
 1

THEORETICAL UNDERPINNING AND PROTOTYPE IMPLEMENTATION OF
SCENARIO BUNDLE-BASED LOGICAL CONTROL FOR SIMULATION OF HUMAN-
ARTIFACT INTERACTION

Wilhelm Frederik van der Vegte
Corresponding author
Faculty of Industrial Design Engineering
Delft University of Technology
Landbergstraat 15, 2628 CE, Delft, the Netherlands
w.f.vandervegte@tudelft.nl
telephone +31-152781061, fax +31-152781839

Imre Horváth
Faculty of Industrial Design Engineering
Delft University of Technology
the Netherlands
i.horvath@ tudelft.nl

ABSTRACT
This article presents a new methodology that enables designers to include in simulations not only the physics
aspects of artifact behavior, but also human actions. The motivation for this research came from the fact that none
of the conventional approaches to engineering simulations includes manipulative control of products by users as
foreseen by designers. By implementing control over physics simulations, changes in parameters can be introduced
that alter the course of the simulated process. As a means to do this, we propose to use scenario bundles, with
which designers can operationalize their conjectures of how human users interact with products as a series of
interconnected simulations. For the imaginary use process described in a scenario bundle, the designer can specify
various product designs, user characteristics and environments, which may in each case lead to different
concatenations of simulation actions. The proposal facilitates the exploration of possible mismatches and anomalies
in use processes. In this article we have described the theoretical fundamentals and the overall concept of the
proposed methodology, as well as its realization as a proof-of-concept implementation. This implementation can be
used as a tool to specify scenario bundles and to perform controlled simulations of human-product interaction. The
use of the tool is demonstrated through a practical example. Although the implementation has proven to be
successful in terms of executing scenario bundles, two bottlenecks need further attention: (i) devising stable
algorithms for large deformations in physical interaction simulation and (ii) incorporation of already existing
algorithms for simulation of low-level human motion control.

KEYWORDS
Scenario bundles, product design, virtual prototyping, simulation control, use process, human-product interaction

1 INTRODUCTION
An important goal of user-centered design is designing consumer durables for optimal interaction with users, i.e.,
considering how products can be used by various users in various situations. This can be facilitated through
computer tools that afford concurrent simulations of the physical behavioral processes as well as the interaction
processes. While a large number of multiphysics-based behavior simulation tools have been developed, less
advancement has been achieved in the field of simulating human-product interaction under varying circumstances.
Typically, possible forms of use are investigated through usability testing, i.e., with human subjects and physical
prototypes, but this takes a lot of time and resources [1]. Those currently available computer-aided approaches that

 2

do not require physical prototypes and human subjects fail to offer product designers intuitive means for specifying
and controlling behavioral and interaction
simulations [2]. The work described in this article
aims to close this gap and to offer a solution for the
problem described above.

The goal of our research was to develop the
theoretical fundamentals and a comprehensive
concept for simulating alternative product use
scenarios including foreseen contacts and actions. In
addition, our objective was also to convert the
concept of scenario-based simulation to a testable
practical implementation. We wanted to make it
possible for designers to ‘play’ with scenarios as
explorative means. Figure 1 shows the key concepts
of our approach and the activities the designer is
supposed to perform with the envisaged system.
Presentation of the underpinning theory and the
computational implementation of the tool forms the
core of this article. An initial version of this theory
was specifically developed to create a basis for the integration of physics simulations with logical control of
nucleus-based models (see [3, 4]). This was previously published in a PhD thesis [5]. For this article the theory has
been generalized and now does not depend on any particular modeling and simulation method, i.e., the simulation
model can be based on finite-element models, block diagrams, bond graphs, etc.

In the next section, we briefly survey related work in the field of human-artifact interaction simulation. In Section
3, we present our concept for controlled interaction simulation with scenarios. This concept is further formalized in
Section 4 to facilitate its computational implementation. In Section 5 we will present a proof-of-concept
implementation that we have realized using commercially available software. In Section 6, we will describe an
application example and discuss the concrete and specific models we created. The theory, its implementation, and
further application opportunities will be discussed in Section 7, followed by conclusions and plans for future work
in Section 8.

2 RELATED WORK
With special attention to conceptual design of consumer durables, we propose a novel control mechanism that
allows simulation of user-product interaction in envisaged use contexts. The mechanism allows investigation of
multiple use scenarios in these contexts using scenario bundles. When implemented in a software tool, the
mechanism enables monitoring the actions and history of interaction processes, alternative considerations of use
actions by designers, and optimization of the interaction from the perspective of the users and the products. A
scenario bundle formally describes a set of alternative use scenarios of a product that includes the foreseen physical
contacts and actions. Technically, it means that we apply logical control over simulations to specify specific
interaction sub-processes.

The importance of the proposed approach comes from the fact that scenario-based simulations can provide
designers with quantitative feedback on complete interaction sequences. This is an improvement over the
functionality offered by conventional engineering simulation tools, which typically require dedicated simulation

Figure 1. Key concepts of the approach presented in this article

human
behavior

artifact
behavior

human
model

artifact
model

simulation of
behavior

scenario
bundle

artifact
logical
control

logical process control

conjecture/play with

create/develop

select

create/develop

investigate

 3

runs for each specific episode of the use process. Complete interaction sequences are supposed to provide designers
better clues to improve products with a view to interactions. By constructing and testing a scenario bundle, a
designer can perform ‘what-if’ type of investigations involving various product designs, physical properties, use
environments, and human users. When the arrangement is changed, the interaction simulation may take a different
course through the scenario bundle. Additionally, scenario-based simulation can be a low-threshold alternative to
testing of physical prototypes or conducting interactive (participatory, human-in-the-loop) simulations, since there
is no need to employ human subjects.

Both in the scientific literature and on the market of commercialized software packages, several methods and
applications can be found that claim to offer designers simulations of interactions between humans and artifacts in
the virtual realm. Two primary application fields can be distinguished, namely, entertainment (movies and gaming)
and ergonomics evaluation of products and systems. In both areas the level of sophistication of an approach is
typically assessed based on two criteria: (i) physical correctness (i.e., does the simulation respect the laws of
physics?) and (ii) naturalness (in particular, of movements). In both cases, physical correctness is typically ensured
by using the laws of physics as a basis for the simulation algorithms. However, in entertainment applications, the
laws of physics are typically selectively applied (e.g., to physically constrained motions) in order to save
computation time [6]. In ergonomics evaluation, where for instance forces on joints have to be monitored [7],
physical correctness is typically maintained at all times.

Naturalness in entertainment applications implies that movements look natural, and this aspect is typically visually
evaluated with human subjects [6]. In ergonomics evaluation however, it is important that movements correspond
to how a real human would move. Therefore, in those evaluation tools that are capable of dynamical movement
simulation, movements are typically based on, or have been validated by comparison with, real human movements
numerically quantified in the metric space [e.g., 8]. Since our approach aims at product evaluation, which includes
ergonomics aspects, we have focused our review of related work on contributions from an ergonomics perspective
where physical correctness and naturalness have been interpreted more strictly.

Conventional ergonomic manikins, such as Sammie, HECAD, and Combiman, can assume arbitrary postures in a
virtual environment containing various artifacts. However, motions are not simulated but have to be completely
directed by the system user, and forces are not computed [9]. Using commercial simulation packages such as
LifeModeler [10] and Anybody [11], designers can bring together geometric models of humans and products to
compute muscle forces and interaction forces during the use process. These software packages require predefined
motion-capture frames obtained from sessions in which human subjects perform the task to be simulated. These
predefined frames act as open-loop control over human motion, so that possible influences of the product on the
human user cannot be taken into account.

The Jack manikin builds further upon the conventional ergonomic manikins and offers a library of predefined
motion-frame sequences related to common tasks [12]. These can be sent to the manikin during interactive sessions
controlled by the system user. Prediction of kinetic effects is limited to quasi-static calculation of forces on human
joints. To predict typical interaction postures for conventional ergonomic manikins, Singh et al. proposed a
constraint-based technique [13]. Given the position and orientation of one or more product surfaces to be gripped
by the hands, the algorithm computes whole-body postures. This is one step towards elimination of guidance by the
system user, but the algorithm lacks a mechanism to compute transitional motions between different gripping
situations.

Santos is a virtual human manikin provided that can generate transitional motion patterns between pairs of arbitrary
start and end postures [8, 14]. A similar approach was presented in [15]. These approaches have been validated

 4

with human subjects and they allow kinematics and kinetics simulation of humans interacting with artifacts while
going through pre-programmed successions of key postures, under the implicit condition that the posture change is
not disturbed (e.g., by a collision with an artifact). What cannot be simulated with these optimization-based motion
trajectory techniques is the succession of posture changes in a complete multiple-interaction use process. In other
words, the simulations support only low-level human motion control between the postures but not the high-level
control (human decision-making) that determines the intent of each subsequent intended posture [cf.,16], nor the
matching kinematical configuration of the human body as the technique in [13] provides. Consequently the
optimization-based techniques still require a human in the loop who directs the virtual human during simulation.

In the ACT-R/DHM1 project, Santos has been enhanced with a cognitive-architecture (CA) simulation to substitute
the human in the loop [17]. Developed and empirically validated by psychologists, CAs (such as ACT-R) are
production-rule based blueprints of the operational structure of cognition [18]. Production rules have been prepared
for specific interaction tasks with specific products, especially for use processes that involve typical frequently
occurring tasks, in particular driving cars [19], piloting aircraft [20], and interacting with computers [21]. For other
‘atypical’ tasks related to the use of other products, new production rules need to developed and validated. This is a
laborious endeavor, which may explain why the ACT-R/DHM researchers so far have only considered the use of one
product, a vending machine, in their efforts to apply CAs to control of dynamical simulations with 3D human
models [22].

An important limitation of CA simulations is that they predict the time the human brain needs for processing
perceptual input and for directing motor operations, but not the reasoning that determines which operation is
performed in which situation. CA-based simulations, including ACT-R/DHM, start from a given task decomposition,
i.e., an idealized sequence of operations as it can be extracted from an instruction manual. However, in reality there
is not just one idealized way to use a product; instead use often involves going through a series of choices from
subsequently available options [23]. This can be depicted by a decision tree, through which the user moves from an
initial state to the goal state, selecting between available operations. Various paths from each junction in the tree
represent state-transforming operations, one of which is selected. Each of the possible routes connecting junctions
is a scenario of use [24], and the idealized task decomposition that is used to control CA-simulations is just one
scenario that ignores the logic of decision-making.

As far as the application of scenarios to use processes with multiple possible courses is concerned, there have been
efforts to achieve logical control over physical and/or simulated processes. As a more flexible alternative to the
scenario-tree representation, organized sets of scenarios or scenario networks have been put forward, that allow
repetitive loops and other forms of branching [25],[26]. These have been typically implemented as control models
by using finite automata (FA) representations. In software engineering, organized sets of scenarios are commonly
used in requirements specification, verification, and prototyping [27]. Since software prototyping is usually done
by executing or emulating the program under development, while physical interaction with hardware (mouse,
keyboard, etc.) and also human processing time (as can be simulated with CAs) is usually not investigated,
additional simulations are not needed. As representations for organized sets of scenarios, Statecharts [28] and, to a
lesser extent, Petri nets [29] have become popular [25],[26],[30],[31]. Although FA representations can also be
based on formal symbolic constructs and text, these graphical notations are generally considered easier to work
with [32].

In domains other than software engineering, the majority of the scenario-based control approaches have been
developed for computer animations in training, gaming, and entertainment rather than for virtual prototyping. In

1 adaptive control of thought-rational combined with digital human modeling.

