155

156 # MultiResUnet model definition
157 def MultiResUnet(height, width, n_channels):
158 '''
159 Define the MultiResUNet model.
160 Arguments:
161 height: Height of the input image.
162 width: Width of the input image.
163 n_channels: Number of channels in the input image.
164 Returns:
165 Constructed MultiResUNet keras model.
166 '''
167 inputs = Input((height, width, n_channels))
168

169 # MultiRes blocks and pooling layers
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170 mresblock1 = MultiResBlock(32, inputs)
171 pool1 = MaxPooling2D(pool_size=(2, 2))(mresblock1)
172 mresblock1 = ResPath(32, 4, mresblock1)
173

174 mresblock2 = MultiResBlock(32*2, pool1)
175 pool2 = MaxPooling2D(pool_size=(2, 2))(mresblock2)
176 mresblock2 = ResPath(32*2, 3, mresblock2)
177

178 mresblock3 = MultiResBlock(32*4, pool2)
179 pool3 = MaxPooling2D(pool_size=(2, 2))(mresblock3)
180 mresblock3 = ResPath(32*4, 2, mresblock3)
181

182 mresblock4 = MultiResBlock(32*8, pool3)
183 pool4 = MaxPooling2D(pool_size=(2, 2))(mresblock4)
184 mresblock4 = ResPath(32*8, 1, mresblock4)
185

186 mresblock5 = MultiResBlock(32*16, pool4)
187

188 # Upsampling and concatenation
189 up6 = concatenate([Conv2DTranspose(32*8, (2, 2), strides=(2, 2), padding='same')(

mresblock5), mresblock4], axis=3)
190 mresblock6 = MultiResBlock(32*8, up6)
191

192 up7 = concatenate([Conv2DTranspose(32*4, (2, 2), strides=(2, 2), padding='same')(
mresblock6), mresblock3], axis=3)

193 mresblock7 = MultiResBlock(32*4, up7)
194

195 up8 = concatenate([Conv2DTranspose(32*2, (2, 2), strides=(2, 2), padding='same')(
mresblock7), mresblock2], axis=3)

196 mresblock8 = MultiResBlock(32*2, up8)
197

198 up9 = concatenate([Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same')(
mresblock8), mresblock1], axis=3)

199 mresblock9 = MultiResBlock(32, up9)
200

201 # Final convolutional layer
202 conv10 = conv2d_bn(mresblock9, 1, 1, 1, activation='sigmoid')
203

204 # Model compilation
205 model = Model(inputs=[inputs], outputs=[conv10])
206 return model
207

208 # Custom metrics for model evaluation
209 def dice_coef(y_true, y_pred):
210 '''
211 Calculate the Dice Coefficient for model evaluation.
212 Arguments:
213 y_true: True labels.
214 y_pred: Predicted labels.
215 Returns:
216 Dice Coefficient as a float.
217 '''
218 smooth = 1.0
219 y_true_f = K.flatten(y_true)
220 y_pred_f = K.flatten(y_pred)
221 intersection = K.sum(y_true_f * y_pred_f)
222 return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth)
223

224 def jacard(y_true, y_pred):
225 '''
226 Calculate the Jaccard Index (IoU) for model evaluation.
227 Arguments:
228 y_true: True labels.
229 y_pred: Predicted labels.
230 Returns:
231 Jaccard Index as a float.
232 '''
233 y_true_f = K.flatten(y_true)
234 y_pred_f = K.flatten(y_pred)
235 intersection = K.sum(y_true_f * y_pred_f)
236 union = K.sum(y_true_f + y_pred_f - y_true_f * y_pred_f)
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237 return intersection / union
238

239 # Model saving function
240 def saveModel(model, training_name):
241 '''
242 Save the model architecture and weights.
243 Arguments:
244 model: The trained keras model.
245 training_name: Name of the training session for directory structuring.
246 '''
247 model_json = model.to_json()
248 try:
249 os.makedirs(f'/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/MultiResUNet-

Rocks/checkpoints/{training_name}/models')
250 except FileExistsError:
251 pass
252

253 with open(f'/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/MultiResUNet-Rocks/
checkpoints/{training_name}/models/modelP.json', 'w') as fp:

254 fp.write(model_json)
255

256 model.save_weights(f'/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/
MultiResUNet-Rocks/checkpoints/{training_name}/models/modelW.h5')

257 model.save(f'/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/MultiResUNet-Rocks/
checkpoints/{training_name}/models/complete_model.h5')

