B | Tew

Robotic Packaging Optimization with
Reinforcement Learning and Real-World Data

EA Drnjver

Robotic Packaging Optimization
with Reinforcement Learning and
Real-World Data

Thesis paper

by

Eveline Drijver

to obtain the degree of Master of Science
in Mechanical Engineering
at the Delft University of Technology
to be defended publicly on March 9, 2023 at 14:00

Thesis committee:

Chair: Dr. C. Della Santina TU Delft
Supervisors: PhD. Z. Ajanovi¢ TU Delft
MSc. R.J. Perez Dattari TU Delft
MSc. M. Hulscher BluePrint Automation
External examiner: Dr. J. Kober TU Delft
Place: Faculty of Mechanical, Maritime
and Materials Engineering (3mE), Delft
Project Duration: May, 2022 - March, 2023
Master specialisation BioRobotics
Student number: 4467590

This research is confidential and remains inaccessible to the public until further communication.

Faculty of Mechanical, Maritime and Materials Engineering - Delft University of Technology

Delft
e t University of
Technology
" | blueprint automation

Copyright © Eveline Drijver, 2023
All rights reserved.

Robotic Packaging Optimization with
Reinforcement Learning and Real-World Data

Eveline Drijver
Department of Cognitive Robotics
Delft University of Technology
Delft, The Netherlands
E.A Drijver@student.tudelft.nl

Abstract—Intelligent manufacturing has become increasingly
important in the food packaging industry due to the growing
demand for enhanced productivity and flexibility while minimiz-
ing waste and lead times. This work explores the integration
of such manufacturing in automated secondary robotic food
packaging solutions that transfer food products into containers
using pick-and-place task scheduling. A major problem in these
solutions is varying product supply caused by prior machinery.
As a result productivity drops drastically when conveyor belt
speeds are not optimally controlled. Conventional heuristic-
based engineered approaches are used to address this issue
but are inadequate, leading to noncompliance with industry’s
requirements. Reinforcement learning, on the other hand, has the
potential of solving this problem by learning quick and predictive
decision-making behavior based on experience. However, the lack
of research in reinforcement learning for complex industrial
robotic problems, limits its adoption in industry. Therefore, this
work aims to investigate the feasibility of reinforcement learning
in the robotic packaging industry. We propose a reinforcement
learning framework, with policy inference in a highly complex
control scheme, designed to optimize the conveyor belt speed
of the secondary robotic packaging solution using real-world
product supply data. The framework exceeds the 99.8 percent
performance requirement and maintains quality at the required
100 percent when tested on real-world data. Compared to
the current heuristic-based solution, our proposed framework
improves productivity, has smoother control and reduces code
execution time. Video of robotic food packaging solution can be
found here (youtube.com/watch?v=AdiaRRsN7QQ).

Index Terms—Conveyor optimization, food packaging, intelli-
gent manufacturing, intelligent control, reinforcement learning,
task scheduling.

I. INTRODUCTION

ith the manufacturing industry aiming towards flex-
W ibility, productivity, quality and mass customization
[1], the adoption of intelligent manufacturing becomes in-
creasingly important. This is especially relevant for the highly
competitive fields such as the food packaging industry [2].
One of the primary challenges in the food packaging industry
is to enhance productivity while simultaneously reducing lead
times. Achieving this objective entails developing packaging
solutions, that minimize waste and maximize food production
rates, in the shortest time possible.
BluePrint Automation is a business-to-business company in
this sector, that designs, develops, and manufactures automated
robotic packaging solutions for a wide range of food products

Fig. 1: BluePrint Automation’s SPIDER Q series robotic
packaging solution [4]. A configuration with three Delta robots
with rotational end-effectors and vacuum grippers is demon-
strated, picking up pre-packaged food products and placing
them into secondary containers.

typically found in retail stores [3]. The objective of these
machines is to provide food supply companies with a highly
efficient and continuous food processing system. BluePrint
Automation provides various packaging solutions, including
both primary and secondary options. The primary packaging
solutions are designed to handle naked and un-packaged prod-
ucts, such as cookies and chocolates. The secondary packaging
solutions are designed to handle already packaged products
that require placement into a secondary container, such as bags
of chips that need to be transported in boxes to supermarkets.
[3].

A major problem in such secondary robotic packaging
solutions is the inability to achieve a 100%-container fill
rate, which is a critical quality requirement, under varying
product supply caused by prior machinery i.e., product feeders
and primary packaging solutions. As a result productivity
drops significantly which leads to revenue drops, waste and
critical problems later in packaging process e.g., sealing of
the secondary container. In Fig. 1, the internal components of
such a secondary packaging solution are depicted. The system
comprises three pick-and-place Delta robots, each equipped
with a rotational end-effector and two vacuum grippers. The

https://www.youtube.com/watch?v=AdiaRRsN7QQ

Delta robots pick up incoming products, specifically bags of
chips in this instance, and placing them into outgoing con-
tainers i.e., boxes. In order to optimize the the pick-and-place
sequence a task scheduler is used to allocate sets of products
to containers. The aim of this scheduler is to maximize the
throughput in packaged products per minute. However, as
previously mentioned, certain food supply companies require a
100% container fill rate in addition to this objective. To achieve
this requirement under varying product supply conditions, it
is crucial to optimize the conveyor belt speed with containers
during the operation of the robotic packaging machine.

Commonly, this problem is addressed with heuristic-based
engineered solutions. However, such solutions tend to com-
promise the performance of the task scheduler as they attempt
to meet the aforementioned container fill rate requirement.
Especially in the edge case scenarios that appear in practice,
such as the varying product supply. As a result, requirements
regarding the productivity of the machine are violated.

Intelligent manufacturing has the potential of solving this
issue. Hence, Reinforcement Learning (RL) is used in this
work to learn the optimal box conveyor belt speed in order to
optimize productivity, minimize waste and reduce lead times.
When properly implemented, deep model-fee RL offers the
following features making it well-suited for this complex real-
world problem:

« Flexible: No re-engineering of heuristics is necessary for
different robotic packaging machines, provided that the
problem’s objective remains the same. Only retraining is
required.

o Fast: Time-demanding calculations are performed during
training prior to deployment of the learned policy, assum-
ing the neural network is not too large.

o Generalization: Learned policies can generalize to un-
seen situations, which is especially useful for edge case
scenarios that appear in practice.

o Data-based predictions: By training an RL agent using
interactions with the robotic packaging machine (online)
or fixed logged data (offline), it can learn to prevent
problems caused by varying product supply, rather than
simply correcting them.

Although, RL methods have demonstrated success in var-
ious simulated environments, their adoption in real-world
applications has been relatively slow. This can be attributed,
in large part, to a significant gap between the way current
experimental RL setups are designed and the often ill-defined
nature of real-world systems [5] [6]. According to [7], nine
unique challenges must be addressed in order to deploy RL in a
real-world setting. These challenges include dealing with large
system delays, satisfying safety and performance constraints
and enabling inference at the control frequency of the system.
The work of [8], [9] and [10] supports this by outlining
recent advances in safe RL, particularly in robotics, that are
limited to academic environments, resulting in a focus on
simulated or simple real-world tasks. Consequently, potential
new challenges that arise in industry on complex robotic

systems remain unsolved.

Therefore, this research aims to investigate the feasibility
of RL in the industry by solving the earlier introduced robotic
packaging optimization problem using BluePrint Automation’s
simulator and real-world product supply data. We propose a
RL approach designed to optimize the box conveyor belt speed
in order to maximize the performance of the task scheduler
under varying product supply. The proposed method is able
to deal with control delays, sparse delayed rewards and policy
inference in the highly complex control scheme of the task
scheduler. With the proposed method predictive behavior for
varying product supply is learned, while satisfying the ma-
chines performance constraints. The design encourages smooth
control of the conveyor belt and handles the limited availability
of real-world product supply data well. Although the proposed
framework has not been tested on a physical machine, the
combination of RL applied to a real-world problem using real-
world data makes this work a valuable contribution to the field.

In this paper we describe the proposed method, present an
ablation study with simulated data and validate our method
with real-world data. This work contributes:

o a RL solution for a real robotic optimization problem in
the food packaging industry.

o a RL solution with policy inference in a highly complex
control scheme.

« validation of the RL solution with real-world data from
fixed logs.

II. RELATED WORK

A. Real-World challenges

One of the significant works addressing the challenges of
real-world reinforcement learning is by Google’s Brain and
Deepmind in [7]. They state that in order to deploy RL in a
real-world setting, nine unique challenges must be addressed.
These challenges include dealing with large and unknown
system delays, partial observability, multi-objective reward
functions, creating explainable policies, satisfying safety and
performance constraints, handling high-dimensional contin-
uous state and action spaces, enabling real-time inference,
dealing with limited samples from a live system, and offline
learning from fixed logs (Appendix I). The main conclusion
of this work is that existing research only focuses on a subset
of these challenges, and few studies have attempted to tackle
all of them simultaneously. The latter, being necessary for fast
adoption of RL in the real-world. Similarly, the work of [6]
explores the challenges that arise when learning autonomously
and consistently on a robotic learning system with use of real-
world data and reinforcement learning. However, the promis-
ing real-world results of this work are limited to a designed
experimental setup. In this paper, we aim to build upon these
works and explore the challenges that arise when applying
RL to a robotic problem in the food packaging industry using
real-world data.

B. Real-World Applications

Examples of successful applications of RL in industry are
limited, however cases that have succeeded include Google
DeepMind’s data-center electricity optimization project and
the data-center cooling project in [11]. The former being the
most impressive achievement, where the electricity usage of
Google’s data center was reduced with 40% [12]. However,
such success stories are not seen in the robotics packaging
industry yet. On the other hand, the work of [13] closely
examines the feasibility of RL in real-world settings by
demonstrating promising results on multiple reference tracking
tasks using a physical industrial robotic manipulator. Our work
is related to this research, as we also aim to explore the
feasibility of RL in industrial robotic systems. However, our
focus is not on the physical implementation in an experimental
setup, but rather on evaluating the feasibility in a real-world
robotic problem within an industrial setting.

C. Safe Reinforcement Learning

A popular field of research in RL for robotics is safe RL,
which is concerned with learning policies that ensure rea-
sonable system performance and/or safety constraints during
the learning and/or deployment process. This is particularly
important for the transfer of RL towards industry, where
strict safety and performance requirements must be met. The
work of [8] and [9] provide an comprehensive overview of
the research in this field. Various methods can be used to
address the performance and safety requirements in RL. For
instance, [10] is devoted to model-free RL for policy learning
using constrained Markov decision processes. Additionally,
Safety Layers [14] can be used to safely explore Markov
decision processes, while Risk-Averse Robust Adversarial RL
[15] is useful for learning robust risk-aware probabilistic
models. Another approach is Bayesian Controller Fusion [16],
which allows for accelerated safe learning with suboptimal
controllers. However, current research in the field of safe
RL is largely limited to simulated or simplistic real-world
robotic tasks. Moreover, most approaches do not offer formal
guarantees for the satisfaction of hard or probabilistic con-
straints during the policy’s learning and deployment process
[8]. Inspired by these works, we aim to test the feasibility of
RL in a more complex real-world robotic problem subjected
to strict performance constraints.

D. Task Scheduling

Despite multiple attempts for using RL for task scheduling
[17] - [21], applicability of such work in practice remains
limited. The work of [18] models the Job Shop Schedul-
ing Problem (JSSP), which is a widely studied optimization
problem for optimal scheduling of resources over time, as a
sequential decision making problem and uses deep RL to solve
it. Despite, the promising results in static JSSP benchmark
problems, the RL-based solution is not able to beat the
traditional based heuristic solutions in dynamic environments.
In addition, our work shares many similarities with [21], where
the authors aim to optimize production scheduling using a

deep RL method (i.e., DQN) in the context of intelligent
manufacturing. However, they did not surpass the performance
of heuristic solutions in their study. Therefore, we argue that
using RL for task scheduling in complex industrial robotic
systems is currently infeasible and also impractical. This is
because the task scheduling solutions that are already fully
integrated into machines require mature and trustworthy re-
placements, making it challenging for RL-based task schedul-
ing solutions to be successfully adopted. As such, we propose
a different approach: optimizing an environmental condition
rather than replacing an existing task scheduling solution.

III. PROBLEM STATEMENT

First, we introduce the robotic packaging machine for which
the reinforcement learning framework is created, followed by
the definition of the belt speed optimization problem and the
constrained Markov decision process. Finally, we introduce
the high-level interaction framework between the machine’s
simulator and our proposed method.

A. Robotic Packaging Machine

This research was conducted in collaboration with the
company BluePrint Automation, hereinafter referred to as
the company. A configuration of the company’s secondary
robotic packaging solution is illustrated in Fig. 2. The figure
includes a complete machine at the bottom left and a simplified
view of the machine’s interior at the upper left, where a
simplified vision system (1) detects the class and location
of pre-packaged food products (2) on the conveyor belt. The
packaging process involves multiple Delta robots (3), which
are parallel manipulators that consist, in this case, of a four
degrees of freedom end-effector (4) with three parallel arms

Fig. 2: Collection of renders of BluePrint Automation’s SPI-
DER 300v robotic packaging solution showing the complete
machine (bottom left), a simplified vision system with Delta
robot (upper left), the Delta robot with rotational end-effector
and vacuum gripper (upper right) and the containers containing
multiple layers of products (bottom right) [4].

[22]. These Delta robots pick up the packaged products and
place them in a container (5) i.e., boxes or pockets. The upper
right corner of the figure shows a close-up of a Delta robot
with a rotational end-effector (4) and vacuum gripper (6),
which leverages the difference between its internal pressure
and the surrounding atmospheric pressure to lift, hold and
move the product. The bottom right corner of the figure
provides a close up of a container, a box in this case, which can
hold multiple layers of pre-packaged products. The contents
of a container can either be a single class of product, or
it can consist of a mix of different product classes in a
predefined pattern. The packaging solutions can be extended
with a task scheduler, which is a branch-and-bound algorithm
that optimizes the pick-and-place sequence to maximize the
throughput in products per minute.

This research is specifically focused on a secondary robotic
packaging machine that contains four Delta robots, one con-
veyor belt with two product lanes, and one conveyor belt with
a single lane of boxes. Fig. 4 depicts a schematic overview
of this specific configuration. Both the conveyor belts move
in the same direction, which is also referred to as a co-flow
configuration. Moreover, the speed of the conveyor belt with
products, denoted by vp, cannot be controlled. Additionally,
each box needs two layers with respectively two and three
single class products. In this specific configuration, the task
scheduler is designed to assign two Delta robots to a desig-
nated box, where each robot is responsible for filling one of
the two layers in that box. The two Delta robots, five products
and box together form a single schedule as visualized in Fig. 3.
During deployment, the machine needs to satisfy the following
requirements:

« No empty boxes may leave the machine.

o No partly filled boxes may leave the machine.

o At least 99.8 % of the supplied products must be placed
in a box.

From now on, the term robotic packaging machine refers
to this specific packaging machine that is subjected to the
aforementioned requirements. To test the effectiveness of the
task scheduler with respect to the these requirements we use a
simulator of the machine that simulates e.g., system delays and
product infeed. For measuring the overall effectiveness of the
machine we use the Overall Equipment Effectiveness (OEE)

&

Fig. 3: A complete schedule contains two Delta robots, one
box and five products divided into two layers. The task
scheduler assigns the layers of a box to the Delta robots
with the available products on the conveyor belt, aiming to
maximize the number of packed products per minute. Each
layer is placed in a single operation by a Delta robot.

R1 R2 R3 R4

Box
detection

Checkout

=

Vi

Horizon
Vi

End of
horizon

Product
detection

Fig. 4: Schematic top view of the robotic packaging machine
with one box belt at the top and one product belt with two
lanes at the bottom. The four Delta robots are shown with
their 2D Cartesian work envelopes. The products and boxes
enter the machine at respectively the box and product detection
point and leave the machine at checkout. The variable box belt
speed is denoted by vp and the constant product belt speed by
vp. The red box will soon be out of reach of robot 4 without
any products available in the workspace of this robot.

industry standard [23], which is widely used in the manufac-
turing industry. The OEE metric determines the effectiveness
of the machine as a ratio between actual and theoretical output
[23] and is defined as:

Performance(%) x Quality(%) x Availability(%) = OEE(%). (1)

We assume an availability, which is the ratio between actual
and planned production time, of 100%, due to limited access to
the factors affecting this index. The performance and quality
are defined as:

Performance = packed products / supplied products x 100%, (2)
Quality = packed boxes / supplied boxes x 100%. 3)

The term packed products denotes the individual products
that exit the robotic packaging machine enclosed in a box,
and packed boxes refers to the boxes that leave the machine
containing the specified number of products i.e., five.

B. Belt Speed Optimization Problem

In Fig. 4, the schematic top view of the robotic packaging
machine is shown with the 2D Cartesian work envelopes of
the Delta robots and the box and product belt speeds vp and
vp respectively. The task scheduler creates the schedules, as
defined in Fig. 3, with the products in the horizon. For a
constant product inflow and constant product and box belt
speeds, the task scheduler is able to comply the requirements
stated in Subsection III-A. However, in the case of varying
product inflow and constant belt speeds, the Delta robot may
not be able to reach the necessary products when an empty or
partially filled box is about to leave the machine, which results
in a violation of the requirements. This issue is illustrated
by the red box in Fig. 4 and can lead to waste and critical
problems later in the packaging process, such as during box
sealing.

To ensure compliance with the requirements even under
varying product inflow, the box belt speed must be optimized
according to the changing product inflow. To achieve this, we
propose the following minimization problem:

N
min Y Plvglk], k], 4a
vB[k]; (k] k] (4)
UB [k} G[UB,mianB,max} (4b)

where P, is an unknown function describing the behavior

of the robotic packaging machine, which outputs the number
of lost products at each time step, k, for a given box belt
speed, vp. We define a product as lost when it has passed
the checkout point, which is denoted in Fig. 4. The objective
function minimizes the number of lost products during an
operating time of N seconds of the machine by optimizing
the box belt speed at each time step. By definition, this results
in a maximization of placed products per minute, because
the product belt speed, vp, nor the product inflow can be
controlled. The requirement regarding the placed products
stated in Subsection III-A is modelled as:

N N
> Pilvglk], K]/ Pi[k] <1 —0.998 (5)
k=1 k=1

Pk # 0 (5b)
where P, is an unknown function describing the behavior
of the robotic packaging machine, which outputs the number
supplied products at each time step. This constraint limits the
number of lost products, represented by P;, to be lower than
0.2% during an operating time of N seconds of the machine.
The two requirements regarding the boxes stated in Subsection
III-A are modelled as:

B, [vs[k, kK] = 0 (6)

By [vp[k], k] = 0 (7

where B, and B, are unknown functions describing the
behavior of the robotic packaging machine, which output
respectively the number of empty boxes and partly filled boxes
at each time step for a given box belt speed. An additional
requirement is necessary to limit the acceleration of the box
belt, which is modelled as:

V (vslk] — vglk — 1])2/Ak < apmaz (8)

which calculates the Euclidean distance between two succes-
sive speeds and divides this by the time step length Ak. The
maximum box belt acceleration is denoted by ap maz- Eq. (9)
shows the full constrained optimization problem. Solving (9)
yields the box belt speed profile, vp k], for an operating time
of N seconds of the robotic packaging machine, maximizing
the number of placed products above 99.8% while ensuring

that no empty or partially filled boxes are lost and the box
belt acceleration remains in the feasible range.

