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GRAAL: A Framework for Low-
Power 3D Graphics Accelerators
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ith the advent of the system-on-chip

(SoC) design paradigm for embed-

ded systems, 3D graphics accelerators
for mobile platforms are becoming increasingly
popular. To address the lack of specific tools for
exploring this graphics architectural-design space
and to enable early design trade-offs among im-
age quality, performance, power, and cost, we de-
veloped GRAAL (GRAphics AcceLerator). GRAAL
is a versatile framework that supports hardware/
software cosimulation and codesign. The frame-
work is open in that it’s built on a basic library
of SystemC register-transfer-level (RTL) models
of graphics pipeline components. If required, de-
signers can easily augment these models with new
components. This flexibility, along with a well-
structured design methodology, offers designers
a coherent environment for design-space explo-
ration. GRAAL lets designers verify and evaluate
various architectural solutions without having to
complete a low-level design. It also includes tools
to assist visual debugging of the graphics algo-
rithms implemented in hardware and to estimate
an accelerator’s throughput, power consumption,
and area.

One significant feature of GRAAL that compares
favorably with other 3D graphics frameworks such as
Attila® is that it allows the evaluation of traditional
as well as tile-based renderers. Tile-based rendering
is promising from a low-power perspective because
it decomposes a scene into smaller parts—tiles that
can be rendered one by one. A small memory inte-
grated into the graphics accelerator can store the
color components and depth (z) values of one tile.
Thus, most access is local, on-chip access, which
consumes significantly less power than access to
off-chip frame and z-buffers.

A power/energy-estimation framework is anoth-
er important part of GRAAL. We developed two
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power-estimation strategies for use early in design.
This approach is an alternative to field-program-
mable gate array (FPGA) prototypes, which can’t
offer accurate energy or performance estimates.
Furthermore, academic power-estimation tools
(such as Wattch?) and instruction-level power
analysis (for example, see Vivek Tiwari and col-
leagues®) are based on general-purpose processors
and can hardly be adapted to model SoC designs.

We begin our article with
an overview of the framework.
Then we describe the tiling en-
gine, which sends the graphics
primitives to the rasterizer in
tile-based order; this description
includes benchmark study re-
sults for our tile-based rendering
approach. We conclude with the
power-estimation strategies.

The proposed simulation
framework

Figure 1 (next page) depicts the
GRAALtool set. Running OpenGL
applications through the Mesa li-
brary generates input to the simu-
lator. The library is augmented so
that it sends specific rasterization
primitives to the simulator. The

The GRAphics Accelerator
(GRAAL) design-exploration
framework is an open system
that offers a coherent
development methodology
for hardware/software
cosimulation and codesign
of embedded 3D graphics
accelerators. GRAAL
incorporates tools to help
visually debug graphics
algorithms implemented in
hardware and to estimate
performance in terms

of throughput, power
consumption, and area.
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application can also be run through an OpenGL
tracer that logs the graphics library calls. We used
the tracer to generate the workloads used in the
benchmark study.

Gathering useful design exploration data re-
quires a graphics library, a driver, and a graphics
software application. To this end, we developed an
OpenGL-compatible library for the GRAAL frame-
work, borrowing source code from the Mesa library
together with the device driver for the graphics

IEEE Computer Graphics and Applications

63



Mobile Graphics

Figure 1.
GRAAL tool
set. Running
OpenGL
applications
through the
OpenGL
tracer, the
trace player,
and the Mesa
implementation
of the OpenGL
library
generates
input to the
simulator.
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accelerator. If the OpenGL application’s source
code is available, the only subsequent steps to
be taken are to port the application to the SoC
platform software environment and then compile
and link it with the OpenGL-compatible library
using native SoC platform application-develop-
ment tools. However, graphics applications with
advanced features that stress the graphics accel-
erator are often available only in binary form,
usually for PCs. For these situations, we dynami-
cally link the binary application to a tracer li-
brary, which traces and logs all calls and relevant
data in files. Then we use a player to re-create the
original graphics calls and data from those files.
Kari Kangas and his colleagues at Nokia propose
an alternative to using interactive real-world 3D
graphics workloads.* They describe a scalable syn-
thetic content approach for measuring OpenGL ES
(embedded systems) 3D graphics performance of
mobile devices.

