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Power 3D Graphics Accelerators
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With the advent of the system-on-chip 
(SoC) design paradigm for embed-
ded systems, 3D graphics accelerators 

for mobile platforms are becoming increasingly 
popular. To address the lack of specific tools for 
exploring this graphics architectural-design space 
and to enable early design trade-offs among im-
age quality, performance, power, and cost, we de-
veloped GRAAL (GRAphics AcceLerator). GRAAL 
is a versatile framework that supports hardware/
software cosimulation and codesign. The frame-
work is open in that it’s built on a basic library 
of SystemC register-transfer-level (RTL) models 
of graphics pipeline components. If required, de-
signers can easily augment these models with new 
components. This flexibility, along with a well-
structured design methodology, offers designers 
a coherent environment for design-space explo-
ration. GRAAL lets designers verify and evaluate 
various architectural solutions without having to 
complete a low-level design. It also includes tools 
to assist visual debugging of the graphics algo-
rithms implemented in hardware and to estimate 
an accelerator’s throughput, power consumption, 
and area.

One significant feature of GRAAL that compares 
favorably with other 3D graphics frameworks such as 
Attila1 is that it allows the evaluation of traditional 
as well as tile-based renderers. Tile-based rendering 
is promising from a low-power perspective because 
it decomposes a scene into smaller parts—tiles that 
can be rendered one by one. A small memory inte-
grated into the graphics accelerator can store the 
color components and depth (z) values of one tile. 
Thus, most access is local, on-chip access, which 
consumes significantly less power than access to 
off-chip frame and z-buffers.

A power/energy-estimation framework is anoth-
er important part of GRAAL. We developed two 

power-estimation strategies for use early in design. 
This approach is an alternative to field-program-
mable gate array (FPGA) prototypes, which can’t 
offer accurate energy or performance estimates. 
Furthermore, academic power-estimation tools 
(such as Wattch2) and instruction-level power 
analysis (for example, see Vivek Tiwari and col-
leagues3) are based on general-purpose processors 
and can hardly be adapted to model SoC designs.

We begin our article with 
an overview of the framework. 
Then we describe the tiling en-
gine, which sends the graphics 
primitives to the rasterizer in 
tile-based order; this description 
includes benchmark study re-
sults for our tile-based rendering 
approach. We conclude with the 
power-estimation strategies.

The proposed simulation 
framework
Figure 1 (next page) depicts the 
GRAAL tool set. Running OpenGL 
applications through the Mesa li-
brary generates input to the simu-
lator. The library is augmented so 
that it sends specific rasterization 
primitives to the simulator. The 
application can also be run through an OpenGL 
tracer that logs the graphics library calls. We used 
the tracer to generate the workloads used in the 
benchmark study.

Gathering useful design exploration data re-
quires a graphics library, a driver, and a graphics 
software application. To this end, we developed an 
OpenGL-compatible library for the GRAAL frame-
work, borrowing source code from the Mesa library 
together with the device driver for the graphics  

The GRAphics AcceLerator 
(GRAAL) design-exploration 
framework is an open system 
that offers a coherent 
development methodology 
for hardware/software 
cosimulation and codesign 
of embedded 3D graphics 
accelerators. GRAAL 
incorporates tools to help 
visually debug graphics 
algorithms implemented in 
hardware and to estimate 
performance in terms 
of throughput, power 
consumption, and area.
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accelerator. If the OpenGL application’s source 
code is available, the only subsequent steps to 
be taken are to port the application to the SoC 
platform software environment and then compile 
and link it with the OpenGL-compatible library 
using native SoC platform application-develop-
ment tools. However, graphics applications with 
advanced features that stress the graphics accel-
erator are often available only in binary form, 
usually for PCs. For these situations, we dynami-
cally link the binary application to a tracer li-
brary, which traces and logs all calls and relevant 
data in files. Then we use a player to re-create the 
original graphics calls and data from those files. 
Kari Kangas and his colleagues at Nokia propose 
an alternative to using interactive real-world 3D 
graphics workloads.4 They describe a scalable syn-
thetic content approach for measuring OpenGL ES 
(embedded systems) 3D graphics performance of 
mobile devices.