258 print('Model saved in "models" folder.')
259

260

261

262 def evaluateModel(model, X_test, Y_test, batchSize, training_name, original_images_test):
263 # Directory creation for saving resulting images and model data
264 os.makedirs(f'/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/MultiResUNet-Rocks

/checkpoints/{training_name}/resulting_imgs', exist_ok=True)
265 os.makedirs(f'/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/MultiResUNet-Rocks

/checkpoints/{training_name}/models', exist_ok=True)
266

267 fig_path = f'/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/MultiResUNet-Rocks/
checkpoints/{training_name}/resulting_imgs/'

268

269 # Model prediction and evaluation
270 yp = model.predict(x=X_test, batch_size=batchSize, verbose=1)
271 val_loss = model.evaluate(X_test, Y_test, batch_size=batchSize, verbose=0)
272 yp = np.round(yp, 0)
273

274 # Visualization of predictions
275 for i in range(10):
276 plt.figure(figsize=(20, 10))
277 plt.subplot(1, 3, 1)
278 plt.imshow(original_images_test[i]) # Input image
279 plt.title('Input')
280 plt.subplot(1, 3, 2)
281 plt.imshow(Y_test[i].reshape(Y_test[i].shape[0], Y_test[i].shape[1]).astype(np.int8

)) # Ground truth
282 plt.title('Ground Truth')
283 plt.subplot(1, 3, 3)
284 plt.imshow(yp[i].reshape(yp[i].shape[0], yp[i].shape[1]).astype(np.int8)) #

Prediction
285 plt.title('Prediction')
286

287 intersection = yp[i].ravel() * Y_test[i].ravel()
288 union = yp[i].ravel() + Y_test[i].ravel() - intersection
289 jacard_index = np.sum(intersection) / np.sum(union)
290 plt.suptitle(f'Jaccard Index: {np.sum(intersection)}/{np.sum(union)} = {

jacard_index}')
291 plt.savefig(f'{fig_path}{i}.png', format='png')
292 plt.close()
293

294 # Metric calculation for the entire test dataset
295 jacard, dice = 0, 0
296 recall_scores, precision_scores, f1_scores, accuracy_scores = [], [], [], []
297
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298 for i in range(len(Y_test)):
299 yp_flat = yp[i].ravel()
300 y_true_flat = Y_test[i].ravel()
301 intersection = yp_flat * y_true_flat
302 union = yp_flat + y_true_flat - intersection
303

304 jacard += np.sum(intersection) / np.sum(union)
305 dice += 2. * np.sum(intersection) / (np.sum(yp_flat) + np.sum(y_true_flat))
306

307 tp, fp, fn = np.sum(intersection), np.sum(yp_flat) - np.sum(intersection), np.sum(
y_true_flat) - np.sum(intersection)

308 tn = len(y_true_flat) - (tp + fp + fn)
309

310 accuracy = (tp + tn) / (tp + tn + fp + fn)
311 recall = tp / (tp + fn) if (tp + fn) != 0 else 0
312 precision = tp / (tp + fp) if (tp + fp) != 0 else 0
313 f1 = 2 * (precision * recall) / (precision + recall) if (precision + recall) != 0

else 0
314

315 accuracy_scores.append(accuracy)
316 recall_scores.append(recall)
317 precision_scores.append(precision)
318 f1_scores.append(f1)
319

320 # Averaging the metrics
321 avg_accuracy = np.mean(accuracy_scores)
322 avg_recall = np.mean(recall_scores)
323 avg_precision = np.mean(precision_scores)
324 avg_f1 = np.mean(f1_scores)
325

326 # Printing the average metrics
327 print(f"Average Accuracy: {avg_accuracy:.4f}, Average Recall: {avg_recall:.4f}, Average

Precision: {avg_precision:.4f}, Average F1 Score: {avg_f1:.4f}")
328

329 #####################################
330

331 jacard /= len(Y_test)
332 dice /= len(Y_test)
333 #precision = precision_m()
334 #recall /= len(Y_test)
335 #f1 /= len(Y_test)
336

337

338 print('Jacard Index : '+str(jacard))
339 print('Dice Coefficient : '+str(dice))
340

341

342 fp = open('/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/MultiResUNet-Rocks/
checkpoints/' +training_name +'/models/log.txt','a')

343 fp.write(str(jacard)+'\n')
344 fp.close()
345

346 fp = open('/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/MultiResUNet-Rocks/
checkpoints/' +training_name + '/models/best.txt','r')

347 best = fp.read()
348 fp.close()
349

350 if(jacard>float(best)):
351 print('***********************************************')
352 print('Jacard Index improved from '+str(best)+' to '+str(jacard))
353 print('***********************************************')
354 fp = open('/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/MultiResUNet-

