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Abstract

In this paper, two alternative methods to the Inverse Kinematics problem are compared to traditional
methods regarding computation time, accuracy, and convergence rate. The test domain is the arm of
the NAO humanoid robot. The results show that FABRIK, a heuristic iterative approximation algorithm
outperforms the two traditional methods, which are both based on the Jacobian inverse technique, on all
aspects. An artificial neural network vastly outperforms all algorithms regarding computation time, but
lacks accuracy. To demonstrate the practical applicability, FABRIK has been used enable a NAO humanoid
robot to play tic-tac-toe.
Keywords: Humanoid robot, inverse kinematics, machine learning.

1 Introduction
The Inverse Kinematics (IK) problem is a non-linear optimization problem which tries to optimize the posi-
tion of the end effector of a robot’s kinematic chain with respect to a certain target position, by manipulating
the intermediate joint configurations in the chain [7]. These joint configurations have to be calculated in a
backwards manner from the Cartesian coordinates. Since not all points in Cartesian space map to a joint
configuration, there is not always a solution. It is very exceptional for a kinematic chain to have a complete
analytically derivable solution. Therefore, Inverse Kinematics solvers rely on numerical approaches.

Traditional methods The most commonly used method is using the inverse of the Jacobian matrix, a
matrix of first-order partial derivatives of the joint system, to make a linear approximation of the non-linear
function that describes the Inverse Kinematics. Since the Jacobian is not always nonsingular, the inverse
can be approximated by a number of methods [3], each of which has its drawbacks. The transpose of the
Jacobian is proven to be a good replacement for the inverse [12]. However, the joint configurations are
often unpredictable and many iterations are needed for convergence. The Moore-Penrose pseudoinverse of
the Jacobian is a better estimate, but often performs poorly because of instability for configurations near
singularities. The Damped Least Squares (DLS) method avoids the use of pseudoinverses and provides a
more stable solution near singularities. A damping constant has to be chosen carefully: a larger constant
makes the algorithm more numerically stable, but also lowers the convergence rate. Pseudoinverse DLS at-
tempts to overcome this problem by applying Singular Value Decomposition. Pseudo-inverse DLS performs
similar to regular DLS away from singularities, and smooths out the performance of regular DLS near sin-
gularities. Selectively Damped Least Squares (SDLS) is an extension of Pseudoinverse DLS that also takes
into account the relative positions of the end effector and the target position when choosing the damping
constraint, resulting in fewer iterations needed for convergence, but a slower performance time. A general
problem with all these methods is applying constraints, which is not at all straightforward to do using any
Jacobian method. The existing methods do not guarantee optimal solutions and slow down performance
times [4, 11]. When coping with computational limitations on a robot, it is therefore appealing to search
for effective alternatives that have low on-line computational cost and are robust against singularities. In



this paper, two alternative approaches are proposed and compared on several criteria, such as speed and
precision. The standard algorithm to which we compare the two alternative techniques, Jacobian transpose
and the Jacobian pseudoinverse.

Alternatives In this paper, two alternatives are proposed.
FABRIK [1] (short for Forward And Backward Reaching Inverse Kinematics) is a heuristic iterative

method that tries to solve the IK problem by treating the joint coordinates as being points on a line. It
uses the previously calculated positions of the joints to find the updates in a forward and backward iterative
manner. The algorithm has low computational cost and converges quickly. Furthermore, FABRIK does not
suffer from singularity problems, since the use of matrix inverses is completely avoided.

A Neural Network is a supervised learning method that is inspired by the interconnections between the
neurons in the brain [10]. It allows for non-linear function approximation and is therefore natural candidate
for tackling a problem such as Inverse Kinematics[8].

In this paper we investigate whether FABRIK or a Neural Network could be used as alternative for
traditional approaches for Inverse Kinematics.

Test and application domain As a test domain we use the arm of the NAO humanoid robot, developed
by the French company Aldebaran Robotics. Moreover, we applied the research results in an application
that enables the NAO to play the game of tic-tac-toe against a human. The NAO has to recognize the game
state on a white board, determine its action, and draw a cross or a circle depending on whether it had the
first move. The research results reported in this paper were used in the drawing of crosses and circles.