The Mesa module executes the Transform and 

Lighting (TnL) stages of the OpenGL pipeline in 
software and sends rasterization instructions to 
the tiling engine. The tiling engine and the raster-
izer module form the core of the simulator. Both 
modules are implemented in SystemC. The tiling 
engine sorts the primitives into bins correspond-
ing to tiles and sends them to the rasterizer in tile-
based order. We have evaluated several sorting or 
scene-management algorithms (described later). 
Because the tile size is configurable, we can simu-
late a conventional renderer by setting the tile size 
to the frame size.

Finally, the rasterizer module receives geometry 
data and state-change instructions from the til-
ing engine, renders the primitives, and generates 
performance data. The rasterizer is divided in the 
functional stages of the OpenGL pipeline, but a 
functional stage describes only the task to be per-
formed and not the way it’s executed in the un-
derlying hardware pipeline. Designers can divide 
a functional pipeline stage into several hardware 
pipeline stages, implement two functional pipeline 
stages in one hardware stage, or parallelize a hard-
ware pipeline stage to meet performance demands. 
Moreover, for every function performed in the ras-
terizer stage, several hardware algorithms might 
exist. Within the data path, the algorithm can 
employ various fixed-point data formats and preci-
sion levels that might affect the generated image’s 
quality. As a consequence, designers must explore 
different image quality, performance, power, and 
cost trade-offs to choose the best solution for the 
graphics accelerator under development—and do 
so for the huge design space under tight time-to-
market constraints.

Figure 2 depicts the simulation framework, which 
is the tool set’s core, in more detail. Central ele-
ments are

the reference implementation of a SystemC 
simulator;
the GRAAL simulator, our own custom-designed 
tool, which acts as a graphical front end for 
SystemC simulation control, data visualization, 
and performance estimation;
the SystemC model of the candidate graphics 
accelerator designed using our (extendable) li-
brary of graphics pipeline components modeled 
in SystemC at RTL;
third-party SystemC models of SoC components, 
including a processor core, memories, and pe-
ripherals to simulate the entire system; and
the graphics application in binary form, which 
runs on the processor core and uses the acceler-
ator’s capabilities.
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Figure 1. 
GRAAL tool 
set. Running 
OpenGL 
applications 
through the 
OpenGL 
tracer, the 
trace player, 
and the Mesa 
implementation 
of the OpenGL 
library 
generates 
input to the 
simulator.
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Within this framework, we can run different ap-
plications on the virtual system as well as develop, 
verify, evaluate, and optimize different graphics 
accelerator microarchitectures without realizing a 
physical prototype.

3D graphics component library
To facilitate design exploration, we modeled a li-
brary of OpenGL-compatible hardware modules in 
SystemC. The modules include all rasterizer stage 
functionality and can be plugged together to build 
a complete graphics accelerator. A designer can use 
these models as microarchitectural templates to 
support further refinement. The library amounts 
to approximately 28K lines of SystemC code and 
has the following features:

All modules have a fully parameterizable data 
path using SystemC/C++ templates.
All modules (except the system interface) are 
described at RTL with operators specified at the 
word level in the data path. (They can be further 
refined to the bit level.)
All modules can be configured to support tile-
based rasterization.
Besides modules that implement OpenGL func-
tionality, the library provides modules for tile and 
state management and for interfacing in SoC using 
the Open SystemC Initiative (OSCI) transaction-
level models; it also provides finer-grain modules 
to implement various data-path operators and 
pseudomodules to implement performance-relat-
ed counters or to allow graphical visualization.

Using the library, the simulation framework 
can gather the following performance data during 
simulation:

number of frames generated per second;
number of primitives rasterized (shaded, anti-
aliased, and textured);
number of fragments entering the per-fragment 
operations stage and number of fragments dis-
carded in each substage (pixel flow estimation);
total number of clock cycles to produce a frame 
or a number of frames;
number of clock cycles the graphics unit is busy 
processing and where these cycles are spent (ras-
terization setup, pixel fill engines, texture units);
number of clock cycles spent stalling the hard-
ware units;
number of transactions and data traffic at the 
graphics accelerator interface to the overall system;
frame buffer and local buffers usage (number of 
reads, writes, and stalls);
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runtime communication of graphics-related data 
to graphical visualization modules; and
hardware signal transitions in VCD (value change 
dump) files for on-screen debugging of hardware 
traces and estimations of power consumption.