 5

these approaches, movements are mostly generated based on pre-collected motion frames [33]. An exception is the
Iowa driving simulator [34], which can project virtual humans driving around in virtual cars, and perform physics
simulation controlled by scenarios specified in the form of statecharts. These statecharts cover both human
decision-making and control embedded in artifact subsystems. Human motion was not simulated. Instead only its
effects on the controls of the car (steering wheel, brake, etc.) were included.

In product design, application of scenarios as a means to control simulation of use processes with inclusion of
human motor control and physical interaction, is rare. In the explorative phase of our research we could find only
two references in the investigated literature on the application of scenarios. The first was in a side remark on
possible future implementation in the Santos virtual human [14]. The other was in the article of Hou et al., who
claimed to have implemented scenarios to simulate human-product interaction using a geometric/anatomical human
model [35]. Unfortunately, implementation details are missing, and no reports on further developments after 2007
could be found.

We have concluded that in the most advanced systems developed for use-process simulations, no adequate link has
been established between high-level and low-level human motion control, except in the cases where high-level
control is performed by a human in the loop. The current approaches lack the opportunity to enable high-level
control of human movements and interaction with artifacts by using scenarios. In the remainder of this article we
will present a solution to operationalize formal scenarios in ‘non-interactive interaction simulation’, i.e., to simulate
use situations without requiring a human in the loop to control the interactions.

3 INTRODUCING THE CONCEPTS AND FORMAL DEFINITIONS

3.1 General concept
Our idea has been that designers can investigate and optimize use processes of products if they have an appropriate
mechanism to control simulation of the involved interactions and behavior of humans and artifacts. We adopted the
concept of scenarios to implement the control mechanism. Figure 2 shows our reasoning model of human-artifact
interaction. It brings together (i) high-level and low-level human control, with (ii) (optional) the control built into
artifacts, i.e., recognition and detection by sensors, program execution by control mechanisms, and force exertion
by actuators, and (iii) the actual physical (mechanical) interaction between the human and the product. As is
indicated in the figure, a scenario bundle is a specification of human decision-making by the designer with respect

Figure 2. Conceptual reasoning model of human-artifact interaction

 6

to this reasoning model. As in other fields where scenarios have been applied, such as HCI [cf. 26], scenarios in the
bundle describe sequences of actions both by the human user and by the product. However, the scenario bundle
does this from a human perspective, i.e., the human actions appear as actual actions, and the effects of actions
performed by the product appear as achieved sub-goals of use that trigger the human to proceed to the next action.
Achievement of sub-goals of use is expressed in the form of events and conditions.

The logical information processing acts as a control mechanism over simulation of structural and morphological
changes, in which the physical interaction between humans and artifacts is manifested. Beside physical interaction,
the simulation may cover any process that is governed by the laws of physics and captured in a mathematical
model, such as, for instance, analog signal processing or heat exchange. To enable the control mechanism, it is
interfaced with the simulation. The interfacing requires a two-way conversion: (i) of signals representing energy to
an interpretation as information, and (ii) of logical instructions to physical variables that effectuate energy flows.
The first conversion corresponds to sensing (perception in humans and sensor input to artifacts) and the second one
to activation of effectors (muscles and actuators, respectively).

The components of the human-artifact system have been represented by particular models, specifications, and
constructs. When describing behaviors, ‘models’ in our terminology refer to descriptions reflecting laws of nature
and ‘specifications’ refers to executable conjectures about behavior or instructions. We have used the term
‘construct’ as a unifying notion that covers both ‘models’ and ‘specifications’ so as to address combinations of the
two. For descriptions created by the designer (e.g., a 3D description of a product with material specifications), we
have kept to the regular use of the word ‘model’. Such models can also be subject to executed sequences of
instructions, but in our case their use is limited to simulations based on laws of nature.

The following models, specifications,
and constructs have been defined: (i)
logical constructs, (ii) a simulation
model, and (iii) a signal conversion
specification. Logical constructs
generate output that prescribes
movements by humans and artifacts.
This output takes the form of control
signals that represent those parameters
in the simulation model that specify
motions of muscles and actuators. The
simulation model describes the
geometry and physical characteristics of
humans and artifacts, and thereupon
prescribes their behavior. The
simulation layer outputs meter signals that describe selected/specified physical quantities in the simulation output
that can be ‘measured’. The signal conversion specification describes how the effects of behavior are ‘sensed’ by
the logical constructs. The sensing is based on instantiation of events that mark the occurrence of specified change
in meter signals. The three categories of representations and the related computational operations imply a stratified
structure consisting of three layers, i.e., a modeling layer, M, a simulation layer, Ψ, and a logistics layer, L of which
the processing scheme is shown in Figure 3. The focus of this article is on adding logical control to simulations.
The other two layers are shown in dashed lines.

Figure 3. Processing scheme of three-layered modeling and simulation

specification of human and
artifact models

specification of
logical constructs

specification of
event parameters

simulation
start
command

modeling
layer

modeling

simulation
layer simulation

logistics
layer

execution of logical
constructs

signal
conversion

meter events,
logistic events,

condition values

simulation model

control signals + time meter signals

logical
constructs

signal conversion
specification

Ψ

L

M

logistic values,
logistic events

 7

Formally, the logistics layer can be described as L ={Λ,Ξ} where Λ is the set of logical constructs and Ξ the signal
conversion specification. The set of logical constructs Λ consists of three2 sub-constructs, Λ={λj}={λs, λℓ, λp},
where λs is the scenario bundle, λℓ is the model of low-level logical control of human motion and λp is the procedure
structure which specify the operation elements of software embedded in artifacts. The set of logical constructs

Λ={λj} receives inputs in the form of meter events emet,i(t), condition values νi(t), {νi(t)}  {mi(t)}, and logistic

events, and it produces outputs in the form of control values pi(t), as logistic events elgs,j (t) and logistic values
{ui(t)}. Logistic events and logistic values are events and values that relate to logical processing – in this case in the
description of delays. They are further defined in 4.2 and 4.3. The processing performed by Λ can be written as
Λ: {emet,i(t)}, {νi(t)}, {elgs,i (t)} → {pi(t)}, {elgs,j (t)}, {ui(t)}. L sends signals conveying changes in parameters to the
simulation layer Ψ. They actually take the form of control values pi(t). This can be written as L : {mi(t)} → {pi(t)},

where mi(t)  are meter values produced by the algorithms of the simulation layer Ψ, which receive and process

control signals in order to perform the simulation and to generate meter values. Thus, the simulation layer is
formally defined as Ψ : {pi(t)} → {mi(t)}. Through evaluation of the time-dependent meter signals, the logistics
layer undergoes transitions τi that cause changes in the values of control signals as a means to steer muscles and

actuators. The time signal t  {mi(t)}, which is generated in the logistics layer, is a special meter signal because

along with the control signals it is also transferred to the simulation.

The signal conversion specification Ξ receives inputs from the physics simulation Ψ in the form of all meter signals
{mi(t)} and from the logical constructs Λ in the form of logistic values {ui(t)}, logistic events {elgs,j(t)} and logistic
values {ui(t)}. Ξ produces outputs in the form of condition values ν i(t), meter events emet,i(t) and logistic events
{elgs,i(t)}. Thus, the signal conversion specification is formally defined as Ξ: {mi(t)}, {ui(t)}, {elgs,j (t)} → {ν i(t)},
{emet,i(t)}, {elgs,i(t)}. In other words, Ξ is responsible for:
(i) converting meter signals mi(t) from the simulation layer Ψ to meter events emet,i(t) that are input to the logical

constructs Λ. This is called stimulus recognition, referring to the ability of humans (and artifacts with embedded
software) to recognize those stimuli from perceptive input that require action;

(ii) generating the time signal t that is used by the logical constructs Λ and the physics simulation, as well as the

start event estart  {emet,i}, and

(iii) regulating the timing of logical constructs Λ, i.e., hesitation and delays in the execution of control.

Based on these functionalities the signal conversion specification can be formally specified as Ξ={ΞR, ξ0, ΞT},
where

 ΞR= {ξRs, ξRℓ, ξRp} are the specifications of stimulus recognition for human and artifact in the respective logical
constructs λs, λℓ, and λp;

 ξ0 is the start specification, and

 ΞT= {ξTs, ξTℓ, ξTp} are the specifications of human and artifact timing in the respective logical constructs λs, λℓ,
and λp.

In the next subsection we have further defined the basic processing and the constituents of the set of logical
constructs and of the signal conversion specification.

3.2 Basic processing performed by the constituents of the logistics layer
Logical constructs apply control over physics simulations by changing parameters in relations. The formal
specification given below involves various concepts known from finite automata representations. The involved key
concepts are transitions, events, and states. The three logical sub-constructs λj differ in terms of the inputs they

2 Note that it is possible to change these definitions to include more than three logical constructs. Actually, this is required if logical control in multiple humans
and/or multiple distinct artifacts is to be simulated. However, this possibility has not been explored here.

 8

receive and in the outputs they produce. As input (from λp and Ξ), the scenario bundle receives meter events,
logistic values and events (from the procedure structure), and condition values, and as outputs (to λℓ) it produces
logistic events, which can formally be written as λs: {emet,i(t)}, {ui(λp,t)}, {elgs,i (λp,t)}, {νi(t)} → {elgs,i (λs,t)}.

The model of low-level logical control of human
motion (for the rest of the article this will be
shortened to motor control model) receives logistic
values and events from λs together with condition
values from Ξ, and it produces control signals, i.e.,
λℓ: {elgs,i (,t)}, {νi(t)} → {pi(t)}. As input (from λs
and Ξ) the procedure structure receives meter
events, logistic values, and events and condition
values, and as output (to Ψ) it produces control
signals. Thus, λp: {emet,i(t)}, {ui(λs,t)}, {elgs,i (λs,t)},
{νi(t)} → {pi(t)}. Accordingly, since the distinction between high-level and low-level control that we introduced
for movement control of humans has not been applied to artifacts, the processing performed by λs and λℓ together is
analogous to the processing performed by λp alone. Hence, λs and λℓ together can be considered as a human
interaction construct λh in which we can aggregate and unify all logical processing by the human. Formally, λh:
{emet,i(t)}, {ui(λp,t)}, {elgs,i (λp,t)}, {νi(t)} → {pi(t)}. A logical construct λj of the logistics layer is represented as a
directed graph, whose vertices are transitions τi and the nodes are states Zi, that is, λj={{τi},{Zi}} (Figure 4). As

functions of time, τi and Zi are Booleans, i.e., τi(t), Zi(t)  {0,1} where τi(t)=1 means ‘τi takes place’, τi(t)=0 means

‘τi does not take place’, and Zi(t) = 1 means ‘Zi is active’, Zi(t) = 0 means ‘Zi is not active’.

Transitions between states are triggered by external events eext,i(t). Each logical construct receives these from the
other constructs {{λj}, Ξ}. In order to take place, a transition may also require fulfillment of a logical condition γi,
which can be expressed in terms of meter values, logistic values and activeness of states. Together, the values
evaluated in conditions are called condition values3.

Further explanation and formal elaboration on the main concepts that populate the logistics layer is given in the
next section. Figure 5 gives a comprehensive overview of all the concepts introduced in Sections 3 and 4, and how
they are related.

