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Traffi c fl ow theory and 
modelling
 Serge Hoogendoorn and Victor Knoop

7.1 Introduction

When do traffi  c jams emerge? Can we predict, given certain demand levels, 
when queuing will occur, how long the queues will be, how they will propa-
gate in space and time and how long it will take for the congestion to resolve? 
Why does an overloaded traffi  c network underperform? Th is chapter gives a 
basic introduction to traffi  c fl ow theory which can help to answer these kinds 
of questions.

We start this chapter by explaining how it connects with the other chapters 
in this book (see Figure 7.1). In the top left  of the fi gure, the reader will rec-
ognize the conceptual model used in Chapters 2 to 6, in a highly simplifi ed 
form, to explain transport and traffi  c volumes.

One of the results of the interplay between people’s and shippers’ needs 
and desires, the locations of activities and the transport resistance factors 
(Figure 7.1, top left ) is a certain volume of road traffi  c (Figure 7.1, middle 
left ). Road traffi  c, and this is where this chapter starts, can be described 
by using fl ow variables such as speed and density (Figure 7.1, middle 
right). Th e density of traffi  c is the number of vehicles that are present on 
a roadway per unit distance. Road traffi  c fl ows on certain road stretches 
during certain time periods can be either free or congested and/or the 
fl ows can be  unreliable. In the last two cases the transport resistance on 
these road stretches will be relatively high, as explained in Chapter 6 using 
concepts such as value of time and value of reliability, among other things. 
Consequently, high transport resistance implies negative repercussions 
on road traffi  c volumes (see the arrow from fl ow variables to transport 
 resistance, Figure 7.1, top).
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126 · The transport system and transport policy

To be clear, this chapter focuses on the road traffi  c fl ow variables and the 
interactions with aspects such as driving behaviour, weather, information 
technology and so forth (the grey areas in Figure 7.1). Th us traffi  c fl ow opera-
tions on a road facility are explained for a given traffi  c demand profi le. Factors 
such as weather and information technology (e.g. navigation systems) can 
infl uence traffi  c fl ow characteristics through driving behaviour. Additionally, 
policies such as road expansions and traffi  c management measures can have 
an impact on traffi  c fl ow operations, either directly or indirectly, by infl uen-
cing driving behaviour. Transport policies are discussed in Chapter 12.

Traffi  c fl ow theory entails the knowledge of the fundamental characteris-
tics of traffi  c fl ows and the associated analytical methods. Examples of such 
characteristics are the road capacities, the relation between fl ow and density, 
and headway distributions. Examples of analytical methods are shockwave 
theory and microscopic simulation models.

Using the presented material, the reader will be able to interpret, analyse and 
– for simple situations – predict the main characteristics of traffi  c fl ows. For 
the greater part, the chapter considers traffi  c fl ow operations in simple infra-
structure elements (uninterrupted traffi  c fl ow operations, simple discontinu-
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Figure 7.1 Th e connection between this chapter (grey area) and the simple conceptual framework (top 
left ) as described in Chapter 2
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ities), although an important side step is made to look at network dynamics. 
In doing so, the chapter takes both a microscopic and a macroscopic per-
spective. Th e microscopic perspective refl ects the behaviour of individual 
drivers interacting with surrounding vehicles, while the macroscopic per-
spective considers the average state of traffi  c. We discuss empirical facts, and 
some well-known analytical tools, such as shockwave theory, kinematic wave 
models and microscopic simulation models.

Section 7.2 introduces the basic variables on the microscopic level (the 
vehicle level), and section 7.3 the macroscopic variables, that is, the fl ow 
level. Section 7.4 discusses fl ow characteristics. Th en, in section 7.5, traffi  c 
fl ow dynamics and the (self-)organization of traffi  c are discussed. Section 7.6 
presents several theories on multi-lane traffi  c (i.e. motorways). Section 7.7 
discusses car-following models, that is, microscopic fl ow models, and section 
7.8 discusses the macroscopic fl ow models. Section 7.9 adds the dynamics of 
networks to this. Finally, in section 7.10 the conclusions are presented.

7.2 Vehicle trajectories and microscopic fl ow 
variables

Th e vehicle trajectory (oft en denoted as xi(t)) of a vehicle (i) describes the 
position of the vehicle over time (t) along the roadway. Th e trajectory is the 
core variable in traffi  c fl ow theory which allows us to determine all relevant 
microscopic and macroscopic traffi  c fl ow quantities. Note that, for the sake 
of simplicity, the lateral component of the trajectory is not considered here.

To illustrate the versatility of trajectories, Figure 7.2 shows several vehicle 
trajectories. From the fi gure, it is easy to determine the distance headway Si, 
and the time headway hi, overtaking events (crossing trajectories), the speed 
vi = dxi/dt, the size of the acceleration (see top left  where one vehicle acceler-
ates to overtake another vehicle), the travel time TT i and so forth.

However, although the situation is rapidly changing owing to so-called fl oat-
ing car data becoming more common, trajectory information is seldom avail-
able. Floating car data is information from mobile phones in vehicles that are 
being driven. In most cases, vehicle trajectory measurements only contain 
information about average characteristics of the traffi  c fl ow, provide only 
local information, or aggregate information in some other way (e.g. travel 
times from automatic vehicle identifi cation or licence plate cameras).

Most commonly, traffi  c is measured by (inductive) loops measuring local 
(or time-mean) traffi  c fl ow quantities, such as (local) traffi  c fl ow q and local 
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128 · The transport system and transport policy

mean speed u. First, we will discuss the main microscopic traffi  c fl ow vari-
ables in detail. Th is type of fl ow variable refl ects the behaviour of individual 
drivers interacting with surrounding vehicles.

Gross and net headways

Th e (gross) time headway (h) is one of the most important microscopic 
fl ow variables. It describes the diff erence between passage times ti at a cross-
section x of the rear bumpers of two successive vehicles:

 hi (x) 5 ti (x) 2 ti21 (x)  (1)

Th e time headway, or simply headway, is directly determined by the behav-
iour of the driver, vehicle characteristics, fl ow conditions and so on. Its 
importance stems from the fact that the (minimal) headways directly deter-
mine the capacity of a road, a roundabout and so forth. Typically, these 
minimal headways are around 1.5 seconds in dry conditions. Time head-
ways, combined with the speeds, lead to the distance headways (see ‘Gross 
and net distance headways’ below).

Th e net time headway or gap is defi ned by the diff erence in passage times 
between the rear bumper of the lead vehicle and the front bumper of the 
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Figure 7.2 Vehicle trajectories and key microscopic fl ow characteristics
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following vehicle. Th is value is particularly important for driving behaviour 
analysis, for instance when analysing and modelling the amount of space 
drivers need to perform an overtaking manoeuvre (critical gap analysis).

Gross and net distance headways

We have seen in the preceding sub-section that time headways are local 
microscopic variables: they relate to the behaviour of an individual driver 
and are measured at a cross-section. On the contrary, distance head-
ways (oft en denoted by the symbol s) are instantaneous (measured at one 
moment in time) microscopic variables, measuring the distance between 
the rear bumper of the leader and the rear bumper of the follower at time 
instant t:

 si (t) 5 xi21 (t) 2 xi (t)  (2)

In congested conditions, distance headways are determined by the behav-
iour of drivers, which in turn depends on the traffi  c conditions, driver abil-
ities, vehicle characteristics, weather conditions and so forth. In free fl ow 
with no interaction between the drivers, the headways are determined largely 
by the demand (that is, they are determined by the moments when drivers 
enter the freeway).

Net distance headways are defi ned, similarly to the net time headways, as the 
distance between the position of the rear bumper of the leader and the front 
bumper of the follower.