A designer can employ all these statistics to check 
the balance of the graphics microarchitecture and 
to suggest changes in the next iterations of the 
design-exploration process.

Visualization and simulation control
The GRAAL simulator provides a graphical front 
end for SystemC simulation control, data visual-
ization, and performance estimation in our de-
sign-exploration framework. Figure 3 (next page) 
shows the interface. It features command menus 
that let the designer visualize—interactively and 
at a customizable detail level—the content of the 
various system buffers and overlay it with other 
auxiliary data (such as the pixel center and primi-
tive geometry) that can help with visual debug-
ging. The GRAAL simulator is implemented using 
the Open Software Foundation’s Motif toolkit for 
Unix/X Window System workstations. For data 
visualization, we employed the pseudomodules 
mentioned earlier to snoop relevant buses and to 
communicate the captured data via first-in, first-
out special files to the GRAAL simulator.
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Figure 2. The GRAAL simulator framework. The framework integrates 
SystemC simulation together with simultaneous graphics visualization 
and performance estimation.
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Tiling engine
The tiling engine sorts the primitives into bins and 
sends them to the rasterizer in tile-based order. As 
mentioned earlier, tiling appears to be promising for 
low-power implementations because it reduces the 
memory bandwidth required between the rasterizer 
and the (external) frame and z-buffers. Accesses to 
external memory often dissipate more energy than 
data paths and control units do, so reducing ac-
cesses can provide significant energy savings.

In this section, we investigate how much exter-
nal data traffic is saved by a tile-based renderer 
compared to a traditional renderer. Because the 
sorting step requires memory bandwidth, we also 
evaluate several algorithms for performing this 
step. Finally, we investigate how to reduce the 
state-change information.

Memory bandwidth requirements of tile-based 
rendering
We begin by examining how the amount of exter-
nal data traffic varies with tile size to identify the 
tile size that yields the best trade-off between data 
traffic volume and area needed for on-chip buffers. 
Furthermore, we measure how much external data 
traffic is saved by a tile-based renderer. Previous 
studies haven’t presented such measurements5 or 
focused on the overlap—that is, the average num-
ber of tiles covered by a primitive.6

We used the GraalBench benchmark suite.7 Q3L 
and Q3H are traces of the popular Quake III game. 
Tux is a freely available game that runs on Linux. 
AW is the AWadvs-04 test that’s part of the View-
perf 6.1.2 package. ANL, GRA, and DIN are Virtual 
Reality Markup Language scenes chosen on the ba-
sis of their diversity and complexity. All workloads 
use VGA resolution (640 × 480) except Q3L, which 
uses QVGA resolution (320 × 240). Furthermore, 
the first three traces consist of about 1,400 frames 
while the latter four consist of about 600 frames.

Table 1 depicts the number of triangles trans-
ferred from the tiling engine to the rasterizer for 
various tile sizes. The last row shows the number 
of triangles transferred if the tile size is equal to 
the window size. The overlap can therefore be ob-
tained by dividing the number of triangles trans-
ferred for a specific tile size by the number given 
in the last row.

Obviously, if the tile size increases, the number 
of transferred triangles decreases, because there is 
less overlap. In our design, however, it’s important to 
use as little internal memory as possible. Therefore, 
we must make a trade-off. The results show that us-
ing tiles smaller than 32 × 32 pixels significantly 
increases the number of triangles transferred. For 
example, if a tile size of 16 × 16 is employed, the 
amount of geometrical data sent to the rasterizer in-
creases by 2.02 times for the Q3H benchmark and by 
1.97 times for the Tux benchmark. On average, using 

Table 1. Number of triangles transferred for various tile sizes.

Tile size

Benchmarks

Q3H Tux AW ANL GRA DIN

16 × 16 	 21,300 8,204 15,627 18,731 9,416 9,416

16 × 32 15,600 6,101 14,464 13,850 8,215 7,905

16 × 64 13,009 5,143 13,911 11,555 7,624 7,142

32 × 16 14,662 5,539 14,187 14,823 7,183 7,954

32 × 32 10,526 4,148 13,090 10,689 6,217 6,591

32 × 64 8,671 3,576 12,567 8,745 5,742 5,904

64 × 16 11,360 4,225 13,480 12,910 6,071 7,216

64 × 32 8,006 3,245 12,416 9,150 5,223 5,928

64 × 64 6,518 2,813 11,908 7,308 4,807 5,278

640 × 480 3,404 1,822 10,768 4,321 3,603 4,083

Figure 3. 
SystemC 
simulation 
control and 
graphical 
visualization 
in the GRAAL 
simulator. The 
simulation can 
be controlled 
accurately 
using the 
menus, 
and various 
markers can be 
overlaid to aid 
in the visual 
debugging of 
algorithms.
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the geometric mean, a tile size of 16 × 16 increases 
the number of triangles sent by 1.62 times when 
compared to 32 × 32 tiles. 