N
min BPluglkl], k
vauﬂgég 1[vplk], k]

st. Y Pluplk],k]/ > Pufk] <1-0.998

v

©))

=
o~}
=
I
<
o
=
|
!
S
~
>
e
N
2
ool
3
Q
8

UB [k} S [UB,min7 vB,mam]
C. Constrained Markov Decision Process

We use a Constrained Markov Decision Process (CMDP)
to model the constrained optimization problem (9) as a se-
quential decision making problem with discrete time steps,
k = 0,1,.. € Z and time step length, Ak. We adopt
this mathematical framework, because the robotic packaging
machine with task scheduler and variable product inflow form
a sequential, stochastic and dynamic environment. A CMDP is
defined as a 6-tuple < S, A, T, R,~v,C >, where S is the set
of possible states and A the set of possible actions. T is the
transition probability function defined as T : Sx AxS — [0, 1]
and denoted by T'(sk, ak, Sp+1), it represents the transitioning
to state sp11 € S given state s € S and action ap € A.
R is the reward function defined as R : S x A xS — R
and denoted by R(sg, a, Sk+1) representing the reward for a
state transition. v € [0, 1] is the discount factor which trades
off immediate reward and delayed reward. The last term, C, is
the cost function defined as C' : S x A x S — R and denoted
by C(sk, ax, Sk+1) representing the constraints. [24] [25] The
objective of the learning agent is to maximize cumulative
reward while satisfying the constraints by learning the optimal
control policy, 7%, which is a mapping from states s; € S to
actions ar € A. This results in the following maximization
problem [10]:

N

o k
max Jgt = meax]ETNM E YR (S, ks Skt1)
k=1

S.t. Jgf <€

Ci (Sk, Ok, Sk+1) < wj

(10)

in which in which J7’ is the objective function as function
of the reward R when following policy 7y parameterized by
6. It is important to emphasize that while (9) is a minimiza-
tion problem, (10) is a maximization problem. To address
this discrepancy, we leverage the property that min can be
expressed as —max, which results in a reward R that is equal
to negative number of lost products, denoted as — P;[vg k], k].
Furthermore, in (10) we divide the constraints in cumulative
constraints, Jg" < ¢;, which need to be satisfied from the be-
ginning to the current time step and instantaneous constraints,

Oylkl [
0.k #| Reinforcement learning
il]; module
~—
TAA
0,[k+1 Vg, [K]
M— Simulator 1 <—E o Product
i inflow data
Task Scheduler 1
[Oulk+1] Valk]
Simulator M ¢

!

Task Scheduler M

Fig. 5: High-level interaction framework between reinforce-
ment learning module and the M parallelized simulators and
task schedulers.

C; (sk, ak, Sk+1) < w;, which need to be satisfied in each
step [10]. Where i is the total number of constraints and ¢;
and w; the corresponding threshold values. The cumulative
constraint represents the placed products constraint (5a) and
the instantaneous constraint is used to model the remaining
constraints of optimization problem (9).

D. High-level Interaction Framework

To optimize the box belt speed under varying product
inflow, we introduce the high-level interaction framework that
is modeled as shown in Fig. 5. We use multiple parallelized
simulators of the robotic packaging machine, which simulate
e.g., system delays and product inflow, to speed up the training
process of the learning agent. Each simulator communicates
with a separate task scheduler. The box belt speeds proposed
by the RL module together with the product inflow data form
the inputs to the M parallelized simulators. For each time step
k, M box belt speeds vp are proposed corresponding to the
M observations O, obtained from the simulators.

IV. METHODOLOGY

In order to solve the CMDP (10) with RL, real-world data
and the high-level interaction framework, multiple important
design decisions need to be made. To successfully learn a
RL policy with accurate inference in the packaging machine’s
complex control scheme, which has many inter-dependencies,
we introduce a framework that takes into account penalty
functions, control delays, observation matching, state repre-
sentation design, sparse and delayed rewards, smooth control
and the limited availability of real-world data. In the following
subsections, we provide details regarding our approach for
addressing each one of these challenges.

A. Markov Decision Process and Penalty Functions

The first challenge is to convert the CMDP (10) for the belt
speed optimization problem (9) into a unconstrained Markov

Decision Process (MDP). First, we simplify the problem by re-
moving constraint (5a) regarding the maximum number of lost
products. This constraint is cumulative and forms the lower
bound of the objective function (4a). Therefore, we state that
if a global optimum exists for optimization problem (9), it is
equal to the global optimum of the same optimization problem
without this cumulative constraint. Therefore, we can neglect
this constraint, which also makes constraint (5b) redundant.
Second, constraints (6), (7) and (8) are instantaneous hard
constraints which can be converted into instantaneous soft
constraints, which encourage but not guarantee constraint sat-
isfaction, with use of penalty functions [8] [26]. The objective
function of the unconstrained MDP becomes:

N
By [> oA (R(3k> g, Sk11)
k=1

l
= i [Ci (sk, a, sh41) — wil?

i=1

I+m
- Z :u’i[max(07 Ci(sk‘7aka Sk‘+1) - wl)]q)] ’
i=l+1

(1)

where ¢ > 1

in which pu; represents the weight for each constraint
violation, [the number of equality constraints, m the number
of inequality constraints and N the operational time of the
robotic packaging machine.

B. Action Delay and Observation Matching

System delays and policy inference are fundamental chal-
lenges of real-world RL. The existence of system delays,
which is almost always the case in real robotic systems,
degrades the performance of RL methods due to the increased
complexity of the credit assignment [27]. Delays in RL can
be divided in three categories: action, observation and reward
delays [7]. This subsection covers the first category. For the
robotic packaging machine two types of action delays exist to
which we refer as control delay and planned delay. Control
delay is the time interval between action selection by the
learning agent and the actual execution of that action by the
packaging machine. Such delays negatively influence both the
learning process and final solution [25]. In contrast, planned
delay is introduced by us to enable proper policy inference in
the packaging machine’s control scheme. Before discussing
how those action delays are defined and how they can be
accounted for, the action space must be introduced. We use
a continuous, normalized and symmetric action space, A, on
the interval [—1,1], which represents the box belt speed vp.
Subsequently, we apply one-dimensional linear interpolation
to scale the actions to the range [VB min, VB maz] to comply
with the machine’s allowed control inputs.

Fig. 6a shows the action signal, box belt speed vp, and the
control delay + i.e., the time between action signal and the
resulting change in box belt speed. Moreover, the scheduling
signal of the task scheduler is displayed. Multiple schedule
cycles are performed during a single RL time step (Ak). Each

schedule cycle, triggered by the scheduling signal, produces a
single schedule containing five products, two robots and a box,
as defined in Fig. 3. In blue, a schedule n is displayed with its
pick and place execution windows. The pick execution window
is defined as the time interval between the moment a product
enters the workspace of the first robot, denoted as C'1, and
the moment a product leaves the workspace of the last robot,
denoted as C3. This time interval represents the boundaries
within which all products in schedule n are picked up by the
two delta robots. Additionally, the place execution window is
defined as the time interval between the earliest possible time
the first layer of products of schedule n can be placed into a
box, denoted as C2, and the latest possible time the second
layer of products of schedule n can be placed in a box, denoted
as C4/vp. This time interval represents the boundaries within
which each of the two layers of products of schedule n is
placed by the corresponding delta robot in a single operation.
C'1, C2 and C3 are constant (future) time values relative to the
creation time of the corresponding schedule n, because they
only depend (in)directly on the constant product belt speed
vp and the fixed configuration of the machine. C'4 denotes
the the latest possible box position for which the second layer
of products of schedule n can be placed. To make C4 time
based, it is divided by the variable box belt speed vp. With
these definitions the planned delay can be introduced.

Fig. 6b illustrates the rescheduling problem of the robotic
packaging machine, where schedule n is generated under the
assumption of a constant box belt speed, as future changes in
speed are not yet known. Therefore, the first speed change
after schedule n makes schedule n invalid. A reschedule,
in which all the schedules are cleared and scheduled again
that were computed with the incorrect speed, is necessary to
create new schedules with the updated speed, as denoted by
the rescheduling signal. This results in rescheduling of all
schedules created between each speed change which makes
regular scheduling redundant. Consequently, for small time
steps Ak, no single schedule created in the horizon can
be executed in the future, as each schedule is based on
an inaccurate future speed. The task scheduler will try to
schedule the products that already have left the horizon in
order to limit the damage, however this will not save many
products. Therefore, a constant box belt speed is deemed the
optimal solution. This rescheduling problem emphasizes the
importance of right timing and frequency of policy inference.
By adding an additional delay, also called planned delay,
between the action signal and the execution of that action this
problem is solved.

In Fig. 6¢ the planned delay ¢ is added to the control delay
such that the execution of the action takes place after the
execution window of all picks of schedule n. Now, the speed
profile of the box belt is known during normal scheduling and
rescheduling is not necessary anymore. As shown in Fig. 6c,
the placement of products in a box can still happen after the
combined control and planned delay; however, this will only
happen for low product inflow. As stated earlier, the length of
the execution window for a place is not fixed, but dependent

Action f———— v

R —
Control delay,y Control delay, Yy

Execution window picks schedulen |
Schedule n
\ Execution window place schedule n
Scheduling
signal

k k+1 k+2 k+3 k+15 k+16
« Bk Cl C2 C3

kH8
Célvg Time

(a) Control delay and schedule execution window.
A

Action

ST

|

Execution window picks schedulen |

Schedule n Invalid

Execution window place schedule n |

[

(b) The rescheduling problem.

Action S—l_i—l_
Plarined delay, | & : :

VB

Recheduling
signal

!
+ Control delay,y

Execution window picks schedulen |

Schedule n

Execution windlow place schedule n I<—¢|>——
el L) Laniaaaann
signal H

k k+1 k+2 k+3 k+15 k+16 k+17 k+18

Time
% —

Observation

1y
>

k+15+Y k+16+Y k+17+y
Time
—

k+14+7

k+1+Y

k-1+7 k+

(c) Shift action to k+ ¢ and match observation by shifting to k+J+-y.

Fig. 6: Overview of the control delay, planned delay and
observation matching, in which C1 = (Start workspace R1
- horizon end) / vp, C2 = C1 + earliest finish time pick last
product(vp), C3 = (End workspace R4 - product detection) /
vp, C4 = End workspace R4 - box detection and Ak = 0.75s.

on the box belt speed vp. For low product inflow the box belt
speed must be low in order to minimize the number of unfilled
boxes, which increases the length of place execution window.
In contrast, the constant product belt speed is relatively high,
therefore, the Delta robots must hold the products for a while
before placing in a box. Hence, the pick part of the schedules
remain valid and the place part of the schedule is updated
according to the changing box belt speed until a box enters

the workspace of the corresponding Delta robot.

The combined delays create a time mismatch between action
execution and received observation. Therefore, the observation
at time k + 0 4~y is fed back to the agent at time &, which is
shown in Fig. 6¢. This future observation matching method is
valid, because the scheduling of the products in the horizon
at time k takes place at k; therefore, all the information of a
schedule created at time, k, i.e., the future start and end times,
can be used to construct the observation at time & + § + .

C. State Representation Design

To design a state that captures all the relevant information
for selecting an appropriate action, multiple experiments were
performed in this research regarding feature selection and
history, see Appendix G. The final features are:

o Current box belt speed, vp [m/s],

e Previous action [m/s],

e Product inflow lane 1 measured at product detection

[products/min],
e Product inflow
[products/min],

« Distance of closest non-scheduled empty box relative to
the checkout point, xp,, [m],

o Distance of closest non-scheduled product relative to
checkout point, x,-0q1 [m],

« Distance of second closest non-scheduled product relative
to checkout point, Zp,oq2 [m].

lane 2 measured at product detection

Where each feature is represented by a continuous normalized
and symmetric feature space on the interval [—1, 1] obtained
by scaling with one-dimensional linear interpolation with
respect to each feature’s minimum and maximum observed
numerical value.

However, the complexity of the environment with lots of
inter-dependencies and limited amount of information avail-
able (the features) makes the problem inherently partially
observable and, therefore, the state non-Markov [28]. For
example, no information is available about the product feeders’
performance which appears as non-stationarity in the state or
about the division of tasks among robots which appears as
stochasticity. To handle the partial observability, 30 time steps
(AKk=0.75s) of history is added to each feature, which captures
a complete throughput of products from detection to checkout
(24 time steps) including margin. By incorporating the added
history per feature, the features can effectively describe the
final state at k49 -+-. The resulting high-dimensional continu-
ous state space and earlier defined one-dimensional continuous
action space increase the complexity of the problem, which is
also known as the curse of dimensionality [29]. We tackle this
by using Neural Networks (NN) for function approximation
in the RL agent, which have obtained well-performing results
when dealing with high-dimensional spaces [30].

In addition, the observation matching introduced in IV-B,
makes the interpretation of the features Zpoz, Tproq1 and
ZTprodz a bit more complex. When the observation is shifted
beyond the execution window of schedules (Fig. 6¢), the box
and product features no longer represent the actual distances

R3 Projected R4
Box
detection
(Vp) Checkout
L] L onx
O @ Xprod1
Projected Horizon
O a Xprod2|
Projected Projected
Product End of
detection horizon

Fig. 7: Schematic top view of robotic packaging machine with
projection of horizon and the three state features Zpou, Tprod1
and Zprod2.

from the checkout point, but serve as future projections. This
comes down to the situation shown in Fig. 7, in which the
horizon is projected right after the workspace of robot four
(vp - (6 4+)) and the box detection point is projected with a
variable position of vg - (6 +). The positions Tpoz, Tprodi
and z 042 are decoupled from their real positions on the belts,
but give the relative position to the horizon a product and box
should have, in order to be part of a schedule. The projected
end of horizon is not aligned with the checkout point to prevent
false positive empty boxes or lost products. For example, in
edge case scenarios in which a product that just has left the
horizon, could still be part of a schedule.

D. Sparse Delayed Rewards and Smooth Control

With the previously discussed action delays, observation
matching method and state features, one simplification and two
potential problems can already be uncovered for the objective
function stated in (11).

To simplify the objective function, we eliminate the penalty
function associated with the constraint on partly filled boxes
(7). As discussed in Section IV-B, the introduction of planned
delay eliminates the need for rescheduling and, by definition,
ensures compliance with the constraint on partly filled boxes.
Specifically, the task scheduler prioritizes the creation of com-
plete schedules, as defined in Fig. 3, thereby precluding the
intentional departure of partly filled boxes from the machine.
Without planned delay, variations in the box belt speed during
schedule execution could lead to the unintentional departure
of partly filled boxes. With this simplification the combined
reward and constraint function for (11) with ¢ = 1 becomes:

T = — Uprod * P [UB [k], k] — ooz - Be [UB [k’], k’],

— fhace|maz (0, \/(’UB[IC] —vplk —1])% — aB,maz Ak;)z],
(12)

where (1,04 denotes the weight for the number of lost products
(4a), ppor denotes the weight for the constraint on empty

boxes (6) and 4. denotes the weight for the constraint on
acceleration (8).

The first problem concerns the agent’s actions. Since the
agent’s actions are continuous, it has the ability to control
the box belt speed with high precision. However, this could
lead to the emergence of multiple (weak) global optima and
an increase in the number of weak local optima; small speed
changes that do not impact the return, but do negatively affect
the box belt’s maintenance. While smooth control is not a strict
requirement, it is preferable for stable training, real-world
applicability, and enhanced interpretability of the resulting
policy [7]. Therefore, we remove inequality constraint (8) from
the reward function (12) and add penalty function (13) that
penalizes speed changes with an appropriate small amount (,
this way smooth control is encouraged.

p(vp) = —C/(vslk] — vplk — 1])?

The second problem concerns the objective function. It
consists of a linear combination of delayed sparse and non-
delayed dense rewards, which arise respectively from the
implicit constraints governing the number of lost products
and empty boxes, and the penalty function for smooth control
encouragement. As noted in [31], effectively learning policies
for sparse objectives poses a fundamental challenge in deep
RL. Moreover, the existence of non-delayed dense reward
could increase the risk of the agent getting stuck in a local
maximum generated by the non-delayed dense reward which is
easier to learn [31]. To prevent this, we propose the following
exponential function which converts the sparse rewards to
dense ones:

13)

1
f(fﬂ) = Z — M €$i[k+1]’
el

where I = {box, prodl, prod2}, (14)
Hprod = Mprodl = Hprod2

Tprodl; Tprodl € [0, vp - (5 + ’Y)],
Toox € [0,v5 - (6 +7)];

where the three state features Zpor, Tprodi and Tproqz are
defined in Fig. 7 and the u; represents the weight for each
exponential function. These weights are the same as in (12),
such that the original sparse reward is smoothed out expo-
nentially along the belts. The aim of this additional reward
is to guide the exploration behaviour of the agent with our
heuristic domain knowledge away from constraint violations,
also known as reward shaping [32]. The total reward, r,
obtained at each time step is defined as:

-Belvplk], k]
'PI[UB [k]v k]’

where B, is the number of lost empty boxes and P; the
number of lost products. It is worth mentioning that certain
components of the term f(x) disappear when a product or an
empty box exits the machine. For instance, when an empty
box leaves the machine, the task scheduler stops monitoring
it. As a result, B, becomes one, and the exponential function

r= f(a:) er(vB) — Wbvox

— Mprod

15)

10

in f(z) for this box becomes zero. As a consequence, the
magnitude of the original sparse reward remains unchanged
when the constraints are violated.