The Mesa module executes the Transform and
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Lighting (TnL) stages of the OpenGL pipeline in
software and sends rasterization instructions to
the tiling engine. The tiling engine and the raster-
izer module form the core of the simulator. Both
modules are implemented in SystemC. The tiling
engine sorts the primitives into bins correspond-
ing to tiles and sends them to the rasterizer in tile-
based order. We have evaluated several sorting or
scene-management algorithms (described later).
Because the tile size is configurable, we can simu-
late a conventional renderer by setting the tile size
to the frame size.

Finally, the rasterizer module receives geometry
data and state-change instructions from the til-
ing engine, renders the primitives, and generates
performance data. The rasterizer is divided in the
functional stages of the OpenGL pipeline, but a
functional stage describes only the task to be per-
formed and not the way it’s executed in the un-
derlying hardware pipeline. Designers can divide
a functional pipeline stage into several hardware
pipeline stages, implement two functional pipeline
stages in one hardware stage, or parallelize a hard-
ware pipeline stage to meet performance demands.
Moreover, for every function performed in the ras-
terizer stage, several hardware algorithms might
exist. Within the data path, the algorithm can
employ various fixed-point data formats and preci-
sion levels that might affect the generated image’s
quality. As a consequence, designers must explore
different image quality, performance, power, and
cost trade-offs to choose the best solution for the
graphics accelerator under development—and do
so for the huge design space under tight time-to-
market constraints.

Figure 2 depicts the simulation framework, which
is the tool set’s core, in more detail. Central ele-
ments are

m the reference implementation of a SystemC
simulator;

m the GRAAL simulator, our own custom-designed
tool, which acts as a graphical front end for
SystemC simulation control, data visualization,
and performance estimation;

m the SystemC model of the candidate graphics
accelerator designed using our (extendable) li-
brary of graphics pipeline components modeled
in SystemC at RTL;

m third-party SystemC models of SoC components,
including a processor core, memories, and pe-
ripherals to simulate the entire system; and

m the graphics application in binary form, which
runs on the processor core and uses the acceler-
ator’s capabilities.
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Within this framework, we can run different ap-
plications on the virtual system as well as develop,
verify, evaluate, and optimize different graphics
accelerator microarchitectures without realizing a
physical prototype.

3D graphics component library

To facilitate design exploration, we modeled a li-
brary of OpenGL-compatible hardware modules in
SystemC. The modules include all rasterizer stage
functionality and can be plugged together to build
a complete graphics accelerator. A designer can use
these models as microarchitectural templates to
support further refinement. The library amounts
to approximately 28K lines of SystemC code and
has the following features:

m All modules have a fully parameterizable data
path using SystemC/C++ templates.

m All modules (except the system interface) are
described at RTL with operators specified at the
word level in the data path. (They can be further
refined to the bit level.)

m All modules can be configured to support tile-
based rasterization.

m Besides modules that implement OpenGL func-
tionality, the library provides modules for tile and
state management and for interfacing in SoC using
the Open SystemC Initiative (OSCI) transaction-
level models; it also provides finer-grain modules
to implement various data-path operators and
pseudomodules to implement performance-relat-
ed counters or to allow graphical visualization.

Using the library, the simulation framework
can gather the following performance data during
simulation:

m number of frames generated per second;

m number of primitives rasterized (shaded, anti-
aliased, and textured);

m number of fragments entering the per-fragment
operations stage and number of fragments dis-
carded in each substage (pixel flow estimation);

m total number of clock cycles to produce a frame
or a number of frames;

m number of clock cycles the graphics unit is busy
processing and where these cycles are spent (ras-
terization setup, pixel fill engines, texture units);

m number of clock cycles spent stalling the hard-
ware units;

m number of transactions and data traffic at the
graphics accelerator interface to the overall system;

m frame buffer and local buffers usage (number of
reads, writes, and stalls);
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Figure 2. The GRAAL simulator framework. The framework integrates
SystemC simulation together with simultaneous graphics visualization

and performance estimation.

m runtime communication of graphics-related data
to graphical visualization modules; and

m hardware signal transitions in VCD (value change
dump) files for on-screen debugging of hardware
traces and estimations of power consumption.