On the other hand, employing tiles larger than 
32 × 32 reduces the amount of geometrical data 
only marginally. For example, using 64 × 64 instead 
of 32 × 32 tiles reduces the data by 1.35 times (geo-
metric mean). This indicates that for the considered 
workloads, a tile size of 32 × 32 is the best trade-off 
between the number of triangles sent to the ras-
terizer and the internal buffer size. The resolution 
might affect the optimal tile size for nonscalable 
applications. In practice, however, most applica-
tions scale their content complexity according to 
the resolution. Therefore, a resolution change can’t 
substantially affect the optimal tile size. If each ele-
ment is represented by 32 bits for RGBA (red, green, 
blue, alpha) color, 24 bits for depth, and 8 bits for 
stencil, 64 kilobits are required to implement 32 × 
32 tile buffers. In a static RAM implementation, 
this corresponds to about 96K equivalent gates. 
We can compare this to the current gate budgets 
available for mobile graphics accelerators, which are 
around 200K to 500K gates.

Figure 4 depicts the total amount of external data 
traffic produced by the traditional rendering (left 
bar) and tile-based rendering (right bar) for each 
benchmark on a tile size of 32 × 32. For each total, 
the traffic is divided into data sent from the til-
ing engine to the rasterizer (light purple) and data 
transferred between the rasterizer and the external 
frame, z-buffers, and texture memory (dark purple). 
Since the latter component is much larger than the 
former, the tile-based renderer reduces the total 
external traffic volume significantly, by 1.96 times 
on average (geometric mean). For some workloads, 
however, the advantage of tile-based rendering is 
marginal. For example, for the AW benchmark it 
is only 23.4 percent. This is because tile-based ren-
dering decreases the data transferred between the 
rasterizer and the external frame, z buffers, and tex-
ture memory (depending on the overdraw—that is, 
the number of pixels written to a buffer divided by 
the buffer size, in pixels) but increases the amount 
of data sent from the tiling engine to the rasterizer 
(depending on the overlap). Hence, tile-based ren-
derers are more suitable than traditional renderers 
for workloads with low overlap and high overdraw, 
a trend foreseen for the future. For workloads with 
high overlap and low overdraw, on the other hand, 
tile-based renderers do not reduce the total amount 
of external data traffic significantly.

Scene-management algorithms
The primitives must be sent to the rasterizer in 

tile-based order. We’ve developed several scene- 
management algorithms to do this and evaluated 
their computational cost and memory requirements.

An important part of the scene-management 
algorithm is the test that determines if a triangle 
overlaps a tile. Commonly employed is the so-
called bounding-box (BBOX) test, which checks 
if the axis-aligned bounding box of a triangle in-
tersects the tile. The BBOX test is relatively low 
cost; it requires only four comparisons. However, 
it’s imprecise because the BBOX might intersect 
with a tile even though the triangle doesn’t, as 
illustrated in Figure 5. 

We have developed an exact test called the lin-
ear edge test (LET). Other researchers have pro-
posed this test before but in a different context,8 
and we have adapted it so that no coverage mask 
is needed. However, LET is computationally more 
expensive than the BBOX test.

We have proposed and evaluated the following 
scene-management algorithms:

Data tiling engine
rasterizer

Data rasterizer
external buffers

30,000

27,500

25,000

22,500

20,000

17,500

15,000

12,500

10,000

7,500

5,000

2,500

0
Q3H

Tr
ad

iti
on

al
 r

en
de

rin
g

Ti
le

-b
as

ed
 r

en
de

rin
g

Tux AW ANL GRA DIN

Tr
af

fic
 (

Kb
yt

es
)

Figure 4. Total 
external data 
transferred 
per frame for 
traditional 
and tile-based 
rendering on 
the GraalBench 
benchmark 
suite.