E. Robustness in Realistic Scenarios

Data-efficiency is a core challenge for RL in real-world
systems as most of those systems are expensive to operate,
relatively slow-moving or fragile [7]. Resulting in a train-
ing dataset that does not capture a large part of the state
and action space. This challenge is also applicable to the
robotic packaging machine, as it is customized for a specific
customer located in a different part of the world, making it
impractical to directly test our framework on this machine.
Consequently, online learning on the physical machine is not
feasible. However, we do have access to a limited amount of
prerecorded data from the robotic packaging machine. This
data comprises information such as product and box detection
times, as well as the start and end times of schedules, but
after filtering out the noise (Appendix A), it only amounts
to 75.5 minutes of operational time, insufficient for offline
learning. To address these limitations, we employ parallelized
simulators of the machine, as described in Section 5, and
replay the real product detection times from the prerecorded
data during simulation. This enables us to speed up training
with the simulators significantly and utilize actual varying
product inflow data, which plays a crucial role in the belt speed
optimization problem. However, also for online learning with
a simulator, the available amount of prerecorded data is not
sufficient. Therefore, we use self-generated simulated product
inflow data for training and validate the learned policy on the
small set of prerecorded real-world data.

In order to prevent covariate shift, a common problem in
machine learning [33], between the product inflow distribution
of the self-generated training data and the real-world validation
data, we use scenario randomization. Here, a scenario is
defined as the profile of the product inflow during one episode,
which is a single run of the robotic packaging machine lasting
N seconds (9). Although the machine operates continuously
in the real world, we can consider it episodic, as the same sit-
uations repeat over and over again. By highly randomizing the
simulated product inflow in each scenario on a realistic range
during training, the agent is exposed to a sufficiently large
part of all possible environment states [34]. This improves
generalization of the learned policy to realistic scenarios i.e.,
scenario’s from the real-world, and increases its robustness
against variations in product inflow within those scenarios.
The scenarios are designed for normal operation of the robotic
packaging machine, which corresponds to a product inflow per
lane between 120 and 135 products per minute according to the
company’s standards. With this method we aim to bridge the
sim-to-real gap [35] related to the variability in product inflow
data, which is a key issue when optimizing the belt speed. By
replaying the prerecorded real-world data in simulation, we
can validate the effectiveness of the scenario randomization
method.

FE. Medium-Level Interaction Framework

In order to train, tune, evaluate and validate the RL solution
for the belt speed optimization problem, we propose the
medium-level interaction framework shown in Fig. 8. This
framework shows the inside of the RL module of the high-level
interaction framework (Fig. 5). The medium-level interaction
framework starts with the definition of the simulator, experi-
ment, Optuna and goal settings. The goal settings determine
if the RL module is used for tuning of hyperparameters
with Optuna, training the RL agent, evaluating the learned
policy on the randomized scenarios or validating the policy
on the prerecorded real-world data. Tuning is a time-intensive
task, because a complete training (when not pruned) must
be executed for each sampled set of hyperparameters (i.e.,
a trial). By multiprocessing the training, the training time is
highly reduced. The lower-level modules, represented by the
blue blocks, all have their own low-level interaction framework
with pseudo code in Appendix C. The goal of each module is
characterized as follows:

Reinforcement learning module: Starts a hyperparam-
eter tuning, RL training, policy evaluation with random-
ized scenarios or policy validation with real-world data
study.

Information writer module: Saves all experiment set-
tings and compute final metrics and constraint violations.
Experiment design module: Selects a state, action and
reward function depending on experiment.

Custom gym environment module: Provides the train-
ing environment.

Socket communication module: Communicates with the
simulator of the packaging machine.

Callback module: Provides callbacks for best training,
evaluation of a tuning trial, visualization and saving
hyperparameters.

Besides, hyperparameter tuning, RL training and policy
validation, the developed interaction framework is designed to
facilitate easy modifications to each experiment, such as se-
lecting multiple model-free reinforcement learning methods or
incorporating new combinations of state, actions, and reward
functions.

V. EXPERIMENTAL RESULTS

In this section, we first describe the experimental setup,
followed by the ablation study conducted with our randomized
scenarios. Finally, we present the experimental validation of
the learned policies, computed with our proposed method
and interaction framework, on real-world product inflow data
and compare its results with the heuristic-based engineered
baseline solution.

A. Experimental Setup

The results of this research are conducted with Proximal
Policy Optimization (PPO) due to its combination of sample
efficiency and performance [36]. Furthermore, inspired by the
work of [37], [38] and [39] we use a combination of the adap-
tive learning rate optimizer called Adam and a linear decaying

11

Reinforcement learning
module

Evaluating RL agent

Multiprocessing

———>
s . —

ocket cation o
module (TCPClient) ———————
—

Speed,Vi,i[k]
Observation, O,[k]

Vim [k]vSpccd
0, [k],Observation

Fig. 8: Medium-level interaction framework of RL module
shown in Fig. 5

learning rate schedule. Additionally, a hyperparameter study
using Optuna is conducted to optimize training performance.
The tuned hyperparameters and the findings of this study are
presented in in Appendix F.

B. Ablation Study

To test the effectiveness of the proposed methodology
outlined in Section IV, we conduct an ablation study that
compares three policies trained using different versions of
the reward function. Specifically, this study investigates the
impact of sparsity in rewards and the encouragement of smooth
control within our model. The ablation study is performed
using our randomized scenarios, as defined in Section IV-E,
on the following three cases.

o Case 1: Sparse rewards

In this case, we use the reward function as defined
in (12). It can be described as sparse, because the
corresponding rewards are computed from the number of
lost products, denoted by Pj[vp], the number of empty
boxes exiting the machine, denoted by B.[vp], and the
maximum allowed acceleration, denoted by ap maa-
As the learning agent improves its performance, the
corresponding rewards become sparser, making it more
challenging to assign credit due to the need to connect
long sequences of speed changes to their respective
future rewards.

Case 2: Sparse rewards and smooth control

In this case, the reward function is slightly changed
to encourage smooth control. By setting the maximum
acceleration, ap maq, in (12) to zero, every speed change
is penalized. The reward function becomes:

= — Htprod * Plvpk], k] — tyor - Belvp(k], K],
+p(vp).
with p(vp) defined in (13).

(16)

o Case 3: Dense rewards and smooth control
In this case, the reward function is the same as in Case
2, plus the exponential function f(x) (14), which guides
the agent away form constraint violations. The reward
function becomes:

T = — Uprod * PZ[UB [k], k] — Mbog * Be [UB [k], k],
+p(vs) + f().

Table I presents the results of the ablation study for the
three cases. We use the mean and standard deviation of several
indicators as metric for comparison. First of all, two indexes
of the OEE industry standard metric i.e., performance (2)
and quality (3) are used. Performance reflects the quantity
of supplied products that the machine successfully processes
by packing them into boxes. Quality represents the quality
of the outgoing boxes in terms of filling rate. According to
the requirements stated in Section III-A performance must be
greater than or equal to 99.8% and quality must be equal
to 100% i.e., no partially filled or empty box may leave
the machine. In addition, we include three capacity metrics
to provide further context on the machine’s productivity i.e.,
number of lost products, supplied products and packed boxes.
Next, two control input metrics are used: the mean box belt
acceleration, which indicates the smoothness of the control
input, and the scaled code execution time, which represents
the time required for computing the control input expressed
in code execution time per simulated second of the machine’s
operation. In order to prevent any bias introduced by the
different complexities of the problem during a simulation, the
code execution time is defined as the time between start and
end of the simulation divided by the simulated operating time
of the machine. Last, the three cases are compared on their
degree of constraint satisfaction regarding performance, the
number of empty and partly boxes leaving the machine and
maximum box belt acceleration.

For each case the corresponding policy is trained on 6827
simulations of 1800 simulated seconds, equivalent to approx-
imately 142 days of machine operation, using the randomized
scenarios as explained in Section IV-E. The training time
for each learned policy is approximately 9 hours, when us-
ing maximum parallelized simulations on a Intel Core 11th
Generation i7-11850H Processor. After training, each policy
is evaluated on 48 simulations of 1800 simulated seconds
and a step size of 0.75s, equivalent to a 24-hour machine
operation, to determine the means and standard deviations
presented in Table I. Although the time step for controlling the
belt speed can be considered relatively large, our experiments
demonstrated that this step size yielded good performance,
and decreasing the step size to increase the policy inference
frequency would only result in longer simulation calculation
times.

From Table I we can conclude that the mean performance
is comparable and above the required performance for each
case, according to the company’s standard. The quality of the
output is equal to 100 %, which means that all boxes are
packed with the required number of products. As a result, all

a7

12

TABLE I: Comparison of policies trained with sparse rewards,
dense rewards and smooth control encouragement on simu-
lated randomized inflow data

Case
Metrics: 1: Sparse reward 2: Sparse reward 3: Dense reward
Mean (Std.)
& smooth control & smooth control

>
E Performance® [%] 99.97 (0.019) 99.96 (0.028) 99.96 (0.022)
Q
'§ Quality® [%] 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
&
= Lost products 2.46 (1.34) 2.88 (1.99) 2.52 (1.65)
é Supplied products 7126.79 (34.20) 7127.22 (46.54) 7135.71 (44.16)
<
© Packed boxes 1424.33 (6.67) 1424.69 (9.09) 1426.42 (8.74)
=)) 23.27.1073 248.1073 8.59-1073
2 Mean a'g[m/s*] . . .
£ (0.79-1073) (0.11.103) (0.48-1073)
)
= Code execution
3 11.11 (0.09) 13.53 (0.50) 11.36 (0.42)
© timed [ms/s]
o Performance >99.8% v’ v’ v’
% Empty boxes = 0 v’ v’ v’
% Fartly filled boxes = 0 v’ v’ v’
°l 9% <aBmas v v v

2(Number of packed products / total supplied products)*100%.

b (Number of packed boxes / total supplied boxes)*100%

© Box belt acceleration

d Code execution time between start and end of single simulation [ms]
/ simulated operating time of machine [s].

€ If zero constraint violation is obtained for each of the 48 simulations.

three cases obtain full constraint satisfaction in each simulation
with the simulated randomized scenarios for the performance,
empty box and partially filled box constraint in Table I.
Analysis of the capacity metrics reveals that Case 3 exhibits
a slightly higher mean number of packed boxes and supplied
products, with slightly lower lost products compared to Case
2. However, the difference between the two cases is negligible,
and thus, not reflected in the mean performance metric. Addi-
tionally, the high standard deviations of the capacity indicators
in relation to their means limit their interpretability.

Furthermore, the mean box belt acceleration is the lowest
for Case 2, with smooth control encouragement by use of the
penalty function, and the highest for Case 1, without smooth
control encouragement. Case 3, with the addition of an expo-
nential function to convert sparse rewards to dense ones, falls
in between. The low standard deviations for this indicator in
relation to their means, suggests that case 2 increases smooth
control the most. Additionally, all cases satisfy the maximum
acceleration constraint, for each simulated scenario. Moreover,
the second control input metric i.e., the code execution time,
shows an increase for Case 2 with respect to cases 1 and 3.
Given the low standard deviations of this indicator in relation
to their means, it is likely that the reward function for Case
2 is slightly more difficult than the other cases. In addition,
code execution time is highly influenced by the underlying
hardware while evaluating; therefore, the metric is meant for
comparison only.

Besides, encouraging smooth control with use of a penalty

function, other experiments were performed to obtain smooth
policies. Appendix E discusses the effects of a low pass
Butterworth filter.

Given that the ablation study results do not show any
improvement in performance or quality for Case 3 compared
to Case 2, and considering that Case 2 exhibits the lowest
mean acceleration, we focus on validating only Cases 1 and
2 on real-world data in the following section.

C. Validation with Real-World Data

In this section, we present the validation of the learned
policies from cases 1 and 2 in realistic scenarios by using
real-world product inflow data. We compare the RL solutions
with the company’s heuristic-based engineered solution. As
outlined in Section I'V-E, the availability of real-world product
inflow data is limited. Therefore, we perform training using the
simulated randomized scenarios, as discussed in the ablation
study, and validate performance of the learned policies in
realistic scenarios leveraging real-world data.

We employ the same metrics as in the ablation study and
refer to Section V-B for the definitions of cases 1 and 2. The
baseline solution is defined as follows:

o Heuristic-Based Engineered baseline:

The company’s current robotic packaging machine uses
a heuristic-based engineered method to regulate the box
belt’s speed. This method has been employed for several
years, making it a suitable benchmark for this research.
A notable benefit of this baseline is its ability to use
additional rescheduling during operation, as explained in
section IV-B. In contrast, the RL solution does not pos-
sess this capability. Consequently, our proposed method
has a different and potentially smaller solution space than
the baseline.

Table II presents the results of the experimental validation of
the learned policies simulated with our proposed method using
real-world product inflow data. The metrics are computed
using seven realistic scenarios of variable machine operating
time containing 75.5 minutes of representative real-world
data. On all metrics, except the mean box belt acceleration,
both RL solutions show similar results. Both solutions have
zero constraint violations, for each simulation with real-world
scenarios, regarding performance, partly filled boxes, empty
boxes and maximum box belt acceleration. However, the mean
box belt acceleration has strongly decreased by encouraging
smooth control. This effect was seen in the ablation study as
well. Fig. 9b shows the speed profile with (orange line, Case 2)
and without (gray line, Case 1) smooth control encouragement
for the product inflow data shown in Fig. 9a. In the marked
regions 1, 2 and 3, the learned policy slowly decreases the box
belt speed for drops in product inflow.

Since the smoothness of the second policy (Case 2) makes
it more appropriate for real-world scenarios, we continue the
analysis comparing the heuristic-based engineered baseline
with this RL solution only.

Contrary to the RL solution, the baseline violates the
constraint on performance and maximum box belt acceleration

13

TABLE II: Validation of two policies trained with reinforce-
ment learning and the heuristic-based engineered baseline
solution using real-world inflow data

Case
Case 2
. 1: RL with 2: RL with Heuristic
Metrics: Vs,
Mean (Std.) sparse reward sparse reward, baseline ¢
Baseline
smooth control
2
Z| Performance® [%] 99.94 (0.030) 99.94 (0.077) 99.31 (0.22) +0.63%
Q
'%s Quality® [%] 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)
&
Lost products 1.86 (1.73) 1.28 (1.58) 19.00 (15.64) -93.26%
> 2792.71 2792.71 2792.71
5 Supplied products
§_ (2039.84) (2039.84) (2039.84)
© 558.14 558.29 553.29
Packed boxes
(407.75) (407.91) (403.55)
" 5 28.28-1073 321-1073 18.55-1073
2 Meanaf [m/s?] 5 3 3 -82.70%
g (0.85-107°) (0.25-107°) (1.07-107°)
o
= Code execution?
5] 10.09 (0.45) 9.92 (0.49) 18.02 (0.60) -55.05%
o time [ms/s]
o | Performance > 99.8% v’ v’ X
E Empty boxes = 0 v’ v’ v’
% Partly filled boxes = 0 v’ v’ v
@]
aCB < 2B, max v v’ X

#(Number of packed products / total supplied products)*100%.
b(Number of packed boxes / total supplied boxes)*100%
© Box belt acceleration
d Code execution time between start and end of single simulation [ms]
/ simulated operating time of machine [s].
€ If zero constraint violation is obtained for each of the seven simulations.

f Effectiveness of RL policy with smooth control (case 2) with respect to baseline (case 3).

in each simulation with real-world data, as presented in Table
II. The former becomes clear in the metric of the mean perfor-
mance, which is 0.49% lower than required. The RL solution
increases the mean performance by 0.63% and decreases the
mean number of lost products by 93.26% with respect to the
baseline solution. Note that the standard deviation for the latter
is quite high, which is caused by the high variability in the
machine’s operating time in each recorded real-world scenario.
The same holds for the supplied products and packed boxes.
Those capacity metrics are displayed to provide context for
the productivity metrics.

Furthermore, the mean box belt acceleration is decreased
by 82.70% with respect to the baseline solution, as presented
in Table II. Fig. 9c shows the speed profile of the RL solution
with smooth control (orange line, case 2) and the baseline
solution (blue line) for the product inflow data shown in Fig.
9a. In the marked fragments 1, 2, 4, and 5 the box belt
speed decreases drastically for the baseline solution, while the
RL solution shows a much smaller and smoother decrease
when product inflow drops. Moreover, those drastic speed
fluctuations of the baseline are accompanied by an increase in
product loss, which is denoted by the dashed lines (see markers
1 and 4). In total, 30 products are lost in the presented fragment
for the baseline, and zero products for the RL solution. Even

for out-of-distribution product inflows (< 120) no products are
lost for the RL solution (see marker 2 Fig. 9a). Furthermore,
the RL solution provides not only speed changes with smaller
amplitude compared to the baseline, but also with a lower
frequency, which together smoothens control (see marker 5).
Finally, we observe an intriguing distinction between the RL
solution and the baseline; the latter accelerates to higher speeds
than the former during the intervals between the sudden speed
fluctuations.

In addition, the mean code execution time is decreased by
55.05% compared to the baseline solution, as demonstrated in
Table II. Given the low standard deviations of this indicator
in relation to their means, it is likely that the RL solution
computes its control inputs more efficiently than the baseline
solution.

VI. DISCUSSION

First, we discuss the results of the ablation study, followed
by the results of the validation study using real-world data.
Finally, we present the limitations of our work and recom-
mendations for future work.

A. Ablation study

From the results of the ablation study we conclude that with
our proposed method, RL can be used to learn appropriate
box belt speeds for the simulated robotic packaging machine
using our randomized scenarios as introduced in Section
IV-E, while having zero performance and quality constraint
violations. Moreover, in line with our expectations penalizing
speed changes with an appropriately small amount encourages
smooth control without violating constraints. Although [7],
[31], [32], [40] - [42] state that learning policies effectively
for sparse and/ or delayed objectives is difficult for learning
agents, there is no empirical evidence to suggest that the non-
delayed dense rewards, enforced by the penalty function for
smooth control, outperform delayed sparse rewards arising
from the lost products and boxes.

Furthermore, the conversion of the sparse rewards, imposed
by the lost products and boxes (Case 2, Table I), into dense
rewards (Case 3, Table I) has not improved the performance
but does have degraded control smoothness. We potentially
altered the optimality of the policies, which is a common
problem in reward shaping [43] and explains the observed
degradation. On the other hand, the code execution time
has improved which suggests that guiding the agent away
from constraint violations helps to decrease complexity.
In addition, having an reward function with a weighted
linear combination of sparse and dense rewards complicates
the tuning of the weights for the system designer. We
expected that learning from delayed sparse rewards when
subjected to non-delayed dense rewards is challenging for
the learning agent. However, the results of the ablation study
show that the agent is able to improve control smoothness
without reward shaping, while maintaining zero constraint
violations and high performance. It should be noted that
a slight increase in packed boxes is observed for Case 3.