A designer can employ all these statistics to check
the balance of the graphics microarchitecture and
to suggest changes in the next iterations of the
design-exploration process.

Visualization and simulation control

The GRAAL simulator provides a graphical front
end for SystemC simulation control, data visual-
ization, and performance estimation in our de-
sign-exploration framework. Figure 3 (next page)
shows the interface. It features command menus
that let the designer visualize—interactively and
at a customizable detail level—the content of the
various system buffers and overlay it with other
auxiliary data (such as the pixel center and primi-
tive geometry) that can help with visual debug-
ging. The GRAAL simulator is implemented using
the Open Software Foundation’s Motif toolkit for
Unix/X Window System workstations. For data
visualization, we employed the pseudomodules
mentioned earlier to snoop relevant buses and to
communicate the captured data via first-in, first-
out special files to the GRAAL simulator.
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Table 1. Number of triangles transferred for various tile sizes.

Benchmarks
Tile size Q3H Tux AW ANL GRA DIN
16 x 16 21,300 8,204 15,627 18,731 9,416 9,416
16 x 32 15,600 6,101 14,464 13,850 8,215 7,905
16 x 64 13,009 5,143 13,911 11,555 7,624 7,142
32x16 14,662 5,539 14,187 14,823 7,183 7,954
32 x 32 10,526 4,148 13,090 10,689 6,217 6,591
32 x 64 8,671 3,576 12,567 8,745 5,742 5,904
64 x 16 11,360 4,225 13,480 12,910 6,071 7,216
64 x 32 8,006 3,245 12,416 9,150 5,223 5,928
64 x 64 6,518 2,813 11,908 7,308 4,807 5,278
640 x 480 3,404 1,822 10,768 4,321 3,603 4,083
Figure 3. S T . Memory bandwidth requirements of tile-based
Sytemc | 2 e et redering
simulation T ift‘:?:j:‘i:“““ E::: = We begin by examining how the amount of exter-
control and GRAAL Simulator: Display Color Buffer Viewer _ |G| i nal data traffic varies with tile size to identify the
graphical e e : tile size that yields the best trade-off between data
visualization T R B traffic volume and area needed for on-chip buffers.
in the GRAAL v Furthermore, we measure how much external data
simulator. The L e traffic is saved by a tile-based renderer. Previous
simulation can — studies haven’t presented such measurements’ or
be controlled focused on the overlap—that is, the average num-
accurately ber of tiles covered by a primitive.®
X GRAAL Simulator: Tile Color Buffer Viewer =16] | X
using the e We used the GraalBench benchmark suite.” Q3L
menus, N _mg cu_h,r e 4 and Q3H are traces of the popular Quake III game.
and various | S Flledl  Tux is a freely available game that runs on Linux.
X GRAAL Simulator Tile Color Bu[x] . , .
markers can be T TE e fx AW is the AWadvs-04 test that’s part of the View-
overlaid to aid B " overt Frinitive Geonetry _ctriss 2 perf 6.1.2 package. ANL, GRA, and DIN are Virtual
in the visual Sl T 0 J -l Reality Markup Language scenes chosen on the ba-
debugging of [ Zoon Ot cerle- [ ;l': sis of their diversity and complexity. All workloads
algorithms. T use VGA resolution (640 x 480) except Q3L, which
= == uses QVGA resolution (320 x 240). Furthermore,
e s %< W v o the first three traces consist of about 1,400 frames
- while the latter four consist of about 600 frames.
. . Table 1 depicts the number of triangles trans-
ferred from the tiling engine to the rasterizer for
Tiling engine various tile sizes. The last row shows the number
The tiling engine sorts the primitives into bins and  of triangles transferred if the tile size is equal to
sends them to the rasterizer in tile-based order. As the window size. The overlap can therefore be ob-
mentioned earlier, tiling appears to be promising for  tained by dividing the number of triangles trans-
low-power implementations because it reduces the ferred for a specific tile size by the number given
memory bandwidth required between the rasterizer in the last row.
and the (external) frame and z-buffers. Accesses to Obviously, if the tile size increases, the number
external memory often dissipate more energy than of transferred triangles decreases, because there is
data paths and control units do, so reducing ac- less overlap. In our design, however, it's important to
cesses can provide significant energy savings. use as little internal memory as possible. Therefore,
In this section, we investigate how much exter- we must make a trade-off. The results show that us-
nal data traffic is saved by a tile-based renderer ing tiles smaller than 32 x 32 pixels significantly
compared to a traditional renderer. Because the increases the number of triangles transferred. For
sorting step requires memory bandwidth, we also  example, if a tile size of 16 x 16 is employed, the
evaluate several algorithms for performing this amount of geometrical data sent to the rasterizer in-
step. Finally, we investigate how to reduce the creases by 2.02 times for the Q3H benchmark and by
state-change information. 1.97 times for the Tux benchmark. On average, using
66 July/August 2008
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the geometric mean, a tile size of 16 x 16 increases
the number of triangles sent by 1.62 times when
compared to 32 x 32 tiles.