Rocks/checkpoints/' +training_name + '/models/best.txt','w')
355 fp.write(str(jacard))
356 fp.close()
357

358 saveModel(model)
359

360 return(dice, jacard, avg_accuracy, avg_precision, avg_recall, avg_f1, val_loss)
361

362
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363

364 def trainStep(model, X_train, Y_train, X_test, Y_test, epochs, batchSize, training_name):
365 '''
366 Function to train a machine learning model and evaluate it at each epoch.
367

368 Parameters:
369 model (keras.Model): The machine learning model to be trained.
370 X_train, Y_train: Training data and labels.
371 X_test, Y_test: Validation data and labels.
372 epochs (int): Number of epochs to train the model.
373 batchSize (int): Size of the batch used in training.
374 training_name (str): Name identifier for the training session, used for logging and

checkpointing.
375 '''
376

377 # Setting up TensorBoard logging and checkpoints
378 log_dir = os.path.join("tensorboard_logs", training_name, "cp.ckpt" + datetime.datetime

.now().strftime("%Y%m%d-%H%M%S"))
379 tensorboard_callback = TensorBoard(log_dir=log_dir, histogram_freq=1)
380

381 checkpoint_path = os.path.join("checkpoints", training_name, "cp.ckpt")
382 cp_callback = ModelCheckpoint(filepath=checkpoint_path, save_best_only=False, verbose

=1, save_weights_only=False)
383

384 # Lists to store metrics
385 loss_history, val_loss_history, dice_coef_history, jacard_history = [], [], [], []
386 accuracy_history, precision_history, recall_history, f1_history = [], [], [], []
387

388 # Training loop
389 for epoch in range(epochs):
390 gc.collect()
391 print('Now we start training:', 'Epoch {}'.format(epoch + 1))
392 history = model.fit(X_train, Y_train, batch_size=batchSize, epochs=1, verbose=1,

callbacks=[tensorboard_callback , cp_callback])
393

394 # Recording training loss
395 loss_history.append(history.history['loss'][0])
396 print('Evaluating model performance:', 'Epoch {}'.format(epoch + 1))
397

398 # Evaluating the model on validation data
399 dice_coef, jacard, accuracy, precision, recall, f1, val_loss = evaluateModel(model,

X_test, Y_test, batchSize, training_name)
400

401 # Recording validation metrics
402 dice_coef_history.append(dice_coef)
403 jacard_history.append(jacard)
404 accuracy_history.append(accuracy)
405 precision_history.append(precision)
406 recall_history.append(recall)
407 f1_history.append(f1)
408 val_loss_history.append(val_loss[0]) # Assuming val_loss is a tuple/list
409

410 print('Validation loss history:', val_loss_history)
411

412 # Plotting training and validation loss
413 plt.figure(figsize=(10, 6))
414 plt.plot(range(1, len(loss_history) + 1), loss_history, label='Training Loss')
415 plt.plot(range(1, len(val_loss_history) + 1), val_loss_history, label='Validation

Loss')
416 plt.title('Training and Validation Loss Over Epochs')
417 plt.xlabel('Epoch')
418 plt.ylabel('Loss')
419 plt.legend()
420 plt.grid(True)
421 plt.show()
422

423 return model
424

425

426 # Custom metric functions
427 def recall_m(y_true, y_pred):
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428 '''
429 Calculate the recall metric.
430 Arguments:
431 y_true: True labels.
432 y_pred: Predicted labels.
433 Returns:
434 Calculated recall value.
435 '''
436 true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
437 possible_positives = K.sum(K.round(K.clip(y_true, 0, 1)))
438 recall = true_positives / (possible_positives + K.epsilon())
439 return recall
440

441 def precision_m(y_true, y_pred):
442 '''
443 Calculate the precision metric.
444 Arguments:
445 y_true: True labels.
446 y_pred: Predicted labels.
447 Returns:
448 Calculated precision value.
449 '''
450 true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1)))
451 predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1)))
452 precision = true_positives / (predicted_positives + K.epsilon())
453 return precision
454

455 def f1_m(y_true, y_pred):
456 '''
457 Calculate the F1 score.
458 Arguments:
459 y_true: True labels.
460 y_pred: Predicted labels.
461 Returns:
462 Calculated F1 score.
463 '''
464 precision = precision_m(y_true, y_pred)
465 recall = recall_m(y_true, y_pred)
466 return 2 * ((precision * recall) / (precision + recall + K.epsilon()))
467