1

2

0

2

A

C

B

x

y

30 1

Bounding box of Tr

No overlap

Bounding-box
and triangle
overlap 

Current tile

Tr(A,B,C)

Only bounding-
box overlap

Figure 5. Imprecision in the triangle-to-tile bounding-box (BBOX) test. 
In this case, the BBOX overlaps the yellow tiles but the triangle doesn’t.

Authorized licensed use limited to: Technische Universiteit Delft. Downloaded on April 29,2010 at 09:33:32 UTC from IEEE Xplore.  Restrictions apply. 



68	 July/August 2008

Mobile Graphics

DIRECT: This algorithm scans all primitives for 
each tile and sends the primitives whose BBOX 
overlaps the current tile to the rasterizer. Its 
main advantage is that it requires no memory 
in addition to the scene buffer, which holds the 
initial scene geometry and state changes and, 
optionally, the geometry and state changes sort-
ed per tile.
TWO_STEP: This algorithm consists of two 
phases. First, each triangle’s BBOX is computed 
and stored in a buffer. This avoids recomput-
ing the BBOX for each triangle/tile tuple. In the 
second phase, all triangles are scanned for each 
tile, and the triangles whose BBOX overlaps the 
current tile are sent to the rasterizer.
TWO_STEP_LET: This algorithm is identical to 
TWO_STEP except that the second phase em-

■

■

■

ploys the LET. Because LET contains the BBOX 
test, the main LET is applied only to the trian-
gles that passed the BBOX test.
SORT: This algorithm has a buffer for each tile 
with pointers to the primitives that overlap the 
tile according to the BBOX test. For each tile, 
only the primitives that have a pointer in the 
corresponding buffer are sent to the rasterizer.
SORT_LET: This algorithm is identical to SORT 
except that the second phase uses the LET.

As we’ve described elsewhere in detail,9 we eval-
uate the computational and memory requirements 
of the algorithms by determining them analytically 
and simulating the GraalBench traces to measure 
statistics such as BBOX and LET overlap factors. 
We estimate other parameters by counting the 
number of elementary operations (assignments, 
comparisons, and so on) required to implement 
the operation. We did this because cycle-accurate 
simulations would be too time-consuming, taking 
several weeks or more.

Figure 6 depicts the time each algorithm takes 
relative to the time taken by the DIRECT algorithm 
to send the primitives to the rasterizer in tile-based 
order. As expected, DIRECT requires the largest 
number of operations by far, while SORT takes the 
least amount of time. On average, across all bench-
marks, SORT is 44 times faster than DIRECT. The 
TWO_STEP algorithm, even though it also scans 
the entire scene buffer for each tile, has reason-
able performance. On average, it is 6 times slower 
than SORT. Furthermore, TWO_STEP_LET is only 
slightly slower than TWO_STEP and is, therefore, 
preferable because it sends fewer triangles to the 
rasterizer, which means the computational load on 
the rasterizer is reduced. SORT_LET, on the other 
hand, is on average 1.6 times slower than SORT.

Figure 7 depicts additional memory required by 
each algorithm. As explained before, DIRECT does 
not require any additional memory. Furthermore, as 
expected, SORT needs the most additional memory 
because it’s proportional to the number of triangles 
and the BBOX overlap factor. Because the LET test is 
exact and the BBOX test is not, SORT_LET requires 
less memory than SORT. However, the difference is 
significant only for one benchmark (Q3H), for which 
SORT needs almost twice as much additional memo-
ry as SORT_LET. The difference is much smaller for 
the other benchmarks (1.17 times as much, on aver-
age). The reason is that the BBOX test is fairly exact 
for all benchmarks except Q3H. The TWO_STEP 
and TWO_STEP_LET algorithms require the same 
amount of memory. On average, TWO_STEP re-
quires 3.2 times less additional memory than SORT. 
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The additional memory required for benchmarks with a small overlap 
factor (such as AW) is insignificant, but it’s considerable for benchmarks 
with a large overlap factor (such as Q3H).
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However, this difference depends strongly on the 
benchmark. For benchmarks with a small overlap 
factor (such as AW), the difference isn’t significant. 
For benchmarks with a large overlap factor (in par-
ticular Q3H), the difference is considerable.