It should be clear that the time headways and the distance headways are 
strongly correlated. If vi−1 denotes the speed of the leading vehicle, it is easy 
to see that:

 si 5 vi21hi (3)

7.3 Macroscopic fl ow variables

So far, we have mainly looked at microscopic traffi  c fl ow variables. 
Macroscopic fl ow variables, such as fl ow, density, speed and speed variance, 
refl ect the average state of the traffi  c fl ow in contrast to the microscopic 
traffi  c fl ow variables, which focus on individual drivers. Let us take a closer 
look at the most important variables.
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Traditional defi nitions of fl ow, density and speed

In general, the fl ow q (also referred to as intensity or volume) is tradition-
ally defi ned by the ‘average number of vehicles (n) that pass a cross-section 
during a unit of time (T)’. According to this defi nition, fl ow is a local variable 
(since it is defi ned at a cross-section). We have:

 q 5
n
T
5

n
g n

i51hi
5

1
h

 (4)

Th is expression shows that the fl ow can be computed easily by taking the 
number of vehicles n that have passed the measurement location during a 
period of length T. Th e expression also shows how the fl ow q relates to the 
average headway h, thereby relating the macroscopic fl ow variable to average 
microscopic behaviour (i.e. time headways).

In a similar way, the density k (or concentration) is defi ned by the ‘number 
of vehicles per distance unit’. Density is, therefore, a so-called instantaneous 
variable (i.e. it is computed at a time instance), defi ned as follows:

 k 5
m
X
5

m
gm

i51si
5

1
s

 (5)

Th is expression shows that the density can be computed by taking a snapshot 
of a roadway segment of length X, and counting the number of vehicles m 
that occupy the road at that time instant. Th e expression also shows how 
density relates to average microscopic behaviour (i.e. distance headways, s). 
Note that, contrary to the fl ow, which can generally be easily determined in 
practice by using cross-sectional measurement equipment (such as inductive 
loops), the density is not so easily determined, since it requires observations 
of the entire road at a time instant (e.g. via an aerial photograph).

Similarly to the defi nitions above, average speeds u can be computed in two 
ways: at a cross-section (local mean speed or time-mean speed uL), or at a 
time instant (instantaneous mean speed or space-mean speed uM). As will 
be shown in the following sub-section, the diff erence between these defi -
nitions can be very large. Surprisingly, in practice the diff erence is seldom 
determined. For instance, the Dutch motorway monitoring systems collect 
time-mean speeds, while for most applications (e.g. average travel time) the 
space-mean speeds are more suitable.
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Continuity equation

An important relation in traffi  c fl ow theory is the continuity equation: q = 
ku (fl ow equals density times the speed). Th is equation is used to relate the 
instantaneous characteristic density to the local characteristic fl ow. Th e deri-
vation of this equation is actually quite straightforward (Figure 7.3).

Consider a road of length X. All vehicles on this road drive at an equal speed 
u. Let us defi ne the period T by T = X/u. Under this assumption, it is easy to 
see that the number of vehicles that are on the road at time t = 0 – which is 
equal to the density k times the length X of the roadway segment – is equal 
to the number of vehicles that will pass the exit at x = X during period [0,T], 
which is in turn equal to the fl ow q times the duration of the period T. Th at is:

 kX 5 qT 3 q 5 k
X
T
5 ku (6)

Clearly, the continuity equation holds when the speeds are constant. Th e 
question is whether the equation q = ku can also be applied when the speeds 
are not constant (e.g. u represents an average speed) and, if so, which average 
speed (time-mean or space-mean speed) is to be used. It turns out that q = 
ku can indeed be applied, but only if u = uM, that is, if we take the space-mean 
speed.

Intuitively, one can understand this as follows (mathematical proof can be 
found in May, 1990). A detector lies at location xdet. Now we reconstruct 
which vehicles will pass in the time of one aggregation period. For this, 
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Figure 7.3 Derivation of the continuity equation
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132 · The transport system and transport policy

the vehicle must be closer to the detector than the distance it travels in the 
aggregation time tagg:

 xdet 2 xj # taggvi (7)

In this formula, x is the position on the road. For faster vehicles, this distance 
is larger. Th erefore, if one takes the local arithmetic mean, one overestimates 
the infl uence of the faster vehicles. If the infl uence of the faster vehicles on 
speeds is overestimated, the average speed u is overestimated (compared to 
the space-mean speed um).

Th e discussion above might be conceived as academic. However, if we look 
at empirical data, then the diff erences between the time-mean speeds and 
space-mean speeds become apparent. Figure 7.4 shows an example where the 
time-mean speed and space-mean speed have been computed from motor-
way individual vehicle data collected on the A9 motorway near Amsterdam, 
the Netherlands. Figure 7.4 clearly shows that the diff erences between the 
speeds can be as high as 100 per cent. Also note that the space-mean speeds 
are always lower than the time-mean speeds. Since, in most countries where 
inductive loops are used to monitor traffi  c fl ow operations, arithmetic mean 
speeds are computed and stored, average speeds are generally overestimated, 
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Figure 7.4 Diff erences between time- mean speed and space- mean speed for the A9 motorway
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aff ecting travel time estimations. Furthermore, since q = ku can only be used 
for space-mean speeds, we cannot determine the density k from the local 
speed and fl ow measurements, complicating the use of the collected data, for 
example for traffi  c information and traffi  c management purposes.

Generalized traffi c fl ow variables

Alternative measurement methods, such as automatic vehicle identifi cation 
(AVI), radar and fl oating car measurements, provide new ways to determine 
the fl ow variables described above. One of the benefi ts of these new methods 
is that they provide information about the temporal and spatial aspects of 
traffi  c fl ow. For instance, using video we can observe the density in a region 
directly, rather than by determining the density from local observations.

For the relation between instantaneous and local variables, the work of Edie 
(1965) is very relevant. Edie (1965) introduces generalized defi nitions of 
fl ow, density and speed. Th ese apply to regions in time and space, and will 
turn out to be increasingly important with the advent of new measurement 
techniques.

Consider a rectangular region in time and space with dimensions T and X 
respectively (see Figure 7.5). Let di denote the total distance travelled by 
vehicle i during period T and let ri denote the total time spent in region X. 
Let us defi ne the total distance travelled by all vehicles by:

i

di

x1

r i

x0

t1t t (s)

x 
(m

)

0

Figure 7.5 Generalization according to Edie (1965)
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 P 5 a i
di (8)

Based on this quantity P, which is referred to as the performance, Edie defi ned 
the generalized fl ow as follows:

 q 5
P

XT
 (9)

Note that we can rewrite this equation as follows:

 q 5
a i

di/X

T
 (10)

Let us now defi ne the total travel time R as follows:

 R 5 a i
ri (11)

Edie defi nes the generalized density by:

 k 5
R

XT
5
g iri/T

X
 (12)

For the generalized speed, the following intuitive defi nition is used:

 u 5
q
k
5

P
R
5

total distance travelled
total time spent

 (13)

Th ese defi nitions can be used for any regions in space–time, even non-rec-
tangular ones.

7.4 Microscopic  and macroscopic fl ow 
characteristics

Th e preceding sections introduced the diff erent microscopic and macro-
scopic variables. Th is section shows the most common fl ow characteristics, 
entailing both relations between the fl ow variables, or typical distribution, 
and so on. Th ese fl ow characteristics, in a sense, drive the traffi  c fl ow dynam-
ics that will be discussed below. As well as providing a short description 
of the characteristics and their defi nition, this section will discuss empirical 
examples as well as key issues in identifying these parameters.
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Headway distributions

If we were to collect headways at a specifi c location x, then we would observe 
that these headways are not constant but rather follow some probability dis-
tribution function. Th is is also the case when the fl ow is stationary during the 
data collection period. Th e causes are manifold: there are large diff erences 
in driving behaviour between diff erent drivers and diff erences in the vehicle 
characteristics, but there is also variation within the behaviour of one driver. 
A direct and important consequence of this is that the capacity of the road, 
which is by and large determined by the driving behaviour, is not constant 
either, but a stochastic variable.