4 UNDERPINNING OF THE CONCEPTS OF DYNAMICAL PROCESSING AND
ALGORITHMS OF THE LOGISTICS LAYER

4.1 Introduction
The dynamics of how the logistics layer produces control signals as output, based on meter signals as input, can be
described as a propagation chain (Figure 6): a specified change in a meter value triggers a meter event, a meter
event or a logistic event triggers transitions, transitions trigger changes in control variables, as well as logistic
events. The propagation chain contains one loop, in which transitions trigger logistic events and these in turn
trigger transitions. This loop is repeated until there are no more logistic events to be triggered. In time4, one
propagation through the whole chain of triggers, including all repetitions of the loop, has no duration. In 4.2 we

3 Note that in 3.1 it was stated that {νi(t)}  {mi(t)}. This is true only for the condition values νi(t) mentioned in that particular statement, which are output of
the signal conversion specification.
4 Throughout this article, time refers to time in the simulated use process, not to computation time.

Figure 4. Example of a logical construct

 9

will formally specify and interpret these concepts in their order of appearance in the propagation chain. To be able
to specify delays in information processing by humans and artifacts, some additional definitions are needed, which
are presented in 4.3.

Figure 5. Entity-relationships diagram of the concepts populating the simulation layer and the logistics layer

 10

4.2 Definition of dynamical concepts in the logistics layer
Meter variables are specified in the simulation layer Ψ as output signals, which are to be generated after each
simulation time increment ∆tsim. Transfer of meter values mi(t) to the logistics layer L takes place with an
increment, or communication interval, ∆tcom , with ∆tcom = nsample·∆tsim, nsample ≥ 1. In each case when the time in the
logistics layer is updated, t := t + ∆tcom, new meter values mi(t) are read. The initial values of meter variables mi(t0)
typically describe a static state of the human-artifact system.

In general, an event can be defined as the occurrence of a particular measurable change in a process. The change is
specified because it is considered to be a trigger of transitions in the logistics layer. Since it occurs at a point in
time, an event ei(t) has no duration. An event is either internal or external, and it is either a logistic event or a meter
event. An internal event reflects changes inside a given logical construct, while an external event reflects changes
in another logical construct or in the simulation layer.

Logistic events correspond to specified changes in a logical construct. They express a change that occurs because
(i) a particular transition has taken place, or (ii) a particular state has become active or inactive. As can be seen in
Figure 6, a logistic event is always a consequence of a meter event occurring at the same time. Logistic events
allow for, respectively, (i) synchronization of transitions that must take place at the same time, and (ii) a shorter
description of the occurrence of any transition into, or out of, a given state. A logistic event elgs,i (λj,t) can be
external or internal. Meter events are external events corresponding to specified
changes in meter variables, i.e., in the simulation outputs or time. How meter events
emet,i (t) (which are discontinuous in time) are generated from meter variables mi(t)
(which are continuous functions of time) is defined as follows. Let {mi(t)} be the set

of meter variables and let us define a subset of meter variables {μi(t)}  {mi(t)} as

recognition variables, which are used to specify meter events emet,i (t). Now we can
define the meter event specification, Emet,i

 = {emet,i (t), ri, hi, fi(t)}, where emet,i (t) is a
Boolean: emet,i(t) {0,1}, ri{↑,↓,↕} is the orientation of the event: increasing,

decreasing or bidirectional, hi  is the event threshold, and fi(μ1(t),μ2(t),..,μn(t)):
n   is the event-generating function. In the simplest case, the event-generating

function reflects changes in the value of a single recognition variable, e.g., fi = μ1(t)
(where μ1 could be for instance the distance between the human fingertip and a
button that must be pushed), but it can also be an expression that requires evaluation
of multiple recognition variables, e.g., fi = 5μ1(t) + √ (μ2(t)) – d/dt (μ3(t)). The meter
event occurs if the value of the function fi(t) crosses the threshold in the direction(s)
specified by the orientation (Figure 7).

This is formally defined as:

Figure 6. Propagation chain of the logistics layer

Figure 7. Occurrences
of meter events with different
orientations

f t()

h

e1=0

e1=1

t

t

te2=0

e2=1

E ,h3={ , }: bidirectional↕e3 , f

te3=0

e3=1

E ,h2={ , }: decreasing↓e2 , f

E ,h1={ , }: increasing↑e1 , f

e1

e2

e3

 11

 , () 1 iff 0 0 0met i i i i i i

df df df
e t f t h r r r

dt dt dt

                         
      



The start event estart with specification Estart = {↑, t0, t} starts the simulation at t = t0. It is part of the start
specification ξ0, which prescribes that when the system user enters a start command, the start event is sent to the
scenario bundle and to the procedure structure. At the same time, the time signal is set to t = t0. The scenario
bundle and the procedure structure must contain an initial transition τ0 that takes place when estart occurs. Before the

start of the simulation, all meter events are zero: 0 ,: : () 0met it t i e t   .

A transition, τi, with condition γi connects a source state, Zi, to one or more target states Zj(τi), j = 1,..,nts, where

nts  1. If nts > 1, then Zj(τi) are called parallel target states of τi. The transition specification Ti of a transition τi can

be written as     1 2, , , (), (),... ,i i j i i iT Z Z e γ ν t ν t k , with

 γi = {gi(ν1(t),ν2(t),...), }{0,1} the transition condition, where gi:
n   is a function of specified condition

values νi(t) {νi(t)}  {mi(t)}{ui(t)}{Zi(t)},  { = , ≠ , < , > , ≤ , ≥ } is a relational operator, so that γi = 1 if

gi  0, and

  (), () , : n
i i i ik p t m t k   a set of modifier functions that, if τi takes place, change control variables pi and

logistic values ui as follows: p1 := k1(t), …, pP := kP(t), u1 := kP+1 (t), uU := kP+U (t),where P is the total number
of control variables and U the number of logistic values that have been specified to be modified by τ. The
control variables and logistic are thus specified as functions of values of other control variables and logistic

variables as well as meter variables:  1 2 1 2 1 2() (), (),..., (), (),..., (), (),...j jk t k p t p t u t u t m t m t .The newly assigned

functions kj keep controlling these values until another transition takes place that specifies a different set of
modifier functions.

A transition τi with transition specification Ti takes place at a time t, i.e., τi(t) = 1 iff

   1 2() (), (), ,i i ie t γ ν t ν t ε τ t  , with ε(τi,t) {0,1} the enabling, meaning that the transition is enabled, ε(τi,t)= 1,

when Zi(t) = 1, i.e., its source state is active. Since events have no duration, transitions do not have a duration
either. As soon as a transition takes place, its source state Zi becomes inactive and its target states Zj(τi) become
active. Both the scenario bundle and the procedure structure must contain an initial transition τ0(estart) that takes
place when estart occurs.

A control variable is a means of manipulating a relation in the physics simulation model Ψ. It allows us to change
the value of the relation, which is then considered at computing the conduct of physics processes. Typical control
variables are, for instance, prescribed speeds or prescribed forces to be exerted by actuators. Certain variables in
relations, such as mass and Young’s modulus cannot appear as control variables.

4.3 Definition of delays in logical processing
The option of specifying delayed transitions can be useful to investigate the effects of latency in artifactual or
human information processing5. A delay in artifactual information processing can for instance be a deliberate time-
out to wait for a response from the user, or an unavoidable delay caused by data exchange with a central server. A
delay in human information processing can for instance be hesitation to proceed with an action. If during such
hesitation, operation of the product might proceed so that different hesitation durations might lead to different
unfoldings of the use process. The designer can perform what-if studies with various explicitly entered durations of

5 This section does not deal with delays in physical processes related to phenomena such as hysteresis, damping and inertia. Such delays have to be dealt with
in the simulation model.

 12

hesitations - for instance to fine-tune a timeout in the product’s programming.

In terms of specifying the scenario bundle and the procedure structure, such a delay means that the logistic events
and changes in control values resulting from the transition do not take place at the same time as its triggering event,
but some time later. Formally, a delayed transition τd,i in a logical construct λj is triggered at t = tsd,i by an event etd,i
(delay-triggering event) but it takes place (i.e., λj assumes its target state) at t = tsd,i+ di, where di is the delay in
seconds. This cannot be realized directly with a transition according to the definitions in the previous section.
However, as a workaround it can be realized by specifying a delayed transition as a compound of two regular
transitions τsd,i, τed,i with a waiting state Zw,i in between: τd,i = {τsd,i, Zw,i, τed,i}.

The start-delay transition τsd,i is in fact a
dummy transition, while the end-delay
transition τed,i is the actual delayed transition
(Figure 8). When at t = tsd,i a meter event
takes place that triggers the start-delay
transition τsd,i, the logical construct assumes
the waiting state Zw,i. The start-delay
transition τsd,i generates a logistic event
called start-delay event, esd,i. Because
processing one propagation chain (Figure 6)
in a logical construct λj has no duration, the
delay is ‘put aside’ outside λj, to be
processed in a next propagation chain at
t = tsd,i+ di. For this ‘putting aside’, we have
included the specifications of human and
artifact timing ΞT= {ξTs, ξTℓ, ξTp}. After ξTj (j = {s,ℓ,p}) has received the start-delay event it generates the end-delay
event, eed,i at t = ted,i = tsd,i+ di which is sent back to λj where it triggers the end-delay transition τed,i out of the
waiting state Zw,i. As a whole, a specification of human or artifact timing can be defined as

ξTj = {{esd,j},{dj},{eed,j}}. In this specification, {esd,j}  {elgs,j} is the set of start-delay events to be received from the

logical construct λj, while {dj} is the set of durations of the delays, and {eed,j} is the set of end-delay events to be
sent to λj.

4.4 Concluding remarks
In Sections 3 and 4 we have purposefully derived the theoretical elements that are needed to achieve the targeted
system functionality. The theory explains the principles of the logistics layer containing the scenario bundle, which
is a logical construct acting as a control mechanism over the simulation. This makes it possible to simulate
procedurally disjunct sequences of interactions based on the designer’s conjecture of human decision-making. To
connect simulation models and scenario bundles, and to include information processing by artifacts in simulations,
we have defined two additional logical constructs and a signal conversion specification.

The theory does not extend to the realization of software components for storing and processing constructs, models,
and specifications. We have addressed these implementation issues in the next section. Section 5 also addresses the
arrangement of, and data exchange between the software components in a way that unifies the processing scheme
in Figure 3 and the reasoning model of human-artifact interaction in Figure 2.

(The notation τsd /esd is a common convention to specify
“the transition τsd generates the logistic event esd”)

Figure 8. Realization of a delayed transition in a logical construct.

 13

5 PROTOTYPE IMPLEMENTATION

5.1 Objectives
As a proof-of-the concept implementation, we have realized a working prototype of the hypothesized new
functionality based on the theory. The objectives were (i) to gain experiences with feasibility and computability in
general and (ii) to demonstrate the functionality of the conceptualized system. The objective of feasibility testing
was to confirm that the theory can be converted into a structured set of processable algorithms and to demonstrate
the usability. We have further elaborated it in Section 6 of this article. We have addressed the other objectives in
other work, as is briefly discussed in Section 7.

The next subsection, 5.2, is a
specification and explanation of how the
theoretical resources presented in
Sections 3 and 4 are converted into the
functional processing units that we have
later on realized in computer software. It
has to be mentioned that in 5.2 we have
kept detailing of the units and the
connections independent of implementation tools (i.e., programming language, etc.). Subsequently, in 5.3, we will
elaborate the approach for the proof-of-the concept implementation and, based on functional requirements, selected
the actual software tools. In 5.4 and 5.5, we will describe the activities with the selected software to create control
specifications and to connect them to simulation tools.