State-management algorithms
Tile-based rendering reduces the memory traffic 
between the rasterizer and the off-chip frame and 
z-buffers. But it increases the amount of state-
change information such as enable/disable z-test-
ing and create/delete texture commands that the 
tiling engine must send to the rasterizer. This is 
because the tiling engine might have to send the 
same state-change operation to the rasterizer sev-
eral times. Consider, for example, the following 
instruction stream:

	 EnableDepth
	 Triangle(1)
	 DisableDepth
	 Triangle(2)
	 EnableDepth
	 Triangle(3)

Assume that tile 1 intersects with triangles 2 and 
3 and that tile 2 intersects with triangles 1 and 3. 
If the tile-based driver duplicates the state-change 
operations for each tile, it generates the following 
instruction stream:

Tile 1
	 EnableDepth
	 DisableDepth
	 Triangle(2)
	 EnableDepth
	 Triangle(3)

Tile 2
	 EnableDepth
	 Triangle(1)
	 DisableDepth
	 EnableDepth
	 Triangle(3)

However, the italics indicate state-change opera-
tions that we can remove. For example, we can 
remove the first EnableDepth command because it 
is immediately followed by DisableDepth.

Determining which state-change operations 
can be removed and when isn’t always trivial. For 
instance, if the driver encounters a DeleteTexture 
command while rendering the current tile, the 
texture can be safely deleted only when all primi-
tives (from all tiles) using this texture are ren-

dered or when multiple copies of the texture are 
kept in memory. Including all state-change opera-
tions to each tile isn’t practical because it requires 
duplicating large numbers of state variables (for 
example, texture objects). In some cases, the state-
change operations account for 63 percent of the 
data sent to the rasterizer.

When using tile-based rendering, the following 
algorithms can handle state information correctly:

Partial-rendering algorithm. Whenever this algo-
rithm encounters an instruction with side effects 
(for example, DeleteTexture), the driver renders 
all previously buffered instructions and then 
executes the instruction. This solution can in-
troduce significant rendering overhead. For each 
partial rendering, the introduced overhead con-
sists of saving and reloading the contents of the 
enabled tile buffers (for example, color, depth, 
and stencil) from the global buffers and also the 
state information save and reload operations.
Delayed-execution algorithm. When this algo-
rithm encounters a command with side effects, 
the driver postpones executing the command 
until all primitives depending on it have been 
rendered or until the end of the current frame is 
reached. This approach reduces the overhead en-
countered in the partial-rendering algorithm.

Figure 8 depicts the amount of state-change in-
formation sent to the rasterizer using these two 
algorithms on a tile size of 32 × 32. The delayed 
method reduces the number of writes to the ac-
celerator by filtering the state information and 
eliminating unnecessary writes. State information 
for the Q3L, Q3H, GRAZ, and ANL components 
is reduced by 23 to 58 percent. The state traffic 
for the AW, Tux, and DIN workloads, however, is 
not decreased substantially because tiling doesn’t 
introduce any unnecessary state changes for these 
workloads.
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Power estimation
Studies have demonstrated that circuit- and gate-
level techniques can reduce power by up to 2 times, 
but architecture- and algorithm-level strategies 
offer savings of 10 to 100 times or more.10 Assess-
ing the merits of a potential implementation early 
in the design process brings the largest benefits. 
The GRAAL framework offers two power-estima-
tion strategies based on SystemC simulation. Both 
strategies estimate the average power consumption 
over the entire simulation period and produce the 
energy drawn from the battery as a by-product.

Netlist-level power estimation
Figure 9 illustrates the first strategy.11 It employs 
several Synopsys tools (CoCentric SystemC compil-
er, design compiler, and power compiler). All steps 
are automated with custom-developed scripts for 
driving the tools. The prerequisites are a power pre-
characterized library of standard cells and an initial 
hardware synthesis step of the SystemC model to 
produce the gate-level netlist used by the tools. 

The darker-colored steps in Figure 9 must be 
performed once for every candidate implementa-
tion. The RTL power-consumption estimation ac-
quires information about switching activity from 
SystemC RTL simulation. The switching activity is 
obtained by translating the VCD files—where the 
hardware-signal traces are logged—to the Switch-
ing Activity Interchange Format (SAIF) files, the 
format recognized by the tools. 