Th e headway distribution can be described by a probability density func-
tion f(h). In the literature, many diff erent kinds of distribution functions 
have been proposed, with varying success. It can be shown that if the fl ows 
are small – there are few vehicle interactions – the exponential distribution 
will be an adequate model. When the fl ows become larger, there are more 
interactions amongst the vehicles, and other distributions are more suitable. 
A good candidate in many situations is the log-normal distribution; we refer 
to Cowan (1975) for more details. In Hoogendoorn (2005), an overview is 
given of estimation techniques for the log-normal distributions in specifi c 
situations.

Th e main problem with these relatively simple models is that they are only 
able to represent available measurements but cannot be extrapolated to 
other situations. If, for instance, we are interested in a headway distribution 
for another fl ow level than the one observed, we need to collect new data and 
re-estimate the model.

To overcome this, so-called composite headway models have been proposed. 
Th e main characteristic of these models is that they distinguish between 
vehicles that are fl owing freely and those that are constrained by the vehicle 
in front. Buckley (1968) was one of the fi rst proposing these models, assum-
ing that the headways of the free driving vehicles are exponentially distrib-
uted. He showed that the probability density function f(h) of the observed 
headways h can be described by the following function:

 f(h) 5 �g (h) 1 (1 2 �)w (h)  (14)

In this equation, g describes the probability density function of the headways 
of vehicles that are following (also referred to as the distribution of the empty 
zones), while w denotes the probability density function of those vehicles 
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that are driving freely. For the latt er, an exponential distribution is assumed, 
and � denotes the fraction of vehicles which are following.

Th ere are diff erent ways to estimate these probability density functions from 
available headway observations. Wasielewski (1974), later improved by 
Hoogendoorn (2005), proposed an approach in which one does not need 
to choose a prior form of the constrained headway distribution. To illus-
trate this, Figure 7.6 shows an example of the application of this estimation 
method on a two-lane motorway in the Netherlands in the morning (the 
location is the Doenkade).

Th is example nicely illustrates how the approach can be applied for 
 estimating capacities, even if no capacity observations are available. 
We  fi nd the maximum fl ow (or capacity fl ow, C) when all drivers are 
following (as opposed to driving freely). We directly observe from the 
Buckley model (Buckley, 1968; see above) that the observed headways in 
that case follow g. Th e number of vehicles per hour equals 3600 seconds 
per hour divided by the average headway (H, following distribution g) in 
seconds (or the expectation value thereof, indicated by E). We therefore 
get:

 C 5 3600/E (H)  where H~g (15)

gross headway W (s)/contribution empty zone X (s)

Prob. dens. gross headway f(h)

Contribution of empty zone �g(h)
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Note: W denotes the gross headway, which is composed of the empty zone X and the free headway W- X.

Source: Hoogendoorn and Botma (1997).

Figure 7.6 Composite headway probability density function (p.d.f.) applied to data on 
Doenkade site
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In other words, the capacity fl ow equals one over the mean (minimum) 
headway value, on the condition that all vehicles are following. Using this 
approach, we can fi nd estimates for the capacity even if there are no direct 
capacity observations available. For the example above, we can compute the 
mean empty zone value by looking at the p.d.f. g(h), which turns out to be 
equal to 1.69. Based on this value, we fi nd a capacity estimate of 3600/1.69 = 
2134 vehicles per hour.

Desired speed distributions

Generally, the free speed or desired speed of a driver–vehicle combination 
(hereaft er, simply called vehicle or driver) is defi ned by the speed driven 
when other road users do not infl uence the driver. Knowledge of free speeds 
on a road under given conditions are relevant for a number of reasons. For 
instance, the concept of free speed is an important element in many traffi  c 
fl ow models. As an illustration, the free speed distribution is an important 
input for many microscopic simulation models. Insights into free speeds and 
their distributions are also important from the viewpoint of road design and 
for determining suitable traffi  c rules for a certain facility. For instance, ele-
ments of the network should be designed so that drivers using the facility 
can traverse the road safely and comfortably. It is also of interest to see how 
desired speed distributions change under varying road, weather and ambient 
conditions and how these distributions vary for diff erent types of travellers. 
So speed distribution is also an important characteristic amongst drivers for 
design issues.

Th e free speed will be infl uenced by the characteristics of the vehicle, 
the driver, the road and (road) conditions such as weather and traffi  c 
rules (speed limits). Botma (1999) describes how individual drivers 
choose their free speed, discussing a behavioural model relating the free 
speed of a driver to a number of counteracting mental stresses a driver is 
subjected to. A similar model can be found in Jepsen (1998). However, 
these models have not been successful in their practical  application. Th e 
problem of determining free speed distributions from available data is not 
trivial. In Botma (1999), an overview of alternative free speed  estimation 
approaches is presented. Botma (1999) concluded that all the methods 
he reviewed have severe disadvantages, which is the reason why another 
estimation approach is proposed. Th is approach is based on the concept 
of censored   observations (Nelson, 1982) using a parametric estima-
tion approach to estimate the parameters of the free speed distribu-
tion. Speed observations are marked as either censored (constrained) 
or uncensored (free fl owing) using subjective criteria (headway and 
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 relative speed). Hoogendoorn (2005) presents a new approach to esti-
mating the   distribution of free speeds based on the method of censored 
observations.

Gap acceptance and critical gaps

Gap acceptance is a process that occurs in diff erent traffi  c situations, such 
as crossing a road, entering a roundabout or performing an overtaking 
 manoeuvre on a bi-directional road. Th e minimum gap that a driver will 
accept is generally called the critical gap. Mathematical representations 
of the gap acceptance process are an important part of traffi  c simulation 
models, for instance.

In general terms the gap acceptance process can be described as follows: 
traffi  c participants who want to make a manoeuvre estimate the space they 
need and estimate the available space. Based on the comparison between 
required and available space, they decide to start the manoeuvre or to post-
pone it. Th e term ‘space’ is deliberately somewhat vague; it can be expressed 
either in time or in distance. Th e required space is dependent on characteris-
tics of the traffi  c participant, the vehicle and the road. Th e available space is 
dependent on the characteristics of, for instance, the on-coming vehicles and 
the vehicle to be overtaken (the passive vehicle). Traffi  c participants have 
to perceive all these characteristics, process them and come to a decision. 
Humans diff er highly in perception capabilities; for example, the ability to 
estimate distances can vary substantially between persons, and they diff er in 
the acceptance of risk. Th e total acceptance process is dependent on many 
factors, of which only a subset is observable. Th is has led to the introduction 
of stochastic models.

Many diff erent methods to estimate the distribution of critical gaps by 
observing the gap acceptance process in reality can be found in the literature 
(Brilon et al., 1999). Let us consider the problem of estimating the critical 
gap distribution. Suppose, as an example, a driver successively rejects gaps 
of 3, 9, 12 and 7 s and accepts a gap of 19 s. Th e only thing one can conclude 
from these observations is that this driver has a critical gap between 12 and 
19 s. Stated in other words, the critical gap cannot be observed directly. Th e 
observations are, thus, censored. Note that it can also be concluded that only 
the maximum of the rejected gaps is informative for the critical gap (assum-
ing that the driver’s behaviour is consistent); the smaller gaps are rejected by 
defi nition.
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Capacity and capacity estimation

Capacity is usually defi ned as follows: ‘Th e maximum hourly rate at which 
people or vehicles can reasonably be expected to traverse a point or uniform 
section of a lane or roadway during a given time period (usually 15 minutes) 
under prevailing roadway, traffi  c and control conditions.’