On the other hand, employing tiles larger than
32 x 32 reduces the amount of geometrical data
only marginally. For example, using 64 x 64 instead
of 32 x 32 tiles reduces the data by 1.35 times (geo-
metric mean). This indicates that for the considered
workloads, a tile size of 32 x 32 is the best trade-off
between the number of triangles sent to the ras-
terizer and the internal buffer size. The resolution
might affect the optimal tile size for nonscalable
applications. In practice, however, most applica-
tions scale their content complexity according to
the resolution. Therefore, a resolution change can’t
substantially affect the optimal tile size. If each ele-
ment is represented by 32 bits for RGBA (red, green,
blue, alpha) color, 24 bits for depth, and 8 bits for
stencil, 64 kilobits are required to implement 32 x
32 tile buffers. In a static RAM implementation,
this corresponds to about 96K equivalent gates.
We can compare this to the current gate budgets
available for mobile graphics accelerators, which are
around 200K to 500K gates.

Figure 4 depicts the total amount of external data
traffic produced by the traditional rendering (left
bar) and tile-based rendering (right bar) for each
benchmark on a tile size of 32 x 32. For each total,
the traffic is divided into data sent from the til-
ing engine to the rasterizer (light purple) and data
transferred between the rasterizer and the external
frame, z-buffers, and texture memory (dark purple).
Since the latter component is much larger than the
former, the tile-based renderer reduces the total
external traffic volume significantly, by 1.96 times
on average (geometric mean). For some workloads,
however, the advantage of tile-based rendering is
marginal. For example, for the AW benchmark it
is only 23.4 percent. This is because tile-based ren-
dering decreases the data transferred between the
rasterizer and the external frame, z buffers, and tex-
ture memory (depending on the overdraw—that is,
the number of pixels written to a buffer divided by
the buffer size, in pixels) but increases the amount
of data sent from the tiling engine to the rasterizer
(depending on the overlap). Hence, tile-based ren-
derers are more suitable than traditional renderers
for workloads with low overlap and high overdraw,
a trend foreseen for the future. For workloads with
high overlap and low overdraw, on the other hand,
tile-based renderers do not reduce the total amount
of external data traffic significantly.

Scene-management algorithms
The primitives must be sent to the rasterizer in
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tile-based order. We've developed several scene-
management algorithms to do this and evaluated
their computational cost and memory requirements.

An important part of the scene-management
algorithm is the test that determines if a triangle
overlaps a tile. Commonly employed is the so-
called bounding-box (BBOX) test, which checks
if the axis-aligned bounding box of a triangle in-
tersects the tile. The BBOX test is relatively low
cost; it requires only four comparisons. However,
it's imprecise because the BBOX might intersect
with a tile even though the triangle doesn’t, as
illustrated in Figure 5.

We have developed an exact test called the lin-
ear edge test (LET). Other researchers have pro-
posed this test before but in a different context,®
and we have adapted it so that no coverage mask
is needed. However, LET is computationally more
expensive than the BBOX test.