5.2 Conversion of theoretical resources to the requested functionality
5.2.1 Operationalization of the conceptual model

We have decomposed
the conceptual model for
controlled simulations
presented in Figure 3
into five principal
constructs as we have
theoretically defined in
Sections 3 and 4. From
an implementational
viewpoint, these
constructs can be
distinguished based on
(i) their source of
instantiation (i.e.,
whether they are instantiated by the designer
based on conjecture or based on creational skills,
or predefined) and (ii) the layer they reside in
(i.e., the logistic layer or the physics simulation
layer) as shown in Table 2.

Table 1. Principal constructs of resource-integrated modeling and simulation
 layer

source
of instantiation

logistic layer
(execution of logical constructs)

simulation layer
(simulation of physics)

designer’s
conjecture

scenario bundle
signal conversion

specification

designer’s
creational skills

procedure
structure simulation model

predefined motor control model

Figure 9. Signal flows of controlled interaction simulation

Table 2. Specification of the labels used in Figure 9.

1. time t  {mi}
2. control signals {pi}
3. meter signals {mi}
4. meter events {emet,i}
5. start event estart  {emet,i}

6. end-delay events {eed,i}  {emet,i}
7. start-delay events{esd,i}  {elgs,i}
8. logistic events {elgs,i}
9. logistic values {ui}

 14

Figure 9 shows the general signal flows of controlled interaction simulation as a result of combining the theory in
Sections 3 and 4 with its operationalization in 5.2.1. This figure maps the processing flows in Figure 3 to the
hypothesized reasoning model of human-product interaction in Figure 2. The labels are explained in Table 1.

5.2.2 Logical constructs: scenario bundle, motor control model and procedure structure

A scenario bundle λs is a logical construct by which designers specify interactions, operations, and behaviors in
conceived use processes representing the related human decision-making. From a computational point of view, a
scenario is a compilation of transitions τi corresponding to decisions that the user of the product is supposed to
make in order to start or end particular activities specified as states Zi.

The instructions specified in the scenario bundle correspond to human control that manifests itself on the level of
decision making. They specify high-level activities such as, for example, ‘push button’, ‘insert coin into slot’, ‘turn
left’, or ‘open lid’ in conceived use processes. The activities are represented as states and decisions are represented
as transitions between states (e.g., a decision to change from state ‘do nothing’ to state ‘pull lever’). The
instructions attached to transitions and states do not specify the body parts or muscles to be addressed, and specify
values of control signals only qualitatively (e.g., ‘raise forearm fast’). The advantage of scenario bundle-based
specification of interactions is that the designer does not have to put efforts in specifying low-level control.

In terms of signal flows this means that the scenario bundle sends outputs to the motor control model rather than
generating output signals to the physics simulation model
directly. The mentioned communication uses logistic
events, which signify the points in time when high-level
activities start or end. The activities themselves correspond
to states Zi in the scenario bundle, which carry the names of
the activities. One high-level activity Zi in the scenario
bundle, may correspond to a group of low-level activities
{Zi’} in the motor control model. The waiting states Zw,i that
were introduced in 4.3 also correspond to ‘activities’, but by
way of exception, logistic events evoked by transitions to
and from waiting states are sent to the signal conversion
specification rather than to the motor control model.

As explained above, the motor control model λℓ is a logical
construct describing motion control of specific body parts
with the purpose of generating control signals for muscles
in the physics simulation model. For interaction with a
specific product, a motor control model is instantiated based
on various chunks of knowledge from human motor science
about human response selection and response execution. It
is assumed that many activities in the scenario bundle can
be recognized as common interaction patterns and that their
variations can be parameterized. For these activities, the
process of instantiation can be automated, e.g., ‘reaching
with the hand for a point (x, y, z)’, or ‘pushing a button with
stroke s and orientation (α, β, γ)’.

Together the motor control model and the scenario bundle
Figure 10 Processing flowchart of controlled simulation

*T
w

o
 in

te
rn

a
l l

o
gi

st
ic

 e
ve

nt
s

fo
r

ea
ch

 t
ra

ns
iti

on
:

so
ur

ce
 s

ta
te

 h
as

 b
ec

om
e

in
ac

tiv
e

an
d

ta
rg

et

st
at

e
ha

s
be

co
m

e
ac

tiv
e

In
 th

is
 fl

o
w

ch
a

rt
 in

d
e

x
ii

s
us

ed
 n

on
-s

pe
ci

fic
al

ly
 to

in

di
ca

te
 p

lu
ra

lit
y;

ja
n

d
k

ar
e

us
ed

 s
pe

ci
fic

al
ly

 a
s

co
un

te
rs

.

 15

are processed as a human interaction construct λh. The optional artifactual counterpart of λh is the procedure
structure, λp, that makes it possible to include the artifactual counterparts of decision-making, and muscle
activation. It structure represents the instructions programmed into an artifact’s control mechanisms according to
the intents of designers and as such it can be seen as a bundle of scenarios from a product perspective.

5.2.3 Signal conversion specification and general process flows of controlled interaction simulation

Figure 9 also shows how the signal conversion specification is decomposed into functional sub-specifications and
which signals they exchange. The conversions in the signal conversion specification can be considered as applying
predefined ‘templates’ of operations to signals specified in logical constructs and in the physics simulation model.
This means that the contents of the signal conversion specification can be automatically extracted and configured
without explicit involvement of the designer.

In Figure 10, the order of performing processing steps in time during controlled simulation is shown as a flowchart,
focusing on processing of events and transitions by the logical constructs. When specifying processing steps, we
have to deal with the practical implication that simultaneous events and transitions must put into a processing order
before their effects can be computed. To that end, the flowchart in Figure 10 refers to enumeration of events and
transitions. We have not elaborated detailed processing steps for enumeration. In the ultimate processing algorithm
an arbitrary enumeration scheme can be applied as long as it is consistent and unambiguous (e.g., from top to
bottom and then from left to right as items graphically appear in λj), and available to system users. It has to be
mentioned that only in exceptional cases the exact processing order is known to have influence on the output of a
finite automaton [36]. We have not included an ‘end simulation’ command in the flowchart. The controlled
simulation may be ended at any time by stopping the computational processes.

5.3 Selection of tools for a proof-of-concept implementation
5.3.1 Functional requirements and realization approach

To transfer the theory to a fully functional software solution that allows multi-aspect investigation of use processes,
we reasoned that software components with the following functionalities are needed:
(i) A model repository describing anatomy, geometry, and mechanical properties of a variety of human bodies;
(ii) An artifact modeling system, or a system that supports the conversion from conventional CAD models and

that allows insertion of models from (i), that supports inclusion of mechanical properties and specification of
meter values;

(iii) A repository of motor control models tailored for controlling the muscles in the models (i);
(iv) A subsystem for the specification of logical constructs that allows insertion of models (iii);
(v) A subsystem that generates a signal conversion specification, and connects input/output signals of the

simulation model and logical constructs;
(vi) A subsystem for mechanics simulation of the models created with (or produced by) (ii);
(vii) A subsystem for execution of the logical constructs specified with (iv).
(viii) A subsystem for concurrent processing of (vi) and (vii), providing output to designers in the form of

animated motion of the simulation model and numerical values of variables over time, as well as a
visualization of the ‘path’ taken through the scenario bundle.

The proposed theory underpins the functionalities realized by components (iv), (v), (vii), and (viii). According to
our best knowledge, no software tool or package that is able to provide this combined functionality is available.
Consequently, we had to develop and/or adapt the resources to make the proof-of-concept implementation possible.
In their functioning, these components depend on all the other components: (iv) needs (iii), (v) and (viii) need (vi),

 16

which in turn needs (i) and (ii). Forerunning surveys pointed out that no commercial software is available to realize
these other functionalities [37-39]. Nevertheless, we had to implement and adapt these into the proof of concept in
some way. Since our primary goal has been to prove the feasibility of the functionalities of (iv), (v), (vii), and (viii),
we have decided to realize the proof-of-concept prototype with existing adaptable tools. Using such tools we have
realized (i) specification of logical constructs, (ii), generation of the signal conversion specification, (iii) execution
of logical constructs, and (iv) concurrent processing during simulations, to create simulatable/executable models
and constructs according to theory. As we have documented below, some minor deviations to the theoretical
concepts had to be introduced.

Since the theory does not address the user interface for the creation of constructs, we have used the interfaces
offered by the selected tools (which we will specify in 5.3.4 and 5.3.5.). We have realized the human body model
and the motor control model as proxies by using existing systems. For these models and their simulation, the
priority has been that they exchange signals with the logistics layer as we have specified in the theory.

5.3.2 Human body modeling

Several of the commercially available software packages mentioned in the review in Section 2 deploy readily
prepared human body models in mechanical interaction simulations with artifacts. Using a comprehensive human
body model offered by one of these packages would compel us to use the dedicated mechanics simulation
capabilities offered by that same package. However, since we wanted to include a conceptual solution for large-
deformation simulation of flexible-tissues, we needed the flexibility and configurability offered by a general-
purpose mechanics simulation package. Therefore we decided to build only a simplified partial model of the human
body that allowed us to test some typical interactions such as grasping and pushing. We have elaborated the
conceptual solution for large-deformation simulation in our papers on nucleus-based modeling [4, 40]. For the
work described here, the reader does not need to be familiar with nucleus-based modeling.

As we did not use a full-human-body simulation package, we could not implement system functionality to
instantiate varying human bodies from a repository. Since one (partial) instance of a human body model suffices
for the goals described in 5.1, and since the feasibility of this functionality has already been proven by the existing
packages, we deemed it unnecessary to include and utilize it.

5.3.3 Modeling for mechanical simulation

The two groups of commercialized systems for modeling and simulation of mechanical behavior commonly used
by the industry are finite-element method systems (FEM) and multibody dynamics systems (MBS) [41]. Essentially,
the capabilities of these two types of systems are complementary [37]. FEM systems allow simulations of
deformations in continua (such as flexible human body tissues) but they are not very suitable for simulation of the
kinematics and kinetics of multiple interacting objects, which is the domain of MBS approaches. The latter, on the
other hand, generally lack support for simulating deformations. The most common workarounds to simulate both
multibody kinetics and deformations are (i) co-simulation between FEM and MBS, and (ii) discrete-flexibility
modeling within MBS.

Co-simulation is often based on open-loop coupling [e.g., 42], by which computed deformation of the FEM model is
not reflected as a change of geometry in the MBS model. Due to computational complexity, the application of
closed-loop co-simulations to 3D flexible bodies has been scarce [43]. To allow closing of the loop, FEM models
are typically kept one-dimensional (i.e., rods and beams). On the other hand, discrete flexibility [44] enables
simulations of large deformations by applying discretization into ‘particles’ in conventional MBS software, and
connecting these by spring-dampers. Actually, in our nucleus-based modeling and simulation approach (see 5.3.2)
flexible bodies are decomposed the same way. To benefit from this correspondence, we decided to equip the proof-

 17

of-concept system with solely an MBS system as a proxy for simulation of all mechanical behavior, including
deformations.

At selecting a commercial MBS system for our purpose, the following practical and implementation-related
requirements apply:
(i) There must be a possibility to control simulations with values obtained from logic processing;
(ii) It should be possible to define behavioral models using imported 3D CAD models, and to edit and manipulate

models in a 3D environment;
(iii) It should be possible to visualize simulation results by animated motion of 3D human/artifact models.

Many of the packages available on the market fulfill these requirements, for instance, LMS VirtualLab, Simpack,
and MSC Adams [45], Working Model 2D, and VisualNastran 4D [46]. In fact, in the various stages of developing
our proof of concept we have worked with all the three last-mentioned systems, using Adams for the latest
implementation6.