Outline The remainder of the paper has the following outline. In the next section we will give a brief intro-
duction in Kinematics and Inverse Kinematics. Moreover, we will describe the traditional Jacobian inverse
technique for Inverse Kinematics. Section 3 and 4 describe the alternative approaches that we investigated,
FABRIK and Neural Networks respectively. Section 5 describes the experiments and Section 6 describes
the application we implemented in which we applied the reported research of the preceding section. Section
7 presents the conclusions that can be drawn from the paper and points out directions for further research.

2 Preliminaries
Forward Kinematics Forward Kinematics can be described as the problem of calculating the position of
the end effector (or any other joint) of a kinematic chain from the current joint angles of that chain. In other
words, Forward Kinematics is the problem of mapping the joint space of a kinematic chain to the Cartesian
space.

A kinematic chain consists of links connected by joints. With each link we associate an coordinate sys-
tem where the one of the axes is normally chosen in the direction of the link. The kinematics equations
[7] describe transformation of the coordinate system of one link into the coordinate system of a connected
link. These equations describe affine transformations; i.e., transformations in which the ratios of distances
between every pair of points are preserved. To represent affine transformations, so-called homogeneous co-
ordinates must be used. This means describing an n-vector as an (n+1)-vector, by adding a 1. For example,
when applying it to the case of the NAO, a joint coordinate in three dimensions (x, y, z) is represented by
the vector (x, y, z, 1). This is necessary in order to describe translations using matrix multiplication.

The translation matrix and the rotation matrixes for the rotation around the x-, y- and z-axis, are:

Tr(t) =


1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

 Rx(θ) =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1

 (1)



Ry(θ) =


cos θ 0 sin θ 0

0 1 0 0
− sin θ 0 cos θ 0

0 0 0 1

 Rz(θ) =


cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 1 0
0 0 0 1

 (2)

Knowing the degrees of freedom of the NAO’s arm (i.e. shoulder pitch and roll, elbow pitch and yaw[5]),
the position of the NAO’s hand (the end effector) can now be described as:

T = Rx(θ1)Rz(θ2)Tr(l1)Ry(θ3)Rz(θ4)Tr(l2) (3)

l1 = (0, l1, 0, 1)T is the translation along the first link of the chain, and l2 is the translation along the second
link. Equation 3 can be broken down into smaller pieces and solved sequentially, in order to calculate the
coordinates of the intermediate joints.

Inverse Kinematics Inverse Kinematics (IK) is the exact opposite of Forward Kinematics: the problem
of calculating the joint configurations of a kinematic chain corresponding to the desired position of the end
effector, or in other words, mapping the desired joint coordinate in Cartesian space back to the corresponding
configurations in the joint space [7].

Let θ = θ1, θ2, ..., θn be the n joint configurations in the kinematic chain. Then let s be the end effector
position, which can be described as a function of the joint configurations s = f(θ), and t the target position.
The Inverse Kinematics problem is to find values for θ such that s = t. Since not all points in Cartesian space
map to a joint configuration, there is no straightforward inverse function f−1(t) = θ for Inverse Kinematics,
as opposed to Forward Kinematics, for which a completely analytically derivable solution exists. Therefore,
Inverse Kinematics solvers rely on numerical approaches.

The Jacobian inverse technique is a solution to the Inverse Kinematics problem that linearly approxi-
mates the inverse function f−1(t) using the Jacobian matrix [7]. The Jacobian is a function of the θ values:
J(θ)ij = (

δfi(θj)
δθj

)ij In the case of a single end effector, i = 1. So J will be a 1-by-n matrix for n values of
θ, whose entries are vectors in R3. Since the entries in the Jacobian are first order partial derivatives of the
joint system, the relative movement of the end effector ∆s can be estimated as: ∆s ≈ J∆θ.

Since the Inverse Kinematics problem is about finding the right joint configurations corresponding to a
certain target position, the IK problem can be formulated as: ∆θ = J−1∆s. Unfortunately, the Jacobian
is not always invertible. There are various ways to approximate the Jacobian inverse. It is possible to take
the transpose instead, which is proven to be a good approximation when scaled by some small scalar α [3].
Another technique is taking the Moore-Penrose pseudoinverse, which is defined for all m-by-n matrices
[2]. This is a better approximation, and generally converges to a solution more quickly. The Jacobian
pseudoinverse, denoted by J†, can be calculated using one of the two following equations, depending on the
number of rows and columns:

J† = JT (JJT )−1 if m < n, and J† = (JTJ)−1JT if m > n

The Jacobian pseudoinverse can be used to approximate the joint configurations:

∆θ = J†∆s (4)

When J is full row rank, (JJT ) and (JTJ) are guaranteed to be invertible. A general formula for the
pseudoinverse for J not of full row rank can be found in [2]. Equation 4 can be applied iteratively until the
error drops down to a certain threshold. The algorithm is easily implemented and is computationally fast.
The big downside is its instability for configurations near singularities.