468

469 #########################################################################################
470 # Training setup
471 training_name = 'Mars_FP16_BS4'
472 model = MultiResUnet(height=192, width=256, n_channels=3)
473

474 # Compile the model with custom metrics
475 model.compile(optimizer='adam', loss='binary_crossentropy',
476 metrics=[dice_coef, jacard, 'accuracy', keras.metrics.Precision(), keras.

metrics.Recall()])
477

478 # Save the initial model configuration
479 saveModel(model, training_name)
480

481 # Initialize log files
482 with open(f'/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/MultiResUNet-Rocks/

checkpoints/{training_name}/models/log.txt', 'w') as fp:
483 pass
484 with open(f'/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/MultiResUNet-Rocks/

checkpoints/{training_name}/models/best.txt', 'w') as fp:
485 fp.write('-1.0')
486

487 # Start the training process
488 trainStep(model, X_train, Y_train, X_test, Y_test, epochs=15, batchSize=4, training_name)
489

490 ########################################################################################
491 # Code to load and continue training the model for a new training round
492 new_training_name = 'FP16_first_round'
493 checkpoint_dir = os.path.join("/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/

MultiResUNet-Rocks/checkpoints", new_training_name, 'cp.ckpt')
494
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495 # Load the model from the checkpoint
496 print(f"Loading model from {checkpoint_dir}")
497 model = tf.keras.models.load_model(checkpoint_dir, custom_objects={'dice_coef': dice_coef,

'jacard': jacard})
498

499 # Re-compile the model with the same settings
500 model.compile(optimizer='adam', loss='binary_crossentropy',
501 metrics=[dice_coef, jacard, 'accuracy', keras.metrics.Precision(), keras.

metrics.Recall()])
502

503 # Continue training
504 trainStep(model, X_train, Y_train, X_test, Y_test, epochs=200, batchSize=2, training_name=

new_training_name)

Source Code C.2: Training MultiResUNet.

C.3. Transforming PNG Images to BIN for Inference on Myriad
1

2 '''
3 Description: This script is designed for processing and converting image data to a planar

format in FP16. It reads images from a specified source directory, resizes them to a
target size, and splits them into individual color channels (BGR). These channels are
then interleaved and saved in a binary format to a destination directory. This process
is crucial for preparing images for specific machine learning or image processing tasks
where planar format and reduced precision (FP16) are beneficial.

4 Author: Thijs Bolscher (thijsbolscher18@live.nl)
5 Creation Date: August/September 2023
6 '''
7

8 import cv2
9 import numpy as np
10 import os
11 from pathlib import Path
12 from tqdm import tqdm
13

14 # Define source and destination directories
15 src_dir = Path("validation_images")
16 dst_dir = Path("/home/thijsbolscher/Documents/Aerospace/Thesis/Testing/Image_conversion/

bin_images_planar_fp16")
17

18 # Retrieve image file names from source directories
19 img_files = sorted(next(os.walk(src_dir))[2])
20

21 # Initialize lists for storing image data
22 X = [] # List for resized images
23

24 # Define the target size for image resizing
25 target_size = (256, 192)
26

27 # Create the destination directory if it doesn't exist
28 os.makedirs(dst_dir, exist_ok=True)
29

30 # Process each image file
31 for img_fl in tqdm(img_files):
32 if img_fl.endswith('.png'):
33 # Define the source path
34 src_path = src_dir / img_fl
35

36 # Read and resize the image to the target size
37 img = cv2.imread(str(src_path), cv2.IMREAD_COLOR)
38 resized_img = cv2.resize(img, target_size, interpolation=cv2.INTER_CUBIC).astype(np

.float16)
39

40 # Append resized image to the list
41 X.append(resized_img)
42

43 # Split the image into separate color channels (BGR format)
44 blue_channel, green_channel, red_channel = cv2.split(resized_img)



C.4. Transforming OMX output files to JPEG after Inference on Myriad 129

45

46 try:
47 # Interleave the color channels (planar format)
48 planar_data = np.stack((blue_channel, green_channel, red_channel))
49

50 # Transpose the data to rearrange channel order
51 planar_data = planar_data.transpose((1, 2, 0))
52

53 # Set the destination path with '.bin' extension
54 dst_path = dst_dir / src_path.with_suffix(".bin").name
55

56 # Save the interleaved FP16 pixel data to a binary file
57 planar_data.tofile(dst_path)
58 except Exception as e:
59 print(f"Error converting {src_path}: {str(e)}")
60

61 # Print the shape of the last processed image's planar data
62 print(f"Shape of the last processed image's planar data: {np.shape(planar_data)}")

Source Code C.3: Training MultiResUNet.