5.3.4 Specification and execution of logical constructs

Since by their definitions the logical constructs introduced in 3.2 are equivalent to existing representations of finite
automata (FA) we decided to use commercially available FA software as a proxy to specify and execute logical
constructs. For our purposes the selected software had to fulfill the following requirements:
(i) The software must allow its user to maintain distinct constructs for (a) the scenario bundle, (b) the models of

low-level logical human control, and (c) the procedure structure. The software should enable control of a single
simulation model through concurrent execution of these constructs.

(ii) Based on the definitions in Sections 3 and 4, the software must allow (a) interfacing with simulations to
exchange meter and control signals, and (b) specification of events, transitions, states, and transition conditions.

(iii) The software must support specification and modification of logical constructs by a graphical representation
(iv) It should be possible to monitor (or review) the succession of transitions and states during (or after) a

simulation

Requirement (i) means that the graphical representation that is used should have the representation potential of
supporting concurrency and hierarchy. Since they offer the required representation potential and also appear to be
the most widely used FA representations (see Section 2), we narrowed down our search to statecharts and Petri
nets. Requirement (ii) addresses interfacing with the physics simulated by an MBS system. These systems are
usually7 capable of exchanging control-related signals with Matlab Simulink, which offers a Stateflow toolbox that
enables specification of FA using a statechart dialect [47]. This toolbox is widely used in the industrial practice
[48]. It fulfills the above requirements with two restrictions, namely, that (ii) meter events must be specified in
Simulink outside Stateflow, and (iv) successions of transitions and states can be monitored during simulations, but
not afterwards. Considering this, we have selected Simulink Stateflow for specification and execution of logical
constructs. An additional advantage is that by using Stateflow in prototyping of the logistics layer, we could realize
the proof-of-concept prototype by using only two software packages (Simulink and an MBS system).

5.3.5 Motor control models of human motion

In the pilot implementation, we have used proxy models of human motor control rather than validated models. At
the time of starting our project, no validated models were known to be available and we did not consider it feasible
to develop them with the available resources. However, in the meantime new developments have indicated that,

6 This package has the additional advantage of allowing integrated simulations with the human-body package LifeModeler, which has been developed as a
spin-off of Adams. However, as argued in 5.3.3, we did not exploit that opportunity.
7 We verified this for Adams, VirtualLab, Simpack , and VisualNastran 4D.

 18

with some limitations, simulation of motor control based on validated models is possible (see Section 2, references
[8, 13, 15]).

The proxy construct of low-level control of human motions bridges the gap between the scenario bundle and the
simulation. It has to convert the logistic events from the scenario bundle to quantitative control values for the
simulation. For the proxy we adopted an approach often taken in programming robotic human-body imitations,
where programmed instruction are typically logic-based, and aimed at obtaining successful interaction results
rather than at realistic motions during the interaction8. In the same manner we have ‘programmed’ instructions, for
instance for moving the fingertip from A to B, without bothering whether the used motion patterns were natural and
efficient. For a future implementation, replacement of these workarounds by validated models is to be considered.

5.4 Specification of control instructions with Simulink Stateflow
5.4.1 Implementation of basic specification elements

The further elaboration of logical constructs is organized as follows. First, in this subsection we have elaborated the
proof-of-concept implementation of the basic specification elements by mapping Stateflow elements to the
elements defined in Section 4. After that, specific implementation aspects of the three different logical constructs
and the signal conversion specification are elaborated in 5.4.2.

The Stateflow dialect [47] is different from the original statecharts [28] in two respects: (i) it offers various
enhancements in the form of building blocks for logical processing, and (ii) the graphical representation of parallel
states is slightly different. The two Stateflow enhancements we used in the proof-of-concept implementation are (i)
implicit logistic events, (ii) connective junctions and (iii) subcharting. Implicit logistic events reduce the number of
events that the system user has to specify. Connective junctions offer a convenient way to graphically combine
transitions that are triggered by the same event and/or share part of their conditions or effectuated control
commands (actions, as explained below). To facilitate hierarchical decomposition, subcharting allows demoting
connected groups of states and transitions to subcharts, the contents of which are hidden from higher-level views.
The appearance of the graphical elements in Stateflow is illustrated with our application example in Section 6.

In accordance with the definitions in Section 4, we have implemented two basic specification elements using
Stateflow charts: (i) states and transitions with transition conditions, and (ii) logistic events. This has been done as
follows. Just like in the logical construct in Figure 4, states and transitions in Stateflow charts are specified as
nodes and vertices. As will be illustrated in 6.2, parallel states are specified as child states of a parent state, which is
different from the arrangement in Figure 4. To each state Zi, a name is assigned. After the name, actions can be
specified to be executed either with any incoming transition (specified as entry:action or during:action) or with
any outgoing transition (specified as exit:action). In logical constructs, actions are used to generate logistic events
and to apply modifier functions ki to control and logistics variables. Modifier functions (see 4.2) can be assigned as
entry: p_1=k_1, p_2=k_2, etc., or exit: p_1=k_1, p_2=k_2, etc. if they are step functions, i.e., they assign a new
constant value to a variable. To assign regular functions, they have to be specified as during:
p_1=function_expression_1, p_2=function_expression_2, etc. to ensure that the function expression is continuously
evaluated till the next transition.

A transition can have a triggering event ei(t) assigned to it. This can be a meter event imported from the signal
conversion specification or an internal or external logistic event. If no event is specified, any event occurring when
the transition is enabled will trigger it. Actions to generate logistic events and/or to apply control modifiers as step
functions to control variables can also be assigned to transitions. This is specified as /action. Transition conditions

8 For instance, for the Utah/MIT dextrous hand [49] it was more important to obtain grip on an object so that it could be carried, than to achieve realism in the
preceding motions of the fingers and the arm.

γi

as
M
ca
w

A
sy
lo
lo
d
ev
im
ar
ac
en

a
ev
n
b
lo
or
3
ar

B
b
im
m

5.

L
ot
ev
in

In
d
th
al
A

In
d
p
th
th

i = gi,((ν1(t),

s [g_i  0],
Modifier func
an be assign

way: /p 1=k 1

A logistic eve
ynchronize tr
ogical constr
ogical constr
istinguishes
vents: explic
mplicit logist
re specified i
ctions. This i
ntry:expl ev

state Zi. An
vent that is a
amed by Sta
ecomes activ
ogistic event
r exit[state
shows how

re used to sy

Based on thes
locks of logi
mplementatio

modeling and

.4.2 Imple

Logical const
ther blocks t
vents, which
nternal data a

n the proof-o
escribed abo
hrough logist
lso 3.2). This

Also, we coul

n λh, we have
istinguished
aragraph and
hese two, λh c
he response e

,ν2(t),...))  0

e.g., [x + 3*
ctions for ste
ned to τ in the
1, p_2=k_2, e

ent elgs,i(t) is
ransitions wi

ruct or across
ructs. Stateflo
two types of

cit logistic ev
tic events. Ex
in the Statefl
is done eithe
vent or exit
implicit logi

automatically
ateflow when
ve or inactive
is called ent
name], respe

explicit and
ynchronize tr

se elementary
ical construc
on of the con

d specificatio

ementation of

tructs λj are in
through data
h are not exch
and event sig

of-concept im
ove. Howeve
tic events sen
s way, we co
ld use explic

e further deco
by Stelmach

d [39]). Thus
can be consid
execution lay

0, are specifie

*y - 4 > 0].
pwise chang
e following
etc.

used to
ithin one
s multiple
ow
f logistic
vents and
xplicit event
low chart as
er by assignin
t:expl event

istic event is
y generated a
n a state
e. The implic
ter[state na

ectively. Tab
implicit even
ansitions τi.

y building
ts, the

nstructs as
n elements in

f the logical c

nstantiated a
ports and ev

hanged with
gnals are spe

mplementatio
r, since the c
nt from λs to
ould simply s
it events ‘int

omposed the
h [49], i.e., re
s, by conside
dered as stru
yer (Figure 1

ed

ges

s

ng an action
 to
an

and

cit
ame]
ble
nts

n their entire

constructs λs,

as Stateflow c
vent ports as
other Simuli
cified and na

on we could s
constructs λs

λℓ, we have
specify synch
ternally’ thro

e motor contr
esponse selec
ering the scen
uctured into t

3).

Table 3

E
X

P
L

IC
IT

E

V
E

N
T

S

IM
P

L
IC

IT

E
V

E
N

T
S

Figure 11
Simulink.

19

/expl event

ety is elabora

λℓ , λp, and th

charts in Ma
shown in Fig
ink blocks, w
amed using t

specify the th
and λℓ, which
combined th
hronization o
oughout both

rol model int
ction and res
nario bundle
three layers:

Synchronizat

IF the
action

/expl_

entry:

or
en: ex

exit:e
ex:exp

IF

enter[
en[z_i

exit[z

a

1. a: Example o
 b: specificatio

 to a transitio

ated in the ne

e signal conv

atlab Simulin
gure 11a. Th
while the exte
the Simulink

hree construc
h control hum
he two into o
of transitions
h constructs.

to two layers
sponse execu
as correspon
the scenario

tion of transitio

_event

expl_event

xpl_event

expl_event or
pl_event

[z_i] or
i]

z_i] or ex[z_i]

of a Stateflow ‘
n in the Simulin

on τi or by as

ext subsectio

version speci

k block diag
hey have ‘inte
ernal data an
model explo

cts by three s
man motions
ne human in
s in the two c

s correspondi
ution (for furt
nding to the d
layer, the re

ns through exp

is assigned
to a
transition τi

a
e
t
e
T
p
s
w

is assigned
to a state zi

is the triggeri
THEN τj, takes
synchronous

Chart’ block w
nk model explo

ssigning an e

on.

ification Ξ

grams and are
ernal’ data si

nd event port
orer (Figure

separate Stat
s, are closely
nteraction con
constructs by

ing to the tw
rther explana
decision-mak

esponse selec

plicit and implic

and
expl event is
the triggering
event of τj,
THEN τj takes
place
synchronously
with

ing event of τj,
s place

sly with

b
with external con
orer

event

e connected w
ignals and
ts, as well as
11b).

teflow charts
y interlinked
nstruct, λh (se
y implicit eve

wo levels
ation, see nex
king level ab
ction layer, a

cit logistic even

s

y

τi

any transitio
which zi is th
target state
any transitio
which zi is th
source state
any transitio
which zi is th
target state
any transitio
which zi is th
source state

nnections in Ma

with

s as

ee
ents.

xt
bove
and

nts.

n of
he

n of
he

n of
he

n of
he

atlab

 20

The behavior descriptions in the response
selection layer appear as subcharts of
states in the scenario bundle (e.g., ‘retract
upper arm’ as one of the substates
appearing in the subchart of ‘pull lever’).
To execute motion patterns, the behavior
descriptions in the response-execution
layer specify control-variable modifier
functions. These basic low-level control
commands for the movement of each limb
for each one of its degrees of freedom are
represented by response-execution
primitives (Figure 13): e.g., ‘move
forward’, ‘rest’, and ‘move backward’,
with specified changes in angular
velocity.

Figure 12a shows an example of a signal
conversion specification the proof-of-
concept implementation in accordance
with Figure 9 in 5.2.3. Figure 12b shows how specifications for stimulus recognition, which convert meter signals
to meter events, are instantiated. Meter signals that have been selected as recognition signals are first processed by
an event-generating function, i.e., a Simulink subsystem Event_gener_func_i, that can represent any purposeful
operation performed on one or more variables. Its result is led through a hit-crossing block that is specified by
parameters for the orientation and threshold value of the event. Without event-generating function, the specification

Figure 12. a. Example implementation of a signal conversion specification in Simulink; b. Contents of the human
stimulus recognition block; c. Specification of a delay. Numbers of variables, etc., chosen arbitrarily.