We have proposed and evaluated the following
scene-management algorithms:

y
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Figure 4. Total
external data
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the GraalBench
benchmark
suite.
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Figure 5. Imprecision in the triangle-to-tile bounding-box (BBOX) test.
In this case, the BBOX overlaps the yellow tiles but the triangle doesn't.
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Figure 6. Estimated time taken by each scene-management algorithm
relative to the time taken by the DIRECT algorithm.
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Figure 7. Memory requirements of the scene-management algorithms.
The additional memory required for benchmarks with a small overlap
factor (such as AW) is insignificant, but it's considerable for benchmarks
with a large overlap factor (such as Q3H).
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m DIRECT: This algorithm scans all primitives for
each tile and sends the primitives whose BBOX
overlaps the current tile to the rasterizer. Its
main advantage is that it requires no memory
in addition to the scene buffer, which holds the
initial scene geometry and state changes and,
optionally, the geometry and state changes sort-
ed per tile.

m TWO_STEP: This algorithm consists of two
phases. First, each triangle’s BBOX is computed
and stored in a buffer. This avoids recomput-
ing the BBOX for each triangle/tile tuple. In the
second phase, all triangles are scanned for each
tile, and the triangles whose BBOX overlaps the
current tile are sent to the rasterizer.

m TWO_STEP_LET: This algorithm is identical to
TWO_STEP except that the second phase em-

July/August 2008

ploys the LET. Because LET contains the BBOX
test, the main LET is applied only to the trian-
gles that passed the BBOX test.

m SORT: This algorithm has a buffer for each tile
with pointers to the primitives that overlap the
tile according to the BBOX test. For each tile,
only the primitives that have a pointer in the
corresponding buffer are sent to the rasterizer.

m SORT_LET: This algorithm is identical to SORT
except that the second phase uses the LET.

As we've described elsewhere in detail,” we eval-
uate the computational and memory requirements
of the algorithms by determining them analytically
and simulating the GraalBench traces to measure
statistics such as BBOX and LET overlap factors.
We estimate other parameters by counting the
number of elementary operations (assignments,
comparisons, and so on) required to implement
the operation. We did this because cycle-accurate
simulations would be too time-consuming, taking
several weeks or more.

Figure 6 depicts the time each algorithm takes
relative to the time taken by the DIRECT algorithm
to send the primitives to the rasterizer in tile-based
order. As expected, DIRECT requires the largest
number of operations by far, while SORT takes the
least amount of time. On average, across all bench-
marks, SORT is 44 times faster than DIRECT. The
TWO_STEP algorithm, even though it also scans
the entire scene buffer for each tile, has reason-
able performance. On average, it is 6 times slower
than SORT. Furthermore, TWO_STEP_LET is only
slightly slower than TWO_STEP and is, therefore,
preferable because it sends fewer triangles to the
rasterizer, which means the computational load on
the rasterizer is reduced. SORT_LET, on the other
hand, is on average 1.6 times slower than SORT.

Figure 7 depicts additional memory required by
each algorithm. As explained before, DIRECT does
not require any additional memory. Furthermore, as
expected, SORT needs the most additional memory
because it’s proportional to the number of triangles
and the BBOX overlap factor. Because the LET test is
exact and the BBOX test is not, SORT_LET requires
less memory than SORT. However, the difference is
significant only for one benchmark (Q3H), for which
SORT needs almost twice as much additional memo-
ry as SORT_LET. The difference is much smaller for
the other benchmarks (1.17 times as much, on aver-
age). The reason is that the BBOX test is fairly exact
for all benchmarks except Q3H. The TWO_STEP
and TWO_STEP_LET algorithms require the same
amount of memory. On average, TWO_STEP re-
quires 3.2 times less additional memory than SORT.
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However, this difference depends strongly on the
benchmark. For benchmarks with a small overlap
factor (such as AW), the difference isn’t significant.
For benchmarks with a large overlap factor (in par-
ticular Q3H), the difference is considerable.