C.4. Transforming OMX output files to JPEG after Inference on Myr-
iad

1

2 import os
3 import glob
4 import numpy as np
5 import cv2
6

7 # Paths for the source tensors and destination for reconstructed images
8 tensor_folder_path = '/home/thijsbolscher/CogniSatApp/CogniSatApp/apps/DM_MultiResUNet/

outputTensors'
9 output_folder_path = '/home/thijsbolscher/CogniSatApp/CogniSatApp/apps/DM_MultiResUNet/

reconstructed_images'
10

11 # Configure NumPy to display the entire array when printing
12 np.set_printoptions(threshold=np.inf)
13

14 # Get a list of .mxo files in the specified directory
15 mxo_files = glob.glob(os.path.join(tensor_folder_path, '*.mxo'))
16

17 # Threshold value for image conversion
18 threshold_value = 1
19

20 # Iterate over each .mxo file
21 for tensor_file in mxo_files:
22 print(f"Processing {tensor_file}")
23

24 # Read mask data from the .mxo file
25 mxo_data = np.fromfile(tensor_file, dtype=np.float16)
26

27 # Scale the data to the range [0, 255] and convert to uint8
28 mxo_data = (mxo_data * 255).astype(np.uint8)
29

30 # Optional thresholding (currently commented out)
31 # mxo_data = ((mxo_data >= threshold_value).astype(np.uint8) * 255)
32

33 # Reshape the data to the desired image dimensions (here, 512x512)
34 mask = mxo_data.reshape((512, 512))
35

36 # Construct the output file path with .jpeg extension
37 output_file = os.path.join(output_folder_path, os.path.splitext(os.path.basename(

tensor_file))[0] + '.jpeg')
38

39 # Save the image using OpenCV
40 cv2.imwrite(output_file, mask)
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41 print(f"Saved {output_file}")

Source Code C.4: Transforming OMX output files to JPEG after Inference on Myriad.

C.5. The Endurance Test for Energy and Power Consumption
1 '''
2 Description: This script models the power consumption and energy usage of an On-Board

Computer (OBC) in a space exploration context. It simulates the power usage over time
considering various operational tasks such as image preprocessing, object detection,
and path planning. The script also visualizes the OBC's energy consumption and
remaining energy over time, which is crucial for power management in space missions.

3 Author: Thijs Bolscher (thijsbolscher18@live.nl)
4 Creation Date: August/September 2023
5 '''
6

7 import numpy as np
8 import matplotlib.pyplot as plt
9 import time
10

11 # Depth of Discharge and Energy Calculation
12 DoD = 80/100
13 energy_available_per_hour = 0.1 * 5 * DoD * 0.0475 * 243 # Wh
14 energy_available_per_hour_joule = energy_available_per_hour * 3600 # Convert to Joules
15

16

17

18 # Function to simulate and visualize energy usage
19 def Energy_at_t_graph_milliseconds(simulation_time, XE2_onboard, cycle_time,

energy_available):
20 energies = []
21 power_per_second = []
22

23 # Power consumption data (in Joules per millisecond)
24 nominal_power = 2e-3
25 nominal_power_incl_screen = 1.54e-3
26 XE2_idle = 4.04e-3 - nominal_power_incl_screen
27 OBC_tasks_power = 0.5e-3
28 PP_power = 3.06e-3 - nominal_power_incl_screen
29 preprocessing_power = 2.15e-3 - nominal_power_incl_screen
30 Loading_package_power = 1.95e-3 - nominal_power_incl_screen
31

32 # Time data (in milliseconds)
33 startuptime_XE2 = 6e3
34 PP_duration = 1e3
35 Preprocessing_time = 0.15e3 * 2
36 Loading_package_time = 7.1e3 + 2e3
37 firmware_time_XE2 = 12.92e3
38

39 ##########################################################################
40 #Dependent on board
41 if XE2_onboard == False:
42 OD_duration = 56.22e3 * N_rovers *2
43 OD_power = (3.06e-3 - nominal_power_incl_screen ) # W sizing!
44 FDIR_duration = (56.22e3 * N_rovers)/10 *2 #s
45

46

47 else:
48 OD_duration = 0.34e3 * 6.25 * N_rovers *2 #s #######Change this line if the rover

needs to run inference on more individuals
49 OD_power = 4.84e-3 - nominal_power_incl_screen #W
50 FDIR_duration = (0.34e3 * 6.25 * N_rovers)/10 *2 #ms
51 #for the XE2 this is loading firmware and network to XE2, not required in warm boot
52 Loading_firmware_power = 4.03e-3 -nominal_power_incl_screen #J/ms
53