Maximum fl ows (maximum free fl ows of queue discharge rates) are not con-
stant values and vary under the infl uence of several factors. Factors infl uen-
cing the capacity are, among other things, the composition of the vehicle 
fl eet, the composition of traffi  c with respect to trip purpose, weather, road, 
ambient conditions and so on. Th ese factors aff ect the behaviour of driver–
vehicle combinations and thus the maximum number of vehicles that can 
pass a cross-section during a given time period. Some of these factors can be 
observed and their eff ect can be quantifi ed. Some factors, however, cannot 
be observed directly. Furthermore, diff erences exist between drivers, imply-
ing that some drivers will need a larger minimum time headway than other 
drivers, even if drivers belong to the same class of users. As a result, the 
minimum headways will not be constant values but follow a distribution 
function (see the discussion on headway distribution modelling in ‘Headway 
distributions’ above). Observed maximum fl ows thus appear to follow a dis-
tribution. Th e shape of this distribution depends, among other things, on 
the capacity defi nition and measurement method or period. In most cases, a 
normal distribution can be used to describe the capacity.

Several researchers have pointed out the existence of two diff erent maximum 
fl ow rates, namely pre-queue and queue discharge. Each of these has its own 
maximum fl ow distribution. We defi ne the pre-queue maximum fl ow as the 
maximum fl ow rate observed at the downstream location just before the 
onset of congestion (a queue or traffi  c jam) upstream. Th ese maximum fl ows 
are characterized by the absence of queues or congestion upstream of the 
bott leneck, high speeds and instability leading to congestion onset within a 
short period and maximum fl ows showing a large variance. Th e queue dis-
charge fl ow is the maximum fl ow rate observed at the downstream location 
as long as congestion exists. Th ese maximum fl ow rates are characterized by 
the presence of a queue upstream of the bott leneck, lower speeds and densi-
ties, and a constant outfl ow with a small variance which can be sustained 
for a long period, but with lower fl ow rates than in the pre-queue fl ow state. 
Both capacities can only be measured downstream of the bott leneck loca-
tion. Average capacity drop changes are in the range of −1 to −15 per cent, 
but −30 per cent changes are also reported (see section 7.5 for more on 
capacity drop changes).
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Th ere are many approaches that can be applied to compute the capacity of a 
specifi c piece of infrastructure. Th e suitability of the approach depends on a 
number of factors, such as:

1. type of infrastructure (e.g. motorway without on- or off -ramps, on-ramp, 
roundabout, unsignalized intersection, etc.);

2. type of data (individual vehicle data, aggregate data) and time 
aggregation;

3. location of data collection (upstream of, in or downstream of the 
bott leneck);

4. traffi  c conditions for which data are available (congestion, no 
congestion).

We refer to Minderhoud et al. (1996) for a critical review of approaches that 
are available to estimate road capacity.

Fundamental diagrams

Th e fundamental diagram describes a statistical relation between the mac-
roscopic traffi  c fl ow variables of fl ow, density and speed. Th ere are diff erent 
ways to represent this relation, but the most oft en used is the relation q = 
Q(k) between the fl ow and the density. Using the continuity equation, the 
other relations u = U(k) and u = U(q) can be easily derived.

To understand the origin of the fundamental diagram, we can interpret 
the relation from a driving behaviour perspective. To this end, recall that 
the fl ow and the density relate to the (average) time headway and dis-
tance headway according to Equations (5) and (6) respectively. Based 
on this, we can clearly see which premise underlies the existence of the 
 fundamental diagram: under similar traffi  c conditions, drivers will behave 
in a similar way. Th at is, when traffi  c operates at a certain speed u, then 
it is plausible that (on average) drivers will maintain (on average) the 
same distance headway s = 1/k. Th is behaviour – and therewith the rela-
tion between speed and density – is obviously dependent on factors like 
weather, road characteristics, composition of traffi  c, traffi  c regulations and 
so forth.

Figure 7.7 shows typical examples of the relation between fl ow, density 
and speed. Th e fi gure shows the most important points in the fundamental 
diagram, which are the roadway capacity C, the critical density kc and the 
critical speed uc (the density and speed occurring at capacity operations), the 
jam density kjam (density occurring at zero speed) and the free speed u0. In 
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the fi gure, we clearly see the diff erence between the free conditions (k < kc) 
and the congested conditions (k > kc).

It is tempting to infer causality from the fundamental diagram: it is oft en 
stated that the relation u = U(k) describes the fact that, with increasing 
density (e.g. reduced spacing between vehicles), the speed is reducing. It 
is, however, more the other way around. If we take a driving behaviour per-
spective, then it seems more reasonable to assume that, with reduced speed 
of the leader, drivers need smaller distance headways to drive safely and 
comfortably.

Fundamental diagrams are oft en determined from real-life traffi  c data. Th is 
is usually done by assuming that stationary periods can be identifi ed during 
data measurements. To obtain meaningful fundamental diagrams, the data 
collection must be performed at the correct location during a selected time 
period.
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Figure 7.7 Example of the fundamental diagram
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7.5 Traffi c fl ow dynamics and self-or  ganization

So far, we have discussed the main microscopic and macroscopic charac-
teristics of traffi  c fl ow. In doing so, we have focused on static characteris-
tics of traffi  c fl ow. However, there are diff erent characteristics, which are 
dynamic in nature or, rather, have to do with the dynamic properties of 
traffi  c fl ow.

Capacity drop

Th e fi rst phenomenon that we discuss is the so-called capacity drop. Th e 
capacity drop describes the fact that, once congestion has formed, drivers 
are not maintaining a headway that is as close as it was before the speed 
breakdown. Th erefore the road capacity is lower. Th is eff ect is considerable, 
and values of a reduction up to 30 per cent are quoted (Hall and Agyemang-
Duah, 1991; Cassidy and Bertini, 1999; Chung et al., 2007). Th e eff ect of the 
capacity drop is illustrated in Figure 7.8.
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Figure 7.8 Th e capacity drop in the fl ow- density diagram
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Traffi c hysteresis

Th e diff erent microscopic processes that constitute the characteristics of a 
traffi  c fl ow take time: a driver needs time to accelerate when the vehicle in 
front drives away when the traffi  c signal turns green. When traffi  c conditions 
in a certain location change, for instance when the head of a queue moves 
upstream, it will generally take time for the fl ow to adapt to these changing 
conditions.

Generally, however, we may assume that given that the conditions remain 
unchanged for a suffi  cient period of time – say, fi ve minutes – traffi  c condi-
tions will converge to an average state. Th is state is oft en referred to as the 
equilibrium traffi  c state. When considering a traffi  c fl ow, this equilibrium 
state is generally expressed in terms of the fundamental diagram. Th at is, 
when considering traffi  c fl ow under stationary conditions, the fl ow oper-
ations can – on average – be described by some relation between speed, 
density and fl ow. Th is is why the speed–density relation is oft en referred to 
as the equilibrium speed.

From real-life observations of traffi  c fl ow, it can be observed that many of 
the data points collected are not on the fundamental diagram. While some 
of these points can be explained by stochastic fl uctuations (e.g. vehicles have 
diff erent sizes, drivers have diff erent desired speeds and following distances), 
some can be structural, and stem from the dynamic properties of traffi  c fl ow. 
Th at is, they refl ect so-called transient states, that is, changes from conges-
tion to free fl ow (acceleration phase) or from free fl ow to congestion (decel-
eration phase) in traffi  c fl ow. It turns out that generally these changes in 
the traffi  c state are not on the fundamental diagram. In other words, if we 
consider the average behaviour of drivers (assuming stationary traffi  c condi-
tions), observed mean speeds will generally not be equal to the ‘equilibrium’ 
speed. Th e term ‘equilibrium’ refl ects the fact that the observed speeds in 
time will converge to the equilibrium speed, assuming that the average con-
ditions remain the same. Th at is, the average speed does not adapt instanta-
neously to the average or equilibrium speed.