State-management algorithms

Tile-based rendering reduces the memory traffic
between the rasterizer and the off-chip frame and
z-buffers. But it increases the amount of state-
change information such as enable/disable z-test-
ing and create/delete texture commands that the
tiling engine must send to the rasterizer. This is
because the tiling engine might have to send the
same state-change operation to the rasterizer sev-
eral times. Consider, for example, the following
instruction stream:

EnableDepth
Triangle (1)
DisableDepth
Triangle(2)
EnableDepth
Triangle(3)

Assume that tile 1 intersects with triangles 2 and
3 and that tile 2 intersects with triangles 1 and 3.
If the tile-based driver duplicates the state-change
operations for each tile, it generates the following
instruction stream:

Tile 1
EnableDepth
DisableDepth
Triangle(2)
EnableDepth
Triangle(3)

Tile 2
EnableDepth
Triangle (1)
DisableDepth
EnableDepth
Triangle(3)

However, the italics indicate state-change opera-
tions that we can remove. For example, we can
remove the first EnableDepth command because it
is immediately followed by DisableDepth.
Determining which state-change operations
can be removed and when isn't always trivial. For
instance, if the driver encounters a DeleteTexture
command while rendering the current tile, the
texture can be safely deleted only when all primi-
tives (from all tiles) using this texture are ren-

[ Partial rendering [l Delayed execution

Q3L Q3H Tux AW ANL

dered or when multiple copies of the texture are
kept in memory. Including all state-change opera-
tions to each tile isn’t practical because it requires
duplicating large numbers of state variables (for
example, texture objects). In some cases, the state-
change operations account for 63 percent of the
data sent to the rasterizer.

When using tile-based rendering, the following
algorithms can handle state information correctly:

m Partial-rendering algorithm. Whenever this algo-
rithm encounters an instruction with side effects
(for example, DeleteTexture), the driver renders
all previously buffered instructions and then
executes the instruction. This solution can in-
troduce significant rendering overhead. For each
partial rendering, the introduced overhead con-
sists of saving and reloading the contents of the
enabled tile buffers (for example, color, depth,
and stencil) from the global buffers and also the
state information save and reload operations.

m Delayed-execution algorithm. When this algo-
rithm encounters a command with side effects,
the driver postpones executing the command
until all primitives depending on it have been
rendered or until the end of the current frame is
reached. This approach reduces the overhead en-
countered in the partial-rendering algorithm.

Figure 8 depicts the amount of state-change in-
formation sent to the rasterizer using these two
algorithms on a tile size of 32 x 32. The delayed
method reduces the number of writes to the ac-
celerator by filtering the state information and
eliminating unnecessary writes. State information
for the Q3L, Q3H, GRAZ, and ANL components
is reduced by 23 to 58 percent. The state traffic
for the AW, Tux, and DIN workloads, however, is
not decreased substantially because tiling doesn’t
introduce any unnecessary state changes for these
workloads.
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Figure 9.
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Studies have demonstrated that circuit- and gate-
level techniques can reduce power by up to 2 times,
but architecture- and algorithm-level strategies
offer savings of 10 to 100 times or more.!® Assess-
ing the merits of a potential implementation early
in the design process brings the largest benefits.
The GRAAL framework offers two power-estima-
tion strategies based on SystemC simulation. Both
strategies estimate the average power consumption
over the entire simulation period and produce the
energy drawn from the battery as a by-product.

Netlist-level power estimation
Figure 9 illustrates the first strategy.!’ It employs
several Synopsys tools (CoCentric SystemC compil-
er, design compiler, and power compiler). All steps
are automated with custom-developed scripts for
driving the tools. The prerequisites are a power pre-
characterized library of standard cells and an initial
hardware synthesis step of the SystemC model to
produce the gate-level netlist used by the tools.
The darker-colored steps in Figure 9 must be
performed once for every candidate implementa-
tion. The RTL power-consumption estimation ac-
quires information about switching activity from
SystemC RTL simulation. The switching activity is
obtained by translating the VCD files—where the
hardware-signal traces are logged—to the Switch-
ing Activity Interchange Format (SAIF) files, the
format recognized by the tools.
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sis-variant switching activity (SVSA) and synthesis-
invariant switching activity (SISA). SVSA, obtained
from presynthesis logic signals in the simulator,
comes from the design’s combinational the logic,
which will be heavily optimized during the synthe-
sis process. SISA comes from the synthesis invariant
elements, which generally include inferred registers,
inferred tristate devices, hierarchical boundaries,
and so on. Because synthesis doesn’t modify these
elements, SISA information is still valid after the
RTL design is mapped to the gate-level netlist.