We can categorize switching activity as synthe-
sis-variant switching activity (SVSA) and synthesis-
invariant switching activity (SISA). SVSA, obtained 
from presynthesis logic signals in the simulator, 
comes from the design’s combinational the logic, 
which will be heavily optimized during the synthe-
sis process. SISA comes from the synthesis invariant 
elements, which generally include inferred registers, 
inferred tristate devices, hierarchical boundaries, 
and so on. Because synthesis doesn’t modify these 
elements, SISA information is still valid after the 
RTL design is mapped to the gate-level netlist. 

SVSA information is less accurate and is esti-
mated statistically by propagating synthesis-invari-
ant element-switching activity probabilities to the 
synthesis-optimized combinational logic trees. This 
strategy provides estimates accurate enough to be 
used in the microarchitecture exploration phase, 
where power estimates corresponding to two candi-
date microarchitectures are expected to be signifi-
cantly different (greater than 100 percent).

Architecture-level power estimation
The second strategy uses an approach described by 
Dan Crisu and his colleagues.12 The strategy requires 
more technology-dependent data from the user than 
the first strategy, and it can deliver estimates within 
25 percent of circuit-level simulation accuracy. It’s 
based on Paul Landman’s work,10 which separately 
analyzed the four main classes of chip components: 
data path, memory, control, and interconnect. 
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The strategy requires a library of hardware cells 
consisting of various operators for the data-path 
part; gates for control logic; and bit cells, decod-
ers, and sense amplifiers for memory cores. Once 
such a library exists, it can be precharacterized via 
gate-level and circuit-level simulations, resulting in 
a table of effective capacitive coefficients for every 
library element. Using this table and the activity 
statistics derived during the architectural-level sim-
ulation, we can estimate power consumption. The 
precharacterization must be done only once, and the 
power estimation requires only the effective capaci-
tive coefficients table. We note here that precharac-
terization results are valid only for a specific library 
of hardware cells and a given IC technology.

Figure 10 illustrates the architecture-level power- 
estimation strategy we propose. User inputs de-
scribe a candidate architecture in structural Sys-
temC and the application program. Every clock 
cycle, the simulation collects the activity on rel-
evant internal signals and sends it to the power-
analysis units. The power calculator estimates total 
power consumption of the graphics accelerator per 
program executed on the host processor.

Components relevant to the architectural power/
energy-estimation framework are

precharacterized power models and effective- 
capacitance coefficient tables that contain, for a 
library of hardware cells, all technology-depen-
dent information required by the power-analysis 
modules;
an activity-analysis module that feeds the power-
analysis modules with statistics about signal ac-
tivity inside the simulated hardware description;
power-analysis modules that estimate the power 

■

■

■

consumption in the data path, control, memory, 
and interconnect according to statistics from 
the activity-analysis module and lookups in the 
effective-capacitance coefficient tables; and
a power-estimator module that adds power con-
sumption estimates of the data path, control, 
memory, and interconnect and produces total 
power consumption.

The architecture-level power-estimation strat-
egy, although faster and more accurate than the 
netlist-level strategy, requires a difficult prechar-
acterization on existing libraries of hard cells. 
Users can employ either one or both estimation 
strategies, depending on the situation.

Case studies
To illustrate the two power/energy estimation strat-
egies, we designed two hardware circuits. We imple-
mented the first one via synthesis from SystemC 
RTL. We obtained the other by employing semicus-
tom techniques to generate the hard cells required 
for the architecture-level power-estimation strat-
egy. The IC technology employed in both cases was 
a Taiwan Semiconductor Manufacturing Company 
0.13 μm 1.2 V CMOS process.

Synthesizable design. The first design implements an 
OpenGL 1.2-compliant 3D graphics accelerator for 
an ARM-based SoC platform using the SystemC 
module library described earlier. We incorporated 
the following OpenGL functionality in hardware:

triangle rasterization: flat- and Gouraud-shaded 
with/without antialiasing with all the options 
controlling rasterization;

■

■
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texturing with only RGBA8 internal texture for-
mat and texture fetching on demand;
per-fragment operations: scissor test, alpha test, 
stencil and depth buffer test, blending, logical 
operation;
entire frame buffer operations: fine control of 
buffer updates, clearing the buffers;
state management: all state management for 
previously mentioned functionality respecting 
all the invariance rules imposed by the OpenGL 
specification.