Figure 13. Layered structuring of the human interaction construct λh

Human timing

Human stimulus recognition

Artifact timing

Artifact's stimulus recognition

4

3

Events to
procedure
structure

2

Events
to HIC

1
Condition
values to

HIC

Start event generationClock

m_2

m_5

e_met_1

e_met_2

time
start_timer end-delay

time

start-delay_1

start_delay_2

end-delay_1

end-delay_2

m_1

m_2

m_3

m_4

e_met_1

e_met_2

4
e_sd_3

3
meter
signals

2
e_sd_2

1
e_sd_1

end-delay _1

time - out 1

t

start delay

Time since
start-delay event

hit - crossing_i

start-delay _1

1

time

2

memory

1

sample& hold 1

In S/H

start delay

1

t

2

time since
start-delay

event

2
e_met_2

1

e_met_1

hit-crossing_2

hit-crossing_1

Event_gener_func_2

Event_gener_func_1

4

m_4

3
m_3

2

m_2

1

m_1

a

b

c

Condition
values to
procedure
structure

Human stimulus recognition

A delay specified in the human timing block

generates meter event
with orientation ↓

generates meter event
with orientation ↕

generates meter event
with orientation ↑

Explanation of hit-crossing blocks

threshold specification h_1

threshold specification h_2

threshold specification = delay d_i

1

 21

of the start event is instantiated in a similar way, using a clock signal as its input. It is shown in the center of Figure
12a. The threshold value specified for the start event corresponds to a delay in seconds between the user-generated
start command for the simulation, and the actual start triggered by the start command9.

The specifications for timing define the signal processing for the generation of delays. The specification is
instantiated as follows (Figure 12c). When the start-delay event is received, a time-out block (which is the
equivalent of an event-generating function) starts counting the time since the start-delay event, which is led through
a hit-crossing block that generates eed with Eed = {0,↑, di, t-tsd} when the delay has elapsed10.

5.5 Interfacing control and simulation

Control over the simulation model in Adams is specified as interfacing with Simulink through control values and
meter values. Within the simulation model we had to specify how a control value (typically a prescribed angular
velocity ωi) effectuates contractions of a muscle. Control values and meter values to be exchanged with other
software are specified using the Adams/Controls module, for instance that a control (input) value ωprescribed and a
meter (output) value smeasured (e.g., a distance) are to be exchanged with (Matlab) Simulink is written in Adams
modeling language as:

variable modify &
 variable_name = .MODEL_1.Controls_Plant_i.input_channels &
 object_value = &
 .model_1.omega_prescribed
!
variable modify &
 variable_name = .MODEL_1.Controls_Plant_i.output_channels &
 object_value = &
 .model_1.s_measured
!
variable modify &
 variable_name = .model_1.Controls_Plant_i.target &
 string_value = "MATLAB"
!

Now let us consider how the angular velocity is prescribed to make a limb rotate around its joint by muscle force.
Since Adams multibody simulation is based on forward dynamics, we have to translate ωprescribed(t) to a prescribed
force Fmuscle(t). This is done using a proportional-integral controller:

0

()() { () ()} ()
t

muscle P prescribed actual I prescribed actual tF t K ω t ω t K ω t ω dt   

where ωactual (t) is the actual angular velocity (measured feedback). The proportional gain KP and integral gain KI
are constants that determine the responsiveness and stability of the controller behavior, for which we established
adequate values by trial-and-error. In Adams modeling language the above force computation is written as:

part create equation differential_equation &
 differential_equation_name = omega_error_integral_i &
 Adams_id = 1 &
 initial_condition = 0.0 &
 function = "omega_prescribed - omega_actual" &
 implicit = off &
 static_hold = off

force create direct single_component_force &

9 This delay can be arbitrarily small, but it cannot be completely avoided. Time is a monotonically increasing function, so that the orientation of the start event
must be r= ↑. If the delay would be set to zero, no threshold is crossed because there is no simulation history before the start command.
10 The time-out block uses a sample&hold block, which outputs the time signal, but ‘freezes’ its value when the start delay event is received. The actual
simulation time minus this output value equals time elapsed since the start-delay event. We have inserted memory blocks to break algebraic loops. A Memory
block outputs its input from the previous time step

w
hu
to

In
si
th

th

w
v
se

6

6
B
th
th
o
ap
ap
in
co
F
ca
el
ob
fo
pu
pu
b
fe
th
in

In
se
in
th
w

 single c
 Adams id
 type of
 i marker
 j_marker
 action o
 function
 integral

where MARKER
uman motion
o be modeled

n the proof-o
imulation mo
he block diag

he► button

which is spec
isualization o
ection.

6 APPLIC

.1 Object
Based on the p
heoretical co
he previous s
f sample cas
pplication an
pproach acco
n 5.1. To that
omponent-ba
irst, we deve
ases in which
lementary in
bject, (ii) thr
or an object a
ushing and r
ushing and r
e reusable in
ew transition
he approach i
nteraction co

n the first com
econd compo
nto an open g
he scenario b

were based on

component fo
d = 2 &
freedom = t

r name = MAR
r name = MAR
only = off &
n = "proport

gain * DIF

i and MARKE
n control we
d and separat

of-concept im
odel and con
grams and its

in any of the

ified by the u
of simulation

CATION O

tives and a
proxy implem
nceptual elem
sections we e
es for experi

nd testing of
ording to the
t end, we app
ased applicat
eloped four g
h we applied

nteractions: (i
rowing an ob
at a given loc
releasing a fo
releasing a bu
n other contex
ns, which cou
in the case o

omponents ha

mposite case
osite case, w
garbage bin,
bundle, we co
n early, sligh

rce name = F

ranslational
KER i &
KER j &

ional gain *
(omega error

R j denote th
 allowed mu
tely controlle

mplementatio
nnected in a S
s (sub-)comp

e Simulink w

user in the S
ns and simul

OF THE PR

approach
mentation of
ments discus
elaborated a
imental
the proposed

e objectives s
plied a strate
tion developm
generic samp
d the approac
i) dropping a
bject, (iii) rea
cation, (iv)
oot pedal, (v)
utton, and (v
xts and appli
uld be used to
of more sophi
ave been com

e, we have co
we have comb

and reaching
ould simulate
htly different

F muscle &

l &

* (omega pre
r integral i

he attachmen
uscles not onl
ed.

on, the proxie
Simulink blo
ponents have

windows. The

imulink bloc
lation results

ROOF-OF-

f the
ssed in
series

d
stated
egy of
ment.

ple
ch to
an
aching

)
vi) grasping, l
ication cases
o simulate th
isticated scen

mbined in a u

ombined inte
bined interact
g for the obje
e different pa
versions of t

Figur
Posit

22

escribed i-o
i)"

nt points of t
ly to contrac

es that we ha
ock diagram.
e been compl

e simulation

ck diagram w
. These are b

CONCEPT

lifting, and c
s. The six com
he elementary
narios, we de
use process o

eractions (i) a
tions (ii) and
ect if it lands
aths through
the theoretic

a

ure 14.
tioning the fin

omega i) +

the muscle. In
t but also to

ave elaborate
We will giv

leted, a simul

runs until th

window. Ther
briefly discus

T IMPLEM

carrying an o
mponent cas
y interaction
eveloped thr
of a product.

and (iv) to si
d (iii) to simu
s outside the

h the bundle.
cal and imple

Scenario-base
ngertip above

n our simplif
expand, so th

ed in 5.4 are b
e an example
lation can be

e total simul

re are variou
ssed and dem

ENTATIO

object. These
es resulted in

ns. To be able
ee composite

imulate the u
ulate a huma
bin. By vary
These first tw

ementation el

ed simulation
a button b. Pu

fied model o
that antagoni

brought toge
e in the next
e started by c

lation time h

us options for
monstrated in

N

e components
n basic scena
e to test the a
e cases in wh

use of a peda
an trying to th
ying prescrib
wo composit
lements desc

b
of a basic inte

ushing and rel

of low-level
sts did not h

ether with the
section. Onc

clicking on

as elapsed,

r the
n the next

s were define
arios with on
applicability
hich element

al bin. In the
hrow an obje

bed velocities
te cases [50,
cribed in

eraction: a.
easing the but

ave

e
ce

ed to
nly a
of

tary

ect
s in
51]

tton.

 23

sections 3-5.

In the third composite case, we brought together interactions (iii), (v), and (vi) to simulate a human customer
retrieving a can from a can dispenser after having pushed a button. This composite case, and the component cases
brought together in it, have been fully modeled and specified with the theoretical and implementation elements
described in sections 3-5. Since the complete can dispenser example is already covered by previous publications

Figure 15 Implementation of button pushing in Simulink: decomposition of models and constructs.

input_omega_i

input_omega_i_2

input_omega_i_3

output_theta_i

output_theta_i_2

output_theta_i_3

hor_dis

vert_dis

Simulation layer

meter signals
Events to HIC

Condition values to HIC

Signal conversion
specification

theta_i

theta_i_2

theta_i_3

hor_dis

vert_dis

omega_i

omega_i_2

omega_i_3

Human interaction construct

theta_i

theta_i_2

theta_i_3

hor_dis

vert_dis

Human_interaction_construct

index_finger_response_execution

Scenario_bundle

move_fingertip_to_button_and_pushhesitate

index_finger_response_execution

phalanx_i3phalanx_i1

phalanx_i2

up
during: omega_i=-angvel

rest
during: omega_i_3=0

down
during: omega_i=angvel

down
during: omega_i_3=angvel

rest
during: omega_i=0

up
during: omega_i_3=-angvel

up
during: omega_i_2=-angvel

rest
during: omega_i_2=0

down
during: omega_i_2=angvel

exit(lift_i1) enter(lift_i1) exit(lift_i3) enter(lift_i3)

enter(drop_i1) exit(drop_i1) enter(drop_i3) exit(drop_i3)

exit(lift_i2) enter(lift_i2)

enter(drop_i2) exit(drop_i2)

move_fingertip_to_button_and_push

move_phalanx_i2move phalanx_i1

move_phalanx_i3

drop_i3

drop_i2drop_i1

lift_i1

rest_i2

rest_i3

lift_i2

lift_i3

rest_i1

hor_zero vert_zero

hor_zero max_i2_angle

vert_zero vert_zero

vert_zero

3

vert_zero

2

hor_zero

1

max_i2_angle

vert zero

max angle

hor zero

3

vert_dis

2

hor_dis

1

theta_i_2

2

Condition
values
to HIC*

1

Events
to HIC

theta_i_2

hor_dis

vert_dis

max_i2_angle

hor_zero

vert_zero

human stimulus recognition

Start event generation

time end-delay

Human timing

Clock

1

meter
signals

end-delay
stop hesitating

1

time

1

Signal conversion
specification

Human stimulus recognition

Human timing

control
signals

meter signals

R
e

sp
o

n
se

 s
e

le
ct

io
n

 la
ye

r

R
e

sp
o

n
se

 e
xe

cu
ti

o
n

 la
ye

r

* These are not used in the example. They have been included only to show how
selected variables can be transferred to a logical construct as condition values

Stateflow statechart legend:
Arrows are transitions specified by
event/transition_action [condition]

Rounded rectangles are states
Dashed rectangles are parallel states
Shaded rectangles are subcharted states
The default transition to the first state in
a (sub-)chart departs from a dot

 24

[40, 52], we will now discuss an application case that is simpler and therefore lends itself better for explaining the
key theoretical elements that form the focus of this article. It concerns a button with a spring, which is vertically
pushed by an index finger (Figure 14). Since, on the other hand, a more comprehensive use process better
demonstrates the utility of scenario bundle-based simulation in the practice of design, we will highlight some key
outcomes of the can-dispenser case at the end of this section. In that case, horizontal pushing of a similar button
appears as a partial interaction.