SVSA information is less accurate and is esti-
mated statistically by propagating synthesis-invari-
ant element-switching activity probabilities to the
synthesis-optimized combinational logic trees. This
strategy provides estimates accurate enough to be
used in the microarchitecture exploration phase,
where power estimates corresponding to two candi-
date microarchitectures are expected to be signifi-
cantly different (greater than 100 percent).

Architecture-level power estimation

The second strategy uses an approach described by
Dan Crisu and his colleagues.!? The strategy requires
more technology-dependent data from the user than
the first strategy, and it can deliver estimates within
25 percent of circuit-level simulation accuracy. It’s
based on Paul Landman’s work,'® which separately
analyzed the four main classes of chip components:
data path, memory, control, and interconnect.
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The strategy requires a library of hardware cells
consisting of various operators for the data-path
part; gates for control logic; and bit cells, decod-
ers, and sense amplifiers for memory cores. Once
such a library exists, it can be precharacterized via
gate-level and circuit-level simulations, resulting in
a table of effective capacitive coefficients for every
library element. Using this table and the activity
statistics derived during the architectural-level sim-
ulation, we can estimate power consumption. The
precharacterization must be done only once, and the
power estimation requires only the effective capaci-
tive coefficients table. We note here that precharac-
terization results are valid only for a specific library
of hardware cells and a given IC technology.

Figure 10 illustrates the architecture-level power-
estimation strategy we propose. User inputs de-
scribe a candidate architecture in structural Sys-
temC and the application program. Every clock
cycle, the simulation collects the activity on rel-
evant internal signals and sends it to the power-
analysis units. The power calculator estimates total
power consumption of the graphics accelerator per
program executed on the host processor.

Components relevant to the architectural power/
energy-estimation framework are

m precharacterized power models and effective-
capacitance coefficient tables that contain, for a
library of hardware cells, all technology-depen-
dent information required by the power-analysis
modules;

m an activity-analysis module that feeds the power-
analysis modules with statistics about signal ac-
tivity inside the simulated hardware description;

m power-analysis modules that estimate the power

consumption in the data path, control, memory,
and interconnect according to statistics from
the activity-analysis module and lookups in the
effective-capacitance coefficient tables; and

m a power-estimator module that adds power con-
sumption estimates of the data path, control,
memory, and interconnect and produces total
power consumption.

The architecture-level power-estimation strat-
egy, although faster and more accurate than the
netlist-level strategy, requires a difficult prechar-
acterization on existing libraries of hard cells.
Users can employ either one or both estimation
strategies, depending on the situation.

Case studies

To illustrate the two power/energy estimation strat-
egies, we designed two hardware circuits. We imple-
mented the first one via synthesis from SystemC
RTL. We obtained the other by employing semicus-
tom techniques to generate the hard cells required
for the architecture-level power-estimation strat-
egy. The IC technology employed in both cases was
a Taiwan Semiconductor Manufacturing Company
0.13 um 1.2 V CMOS process.

Synthesizable design. The first design implements an
OpenGL 1.2-compliant 3D graphics accelerator for
an ARM-based SoC platform using the SystemC
module library described earlier. We incorporated
the following OpenGL functionality in hardware:

m triangle rasterization: flat- and Gouraud-shaded

with/without antialiasing with all the options
controlling rasterization;
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Table 2. Frame workload.

Processed Fragmments Frame duration
triangles Processed | Passed to color tile frame buffer | (clock cycles)
12,362 9,511,077 8,759,891 6,005,722

Table 3. Graphics hardware estimation results.