The software driver processes the other OpenGL 
primitives (points, lines, and polygons with more than 
three vertices) and presents them to the graphics ac-
celerator as a combination of triangles.

For the internal organization, the graphics accelera-
tor adopts tile-based rasterization. We set the tile size 
at 32 × 32 pixels, which implies that all internal buf-
fers (color, depth, and stencil buffers) composing the 
tile frame buffer have this size. We set the display-size 
resolution at 320 × 240 pixels (a quarter VGA), mean-
ing that the display consists of 10 × 8 tiles. The fixed-
point formats used at the interface with the internal 
data path are all unsigned. The accelerator has two 
pixel-processing pipelines. The screen coordinates (X, 
Y) are represented on 9.8 bits, the color components 
(R, G, B, A) on 0.8 bits, the depth component (Z) on 
0.24 bits, and the stencil component on 8.0 bits.

We generated one frame of the AW benchmark on 
our virtual SoC platform using the GRAAL frame-
work. Figure 3 shows the resulting image. Table 2 
depicts a few characteristics of the frame workload.

Table 3 shows the results of the hardware syn-

■

■

■

■

thesis of the graphics accelerator and estimated 
(netlist-level) average power/energy drawn from 
the battery per frame duration.

Semicustom design. To verify the power-consumption 
prediction accuracy of the architecture-level strat-
egy, we precharacterized parts of a data-path library 
of cells (including a ripple-carry adder/subtracter) 
designed using the Alliance VLSI CAD System. From 
the layout, we extracted the subtracter’s circuit for 
three data-path widths: 4, 8, and 16 bits.

The simulation results on the extracted netlist of 
the ripple-carry subtracter appear in the third col-
umn of Table 4. The clock frequency of the sample 
adder/subtracter is 200 MHz. The circuit-level simu-
lation of the subtracter took several hours for the 
three instruction traces executed on the ARM pro-
cessor, so it’s clearly infeasible to obtain the power 
consumption for this processor directly through a 
circuit-level simulation of the entire graphics ac-
celerator. The relative error between the estimated 
power and the power consumption obtained by cir-
cuit simulation appears in the last column of Table 4. 
The accuracy is quite good, well within 25 percent of 
a direct circuit simulation with Hspice software.

GRAAL is a versatile hardware/software cosimu-
lation and codesign framework for 3D graphics 

accelerators embedded in mobile terminals. It incor-
porates tools to assist visual debugging of graphics al-
gorithms implemented in hardware and to estimate 
the throughput, power consumption, and area. Its 
tiling engine sends the primitives to the rasterizer in 
tile-based order. Our experiments indicate that tile-
based renderers are more suitable than traditional 
renderers for workloads with low overlap and high 
overdraw. On the other hand, they don’t reduce ex-
ternal data traffic volume significantly for workloads 
with high overlap and low overdraw. 

GRAAL includes a power/energy-estimation 
framework, which can be used to explore the design 
space and perform early evaluation of various graph-
ics accelerator architecture candidates. The frame-
work embeds a netlist-level and architecture-level 
power-estimation strategy. The case study we pre-
sented demonstrates the framework’s capabilities.

Although the GRAAL framework can certainly 
assist designers in the microarchitectural space 
exploration for (tile-based) 3D graphics accelera-
tors, it can’t capture system-integration design 
aspects, such as workload balancing and overall 
data traffic optimization. Its extension toward the 
system level constitutes future work and will make 
GRAAL a more powerful design framework.�

Table 2. Frame workload.

Processed 
triangles

Fragmments Frame duration 
(clock cycles)Processed Passed to color tile frame buffer

12,362 9,511,077 8,759,891 6,005,722

Table 3. Graphics hardware estimation results.

IC technology Standard cell library

TSMC 0.13 μm 1.2 V Artisan SAGE-X

Clock frecuency Standard number of cells Standard cells Total area

200 MHz 78 K 1.32 mm2 2.15 mm2

Per-frame estimated

Average power Energy

267 mW 8.02 mJ

Table 4. Power consumption results for the ripple-carry subtracter.

Instruction trace Power (estimated) Power (simulated) Relative error (%)

A 211 μW 245 μW –14

B 262 μW 221 μW 19

C 173 μW 163 μW 6
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