The Jacobian transpose as well as the Jacobian pseudo-inverse method are used in this paper for compar-
ison purposes. These are natural choices for baseline algorithms, since the Jacobian inverse methods have
been the standard in solving Inverse Kinematics for a very long time [7].



3 FABRIK
FABRIK (short for Forward And Backward Reaching Inverse Kinematics) is a heuristic method, developed
by Aristidou and Lasenby [1], that tackles the Inverse Kinematics problem described in Section 2. Unlike
traditional methods, FABRIK does not make use of calculations involving matrices or rotational angles. In-
stead, the IK problem is solved by finding the joint coordinates as being points on a line. These points are
iteratively adjusted one at a time, until the end effector has reached the target position, or the error is suffi-
ciently small. FABRIK starts at the end effector of the chain and works forwards, adjusting each joint along
the way. Thereafter, it works backwards in the same way, in order to complete a full iteration. Since the use
of rotational angles and matrices is avoided, the algorithm has low computational cost, converges quickly,
and does not suffer from singularity problems. Furthermore, the algorithm produces realistic human-like
poses and is easily implemented.

In Figure 1, a visualization of the algorithm is shown. The various steps of the algorithm, indicated with
the letters (a) through (f) in Figure 1, are described in words below.

Since homogeneous coordinates are only used in Forward Kinematics, the n joint positions of the kine-
matic chain can be represented by the triplets pi = (xi, yi, zi) for i = 1, 2, ..., n, where p1 is the root joint
and pn the end effector (a). The target position is named t and the initial root position is named b. The
target position is reachable if the distance between the root joint and the target position, denoted as dist, is
smaller than or equal to the sum of the distances between the joints di = |pi+1 − pi| for i = 1, 2, ..., n− 1.
If the target is reachable, the first stage of the algorithm starts. In this stage, named ’forward reaching’, the
joint positions are estimated by positioning the end effector on the target position t (b). The new position of
the n− 1th joint, p′n−1, lies on the line ln−1, which passes through the point pn−1 and the new end effector
position p′n, and has distance dn−1 from p′n (c). Subsequently, the new joint position p′n−2 can be calcu-
lated by taking the point on the line ln−1 with distance dn−2 from p′n−1. The first stage of the algorithm is
completed when all new joint positions have been calculated (d). The current estimate is not a feasible one,
though, since the position of the root has changed. Therefore, a second stage of the algorithm is necessary to
achieve a solution. This stage, named ’backward reaching’, is similar to the first stage of the algorithm, only
the operations are carried out the other way around: from the root to the end effector. The new root position
p′′1 is the initial root position b (e). The next joint position p′′2 is then determined by taking the point on the
line l1, that passes through the points p′′1 and p′2, with distance d1 from p′′1 . This procedure is repeated for
all other joints, and a full iteration is completed (f). The end effector is now closer to its target position. The
algorithm is repeated until the end effector has reached its target, or the distance to the target is smaller than
a user-defined threshold.

effector, for the simple case where only a single end effec-
tor exists. The target is symbolised as t and the initial base
position by b. FABRIK is illustrated in pseudo-code in Algo-
rithm 1 and a graphical representation of a full iteration
with a single target and 4 joints is presented and explained
in Fig. 1.

First calculate the distances between each joint
di = jpi+1 � pij, for i = 1, . . . ,n � 1. Then, check whether the
target is reachable or not; find the distance between the

root and the target, dist, and if this distance is smaller than
the total sum of all the inter-joint distances, dist <

Pn�1
1 di,

the target is within reach, otherwise, it is unreachable. If
the target is within reach, a full iteration is constituted
by two stages. In the first stage, the algorithm estimates
each joint position starting from the end effector, pn, mov-
ing inwards to the manipulator base, p1. So, let the new po-
sition of the end effector be the target position, p0n ¼ t. Find
the line, ln�1, which passes through the joint positions pn�1

and p0n. The new position of the (n � 1)th joint, p0n�1, lies on
that line with distance dn�1 from p0n. Similarly, the new po-
sition of the (n � 2)th joint, p0n�2, can be calculated using the
line ln�2, which passes through the pn�2 and p0n�1, and has
distance dn�2 from p0n�1. The algorithm continues until all
new joint positions are calculated, including the root, p01.