14

Real-world inflow data fragment

Product inflow [products/min]

Lane 1

—— Lane2

500 600 700 800
Time [s]

(a)

300 400

Speed profile fragment obtained with reinforcement learning policies

with and without smooth control encouragement using real-world inflow data
0.55 —T T T T T

2

i3l
i3
P

P s

| ! !

0504 | ||
LA

Box belt speed [m/s]

Smooth (case 2)

Non-smooth (case 1)

500 600 700
Time [s]

(b)

200 300 400 800

Speed profile and lost products fragment obtained with reinforcement learning policy
and heuristic-based engineered baseline using real-world inflow data

| H”rh Dhyyth
T

S
n
by

. 60
14 24

Wk

3

“h

4

L

5

[
7S
=3

50

al

-

nT|“||

T

0.35 4 ' ‘

S
=
&

I
=3

S
=
S

w
=3

Box belt speed [m/s]

S
[
=3
T
I~}
S

Number of lost products [-]

0254 ¢+ v [v b eemmeee— —]

0.20 4 !

T T T
500 600 700

Time [s]

T T
200 300 400 800

—— Speed heuristic baseline === Lost products heuristic baselinc

Speed smooth reinforcement learning Lost products smooth reinforcement learning

©)

Fig. 9: Fragment of real-world inflow validation data with
corresponding speed plots and number of lost products for
the three cases listed in Table II.

However, this can be explained by the stochasticity of the
product supply: more supplied products result in more packed
boxes, when assuming a performance of 100%. This limits
the interpretation of these metrics. Moreover, the standard
deviations of the lost products, supplied products and packed
boxes indicate a strong overlap between the distributions of
these indicators, therefore no clear difference can be observed.

B. Validation study

The validation study conducted using real-world product
inflow data shows that our proposed framework effectively
learns appropriate box belt speeds for a simulated robotic
packaging machine in realistic scenarios. This is achieved

without any violation of performance, quality, or acceleration
constraints, as evident from Case 2 in Table II. We can, there-
fore, state that the proposed scenario randomization method
discussed in Section IV-E successfully overcomes the covariate
shift between the simulated scenarios used for training and
the realistic scenarios used for validation. Furthermore, the
effects seen in the ablation study are observed with real-world
data as well: the RL agent learns to reduce the noise caused
by unnecessary large speed changes while maintaining full
constraint satisfaction and high performance (Case 2, Table II
and Fig. 9b). We can, therefore, state that the smooth control
encouragement using the penalty function (13), successfully
damps the unnecessary oscillations.

Furthermore, the absence of these unnecessary oscillations,
facilitates a more interpretable control input, which is a com-
mon challenge in real-world RL [7], and reduces unnecessary
maintenance of the box belt. In [44], [45], and [46] a similar
strategy for limiting control effort is used to avoid oscillatory
control behavior when using continuous actions and PPO.

The improved interpretability of the learned policy allows
us to validate our initial expectations. We had expected the
policy to oscillate to some degree because lower product
inflows necessitate a lower constant box inflow, leading to
lower box belt speeds, and vice versa. As seen from the
product inflow data presented in Fig. 9a, there are oscillations
to some extent, and this is indeed reflected in the final learned
policy. Specifically, the decrease in box belt speed observed for
drops in product inflow, marked as regions 1, 2, and 3 in Fig.
9a and Fig. 9b, confirms this expectation. The RL solution
even generalizes well to out-of-distribution product inflows
(marked region 2 Fig. 9). Policies were trained for inflows
between 120 and 135 products per minute per lane, while the
filtered real-world data captured inflows between 115 and 140.
In Appendix A, we discuss the filtering method used to remove
the noise caused by machine startups and product inflow stops
resulting in product inflows lower than 75 products per minute.
These scenarios are not considered as normal operation of
the machine according to the company’s standards. While this
filtering method effectively removes these edge case scenarios,
it is important to note that such scenarios can occur in practical
settings. Therefore, additional training with real-world data,
when available, would be necessary in order to deal with such
situations.

From Table II we conclude that the RL solution with
smooth control (Case 2) increases performance by 0.63%,
decreases the mean box belt acceleration by 82.70% and
decreases code execution time by 55.05% while having zero
constraint violations compared to the baseline solution. The
baseline solution violates the constraints on performance and
maximum box belt acceleration on each simulation using
real-world scenarios. This makes the RL solution not only
better performing, but also faster. Fig. 9c demonstrates the
behaviour of the RL solution with smooth control compared to
the baseline solution. In the marked fragments of Fig. 9b, the
box belt speed decreases drastically for the baseline solution
in order to save boxes from leaving partly or unfilled i.e., a

15

critical situation, resulting in increased product loss which is
denoted by the dashed line. This is caused by the corrective
behaviour of the baseline solution; it adapts the box belt
speed when a critical situation already occurs, resulting in
inevitable product loss. In contrary, the RL solution shows a
much smaller and smoother response to variations in product
inflow. Due to its learned predictive behavior regarding those
critical situations, it is able to smoothly adapt the speed
with the use of product inflow data and the relative box
and product locations on the conveyor belts, prior to the
occurrence of critical situations. Therefore, we state that the
RL solution prevents instead of corrects critical situations
caused by the varying product inflow present in the real-world
data. Furthermore, the baseline speeds up to higher values
than the RL solution in between critical situations, which is
in line with our conclusions; the RL solution keeps the speed
lower also in between critical situations to prevent these from
happening. This emphasizes the complexity of engineering
stable and generalizable heuristics for such highly complex
real-world systems.

C. Limitations and recommendations

This research has uncovered some interesting industry-
specific challenge of real-world RL. Control delays [25] and
other types of system delays [7] which make the adoption of
RL in the real-world challenging, have been widely explored
in research during the past 10 years. All, with the aim of
reducing the increased complexity of the credit assignment
caused by those delays. However, when interfering our RL
control with the rest of the machine’s complex control scheme
(e.g., task scheduler), we even introduced additional planned
action delays to overcome a much bigger problem imposed by
policy inference as explained in section IV-B. This emphasizes
the importance of RL research in actual industrial applications.
Although our proposed framework effectively addresses the
issues caused by the combined control and planned delay with
observation matching, the presence of these factors still poses
limitations on our research. Specifically, because the agent’s
control actions must occur in the future (i.e., the planned
delay) to maintain a fixed speed profile during schedule
execution, any deviations between the agent’s estimated future
observations and their actual values cannot be corrected. Pos-
sible solutions are adding Gaussian noise to the observations
as done in [47] or adapting the rescheduling procedure to
allow external controlled speed changes in real-time. The latter
solution can be applied with the currently proposed method,
even with a single retraining iteration, because the learning
agent is not aware that its actions and matching observations
occur in the future.

Moreover, the proposed methodology obtains zero con-
straint violations by encouraging constraint satisfaction. Nev-
ertheless, no formal guarantees can be given. It is worth
noting that the company’s current heuristic-based solution
for regulating the box belt speed does not provide formal
guarantees either.

Additionally, this research is conducted with the use of
a simulator and prerecorded real-world product inflow data.
The real-world data only partially bridges the sim-to-real gap
[5] by offering replayed realistic scenarios in simulation. By
addressing other aspects of the sim-to-real gap, such as system
delay variability or issues with executing schedules due to
communication problems with the Delta robots, the policies
learned in simulation can be transferred to the physical robotic
packaging machine. Domain randomization is a common
approach to deal with such variability between simulation
and reality. By providing enough variation in the simulator’s
parameters the real world appears as just another variant [35].
The aim is to enable the learning agent to generalize to real-
world data, while fully trained in simulation. Other approaches
for bridging this gap are meta-learning, domain adaptation,
knowledge distillation, imitation learning and robust RL [5].

Although, successful training is obtained with scenario
randomization to prevent covariate shift as explained in Sec-
tion IV-E. We recommend gathering more real-world product
inflow data in order to train with a combination of scenario
randomization and real-world data, as done in [48]. Novel
situations that are hard to capture with scenario randomization
solely for reasonable training times, such as product inflow
stops or machine startup issues, are then added to the training
data set. On the other hand, collecting enough real data from
the machine takes time. In fact, the learned policies were
trained on approximately 142 days of machine operating time.
Therefore, scenario randomization can be used on top to fur-
ther increase generalisation for quick adoption of the proposed
data-based predictive RL solution. In addition, randomized
perturbations can be added to the training data to increase
robustness of the policies [49] [50].

As discussed earlier, the results of the ablation study suggest
the learning agent did not benefit from the additional exponen-
tial function f(x) (Case 3, Table I), which guides the agent
away from constraint violations. Possible explanations are: the
exponential function alters the optimality of the original MDP
or the products and boxes are scheduled sooner, but this does
not affect the performance of the machine. The former can
be solved by using potential-based reward shaping [43], [32].
The potential-based reward function can be of the form:

F(z) =~f (zk +1]) = f(z[k]),

with f(x) defined in (14).

Furthermore, by optimising the underlying hardware for
training in simulation e.g., by using GPU-offloading or server
grade CPUs with a larger number of cores/threads, training
time can be drastically improved. As a result, more extensive
tuning studies can be performed to further increase perfor-
mance.

At last, future research should investigate if this robotic opti-
mization problem benefits from Multi-Objective RL (MORL)
using sets of Pareto dominating policies [51]. In which the
overall idea is to learn a policy for each objective and find
the Pareto front of the combined policies. This way no
information loss occurs that comes with chaining multiple

(18)

16

objectives into one objective function. Moreover, this approach
allows adapting the agent’s cautious behavior near constraint
violations. The agent can for example comprise performance
for increased certainty in constraint satisfaction.

VII. CONCLUSIONS

In this work, we investigated the feasibility of reinforcement
learning in the robotic industry by solving a complex robotic
optimization problem from the food packaging industry.

As the manufacturing industry moves towards greater flexi-
bility, productivity, quality, and mass customization, heuristic-
based solutions for solving complex optimization problems in
real-world industrial robotic machines often fall short of meet-
ing these demanding requirements. This is particularly relevant
in challenging scenarios, such as varying product inflow, which
result in revenue drops, waste and critical problems in the
following stages of the manufacturing process. Furthermore,
such solutions often need to be customized and pre-engineered
making them inflexible and the development time-consuming.
Additionally, highly complex optimization problems often
require advanced and time-consuming calculations that must
be performed in real-time during machine operation, which
can negatively impact productivity. In contrast, RL has the
potential to address these challenges by providing flexibility,
real-time performance, generalization, and the ability to learn
data-based predictive behavior, as outlined in the introduc-
tion. However, scientific research in this field is confined to
the academic environment, as a result, challenges that arise
on complex industrial robotic systems remain unaddressed.
Therefore, we propose an RL framework designed to optimize
the box conveyor belt speed of a secondary robotic packaging
machine in simulation, using real-world product inflow data,
in order to maximize the machine’s productivity.

We demonstrated that the proposed framework achieves
zero constraint violations in each simulation using real-world
product inflow data. Contrary to the heuristic-based baseline,
the proposed framework complies with all the given require-
ments set by the industry. In the validation study, performance
surpasses the required 99.8%, the quality maintains at 100%
and the accelerations are kept in the feasible range. This means
that 99.8% of the supplied products are packed in a box,
and no boxes leave the machine empty or partially filled.
Compared to the heuristic baseline, our proposed solution
improves performance by 0.63%, while also decreasing the
mean acceleration and code execution time by 82.70% and
55.05%, respectively.

We conclude that the framework is able to deal with control
delays, sparse delayed rewards and policy inference in the
complex interdependent control scheme of the task scheduler.
With the proposed method predictive behavior for varying
product supply is learned, while satisfying the machine’s
performance and quality constraints. The design encourages
smooth control of the conveyor belt, reducing maintenance and
increasing interpretability of learned policy. Additionally, it
requires fewer time-demanding decisions during the operating

time of the machine. Moreover, it handles the limited avail-
ability of real-world product inflow data well by using solely
simulated product inflow data and scenario randomization for
training.

Future work should investigate how the learned policy
computed with the proposed framework can be transferred
to a physical robotic packaging machine. While this research
has partially bridged the sim-to-real gap through the use of
scenario randomization and real-world product inflow data,
further efforts are necessary to address the remaining aspects
of this gap.

ACKNOWLEDGMENT

This project is conducted in collaboration with BluePrint
Automation. They gave full access to the machine’s simula-
tor and task scheduler’s source code and provided practical
information regarding the food packaging industry. Their co-
operation is hereby gratefully acknowledged.

[1]

[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

REFERENCES

Ghobakhloo, Morteza. The future of manufacturing industry: a strategic
roadmap toward Industry 4.0.” Journal of manufacturing technology
management 29.6 (2018): 910-936.

Wyrwa, Joanna, and Anetta Barska. “Innovations in the food packaging
market: Active packaging.” European Food Research and Technology
243 (2017): 1681-1692.

BluePrint Automation, "Packaging Machines Manufacturer — Packag-
ing Automation — Blueprint Automation”. blueprintautomation.com.
https://blueprintautomation.com/en/ (accessed Jan 19, 2023).

BluePrint Automation, ”00510 SPIDER 300v BPA animation”, Unpub-
lished internal company document, 2022.

Zhao, Wenshuai, Jorge Pefia Queralta, and Tomi Westerlund. ”Sim-to-
real transfer in deep reinforcement learning for robotics: a survey.” 2020
IEEE symposium series on computational intelligence (SSCI). IEEE,
2020.

Zhu, Henry, et al. "The ingredients of real-world robotic reinforcement
learning.” arXiv preprint arXiv:2004.12570 (2020).

Dulac-Arnold, Gabriel, et al. "Challenges of real-world reinforcement
learning: definitions, benchmarks and analysis.” Machine Learning 110.9
(2021): 2419-2468.

Brunke, Lukas, et al. ”Safe learning in robotics: From learning-based
control to safe reinforcement learning.” Annual Review of Control,
Robotics, and Autonomous Systems 5 (2022): 411-444.

Garcia, Javier, and Fernando Fernindez. ”A comprehensive survey on
safe reinforcement learning.” Journal of Machine Learning Research
16.1 (2015): 1437-1480.

Liu, Yongshuai, Avishai Halev, and Xin Liu. "Policy learning with
constraints in model-free reinforcement learning: A survey.” The 30th
International Joint Conference on Artificial Intelligence (IJICAI). 2021.
Moriyama, Takao, et al. "Reinforcement learning testbed for power-
consumption optimization.” Methods and Applications for Modeling
and Simulation of Complex Systems: 18th Asia Simulation Conference,
AsiaSim 2018, Kyoto, Japan, October 27-29, 2018, Proceedings 18.
Springer Singapore, 2018.

Nian, Rui, Jinfeng Liu, and Biao Huang. A review on reinforcement
learning: Introduction and applications in industrial process control.”
Computers & Chemical Engineering 139 (2020): 106886.

Pane, Yudha P, et al. "Reinforcement learning based compensation
methods for robot manipulators.” Engineering Applications of Artificial
Intelligence 78 (2019): 236-247.

Dalal, Gal, et al. ”Safe exploration in continuous action spaces.” arXiv
preprint arXiv:1801.08757 (2018).

Pan, Xinlei, et al. “Risk averse robust adversarial reinforcement learn-
ing” 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 2019.

Rana, Krishan, et al. "Bayesian controller fusion: Leveraging control
priors in deep reinforcement learning for robotics.” arXiv preprint
arXiv:2107.09822 (2021).

17

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

[39]

[40]

[41]

[42]

Shyalika, Chathurangi, Thushari Silva, and Asoka Karunananda. “Rein-
forcement learning in dynamic task scheduling: A review.” SN Computer
Science 1 (2020): 1-17.

Liu, Chien-Liang, Chuan-Chin Chang, and Chun-Jan Tseng. “Actor-
critic deep reinforcement learning for solving job shop scheduling
problems.” Ieee Access 8 (2020): 71752-71762.

Zhang, Cong, et al. "Learning to dispatch for job shop scheduling
via deep reinforcement learning.” Advances in Neural Information
Processing Systems 33 (2020): 1621-1632.

Kim, Daewoo, et al. "Learning to schedule communication in multi-
agent reinforcement learning.” arXiv preprint arXiv:1902.01554 (2019).
Waschneck, Bernd, et al. ”Optimization of global production scheduling
with deep reinforcement learning.” Procedia Cirp 72 (2018): 1264-1269.
Castafieda, Luis Angel, Alberto Luviano-Judrez, and Isaac Chairez.
“Robust trajectory tracking of a delta robot through adaptive active
disturbance rejection control.” IEEE Transactions on control systems
technology 23.4 (2014): 1387-1398.

OEE Industry Standard, "OEE — Overall Equipment Effectiveness:
The OEE Industry Standard,” oeeindustrystandard.org.
https://www.oeeindustrystandard.org/v2011/ (accessed Feb. 10, 2023).
Otterlo, Martijn van, and Marco Wiering. “Reinforcement learning and
markov decision processes.” Reinforcement learning. Springer, Berlin,
Heidelberg, 2012. 3-42.

Schuitema, Erik, et al. "Control delay in reinforcement learning for
real-time dynamic systems: A memoryless approach.” 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 2010.
Freund, Robert M. “Penalty and barrier methods for constrained opti-
mization.” Lecture Notes, Massachusetts Institute of Technology (2004).
Bouteiller, Yann, et al. "Reinforcement learning with random delays.”
International conference on learning representations. 2020.

Frydenberg, Morten. "The chain graph Markov property.” Scandinavian
Journal of Statistics (1990): 333-353.

Koppen, Mario. "The curse of dimensionality.” 5th online world con-
ference on soft computing in industrial applications (WSCS5). Vol. 1.
2000.

Mousavi, Seyed Sajad, Michael Schukat, and Enda Howley. “Deep
reinforcement learning: an overview.” Proceedings of SAI Intelligent
Systems Conference (IntelliSys) 2016: Volume 2. Springer International
Publishing, 2018.

Plappert, Matthias, et al. "Multi-goal reinforcement learning: Challeng-
ing robotics environments and request for research.” arXiv preprint
arXiv:1802.09464 (2018).

Brys, Tim, et al. "Multi-objectivization of reinforcement learning prob-
lems by reward shaping.” 2014 international joint conference on neural
networks (IJCNN). IEEE, 2014.