Th is introduces traffi  c hysteresis, which means that for the same distance 
headway drivers choose a diff erent speed during acceleration from that 
chosen during deceleration. Figure 7.9 shows the fi rst empirical observa-
tion thereof by Treiterer and Myers (1974). Th e fi gure shows the time it 
takes for a platoon to pass a point along the roadway. Th e longer the arrow 
is, the longer that time is and hence the lower the fl ow (vehicles/hour). Th e 
arrow is long at the beginning, since some drivers are not car-following yet. 
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At the second arrow, all vehicles are car-following and the fl ow is high (short 
arrow). In the disturbance, the fl ow is very low and we fi nd a long arrow. 
Aft er the disturbance, the fl ow increases but the headways are longer than 
before the vehicles entered the disturbance. Note also that, in exiting the 
traffi  c jam, all vehicles will be in car-following mode.

Three-phase traffi c fl ows, phase transitions and self-organization

Amongst the many issues raised by Kerner (2004) is the fact that there are 
three phases (free fl ow, synchronized fl ows and jams) rather than two (free 
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Figure 7.9 Vehicle trajectories collected from an airborne platform clearly showing diff erences 
in average platoon length before and aft er the disturbance
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fl ow and congestion). As in other theories, the fi rst phase is the free fl ow 
phase. Th e second phase, in three-phase traffi  c fl ow theory, is the synchro-
nized fl ow. In this phase, the speed between the lanes is more or less the 
same, rather than in free fl ow where the overtaking lane has a higher speed 
than the slow lane. Furthermore, Kerner claims that there are diff erent equi-
librium spacings (densities) for the same fl ow value, such that the phase 
should not be described by a line but by an area in the fl ow-density plane 
(Figure 7.10). Th e third phase, the wide moving jam, is identifi ed by a (near) 
standstill of the vehicles. Owing to the very low fl ow, the queue will grow at 
the tail. At the same time, vehicles at the head of the queue can accelerate. 
Th is means that the queue moves in the opposite direction to the traffi  c; 
the wave speed is approximately 18 km/h propagating backwards from the 
driving direction.

As well as the distinguishing of the three phases, Kerner discusses transitions 
between the diff erent traffi  c phases. Some of these transitions are induced 
(‘forced’). An example is a phase transition induced by a bott leneck, such as 
an on-ramp. In this situation, the simple fact that traffi  c demand is at some 
point in time larger than the rest capacity (being the motorway capacity 
minus the infl ow from the on-ramp) causes a transition from the free fl ow 
phase to the synchronized fl ow phase. Note that these kinds of phase transi-
tions can be described by basic fl ow theories and models (shockwave theory, 
kinematic wave models) adequately. As an additional remark, note that these 
transitions are, although induced, still random events, since both the free 
fl ow capacity and the supply are random variables.

However, not all phase transitions are induced (directly); some are caused 
by intrinsic (‘spontaneous’) properties of traffi  c fl ow. An example is the 
spontaneous transition from synchronized fl ow to jammed fl ow (referred 
to by Kerner as wide moving jams). Owing to the unstable nature of specifi c 
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Figure 7.10 Th e fundamental diagram according to Kerner (2004)
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synchronized fl ow regimes, small disturbances in the congested fl ow will 
grow over time. For instance, a small localized high density cluster caused 
by a vehicle braking a bit too hard because the driver was temporarily dis-
tracted may grow because of vehicles moving at the back of the localized 
cluster subsequently needing to brake as well (and oft en doing so because 
of the fi nite reaction times of drivers). As a result, this upstream moving dis-
turbance will gain in amplitude and will, in the end, become a wide moving 
jam.

Th is phenomenon is quite common in day-to-day motorway traffi  c opera-
tions. Figure 7.11 shows an example of the A15 motorway in the Netherlands. 
Th e picture clearly shows the frequent occurrence of these spontane-
ous transitions from synchronized to jammed fl ow, resulting in numerous 
upstream moving, wide moving jams. Note that, as wide moving jams have 
an outfl ow rate which is about 30 per cent lower than the free fl ow capacity, 
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Figure 7.11 Typical traffi  c patt ern on the A15 motorway in the Netherlands. A bott leneck 
can be determined at 55 km, and one can fi nd wide moving jams propagating backwards at 
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these jams are actually quite undesirable from a traffi  c effi  ciency perspec-
tive. Furthermore, they imply additional braking and acceleration, yielding 
increased fuel consumption and emission levels.

7.6 Multi-lane traffi c fl ow facilities

Up to now, t  he chapter has considered each lane of the freeway to be equal. 
However, there are considerable diff erences between them. Th is section 
introduces just the basic concept. For a deeper insight, we refer to the liter-
ature mentioned in this chapter. For the sake of simplicity, we here assume 
driving on the right. For countries where a left -hand driving rule applies, 
like Japan, the United Kingdom or Australia, the lanes are exactly opposite. 
Daganzo (2002a, 2002b) poses a theory classifying traffi  c as slugs, defi ned 
by a low desired speed, and rabbits, defi ned by a high free fl ow speed. 
He states that, as soon as the speed in the right lane goes under a certain 
threshold, rabbits will move to faster lanes to the left . Furthermore, the 
theory states that, even if the density in the right lane is lower than in the 
left  lane, the rabbits will not change to the right lane as long as the speeds in 
the left  lane are higher. Th is traffi  c state, with two diff erent speeds, is called 
a two pipe regime, since traffi  c is fl owing as it were in two diff erent, unre-
lated pipes. In this state, there is no equal density in both lanes. Only when 
the density in the left  lane increases so much that the speed decreases to a 
value lower than the speed in the right lane will the rabbits move towards 
the right lane. Th en the rabbits will redistribute themselves in such a way 
that the traffi  c in both lanes fl ows at the same speed. Th is is called a one pipe 
regime.

Note that the speeds in diff erent lanes at the same densities can be diff erent, 
owing to these eff ects or, basically, owing to the driver population in that 
lane. Th is leads to diff erent fundamental diagrams in the left  and right lanes. 
Usually, the free fl ow speed in the left  lane is higher than in the right lane, 
owing to the higher fraction of rabbits in that lane. Kerner (2004) poses a 
similar theory on multi-lane traffi  c fl ow facilities.

7.7 Traffi c fl ow models

Traffi  c fl ow models can be u  sed to simulate traffi  c, for instance to evaluate 
ex ante the use of a new part of the infrastructure. Th e models can be helpful 
tools in answering the questions posed in the introduction to this chapter, 
such as: When do traffi  c jams emerge? How will they propagate in space and 
time? And how long does it takes for the congestion to resolve? Additionally, 
the models can be used to improve road safety.
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Traffi  c fl ow models may be categorized using various dimensions (deter-
ministic or stochastic, continuous or discrete, analytical or simulation, 
and so forth). Th e most common classifi cation is the distinction between 
microscopic and macroscopic traffi  c fl ow modelling approaches. However, 
this distinction is not unambiguous, owing to the existence of hybrid 
models. Th is is why models are categorized here based on the following 
aspects:

1. representation of the traffi  c fl ow in terms of fl ows (macroscopic), 
groups of drivers (macroscopic) or individual drivers (microscopic);

2. underlying behavioural theory, which can be based on characteristics 
of the fl ow (macroscopic) or individual drivers (microscopic behaviour).

Th e remainder of this section uses this classifi cation to discuss some impor-
tant fl ow models. Table 7.1 depicts an overview of these models.

Th e observed behaviour of drivers, that is, headways, driving speeds and 
driving lane, is infl uenced by diff erent factors, which can be related to the 
driver–vehicle combination (vehicle characteristics, driver experience, age, 
gender and so forth), the traffi  c conditions (average speeds, densities), infra-
structure conditions (road conditions) and external situational infl uences 
(weather, driving regulations). Over the years, diff erent theories have been 
proposed to (dynamically) relate the observed driving behaviour to the 
parameters describing these conditions.

In the process, diff erent driver sub-tasks are oft en distinguished. 
Table  7.2  provides a rough but useful classifi cation of these tasks 
(Minderhoud, 1999). In general, two types of driver tasks are distin-
guished: longitudinal tasks (acceleration, maintaining speed, maintaining 
distance relative to the leading vehicle) and lateral tasks (lane changing, 
overtaking). In particular the longitudinal and (to a lesser extent) the 
lateral interaction sub-tasks have received quite a lot of att ention in traffi  c 
fl ow theory research.