6.2 Preparing models and specifications for simulation of human-artifact interaction
We created the simulation model in Figure 14 with MSC Adams. It contains a hand fixed to the coordinate system,
with an index finger consisting of three phalanges connected by rotational joints. To enable simulation of flexible
tissues, we have built up the phalanges from particles connected by spring-dampers (the ‘trusses’ in Figure 14) and
connected them by linear actuators acting as muscles. These react to prescribed angular velocities (relative between
consecutive phalanges) that we have specified as control variables.

Figure 15 shows all the models and constructs in Simulink. The complete interfaced control and simulation model
is shown in the gray box. The ‘simulation layer’ block provides the real-time computational connection with the
Adams MBS simulation. We have specified the interaction as follows.

After the start event, there is a hesitation (waiting state) that lasts for a given time after t = 0, and therefore needs
no start-delay event. The end-delay event of the hesitation sets the actual interaction in motion: the finger is
brought from its original stretched position to a bent position where its tip is straight above the button (Figure 14a),
and then the finger is bent down to touch the button and further press it over a certain distance (Figure 14b). During
this last part of the movement, the interaction is actually physical. The two key events based on which this simple
interaction is controlled are (i) e1= hor_zero, expressing that the horizontal distance hor_dis between the fingertip
and the center of the button crosses the value hor_dis = 0, and (ii) e2= vert_zero, expressing that the button has
been pushed far enough. Until e1, the first phalanx is lifted while the others are dropped, while between e1 and e2,
the first and second phalanges are dropped and the third one is lifted. After that, all motion stops (end of the
scenario). We took the screenshots in Figure 14 from a successful simulation run controlled by an execution of this
scenario. As Figure 15 shows, the path through the use process at scenario-bundle level is strictly linear, and the
example does not demonstrate scenarios with multiple options (branching with multiple transitions to and from
states, as well as loops) like the composite case that is briefly discussed in the next section does. However, since
our definitions of levels of human control have no meaning in terms of statechart representation (where in fact the
scenario bundle and the response execution appear at the same level of decomposition), we have chosen to
demonstrate that at least the principle works by including some simple branching and loops at the ‘lower’ levels of
response selection and execution specification.

7 DISCUSSION
The example elaborated in the previous section demonstrates the key principles of the theory and proof-of-concept
implementation. We have shown how the requested functionality can be concretely realized using commercial off-
the-shelf software. We largely had to create constructs and models manually. This involved several activities that
can be automated if a dedicated system is developed based on the theory: we had to (i) specify meter values and
control values in Ψ, then again in Ξ and in λh, (ii) specify events in Ξ (with thresholds and links to meter values)
and then again in λh to link them to transitions, and (iii) manually ‘draw’ all the connections for signal exchange
between the various constructs. Several of these steps are repetitive and redundant, and in a final dedicated
implementation of the theory into a design-supporting system they can obviously be automated. Also, the ultimate

 25

system might use different representations. For instance, it might not be necessary to actually show the designer the
system components of Figure 9 and how they are connected, and other FA representations might prove easier to
work with than statecharts are.

Even if working with the ultimate system, designers who want to take advantage of the novel functionality of
investigating connected interactions, still need to spend some extra time and effort if compared to preparing
conventional simulations with a CAD-based model. However, as was suggested above, they do not have to do all the
work that we had to do in preparing the models and constructs discussed in this article. Figure 16 shows all the
activities and processing steps involved in scenario bundle-based simulation, with omission of the automation
opportunities already mentioned above. In operationalizing the proof of concept we had to perform all the activities
(or workarounds thereof) except the ones exclusively allocated to the system . The shaded area contains the
activities to be performed by the user of the ultimate system. They include activities that are also needed to realize
conventional simulations, such as preparing CAD models and simulation models. Furthermore they include optional
activities for creating a procedure structure. These are activities that can actually be considered already part of the
conventional workflow for products with embedded software [cf. 53]. What remains as extra activities is (bold
print in the figure) the specification of a scenario bundle (first as an informal draft, then as a formal control
mechanism), selecting targets of successive human movements (e.g., move hand to button, push button till end
position, etc.), and specification of event parameters.

In [5] we theoretically evaluated the preparation effort needed for scenario bundle-based simulation by
benchmarking it against the preparation effort needed for modeling and simulating connected interactions the
traditional way using conventional engineering simulation software, which is by connecting the individual
interactions using intermittent constraints [54]. This approach considers the points in time at which parameters in

Figure 16. Overview of activities and processing steps involved in scenario bundle-based simulation, with, for the
ultimate system realization, activity allocation to system developer, designer (shaded area), and system. The activities printed
in bold correspond to the extra workload that is needed for scenario bundle-based simulation.

Designer
(system user)

Develop and
implement response

execution models

Develop and
implement response
selection modules

Develop and
implement CAD and
simulation systems

Draft informal
scenarios

Specify formal
scenario bundle

Prepare CAD and
simulation model

Specify event
parameters (meter/

control values,
event thresholds)

Draft informal
procedure structure

(if needed)

Specify formal
procedure structure

(if needed)

Develop and
implement logical

construct specification
systems

Compute successive
start and end postures

of movements

Compute response
execution

Execute scenario
bundle

Simulate physics
Execute procedure

structure (if specified)

Select targets of
successive human

motions

Interpret simulation
results

System
developer

System

 26

functions describing the course
of the control variables change
their value (i.e., changes that
correspond to transitions in
logical constructs). In terms of
computation, it means that
changes in meter variables are
not evaluated, and no logic is
applied. The fact that transition
times are not known
beforehand implies that all
transition times have to be
found systematically by
running repeated simulations:
in order to find the time t(n) of
the nth transition, a simulation
must be run in which all the preceding transitions t(0) ,.., t(n-1) have already been specified. To define consecutive
transitions for the same control parameter at multiple points in time, the relative changes must be superimposed by
linear addition.

The result is a sequential control instruction for one scenario, which is specific for one variation of the artifact/user
model. Any change in these models may result in different transition times, meaning that the whole procedure must
be repeated. This already indicates that the extra preparation effort needed for the scenario bundle-based approach
might pay off as designers investigate (i) scenarios with more transitions and/or (ii) multiple variants of the
artifact/user model with the same scenario. By reasoning based on simulating one series of NT subsequent
transitions and making justifiable assumptions relating the numbers of states, events, and meter signals to the
number of transitions, we arrived at the following expression as an approximation for the so-called preparation
efforts indicator Φ = ts / tt , expressing the ratio between the preparation time tt needed for the traditional
benchmark simulation and ts for scenario bundle-based simulation:

1
Φ

5 1
T

T

nN n

N n

 


 

with n the number of variations of the artifact/user model being investigated, and Φ > 1 meaning that the scenario-
bundle based approach costs less preparation effort. The graph in Figure 17 shows the approximate minimum value
of Φ as a function of n for different values of NT. Since Φ is expressed as an inequality, the possible values of PEI
are on or above the lines in Figure 17. The scenario bundle-based approach requires less preparation effort in those
cases where about five or more model variations are investigated. The scenario-bundle based approach is also
advantageous with respect to the number of transitions in the investigated scenario, but only up to a certain limit.
For large values of NT, the minimum value of Φ approaches Φ ≈ n / 5.

Although the simplicity of the example in Section 6 is convenient for demonstration purposes, it does not do justice
to the potential of the theory when it is used with more complex scenario bundles, more complex interactions, and
more complex products. Most importantly, the example did not address the possibility to (i) bring together multiple
simulatable scenarios into one bundle, and (ii) include embedded artifact control specified as a procedure structure.

To give an impression of these possibilities, Figure 18 shows the scenario bundle and the simulation model of the

Figure 17. Preparation efforts indicator Φ as a function of the number of model
variations, n, and the number of investigated transitions NT.

1

2

3

1 5 10 15

1

2

3

20

∞

Traditional approach requires less
preparation effort

N
T

n

Φ (lower limit)

Scenario bundle-
based approach
requires less
preparation effort

0

 27

aforementioned can dispenser as presented in [40, 52]. The scenario bundle holds multiple interaction sequences,
such as abdegh, abcdegh, abcfbcdegh,and abcdefbcdegh, all of which we could simulate. The dispenser was
controlled by a procedure structure (not shown here) to manage the opening of a protective door and the release of
the can. Another extension was the possibility to vary the speed of human movements (fast, medium, slow, etc.),
and the human model was extended to a complete arm.

The elaboration of the can dispenser example also revealed stability issues related to our implementation of particle
systems in physics simulation, which we introduced to enable investigation of large deformations. These issues
significantly contributed to the long time we had to spend fine-tuning state transitions in the response execution
layer. Although we found that the theory of scenario bundle-based control can be successfully operationalized in
simulations of human-artifact interaction, we had to conclude that before we can develop more example cases to
test the integrated approach of controlled simulations, the issues encountered in physics simulation have to be
resolved.

To show the utility of the implemented system for product designs and to assess the convenience of use from
technical aspects, the proof-of-concept implementation was validated in [5]. It was shown that by scheduling
multiple interactions in scenario bundles, time savings can be achieved in preparation of simulations and in
computation time. The reason is that with conventional simulation approaches, designers have to prepare and run
separate simulations for each consecutive individual interaction, and that preparation work must be repeated for a
simulation of the same interaction with a variation of the product design. This is not necessary for scenario bundle-
based simulation. Even without reciting the mathematical underpinning in [5], it can be seen that the advantage
over conventional approaches increases with the number of consecutive interactions (or more precisely, transitions
between interactions) and with the number of design variations that is investigated.

8 CONCLUSIONS AND FURTHER WORK
In this article we have purposefully derived the theoretical elements that are needed to achieve control over physics
simulation of human-artifact interaction. The theory explains the principles underpinning the logistics layer
containing the scenario bundle, which is a coherent set of scenarios acting as a control mechanism over physics
simulation of human-artifact interaction. This makes it possible to perform simulations of procedurally disjunct
sequences of interactions based on the designer’s conjecture of human decision-making. Based on the theory, we
have elaborated a proof-of-concept implementation in which software components for storing and processing
constructs, models, and specifications have been realized and successfully applied to simulations of basic

a b
Figure 18. Can dispenser. a. Scenario bundle. b. compilation of simulation frames

 28

application cases. This elaboration also addresses the arrangement of, and data exchange between the software
components in a way that unifies the processing scheme in Figure 3 and the reasoning model of human-artifact
interaction in Figure 2.

Scenario bundle-based simulations allow concatenation of multiple interactions in one run without a human subject
in the simulation loop and (thus) without having to deploy VR or haptics-based equipment. In comparison to
conventional approaches, this presents time savings to designers, especially if the number of sequential interactions
is large and if the same set of scenarios is investigated for multiple variations of a product design. Since they only
address the higher levels of human decision-making, scenarios can in principle be used without bothering the
designer with specification of low-level human motion control. Considering the various opportunities to reduce the
specification and modeling time, our goal is that in the ultimate implementation of scenario-bundle based logical
control the designer does not need to bother with response execution and only has to completely specify the
scenario bundle, thereby choosing predefined modules for response selection, and the procedure structure. We
expect that the effort of specifying a scenario bundle will be comparable to the effort of drafting statecharts for
specifying the embedded software of a product (i.e., in our terminology the procedure structure), which is currently
a routine system-engineering task.