Sugiyama, Masashi, and Motoaki Kawanabe. Machine learning in non-
stationary environments: Introduction to covariate shift adaptation. MIT
press, 2012.

Kaelbling, Leslie Pack, Michael L. Littman, and Andrew W. Moore.
“Reinforcement learning: A survey.” Journal of artificial intelligence
research 4 (1996): 237-285.

Tobin, Josh, et al. ’Domain randomization for transferring deep neural
networks from simulation to the real world.” 2017 IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS). IEEE, 2017.
Schulman, John, et al. ”Proximal policy optimization algorithms.” arXiv
preprint arXiv:1707.06347 (2017).

Liu, Zechun, et al. "How do adam and training strategies help bnns
optimization.” International Conference on Machine Learning. PMLR,
2021.

International Conference on Machine Learning. PMLR, 2021.
Hendrycks, Dan, and Kevin Gimpel. ”Bridging nonlinearities and
stochastic regularizers with gaussian error linear units.” CoRR,
abs/1606.08415 3 (2016).

Xiong, Ruibin, et al. ”On layer normalization in the transformer archi-
tecture.” International Conference on Machine Learning. PMLR, 2020.
Charlesworth, Henry, and Giovanni Montana. “Plangan: Model-based
planning with sparse rewards and multiple goals.” Advances in Neural
Information Processing Systems 33 (2020): 8532-8542.

Goecks, Vinicius G., et al. ”Integrating behavior cloning and reinforce-
ment learning for improved performance in dense and sparse reward
environments.” arXiv preprint arXiv:1910.04281 (2019).

Mohtasib, Abdalkarim, Gerhard Neumann, and Heriberto Cuaydhuitl.
”A study on dense and sparse (visual) rewards in robot policy learn-
ing.” Towards Autonomous Robotic Systems: 22nd Annual Conference,

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

[51]

TAROS 2021, Lincoln, UK, September 8-10, 2021, Proceedings 22.
Springer International Publishing, 2021.

Ng, Andrew Y., Daishi Harada, and Stuart Russell. "Policy invariance
under reward transformations: Theory and application to reward shap-
ing.” Ieml. Vol. 99. 1999.

Bghn, Eivind, et al. "Deep reinforcement learning attitude control of
fixed-wing uavs using proximal policy optimization.” 2019 International
Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2019.

Li, Lun, et al. ”Basic flight maneuver generation of fixed-wing plane
based on proximal policy optimization.” Neural Computing and Appli-
cations (2023): 1-17.

Jiang, Zifei, and Alan F. Lynch. ”Quadrotor motion control using deep
reinforcement learning.” Journal of Unmanned Vehicle Systems 9.4
(2021): 234-251.

Wang, Dawei, et al. ”A two-stage reinforcement learning approach for
multi-UAV collision avoidance under imperfect sensing.” IEEE Robotics
and Automation Letters 5.2 (2020): 3098-3105.

Kang, Katie, et al. “Generalization through simulation: Integrating
simulated and real data into deep reinforcement learning for vision-
based autonomous flight.” 2019 international conference on robotics and
automation (ICRA). IEEE, 2019.

Zhang, Huan, et al. "Robust deep reinforcement learning against adver-
sarial perturbations on state observations.” Advances in Neural Informa-
tion Processing Systems 33 (2020): 21024-21037.

Moos, Janosch, et al. "Robust reinforcement learning: A review of
foundations and recent advances.” Machine Learning and Knowledge
Extraction 4.1 (2022): 276-315.

Van Moffaert, Kristof, and Ann Nowé. "Multi-objective reinforcement
learning using sets of pareto dominating policies.” The Journal of
Machine Learning Research 15.1 (2014): 3483-3512.

APPENDIX

A. Filtering of Real-World Data

The filtering of the real-world data is performed in two
steps: prior to the evaluation of the trained policy and after
evaluation prior to the data analysis. In the first step low
inflows (< 75 [products/min]) corresponding to feeder startup
issues or stops in production appearing as noise in the real-
world data are filtered out. Algorithm 1 shows this filtering
method. Moreover, in the first 100s the simulator and task
scheduler are prone to startup issues, therefore the first 100s
of input data are duplicated. Which is cut off in the second
filtering step on the data gathered by evaluating the trained
policy on the filtered real-world input data. After filtering 75.5
minutes of real-world input data is left for data analysis.

Algorithm 1 Filtering real-world product inflow data

Input: Vector of detected product structs
Output: Vector of filtered detected products structs

R A S ol e

—
4

. Initialisation : minimum product inflow, ¢
for each product € Detected products do
tdetect < product detect time
Ldetectprevious < previous product detect time
At tdetect — tdetect;m“evious
if (At < 60/¢) then

Filtered detected products <— product(?gescct - delay)
else

delay < delay + At
end if
return Filtered detected products

B. Parameters

Table III provides the parameters used in this research,

except for the PPO hyperparameters, which are discussed in

Appendix F.
TABLE III: Parameters

Name Value Unit
General:
RL method PPO
RL timings:
RL time step (A k) 0.75 s
Action delay 1.2 s
Planned delay 12 y
Scheduling time step® 0.15 s
History length 30 RL time steps
Speeds:
Product belt speed v p 0.64 m/s
Minimum box belt speed v g 1 in 0.096 m/s
Maximum box belt speed v B | a e 0.82 m/s
Control precision 1074 m/s
Machine configuration:
Cl1 1.250/v p s
C2 C1+ 1.540 s
C3 7.789/v p s
C4 6.963 m
Product detection (x-axis) -2.600 m
End of horizon (x-axis) -1.600 m
Box detection (x-axis) -1.774 m
Checkout (x-axis) 8.500 m
Center of workspace robot 1 (x-axis) 0.000 m
Center of workspace robot 2 (x-axis) 1.638 m
Center of workspace robot 3 (x-axis) 3.276 m
Center of workspace robot 4 (x-axis) 4914 m
Length of workspace robot 1 and 2 (x-axis) 0.700 m
Length of workspace robot 3 (x-axis) 0.650 m
Length of workspace robot 4 (x-axis) 0.550 m
RL features:
Maximum value x4 0.632 m
Maximum value @41 0.266 m
Maximum value &, 042 0.266 m
Training:
Number of simulators 16
Random seed range for environments [1015-1030]
Number of simulations (training) 6827
Simulation duration (training) 1800 s
Maximum product inflow 120 products / minute
Minimum product inflow 135 products / minute
Ablation study:
Number of simulations 48
Simulation duration 1800 s
Maximum product inflow 120 products / minute
Minimum product inflow 135 products / minute

Validation study:
Number of simulations 7
Simulation duration of seven scenarios [747, 1023, 1755, 576,

465, 396, 267] s

Maximum product inflow 115 products / minute
Minimum product inflow 140 products / minute
Threshold minimum product inflow
filtering ¢ 75 products / minute
Constraints:
q 1
¢ 1

4-(VB max —YB,min)
Hprod = Mprod 1 = Hprod 2 1
Hbox 10
Hacc i

2 The time between scheduling cycles, cach of which computes a single schedule as defined in 3.

C. Low-Level Modules with Pseudocode

The lower-level modules, represented by the blue blocks
in Fig. 8, all have their own low-level interaction framework
with pseudo code in this appendix. The experiment design,
information writer, reinforcement learning, custom gym en-
vironment, socket communication and callback module are
shown in respectively Fig. 10, 11, 12, 13 & 14, 15 and 16.

Experiment design

init_observation(experiment number):

Select an observation space depending on the experiment number, for example:
spaces.Box(low,high,shape,dtype)
spaces.Dict(dict(spaces.Box(low,high,shape,dtype)))

observation space

init_action(experiment number):
Select an action space depending on the experiment number, for example:
spaces.Discrete(number_of_discrete_actions)
spaces.Box(high, low, shape, dtype)
action space

select_state(experiment number, observation, product inflows):
Select state features depending on the experiment number.
Normalize each state feature extracted from the observation and product inflows
in range [-1,1] with linear interpolation
history > current time:
Add default values until feature length is equal to initialized shape of feature
state = dict(all features with history)
state

select_reward(experiment number, observation):
Extract state and constraint violations regarding missed products, empty boxes
and partly filled boxes from the observation
Select reward function depending on the experiment number.
reward = reward_function(state, constraint violations)
reward

select_action(experiment number, observation)
Select type of action depending on the experiment number.
discrete actions:
speed = f(action)
speed

speed = denormalized and discretized action to range
[minimum speed, maximum speed] with linear interpolation
speed

save_state_action_reward(experiment number, save path):
Save the state, action and reward of the selected experiment

by writing them to a file in the folder of the current experiment

Fig. 10: Experiment design

Information writer

check_and_write_simulator_settings()
Check feasibility
Write settings to simulator file

write_experiment_info()
Write training/evaluation/validation info to file in specified log folder
Write State, Action, reward of selected experiment to same file

calculate_performance_metrics():
Calculate the mean and std for each performance metric of tabel | and I/

constraints_satisfied()
Calculate the number of constraint violations for each constraint:
partly boxes, empty boxes, product efficiency and maximum acceleration.

save_final_results()
calculate_performance_metrics()
constraints_satisfied()
Write performance metrics to file
Write data for plots in paper to file

write_training_time()
Write training time to file

Fig. 11: Information writer

19

RL module

information writer check_and_write_simulator_settings(),
write_experiment_info(), save_final_results(), write_training_time()

Callbacks SaveBestTraining(), EvaluateTrial(), Tensorboard()

make_env()
Register the custom gym environment
Make the custom gym environment
Add random seed to environment
Wrap environment in monitor wrapper

sample_params()
Sample a set of hyperparameters for current trial with:
trail.suggest_int()/_float()/_categorical()

objective()
Sample and update hyperp with sample_p ()
train(hyperparameters)

train ()
env = SubprocVecEnv([make_env() for number of environments to train or tune], 'spawn’)
callbacks = [SaveBestTraining(settings), EvaluateTrial(settings), Tensorboard(settings)]
model = method.load('MultilnputPolicy', env, hyperparameters, settings)

try:
model.learn(training_budget, callbacks, settings)
except:
simulator and/or scheduler executable is still running:
psutil.Process(processID).kill()

env.close()
model.save(model_save_name)
write_training_time()

trial_is_pruned:
exception

last_mean_reward

__name__='_main__"
Define simulator settings
Simulation time
Scheduled delay
Scheduling type: if the baseline or RL solution is used.
Validate policy: if simulated data is used or real-world data
Communication settings: HOST and PORT

Define train/evaluate/validate for experiment(s)
Method: define which model-free RL method to use (e.g. PPO)
TRAINING: if training or evaluation of of policy
Experiment: list of experiment number to train, evaluate or validate
Number of episodes to train, evaluate or validate
Number of environments to train, evaluate or validate with (= # logical processors)

Define OPTUNA settings
OPTUNA: if hyperparameters should be tuned
Study name
Number of trials
Number of jobs
Number of startup trials
Number of warmup steps
Evaluation frequency during trial
Number of environments used for evaluations during trial
Number of episodes used for evaluations during trial

Define default hyperparameters
Learning rate, batch size, activation function, ...

check_and_write_simulator_setting()
write_experiment_info()

OPTUNA:
study = optuna.create_study(sampler(), pruner(), settings)

try:
study.optimize(objective(), settings)
except:
study.trials_dataframe().to_csv() #write report

study.trials_dataframe().to_csv() #write report

plot_optimization_history()
plot_importance_of_hyperparameters()

TRAINING:
train(default hyperparameters)

remove registered custom gym environment
env = SubprocVecEnv([make_env() for number of environments to evaluate or validate]

, 'spawn’)
model = method.load(name_of_saved_model)

try:
mean_reward, std_reward = evaluate_policy(model, env, settings)
final_results = env.env_method('print_evaluation_results')
env.close()
save_final_results()

except:
env.close()

print the error

Fig. 12: The RL module

class:

_gym_envir (gym.Env)

Define class variables

experiment design init_observation, init_action

Tracker array to keep track of state, actions and rewards at each time step during episode
Tracker array to keep track of performance metrics and constraint violations per episode

__init__(setting provided at registry):
super(custom_gym_environment,self).__init__() #Acces inherited methods
from the main OpenAi Gym class

Declare instance variables, for example:

Experiment number

Environment ID

Communication port and host

Time step

Save path for files

Observation space = init_observation(experiment number)

Action space = init_action(experiment number)

VALIDATION

EVALUATION

reset_class_variables()

reset_class_variables()
Reset the class variables that keep track of the state, action and reward
when a new custom gym environment is registered or when a new episode is started.

get_product_inflow():
VALIDATION:
Open log files with real-world inflow data
Create array of product inflow data per lane from log file

bpen settings file for simulator
Compute product inflow data with product influx per lane and influx
time intervals from simulator settings file.

extract_limits_for_plots():
Calculate limits for speeds (action) and state features for interpretation
of speed and state plots after training.

reset(): #Overrides reset() function from main OpenAi Gym class
previous simulation is still running:
process.kill() the simulator and scheduler executable

processes not yet killed properly:
time.sleep(0.1)

reset_class_variables()

Start new simulation for given experiment number and communication port with:
subprocess.Popen()

Create a TCPClient() communication object with the host and port with:
RLClient = TCPClient(Host, Port)

Reset the class variables with:

RLClient = RLClient.reset_class_variables()

Make connection with the simulator with:

RLClient.make_connection()

try:
Receive observation from server of simulator with RLCLient.recv_data()

except socket.error:
Print the error

observation received:
Fill tracker arrays to keep track of state, action, rewards
Terminate all child processes
get_product_inflow()

state = select_state(experiment number, observation, product inflows)

state

Fig. 13: Custom gym environment class (part 1)

step(action): #Overrides step() function from main OpenAi Gym class
Convert the proposed action to speed with:
speed = select_action(number of experiment, observation, action)

Send message with proposed speed to the simulator with:
RLClient.send_data(speed, length of message in bytes)

Receive observation from server of simulator with:
RLClient.recv_data()

disconnect message is received from simulator:
DONE = True

Fill tracker arrays to keep track of state and action
reward = select_reward(number of experiment, observation)
Fill tracker array to keep track of reward

DONE and EVALUATION:
Calculate acceleration during episode
Fill tracker arrays to keep track of of performance metrics and
constraint violations per episode

state = select_state(experiment number, observation, product inflows)
state, reward, DONE

print_evaluation_results():
extract_limits_for_plots()
Plot actions, state features and constraint violations
Save all plots

all tracker arrays

close(): # Overrides close function from OpenAi Gym class.
simulation is still running:
Kill the simulator and scheduler executable with:
process.kill()

processes not yet killed properly:
time.sleep(0.1)

20

Fig. 14: Custom gym environment class (part 2)

class: TCPClient():

Define class variables
Number of send messages

__init__(host, port):

Declare instance variables:
address = {host, port)
connected = false
Socket = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
observation_msg = 240
action_msg = 241
disconnect_msg = 242

reset_class_variables()
Reset the class variables when a new TCPClient object is created

make_connection():
connected:
try:
socket.connect(address)
except socket.error as exc:
print("Failed to make connection with simulator. Socket.error: %s" % exc)

disconnect(env_ID):
socket.close()
print(f" Gym environment with {env_ID} ID is disconnected from simulator server")

recv_data(printing=False):
Receive message from socket with:
data = socket.recv(buffer)
__handle_recv_msg(data, printing)

recv_data_and_print():
recv_data(True)

send_data(msg, msg_length, printing=False):
Keep track of number of send messages

Construct message and send with:
socket.sendall(__handle_send_msg(msg, msg_lenght,
number_of_send_msg, printing)

send_data_and_print(msg, msg_length):
send_data(msg, msg_length, True)

__extract_header_recv_data(data, printing):
Unpack the header data in message with:
struct.unpack(data)

printing:
Print the header with:
__print_msg_header(header)

msg_type from header data

__handle_recv_msg(data, printing)
Extract the msg_type from the header data with:
msg_type = __extract_header_recv_data(data, printing)

msg_type == observation_msg:
Unpack the observation data with:
observation = struct.unpack(data)

printing:
Print observation message

observation

msg_type == disconnect_msg:
Disconnect form simulator server with:
disconnect()

printing:
Print disconnect message
0

.print(“Unknown message received")
-1

__handle_send_msg(msg, msg_length, number_of_send_msg, printing):
Construct header containing:
- Version info (necessary for simulator)
- Message sequence (number of sent messages should be increasing)
- Length of message
- Command (number corresponding to the type of data in message)

printing:
__print_msg(header, msg)

Convert header and message to bytes and return with:
struct.pack(header, msg)

Callbacks.py:

Import the base callbacks
from stable_baselines3.common.callbacks import BaseCallback, EvalCallback
from stable_baselines3.common.logger import HParam

SaveBestTraining()
Callback for saving a model based on training reward. Reward is checked with a prior
defined frequency. Callback adapted from:

https.//stable-baselil ic quid html

__init__(setting):
Declare instance variables:
super(SaveBestTraining,self).__init_ ()
check_frequency
save_frequency
log_directory
episode_mean_reward
save_path
best_mean_reward

_on_step():
Calculate the moving average of the reward over the last X episodes
Save intermediate model every save_frequency

mean_reward >= best_mean_reward:
Save model with:
model.save(save_path)

True

TrialEvalCallback()
Callback used for evaluating and reporting a trial. Necessary for hyperparameter tuning
with OPTUNA. Callback adopted from:
https://colab. google. ithub/araffin/tools-for-robotic-rl-icra2022/
blob/main/notebooks/optuna_lab.ipynb

__init__(setting):
Declare instance variables:
super().__init__()
Evaluation_environment
Trial
Number_of_episodes_to_evaluate
Evaluation_frequency

_on_step():
Evaluate policy with Evaluation_frequency
Send report to Optuna
Prune trial if needed
True

TensorboardCallback()
Callback for plotting additional training values in tensorboard. Callback adapted from:
https: ines3. io ide/tensorboard.htm/

__init__(setting):
Declare instance variables.
super(TensorboardCallback,self).__init__()
evaluation_frequency
number_of_missed_products
number_of_empty_boxes

_on_step():
Retrieve number of missed products and empty boxes from the custom gym
environment with:
number_of_missed_products += training_env.get_attr("missed_products")
number_of_empty_boxes += training_env.get_attr("empty_boxes")

evaluation_frequency > 0 n_calls % evaluattion_frequency
Evaluate policy in parent class

Record the retrieved scalar values from the training environment with:
logger.record("episode/number_of_missed_products, number_of_missed_products)
logger.record("episode/number_of_empty_boxes , number_of_empty_boxes)

Reset the retrieved scalar values once recorded

True

HParamCallback()
Callback that saves the hyperparameters and metrics at the start of the training,
and logs them to TensorBoard. Callback adapted from:
https: ines.r cs.i0) qui d.html

__init__(setting):
Declare instance variables:
super().__init__()

_training_start():
Initialize the hyperparameters to be logged to TensorBoard with:
hparam_dict = {
"gae_lambda": model.gae_lambda,
"batch_size": model.batch_size,

)

Initialize the metrics to be logged to TensorBoard with:
metric_dict = {
"eval/mean_reward": 0.
"rollout/ep_rew_mean":0,
"train/value_loss":0,

Record the hyperparameters and metrics at the start of the training with:
logger.record("hparams", HParam(hparam_dict, metric_dict), exclude=(),)

Fig. 15: TCPClient class

21

Fig. 16: Callback classes

D. Ablation Study figures

We provide additional figures in support of our ablation
study. Figure 17b displays the speed profile for a segment of
simulated product inflow data, generated using our scenario
randomization method, as shown in Figure 17a. The orange
line (Case 2) represents the speed profile with smooth control
encouragement, while the gray line (Case 1) depicts the speed
profile without such encouragement. In marked region 1, the
learned policy reduces the box belt speed for decreases in
product inflow, whereas in marked region 2, it increases the
speed for increases in product inflow. This trend is evident
across multiple product inflow variations, as shown in Figure
17. Notably, no products are lost in the presented fragment.