54 ########################################################################
55 energy_left = energy_available
56 # Simulation loop for energy usage over time
57 for t in range(simulation_time):
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58 power_use_this_second = 0
59

60 # Subtract nominal power and add to power usage
61 energy_left -= nominal_power
62 power_use_this_second += nominal_power
63

64 # #Load packages RP2 ######################
65 if t % cycle_time < (Loading_package_time):
66 energy_left -= Loading_package_power
67 power_use_this_second += Loading_package_power
68

69 #preprocessing ####################3
70 if t % cycle_time > (Loading_package_time) and t % cycle_time < (Preprocessing_time

+ Loading_package_time): #
71 energy_left -= preprocessing_power
72 power_use_this_second += preprocessing_power
73

74 #Startup XE2 ###################################33
75 if t % cycle_time >(Preprocessing_time + Loading_package_time -(startuptime_XE2))

and t%cycle_time <(Preprocessing_time +Loading_package_time ) and XE2_onboard == True:
#include startuptime of XE2

76 energy_left -= XE2_idle
77 power_use_this_second += XE2_idle
78

79 #Load Firmware and model XE2 ##########################
80 if t % cycle_time >(Preprocessing_time + Loading_package_time ) and t%cycle_time

<(Preprocessing_time +Loading_package_time + firmware_time_XE2) and XE2_onboard == True
: #include startuptime of XE2

81 energy_left -= Loading_firmware_power
82 power_use_this_second += Loading_firmware_power
83

84

85 #Rock Detection #######################################
86 if XE2_onboard == True and t % cycle_time > (Preprocessing_time +

Loading_package_time + firmware_time_XE2) and t % cycle_time < (OD_duration+
Preprocessing_time +Loading_package_time + firmware_time_XE2): #OD on 2 images every
cycle_time seconds after preprocessing with one second break

87 energy_left -= OD_power
88 power_use_this_second += OD_power
89

90 elif XE2_onboard ==False and t % cycle_time > (Preprocessing_time +
Loading_package_time ) and t % cycle_time < (OD_duration+ Preprocessing_time +
Loading_package_time ) :

91 energy_left -= OD_power
92 power_use_this_second += OD_power
93

94 #FDIR #############################################
95 if XE2_onboard == True and t % cycle_time > (Preprocessing_time +

Loading_package_time + OD_duration +firmware_time_XE2 ) and t % cycle_time < (
PP_duration + Preprocessing_time + Loading_package_time + OD_duration +
firmware_time_XE2 + FDIR_duration):

96 energy_left -= OD_power
97 power_use_this_second += OD_power
98

99 elif XE2_onboard ==False and t % cycle_time > (Preprocessing_time +
Loading_package_time + OD_duration ) and t % cycle_time < (PP_duration +
Preprocessing_time + Loading_package_time + OD_duration + FDIR_duration):

100 energy_left -= OD_power
101 power_use_this_second += OD_power
102

103 #Path Planning Correct
104 if XE2_onboard == True and t % cycle_time > (Preprocessing_time +

Loading_package_time + OD_duration +firmware_time_XE2 +FDIR_duration +1e3 ) and t %
cycle_time < (PP_duration + Preprocessing_time + Loading_package_time + OD_duration +
firmware_time_XE2+FDIR_duration + 1e3):

105 energy_left -= PP_power
106 power_use_this_second += PP_power
107

108 elif XE2_onboard ==False and t % cycle_time > (Preprocessing_time +
Loading_package_time + OD_duration + FDIR_duration + 1e3 ) and t % cycle_time < (
PP_duration + Preprocessing_time + Loading_package_time + OD_duration +FDIR_duration +
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1e3):
109 energy_left -= PP_power
110 power_use_this_second += PP_power
111

112

113

114 energies.append(energy_left)
115 power_per_second.append(power_use_this_second)
116

117 # Printing peak and nominal power usage
118 print("Peak power during operational cycle =", 1000 * max(power_per_second), "mW")
119 print("Nominal power during operational cycle =", 1000 * min(power_per_second), "mW")
120

121 # Plotting the results
122 adjusted_time = [time_val / 1000 for time_val in range(simulation_time)]
123 adjusted_power = [power_val * 1000 for power_val in power_per_second]
124

125 plt.figure(figsize=(12, 5))
126 plt.subplot(1, 2, 1)
127 plt.plot(adjusted_time, adjusted_power, color='orange')
128 plt.xlabel('Time (seconds)')
129 plt.ylabel('Power (Watts)')
130 plt.title('OBC Power Consumption Over Time')
131 plt.grid(True)
132