Table 7.1 Overview of traffi  c fl ow model classifi cation

Representation Behavioural rules

Microscopic Macroscopic

Vehicle based Microscopic fl ow models Particle models

Flow based Gas- kinetic models Macroscopic models
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A microscopic model provides a description of the movements of indi-
vidual vehicles that are considered to be a result of the characteristics of 
drivers and vehicles, the interactions between driver–vehicle elements, 
the interactions between driver–vehicle elements and the road charac-
teristics, external conditions and the traffi  c regulations and control. Most 
 microscopic simulation models assume that a driver will only respond to 
the one vehicle that is driving in the same lane directly in front of him (the 
leader).

When the number of driver–vehicle units on the road is very small, the driver 
can freely choose his speed given his preferences and abilities, the roadway 
conditions, curvature, prevailing speed limits and so forth. In any case, there 
will be litt le reason for the driver to adapt his speed to the other road users. 
Th e target speed of the driver is the so-called free speed. In real life, the free 
speed will vary from one driver to another, but the free speed of a single 
driver will also change over time. Most microscopic models assume however 
that the free speeds have a constant value that is driver-specifi c. When traffi  c 
conditions deteriorate, drivers will no longer be able to choose the speed 
freely, since they will not always be able to overtake or pass a slower vehicle. 
Th e driver will need to adapt his speed to the prevailing traffi  c conditions, 
that is, the driver is following. In the rest of this section, we will discuss some 
of these car-following models. Models for the lateral tasks, such as deciding 
to perform a lane change and gap acceptance, will not be discussed in this 
section in detail. Ahmed et al. (1996) provide a concise framework of lane 
changing modelling.

Safe-distance models

Th e fi rst car-following models were developed by Pipes (1953) and were 
based on the assumption that drivers maintain a safe distance. A good rule 
for following vehicle i−1 at a safe distance si is to allow at least the length S0 
of a car between vehicle i and a part which is linear with the speed vi at which 
i is travelling:

Table 7.2 Driving sub- tasks overview

Longitudinal Lateral

Infrastructure Free speed Course keeping

Interaction Car- following Mandatory and discretionary lane 

changing

Source: Minderhoud (1999).
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 si 5 S(vi) 5 S0 1 Trvi (16)

Here, S0 is the eff ective length of a stopped vehicle (including additional 
distance in front), and Tr denotes a parameter (comparable to the reaction 
time). A similar approach was proposed by Forbes et al. (1958). Both Pipes’s 
and Forbes’s theories were compared to fi eld measurements. It was con-
cluded that, according to Pipes’s theory, the minimum headways are slightly 
less at low and high velocities than observed in empirical data. However, 
considering the models’ simplicity, the way they were in line with real-life 
observations was amazing (see Pignataro, 1973).

Stimulus response models

However, safe-distance models do not seem to capture much of the phe-
nomena observed in real-life traffi  c fl ows, such as hysteresis, traffi  c instabili-
ties and so on. Stimulus response models are dynamic models that describe 
more realistically the reaction of drivers to things like changes in distance, 
speeds and so on relative to the vehicle in front, by considering a fi nite reac-
tion time, for example. Th ese models are applicable to relatively busy traffi  c 
fl ows where the overtaking possibilities are small and drivers are obliged to 
follow the vehicle in front of them. Drivers do not want the gap in front of 
them to become too large so that other drivers can enter it. At the same time, 
the drivers will generally be inclined to keep a safe distance.

Stimulus response models assume that drivers control their acceleration (a). 
Th e well-known model of Chandler et al. (1958) is based on the intuitive 
hypothesis that a driver’s acceleration is proportional to the relative speed 
vi−1 − vi:

 ai (t) 5
d
dt

vi (t) 5 a (vi21 (t 2 Tr) 2 vi (t 2 Tr) )  (17)

where Tr again denotes the overall reaction time, and a denotes the sen-
sitivity. Based on fi eld experiments, conducted to quantify the parameter 
values for the reaction time Tr and the sensitivity a, it was concluded that 
a depended on the distance between the vehicles: when the vehicles were 
close together, the sensitivity was high, and vice versa.

Stimulus response models have been applied mainly to single lane traffi  c 
(e.g. tunnels; see Newell, 1961) and traffi  c stability analysis (Herman, 1959; 
May, 1990). It should be noted that no generally applicable set of para-
meter estimates has been found so far, that is, estimates are site-specifi c. An 
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 overview of parameter estimates can be found in Brackstone and McDonald 
(1999).

Psycho-spacing models

Th e two car-following models discussed so far have a mechanistic charac-
ter. Th e only human element is the presence of a fi nite reaction time Tr. 
However, in reality a driver is not able to:

1. observe a stimulus lower than a given value (perception threshold);
2. evaluate a situation and determine the required response precisely, for 

instance because of observation errors resulting from radial motion 
observation;

3. manipulate the acceleration and brake pedals precisely.

Furthermore, owing to the need to distribute his att ention between diff er-
ent tasks, a driver will generally not be permanently occupied with the car-
following task. Th is type of consideration has inspired a diff erent class of 
car-following models, namely the psycho-spacing models. Michaels (1963) 
provided the basis for the fi rst psycho-spacing, based on theories borrowed 
from perceptual psychology (see Leutzbach and Wiedemann, 1986).

Th e so-called action point models (an important psycho-spacing model) 
form the basis for a large number of contemporary microscopic traffi  c fl ow 
models. Brackstone and McDonald (1999) conclude that it is hard to come 
to a defi nitive conclusion on the validity of these models, mainly because the 
calibration of its elements has not been successful.

7.8 Macroscopic traffi c fl ow models

In the previous section we have disc  ussed diff erent microscopic traffi  c 
fl ow modelling approaches. In this section, we will discuss the main 
approaches that have been proposed in the literature taking a macroscopic 
perspective.

Deterministic and stochastic queuing theory

Th e most straightforward approach to model traffi  c dynamics is probably 
the use of queuing theory. In queuing theory we keep track of the number of 
vehicles in a queue (n). A queue starts whenever the fl ow to a bott leneck is 
larger than the bott leneck capacity, where the cars form a virtual queue. Th e 
outfl ow of the queue is given by the infrastructure (it is the outfl ow capacity 
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of the bott leneck, given by C), whereas the infl ow is the fl ow towards the 
bott leneck (q) as given by the traffi  c model. In an equation, this is writt en as:

 dn 5 q (t)dt 2 C (t)dt (18)

Th e number of vehicles in the queue (n; dn stands for the change in the 
number of vehicles in the queue) will evolve in this way until the queue has 
completely disappeared. Note that both the infl ow and the capacity are time 
dependent in the description. For the infl ow, this is due to the random distri-
bution patt ern of the arrival of the vehicles. Vehicles can arrive in platoons or 
there can be large gaps in between two vehicles. Th e capacity is also fl uctuat-
ing. On the one hand, there are vehicle-to-vehicle fl uctuations. For instance, 
some drivers have a shorter reaction time, hence a shorter headway leading 
to a higher capacity. On the other hand, on a larger scale, the capacities will 
also depend on road or weather conditions (e.g. wet roads, night-time).

Figure 7.12 shows how the number of vehicles in the queue, n, fl uctuates 
with time for a given infl ow and outfl ow curve.

Th e disadvantage of the queuing theory is that the queues have no spatial 
dimension, and they do not have a proper length either (they do not occupy 
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space). Other models, which overcome these problems, are discussed 
below.

Shockwave theory

Queuing theory provides some of the simplest models that can be used 
to model traffi  c fl ow conditions. However, the spatial dimension of traffi  c 
congestion in particular is not well described or – in the case of vertical 
queuing models – not described at all. Shockwave theory is able to describe 
the  spatio-temporal properties of queues more accurately. Th is sub-section 
briefl y introduces shockwave theory.