Having in mind that the new position of the manipula-
tor base, p01, should not be different from its initial position,
a second stage of the algorithm is needed. A full iteration is
completed when the same procedure is repeated but this
time starting from the root joint and moving outwards to
the end effector. Thus, let the new position for the 1st joint,
p001, be its initial position b. Then, using the line l1 that
passes through the points p001 and p02, we define the new po-
sition of the joint p002 as the point on that line with distance
d1 from p001. This procedure is repeated for all the remaining
joints, including the end effector. In cases where the root
joint has to be translated to a desired position, FABRIK
works as described with the difference that in the back-
ward phase of the algorithm, the new position of the root
joint, p001, will be the desired and not the initial position.

After one complete iteration, it is almost always the case
(observed empirically) that the end effector is closer to the
target. The procedure is then repeated, for as many itera-
tions as needed, until the end effector is identical or close en-
ough (to be defined) to the desired target. The unconstrained
version of FABRIK converges to any given chains/goal posi-
tions, when the total length of serial links is greater than
the distance to the target (the target is reachable). However,
if the target is not within the reachable area, there is a termi-
nation condition which compares the previous and the cur-
rent position of the end effector, and if this distance is less
than an indicated tolerance, FABRIK terminates its opera-
tion. Also, in the extreme case where the number of itera-
tions has exceeded an indicated value and the target has
not been reached, the algorithm is terminated (however,
we have never encountered such a situation).

Several optimisations can be achieved using Conformal
Geometric Algebra (CGA) [25,26] to produce faster results
and to converge to the final answer in fewer iterations;
CGA has the advantage that basic entities, such as spheres,
lines, planes and circles, are simply represented by alge-
braic objects. Therefore, a direct estimate of a missing joint,
when it is between 2 true positions, can be achieved by
intersecting 2 spheres with centres the true joint positions
and radii the distances between the estimated and the true
joints respectively; the new joint position will be taken as
the point on the circle (created by the intersection of the 2
spheres) nearest to the previous joint position. Another
simple optimisation is the direct construction of a line
pointing towards the target, when the latter is
unreachable.

(a) (b)

(c) (d)

(e) (f)
Fig. 1. An example of a full iteration of FABRIK for the case of a single
target and 4 manipulator joints. (a) The initial position of the manipulator
and the target, (b) move the end effector p4 to the target, (c) find the joint
p03 which lies on the line l3 that passes through the points p04 and p3, and
has distance d3 from the joint p04, (d) continue the algorithm for the rest of
the joints, (e) the second stage of the algorithm: move the root joint p01 to
its initial position, (f) repeat the same procedure but this time start from
the base and move outwards to the end effector. The algorithm is
repeated until the position of the end effector reaches the target or gets
sufficiently close.
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Figure 1: A visualization of one iteration of the FABRIK algorithm [1].

Calculating back to joint coordinates The FABRIK algorithm provides a solution to the inverse kine-
matics of the arm, by giving the Cartesian coordinates of each joint relative to the root joint. However,
the NAO needs to know the joint configurations corresponding to these coordinates. A mapping from the
Cartesian coordinates to joint configurations is therefore necessary in order to make the NAO move its arm.

The FABRIK algorithm outputs the three joint coordinates (0, 0, 0, 1), (x1, y1, z1, 1), (x2, y2, z2, 1) to be
the solution to the inverse kinematics problem for a target position t = (x2, y2, z2, 1). Equation 5 describes
the forward kinematics equation for mapping from the first two (currently unknown) rotations θ1 and θ2 to



the second joint coordinate p1:

p1 = Rx(θ1)Rz(θ2)Tr(l1)
[
0 0 0 1

]T
(5)

which simply means taking the last column of the resulting transformation matrix. Because p1 is known,
the joint angles can be derived from this equation. The expressions for the coordinates of the second joint
can be found by rewriting Equation 5 as follows:

x1 = −l1 sin(θ2) y1 = l1 cos(θ2) sin(θ1) z1 = −l1 cos(θ2) sin(θ1) (6)

Since the second rotation (the one around the x-axis) does not affect the x-coordinate itself, the following
expression for the first rotation θ2 can be derived. Next,the other rotation θ1 can also be derived.