133 plt.subplot(1, 2, 2)
134 plt.plot(adjusted_time, energies)
135 plt.xlabel('Time (seconds)')
136 plt.ylabel('Energy (Joules)')
137 plt.title('The Energy Available for the OBC Over Time')
138 plt.grid(True)
139 plt.tight_layout()
140 plt.show()
141

142 print('Energy left at the end of', t, 'seconds =', energy_left, 'Joules')
143 print('Energy consumed in the total interval =', energy_available_per_hour_joule -

energy_left, 'Joules')
144 return energy_left
145

146

147

148

149 ##########################################################################################
150 ################## WARMBOOT/LOW-POWER MODE ###############################################
151 ##########################################################################################
152

153

154 def Energy_at_t_graph_milliseconds_warmboot(simulation_time, XE2_onboard, cycle_time,
energy_available):

155 energies = []
156 power_per_second = []
157

158 # cycle_time = 240e3 #Check with Raj.
159 N_rovers = 1 #we change this if HETEROGENEOUS swarm
160

161 #Power Data
162 nominal_power = 3e-3 #J/ms
163 nominal_power_incl_screen = 1.54e-3 #J/ms
164 XE2_idle = (4.04e-3 - nominal_power_incl_screen) #W
165 OBC_tasks_power = 0.5e-3 #J/ms
166 PP_power = 3.06e-3 -nominal_power_incl_screen #J/ms
167 preprocessing_power = 2.15e-3 - nominal_power_incl_screen #J/ms
168 Loading_package_power = 1.95e-3 - nominal_power_incl_screen #J/ms
169

170 #Time Data
171 startuptime_XE2 = 6e3 #s
172 PP_duration = 1e3 #millisecond , see requirements on page 66 of thomas' thesis we can

ask Thomas Manteaux for broad estimation of path planning from what he experienced on
his chip

173 Preprocessing_time = 0.15e3 *N_rovers #millisecond multiply by two for two images.
174 Loading_package_time = 7.1e3 #ms
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175 firmware_time_XE2 = 12.92e3 #ms
176

177 ##########################################################################
178 #Dependent on board
179 if XE2_onboard == False:
180 OD_duration = 56.22e3 * N_rovers
181 OD_power = (3.06e-3 - nominal_power_incl_screen ) # W sizing!
182 FDIR_duration = OD_duration/10 *2*N_rovers #s
183

184

185 else:
186 OD_duration = 0.34e3 * 6.25 * N_rovers #s #######Change this line if the rover

needs to run inference on more individuals
187 OD_power = 4.84e-3 - nominal_power_incl_screen #W
188 FDIR_duration = OD_duration/10 *2 * N_rovers #ms
189 #for the XE2 this is loading firmware and network to XE2, not required in warm boot
190 Loading_firmware_power = 4.03e-3 -nominal_power_incl_screen #J/ms
191

192 ########################################################################
193 energy_left = energy_available
194 for t in range(simulation_time):
195 power_use_this_second = 0 #we will use this to calculate the power use at every

second
196

197 energy_left -= nominal_power
198 power_use_this_second += (nominal_power)
199

200

201 #Load packages RP2 ######################
202 if t % cycle_time < (Loading_package_time):
203 energy_left -= Loading_package_power
204 power_use_this_second += Loading_package_power
205

206 #preprocessing ####################3
207 if t % cycle_time > (Loading_package_time) and t % cycle_time < (Preprocessing_time

+ Loading_package_time): #
208 energy_left -= preprocessing_power
209 power_use_this_second += preprocessing_power
210

211

212

213 #Rock Detection #######################################
214 if XE2_onboard == True and t % cycle_time > (Preprocessing_time +

Loading_package_time ) and t % cycle_time < (OD_duration+ Preprocessing_time +
Loading_package_time ): #OD on 2 images every cycle_time seconds after preprocessing
with one second break

215 energy_left -= OD_power
216 power_use_this_second += OD_power
217

218

219 #FDIR #############################################
220 if XE2_onboard == True and t % cycle_time > (Preprocessing_time +

Loading_package_time + OD_duration ) and t % cycle_time < (PP_duration +
Preprocessing_time + Loading_package_time + OD_duration + FDIR_duration):

221 energy_left -= OD_power
222 power_use_this_second += OD_power
223

224

225

226 #Path Planning Correct
227 if XE2_onboard == True and t % cycle_time > (Preprocessing_time +

Loading_package_time + OD_duration +FDIR_duration +1e3 ) and t % cycle_time < (
PP_duration + Preprocessing_time + Loading_package_time + OD_duration +FDIR_duration +
1e3):