IC technology Standard cell library

TSMC 0.13 ym 1.2V Artisan SAGE-X

Clock frecuency | Standard number of cells | Standard cells Total area
200 MHz 78 K 1.32 mm? 2.15 mm?
Per-frame estimated

Average power Energy

267 mW 8.02 m|

Table 4. Power consumption results for the ripple-carry subtracter.

Instruction trace
A
B
C

72

Power (estimated) | Power (simulated) | Relative error (%)

211 yW 245 yW _14
262 uW 221 uW 19
173 uW 163 uW 6

m texturing with only RGBAS internal texture for-
mat and texture fetching on demand;

m per-fragment operations: scissor test, alpha test,
stencil and depth buffer test, blending, logical
operation;

m entire frame buffer operations: fine control of
buffer updates, clearing the buffers;

m state management: all state management for
previously mentioned functionality respecting
all the invariance rules imposed by the OpenGL
specification.

The software driver processes the other OpenGL
primitives (points, lines, and polygons with more than
three vertices) and presents them to the graphics ac-
celerator as a combination of triangles.

For the internal organization, the graphics accelera-
tor adopts tile-based rasterization. We set the tile size
at 32 x 32 pixels, which implies that all internal buf-
fers (color, depth, and stencil buffers) composing the
tile frame buffer have this size. We set the display-size
resolution at 320 x 240 pixels (a quarter VGA), mean-
ing that the display consists of 10 x 8 tiles. The fixed-
point formats used at the interface with the internal
data path are all unsigned. The accelerator has two
pixel-processing pipelines. The screen coordinates (X,
Y) are represented on 9.8 bits, the color components
(R, G, B, A) on 0.8 bits, the depth component (Z) on
0.24 bits, and the stencil component on 8.0 bits.

We generated one frame of the AW benchmark on
our virtual SoC platform using the GRAAL frame-
work. Figure 3 shows the resulting image. Table 2
depicts a few characteristics of the frame workload.

Table 3 shows the results of the hardware syn-
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thesis of the graphics accelerator and estimated
(netlist-level) average power/energy drawn from
the battery per frame duration.

Semicustom design. To verify the power-consumption
prediction accuracy of the architecture-level strat-
egy, we precharacterized parts of a data-path library
of cells (including a ripple-carry adder/subtracter)
designed using the Alliance VLSI CAD System. From
the layout, we extracted the subtracter’s circuit for
three data-path widths: 4, 8, and 16 bits.

The simulation results on the extracted netlist of
the ripple-carry subtracter appear in the third col-
umn of Table 4. The clock frequency of the sample
adder/subtracter is 200 MHz. The circuit-level simu-
lation of the subtracter took several hours for the
three instruction traces executed on the ARM pro-
cessor, so it’s clearly infeasible to obtain the power
consumption for this processor directly through a
circuit-level simulation of the entire graphics ac-
celerator. The relative error between the estimated
power and the power consumption obtained by cir-
cuit simulation appears in the last column of Table 4.
The accuracy is quite good, well within 25 percent of
a direct circuit simulation with Hspice software.

G RAAL is a versatile hardware/software cosimu-
lation and codesign framework for 3D graphics
accelerators embedded in mobile terminals. It incor-
porates tools to assist visual debugging of graphics al-
gorithms implemented in hardware and to estimate
the throughput, power consumption, and area. Its
tiling engine sends the primitives to the rasterizer in
tile-based order. Our experiments indicate that tile-
based renderers are more suitable than traditional
renderers for workloads with low overlap and high
overdraw. On the other hand, they don’t reduce ex-
ternal data traffic volume significantly for workloads
with high overlap and low overdraw.

GRAAL includes a power/energy-estimation
framework, which can be used to explore the design
space and perform early evaluation of various graph-
ics accelerator architecture candidates. The frame-
work embeds a netlist-level and architecture-level
power-estimation strategy. The case study we pre-
sented demonstrates the framework’s capabilities.

Although the GRAAL framework can certainly
assist designers in the microarchitectural space
exploration for (tile-based) 3D graphics accelera-
tors, it can't capture system-integration design
aspects, such as workload balancing and overall
data traffic optimization. Its extension toward the
system level constitutes future work and will make
GRAAL a more powerful design framework.  =="
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