θ2 =
− arcsin(x1)

l1
θ1 =

− arcsin(z1)

l1 cos(θ2)
(7)

When expressing the end effector coordinates in the same manner (i.e. expressing the coordinates relative
to the root joint), the expressions are not that simple anymore and the joint angles are not easily derivable
anymore. So, the end effector coordinates have to be expressed relative to the second joint in the chain.
Because the first joint angles are calculated, the orientation and position of the second joint can be captured
in the following transformation matrix:

T = Rx(θ1)Rz(θ2)Tr(l1) (8)

The end effector can be expressed relative to the second joint by multiplying its coordinates by the
inverse of T :

p′2 = T−1p2 (9)

Equation 10 describes the forward kinematics equation for mapping from the last two rotations (to be
calculated) θ3 and θ4 to the relative end effector coordinate p′2:

p′2 = Ry(θ3)Rz(θ4)Tr(l2)
[
0 0 0 1

]T
(10)

which can be rewritten in the same manner as in Equation 6:

x′2 = −l2 cos(θ3) sin(θ4)

y′2 = l2 cos(θ4)

z′2 = l2 sin(θ3) sin(θ4)

θ4 =
− arccos(y′2)

l2

θ3 =
− arcsin(z′2)

l2 sin(θ4)

(11)

4 Neural networks
A neural network[10] is a computational architecture used in the field of machine learning, inspired by the
highly interconnected structure of the brain, aiming to benefit from properties such as parallelism, general-
ization, fault tolerance, and adaptivity. It is a learning method that learns a mapping from input to output
by being fed training examples and minimizing the error between the network’s output and the desired out-
put using a learning algorithm. Such a mapping is called a neural network model. Neural networks have
previously been applied to Inverse Kinematics[8].

A neural network can be trained in several ways, of backpropagation is one of the most popular [10].
Backpropagation tries to find the minimum of the error function by following using gradient descent: it
minimizes the function by taking steps towards the negative gradient of the error function. Therefore, in
order to be able to use backpropagation, the error function has to be differentiable. This is achieved by
choosing a continuous activation function, since the network function is a composition of these activation



functions and is therefore by definition also continuous. This makes the error function with respect to the
network weights continuous as well.

The advantage of backpropagation is that it is straightforward to understand and implement. However,
convergence of the algorithm is not guaranteed and is typically very slow. It may also converge to a local
minimum instead of a global minimum. To overcome these problems, an adaptive gradient search-based
method has been developed. Resilient backpropagation[9] does only take into account the sign of the gradi-
ent and not the magnitude, and scales it by a weight-specific update value. This allows for faster convergence
speed and provides more robustness against local minima (although they may still occur).

The design choices of the neural network used in this paper are the number of input and output nodes,
the number of hidden layers and nodes, the activation function, and the learning algorithm used to train the
neural networks. The network consists of three input nodes, one for each target coordinate, and four output
nodes, one for each of the joint configurations that have to be adjusted. If the function we are trying to fit is
linear, there would be no need for a hidden layer at all. Since Inverse Kinematics is a non-linear optimization
problem, hidden layers are needed. In practice, one or two layers is sufficient to approximate any function,
if there are enough hidden nodes in the layers. Experiments with different configurations, see Section 5,
showed that one hidden layer containing 40 nodes gives the best results. The training algorithm of choice is
the RPROP algorithm as described in [9], since this proposed modification of the backpropagation algorithm
has shown to be a great improvement in the training speed. The activation function has to be a continuous
function, since RPROP relies on the fact that the error function has to be differentiable. Experiments showed
that the sigmoid activation function gives the best results.

5 Experiments
The traditional IK algorithms and their alternatives have been evaluated in a series of experiments. All four
algorithms are compared to each other regarding computation time. Moreover, the Jacobian transpose, Jaco-
bian pseudoinverse and FABRIK are compared w.r.t. the number of iterations and computation time different
error tolerances. The neural network is evaluate for different configurations. Due to space limitations only
the main results concerning the number of nodes will be presented.

Algorithm Time (ms) µ iterations σ iterations unsolved
FABRIK 0.78 7.26 7.38 0

J. pseudoinverse 2.21 9.99 10.02 185

J. transpose 27.65 141.8 176.4 0

Neural network 0.002771 n/a n/a 0

Table 1: Comparing the algorithms regarding computation time, the average number of iterations and its
standard deviation.