228 energy_left -= PP_power
229 power_use_this_second += PP_power
230

231

232

233

234
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235 energies.append(energy_left)
236 power_per_second.append(power_use_this_second)
237

238

239 print("Peak power during operational cycle =", max(power_per_second))
240 print("Nominal power during operational cycle =", min(power_per_second))
241

242 # Adjusting data for plotting
243 adjusted_time = [time_val / 1000 for time_val in range(simulation_time)]
244 adjusted_power = [power_val * 1000 for power_val in power_per_second]
245

246 # Create two subplots side by side
247 plt.figure(figsize=(12, 5)) # Adjust the figure size as needed
248

249 # Plotting power graph on the right
250 plt.subplot(1, 2, 1)
251 plt.plot(adjusted_time, adjusted_power, color='orange') # Plotting adjusted power

usage
252 plt.xlabel('Time (seconds)')
253 plt.ylabel('Power (Watts)')
254 plt.ylim(2, None) # Set the minimum y-value to 2 and let maximum be determined

automatically
255 plt.title('Power Usage Over Time')
256 plt.grid(True)
257

258 # Plotting energy graph on the left
259 plt.subplot(1, 2, 2)
260 plt.plot(adjusted_time, energies)
261 plt.xlabel('Time (seconds)')
262 plt.ylabel('Energy (Joules)')
263 plt.title('The Energy Available for the OBC Over Time')
264 plt.grid(True)
265

266

267 plt.tight_layout()
268 plt.show()
269

270 plt.plot(adjusted_time, adjusted_power, color='orange') # Plotting adjusted power
usage

271 plt.xlabel('Time (seconds)')
272 plt.ylabel('Power (Watts)')
273 plt.ylim(2, None) # Set the minimum y-value to 2 and let maximum be determined

automatically
274 plt.title('Power Consumption during one Operational Cycle')
275 plt.show()
276

277 print('Energy left at the end of', t, 'seconds = ', energy_left, 'Joules')
278 print('Energy consumed in the total interval =', energy_available_per_hour_joule -

energy_left)
279 return energy_left

Source Code C.5: The Endurance Test for Energy and Power Consumption.


	Preface
	Summary
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Research Outline

	Background
	Lunar Zebro
	The Mission and Capabilities
	System Architecture and Main Design Features
	Mission Phases

	Hazard Detection
	Survey of Rock Detection Methods
	Monocular Depth Estimation

	The Lunar Environment
	Radiation
	Terrain and Dust
	Potential Resources
	Lunar Zebro Next-generation Mission Objective

	(Space) Embedded Systems
	Radiation effects
	Fault-tolerant Design Techniques
	Hardware
	Hardware in Deep-Space & cots Solutions
	Computing Architectures

	Swarming

	Requirements Engineering & Conceptual Design 
	On-board Computing Architecture Systems Engineering
	Need and Mission Statement
	Stakeholders
	System Requirements
	Operational Details and Assumptions
	Functional Flow
	Functional Breakdown
	Technical Budgets

	Design Options
	Design Option Evaluation and Selection
	Considered Hardware
	Available Memory


	Detailed Design
	Mass and Cost Increase of ai-accelerator
	Data Bus
	Software Design
	Nominal Operations
	Hazard Detection
	Path Planning
	fdir for other subsystems
	Communication
	Operational Modes
	Swarming Operations

	Radiation Risk Assessment
	Single Event Upsets
	Total Ionising Dose
	Latch-ups


	Development, Deployment & Resource Evaluation of cnn for Rock Segmentation
	Performance Evaluation of Neural Network Inference Across Hardware Architectures
	Metrics
	The Datasets
	Choice of Segmentation Algorithm
	Image Preprocessing
	Training
	Converting the Model for the Myriad X

	Method
	obc for Resource Testing
	Test Setup


	Results
	Power Test Results
	Hazard Detection Specifications

	Endurance Test
	Power cycle
	Energy Consumption
	Sensitivity Analysis
	Conclusions

	Core Load and Working Memory
	Core load
	ram

	Non-volatile Memory
	Flash Memory
	SD Memory

	Communication Bandwidth
	System Verification

	Conclusion
	Research Questions

	Recommendations for Further Work
	References
	Nominal Power Test Results
	SPENVIS Settings
	Source Code
	Converting Lunar Artificial Dataset Masks from 3 to 2 classes
	MultiResUNet Training
	Transforming PNG Images to BIN for Inference on Myriad
	Transforming OMX output files to JPEG after Inference on Myriad
	The Endurance Test for Energy and Power Consumption