In addition, the RL agent learns to minimize the noise
caused by unnecessary large speed changes in the randomized
scenarios while satisfying all constraints and maintaining high
performance (as shown by Case 2 in Table I and Figure 17b).
Therefore, we conclude that smooth control encouragement,
facilitated by the penalty function given in Equation (13),
effectively mitigates unnecessary oscillations when using sim-
ulated product inflow data.

Randomized simulated inflow data fragment

e}
b

1 2

H

100 200 300 400 500 600
Time [s]

(a)

Speed profile fragment obtained with reinforcement learning policies
with and without smooth control encouragement using randomized simulated data

I} o}
G 3

]
3

Product inflow [products/min]

Lane 1 Lane 2

O

0.55

1 P2

0.50 4

0.45 41

Box belt speed [m/s]

! 1 i
0.40 ‘ . i ll
\ .

i
Non-smooth (case 1) ~——— Smooth (case 2)

0.35

T T —+ + T T
100 200 300 400 500 600
Time [s]

(b)

Fig. 17: Fragment of simulated product inflow data, generated
with scenario randomization, and corresponding speed plot for
case 1 and 2 listed in Table I.

E. Low Pass Butterworth filter

Penalty functions were employed in this research to promote
smooth control, but we also conducted additional experiments
to explore methods for mitigating unnecessary oscillations
in the RL policies. This appendix presents the results of an
experiment in which a low pass Butterworth filter was applied
for post-filtering to reduce noise in the learned policy. The
filter was designed with an order of 8, sample frequency of
2 - Ak hertz, and cutoff frequency of 0.6 hertz.

22

Figure 18b displays the speed profile and its weighted
moving average when randomized simulated product inflow
data was used. The filter effectively decreased the noise in
comparison to the policy without the filter (as shown by the
gray line in Figure 17b). However, the policy was not as
smooth as the learned policy obtained using our proposed
method in this research (as indicated by the orange line in
Figure 17b). The same conclusion was drawn for real-world
product inflow data, as shown in Fig. 18d: the filter reduced
the noise, but it did not exceed the performance of the learned
policy obtained through our proposed method (as shown by
the orange line in Figure 9b).

Furthermore, we observed that applying the post-filtering
technique resulted in violations of the constraints. Conse-
quently, we did not pursue this approach further in our
research.

135 4

130 4

125 4

120 4

Product inflow [products/min]

Lane 1
—— Lane 2

115 T T T
100 200 300 400 500 600

Time [s]

(a) Fragment of simulated product inflow data.

Box belt speed [m/s]

T T T T T
100 200 300 400 500 600
Time [s]

(b) Fragment of speed profile using simulated data

Real-world inflow data fragment

Product inflow [products/min]

Lane |

500 600 700
Time [s]

(c) Fragment of real-world product inflow data.

Box belt speed [m/s]

—— Speed —— WMA (window size = 10)

T T T T T
200 300 400 500 600 700 800
Time [s]

(d) Fragment of speed profile using real-world data

Fig. 18: Fragments of simulated (a, b) and real-world (c, d)
inflow data with corresponding speed plots, generated for Case
1 (see tables I and II) using a low pass Butterworth filter.

F. Hyperparameters Tuning Study with Optuna

TABLE IV: Hyperparamter tuning study

Default Value P
3.107%
Adam, Constant

Tuned Value *
391-107*
Adam, Linear decay

Hyperparameter

Learning rate (o)
Learning rate optimizer, schedule

Number of Epochs 6 10
Clip range 0.3 0.2
Clip range schedule Linear decay None
Entropy coefficient 6.71-10 3 0.0
GAE Lambda (\) 091 0.95
Number of nodes 96 64
Number of layers 2
Activation function tanh
Minibatch size 64
Horizon (T) 2048
Discount factor () 0.99
Maximum gradient clipping 0.5
Exploration Action noise
Limit to KL divergence None

® If tuned value differs from default it is displayed.
P Default values from Stable Baselines3’s PPO

The results of the hyperparameter tuning study conducted
with Optuna are presented in Table IV. Our analysis revealed
that increasing the size of the neural network beyond the
default values did not lead to a clear improvement in training
performance, but significantly increased the training time.
We experimented with various numbers of layers (between
2 and 8) and nodes (between 64 and 256). However, due to
limited computational resources, we were unable to perform
an extensive tuning study to determine the relative importance
of each hyperparameter and their degree of optimality. We did
observe a slight increase in performance when the number of
nodes was increased to 96, although this could be attributed
to the randomness in exploration, the seed, or the stochasticity
of the environment.

Our results indicate that the learning rate and clip range
had the most significant influence on the training performance
during the hyperparameter tuning study. We achieved stable
training by linearly decaying both hyperparameters. Large
learning rates led to drastic unlearning during the experiments,
while small learning rates resulted in slow training. In Fig. 19,
additional plots are presented for the mean reward, approx-
imate KL-divergence, clip-fraction, clip-range, entropy loss,
explained variance, learning rate, policy gradient loss, and
value loss for Case 2 (sparse rewards and smooth control) and
Case 3 (dense rewards and smooth control) of Table I. The
higher mean reward in Case 2 compared to Case 3 was due to
the different reward functions used. Furthermore, the higher
explained variance in Case 3 compared to Case 2 explains the
better performance of Case 3, as the learned policy predictions
were better.

G. Experiments for State, Action and Reward Design

A total of 71 experiments were conducted in order to
develop the proposed methodology presented in this research.

LSV,

\

Fig. 19: TensorBoard plots from training policy Case 2: sparse
rewards with smooth control (orange line) and Case 3: dense
rewards with smooth control (blue line) Table II.

Various combinations and variations in state, actions, and re-
ward functions were tested. Additionally, several RL methods
(A2C, DQN, TRPO, and PPO) were experimented with, and
only PPO demonstrated satisfactory performance for the belt
speed optimization problem. Furthermore, a hyperparameter
study was conducted in several experiments, as discussed in
Appendix F. Due to the large number of experiments, it is not
feasible to discuss each one in detail, therefore this appendix
presents the main insights derived from the experiments.
We experimented with the following actions:

o Continuous speeds: These are the actions of our pro-
posed methodology. The agent’s action involves select-
ing speeds within the allowable range of minimum and
maximum speeds. The primary challenge lies in ensuring
that the maximum box belt acceleration is not exceeded.

o Discrete speeds: The continuous speeds are discretized
for several discretization step sizes.

« Discrete speed changes: The agent chooses if the speed
must be increased, decreased or kept constant. By varying
the size of the speed change and the number of possible
speed changes in combination with the RL time step,
different acceleration profiles can be learned. The key
challenge is to keep the resulting speeds between their
minimum and maximum value.

We concluded that discretizing the continuous speeds led to

rapid learning, but the resulting policy did not generalize well
for varying product inflows. Furthermore, the discrete speed
changes were found to be sensitive to local maxima, as the
learning agent often became trapped at the minimum and
maximum box belt speeds. On the other hand, continuous
actions were found to be prone to oscillatory behavior, yet
yielded the best performance.

In addition to the state features listed in Section IV-C, we
conducted experiments to investigate the impact of including
the following features:

Number of products and/or full/partly/empty boxes
present in the machine.

Number of products and/or full/partly/empty boxes out
of reach of robots.

Number of lost products, empty boxes and partly filled
boxes.

Number of supplied products

Ratio between scheduled and non-scheduled products.
Ratio between full/partly/empty boxes and present boxes
in the machine.

Ratio between lost products and supplied products (which
is equivalent to the performance requirement given by
(2)).

Last position of products on conveyor belt before being
picked up by robot.

Last position of full/partly/empty boxes on conveyor belt
before being filled with products.

Furthermore, we conducted experiments to determine the
optimal length of the feature history. However, none of
the aforementioned additional features yielded similar per-
formance as the state features proposed in Section IV-C.
This highlights the challenge in designing appropriate state
representations.

In this study, we observed several interesting behaviors of
the learning agent during the experiments. Specifically, we
found that the two goals of saving boxes and saving products
are contradictory, as high box belt speeds lead to saving
all products, which correspond to a performance of 100 %,
while low speeds lead to filling all boxes, which correspond
to a quality 100 %. Balancing these two goals proved to
be a challenge for the agent, resulting in large oscillatory
behavior between speeds that achieved one of the two goals.
To mitigate these oscillations, we introduced a penalty function
in Equation (13) to encourage smooth control.

Another major turning point in our research was the intro-
duction of planned delay and observation matching. Accurate
policy inference with the correct frequency was found to be
necessary to overcome the rescheduling problem described in
Section IV-B. Without planned delay, the agent learned to keep
the box belt speed constant to avoid rescheduling, which led
to additional product loss. Interestingly, the constant box belt
speed was indeed the best possible speed under the unfavorable
circumstances. However, observation matching needed to be
carefully applied to prevent aliasing in observing the current
box belt speed due to the relatively large RL time steps.

24

H. Theoretical background: Reinforcement Learning

This appendix provides additional theoretical background
information on reinforcement learning. We cover the following
topics: Markov decision process, Markov property, optimality
criteria, Bellman expectation and optimality, the exploration-
exploitation dilemma, temporal difference learning, RL
taxonomy, proximal policy optimization and neural networks.

1) Markov decision process: A Markov decision pro-
cess(MDP) is a mathematical framework which is a 5-tuple
of states S, actions A, rewards r, transition probabilities
p (s’ | s,a) and the discount factor v. With a MDP decisions
are made taking into account immediate and future rewards
depending on subsequent situations/states. The components of
an MDP are defined according to Van Hasselt (2021) [1] as:

o S is a finite set of possible states.

A is a finite set of possible actions.

p(s' | s,a) is the transition probability to s’ given state
s and action a.

r: SxA — Ris the expected reward when transitioning
from (s, a).

r = E[R]s, d]
~v € [0,1] is a discount factor that trades off delayed
rewards to immediate ones.

In fig. 20 the formalisation of the agent-environment
interaction into a MDP is shown. The agent is continuously
interacting with its environment by taking an action at time
step ¢ using the information from the state and reward at that
same time step. As a response, the environment produces the
next state and reward at time step ¢ + 1.

> Agent
state reward action
S R, A
RH—]
-— .
_S.. | Environment ‘4—

Fig. 20: Markov decision process with agent-environment
interaction. Figure adopted from [2]

2) Markov Property: The agent state is Markov when it
satisfies the Markov Property. Which means that the current
agent state captures all the relevant information from history
for selecting an appropriate action, in such manner that the
full history can be thrown away. In a Markov decision process
it is assumed that all agent states are Markov. [3]

Definition Markov Property: ”Consider a sequence of
random variables, {S;},cy, indexed by time. A state s has
the Markov property when for states Vs' € S

p(Sey1 =55 =5)=p(Sis1=5"| hi—1, 5 = s)

for all possible histories

ht—l = {‘Sl,'''5515—1;141,''';147§—17-R1a"'7Rt—1}~77

(1]

3) Optimality criteria: The goal of learning agent is to
maximize cumulative reward. The optimal policy captures the
strategy of the agent to reach this goal. Therefore, each RL
algorithm contains an optimality criterion which evaluates the
optimality of a policy. For a Markov Design Process three
basic optimality models exist: the finite horizon reward model
(19), the discounted, infinite horizon reward model (20) and
the average reward model (21) [5].

N
J=E|> R (19)
t=0
=E|> 'R (20)
t=0
1 N
J= lim E N;Rt (21)

In the three models the agent should maximize the expected
reward.

4) Bellman Expectation and Optimality: With the ele-
ments of the MDP a value function is computed which can be
used within RL algorithms to reach the goal of maximizing
cumulative reward. A value function links the optimality cri-
teria of the previous subsection to policies. The value function
determines how good it is being in a state or in a state-action
pair. It calculates the expected cumulative discounted reward
from that state or state-action pair onwards following a policy
. Two types of value functions exist: a state-value function,
vr, and an state-action-value function, ¢, both under policy
7. Both can be defined recursively resulting in the Bellman
Expectation Equations for v, (eq. (22) [2]) and ¢, (eq. (23)
[2D.

vr(8) =Ex [Gy | St =]
=E [Rey1 +7Giy1 | St = 5]

= Zw(a | s)ZZp(s’,r | s,a)
[r+9Ex [Gega | Seq1 = 5]

:Zﬂ’(a | s)Zp(SI,T | s,a) [r +yvx (s)]

for all s € S,

(22)

Gr(s,a) =E [Gy | St = s, Ay = q]
=E; [Riy1 +7Gi1 | St = 5, Ay = a

:zp(s’,r|s,a)
r—i—’yz
—Zp s'r|s,a) 7‘+’yZ

for all s € S,

a' | 8)Er [Giyr | Stpr =8, Apyr = d']]

(@']8") g (s,a")]

(23)
The Bellman expectation equations for v, and ¢, provide
a judgement of respectively the state and state-action pair
following a policy m. It is the expectation of the immediate
reward, r, and the discounted value of the successor state,
qr (8',a’) or vy (s"). The recursive behavior of the Bellman
expectation equations allow the propagation of information of
all the successor states following a policy ,m, back to the
current state or state-action pair. The Bellman expectation
equations can only be used for prediction problems, they
evaluate the future, under a certain policy and do not provide
information about the optimal value function or policy. For a
given MDP with known transition probabilities and rewards,
the optimal value functions obey the Bellman Optimality
Equations stated in eq. (24) and (25) [2].

vi(8) = m[?XZp(s’,r | s,a) [r + v (s")]

s'r

(24)

Q*(Sa

a) = Zp(s’,r | s,a) |:’I“ + 7 maxg. (s’,a’)}

s’',r

(25)

For a known MDP, the Bellman Optimality Equations can
be used for solving control problems.

5) Exploration-Exploitation dilemma: A fundamental
challenge in RL is the trade-off between exploring new states
and exploiting the ones that have already resulted in high cu-
mulative (discounted) reward. This challenge is also called the
exploration-exploitation dilemma. Various strategies exist to
trade-off exploration and exploitation, but the one most widely
used in research is e-greedy. With the e-greedy approach
the action with highest value is selected with probability
1—e+ Mjis)\ and a random action is selected with probability
TAG) [6]. With e the amount of exploration can be adjusted.
The optimal action is selected more frequently when the total
number of actions |.A(s)| increases. Other types of strategies
exist, like greedy, optimistic initialisation, Upper Confidence
Bound, Thompson sampling, policy gradients and many more
[1].

6) Temporal difference learning: In model-free RL the
MDP is unknown, therefore the Bellman Expectation Equa-
tions can not be used directly. v,(s) and ¢r(s,a) can be
estimated from experience using bootstrapped samples, which

is called TD learning. These estimations are denoted by V(s)
and Q(s,a) respectively. In equation 26 the estimated state-
value update of the TD(0) algorithm is shown. The estimate
state-value is updated with the TD error multiplied with the
learning rate parameter c.

er (St) — Vﬂ (St) +a (RtJrl + 'YVw (St+1) _VTr

TD target

(St)) (26)

TD error (6¢)

7) RL taxonomy: In Fig. 21 a mapping of RL algorithms
is shown.

]

RL Algorithms

¥
Model-Free Action-Value Gradient Bandit
(TD, MC, etc) Methods Methods

MDP

Model-Based
(DP, etc)

Given the Model l

MCTS (AlphaGo Value-Based
AlphaZero)

On-Policy | | Off-Policy
Learn the Model

‘World Model

Policy-Based
Gradient-Free Gradient-Based

Q-Learning] [(‘l'lvss—F,nlmpy Method] [Evolution Strategy]

QT-Opt SAMUEL

DDPG

bucing o] [Dowie D

Fig. 21: Taxonomy of reinforcement learning algorithms.
Figure adopted from [7]

Policy Gradient]

TRPO/PPO

A RL algorithm can be value-based, in which a state
value or state-action value is learned from which the optimal
policy is derived, policy-based, in which the (optimal) policy
is learned directly or actor-critic, in which both a value
and policy are learned. Actor-critics can be seen as the
solution for the existence of high variance in policy gradient
algorithms, therefore a lot of the state-of-the-art model-fee
RL algorithms are based on the actor-critic framework. In
table V the advantages and disadvantages of policy-based
compared to value-based algorithms are shown. An actor-critic
algorithm combines the advantages of value based methods
(the critic), such as low variance and sample efficiency, with
the advantages of the policy based methods (the actor) as stated
in table V, at the cost of some bias [8].

Advantages Disadvantages

+ True objective [1]
+ Well-suited for high-dimensional
or continuous action spaces [1]
+ Can learn stochastic policies [1]
+ Stable under function approximation

- Sensitive to local optima [1]
- Generalisation problems [1]
- High variance [8]

- Sample inefficient [8]

(for sufficiently small learning rates) [8]

TABLE V: Advantages and disadvantages of policy-based
algorithms compared to value-based algorithms

8) Trust Region Policy Optimization: Policy gradient
methods are subjected to variance and instability problems.
Trust Region Policy Optimization (TRPO) solves both the

issues. TRPO is an actor-critic algorithm that improves sta-
bility by restricting the size of each policy update [9]. A
KL-divergence constraint, which constraints the difference
between two distributions, is used to ensure each policy update
lies within the trust region at each iteration. The TRPO
optimization problem is defined as:

mo(a | s)
old eram (s,a)

subject 0 By, [Dicr (o (- [8)[I7o(- [5))] <6

ma}ﬂemlzeﬂisNpeol(1 Ja~Tg

27)

In (27) the final TRPO optimization problem is shown. One
applied simplification is the replacement of the advantage
function Ay, (s,a) by the action-value function Qg,,, (s, a).
The advantage function is the difference between the action-
value and state-value function as shown in eq. (28) and is a
measure of how good an action in a given state is.