Table 1 shows the experimental results of the four algorithms regarding computation time, the average
number of iterations and the standard deviation of the number of iterations. The methods are evaluated
using a dataset consisting of 10,000 uniformly distributed random samples from the set of reachable target
positions. The training and evaluating of the networks was performed on separate validation sets of identical
size to avoid overfitting. The sets were generated by applying Forward Kinematics to all possible combi-
nations of allowed joint angles. The error tolerance was set to 0.1cm. Since the neural network is not an
iterative method and computes the outputs instantly, no iteration results are listed for the neural network.
The percentage of unsolved instances of the Jacobian pseudoinverse method is due to the unstable behavior
near singularities. If a joint configuration is close to a singularity, the pseudoinverse method will lead to
large changes in joint angles, even for small movements of the target position [3].

Figure 2 shows the computation time of the three iterative algorithms for different error tolerances. The
Jacobian transpose method clearly performs worse for a lower error tolerance, whereas the Jacobian pseu-
doinverse shows only a slight increase in computation time and FABRIK remains constant. FABRIK was
the only algorithm that yielded results when the error tolerance was set to zero, taking the same computation



time as it needed for other error tolerances. Figure 2 does not include the neural network, since it is not an
iterative method and the error is not a variable that can be set but a given number measured from the output.
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Figure 2: Comparing the change in computation time when decreasing the error tolerance.

The Neural Network was evaluated for 5 to 100 hidden nodes. Table 2 shows some of the results. All
networks were trained until the error rates did not decrease anymore. Again, the neural networks were
trained on a training set with 10,000 uniformly distributed random samples from the set of reachable target
positions, and their corresponding joint configurations. The entries were normalized so that their values lie
between 0 and 1. The trained networks were tested on a validation set of identical size to avoid overfitting.
Since the error rate does not decrease any more when more than 40 nodes are used, this number of nodes
was used in the experiments described above. An error of 2.38% for a kinematic chain of length 21.87
centimeters corresponds to a maximum error of 0.52 centimeters at the end effector.

# of hidden nodes Training error Validation error
30 2.37% 2.40%

40 2.35% 2.38%

50 2.35% 2.38%

Table 2: Experimentally determining the number of nodes in the hidden layer.

6 A NAO robot paying tic-tac-toe
As a proof of concepts we used FABRIK to enable a NAO humanoid robot to play tic-tac-toe. The NAO
identifies the games state using its camera. The camera image is analyzed using algorithms from the OpenCV
library, and mapped to a game state. A simple mini-max algorithm is used to determine the next move.
Finally, FABRIK is used to coordinate the hand movements necessary to draw a cross or a circle. Figure 3
gives an illustration.

7 Conclusion
FABRIK outperforms the Jacobian transpose method as well as the Jacobian pseudoinverse method in terms
of calculation time and number of iterations. Furthermore, it is the only algorithm that could always yield
results with the error tolerance set to zero, and is well-behaved near singularities. The Jacobian pseudoin-
verse performs slightly slower than FABRIK, but is still decent. However, it does not always yield a solution



Figure 3: A NAO playing tic-tc-toe.

near singularities, or when the error tolerance is set to zero. The Jacobian transpose method does not suffer
from singularity problems, but its computation time explodes when the error tolerance is reduced.

If, however, computation time is of the highest priority, and precision is secondary, neural networks
might be a more suitable approach. It greatly outperforms all the other methods regarding speed, but is
the least accurate method of all, with a possible error of 2.38%. This translates to 0.52 centimeters on the
NAO, but when scaled to bigger applications, this might be a more significant number. Therefore, this neural
network is suited for applications which require a fast response time and do not need to be that accurate.

It is safe to say that FABRIK is a better alternative to the Jacobian pseudo-inverse method and the Jaco-
bian transpose method when applied to the NAO humanoid robot, since it performs better, is more accurate,
and converges more quickly. Moreover, it does not suffer from singularity problems and is therefore a well-
behaved approximation in each possible case. A general conclusion about FABRIK and neural networks,
however, cannot be drawn from this paper. This would require a comparison with other traditional methods
such as DLS/SDLS described in Section 1, or techniques that were not discussed in this paper such as Cyclic
Coordinate Descent (CCD) [11] and Elman networks [6]. Finally, FABRIK should be compared with other
algorithms for kinematic chains with more than two joints.
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