A shockwave describes the boundary between two traffi  c states that are char-
acterized by diff erent densities, speeds and/or fl ow rates. Shockwave theory 
describes the dynamics of shockwaves, in other words how the boundary 
between two traffi  c states moves in time and space.

Suppose that we have two traffi  c states: states 1 and 2. Let S denote the wave 
that separates these states. Th e speed of this shockwave S can be computed 
by:

 w12 5
q2 2 q1

k2 2 k1
 (19)

In other words, the speed of the shockwave equals the jump in the fl ow 
over the wave divided by the jump in the density. Th is yields a nice 
 graphical  interpretation (Figure 7.13): if we consider the line that con-
nects the two traffi  c states 1 and 2 in the fundamental diagram, then the 
slope of this line is exactly the same as the speed of the shock in the time–
space plane.

Shockwave theory provides a simple means to predict traffi  c conditions 
in time and space. Th ese predictions are largely in line with what can be 
observed in practice, but they have their limitations:

1. Traffi  c driving away from congestion does not accelerate 
smoothly  towards the free speed but continues driving at the critical 
speed.

2. Transition from one state to the other always occurs in jumps, not taking 
into account the bound acceleration characteristics of real traffi  c.

3. Th ere is no consideration of hysteresis.
4. Th ere are no spontaneous transitions from one state to the other.
5. Location of congestion occurrence is not in line with reality.
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As a result, more advanced approaches have been proposed. Let us now con-
sider the most important ones.

Continuum traffi c fl ow models

Continuum traffi  c fl ow deals with traffi  c fl ow in terms of aggregate variables, 
such as fl ow, densities and mean speeds. Usually, the models are derived from 
the analogy between vehicular fl ow and the fl ow of continuous media (e.g. 
fl uids or gases), complemented by specifi c relations describing the average 
macroscopic properties of traffi  c fl ow (e.g. the relation between density and 
speed). Continuum fl ow models generally have a limited number of equa-
tions that are relatively easy to handle.

Most continuum models describe the dynamics of density k = k(x,t), mean 
instantaneous speed u  =  u(x,t) and the fl ow q  =  q(x,t). Th e density k(x,t) 
describes the expected number of vehicles per unit length at instant t. Th e 
fl ow q(x,t) equals the expected number of vehicles fl owing past cross-section 
x during the time unit. Th e speed u(x,t) equals the mean speed of the vehicle 
defi ned according to q = ku. Some macroscopic traffi  c fl ow models also 
contain partial diff erential equations of the speed variance q = q(x,t), or the 
traffi  c pressure P = P(x,t) = rq. For an overview of continuum fl ow models, 
we refer to Hoogendoorn and Bovy (2001).
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Figure 7.13 Graphical interpretation of shockwave speed
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7.9 Network dynamics

In the preceding sections, we have presented some of the mai  n traffi  c fl ow 
characteristics. Using the microscopic and macroscopic models discussed, 
fl ow operations on simple infrastructure elements can be explained and pre-
dicted. Predicting fl ow operations in a network is, obviously, more involved, 
since it also requires predicting the route traffi  c demand profi les, which in 
turn means modelling route choice, departure time choice, mode choice and 
so on.

Interestingly, it turns out that the overall dynamics of a traffi  c network can be 
described using a remarkably simple relation, referred to as the macroscopic 
or network fundamental diagram (NFD). Th is diagram relates the vehicle 
accumulation – or average vehicle density – to the network performance. 
Th e network performance is defi ned by the fl ow, weighted by the number of 
lanes, and the length of the roadway segment for which the measured fl ow is 
representative.

Th is relation, which will be discussed in the following sections, shows one 
of the most important properties of network traffi  c operations, namely that 
its performance decreases when the number of vehicles becomes larger. In 
other words, when it is very busy in the network, performance goes down 
and fewer vehicles are able to complete their trip per unit of time. As a 
 consequence, problems become even bigger.

Macroscopic fundamental diagram

Vehicular traffi  c network dynamics are atypical. Contrary to many other net-
works, network production (average rate at which travellers complete their 
trip) deteriorates once the number of vehicles in the network has surpassed 
the critical accumulation. Pioneering work by Daganzo and Geroliminis 
(2008) shows the existence of the NFD, clearly revealing this fundamental 
property. Figure 7.14 shows an example of the NFD. Knowledge of this fun-
damental property and its underlying mechanisms is pivotal in the design of 
eff ective traffi  c management.

Developing a macroscopic description of traffi  c fl ow is not a new idea. 
Th omson (1967) found the relationship between average speed and fl ow 
using data collected from central London streets. Wardrop (1968) stated 
that this relation between average speed and fl ow decreased monotonically, 
and Zahavi (1972) enriched Wardrop’s theory by analysing real traffi  c data 
collected from various cities in the United Kingdom and United States. 
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Geroliminis and Daganzo (2008) have proven that NFDs exist in small net-
works, revealing the relation between the outfl ow and accumulation in the 
network. Th e accumulation is the number of vehicles in the network. Th e 
outfl ow is also called trip completion rate, refl ecting the rate at which travel-
lers reach their destinations. Similarly to a conventional link fundamental 
diagram, relating the local fl ow and density, three states are demonstrated 
on an NFD. When only a few vehicles use the network, the network is in the 
free fl ow condition and the outfl ow is low. With an increase in the number of 
vehicles, the outfl ow rises to the maximum. Like the critical density in a link 
fundamental diagram, the value of the corresponding accumulation when 
maximum outfl ow is reached is also an important parameter, called ‘sweet 
spot’.

As the number of vehicles further increases, travellers will experience delay. 
If vehicles continue to enter the network, it will result in a congested state 
where vehicles block each other and the outfl ow declines (congested con-
ditions). Furthermore, macroscopic feedback control strategies were intro-
duced with the aim of keeping accumulation at a level at which outfl ow is 
maximized for areas with a high density of destination.

Causes of network degeneration

Th e two main causes of the production deterioration of overloaded networks 
are spill-back of queues possibly resulting in grid-lock eff ects, and the capa-
city drop. Spill-back occurs because of the simple fact that queues occupy 
space: a queue occurring at a bott leneck may propagate so far upstream that 
it will aff ect traffi  c fl ows that do not have to pass the bott leneck, for example 

No. of vehicles in network

Production (veh/h)

Maximum
production 

Critical accumulation

Figure 7.14 Example of the network fundamental diagram
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when the queue passes a fork or an intersection upstream of the active bott le-
neck. As a result, congestion will propagate over other links of the network, 
potentially causing grid-lock phenomena. Th e capacity drop describes the 
fact that the free fl ow freeway capacity is considerably larger than the queue 
discharge rate.

7.10 Conclusions

Th e most important conclusions of this chapter are as follows:

1. Traffi  c fl ow theory and modelling are important in order to design com-
fortable and safe roads, to solve road congestion problems and to design 
adequate traffi  c management measures, amongst other things.

2. Traffi  c fl ow theory entails knowledge of the fundamental characteristics 
of traffi  c fl ows.

3. In traffi  c fl ow theory a basic distinction is made between microscopic 
and macroscopic traffi  c fl ow variables. Microscopic traffi  c fl ow variables 
focus on individual drivers. Macroscopic traffi  c fl ow variables refl ect the 
average state of the traffi  c fl ow.

4. Th e fundamental diagram in traffi  c fl ow theory describes a statistical 
relation between the macroscopic fl ow variables of fl ow, density and 
speed. Th e basic premise underlying the fundamental diagram is that 
under similar traffi  c conditions drivers will behave in a similar way.