Aeold (S, CL) = Qanld (3’ a) - Veold (3)

Although the advantage function is not used in the final op-
timization problem shown in (27), it is important background
information as different formulations of the objective function
exist in literature. Two other relevant concepts to understand
the TRPO optimization problem are importance sampling and
KL divergence.

Importance sampling
TRPO is considered on-policy, because it learns a policy
from experience obtained by the latest version of that same
stochastic policy. Importance sampling is used in TRPO to
learn a new policy mp(a | s) by re-weighting the action-
value Qy,, (s,a) estimated with samples from the old policy
Togq (@] $). Eq. (29) shows how it is incorporated in TRPO.

(28)

mo(a | s)

Eanrg [Qogs (5,0)] = Eanny, o (@] 9)
old

Qenld (S) a)
(29)
KL divergence
The Kullback-Leibler (KL) divergence measures the difference
between two probability distributions [9]. The constraint
shown in the optimization problem (27) restricts the
divergence between the new policy mg and the old policy
Tg,, to be lower than or equal to the threshold J. When
for example the probability of an action a given state s is
large for the new policy but small for the old policy, the
divergence between the two policies is probably large. The
KL divergence ensures that each policy update is within the
trust region, which stabilizes the algorithm.

9) Proximal Policy Optimization: Proximal Policy Opti-
mizaton (PPO) is derived from the Trust Region Policy Opti-
mization (TPRO) algorithm. While maintaining the benefits
from TPRO, PPO is a more general and simpler version
with better sample complexity [10]. The combination of good
performance and ease of use makes PPO one of the most
popular model-free deep RL algorithms at the moment. PPO
is a relatively new model-free RL algorithm, it is published

by Schulman et al. in 2017 [10]. PPO simplifies TRPO by
using a so called clipped surrogate objective which results
in an unconstrained optimization problem without the KL
divergence restrictions from TRPO. The aim is to maximize
JOLIP(9) defined as [10]:

JCLIP(H) —

k [min <r(9)12190]d yclip (r(6),1 —e,1+¢) Agold)} . 30)

E

In which Aeold is the estimate of the advantage function as
defined in equation 28 and the ratio r(#) is defined as [10]:

mo(a | s)
ﬂ—eold(a | S)

r(0) = 31

The clipped surrogate objective function is similar to the
objective function of TRPO. However, each policy update is
now limited by taking the minimum of the original TRPO
objective function and the clipped version, instead of using
the KL divergence between the policies. The clip function
limits the ratio between the new and old policy, (), within
[1 —€,1+ €], in which € is a hyperparameter [10]. This way,
too large policy updates are prevented while maximising the
objective function. Therefore, PPO is able to stable improve
the policy.

10) Deep RL: neural networks: Real-world RL prob-
lems often deal with high-dimensional continuous state-action
spaces for which tabular solutions are not feasible anymore.
Function approximations are used to overcome this problem,
which is also referred to as the curse of dimensionality. Several
function approximators can be used, such as a linear combina-
tion of features, nearest neighbour and neural networks. In this
research the focus lies on the use of neural networks within
RL, which is also referred to as deep reinforcement learning.

Neural Networks are a necessary addition to RL when state-
action spaces are large or even continuous, which is mostly
the case for real-world robotic systems. In figure 22 a simple
3-layer neural network is shown in which each node represents
a neuron. The input vector is received trough the input layer,
which has as many neurons as dimensions of the input vector.
The hidden layers capture the actual learned behavior by use
of weights, biases and activation functions. The final output
is produced by the output layer. The amount of neurons in
a single hidden layer is called the widrh of that layer. The
number of layers, except the input layer, of a neural network is
called the depth of the neural network. When a neural network
has many layers, it is referred to as a deep neural network.

Each neuron can be modelled as a perceptron, which is
shown in figure 23. A weighted sum of inputs with some
bias is passed to an activation function, which could be of
different types, for example ReLU, sigmoid or hyperbolic [12].
It is the activation function that makes the perceptron (or
neuron) nonlinear, which is essential for the neural network to
approximate any function [13].

27

input layer

hidden layer 1 hidden layer 2

Fig. 22: Visualization of artificial neural network. Figure
adopted from [11]

Bias

Inputs @ () y
’ Output
X, Sum Actlvapon
Function

Weights

Fig. 23: Visualization of a perceptron. Figure adopted from
[14]

The transformation within the neuron is captured by the
following nonlinear transformation function h:

h= @(Wn,m “Tm + bn)a (32)

in which wy, ,,, is matrix containing the weights, x,, is a vector
containing the inputs, b, is a bias vector and ¢ is the the
activation function.

The simple type of neural network explained so far is called
the FNN. In FNN each neuron in the hidden layers is fully
connected to every other neuron of the previous layer [15].
The FNN is trained by optimizing the weights and biases to
minimize a loss function, for example the mean squared error.
Stochastic gradient descent with backpropagation is the most
common method for optimizing the parameters of the neural
network [15]. In this method the parameters are updated in
the opposite direction of the gradient of the loss function.

More types of neural networks exist. The most popular
ones are the CNN and the RNN, which are more complex
and powerful than the FNN explained before. CNN is
especially suited for spatial-data, such as images, and RNN
for sequential data [15].

References appendix L

[1] H. van Hasselt, Reinforcement Learning Lecture 1: Introduction.
Reinforcement Learning Lecture Series 2021, DeepmindxUCL,
Sep 2021. https://deepmind.com/ learning-resources/reinforcement-
learning-series-2021.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An
introduction. MIT press, 2020.

[4] D. Silver, Lecture 1: Introduction to Reinforcement Learning.

Introduction to Reinforcement with David Silver, DeepmindxUCL,
May 2015. https://deepmind.com/ learning-resources/-introduction-
reinforcement-learning-david-silver.

[5] M. A. Wiering and M. Van Otterlo, “Reinforcement learning,”
Adaptation, learning, and optimization, vol. 12, no. 3, p. 729, 2012.
[6] L. C. Garaffa, M. Basso, A. A. Konzen, and E. P. de Freitas,
“Reinforcement learning for mobile robotics exploration: A survey,”
IEEE Transactions on Neural Networks and Learning Systems,
2021.

[7] H. Zhang and T. Yu, “Taxonomy of reinforcement learning
algorithms,” in Deep Reinforcement Learning, pp. 125-133,
Springer, 2020.

[8] O. Nachum, M. Norouzi, K. Xu, and D. Schuurmans, “Bridging
the gap between value and policy based reinforcement learning,”
Advances in neural information processing systems, vol. 30, 2017.
[9] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz,
“Trust region policy optimization,” in International conference on
machine learning, pp. 1889-1897, PMLR, 2015.

[10] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O.
Klimov, “Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[11] S. University, Convolutional CS231n
Convolutional Neural Networks for Visual Recognition, Stanford

Neural Networks.
University, 2022. https://cs231n.github. io/convolutional-networks/.
[12] R. J. Pérez Dattari, “Interactive learning with corrective
feedback for continuous-action policies based on deep neural
networks,” 2019.

[13] M. R. Baker and R. B. Patil, “Universal approximation theorem
for interval neural networks,” Reliable Computing, vol. 4, no. 3, pp.
235-239, 1998.

[14] D. Raj, “Single-layer neural networks in machine learning
(perceptrons),” Jul 2020.

[15] V. Francois-Lavet, P. Henderson, R. Islam, M. G. Bellemare,
and J. Pineau, “An introduction to deep reinforcement learning,’
arXiv preprint arXiv:1811.12560, 2018.

I. Literature review: Challenges of Real-world Reinforcement
Learning

This appendix addresses the challenges of real-world RL.
The transfer of effective RL applications towards the real-
world lags behind due to assumptions that are not met in the
real-world. According to [24] the challenges of real-world RL
are:

1) Offline learning from fixed logs created with an external
behavior policy.

Using limited samples for learning on live system.
High-dimensional continuous state and action spaces.
Safety constraints which may not be violated.

Partially observable systems.

Learning from unspecified, risk-sensitive or multi-
objective reward functions.

Computation of explainable policies to system operator.
Real-time inference.

System delays which are large and/or unknown.

2)
3)
4)
5)
6)

7
8)
9)

28

Most of the research is focused on tackling one or a few
of the proposed challenges, however all the nine challenges
should be taken into account when designing and developing
new algorithms. Each of these challenges is explained briefly
in the following nine sections, together with possible solution
directions.

1) Offline learning with fixed logs: In real-world RL it
is often not feasible to learn from online interaction with the
environment as the amount of necessary interactions is too
expensive and/or time-consuming to execute [24]. In that case
the policy needs to be learned offline from fixed logs of the
system behavior. Offline RL, also called batch RL, is related
to off-policy learning, in which a target policy, 7 is learned
while following another policy, p. When learning offline
usually, the batches of data are obtained while following a
different (unknown) policy than the policy that is learned.
In off-policy methods also online learning can be applied,
meaning that new data, which can be altered, is generated
during learning [24].

2) Limited samples: Data-efficiency is important in most
real-world systems as most of those systems are expensive to
operate, relatively slow-moving or fragile [24]. Therefore the
training data does not capture a large part of the state and
action space, which emphasises the need for sample-efficient
and quick learning [24]. Multiple attempts have been made
to tackle this challenge.

Who
Finn et al. 2017 [1]

Solution name Explanation

Model agnostic Meta- Train a model that learns how

Learning (MAML) to learn in a new setting by use

of other training data.

Bootstrap DQN Applies deep exploration by Osband et al. 2016 [2]
using a bootstrapped neural
network, which enables more
efficient exploration of a Deep
Q-Network.

Implementation of for example

Bootstrap DDPG with
use of expert

Vecerik et al. 2019. [3]
human demonstrations to
demonstration

Model-based deep RL

speed up learning.

Incorporating a model improves
sample efficiency.

Hafner et al. 2018 [4];
Chua et al. 2018 [25]];
Nagabandi et al. 2019 [26]]
Haarnoia et al. 2018 [5]

Soft Actor-Critics (SAC) SAC is one of the most efficient
model-free RL algorithm.
Due to its off-policy

entropy regulated framework.

TABLE VI: Collection of solutions found in literature for
sample-efficient and quick learning

3) High-dimensional continuous state and action spaces:
In real-world robotic systems the state and action spaces
are often large and continuous instead of small and discrete.
Function approximation is used to tackle this challenge by
estimating the value function, policy, agent state and model
depending on which part of the problem need to be approxi-
mated [6].

4) Safety constraints: Dealing with safety constraints are
a major challenge for applying RL in real-world systems. In

most physical systems the system’s output must satisfy certain
constraints for safe operation. A RL agent must explore to
find the optimal policy, but may never harm humans or
destroy systems when doing so. Safe is a broad term in the
context of RL; it also applies to less obvious safe constraints,
such as constraining the minimum performance level of a
system or the maximum monetary costs [24].

5) Partially observable: Real-world systems are partially
observable as most of the time not every single part of the
environment influencing the the system’s state is visible to the
agent. Examples of partial observations are malfunctioning
sensors or actuators or a system containing multiple similar
robots behaving slightly different. Those observations appear
as noise, non-stationarity or as stochasticity [24]. Also,
differences between simulators and real systems can be
considered as partial observable. Table VII shows a collection
of solutions to tackle this challenge.

Who
Mnih et al. 2015 [7]

Solution description Explanation

History in agent’s observation Add history to observation
to convert POMDP into MDP.

Track and recover hidden state

Hausknecht

and Stone 2015 [8]
Andrychowicz et al.
2018 [9]; Peng et al.
2018 [10]

Agent with recurrent network
by use of recurrent network.

Sim-to-real transfer Learn to transfer policies

from simulation to real system.

TABLE VII: Collection of solutions found in literature for
dealing with partial observability.

6) Unspecified or multi-objective reward function: Often
real-world systems have multiple objectives that need to
be minimized, therefore the agent must trade off between
different objectives [24]. It could be possible that the objective
can not be clearly formulated at all. For both cases solutions
exists, a couple are shown in table VIIL

Who
Van Seijen et al. 2017 [11]

Solution description Explanation

Value function
for each objective

Policy optimizing of
each sub-problem

Lietal. 2019 [12]

Pareto-dominating Moffaert and Nowé 2014 [13]

mixture of objectives

Finding the Pareto optimality
for set of objectives

Conditional Value Used as a risk measure for Tamar et al. 2015 [14];

at Risk (CVaR) tasks with negative outcomes.
objective Optimize for worst-case
performance.
Inverse RL ‘When reward function is Ross et al. 2011 [15]

not fully specified

TABLE VIII: Collection of solutions found in literature for
dealing with unspecified or multi-objective reward functions.

7) Explainable policies: According to [24] explainability
of policies is essential in real-world systems, because the
systems are operated by humans who need to understand
the behavior of the system especially in failure cases [24].
Model-based algorithms most of the time give more insight
in the behavior of the system. In the work of [16] a set

29

of methods is proposed for interpretation of deep neural
networks. Still a lot of research needs to be done to tackle
the challenge of explainability.

8) Real-time inference: For online model-free RL algo-
rithms the control frequency of the agent and real-world
system must be the same. The order of magnitude in which a
system requires a control input could vary from milliseconds
to minutes or even longer. So, for online RL, experience can
only be acquired at real-time which can lead to too slow or
too fast learning. The RL method can for example be too
computationally expensive and not able to keep up with the
required control speed, or the system reacts too slow for the
agent to obtain enough experience to learn from. [24]

Who
Ramstedt and Pal 2019 [17]

Solution description Explanation
Real-Time Markov

Reward Process

Incorporates evolving state during
action selection.

Return a valid solution at any time. Vlasselaer et al. 2015 [18]

Travnik et al. 2018 [19]

Anytime inference
Reactive SARSA

Class of algorithms that deal with
continuously changing asynchronous

environments.

TABLE IX: Collection of solutions found in literature for
dealing with real-time inference.

9) System delays: 1In real-world systems actions,
observations and the reward signals can have significant
delays due to for example low-frequency sensing or safety
checks that must be performed before executing a certain
action.

Solution description Explanation Who

History in state

Learn the system delays
from the recent history

Hester and Stond 2013 [20]

Incorporate intermediate
reward

Incorporate intermediate
rewards, when the true reward is

Mann et al. 2018 [21]

obtained much later than
the actions causing it.

Use memory to better assign
rewards to past events.

Memory-based agent Hung et al. 2018 [22]

RUDDER algorithm Use a return-equivalent MDP Arjona-Medina et al. 2018 [23]

in which delayed rewards

are re-distributed.

TABLE X: Collection of solutions found in literature for
dealing with system delays.

References appendix L
[1] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in International conference on
machine learning, pp. 1126-1135, PMLR, 2017.
[2] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep
exploration via bootstrapped dqn,” Advances in neural information
processing systems, vol. 29, 2016.
[3] M. Vecerik, O. Sushkov, D. Barker, T. Rothérl, T. Hester, and
J. Scholz, “A practical ap- proach to insertion with variable socket
position using deep reinforcement learning,” in 2019 international
conference on robotics and automation (ICRA), pp. 754-760, IEEE,
2019.
[4] D. Hafner, T. Lillicrap, L. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learn- ing latent dynamics for planning from pixels,” in

International conference on machine learning, pp. 2555-2565, PMLR,
2019.

[5] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan,
V. Kumar, H. Zhu, A. Gupta, P. Abbeel, et al., “Soft actor-critic
algorithms and applications,” arXiv preprint arXiv:1812.05905, 2018.
[6] M. A. Wiering and M. Van Otterlo, “Reinforcement learning,”
Adaptation, learning, and optimization, vol. 12, no. 3, p. 729, 2012.
[7] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529-533, 2015.

[8] M. Hausknecht and P. Stone, “Deep recurrent g-learning for
partially observable mdps,” in 2015 aaai fall symposium series, 2015.
[9] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B.
McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray, et
al., “Learning dexterous in-hand ma- nipulation,” The International
Journal of Robotics Research, vol. 39, no. 1, pp. 3-20, 2020.

[10] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel,
“Sim-to-real transfer of robotic control with dynamics randomiza-
tion,” in 2018 IEEE international conference on robotics and automa-
tion (ICRA), pp. 3803-3810, IEEE, 2018.

[11] H. H. Van Seijen, S. M. F. Booshehri, R. M. H. Laroche, and J.
S. Romoff, “Hybrid reward architecture for reinforcement learning,”
Apr. 13 2021. US Patent 10,977,551.

[12] K. Li, T. Zhang, and R. Wang, “Deep reinforcement learning
for multiobjective opti- mization,” IEEE transactions on cybernetics,
vol. 51, no. 6, pp. 3103-3114, 2020.

[13] K. Van Moffaert and A. Nowé, “Multi-objective reinforcement
learning using sets of pareto dominating policies,” The Journal of
Machine Learning Research, vol. 15, no. 1, pp. 3483-3512, 2014.
[14] A. Tamar, Y. Glassner, and S. Mannor, “Optimizing the cvar
via sampling,” in Twenty- Ninth AAAI Conference on Artificial
Intelligence, 2015.

[15] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation
learning and structured prediction to no-regret online learning,” in
Proceedings of the fourteenth international conference on artificial
intelligence and statistics, pp. 627-635, JMLR Workshop and Con-
ference Proceedings, 2011.

[16] G. Montavon, W. Samek, and K.-R. Miiller, “Methods for
interpreting and understand- ing deep neural networks,” Digital Signal
Processing, vol. 73, pp. 1-15, 2018.

[17] S. Ramstedt and C. Pal, “Real-time reinforcement learning,”
Advances in neural infor- mation processing systems, vol. 32, 2019.
[18] J. Vlasselaer, G. Van den Broeck, A. Kimmig, W. Meert, and L.
De Raedt, “Any- time inference in probabilistic logic programs with
tp-compilation,” in Twenty-Fourth International Joint Conference on
Artificial Intelligence, 2015.

[19] J. B. Travnik, K. W. Mathewson, R. S. Sutton, and P. M. Pilarski,
“Reactive reinforce- ment learning in asynchronous environments,”
Frontiers in Robotics and Al, vol. 5, p. 79, 2018.