We have successfully operationalized the theory in a proof-of-concept implementation. In testing this application,
the real bottle-neck proved to be in the stability of the physics simulation which was compromised by our
implementation of simulating large deformations. This issue must be resolved in the further development of a
scenario-based simulation system. What is also missing is the incorporation of algorithms that ensure realistic
simulation of low-level human motion control and durations of cognitive processes. To that end, we have to
investigate the possibility to adopt the algorithms that have recently been developed by others, namely, constraint-
based posture prediction, optimization-based motion trajectory computation, and simulation of cognitive
architectures. Finally, for the realization of a full-fledged simulation system, a dedicated interface must be
developed to (i) specify logical constructs, (ii) link the control-related constructs to each other and to simulations to
eliminate the repetitive input that was needed for the proof of concept, and (iii) run simulations and present
simulation results.

Apart from these activities, building the ultimate design support system also requires further verification and
validation efforts. This includes evaluation of the utility of the system by trials with designers and comprehensive
testing with a large number of case studies.

REFERENCES
[1] R.W. Pew, A.S. Mavor, Human-system integration in the system development process: a new look, The National Academic
Press, Washington, DC, 2007.

[2] D.W. Carruth, V.G. Duffy, Towards integrating cognitive models and digital human models, in: 11th International
Conference on Human-Computer Interaction, Las Vegas, 2005.

[3] I. Horváth, W.F. Van der Vegte, Nucleus-based product conceptualization - Principles and formalization, in: ICED,
Stockholm, Sweden, 2003.

[4] Z. Rusák, I. Horváth, W.F. Van der Vegte, First steps towards an all embracing relations-based modelling, in: ASME-
DETC. Salt Lake City, UT, 2004.

[5] W.F. Van der Vegte, Testing virtual use with scenarios (PhD thesis), VSSD, Delft, 2009.

[6] H. Van Welbergen, B. Van Basten, A. Egges, Z. Ruttkay, M. Overmars, Real Time Animation of Virtual Humans: A
Trade-off Between Naturalness and Control, Computer Graphics Forum, 29 (2010) 2530-2554.

 29

[7] J. Savin, Digital human manikins for work-task ergonomic assessment, Proceedings of the Institution of Mechanical
Engineers, Part B: Journal of Engineering Manufacture, 225 (2011) 1401-1409.

[8] J.Z. Yang, S. Rahmatalla, T. Marler, K. Abdel-Malek, C. Harrison, Validation of predicted posture tor the virtual human
Santos (TM), Digital Human Modeling, 4561 (2007) 500-510.

[9] R. Feyen, L. Liu, D. Chaffin, G. Jimmerson, B. Joseph, Computer-aided ergonomics: a case study of incorporating
ergonomics analyses into workplace design, Applied Ergonomics, 31 (2000) 291-300.

[10] A. Veloso, G. Esteves, S. Silva, G. Ferreira, F. Brandão, Biomechanics modeling of human musculoskeletal system using
Adams multibody dynamics package, in: 24th IASTED International Conference on Biomedical Engineering, Innsbruck,
2006, pp. 401-407.

[11] M. Damsgaard, J. Rasmussen, S.T. Christensen, E. Surma, M. de Zee, Analysis of musculoskeletal systems in the
AnyBody Modeling System, Simulation Modelling Practice and Theory, 14 (2006) 1100-1111.

[12] N.I. Badler, R. Bindiganavale, J.M. Allbeck, W. Schuler, L. Zhao, M.S. Palmer, Parameterized Action Representation for
Virtual Human Agents, in: J. Cassell, J. Sullivan, S. Prevost, E. Churchill (Eds.) Embodied conversational agents, MIT Press,
Cambridge, MA, 2000, pp. 256-284.

[13] B. Singh, B. Hicks, A.J. Medland, G. Mullineux, J.M. Molenbroek, A contraint based human model for simulating and
predicting postures, in: TMCE, Ancona, 2010, pp. 221-229.

[14] K. Abdel-Malek, J.Z. Yang, J.H. Kim, T. Marler, S. Beck, C. Swan, L. Frey-Law, A. Mathai, C. Murphy, S. Rahmatallah,
J. Arora, Development of the virtual-human santos (TM), Digital Human Modeling, 4561 (2007) 490-499.

[15] W. Park, D.B. Chaffin, B.J. Martin, J. Yoon, Memory-based human motion simulation for computer-aided ergonomic
design, IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans, 38 (2008) 513-527.

[16] S.T. Grafton, A.F. Hamilton, Evidence for a distributed hierarchy of action representation in the brain, Human Movement
Science, 26 (2007) 590-616.

[17] B. Robbins, D. Carruth, A. Morais, Bridging the gap between HCI and DHM: the modeling of spatial awareness within a
cognitive architecture, Lecture Notes in Computer Science, 5620 (2009) 295-304.

[18] J.R. Anderson, D. Bothell, M.D. Byrne, C. Lebiere, An integrated theory of the mind, Psychological Review, 111 (2004)
1036-1060.

[19] D.D. Salvucci, Modeling driver behavior in a cognitive architecture, Human Factors: The Journal of the Human Factors
and Ergonomics Society, 48 (2006) 362.

[20] A. Lüdtke, J. Osterloh, Simulating Perceptive Processes of Pilots to Support System Design, Lecture Notes in Computer
Science, 5726 (2009) 471-484.

[21] M.D. Byrne, Cognitive architectures in HCI: Present work and future directions, in: Int. Conf. on Human Computer
Interaction, Las Vegas, 2005.

[22] D.W. Carruth, M.D. Thomas, B. Robbins, A. Morais, Integrating perception, cognition and action for digital human
modellling, Lecture Notes in Computer Science, (2007) 333-342.

[23] N.A. Stanton, C. Baber, A systems analysis of consumer products, in: N.A. Stanton (Ed.) Human factors in consumer
products, Taylor & Francis, London, 1998, pp. 75-90.

[24] P. Hsia, J. Samuel, J. Gao, D. Kung, Y. Toyoshima, C. Chen, Formal approach to scenario analysis, IEEE Software, 11
(1994) 33-41.

[25] M. Glinz, An integrated formal model of scenarios based on statecharts, Lecture Notes in Computer Science, 989 (1995)
254-271.

[26] T.A. Alspaugh, D.J. Richardson, T.A. Standish, Scenarios, state machines and purpose-driven testing, in: 4th
International Workshop on Scenarios and State Machines, 2005.

[27] B. Cheng, J. Atlee, Research directions in requirements engineering, in: 29th Int. Conference on Software Engineering,
IEEE, Minneapolis, 2007, pp. 285-303.

[28] D. Harel, Statecharts: a visual formalism for complex systems, Science of Computer Programming, 8 (1987) 231-274.

[29] C.A. Petri, Fundamentals of a theory of asynchronous information flow, in: 1962 IFIP Congress, Amsterdam, 1962, pp.

 30

386-390.

[30] D. Amyot, A. Eberlein, An Evaluation of Scenario Notations and Construction Approaches for Telecommunication
Systems Development, Telecommunication Systems, 24 (2003) 61-94.

[31] M. Elkoutbi, I. Khriss, R.K. Keller, Generating user interface prototypes from scenarios, in: IEEE International
Symposium on Requirements Engineering, Limerick, 1999, pp. 150-158.

[32] T.H. Tse, L. Pong, Examination of requirements specification languages, Computer Journal, 34 (1991) 143-152.

[33] K. Perlin, A. Goldberg, Improv: a system for scripting interactive actors in virtual worlds, in: SIGGRAPH, 1996, pp. 205-
215.

[34] J. Cremer, J. Kearney, Y. Papelis, HCSM: a framework for behavior and scenario control in virtual environments, ACM
Transactions on Modeling and Computer Simulation, 5 (1995) 242-267.

[35] H. Hou, S. Sun, Y. Pan, Research on virtual human in ergonomic simulation, Computers & Industrial Engineering, 53
(2007) 350-356.

[36] D. Harel, A. Pnueli, J.P. Schmidt, R. Sherman, On the formal semantics of statecharts, in: Annual IEEE Symposium on
Logic in Computing, 1987.

[37] W.F. Van der Vegte, A survey of artifact-simulation approaches from the perspective of application to use-processes of
consumer durables, in: I. Horváth, Z. Rusák (Eds.) TMCE, Ljubljana, Slovenia, 2006, pp. 617-632.

[38] W.F. Van der Vegte, I. Horváth, Including human behavior in product simulations for the investigation of use processes in
conceptual design: A survey, in: ASME-CIE, Philadelphia, Pennsylvania, 2006.

[39] W.F. Van der Vegte, I. Horvath, Achieving Closed-Loop Control Simulation of Human-Artefact Interaction: A
Comparative Review, Modelling and Simulation in Engineering, 2011, Article ID 675405 (2011).

[40] W.F. Van der Vegte, I. Horváth, Z. Rusák, Simulating the use of products: applying the nucleus paradigm to resource-
integrated virtual interaction models, in: I. Horváth, Z. Rusák (Eds.) TMCE, Izmir, 2008, pp. 591-605.

[41] H. Van der Auweraer, Frontloading design engineering through virtual prototyping and virtual reality: industrial
applications, in: TMCE, Izmir, 2008, pp. 39-52.

[42] S. Kim, E. Haug, A recursive formulation for flexible multibody dynamics, Part I: open-loop systems, Computer methods
in applied mechanics and engineering, 71 (1988) 293-314.

[43] J. Gerstmayr, J. Schöberl, A 3D finite element method for flexible multibody systems, Multibody System Dynamics, 15
(2006) 305-320.

[44] J. Helsen, G. Heirman, D. Vandepitte, W. Desmet, The influence of flexibility within multibody modeling of multi-
megawatt wind turbine gearboxes, in: ISMA International Conference on Noise & Vibration Engineering, 2008, pp. 2045-
2071.

[45] M. Gonzalez, F. Gonzalez, A. Luaces, J. Cuadrado, Interoperability and neutral data formats in multibody system
simulation, Multibody System Dynamics, 18 (2007) 59-72.

[46] S.L. Wang, Motion simulation with Working Model 2D and MSC.visualNastran 4D, Journal of Computing and
Information Science in Engineering, 1 (2001) 193-196 ".

[47] Mathworks, Stateflow and stateflow coder for use with Simulink - modeling, simulation, implementation, The
MathWorks, Inc., Natick, 2011.

[48] A. Tiwari, N. Shankar, J. Rushby, Invisible formal methods for embedded control systems, Proceedings of the IEEE, 91
(2003) 29-39.

[49] G.E. Stelmach, Information-processing framework for understanding human motor behavior, in: J.A.S. Kelso (Ed.)
Human motor behavior - an introduction, pp 63-91, Lawrence Erlbaum Associates, London, 1982.

[50] W.F. Van der Vegte, I. Horváth, Use-driven product conceptualization based on nucleus modeling and simulation with
scenarios, in: 15th European Simulation Symposium, Delft, The Netherlands, 2003.

[51] W.F. Van der Vegte, Z. Rusák, Hybrid simulation of use processes with scenario structures and resource-integrated
models, in: ASME-CIE, Las Vegas, Nevada, 2007.

[52] W.F. Van der Vegte, Z. Rusák, Controlling simulations of human-artifact interaction with scenario bundles, in:

 31

EDIProD'08, Jurata, 2008, pp. 197-209.

[53] I.R. Kendall, R.P. Jones, An investigation into the use of hardware-in-the-loop simulation testing for automotive
electronic control systems, Control Engineering Practice, 7 (1999) 1343-1356.

[54] T. Jia, F.M.L. Amirouche, Optimum impact force in motion control of multibody systems subjected to intermittent
constraints, Computers & Structures, 33 (1989) 1243-1249.