5. Traffi  c fl ow models can be used to simulate traffi  c, for instance to evalu-
ate ex ante the use of a new part of the infrastructure. Models can be 
categorized based on, fi rstly, representation of the traffi  c fl ow in terms 
of fl ows (macroscopic), groups of drivers (macroscopic) or individual 
drivers (microscopic) and, secondly, underlying behavioural theory, 
which can be based on characteristics of the fl ow (macroscopic) or indi-
vidual drivers (microscopic behaviour).

6. Th e overall dynamics of a traffi  c network can be described using a remark-
ably simple relation, referred to as the macroscopic or network funda-
mental diagram (NFD). Th is relation shows one of the most important 
properties of network traffi  c operations, namely that their performance 
decreases when the number of vehicles becomes greater.

REFERENCES

Ahmed, K., M. Ben-Akiva, H. Koutsopoulos and R. Mishalani (1996), ‘Models of freeway lane-
changing and gap acceptance behavior’, Proceedings of the 13th International Symposium on 
Transportation and Traffi  c Th eory, Oxford: Pergamon, pp. 501–515.

Botma, H. (1999), ‘Th e free speed distribution of drivers: estimation approaches’, in P. Bovy 
(ed.), Five Years Crossroads of Th eory and Practice, Delft : Delft  University Press, pp. 1–22.

M3007 – VAN WEE 9780857936899 PRINT.indd   157 22/10/2012   16:09



158 · The transport system and transport policy

Brackstone, M. and M. McDonald (1999), ‘Car-following: a historical review’, Transportation 
Research F, 2, 181–186.

Brilon, W., R. Koenig and R. Troutbeck (1999), ‘Useful estimation procedures for critical gaps’, 
Transportation Research A, 33, 61–186.

Buckley, D. (1968), ‘A semi-Poisson model for traffi  c fl ow’, Transportation Science, 2, 107–133.
Cassidy, M.J. and R.L. Bertini (1999), ‘Some traffi  c features at freeway bott lenecks’, Transportation 

Research Part B: Methodological, 33 (1), 25–42.
Chandler, R.E., R. Herman and E.W. Montroll (1958), ‘Traffi  c dynamics: studies in car following’, 

Operations Research, 6, 165–184.
Chung, K., J. Rudjanakanoknada and M.J. Cassidy (2007), ‘Relation between traffi  c density and 

capacity drop at three freeway bott lenecks’, Transportation Research Part B: Methodological, 41 
(1), 82–95.

Cowan, R.J. (1975), ‘Useful headway models’, Transportation Research, 9 (6), 371–375.
Daganzo, C.F. (2002a), ‘A behavioral theory of multi-lane traffi  c fl ow, part I: long homogeneous 

freeway sections’, Transportation Research Part B: Methodological, 36 (2), 131–158.
Daganzo, C.F. (2002b), ‘A behavioral theory of multi-lane traffi  c fl ow, part II: merges and the 

onset of congestion’, Transportation Research Part B: Methodological, 36 (2), 159–169.
Daganzo, C.F. and N. Geroliminis (2008), ‘An analytical approximation for the macroscopic fun-

damental diagram of urban traffi  c’, Transportation Research Part B: Methodological, 42 (9), 
771–781.

Edie, L. (1965) ‘Discussion of traffi  c stream measurements and defi nitions’, in Proceedings of the 
2nd International Symposium on the Th eory of Traffi  c Flow, Paris: OECD, pp. 139–154.

Forbes, T., H. Zagorski, E. Holshousera and W. Deterline (1958), ‘Measurement of driver reac-
tions to tunnel conditions’, Highway Research Board Proceedings, 37, 60–66.

Geroliminis, N. and C.F. Daganzo (2008), ‘Existence of urban-scale macroscopic fundamental 
diagrams: some experimental fi ndings’, Transportation Research Part B: Methodological, 42 (9), 
759–770.

Hall, F.L. and K. Agyemang-Duah (1991), ‘Freeway capacity drop and the defi nition of capacity’, 
Transportation Research Record: Journal of the Transportation Research Board, 1320, 91–98.

Herman, R. (1959), ‘Traffi  c dynamics: analysis of stability in car-following’, Operation Research, 
1, 86–106.

Hoogendoorn, S.P. (2005), ‘Unifi ed approach to estimating free speed distributions’, 
Transportation Research Part B: Methodological, 39 (8), 709–727.

Hoogendoorn, S.P. and H. Botma (1997), ‘Modeling and estimation of headway distributions’, 
Transportation Research Record: Journal of the Transportation Research Board, 1591, 14–22.

Hoogendoorn, S.P. and P.H.L. Bovy (2001), ‘State-of-the-art of vehicular traffi  c modeling’, 
Proceedings of the Institution of Mechanical Engineers, Part I, Journal of Systems and Control 
Engineering, 4 (215), 283–304.

Jepsen, M. (1998), ‘On the speed–fl ow relationships in road traffi  c: a model of driver behav-
iour’, Proceedings of the Th ird International Symposium on Highway Capacity, Copenhagen, 
pp. 297–319.

Kerner, B.S. (2004), Th e Physics of Traffi  c: Empirical Freeway Patt ern Features, Engineering 
Applications, and Th eory, Berlin: Springer.

Leutzbach, W. and R. Wiedemann (1986), ‘Development and applications of traffi  c simula-
tion models at the Karlsruhe Institut für Verkehrswesen’, Traffi  c Engineering and Control, 27, 
270–278.

May, A.D. (1990), Traffi  c Flow Fundamentals, Englewood Cliff s, NJ: Prentice Hall.
Michaels, R. (1963), ‘Perceptual factors in car following’, in Proceedings of the Second International 

Symposium on the Th eory of Road Traffi  c Flow, Paris: OECD, pp. 44–59.

M3007 – VAN WEE 9780857936899 PRINT.indd   158 22/10/2012   16:09



Traffi c fl ow theory and modelling · 159

Minderhoud, M. (1999), ‘Supported driving: impacts on motorway traffi  c fl ow’, Ph.D. thesis, 
Delft  University of Technology.

Minderhoud, M.M., H. Botma and P.H.L. Bovy (1996), ‘An assessment of roadway capacity 
 estimation methods’, Technical Report vk2201.302, Delft  University of Technology.

Nelson, W. (1982), Applied Life Time Analysis, New York: Wiley.
Newell, G.F. (1961), ‘A theory of traffi  c fl ow in tunnels’, in R. Herman (ed.), Th eory of Traffi  c Flow: 

Proceedings of the Symposium on the Th eory of Traffi  c Flow, Amsterdam: Elsevier, pp. 193–206.
Pignataro, L. (1973), Traffi  c Engineering: Th eory and Practice, Englewood Cliff s, NJ: Prentice Hall.
Pipes, L. (1953), ‘Car following models and the fundamental diagram of road traffi  c’, 

Transportation Research, 1, 21–29.
Th omson, J.M. (1967), ‘Speeds and fl ows of traffi  c in central London: speed–fl ow relations’, 

Traffi  c Engineering and Control, 8 (12), 721–725.
Treiterer, J. and J.A. Myers (1974), ‘Th e hysteresis phenomenon in traffi  c fl ow’, in D.J. Buckley 

(ed.), Proceedings of the 6th International Symposium on Transportation and Traffi  c Th eory, New 
York: Elsevier, pp. 13–38.

Wardrop, J.G. (1968), ‘Journey speed and fl ow in central urban areas’, Traffi  c Engineering and 
Control, 9 (11), 528–532.

Wasielewski, P. (1974), ‘An integral equation for the semi-Poisson headway distribution’, 
Transportation Science, 8, 237–247.

Zahavi, Y. (1972), ‘Traffi  c performance evaluation of road networks by the α-relationship’, Parts I 
and II, Traffi  c Engineering and Control, 14 (5 and 6), 228–231 and 292–293.

M3007 – VAN WEE 9780857936899 PRINT.indd   159 22/10/2012   16:09



M3007 – VAN WEE 9780857936899 PRINT.indd   160 22/10/2012   16:09