[20] T. Hester and P. Stone, “Texplore: real-time sample-efficient
reinforcement learning for robots,” Machine learning, vol. 90, no.
3, pp. 385-429, 2013.

[21] T. A. Mann, S. Gowal, A. Gyorgy, H. Hu, R. Jiang, B. Lakshmi-
narayanan, and P. Srini- vasan, “Learning from delayed outcomes via
proxies with applications to recommender systems,” in International

30

Conference on Machine Learning, pp. 43244332, PMLR, 2019.
[22] C.-C. Hung, T. Lillicrap, J. Abramson, Y. Wu, M. Mirza, F.
Carnevale, A. Ahuja, and G. Wayne, “Optimizing agent behavior over
long time scales by transporting value,” Nature communications, vol.
10, no. 1, pp. 1-12, 2019.

[23] J. A. Arjona-Medina, M. Gillhofer, M. Widrich, T. Unterthiner,
J. Brandstetter, and S. Hochreiter, “Rudder: Return decomposition
for delayed rewards,” Advances in Neural Information Processing
Systems, vol. 32, 2019.

[24] G. Dulac-Arnold, N. Levine, D. J. Mankowitz, J. Li, C.
Paduraru, S. Gowal, and T. Hester, “An empirical investigation of
the challenges of real-world reinforcement learning,” arXiv preprint
arXiv:2003.11881, 2020

[25] K. Chua, R. Calandra, R. McAllister, and S. Levine,
“Deep reinforcement learning in a handful of trials using prob-
abilistic dynamics models,” Advances in neural information
processing systems, vol. 31, 2018.

[26] A. Nagabandi, K. Konolige, S. Levine, and V. Kumar,
“Deep dynamics models for learning dexterous manipulation,”
in Conference on Robot Learning, pp. 1101-1112, PMLR,
2020.

J. Literature review: Safe Reinforcement Learning

In 2015 Garcia and Fernandez proposed the first survey
classifying the existing approaches towards safe RL until then
[1]. They divided the existing approaches into the transfor-
mation of the optimization criterion and the modification of
the exploration process. Since then a lot of research is done
within the RL community to tackle the problem of safety.
Most of the existing safe RL algorithms are a combination
of transforming the optimization criterion and modifying the
exploration process. Brunke et al. (2021) have proposed an
updated overview of safe learning in robotics in which safety
is addressed on a broader level by also focusing on safety in
control instead of only within reinforcement learning [2]. In
figure 24 a summary is shown of the proposed safe learning
control approaches, in which the safety guarantees are plotted
against the reliance of the approach on available data [2]. The
safety guarantee axis is divided into three levels:

o Soft constraints (level I)

o Probabilistic/chance constraints (level II)

e Hard constraints (level III)

A hard constraint may not be violated, a probabilistic/chance
constraint must satisfy the constraint with a specific probability
and a soft constraint only encourages constraint satisfaction
by penalizing constraint violation in the objective function
[2]. The other axis is divided into known dynamics, unknown
dynamics and variants of imperfect prior knowledge that lies
in between.

As can be seen in the figure the approaches can be
divided within this framework into Safely Learning Uncertain
Dynamics, Safety Certification and RL encouraging Safety and
Robustness. The first two directions must have (imperfect)
prior knowledge about the dynamics of the system to
guarantee hard and/or probabilistic constraints during
learning. The power of RL is the ability to learn from

Increasing Safety
Guarantees

Hard Constraint
Satisfaction
(Safety Level)

Safety
Certification
Stabilty (Sec.3.31)
ConstraintSet (Sec.332)

Safely Learning
Uncertain Dynamics
Learing Adaptie Contol(Sec.311)
Leaming RobustContral (ec. 312)
Leaming Robust MPC (Sec. 31.3)

Probabilstic Constraint
Satistaction

(Safety Level lf)
Standard

~ - Controt - -
Approaches

Safe Model-Based RL (Sec. 314)

Reinforcement Learning Encouraging Safety and Robustness
Safe Exploration and ptimization (Se 321)
Risk-Averse and Uncertainty-Aware RL (Sec. 32.2)
Constrained MDPs and AL (Sec. 32.3)
Robust MDPs and AL (Sec. 324)

Soft Constraint
Satisfaction
(Safety Level)

No Guarantees Standard Reinforcement lg‘aarning

i Increasing
Reliance on
Data

Known
Dynamics

Pror Linear
Dynamics

Prior Control- Prior Structured Prior Generic
Affine Dynamics Nonlinear Dynamics Noninear Dynamics

Unknown
Dynamics

Imperfect Prior Knowledge/Model
(ie. Dynamics Uncertainty)

Fig. 24: Summary of the safe learning control approaches
addressed the survey paper of Brunke et al. (2021). Figure
adopted from [2]

interaction with the environment without having a prior
model of the environment dynamics. However, as shown in
fig. 24, this power is accompanied with a lack of successful
approaches that provide formal guarantees for probabilistic
and hard constraint satisfaction. The aim of the survey paper
of [2] is to provide an overview of existing approaches that
address safety within the control and RL community and
by this bridge the gap between them towards increasing
safety in RL. The light green block of fig. 24 covers the
existing approaches in safe RL. The approaches are shortly
introduced in this appendix with a focus on the trend covering
constrained MDPs.

1) Safe exploration of MDPs: In literature safe exploration
is addressed in several ways. By preserving ergodicity of the
MDP any state is reachable from any other state by following
a suitable policy [3], this way the agent never explores unsafe
states from which it can not recover. However, finding the
optimal policy that preserves ergodicity is a NP-hard problem
[2]. Furthermore, the assumption of ergodicity is merely
satisfied in real-world RL.

2) Risk-aware and cautious RL adaptation: In the risk-
aware and cautious RL adaptation trend safety is encouraged
by using metrics for risk or uncertainty during learning as
guidance for the agent to explore safely. The CARL [4] and
SAVED (5] algorithm are both model-based algorithms which
learn risk-aware probabilistic models during pretraining
and use these models to plan in unknown safety-critical
environments.

3) Robust RL: In this trend safety is addressed in terms of
robustness of the learned policy against system disturbances
and generalization of the policy among different tasks. A
robust RL agent can be trained by domain randomization [6]
to generalize the learned policy for different domains/tasks or

31

by adversarial training, in which an adversarial agent attacks
a protagonist agent to train for system disturbances.

4) RL based on constrained MDPs: In this trend the
constrained MDP (CMDP) framework is used to address
safety. However, all these methods are still in their infancy
as no promising performance is shown in simulations.
Different divisions of constraints are presented in literature.
Kim et al. (2020) divide the constraints in feasibility and safety
constraints [7]. Feasibility constraints bound the input signal
to only feasible inputs, whereas safety constraints prevent
inputs leading to unsafe situations. Liu et al. (2021) divide the
constraints for policy learning in instantaneous and cumulative
constraints [8], in which instantaneous constraints must be
satisfied in each step and cumulative constraints from the
beginning to the current time step [8]. In eq. 33 the instan-
taneous (C; (s¢, at, St+1) < w;) and cumulative constraint
(Jgf < ¢;) problem of Liu et al. (2021) is shown, in which
J? is the objective function as function of the reward R when
following policy my parameterized by 6 and ¢ being the number
of instantaneous or cumulative constraints [8]. None of the
proposed safe RL methods by Liu et al. (2021) satisfy both
types of constraints.

T
m;lXJ R

st JE <e (33)

Ci (st at, St41) < wi

Liu et al. (2021) provide an comprehensive overview
of existing model-free RL methods for policy learning
with constraints. They address Lagrangian relaxation,
Constraint Policy optimization (CPO), Projection-based
Constrained Policy Optimization (PCPO), Interior-point
Policy Optimization (IPO), Lyapunov approaches, Backward
Markov Chain (BMC), State Augmentation, Safety layer,
Gaussian process approaches and a human in the loop as
methods for solving constrained RL problems. In figure 25 a
summary of the conclusions of the survey paper by Liu et al.
(2021) is shown, in which the methods are divided according
to the type of constraints they support and are assessed on the
basis of performance, scalability, computational complexity
and support by underlying theory [8]. The best performing
methods are briefly addressed in this appendix.

Constraint Method References Performance Scalability Computation Theorem
Lagrangian [Altman, 19991 v v X X
CPO [Achiam et al., 20171 - v X v
PO [Liu er al., 2020b] v v v -
Cumulative PCPO [Yang et al., 2020] v v x v
Lyapunov [Chow et al., 2019] v v X X
BMC [Satija er al., 2020] v v v v
State Augmentation [Xu and Mannor, 2011] - X v -
Lagrangian [Bohez et al., 20191 v v X X
Instantaneous Safety layer [Dalal et al., 2018] ' v v 3
B GP [Wachi and Sui, 20201 ' ' v v
Human [Saunders er al., 2017] v x v X

Fig. 25: Comparison of constrained model-free RL approaches
with score in descending order: check mark , - , and x. Figure
adopted from [8]

Lagrangian relaxation

Lagrangian relaxation is a widely used and powerful tech-
nique within classical optimization which relaxes complex
constrained optimization problems. The problem is relaxed by
removing the complex constraint by adding it to the objective
function with a non-negative Lagrangian multiplier A\ and
this way creating an unconstrained problem which penalizes
constraint violation. By solving the resulting Lagrangian Dual
problem with Lagrangian function L, constrained satisfaction
is obtained. An example of a Lagrangian Dual problem for
cumulative constraints is shown in equation 34 deduced from
the original problem of equation 33 [8].

(5 ace)
l (34)
The main drawbacks of this approach applied in constrained
RL are the sensitivity to the initialization of the Lagrange
multipliers and their difficulty to optimize in practice due to
computational complexity as the optimization of the multiplier
is done for every action taken by the RL agent. Moreover,
zero constraint satisfaction is not guaranteed during learning
with Lagrangian relaxation [9], however high performance in
terms of long-term reward is obtained with the approach [10].

min max L (6, A;) = min max
<0 6 <0 6

Constraint Policy optimization

CPO is based on the trust region method called TRPO,
which is a local policy search algorithm that is effective for
high-dimensional control. For a comprehensive explanation
on TRPO see appendix H. The CPO algorithm calculates
for every policy update the predicted change in constraint
costs and selects the policy update within the trust region
that results in the highest expected return without exceeding
the admissible predicted constraint costs [11]. Achiam et al.
(2017) claims guarantees for near-constraint satisfaction [11].
The use of conjugate gradients in CPO makes this approach
computational expensive.

Projection-based Constrained Policy Optimization
PCPO is related to CPO and has the same drawbacks, thus
having computationally expensive conjugate gradients. PCPO
also uses TRPO, but makes use of projections of the policy
on the closest policy that satisfies the constraints. In figure
26 the update procedure over PCPO is shown. [12]

Interior-point Policy Optimization
The TPO method combines the policy-gradient method PPO,
which is explained in appendix H, with the idea behind
interior-point methods, also called barrier methods. Liu
et al. (2020) use the clipped surrogate objective of PPO
(equation 30) with a logarithmic barrier function to reduce
the optimization problem into a unconstrained one, as shown
in equation 35. By using this logarithmic barrier function
the solution is pushed away from the constraints to a certain
extent depending on hyperparameter ¢. The goal is to have a
penalty of zero in the objective function when the constraint

32

Constraint set

Trust region [\ T+

1
kg

Fig. 26: Update procedures for PCPO. In step one (red arrow),
PCPO follows the reward improvement direction in the trust
region (light green). In step two (blue arrow), PCPO projects
the policy onto the constraint set (light orange). Figure adopted
from [12]

is satisfied and a penalty that goes to negative infinity when
the constraint is violated [13]. IPO is easy to implement and
tune and as showed in table 25 scores well on performance,
scalability and computation, however this method does not
have theoretical guarantees with respect to performance. [13]

S

max (LCLIP(H) + Z
i=1

Lyapunov

In Lyapunov based approaches the constraints of a CMDP
are modelled using Lyapunov functions. In control theory
Lyapunov functions are widely used for analyzing stability
of dynamical systems [14]. Chow et al. (2018) propose an
approach in which these Lyapunov functions are constructed
using linear programmiing. Under certain conditions the
existence of a Lyapunov functions for a system is sufficient
for system stability [15]. By identifying Lyapunov functions
for the constraints of an CMDP the safety of a policy during
training can be guaranteed [14]. A LP need to be solved for
every action taken by the RL agent, therefore this approach
is computationally expensive.

log (fjgf — el)> (35)

Safety Layer

The safety layer method can be used on top of any unsafe
continuous control deep policy based RL algorithm. The safety
layer corrects each action of the original policy by solving
equation 36 in which the closest action to the original action
proposed by a deep policy network is found. In figure 27
a visualisation of this method is shown. According to Dalal
et al. (2018) the safety layer is trained with offline logged
data of past trajectories of arbitrary actions to train a linear
model for the constraints, ¢;(s,a) [16]. This method scores
well on performance, scalability and computational complexity
as shown in table 25.

ar mianaf (s)|?
ga B 127 (36)

s.t. ¢i(s,a) < C;Vi € [K]

S;?Ci;a' pe(s) fe(s)

Safety layer

arg min /5,0, ;(5))

Fig. 27: Visualisation of the safety layer method. Figure
adopted from [16]

References appendix L
[1] J. Garcia and F. Ferndndez, “A comprehensive survey on safe
reinforcement learning,” Journal of Machine Learning Research, vol.
16, no. 1, pp. 1437-1480, 2015.
[2] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati,
and A. P. Schoellig, “Safe learning in robotics: From learning-based
control to safe reinforcement learning,” Annual Review of Control,
Robotics, and Autonomous Systems, vol. 5, 2021.
[3] T. M. Moldovan and P. Abbeel, “Safe exploration in markov
decision processes,” arXiv preprint arXiv:1205.4810, 2012.
[4] J. Zhang, B. Cheung, C. Finn, S. Levine, and D. Jayaraman,
“Cautious adaptation for reinforcement learning in safety-critical
settings,” in International Conference on Machine Learning, pp.
11055-11065, PMLR, 2020.
[5] B. Thananjeyan, A. Balakrishna, U. Rosolia, F. Li, R. McAllister,
J. E. Gonzalez, S. Levine, F. Borrelli, and K. Goldberg, “Safety
augmented value estimation from demonstrations (saved): Safe deep
model-based 1l for sparse cost robotic tasks,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 3612-3619, 2020.
[6] W. Zhao, J. P. Queralta, and T.Westerlund, “Sim-to-real transfer
in deep reinforcement learning for robotics: a survey,” in 2020
IEEE Symposium Series on Computational Intelligence (SSCI), pp.
737-744, IEEE, 2020.
[7] Y. Kim, R. Allmendinger, and M. Lépez-Ibéfiez, “Safe learning
and optimization techniques: Towards a survey of the state of the

”

art,” in International Workshop on the Foundations of Trustworthy
Al Integrating Learning, Optimization and Reasoning, pp. 123-139,
Springer, 2020.

[8] Y. Liu, A. Halev, and X. Liu, “Policy learning with constraints in
model-free reinforcement learning: A survey,” in Proceedings of the
Thirtieth International Joint Conference on Artificial Intelligence,
2021.

[9] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and
M. Ghavamzadeh, “Lyapunov based safe policy optimization for
continuous control,” arXiv preprint arXiv:1901.10031, 2019.

[10] Y. Chow, M. Ghavamzadeh, L. Janson, and M. Pavone, “Risk-
constrained reinforcement learning with percentile risk criteria,”
The Journal of Machine Learning Research, vol. 18, no. 1, pp.
6070-6120, 2017.

[11] J. Achiam, D. Held, A. Tamar, and P. Abbeel, “Constrained
policy optimization,” in International conference on machine
learning, pp. 22-31, PMLR, 2017.

[12] T.-Y. Yang, J. Rosca, K. Narasimhan, and P. J. Ramadge,
“Projection-based constrained policy optimization,” arXiv preprint
arXiv:2010.03152, 2020.

[13] Y. Liu, J. Ding, and X. Liu, “Ipo: Interior-point policy

33

optimization under constraints,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 34, pp. 4940-4947, 2020.
[14] Y. Chow, O. Nachum, E. Duenez-Guzman, and M.
Ghavamzadeh, “A lyapunov-based approach to safe reinforcement
learning,” Advances in neural information processing systems, vol.
31, 2018.

[15] T. J. Perkins and A. G. Barto, “Lyapunov design for safe
reinforcement learning,” Journal of Machine Learning Research, vol.
3, no. Dec, pp. 803-832, 2002.

[16] G. Dalal, K. Dvijotham, M. Vecerik, T. Hester, C. Paduraru,
and Y. Tassa, “Safe exploration in continuous action spaces,”’ arXiv
preprint arXiv:1801.08757, 2018.

	Introduction
	Related Work
	Real-World challenges
	Real-World Applications
	Safe Reinforcement Learning
	Task Scheduling

	Problem Statement
	Robotic Packaging Machine
	Belt Speed Optimization Problem
	Constrained Markov Decision Process
	High-level Interaction Framework

	Methodology
	Markov Decision Process and Penalty Functions
	Action Delay and Observation Matching
	State Representation Design
	Sparse Delayed Rewards and Smooth Control
	Robustness in Realistic Scenarios
	Medium-Level Interaction Framework

	Experimental Results
	Experimental Setup
	Ablation Study
	Validation with Real-World Data

	Discussion
	Ablation study
	Validation study
	Limitations and recommendations

	Conclusions
	References
	Appendix
	Filtering of Real-World Data
	Parameters
	Low-Level Modules with Pseudocode
	Ablation Study figures
	Low Pass Butterworth filter
	Hyperparameters Tuning Study with Optuna
	Experiments for State, Action and Reward Design
	Theoretical background: Reinforcement Learning
	Markov decision process
	Markov Property
	Optimality criteria
	Bellman Expectation and Optimality
	Exploration-Exploitation dilemma
	Temporal difference learning
	RL taxonomy
	Trust Region Policy Optimization
	Proximal Policy Optimization
	Deep RL: neural networks

	Literature review: Challenges of Real-world Reinforcement Learning
	Offline learning with fixed logs
	Limited samples
	High-dimensional continuous state and action spaces
	Safety constraints
	Partially observable
	Unspecified or multi-objective reward function
	Explainable policies
	Real-time inference
	System delays

	Literature review: Safe Reinforcement Learning
	Safe exploration of MDPs
	Risk-aware and cautious RL adaptation
	Robust RL
	RL based on constrained MDPs

